
UNIVERSITY OF GENOVA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Extensions and Experimental Evaluation of
SAT-based solvers for the UAQ problem

by

Giorgia Gazzarata

Thesis submitted for the degree of Doctor of Philosophy (31st cycle)

May 2020

Alessandro Armando Supervisor
Mauro Giacomini Supervisor
Giorgio Cannata Head of the PhD program

Thesis Jury:
Giulio Iannello, Università Campus Biomedico, Rome (Italy) External examiner
Silvio Ranise, Fondazione Bruno Kessler, Trent (Italy) External examiner
Luca Viganò, King’s College, London (England) External examiner
Mauro Giacomini, University of Genova, Genoa (Italy) Internal examiner



2

Department of Informatics, Bioengineering, Robotics and Systems Engineering



I would like to dedicate this thesis to my beloved family and to all the friends I neglected
during my Ph.D. studies.



Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Giorgia Gazzarata
April 2020



Acknowledgements

I would like to acknowledge all the members of CSecLab and Talos for their friendship and
important support. I also wish to thank all the people that said to me "you can do it" in
difficult times.



Abstract

Nowadays, most of the health organizations make use of Health Information Systems (HIS)
to support the staff to provide patients with proper care service. In this context, security
and privacy are key to establish trust between the actors involved in the healthcare process,
including the patient. However, patients’ privacy cannot jeopardize their safety: as a conse-
quence, a compromise between the two must eventually be found. Privilege management and
access control are necessary elements to provide security and privacy. In this thesis, we first
present the main features that make the Role Based Access Control suitable for permissions
management and access control in HIS. We then address the User Authorization Query
(UAQ) problem for RBAC, namely the problem of determining the optimum set of roles to
activate to provide the user with the requested permissions (if the user is authorized) while
satisfying a set of Dynamic Mutually Exclusive Roles (DMER) constraints and achieving
some optimization objective (least privilege versus availability). As a first contribution, we
show how DMER can be used to support the enforcement of SoD. The UAQ problem is
known to be NP-hard. Most of the techniques proposed in the literature to solve it have been
experimentally evaluated by running them against different benchmark problems. However,
the adequacy of the latter is seldom discussed. In this thesis, we propose a methodology
for evaluating existing benchmarks or designing new ones: the methodology leverages the
asymptotic complexity analysis of the solving procedures provided in other works to forsee
the benchmarks complexity given the values of the most significant RBAC dimensions. First,
we use our methodology to demonstrate that the state-of-the-art benchmarks are unsatisfac-
tory. We then introduce UAQ-Solve, a tool that works both as generator of benchmarks and
as UAQ solver leveraging existing PMAXSAT complete solvers. By using UAQ-Solve, we
apply our methodology to generate a novel suite of parametric benchmarks that allows for the
systematic assessment of UAQ solvers over a number of relevant dimensions. These include
problems for which no polynomial-time algorithm is known as well as problems for which
polynomial-time algorithms do exist. We then execute UAQ-Solve over our benchmarks to
compare the performance of different complete and incomplete PMAXSAT solvers.
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Chapter 1

Introduction

Nowadays, most of the health organizations make use of Health Information Systems (HIS)
to support the staff to provide patients with proper care service. In this context, security
and privacy are key to establish trust between the actors involved in the healthcare process,
including the patient. Privilege management and access control are necessary elements
to provide security and privacy. The purpose of privilege management is to define the
permissions of a user, following policies and possibly taking into account environmental
and contextual constraints. Based on that, the requested access is permitted or denied.
Permissions must be managed in a way that only the medical staff involved in a patient care
can access the patient’s clinical information, according to the ‘need to know’ principle.
However, data protection measures should not prevent the appropriate use of care data:
because the patient life is more important than preserving her privacy, it is crucial that
healthcare data are always available when needed. As a consequence, usability and data
availability are fundamental features for the system to be accepted and adopted. In particular,
a trade off between patients privacy and safety should always be reached.

The Role-Based Access Control (RBAC) is one of the most prominent access control
models. It is widely accepted as a best practice for privilege management within a single
system or application. Its popularity is demonstrated by direct or indirect use in different
commercial products and organizations. The success of RBAC is mainly due to the simple
administration and the ability to implement advanced security principles like least privilege
and separation of duties.

The use of RBAC implies the activation and deactivation of roles within a session. In sys-
tems offering permission-level user-system interaction, the system automatically determines
the roles that need to be activated in order to grant the requested permissions. This kind of
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interaction opposes to the role-level interaction, where the user explicitly tells the system
which roles must be activated.

In the healthcare context, it is fundamental to provide permission-level user-system
interaction for reasons of usability and optimality of roles activation. In this dissertation,
we address the User Authorization Query (UAQ) problem for RBAC, which is key in
systems offering permission-level user-system interaction. The UAQ problem consists
in determining the optimum set of roles to activate to provide the user with the requested
permissions (if the user is authorized) while satisfying a set of Dynamic Mutually Exclusive
Roles (DMER) constraints and achieving some optimization objective (least privilege versus
availability). DMER constraints are motivated by the least privilege, while they are not
adequate to enforce separation of duties. To overcome this problem, an extension of DMER
has been put forward (13). As a first contribution, we demonstrate that the extended DMER
constraints can be reduced to equivalent traditional DMER constraints.

The UAQ problem is known to be NP-hard. Many works in the literature provide
techniques to solve the UAQ problem. However, none of them provides a valuable and
satisfactory experimental evaluation. Most of the UAQ solvers have been experimentally
evaluated by running them against different benchmark problems. The latter are commonly
parametric in one of the aspects of the UAQ problem that may contribute to its complexity.
All the other aspects are either set to a predefined, constant value or are randomly chosen
in a given interval or according to some other criterion. Unfortunately, the state-of-
affairs is unsatisfactory. For example, it happens that the experimental results exhibit
polynomial solving time when a polynomial-time technique is not known. This means that
the benchmarks used to test the solvers are not representative of the UAQ problem complexity.
As a consequence, the actual efficiency of the solutions proposed is not clear.

It is then obvious that we need a suitable set of benchmarks for concretely assessing
UAQ solvers. However, to our knowledge, a systematic approach to benchmarking still does
not exist. In this thesis, we propose a methodology for evaluating existing benchmarks or
designing new ones: the methodology leverages the asymptotic complexity analysis of the
solving algorithms provided in (64) to foresee the complexity of the benchmark given the
values of the most significant RBAC dimensions. The aforementioned algorithms play a key
role in the proposed methodology, since they provide upper bounds on the asymptotic growth
rate for UAQ solvers which, to the best of our knowledge, are the best upper bounds currently
available in the literature. Yet, it must be noted that the proposed methodology will yield
different, improved results as soon as new complexity results will become available. To the
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best of our knowledge, this is the first approach to systematically assess the effectiveness of
UAQ solvers.

First, we use our methodology to demonstrate that state-of-the-art benchmarks are unsat-
isfactory. We then introduce UAQ-Solve, a tool that works both as a generator of benchmarks
and as a UAQ solver. UAQ-Solve reduces the UAQ problems to PMaxSAT problems and
then leverages existing PMaxSAT solvers. By using UAQ-Solve, we apply our methodology
to generate a novel, complete, and satisfactory suite of parametric benchmarks that allows
for the systematic assessment of UAQ solvers over a number of relevant dimensions. Each
benchmark is parametric in one aspect characterizing the UAQ problem complexity, while
the other dimensions are fixed. The benchmarks proposed and used in this thesis could be
improved in the future in consequence to the improvement of the methodology due to new
complexity results.

Afterward, we execute UAQ-Solve over our benchmarks leveraging different PMaxSAT
solvers to compare their performance. The solvers exhibit the same behavior over the same
benchmark, and there is not a general best solver. Along the same dimension, the solver
that best performs for small values of the parameter may be among the worst solvers for big
values of the same parameter. Over different benchmarks, the solver that outperforms the
others over a benchmark may be particularly inefficient over another benchmark. UAQ-Solve
over our benchmarks can then be of help to carefully choose the proper solver to use to tackle
the UAQ problem.

Because solving certain UAQ problems can take a large amount of time and patients
privacy cannot jeopardize their safety, a trade-off between the two must be put forward. As a
final contribution we then make some investigations on incomplete solvers. The latter are
solvers that provide the best solution found if an optimum solution is not known by a pre-set
timeout. The experiments reveal that the quality of the solutions provided by an incomplete
solver after 1 second over hard problems seems to be good. In addition, it seems that the
use of an incomplete solver over easy problems is not detrimental to efficiency. Overall,
the incomplete solvers offer a good compromise between the quality of the solutions and
usability. Consequently, they are suitable for all the contexts in which usability can not be
set aside in favor of security, like healthcare, in our case. To the best of our knowledge, we
are the first ones who propose the use of incomplete solvers over UAQ problems to tackle
usability.
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1.1 Thesis Statement and Organization

The UAQ problem is known to be NP-hard (28; 35). Many works in the literature
provide techniques to solve it. However, none of them provides a valuable and satisfactory
experimental evaluation. Most of the techniques have been evaluated by running them against
different benchmark problems. These benchmarks are usually parametric in some relevant
dimension of the problem (e.g., number of roles, number of DMER constraints, number of
requested permissions) and aim at evaluating the scalability of the proposed techniques along
them. Unfortunately, the state-of-affairs is unsatisfactory. The available benchmarks do not
cover (and thus do not test the solvers against) all the relevant aspects of the problem. For
instance, the problems used in (64) do not consider the case where the number of permissions
to be activated is maximized (i.e., obj=max): they therefore do not allow the evaluation of
the respective UAQ instances. Furthermore, solvers are often evaluated against problems
proposed by the same authors and this does not permit to assess the relative merits of the
proposed techniques. In addition, it happens that the experimental results exhibit polynomial
solving time when a polynomial-time technique is not known, see for example (90). This
could actually mean that:

• the benchmark represents a tractable subclass of UAQ problems;

• the range of the parameter under test is not wide enough to highlight the expected
behavior; or

• the algorithm implemented by the solver is more efficient than the best algorithms
known over the class of problems under test;

• P = NP. It is possible, but highly unlikely.

As a consequence, the actual efficiency of the solutions proposed is not clear. Even more so,
for the same reason, it is not easy to compare the performance of the different techniques
proposed to tackle the UAQ problem.

This thesis provides the following contributions:

• We demonstrate that any UAQ problem leveraging the extended DMER constraints
can be reduced to an “equivalent” UAQ problem containing only the traditional DMER
constraints provided that a succinct representation of the current and past role activa-
tions is available (Section 4.4). These results enable the use of existing UAQ solvers
to support the enforcement of SoD requirements;
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• By leveraging the asymptotic complexity analysis of the solving procedures provided
in (64), we propose a methodology for designing parametric benchmarks for the UAQ
problem (Section 6.1). The methodology leads to benchmarks capable to (i) stress-
test solvers along the dimensions of the problem for which no polynomial-time
technique is known but also (ii) to check their effectiveness, by determining whether
they efficiently solve problems that are known to be solvable in polynomial time. To
our knowledge, we are the first who propose a scientific and rigorous methodology
to evaluate and design benchmarks. As we will discuss in Section 6.1, to make the
methodology practically applied, we make two important assumptions:

1. Any benchmark is parametric in a specific dimension. In principle, the latter is
infinite. We will observe the behavior of different solvers in a finite interval of the
parameter under test, assuming that the solvers have the same behavior outside
the defined interval;

2. The methodology would require to run all the possible UAQ problem solvers over
the benchmarks. Since in principle the solvers could be infinite, we consider only
a finite subset of them. We then assume that the other solvers behave similarly to
the ones considered in our evaluation.

• We present UAQ-Solve, which is both a benchmarks generator and a solver (Sec-
tion 7.1). In combination with our methodology, the tool can generate hard benchmarks
of UAQ problems. The latter can constitute important input for the MaxSAT Evalua-
tion: in fact, in addition of being hard, the benchmarks are relevant from the application
point of view. We already submitted some benchmarks to the MaxSAT Evaluation
2018 (10), where our benchmarks were used to stress-test solvers participating to both
the complete and incomplete tracks 1;

• By using our methodology, we introduce a novel suite of parametric benchmarks
that allows for the systematic assessment of UAQ solvers over a number of relevant
dimensions (Section 6.3). These include problems for which no polynomial-time
algorithm is known as well as problems for which polynomial-time algorithms do exist.

1 Results of Unweighted Complete Track Per Benchmark Family (you can find the results
over our benchmarks searching for "uaq"): https://maxsat-evaluations.github.io/2018/results/
complete/unweighted/table-extended.html. Results of Unweighted Incomplete Track un-
der 60 and 300 seconds Timeout (you can find the results over our benchmarks searching for
"uaq"): https://maxsat-evaluations.github.io/2018/results/incomplete/unweighted-60s/table-all.
html and https://maxsat-evaluations.github.io/2018/results/incomplete/unweighted-300s/
table-all.html.

https://maxsat-evaluations.github.io/2018/results/complete/unweighted/table-extended.html
https://maxsat-evaluations.github.io/2018/results/complete/unweighted/table-extended.html
https://maxsat-evaluations.github.io/2018/results/incomplete/unweighted-60s/table-all.html
https://maxsat-evaluations.github.io/2018/results/incomplete/unweighted-60s/table-all.html
https://maxsat-evaluations.github.io/2018/results/incomplete/unweighted-300s/table-all.html
https://maxsat-evaluations.github.io/2018/results/incomplete/unweighted-300s/table-all.html
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Guided by the asymptotic complexity analysis results given in (64), we indicate, for
each benchmark, its purpose and the expected behavior of solvers. To our knowledge,
we are the first who provides a set of benchmarks designed through a methodology
like the one we present. This contribution is particularly important. In fact, the
lack of adequate benchmarks makes it difficult to assess the efficiency of the different
techniques used to tackle the UAQ problem. Even more so, it makes it difficult to
compare their performance. By providing a complete and adequate suite of benchmarks,
we are de facto offering the possibility to both

– assess the performance of a single solver, and

– compare the performance of the different solutions.

(69) provided a similar contribution for the famous Symmetric and Asymmetric Trav-
eling Salesperson Problems (TSP). This work helped to

– reduce the publication of relatively weak TSP heuristics, and

– motivate development of new TSP approaches;

• We use the generated benchmark to evaluate the performance of different solvers,
among which PMaxSAT solvers (Sections 8.2.2 and 8.4);

• We show that the incomplete solvers over hard benchmarks can provide sub-optimal
solutions that are a good compromise between the optimization objective and usability
(Section 8.5). In fact, contrary to the complete solvers, if the incomplete solvers
cannot find the optimum solution within a preset timeout, they simply return the best
solution found. Besides, we also show that the incomplete solvers can also perform
similarly to the complete solvers over easy benchmarks. To our knowledge, we are the
first ones who propose the use of incomplete solvers to tackle the UAQ problem.

We have used the new suite of benchmark problems as well as the benchmarks introduced
in (64) to experimentally evaluate three solvers:

• 2D-Opt-Search (64): a search-based solver;

• 2D-Opt-CNF (64): combines the reduction of the UAQ Decision Problem to SAT, a
state-of-the-art SAT solver and a binary search;

• UAQ-Solve: a SAT-based solver that implements a reduction of the UAQ problem to
PMaxSAT and uses any state-of-the-art PMaxSAT solver to tackle the problem. It is
an extension to (13).
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UAQ-Solve outperforms both 2D-Opt-Search and 2D-Opt-CNF in the vast majority of
the benchmark considered. This is hardly surprising since PMaxSAT solver implements
sophisticated search algorithms specifically tailored to tackle optimization problems; in
contrast, 2D-Opt-CNF tackles the optimization problem through a fairly naive binary search
strategy and 2D-Opt-Search simply enumerates the solutions in order to find an optimum.
Yet, prior to our experimental analysis, there was little evidence (if any) to support this
conclusion.

Besides, we executed UAQ-Solve over the proposed benchmarks leveraging different
PMaxSAT solver to compare their performances.

The remainder of this dissertation is organized as follows:

Chapter 2 introduces background information;

Chapter 3 presents the related work;

Chapter 4 shows the formalization of RBAC and the UAQ problem together with the
reduction of the extended DMER introduced in (13) to traditional DMER constraints;

Chapter 5 presents the different techniques to solve the UAQ problem;

Chapter 6 explains the methodology we propose to evaluate/generate benchmarks and
introduces state-of-the-art benchmarks and our benchmarks. This chapter presents
and extends the content of our paper2 (12);

Chapter 7 introduces our tool, UAQ-Solve. The latter is used to generate the benchmarks
designed in Chapter 6 and to run the experiments presented in Chapter 8. The tool is
also discussed in (11)3.

Chapter 8 shows the experimental results. In particular:

Sections 8.1 demonstrates that state-of-the-art benchmarks are incomplete and unsat-
isfactory. In addition, it shows that UAQ-Solve outperforms 2D-Opt-Search and
2D-Opt-CNF over them;

Sections 8.2 and 8.3 contain the evaluation of our benchmarks. Besides, it shows that
UAQ-Solve outperforms 2D-Opt-Search and 2D-Opt-CNF over them;

Section 8.4 compares the performance of different PMaxSAT solvers over our bench-
marks;

2Accepted at SACMAT 2020.
3Accepted at SACMAT 2020. Here we decided to rename the tool "AQUA".
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Section 8.5 shows the results of the execution of incomplete solvers over our bench-
marks;

Chapter 9 exposes the conclusions and future works.



Chapter 2

Background

2.1 Healthcare and Access Control

Nowadays, most of the health organizations make use of Health Information Systems (HIS)
to support the staff to provide patients with proper care service. In this context, security and
privacy are key to establish trust between the actors involved in the healthcare process, includ-
ing the patient (16). Security aims at guaranteeing information availability, confidentiality,
integrity, authenticity and accountability. Privacy is a human right for self-determination. It
requires compliance with legal requirements, ethical principles, personal preferences and
expectations regarding the treatment of personal data (22). Privilege management and access
control are key elements to provide security and privacy. In a healthcare business process, a
user wants to access clinic information. Privilege management and access control deal with
the relationship between a subject (actor, user) and an object (resource, information), thereby
defining the privileges (permissions) the entity obtains regarding the object. Permissions
must be managed in a way that only the medical staff involved in a patient’s care can access
the patient’s clinic information according to the ‘need to know’ principle. Access implies
different operations on that object such as create, read, write, update, delete, execute. The pur-
pose of privilege management is to define the permissions a user has, following policies and
possibly taking into account environmental and contextual constraints. The policies define
which behaviors are permitted or forbidden to the subjects, as well as constrain actions. For
example, a doctor can retrieve patients’ health data, but she can not disclose them. Based on
policies and other eventual constraints, the requested access is permitted or denied. However,
data protection measures should not prevent the appropriate use of care data: security and
privacy requirements should not affect the usability of the entire system and healthcare data
availability. Because the patient’s life is more important than preserving her privacy, usability
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is in fact a fundamental feature for the system to be accepted and adopted. In this thesis, we
propose the Role-Based Access Control as access control model, for several reasons that will
be introduced in Section 2.2.

2.2 Role-Based Access Control

Role-Based Access Control (RBAC) is an access control model introduced in 1992 in (39).
Although developed by the National Institute of Standard and Technology (NIST), the Inter-
national Committee for Information Technology Standards (INCITS) adopted, copyrighted,
and distributed RBAC as INCITS 359-2004 (46). RBAC is widely accepted as a best practice
to manage user privileges within a single system or application. Its popularity is demonstrated
by the direct or indirect use in different products and organizations. To name few: Apache
Fortress Rest and Apache Fortress Web1, Kubernetes2, Microsoft Office 365 and Microsoft
DefenderAdvanced Threat Protection3, Microsoft Windows Server (from 2003)4, Microsoft
Azure5 and other Microsoft products, RedHat OpenShift6, Apache Ignite7, and Oracle Solaris
OS8. Besides, (62) analyzed the economic value of RBAC for enterprises, and estimated
benefits per employee from reduced employee downtime, more efficient provisioning, and
more efficient access control policy administration.

The central concept of RBAC is the separation between users and the permissions to
access the resources. This is pursued through role relations: a role is “a collection of
permissions to use resources appropriate to a person’s job function” or competencies to do
specific tasks in an organization (88). Instead of specifying all the accesses each user is
allowed to execute, permissions are assigned to roles; then, users are assigned to roles based
on their authorities, responsibilities, and qualifications. Consequently, access decisions are
based on the roles that individual users have as part of an organization. Often the associations
between users and permissions are dynamic. Instead, roles are more stable, because an
organization’s activities tend to remain relatively constant or change slowly over time (71).
For this reason, RBAC greatly simplifies the management of users’ permissions. In fact, the

1https://directory.apache.org/fortress/overview.html
2https://kubernetes.io/docs/reference/access-authn-authz/rbac/
3https://docs.microsoft.com/en-us/windows/security/threat-protection/

microsoft-defender-atp/rbac
4https://docs.microsoft.com/en-us/windows-server/networking/technologies/ipam/

role-based-access-control
5https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
6https://docs.openshift.com/dedicated/4/authentication/using-rbac.html
7https://apacheignite.readme.io/docs/rbac-authorization
8https://docs.oracle.com/cd/E63708_01/doc.801/e63712/mssg_rbac.htm#MSVSG265

https://directory.apache.org/fortress/overview.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/rbac
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/rbac
https://docs.microsoft.com/en-us/windows-server/networking/technologies/ipam/role-based-access-control
https://docs.microsoft.com/en-us/windows-server/networking/technologies/ipam/role-based-access-control
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.openshift.com/dedicated/4/authentication/using-rbac.html
https://apacheignite.readme.io/docs/rbac-authorization
https://docs.oracle.com/cd/E63708_01/doc.801/e63712/mssg_rbac.htm#MSVSG265
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administrative task consists of granting, reassigning, and revoking users’ membership to the
set of roles within the system:

• When a new person enters the organization, the administrator simply grants member-
ship to an existing role;

• When a person’s function changes within the organization, the administrator deletes
his/her membership to existing roles and creates new ones;

• When a person leaves the organization, the administrator deletes all his/her member-
ships to all roles.

Also, roles can be updated without updating the privileges for every user on an individual
basis. In addition, roles can be associated to new permissions as new applications and systems
are incorporated, and permissions can be revoked from roles as needed (39) (71).

Another RBAC strength is the possibility to enforce the least privilege principle, which
is important for meeting integrity objectives (84). The RBAC reference model is defined in
terms of different model components: Core RBAC, Hierarchical RBAC, and Constrained
RBAC (Static Separation of Duty and Dynamic Separation of Duty RBAC) (46). In the
following subsections, we review the aforementioned RBAC models with the help of the
simple use case described below.

2.2.1 Running Example

Richard is a doctor working in the Department of Infectious Diseases of a medical facility
in which Sarah, HIV-infected, is hospitalized. To provide Sarah with health care service,
Richard needs to access her health records through the HIS. In order to minimize the risk
of personal information disclosure, the HIS makes use of two databases hosted in two
distinct servers: one database stores the patients’ personal details and the other one stores the
patients’ health records (accessible through the patients’ identifier). Consequently, as shown
in Figure 2.1a, Richard needs to retrieve Sarah’s identifier from the first database; then, he
can retrieve Sarah’s health records from the second one thorough Sarah’s identifier.

Besides, as shown in Figure 2.1b, Richard is a Data Manager responsible for providing
anonymized information to a pharmaceutical company to make some statistics on the patient’s
reactions to new drugs. This task is critical: in fact, if not managed properly, it could lead to
personal data disclosure. This would have serious consequences: it would be bad publicity
for the hospital, and, above all, Sarah could be denigrated because of her illness.
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Jane is the pharmacist who provides medicines in the department. Claire is a nurse and
needs to access Richard’s prescription to administer drugs to Sarah. Finally, Matthias is a
doctor and data manager like Richard. However, Matthias is also the head physician, who,
among the other things, manages the staff schedule and checks that the staff follows the
guidelines during the healthcare service.

(a) Richard acting as doctor

(b) Richard acting as data manager

Figure 2.1 Use case definition: Richard performing different tasks
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2.2.2 Core RBAC

Figure 2.2 shows Core RBAC, which is the base of all RBAC systems. Core RBAC consists
of the minimum collection of data elements to achieve a complete RBAC system: users,
roles, permission, operations, and objects. Permissions (PRMS) are approval to perform
operations (OPS) on protected objects (OBS). Every permission can be associated to one
or more roles through Permission Assignment (PA) relations. Similarly, every role can be
associated to one or more users through User Assignment (UA) relations. Users who are
members of a certain role acquire all its permissions. A single user can have one or more
roles and a role can be associated to one or more users (88). In addition, the core RBAC
model includes the sessions set; the latter maps each user to the activated subset of roles
assigned to her in the current session. Each session is associated with a single user and each
user is associated with one or more sessions. The permissions actually available to the user
are the ones assigned to the roles activated in the user’s sessions (46).

Figure 2.2 Core RBAC (46)

Figure 2.3 Representation of Core RBAC for the use case
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Figure 2.3 shows the representation of the Core RBAC model for our use case. Through
the activation of the role Doctor, Richard can get the identification of Sarah and her personal
details (Read_id), read her health records (Read_health_records), and prescribe drugs to
Sarah (Prescribe). Instead, through the activation of the role Data_Manager, Richard can
retrieve patients’ health record (Read_health_records) and send them as anonymized data to
the pharmaceutical company (Send_data). Claire, through the activation of the role Nurse,
can read Richard’s prescription to administer drugs to Sarah (Read_prescription) when
she is hospitalized. Sarah, through the activation of role Patient can read her own health
records (Read_health_records) and read Richard’s prescription (Read_prescription). Fi-
nally, Matthias can perform the same operations as Richard, but, in quality of Head_Physician,
he can also manage the staff schedule (Manage_schedule) and check if the staff follows the
guidelines during the Sarah’s care process (Check_process). Finally, Jane, as Pharmacist,
can approve the provisioning of medicines (Provide_medicines).

2.2.3 Hierarchical RBAC

Within many organizations, there are a number of general permissions that should be granted
to a large number of users; furthermore, only senior employees should perform more critical
operations. To reflect an organization’s lines of authority and responsibility, RBAC models
include the concept of role hierarchies (88). Formally, a hierarchy is a partial order
defining an inheritance relation between roles: for example, if role r1 inherits role r2, then all
privileges of r2 are also privileges of r1 (46). In our example in Figure 2.3, both the roles
Doctor and Nurse have the permission Read_prescription assigned. In addition, Doctor

has assigned other permissions that are not assigned to Nurse. Consequently, it is possible to
define a hierarchical relation between Doctor and Nurse where Doctor is the most senior
role. Figure 2.4 shows Hierarchical RBAC, which consists of the Core RBAC with the
addition of requirements for supporting role hierarchies. Since the hierarchical relations are
not relevant for our scopes, we do not introduce more details.
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Figure 2.4 Hierarchical RBAC (46)

2.2.4 Constrained RBAC

The Separation of Duties (SoD) is a security principle used to avoid conflicts of interest
or errors. Its purpose is to ensure that frauds and major errors within an organization are
caused only as a result of deliberate collusion among multiple individuals. SoD has long
been recognized for its wide application in business, industry, and government (46).

With respect to Core RBAC, the Constrained RBAC provides for SoD relations to enforce
conflict of interest policies. The latter prevent users from exceeding a reasonable level of
authority for their positions. There are two major types of SoD relations, namely Static SoD
(SSD) and Dynamic SoD (DSD) relations, which are described in the following.

SSD and Static Mutually Exclusive Roles constraints

A conflict of interest or errors may occur when a user gains authorization for permissions
associated with conflicting roles. As shown in Figure 2.5, Static SoD relations can place
restrictions on sets of roles and, in particular, on their ability to form UA relations (46). In
case of role hierarchy, special care must be applied to ensure that user inheritance does not
undermine SoD policies.
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Figure 2.5 Static Separation of Duties in RBAC (46)

In RBAC, the Static SoD policies can be enforced through the Static Mutually Exclusive
Roles (SMER) constraints. A SMER constraint is defined by mutually disjoint user assign-
ments with respect to a set of m roles {r1,r2, . . . ,rm} and by an associated cardinality t. The
constraint

SMER({r1,r2, . . . ,rm}, t)

means that no more than t−1 roles in {r1,r2, . . . ,rm} can be assigned to a user.

In our example, Claire, as a Nurse, can administer medicines; it would be unsafe if she
could also be assigned the role Pharmacist, which would enable her to approve the dispensa-
tion of medicines. In fact, Claire could get hold of dangerous medicine and administer it to a
patient. In this case, the following SMER can be used:

SMER({Nurse,Pharmacist},2).

From a policy perspective, SMER constraints are a powerful mean to enforce conflict of
interest rules over sets of roles. However, their definition can often be excessively restrictive.
In our example, the simultaneous activation of the roles Doctor and Data_Manager is
dangerous: in fact, Richard could accidentally (or not) send the patients personal details
contained in the health record to the pharmaceutical company, causing personal information
disclosure. On the other hand, the constraint

SMER({Doctor,Data_Manager},2)
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would not be adequate: in fact, a person may be both a doctor and a data manager for the
same hospital.

It is important to recall the fundamental difference between Separation of Duties policies
and Static MER constraints. In fact, Static SoD policies are objectives that need to be achieved
to prevent frauds and major errors: specifically, a SSoD policy specifies the minimum number
of users allowed to possess together all the permissions needed for a sensitive task. It is
then clear that Static SoD policies do exist independently of the access control model used
to manage the permissions. On the contrary, SMER constraints are specific to RBAC: in
particular, SMER constraints are the mechanism that RBAC provides to enforce SSoD
policies. With the SMER constraints, the SSoD policies are achieved by limiting the role
memberships a single user is allowed to have. Obviously, to ensure SMER constraints
effectiveness, it is necessary to assign permissions to roles properly. In fact, for example,
a SMER constraint can not enforce a given SSoD policy if all the permissions needed to
perform a sensitive task are assigned to a single role. As shown in (51), directly enforcing the
SSoD policies is intractable (coNP-complete), while enforcing SMER constraints is efficient;
however, verifying whether a given set of SMER constraints enforces the SSoD policies is
still intractable (coNP-complete).

DSD and Dynamic Mutually Exclusive Roles constraints

Like SSD relations, Dynamic SoD relations enable to limit the permissions that are available
to a user. However, the context in which these limitations are imposed is different: in fact,
while SSD relations restrict the ability to form UA relations, DSD relations constrain the
roles that are activated in a user’s session, as shown in Figure 2.6.

Figure 2.6 Dynamic Separation of Duties in RBAC (46)
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As a consequence, DSD relations enable a user to be authorized for two or more roles
that do not create a conflict of interest or possible errors when acted independently, but forbid
a simultaneous activation.

DSD relations can support the least privilege principle, ensuring that user’s permissions
do not persist beyond the time that they are required for performance of duty. This aspect of
least privilege is often known as timely revocation of trust and it would be a rather complex
issue without the definition of DSD relations (46).

Within RBAC, DSD policies can be enforced through Dynamic Mutually Exclusive Roles
(DMER) constraints. A DMER constraint requires that no user can activate t or more roles in
a set of m roles {r1,r2, . . . ,rm} in any session.

In our example, the constraint

DMER({Doctor,Data_Manager},2)

would enable Richard to carry out the employment related to one role between Doctor and
Data_Manager per time, but would deny a simultaneous activation of both the roles in the
same session.

Although more flexible, DMER constraints are not suitable for enforcing SoD policies, as
pointed out in (51). In fact, Richard could activate Doctor and Data_Manager sequentially
in any session; namely he could:

1. activate Doctor;

2. deactivate Doctor;

3. activate Data_Manager.

Otherwise, he could activate Doctor and Data_Manager simultaneously in two different
sessions. This is a serious limitation as SoD policies play a key role in preventing frauds
and misuse of the system resources. To overcome this important issue, (13) introduced four
different kinds of MER constraints, which are briefly described in the following paragraphs.

Single-Session DMER constraints ensure that no user can simultaneously activate t or
more roles in a set of m roles {r1,r2, . . . ,rm} in any session. The constraint

SS-DMER({Doctor,Data_Manager},2)

is the common DMER constraint, already described above.
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Multi-Session DMER constraints ensure that no user can simultaneously activate t or
more roles in a set of m roles {r1,r2, . . . ,rm} in all the sessions owned by the user. The
constraint

MS-DMER({Doctor,Data_Manager},2)

would deny the simultaneous activation of Doctor and Data_Manager in one or more
sessions, but Richard still could activate them sequentially.

Single-Session History-based DMER constraints ensure that no user can activate t or
more roles in a set of m roles {r1,r2, . . . ,rm} in any session over time. The constraint

SS-HMER({Doctor,Data_Manager},2)

would deny the sequential activation of Doctor and Data_Manager, however Richard still
could activate them in two different sessions.

Multi-Session History-based DMER constraints ensure that no user can activate t or
more roles in a set of m roles {r1,r2, . . . ,rm} in all the sessions owned by the user over time.
The constraint

MS-HMER({Doctor,Data_Manager},2)

would forbid both the sequential and the simultaneous activation of Doctor and Data_Manager

in one or more sessions.
These extensions would enable the DMER constraints to enforce SoD policies, while

preserving their flexibility.

2.3 The User Authorization Query Problem

The User Authorization Query (UAQ) Problem for RBAC amounts to determining an opti-
mum set of roles to activate in a given session in order to obtain some permissions while sat-
isfying a collection of authorization constraints, most notably Dynamic Mutually-Exclusive
Roles (DMER) constraints. The UAQ problem is key in systems offering permission-level

user-system interaction as opposed to role-level interaction. In the former, the system auto-
matically determines the roles to activate to enable the requested permissions. In contrast, in
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the latter, the user explicitly determines and tells the system which roles must be activated.
Permission-level user-system interaction is fundamental in applications in which usability is
an important specification.

In the authorization query, the requested permissions come in two sets: a lower bound
Plb and an upper bound Pub such that Plb ⊆ Pub ⊆ P, where P is the complete set of per-
missions. The permissions in Plb are those that must be granted, whereas those in Pub \Plb

are additional permissions that may be granted. It is then possible to either minimize
or maximize the number of additional permissions to be granted depending on which
security objective (safety or availability, respectively) needs to be prioritized. If safety
(availability) is more important, then the number of permissions from Pub \ Plb needs
to be minimized (maximized, respectively). Notice that a certain degree of safety is
achieved even if availability is preferred over safety, since no permission in P \Pub can
be granted. In our example, suppose that Matthias needs to plan the staff schedule for
the next month: to perform this task, he needs the permission Manage_schedule, thus
Plb = {Manage_schedule}. On the contrary, he does not need the permission Send_data,
whose activation could be risky: consequently, we could exclude it from Pub, that could be
Pub = {Read_id,Read_health_records,Prescribe,Read_prescription,Manage_schedule,

Check_process}. In this situation:

• Manage_schedule must be granted, because it is the requested permission;

• Send_data must be denied, because it is in P\Pub;

• Read_id, Read_health_records, Prescribe, Read_prescription, and Check_process

are in Pub \Plb and consequently:

– if the objective is safety, we would like not to activate them;

– if the objective is availability, we would like to activate them.

Following the aforementioned conditions, in case the objective is safety, the optimum so-
lution is the activation of the only Head_Physician, which provides Matthias with the
permissions Manage_schedule (namely, the requested permission) and Check_Process.
On the contrary, if the objective is availability, the optimum solution is the activation
of the roles Head_Physician and Doctor. The latter activates the permissions Read_id,
Read_health_records, Prescribe, and Read_Prescription.

While the usefulness of safety as security objective is clear, the availability as security
objective may be tricky. Figure 2.7 represent the core RBAC for a data visualization
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application that displays plots about the COVID-19 pandemic. The application must always
display the plots p6, which is accessible to the basic Guest role. The other plots, namely
p1, p2, p3, p4, and p5 can be shown only to the staff of the research center according
to the roles the user has. Suppose that the most privileged roles are constrained by the
DMER constraint SS-DMER({Researcher, BoardMember}, 2). Suppose that Alex wants to
visualize p3 in addition to p6. This amounts to an UAQ query with Plb = {p3, p6} together
with the maximal number of plots in Pub = {p1 , p2 , p3 , p4 , p5, p6}, in order to maximize
the amount of information conveyed to the user while complying with the authorization
constraints. In principle, Alex could activate the roles Board_Member, Researcher, and
Employee. However, only one between Board_Member and Researcher can be activated,
due to the DMER constraints. The permission p3 could be activated by both the roles. The
possible role solutions to the access query are:

• the activation of Board_Member and Employee: it implies the activation of the per-
missions p1, p3, p5, and p6 (4 permissions);

• the activation of Researcher and Employee: it implies the activation of the permissions
p2, p3, p4, p5, and p6 (5 permissions);

Since the security objective is the data availability, the second solution is selected.

Figure 2.7 Representation of Core RBAC for the use case

In spite of its computational intractability (the UAQ problem has been shown to be NP-
hard (28; 35)), several solvers based on a variety of techniques have been put forward along
with encouraging experimental results. By borrowing ideas from constraint satisfaction, (90)
puts forward two approaches to solving the UAQ problem: an extension of the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm and a reduction to the Partial Maximum Satisfiability
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Problem PMAX-SAT. The PMAX-SAT problem asks for the maximum number of clauses
that can be satisfied by any assignment of a given subset of clauses (i.e., soft clauses) while
the remaining clauses (i.e. hard clauses) must be satisfied. Both (13) and (64) improve
the reduction proposed in (90) by using an efficient encoding of the cardinality constraints.
However, while (13) advocates the use of state-of-the-art PMaxSAT solvers to solve a UAQ
problem instance, (64) focuses on the decision version of the UAQ problem, which is then
reduced to SAT. The latter proposes an off-the-shelf binary search algorithm to tackle the
optimization problem by iteratively solving the respective decision version. The work of
(64) also proves that the UAQ is fixed-parameter polynomial in the number of requested
permissions, |Plb|, (under a reasonable assumption) and provides an alternative procedure
based on it. The result is of practical relevance: in fact, it applies to the UAQ problems
seeking to minimize the number of granted permissions and states that the UAQ problems
in this class can be solved in polynomial time if |Pub| is bounded by some positive integer
regardless of the (maximum) size of the role set containing all permissions in Pub, in symbols
|RP|.



Chapter 3

Related work

RBAC is a standard solution for access control. In the last two decades, it has been widely
adopted by different commercial products. For this reason, RBAC and the UAQ problem for
RBAC attracted the attention of many researchers. Besides, huge literature and community
support do exist. In Section 3.1, we present the related work on the UAQ problem, in
particular on its definition and computational complexity.

Many RBAC variants have been proposed with different expressive features, such as
temporal constraints on role activations (36), spatial constraints (57; 58), and spatio-temporal
constraints (85). The literature on constraints other than SMER and DMER constraints in
the context of RBAC is huge, see for example (4; 5; 31; 49; 78; 87). Most of the constraints
proposed are variants of SMER and DMER constraints. For example, in order to enforce
SoD policies, permissions could be declared mutually exclusive instead of roles. In this way,
a user cannot simultaneously be authorized for two or more mutually exclusive permissions.
Even users could be mutually exclusive, so that they cannot be assigned to the same role.

However, because they are the fundamental types of constraints, in this thesis and in
Section 3.2 we focus on the enforcement of Mutually Exclusive Roles constraints.

3.1 The UAQ problem: definition and complexity

UAQ is a central problem in RBAC systems; in fact, there is an increasing interest in
developing techniques for tackling it efficiently and understanding its underlying complex-
ity (53; 63; 86). To our knowledge, UAQ was first posed by Du and Joshi in (35), where
the authors showed that the subcase of finding minimal set of roles to be activated in a
session to address the permissions requested by the user is NP-hard, while the corresponding
decision version (namely, without any optimization objective) is NP. The aforementioned
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work analyzes UAQ in the presence of complex role hierarchies, however it does not consider
the constraint types available in RBAC (e.g., mutual exclusion of roles) or the optimization of
extra permissions. Then, Zhang and Joshi (93) generalized the UAQ problem by introducing
the concept of optimization of the number of extra permissions in addition to the number of
roles, thus dealing with availability and least-privilege. In addition, this work also introduces
the constraints.

Besides, in the same work, the authors presented two algorithms for solving UAQ problem
instances. The first algorithm is a two-step greedy search algorithm. In the first step, it selects
a set of roles covering the requested permissions while trying to minimize the additional
permissions these roles provide. This first step does not consider the constraints. In the
second step, the algorithm checks whether the roles selected in the first step satisfy all the
constraints. In the opposite case, the algorithm denies the user’s request. It is efficient but
incomplete: in fact, it is very likely that, in the first step, the algorithm chooses a set of roles
violating some constraint. Consequently, it may deny the request even when there exists a set
of roles that both satisfies the constraints and covers the desired permissions. The second
algorithm aims to provide completeness. It is based on a simple generate-and test strategy and
enumerates all subsets of roles assigned to the user until one is found that provides the needed
permissions and satisfies all constraints. The approach to dealing with the unsoundness
renders the algorithm inefficient: in fact, in the worst-case, this naive brute-force approach
can be asked to generate 2n solutions, where n is the number of roles assigned to the user.

Then Wickramaarachchi et al. extended the UAQ problem definition to a more generic
form where the input includes both a lower bound and an upper bound of the requested
permissions: solving the UAQ problem means to provide a set of roles that have permissions
between the lower bound and upper bound, while satisfying all constraints (90). In addition,
the authors propose a combination of mixing the optimization of number of roles and
permissions different from the one presented in (93). In particular, the authors consider two
possible optimization objectives: one is to prefer a set of roles that has permissions as close
to the lower bound as possible, and the other is to prefer a set that have permissions as close
to the upper bound as possible. The choice between the two optimization objectives depends
on the nature and objective of the request, respectively safety or availability. By the way,
a certain degree of safety is guaranteed even when the objective is availability: in fact, no
permission not included in Pub can be activated. Besides, the authors consider the exact match
case, in which the lower bound and the upper bound coincide. Wickramaarachchi et al. also
proposed two approaches for mitigating the intractability of UAQ, both leveraging prior work
on boolean satisfiability. The first approach is an extension of the Davis-Putnam-Logemann-
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Loveland (DPLL) algorithm (55), a backtracking based search algorithm used in SAT solving.
This approach is exponential-time in its design. In addition, it does not address the joint
optimization, namely the optimization of both the permissions and roles activation. In the
second approach, the UAQ problem is reduced to the MaxSAT problem. After the reduction,
an optimized off-the-shelf SAT solver can be used to solve the problem. The problem of
deciding whether a boolean expression in CNF is satisfiable is known to be NP-complete (43).
The authors’ empirical observations show that the first approach is more efficient when an
exact matching between the requested permissions and the available roles is sought. However,
in general, the second solution performs better when obj = max or obj = min in the UAQ
instance. Nevertheless, as pointed out in (63), the second solution is unsound and limited
in the manner in which joint optimization is addressed. By the way, as reported in (13) and
(63), both approaches show very poor performance when the number of roles increases and
only single session DMER constraints are supported in authorization queries.

In (28), Chen and Crampton analyze the UAQ problem complexity for the cases of
obj =max and obj =min. The authors reduce the problem to special cases of set covering
problems 1 (6; 43) for a given set of permissions P and roles R such that Prms(r)⊆ P holds
for each r ∈ R, where Prms(r) is the set of permissions assigned to r, and permission sets
Plb ⊆ Pub ⊆ P by using the following concepts:

• kernel(Pub) denotes the largest set of permissions that are obtained from the set of
roles S⊆ R such that Prms(S)⊆ Pub.

• the minimal subset (container) of roles such that the set of permissions obtained from
the union of roles subsumes Plb and there is no such other smaller subset of roles.

By using these concepts, when obj = max the optimum solution Q for a requested set of
permissions Plb is addressed by setting Q = kernel(Pub) and is shown to be polynomial.
However, this work does not consider the MER constraints, whose features are the main
contributors to the UAQ problem complexity for obj = max, as shown in (63). The case
obj =min is addressed by restricting the whole set of permissions to P = Pub and finding the
minimal subset of roles covering Plb. This case is shown to be NP-hard.

In (64), Mousavi and Tripunitara distinguish between two versions of UAQ with con-
straints: decision and optimization. The former reduces a UAQ problem to SAT. The latter
invokes a SAT solver iteratively with additional optimization objectives that minimize or

1 Let X = {1,2, ...,n} be a ground set of n elements, and let S be a family of subsets of X, |S|= m. A cover
is a collection of sets such that their union is X. Each S ∈ S has a non-negative cost c(S) associated with it. The
set covering problem is the problem of finding a cover of minimum cost. (6).
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maximize the set of roles that can be activated. The authors show that the UAQ optimization
problem is (fixed parameter) polynomial in |Pub| when the set of roles that can be activated is
bounded by |Pub|. The authors also show that the complexity result presented in (28) for the
case obj =max changes when there are constraints in the UAQ instance. More specifically,
they show that there is an upper bound (NP) for the general UAQ problem and the case
obj =max also becomes intractable in UAQ instances with constraints.

To our knowledge, the last work on interest is presented in (47), where Lu et al. propose
a comprehensive definition of the weighted UAQ (WUAQ) problem that considers the
different nature and importance of each permission. The authors investigate the computational
complexity of different subcases of the WUAQ problem and show that many instances in
each subcase are intractable. Besides, they propose an algorithm to approximately solve the
intractable cases of the WUAQ problem: this algorithm can be efficiently modified to handle
the other subcases of the WUAQ problems.

3.2 Constraints enforcement

To our knowledge, the concept of Separation of Duties first appears in the information security
literature in (73) under the name “separation-of-privilege”. Sandhu and Jajodia define SoD
as a “timed-honored principle for prevention of fraud and errors, going back to the very
beginning of commerce” (77). In (29), Clark and Wilson explain the need for enforcing SoD
policies: “Because computers do not normally have direct sensors to monitor the real world,
computers cannot directly verify external consistency. Rather, the correspondence is ensured
indirectly by separating all operations into several subparts and requiring that each subpart
be executed by a different person”. As Sandhu and Jajodia state in (77), “no single individual
should be in a position to misappropriate assets on his own. Operationally, this means that a
chain of events which affects the balance of assets must require different individuals to be
involved at key points, so that without their collusion the overall chain cannot take effect”.

At a high level, a SoD policy can be enforced during role assignment (Static SoD, SSD),
role activation (Dynamic SoD, DSD), or both. The difference between dynamic and static
enforcement of SoD policies is presented in (68). In the former, users are constrained a
priori from performing certain steps, while in the latter a user may perform any step in a
sensitive task provided that she does not perform another step in that task. In many situations,
the flexibility characteristic of the DSD policies makes them preferable with respect to
the rigid SSD policies. A SSD policy can be enforced without maintaining a history
for every task instance, by carefully assigning permissions to users. Instead, in order to



3.2 Constraints enforcement 27

enforce a DSD policy, the system needs to maintain a history of the actions performed by
the users. Before a user performs a step on the task, the system must check if the SoD policy
is not violated. Sandhu presented a history-based mechanism for dynamically enforcing SoD
policies named transaction control expressions (74; 75). Foley proposed a framework based
on relabel policies (80) to express dynamic SoD requirements (41).

Recent research has focused on addressing constraints and security design principles
individually (27; 35) with run-time context (59). Chen and Crampton (27) try to support
the least privilege principle as a role mapping problem between different domains. Du and
Joshi (35) also focus on the least privilege in a distributed setting. The authors define the
inter-domain role mapping (IDRM) problem, namely the problem of finding the set of roles
in a domain that are authorized for a set of permissions requested from an external domain.
However, role assignment may be driven with different business objectives and may result
in an overly restrictive authorization system that makes enforcement during role activation
more desirable.

A general constraint enforcement framework is presented in (32) in which the enforcement
of constraints is transformed into an authorization checking problem by using RBAC states.
They employ relational algebra to check whether a derived state (after a set of events) is
among the permitted states (or prohibited states).

In (40), Ferrini and Bertino discuss the enforcement of SoD constraints in eXtensible
Access Control Markup Language (XACML) (30) policies. The authors encode state infor-
mation about the exercise of permissions in ontologies whose inconsistency refers to SoD
violation. When a request is permitted, XACML obligations are used to update the state
information.

Xu et al. (59) proposed to use XACML in administrative RBAC systems to specify how
administrative changes in the policies can be reflected at run-time, by changing the role
definitions and the user assignment. They investigated the use of lock mechanisms to handle
concurrency of sessions and provided XACML solutions for the constraint enforcement.

Li and Wang present SoD algebra (SoDA) (52), a solution for the specification of SoD
constraints. In addition to the formalism for constraint specification, the authors provide
a methodology for secure workflow design. However, the work of Li and Wang does not
exploit the notion of sessions in RBAC. The SoD enforcement can be achieved through static
enforcement via static safety checking (SSC) or dynamic enforcement via term satisfiability
(TSAT). Once defined a workflow, each step of the workflow is assigned to a userset regardless
of the objects and the ownerships. Since it does not allow changes in authorizations at run-
time, SoDA could be too restrictive in terms of permissions that can be exercised by a single
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user. In order to enable tighter integration with the workflow systems, Basin et al. extend
SoDA semantics to multisets and provide a mapping of SoDA terms to workflows specified
in communicating sequential processes (CSP) expressions for dynamic enforcement of SoD
constraints (18). In this way, they could define a secure workflow (SW) process as a parallel
composition of RBAC (actual authorizations) and the business workflow itself (business
events). All these efforts result in high level policies on top of actual RBAC policies that
regulate the run-time permissions at a more abstract level. Even if this approach eases the
policy specification, it could increase the complexity in run-time permission management.

The main motivations of these works are the inherent limitations of RBAC standard. In
fact, the latter defines a set of high level functions to model the requirements of applications
while providing a bird-eye view to authorization; however, the use of these functions requires
careful consideration for correctly enforcing dynamic constraints and supporting well-known
security design principles, such as least privilege. As Sandhu et al. stated in their paper that
introduced the highly influential RBAC96 family of RBAC models (76), “The most common
RBAC constraint is mutually exclusive roles. The same user can be assigned to at most one
role in a mutually exclusive set. This supports separation of duties, which is further ensured
by a mutual exclusion constraint on permission assignment”. In particular, MER constraints
that prevent any user from being a member of mutually exclusive roles are named Static
MER (SMER) constraints; instead, constraints that prevent any user from activating mutually
exclusively roles simultaneously in a session are named Dynamic MER (DMER) constraints.

Within this context, sessions allow a finer control on the management of permissions,
since they enable the role activation and de-activation. However, sessions are underspecified
(51; 52) in the RBAC standard. In (51), Li et al. show that the RBAC standard lacks proper
functionality in supporting SoD: in fact, even though the constraints are enforced in a single
session, the RBAC standard does not prevent the user from activating mutually exclusive
roles across multiple sessions, resulting in a SoD policy violation. However, this should not
be surprising: in fact, DMER constraints are motivated by the least privilege principle rather
than the SoD principle. The ANSI/NIST standard itself states that “DSD properties provide
extended support for the principle of least privilege in that each user has different levels of
permission at different times, depending on the task being performed” (46).

Li et at. show that even the enforcement of SSD constraints is intractable (coNP-
complete), and proposed to convert SSD requirements into RBAC SMER (51). The solution
proposed by Zhang and Joshi (93) and Wickramaarachchi et al. (90), already cited in Section
3.1, do the same with DMER constraints: they formulated the User Authorization Query
(UAQ) problem including the definition of DMER constraints. However, both the approaches
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considered only single sessions for authorization queries. More importantly, they have not
included the history in decision making. As a consequence, the solutions are not adequate to
enforce SoD policies. Armando et al. propose a solution to this problem in (13). Their work
enables the use of existing SAT tools for constraint enforcement by grounding the problem
of user authorization queries to model checking problem. In particular, they put "sessions"
together with the history as core concepts in the model and introduce four different kinds of
DMER constraints, namely:

• single-session dynamic MER constraint;

• multi-session dynamic MER constraint;

• single-session history-based MER constraint;

• multi-session history-based MER constraint.

The latter will be better discussed in Section 4.2. By the way, their definition enables to
enforce SoD policies dynamically.



Chapter 4

UAQ problem formalization

4.1 Core RBAC

An RBAC policy is a tuple RP = (U,R,P,UA,PA,⪰,C), where U is a set of users, R a set of
roles, and P a set of permissions; users are associated to roles by the user assignment relation
UA⊆U×R and roles are associated to permissions by the permission assignment relation
PA ⊆ R×P; ⪰ is a partial order on R, modeling the hierarchy between roles, i.e. r1 ⪰ r2

means that r1 is more senior than r2, namely (r2, p) ∈ PA =⇒ (r1, p) ∈ PA for r1,r2 ∈ R

and p ∈ P; and C is a set of dynamic mutually exclusive role (DMER) constraints as defined
earlier. In the example presented in Section 2.2.1:

• U = {Richard, Claire, Sarah, Matthias, Jane};

• R = {Doctor, Data_Manager, Nurse, Patient, Head_Physician, Pharmacist};

• P= {Read_id, Read_health_records, Prescribe, Send_data, Read_prescription,

Manage_schedule, Check_process, Approve_dispensation};

• C = {SS-DMER({Doctor, Data_Manager}, 2)}.

Besides, Figure 2.3 shows the user assignment and the user assignment relations.
Let u ∈U , we define Ru = {r′ ∈ R : r ⪰ r′ for some r ∈ R such that (u,r) ∈UA}. For

example,

RRichard = {Doctor, Data_Manager}.

A user u has permission p iff (r, p) ∈ PA for some r ∈ Ru. We assume that RBAC policies
considered are finite, i.e. U , R, P, and C have finite cardinality. Moreover, we treat
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permissions as if they are opaque (i.e., we treat permissions as labels, not as operations
on objects) and mutually independent, i.e. the possession of one or more permissions does
not imply the possession of another permission. Let p ∈ P, we define Rp = {r′ ∈ R : r′ ⪰
r for some r ∈ R such that (r, p)∈ PA} and RP′ =

⋃
p∈P′ Rp for any P′ ⊆ P. Similarly, if r ∈ R

then Pr = {p ∈ P : (r′, p) ∈ PA for some r′ ∈ R such that r ⪰ r′} and PR′ =
⋃

r∈R′ Pr for any
R′ ⊆ R. For example:

• RRead_prescription = {Doctor, Nurse, Patient};

• R{Send_data,Check_process} = {Data_Manager, Head_Physician};

• PPatient = {Read_health_records, Read_prescription};

• P{Nurse,Pharmacist} = {Read_prescription, Approve_dispensation}.

4.2 Dynamic Mutually-Exclusive Roles Constraints

Let C be a finite set of DMER constraints of the form SS-DMER(rs, t). Let ρ ⊆ R be a set
of roles active in a given session, then we say that ρ satisfies c ∈C iff

• [SS-DMER(rs, t)] for all s ∈ S, |rs∩ ρ| < t, i.e. for every session the number of
simultaneously active roles in rs is smaller than t.

We say that ρ satisfies C iff ρ satisfies c for all c ∈C.
Let S be a set of sessions and user : S→U a function that associates each session s ∈ S

with the corresponding user.
To define DMER constraints that span multiple sessions and the role activation history of a

user, we must define the state of the system as a triple (S,α,π), where α : S→ 2R associates
each session s ∈ S with the set of roles currently active in that session and π : S→ 2R

associates each session s ∈ S with the set of roles that have been active in that session in the
past. Clearly, α(s)⊆ Ruser(s) and π(s)⊆ Ruser(s).

Let C be a finite set of DMER constraints of the form SS-DMER(rs, t), MS-DMER(rs, t),
SS-HMER(rs, t) or MS-HMER(rs, t). If u∈U , then Su denotes the set of sessions associated
with u, i.e. Su = {s ∈ S : user(s) = u}. We say that (S,α,π) satisfies c iff

• [SS-DMER(rs, t)] for all s ∈ S, |rs∩α(s)| < t, i.e. for every session the number of
simultaneously active roles in rs is smaller than t.
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• [MS-DMER(rs, t)] for all u ∈U , |rs∩
⋃

s∈Su
α(s)|< t, i.e. for every user the number

of simultaneously active roles in rs is smaller than t.

• [SS-HMER(rs, t)] for all s ∈ S, |rs∩π(s)| < t, i.e. for every session the number of
roles in rs activated over time is smaller than t;

• [MS-HMER(rs, t)] for all u ∈U , |rs∩
⋃

s∈Su
π(s)|< t, i.e. for every user the number

of roles in rs activated over time is smaller than t.

We say that (S,α,π) satisfies C iff (S,α,π) satisfies c for all c ∈C. If (S,α,π) satifies C,
then we say that (S,α,π) is a valid state.

Referring to the running example introduced in Section 2.2.1, Table 4.1 schematically
represents the differences among the following DMER constraints:

• SS-DMER({Doctor, Data_Manager}, 2);

• MS-DMER({Doctor, Data_Manager}, 2);

• SS-HMER({Doctor, Data_Manager}, 2);

• MS-HMER({Doctor, Data_Manager}, 2).

In particular, the table shows whether each constraint allows (
√

) or forbid (×) the presented
lists of actions performed in sessions s1 and s2. In Section 4.4 we will show how MS-DMER,
SS-HMER and MS-HMER can be reduced to traditional SS-DMER constraints.
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Table 4.1 Actions allowed (
√

) or forbidden (×) by the different kinds of DMER constraints
with rs = {Doctor, Data_Manager} and t = 2

Actions SS-DMER MS-DMER SS-HMER MS-HMER

1. Activate Doctor in s1

2. Activate Data_Manager in s1
× × × ×

1. Activate Doctor in s1

2. Activate Data_Manager in s2

√
×

√
×

1. Activate Doctor in s1

2. Deactivate Doctor in s1

3. Activate Data_Manager in s1

√ √
× ×

1. Activate Doctor in s1

2. Deactivate Doctor in s1

3. Activate Data_Manager in s2

√ √ √
×

4.3 The User Authorization Query

A User Authorization Query (UAQ) is a tuple q = (s,Plb, Pub,op), where s ∈ S, Plb ⊆ Pub ⊆ P,
and op ∈ {any,min,max} is the permission optimization objective .

Definition 4.3.1 (UAQ problem) The UAQ problem for q = (s,Plb, Pub,op) in RP is the

problem of determining a set of roles ρ ⊆ Ruser(s) such that (64):

1. ρ satisfies C,

2. Plb ⊆ Pρ ⊆ Pub, and

3. any other ρ ′ ⊆ Ruser(s) that satisfies C and Plb ⊆ Pρ ′ ⊆ Pub is such that:

• Pρ ⊆ Pρ ′ , if op = min;

• Pρ ′ ⊆ Pρ , if op = max.

For example, we refer to the UAQ policy presented in Figure 2.3 and, in addition, we
define the following constraint:
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C = {SS-DMER({Doctor, Data_Manager}, 2)}.

Suppose that Matthias needs the permission Check_process, while the permission Send_data

must not be activated to avoid an unnecessary risk. Suppose also that op = min. The resulting
query is:

q = (

s = s1,

Plb = {Check_process},
Pub = {Read_id, Read_health_records, Prescribe, Read_prescription,

Manage_schedule, Check_process},
op = min

)

As depicted in Figure 4.1, Matthias can only activate the roles Doctor, Data_Manager and
Head_Physician. As a consequence, he can not activate the permission
Approve_dispensation. The requested permission Check_process is assigned only to the
role Head_Physician, then this role must appear in the solution. Matthias can not activate
Data_Manager, because the permission Send_data assigned to it is not contained in |Pub|.
In addition, he can not concurrently activate the roles Doctor and Data_Manager, due to the
DMER constraint. As a consequence, the only possible role activations are:

1. ρ ′1 = {Head_Physician}: this role activation implies that
Pρ ′ = {Check_process, Manage_schedule}. Then, ρ ′1 activates 1 extra permis-
sion;

2. ρ ′2 = {Head_Physician, Doctor}: this role activation implies that
Pρ ′ = {Check_process, Manage_schedule, Read_id, Read_health_records,

Prescribe, Read_prescription}. Then, ρ ′2 activates 4 extra permissions.

Since op = min, it follows that the solution to the UAQ query is ρ = ρ ′1. It is then clear that,
in case of op = max, the solution would have been ρ = ρ ′2.
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Figure 4.1 Representation of the example

Definition 4.3.2 (UAQ problem – multi-session and history-based DMER) Let (S,α,π)

be a valid state. The UAQ problem for q = (s,Plb, Pub,op) in RP and (S,α,π) is the problem

of determining a set of roles ρ ⊆ Ruser(s) such that:

1. (S,α[s← ρ],π[s← ρ]) satisfies C, where α[s← ρ] and π[s← ρ] indicates respectively

the set of roles that would be active and the set of roles the would have been active in

the past in case ρ is taken as solution,

2. Plb ⊆ Pρ ⊆ Pub, and

3. any other ρ ′ ⊆ Ruser(s) such that (S,α[s← ρ ′],π[s← ρ ′]) satisfies C and Plb ⊆ Pρ ′ ⊆
Pub is such that:

• Pρ ⊆ Pρ ′ , if op = min;

• Pρ ′ ⊆ Pρ , if op = max.

Our definition of UAQ problem extends the one given in (64) by supporting multi-session
and history-based DMER. Notice that the case op = any can be used for addressing the
“exact match” case of (93) by setting Plb = Pub as shown in (90).

The UAQ problem can be further extended to support the joint optimization of roles and
permission (64). This can be done by adding to the UAQ query an optimization objective for
roles (or) and a priority (pri) to indicate which of the two optimization objectives must have
the precedence when they are both different from any. This extension results in Definition
4.3.3.

Definition 4.3.3 (UAQ problem – permission-based and joint optimization) Let (S,α,π)

be a valid state. The UAQ problem for q = (s,Plb, Pub,op,or, pri) in RP and (S,α,π) is the

problem of determining a set of roles ρ ⊆ Ruser(s) such that:
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1. (S,α[s← ρ],π[s← ρ]) satisfies C,

2. Plb ⊆ Pρ ⊆ Pub, and

3. any other ρ ′ ⊆ Ruser(s) such that (S,α[s← ρ ′],π[s← ρ ′]) satisfies C and Plb ⊆ Pρ ′ ⊆
Pub is such that:

• if pri = p:

– Pρ ⊆ Pρ ′ , if op = min;

– Pρ ′ ⊆ Pρ , if op = max,

then, if or is not any,

– ρ ⊆ ρ ′, if or = min;

– ρ ′ ⊆ ρ , if or = max;

• if pri = r:

– ρ ⊆ ρ ′, if or = min;

– ρ ′ ⊆ ρ , if or = max,

then, if op is not any,

– Pρ ⊆ Pρ ′ , if op = min;

– Pρ ′ ⊆ Pρ , if op = max.

As shown by Definitions 4.3.1 and 4.3.3, different kinds of optimizations do exist:

• permission-based optimization: pri = p and the role objective is any;

• role-based optimization: pri = r and the permission objective is any;

• joint optimization: neither op or or is any.

For the sake of completeness, we also provide an example with joint optimization. In
particular, we consider the example provided before, but with op =min, or =max and pri= r.
The resulting UAQ query is:

q = (

s = s1,

Plb = {Check_process},
Pub = {Read_id, Read_health_records, Prescribe, Read_prescription,

Manage_schedule, Check_process},
op = min
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or = max

pri = r

)

Since the main objective is to maximize the activation of roles, we first search for solutions
satisfying this target. If more solutions do exist, then we choose the one that minimizes the
number of extra permissions. The possible role activations are the same as in the previous
example:

1. ρ ′1 = {Head_Physician}: ρ ′1 activates only 1 role;

2. ρ ′2 = {Head_Physician, Doctor}: ρ ′2 activates 2 roles.

The solution of the UAQ query is then ρ = ρ ′2. In this example, ρ ′2 would be the solution
also in case of role-based optimization.

In our work, we focus on simple permission optimization, namely

• pri = p,

• op = {min,max}, and

• or = {any}

and joint optimization with permission optimization as priority, namely

• pri = p,

• op = {min,max}, and

• or = {min,max}.

However, the methodology presented in the next sections can be easily extended and em-
ployed also in case of joint optimization with pri = r.

4.4 Reduction to SS-DMER constraints

As a first contribution, we demonstrate how SS-HMER, MS-DMER, and MS-HMER con-
straints can be reduced to SS-DMER constraints.
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Theorem 4.4.1 Let RP be an RBAC policy, σ = (S,α,π) be a valid state for RP and q is a

query for session s. It can be shown that ρ is a solution to q in RP and σ = (S,α,π) iff ρ is

a solution to q in RP′, where RP′ is obtained from RP by replacing the sets of constraints

C with C[s,σ ], where C[s,σ ] is a set of constraints in which MS-DMER, SS-HMER and

MS-HMER for the particular session s are replaced with SS-DMER constraints whose rs and

t varies with the state σ .

The reader can find the proof of Theorem 4.4.1 in Appendix A.

In practice, Theorem 4.4.1 states that, given the role activation history, any extended
DMER can be reduced to a traditional SS-DMER whose rs and t depend on the action
performed by the user. To bring a fuller appreciation of the theorem, we show an application
on the example introduced in Section 2.2.1. To this aim, we consider the user Richard
and the constraint MS-DMER({Doctor, Data_Manager}, 2). We recall that the role Doctor

activates the permissions Read_id, Read_health_records, Prescribe and Read_prescription,
while Data_Manager activates Read_health_records and Send_data. In Table 4.2, for any
step, we present:

• the open sessions and the active roles;

• the query performed by Richard;

• the SS-DMER resulting from the reduction;

• the outcome of the query.

Below, we describe the actions performed by Richard.

Step 0: no session is open;

Step 1: Richard creates session s1;

Step 2: Richard wants to access Sarah’s health records. As a consequence, he needs the
permissions Read_id and Read_health_record in s1. Since no session other than s1 is
open, the original MS-DMER is reduced to SS-DMER({Doctor, Data_Manager},2)
in s1: namely, one (and only one) between the roles Doctor and Data_Manager can
be activated. Doctor is then activated in s1 to provide Richard with the permissions
needed to perform his task;

Step 3: the role Doctor is active in session s1. Richard can access Sarah’s health records;
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Step 4: Richard creates session s2. Doctor is still active in s1;

Step 5: Richard wants to send data to the pharmaceutical company in session s2. To this
aim, he needs the permissions Read_health_records and Send_data. However, the
role Doctor is active in session s1: for this reason, to satisfy the original MS-DMER,
the latter is reduced to the constraint SS-DMER({Data_Manager},1) in s2: the latter
actually means that the role Data_Manager cannot be activated. As a result, the
requested access is denied;

Step 6: Richard closes s1. Only session s2 is open, but no role is active;

Step 7: Richard tries again to send data to the pharmaceutical company in session s2. The
same query as in Step 5 is performed. This time, neither Doctor or Data_Manager is
active in any active session. As a consequence, in order to enforce the MS-DMER,
it is enough to impose the constraint SS-DMER({Doctor, Data_Manager},2). The
role Data_Manager can then be activated to provide the user with the requested
permissions, while Doctor must not be activated;

Step 8: the role Data_Manager is active in s2. Richard can then send data to the pharma-
ceutical company in session s2;

Step 9: Richard closes s2. No session is active.
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Table 4.2 Application of Theorem 4.4.1 on the running example introduced in Section 2.2.1

Step
Sessions
(active
roles)

Query DMER Answer

0 -

1 s1 ()

2 s1 ()
Read_id and

Read_health_records

in s1

SS-DMER({Doctor,

Data_Manager},2)
Allow

3 s1 (Doctor)

4
s1 (Doctor)

s2 ()

5
s1 (Doctor)

s2 ()

Read_health_records

and Send_data

in s2

SS-DMER(
{Data_Manager},

1)

Deny

6 s2 ()

7 s2 ()
Read_health_records

and Send_data

in s2

SS-DMER({Doctor,

Data_Manager},2)
Allow

8
s2

(Data_Manager)

9 -



Chapter 5

Solving the UAQ problem

The literature offers a variety of algorithms with different complexities to solve the UAQ
problem. The algorithms can be summarized in two categories: algorithms that employ
variants of search techniques and algorithms that reduce the UAQ problem to (variants of)
SAT. In this section, we provide a systematic overview of these algorithms, also giving
insights into the complexity of the UAQ problem.

For the sake of simplicity but without loss of generality, we assume that:

• no role in R is assigned permissions that are not contained in Pub, and

• Pub = P.

In fact, all the permissions in P\Pub must not be granted; therefore all the roles that activate
these permissions cannot be included in a solution. These roles and the permissions in
P\Pub can thus be safely removed from the policy (in polynomial time). By doing that, we
simply exclude UAQ problems that are de facto equivalent to UAQ problems that meet our
assumptions.

5.1 Search-based techniques

Search-based algorithms tackle the UAQ problem directly without further reduction. Perhaps
the earliest, (93) presents a naive two-step algorithm that first obtains a set of roles covering
the desired permissions minimally through a greedy search. Then the algorithm checks
whether the set of roles satisfies the constraints. This algorithm is not sound since the first
step does not consider any constraints and thus may not find a combination of roles that
satisfies them. Discussed again in (93) and improved in (90), an alternative sound approach
to solving a UAQ instance amounts to:
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Algorithm 1

1. enumerate all possible role activations for the user,

2. check (in polynomial time as shown in (64)) whether the selected roles grant the
requested permissions (i.e., fall between Plb and Pub), and satisfy the DMER constraints,
and

3. keep the best (according to the security objective considered) solution encountered, if
any.

The algorithm is clearly in O(2|R|). The DPPL-based procedures proposed in (90) and
the DFS-based algorithms proposed in (53) are optimized versions of this algorithm with
additional preprocessing and pruning steps.

An alternative approach to solving the UAQ problem (adapted from (64)) is as follows:

Algorithm 2

1. enumerate all sets of roles Sp ⊆ Rp for each p ∈ Pub,

2. check in polynomial time whether S =
⋃

p∈Pub
Sp is such that Plb ⊆ PS ⊆ Pub and S

satisfies the DMER constraints, and

3. keep the best (according to the security objective considered) solution encountered, if
any.

The above algorithm is in O(2R̂P|Pub|), where R̂P = maxp∈P |Rp|. To see this, it suffices to
observe that for each p ∈ Pub there are at most 2|Rp| subsets Sp of Rp, and thus there are in
total at most 2R̂P|Pub| candidate solutions to consider. When it is sufficient to activate “at most
one role per permission”, (64) shows that the above algorithm is in O(R̂P

|Pub|
) and hence is

also fixed-parameter polynomial (FPP) in |Pub|, i.e., it is polynomial-time if |Pub| ≤ c for
some constant c.

If the objective is min or any, then it is sufficient to activate at most one role per permission.
This leads to the following, more efficient version of the algorithm:
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Algorithm 3

1. enumerate all roles rp ∈ Rp for each p ∈ Plb,

2. check in polynomial time whether S = {rp ∈ Rp : p ∈ Plb} is such that PS ⊆ Pub and S

satisfies the DMER constraints, and

3. keep the best (according to the security objective considered) solution encountered, if
any.

If the objective is min or any, it is in fact possible to consider the activation of individual
roles granting the permissions in Plb and the algorithm is in O(|R̂P||Plb|) (64).

If the optimization objective is max, then the “at most one role per permission” assumption
does not hold and hence the FPP result cannot be applied in general. To illustrate consider
a UAQ problem with R = {r1,r2,r3}, P = {p1, p2, p3, p4}, PA such that Pr1 = {p1, p3},
Pr2 = {p2, p4}, Pr3 = {p2, p3}, Plb = {p1}, Pub = P and ob j = max. The solution {r1}
satisfies the “at most one role per permission” assumption but it is not optimal. In fact both
{r1,r2} and {r1,r2,r3} activate a larger (actually maximal) set of permissions, namely P. An
alternative approach to tackling the problem for the max case is put forward in (64):

Algorithm 4

1. enumerate all sets of possible role activations Ra =R1∪·· ·∪R|C|∪Rfree, where Ri⊆ rsi

and |Ri| < ti, for all constraints DMER(rsi, ti) in C and i = 1, . . . , |C|, and Rfree ⊆ R

is the set roles that do not occur in the DMER constraints (and can thus be freely
activated),

2. check in polynomial time whether Plb ⊆ PRa ⊆ Pub and Ra satisfies the DMER con-
straints.

3. keep the maximum sized |PRa| solution encountered, if any.

We now note that for each constraint DMER(rsi, ti) in C there are ∑
t
k=1

(|rsi|
k

)
subsets Ri

of rsi such that |Ri| < ti. The number of sets R1 ∪ ·· · ∪Rn is at most
(

∑
t
k=1

(|rsi|
k

))|C|
,1

1It is equal to
(

∑
t
k=1

(|rsi|
k

))|C|
only if rsi and rs j are pairwise disjoint for all i, j = 1, . . . , |C|.
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from which it easily follows (by using the well-know upper bound ∑
t
k=0

(n
k

)
≤ (1+ n)t),

that the enumeration of the set of roles Ra = R1 ∪ ·· · ∪ R|C| ∪ R f ree grows as O(r̂s|C|t̂),
where r̂s = maxDMER(rs,t)∈C |rs| and t̂ = maxDMER(rs,t)∈C t. This improves the upper bound
O(|R||C|̂t) given in (64). As shown in (64), the role hierarchy, ⪰, does not contribute to the
computational complexity of the problem.

Table 5.1 provides a summary of the algorithmic complexity results.

Table 5.1 Complexity of search-based techniques

Algorithm Objective Complexity

1 any, min, max O(2|R|)

2 any, min, max O(2R̂P|Pub|)

3 any, min O(R̂P
|Plb|

)

4 max O(r̂s|C|t̂)

It is interesting to note that, even if the algorithms presented in this section are meant
to solve permission-based optimization problems, they are also adequate to solve joint
optimization problems with pri = p. In fact, it is enough to change the definition of “best
solution encountered”, that, in case of joint optimization, takes or into account after the
permission optimization.

5.2 SAT-based techniques

Let RP = (U,R,P,UA,PA,⪰,C) be an RBAC policy where C is a set of constraints of the
form SS-DMER(rs, t) and q = (s,Plb, Pub,or,op,pri) a UAQ query for RP. Since RP is finite
(i.e. the set U of users, R of roles, and P of permissions are all finite), the UAQ problem can
be reduced to (variants of) the Boolean Satisfiability Problem (SAT), that can be solved by
available state-of-the-art SAT solvers.

A Boolean expression (also called propositional logic formula) is a formula built with
Boolean variables, and (∧), or (∨), not operators (¬), and parentheses. The Boolean
satisfiability problem is the problem of determining if there exists a truth-value assignment
to the variables that satisfies the Boolean formula. In other words, it is the problem of
determining if it is possible to replace the variables with a logical value (true or false) so
that the Boolean expression evaluates to true. If so, the formula is satisfiable, otherwise it is
unsatisfiable. In the Boolean formula, the variable which is negated through a not operator is
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said negative literal. In the opposite case, the variable can be reffered to as positive literal. A
clause is a disjunction of literals (namely a formula consisting of or of literals), or a single
literal. For example,

a∨¬b

is a clause, in which a is a positive literal and ¬b is a negative literal. A Boolean formula is
said to be in Conjunctive Normal Form (CNF) if it is a conjunction of clauses (namely if it is
an and of clauses) or a single clause. For example,

(a∨¬b)∧ (¬a∨¬b)

is a Boolean formula in CNF consisting of two clauses, namely a∨¬b and ¬a∨¬b. In
particular it satisfiable, in fact, for example, with the truth-assignment {a = true, b = f alse}
the formula evaluates to true:

(a∨¬b)∧ (¬a∨¬b) =

=(true∨¬ f alse)∧ (¬true∨¬ f alse) =

=true∧ true =

=true

SAT solvers can be used to tackle the UAQ problem in a variety of ways. A first
approach (64) amounts to reducing the UAQ Decision Problem (i.e., a variant of the UAQ
problem whereby the optimization objective is replaced by setting a bound that must be met
by the solution) to SAT and solving the optimization problem through binary search that
leverage the SAT solver as an oracle for the decision problem. A second approach (13; 86; 90)
eliminates the need for the binary search by directly encoding UAQ problems into PMaxSAT.
UAQ-Solve leverages a reduction to the Weighted Partial MAX-SAT (WPMaxSAT) problem.

A Weighted Partial MAX-SAT problem is a triple (H ,S ,w), where H and S are two
sets of propositional clauses, called “hard” and “soft” respectively, and w is a function that
associates a positive integer to each clause in S . A solution to a Weighted Partial MAX-SAT

problem (H ,S ,w) is a truth-value assignment to the propositional variables in H and S

that satisfies all clauses in H and minimizes the solution cost, namely the sum of the weights
of unsatisfied clauses in S .

We assume the existence of a propositional variable r for each r ∈ R and a propositional
variable p for each p ∈ P. We define CRP as the smallest set containing the propositional
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clauses presented in the paragraphs below. In order to supply the reader with examples, we
refer to the UAQ policy presented in Figure 2.3 and additionally

C = {SS-DMER({Doctor, Data_Manager}, 2)}.

Suppose also that Matthias needs the permissions
Read_health_records and Read_prescription, while the permission Check_process must
not be activated. Finally, suppose that permission-based optimization is used and that
op = min. The aforementioned conditions result in the following query:

q = (

s = s1,

Plb = {Read_health_records, Read_prescription},
Pub = {Read_id, Read_health_records, Prescribe, Send_data,

Read_prescription, Manage_schedule},
or = any,

op = min,

pri = p

)

Core RBAC

In the Core RBAC, CRP contains the following hard clauses:

1. ¬r for all r ∈ R such that (user(s),r) ̸∈ UA. In our example:

• ¬Nurse;

• ¬Pharmacist;

• ¬Patient;

2. (¬r∨ p) for all p ∈ P and r ∈ Rp. In our example:

• ¬Doctor∨Read_id;

• ¬Doctor∨Read_health_records;

• ¬Doctor∨Prescribe;

• ¬Doctor∨Read_prescription;

• ¬Data_Manager∨Read_health_records;
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• ¬Data_Manager∨Send_Data;

• ... (we proceed in the same way for the remaining roles);

3. (¬p∨
∨
{r : r ∈ Rp}) for all p ∈ P. In our example:

• ¬Read_id∨Doctor;

• ¬Read_health_records∨Doctor∨Data_Manager∨Patient;

• ¬Prescribe∨Doctor;

• ... (we proceed in the same way for the remaining permissions).

It is easy to see that the number of clauses above is in O(|R||P|) and the number of proposi-
tional variables in O(|R|+ |P|).

MER Constraints

As already explained in Section 4.4, the SS-HMER, the MS-DMER, and the MS-HMER
can be represented as SS-DMER constraints. The first step is then to reduce them to the
equivalent SS-DMER.

Let RP = (U,R,P,UA,PA,⪰,C) be an RBAC policy, σ = (S,α,π) be a valid state and
s ∈ S. Consider the set of SS-DMER(rs, t) constraints C[s,σ ] obtained from C by replacing
constraints of the form:

1. MS-DMER(rs, t) ∈C with SS-DMER(rs\ur, t−|rs∩ur|), where
ur =

⋃
s′∈Suser(s)\{s}α(s′),

2. SS-HMER(rs, t) ∈C with SS-DMER(rs\π(s), t−|rs∩π(s)|), and

3. MS-HMER(rs, t) ∈C with SS-DMER(rs\ur, t−|rs∩ur|), where
ur =

⋃
s′∈Suser(s)\{s}π(s′).

For all SS-DMER(rs, t) ∈C (the original ones and the ones obtained by the reduction), a
CNF of the following formula is in CRP:

∑
r∈rs

r ≤ t−1 (5.1)

As shown in (79), inequalities of the form ∑x∈X x≤ t can be succinctly encoded into CNF
with 7|X | clauses and 2|X | additional propositional variables. Thus, constraints of the
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form (5.1) can be encoded with a number of variables and clauses in O(|R|). The clauses are
included in CRP as hard clauses.

In our example, the constraint SS-DMER({Doctor, Data_Manager}, 2) is encoded with
14 clauses and 4 additional propositional variables.

The User Authorization Query

A UAQ problem for the query q = (s,Plb, Pub,op,op,pri) can be reduced to a Weighted
MAX-SAT problem by adding the following hard clauses to CRP:

• a unit clause p for each p ∈ Plb. In our example:

– Read_health_record;

– Read_prescription;

• a unit clause ¬p for each p ∈ P\Pub. In our example:

– ¬Check_process.

Permissions and roles optimization

The clauses in S depend on the type of optimization, the objectives, and the priority. In
particular, in case of:

• permission-based optimization, i.e. op ∈ {min,max} and or = any: S comprises

– a unit clause ¬p with weight set to 1 if op = min. In our example:

* ¬Read_id;

* ¬Prescribe;

* ¬Send_data;

* ¬Manage_schedule;

– a unit clause p with weight set to 1 if op = max. In our example:

* Read_id;

* Prescribe;

* Send_data;
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* Manage_schedule;

for each p ∈ Pub \Plb;

• role-based optimization, i.e. or ∈ {min,max} and op = any: S comprises

– a unit clause ¬r with weight set to 1 if or = min or

– a unit clause r with weight set to 1 if or = max

for each r ∈ Ru;

• joint optimization with priority to permissions, i.e. op ∈ {min,max}, or ∈ {min,max}
and pri = p: S comprises

– a unit clause ¬p with weight set to |Ru|+1 if op = min or

– a unit clause p with weight set to |Ru|+1 if op = max

for each p ∈ Pub \Plb and

– a unit clause ¬r with weight set to 1 if or = min or

– a unit clause r with weight set to 1 if or = max

for each r ∈ Ru;

• joint optimization with priority to roles, i.e. op ∈ {min,max}, or ∈ {min,max} and
pri = r: S comprises

– a unit clause ¬r with weight set to |Pub \Plb|+1 if or = min or

– a unit clause r with weight set to |Pub \Plb|+1 if or = max

for each r ∈ Ru and

– a unit clause ¬p with weight set to 1 if op = min or

– a unit clause p with weight set to 1 if op = max

for each p ∈ Pub \Plb;

• no optimization, i.e. op = or = any: no soft clauses are included in S , i.e. S = /0.

As explained above, in case of joint optimization there are |Pub \Plb| clauses for extra
permissions and |Ru| clauses for extra roles. The weights given to extra permissions (Wp)
and the extra roles (Wr) are chosen to ensure the proper prioritization:
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• when pri = p, we must ensure that the solver tries to satisfy any clause on any
permission in Pub \Plb before satisfying any clause on extra roles. As a consequence,
we must ensure that Wp is higher than the sum of the weights given to the |Ru| clauses
on extra roles, which is Wr = 1 for the sake of simplicity2. For this reason, we set:

Wp = (|Ru|×Wr)+1 = |Ru|+1

• when pri = r, we must ensure that the solver tries to satisfy any clause on any extra
role before satisfying any clause on extra permissions. As a consequence, we must
ensure that Wr is higher than the sum of the weights given to the |Pub \Plb| clauses on
extra permissions, which is Wp = 13. For this reason, we set:

Wr = (|Pub \Plb|×Wp)+1 = |Pub \Plb|+1

For the sake of completeness, Tables 5.2 and 5.3 report the clauses on extra permissions
and roles in case of joint optimization, respectively with pri = p and pri = r. In the former
table, the clauses highlighted in gray have weight |Ru|+1 = 3+1 = 4, while in the latter
table they have weight |Pub \Plb|+1 = 6−2+1 = 5. In both tables, the remaining clauses
have weight 1.

Finally, in Table 5.4, we present the clauses on extra roles in case of role-based optimiza-
tion. These clauses have weight 1.

As already stated in Section 4, in this work we considered only the permission-based
optimization and the joint optimization with pri = p, because they are the most relevant.
However, the methodology presented can be extended and applied also for the other types of
optimization.

2In fact, since the optimization of roles is the secondary objective, it is enough that the aforementioned
condition between Wp and Wr is respected.

3Similarly to the previous case.
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Table 5.2 Conditions on extra permissions and roles in case of joint optimization with pri = p

op = min

or = min

pri = p

op = min

or = max

pri = p

op = max

or = min

pri = p

op = max

or = max

pri = p

¬Read_id ¬Read_id Read_id Read_id

¬Prescribe ¬Prescribe Prescribe Prescribe

¬Send_data ¬Send_data Send_data Send_data

¬Doctor Doctor ¬Doctor Doctor

¬Data_manager Data_manager ¬Data_manager Data_manager

¬Head_Physician Head_Physician ¬Head_Physician Head_Physician

Table 5.3 Conditions on extra permissions and roles in case of joint optimization with pri = r

op = min

or = min

pri = r

op = min

or = max

pri = r

op = max

or = min

pri = r

op = max

or = max

pri = r

¬Read_id ¬Read_id Read_id Read_id

¬Prescribe ¬Prescribe Prescribe Prescribe

¬Send_data ¬Send_data Send_data Send_data

¬Doctor Doctor ¬Doctor Doctor

¬Data_manager Data_manager ¬Data_manager Data_manager

¬Head_Physician Head_Physician ¬Head_Physician Head_Physician
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Table 5.4 Conditions on extra roles in case role-based optimization

op = any

or = min

pri = r

op = any

or = max

pri = r

¬Doctor Doctor

¬Data_manager Data_manager

¬Head_Physician Head_Physician



Chapter 6

Benchmarks

Designing benchmarks suitable for the systematic assessment of UAQ solvers is not easy. A
common approach (13; 53; 64; 90) is to focus on families of problems that are parametric on
aspects of the problem that may contribute to its complexity. All other aspects are either set
to a predefined, constant value or are randomly chosen in a given interval or according to
some criterion. By running a solver against the instances corresponding to increasing values
of the parameter, it is thus possible to obtain an estimation of how the solver scales along
the dimension represented by the parameter. Unfortunately, the adequacy of the benchmarks
proposed in the literature is seldom discussed. The lack of adequate benchmarks makes
it difficult to assess the efficiency of the different techniques proposed to tackle the UAQ
problem. Even more so, it makes it difficult to compare them.

The sheer number of elements that contribute to the definition of the UAQ problem
complicates the selection of the parameters. The elements characterizing the RBAC policy
include the number of roles |R|, the number of permissions |P|, the number of DMER
constraints |C| as well as their specific features, namely the maximum number of roles
participating in each constraint r̂s and the maximum bound t̂. One may even consider
features of the PA relation, such as the maximum number of roles that contain any given
permission, referred as R̂P = maxp∈P |Rp| in Section 5. The components of the query also
contribute to the complexity of the problem. These include the security objective(s) (any, min,
max), the number of requested permissions that must be granted, i.e. |Plb|, and the number of
requested permissions that can be granted, i.e. |Pub|.
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6.1 A new approach to UAQ benchmark evaluation and
generation

As already stated in Section 2.3, the UAQ problem has been demonstrated to be NP-hard.
In Section 5.1 we introduced the best algorithms known to tackle it. The asymptotic time
complexity of these algorithms can be used to discriminate classes of UAQ problems that can
be hard to solve from the ones that should be easy to solve and they can be therefore used to
validate and even guide the design of benchmarks for the UAQ problem. Once validated, the
benchmarks can be used to assess and compare the performance of the solvers.

The algorithms introduced in Section 5.1 play a key role in the proposed methodology,
since they provide upper bounds on the asymptotic growth rate for UAQ solvers which, to
the best of our knowledge, are the best upper bounds currently available in the literature. Yet,
it must be noted that the proposed methodology will yield different, improved results as soon
as new complexity results will become available. Thus the benchmarks proposed and used in
this thesis could be improved consequently.

Benchmark Evaluation. Let Q be an infinite set of problems and Q[n]⊆ Q for all n ∈ N
a parametric family of finite sets of formulae in Q. Let S be the (infinite) set of all solvers for
Q. By ts(q) we denote the time spent by solver s ∈ S to solve problem q ∈ Q. Let Q′ ⊂ Q be
a finite subset of Q.

Methodology.

• If Q is known to be NP-hard:

– If ts(Q[n]) increases exponentially as n increases for all s ∈ S, then Q[n] with
n ∈ N is adequate to represent the complexity of Q;

– If there exists s ∈ S such that ts(Q[n]) grows in polynomial time, then Q[n] with
n ∈ N is a tractable subclass Q′ of Q and, under the assumption that P ̸= NP, we
can conclude that it is inadequate to represent the complexity of Q.

• If Q is known to be in P, then by definition we know that there exists a solver s ∈ S

such that ts(Q[n]) increases in polynomial time. If s ∈ S is such that ts(Q[n]) grows
exponentially, we can then conclude that s is inefficient against the problems in Q.

As it is, the above methodology cannot be applied in practice as it implies the execution
of an infinite number of solvers (i.e., all s ∈ S) against an infinite number of problems (i.e.,
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all q ∈ Q[n], for all n ∈ N). Yet, from it we can derive an approximate, practical version by
restricting the application to a finite set of solvers S0 ⊂ S against a finite family of finite sets
Q0[n] ∈ Q with n ∈ [0..n0] and n0 ∈ N.

Practical Methodology

• If Q is known to be NP-hard, then

– if ts(Q0[n]) grows exponentially in [0..n0] for all s ∈ S0, then we conclude that
the family of problems Q0[n] with n ∈ [0..n0] is empirically adequate to represent
the complexity of Q; notice that this does not imply that Q0[n] with n ∈ [0..n0]

adequately represents the complexity of Q as some solver in S could exhibit a
sub-exponential behaviour for n > n0;

– if there exists s ∈ S0 such that ts(Q0[n]) increases in polynomial time in [0..n0],
then we conclude that Q0[n] with n∈ [0..n0] is empirically inadequate to represent
the complexity of Q; notice that this does not necessarily imply that Q0[n] with
n ∈ [0..n0] is inadequate to represent Q as all solvers in S could exhibit an
exponential behaviours for n > n0 (or P = NP).

• If Q is known to be in P:

– If ts(Q0[n]) increases polynomially in [0..n0] for all s ∈ S0, then we conclude that
Q0[n] with n ∈ [0..n] is empirically adequate to represent the complexity of Q;
notice that this does not imply that Q0[n] with n ∈ [0..n0] adequately represents

the complexity of Q as all solvers in S could exhibit an exponential behaviour for
n > n0;

– For all solvers s ∈ S0 such that ts(Q0[n]) grows exponentially in [0..n0], we
conclude that they are empirically inefficient over the problems in Q; notice that
this does not necessarily imply that these solvers are inefficient, as they could
have a polynomial behaviour for n > n0.

For the sake of readability, in the future sections we will use the expression "the bench-
mark is empirically adequate (/inadequate)" meaning that the benchmark adequately repre-
sents (/does not represent) the complexity of the UAQ problem by assuming that:

• the solvers used in the experiments exhibit the same behavior when the parameter is
outside the interval defined for the benchmark;
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• the other solvers exhibit the same behavior as the ones executed for the experiments.

As the same way, we will use the expression "the solver is empirically inefficient over the
class of problems" meaning that the solver is inefficient over the class of UAQ problem
assuming that the solver does not exhibit a polynomial behavior outside the interval defined
for the benchmark.

The applicable methodology is summarized in Table 6.1. For example, suppose we have
a benchmark parametric in |R| and that the best algorithm known to solve it is exponential
in |R|. We then expect that any solver running over it exhibits an exponential growth with
the increase in |R|. If this is the case, we say that the benchmark is empirically adequate;
otherwise we say that it is empirically inadequate. Dually, if the best algorithm known to
solve the benchmark is polynomial in |R|, we expect that any solver solves the benchmark
in polynomial time. If this is the case, we say that the benchmark is empirically adequate;
otherwise, we say that the solver is empirically inefficient against the class of UAQ problems.

Table 6.1 Methodology to evaluate benchmarks

Expected result Experimental result Conclusions

Exponential
Polynomial The benchmark is empirically inadequate

Exponential The benchmark is empirically adequate

Polynomial
Polynomial The benchmark is empirically adequate

Exponential
The solver is empirically inefficient against this
class of UAQ problems

Benchmark Generation. A complete set of benchmarks should contain both hard and
easy instances: the first ones are useful to stress-test the solvers, while the second ones can
be used to check the efficiency of the solvers over simple problems.

If we want to generate a benchmark parametric in a certain dimension highlighting the
behavior of one of the algorithms introduced in Section 5.1, the algorithms themselves can
help us to size the other problem dimensions adequately.

For example, we may want to generate a benchmark whose complexity grows exponen-
tially with |Plb| when op = min, behaving as Algorithm 3. To do so, we should choose a value

for |R| so that R̂P
|Plb|

< 2|R|, otherwise, any efficient solver would behave like Algorithm 1,
whose complexity does not depend on |Plb|.
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On the contrary, if we want to generate an easy benchmark parametric in |Plb|, it is
necessary to ensure that R̂P

|Plb|
> 2|R|. In fact, in this case, any efficient solver would behave

like Algorithm 1.
The methodology presented above to generate benchmarks of problems with op = min

and op = max is summarized respectively in Tables 6.2 and 6.3.
Note that, when op = min, Algorithm 3 should always perform better than Algorithm 2,

since 2R̂P|Pub| > R̂P
|Plb|. To see this, we observe that from 2R̂P|Pub| > R̂P

|Plb| implies R̂P|Pub|>
log2 R̂P

|Plb| which in turn implies |Pub|> |Plb| log2 R̂P

R̂P
. This is always true since Plb ⊆ Pub (and

consequently |Plb| ≤ |Pub|) and log2 x
x < 1. Moreover, when op = max, Algorithm 1 should

always perform better than Algorithm 2, because 2R̂P|Pub| < 2|R| is not acceptable. In fact,
2R̂P|Pub| < 2|R| would imply R̂P|Pub| < |R|. Since we consider |Pub| = |P|, we would have
R̂P|P| < |R|. This would mean having far more roles than permissions. It is easy to see
that in this case we would have many roles with no permission assigned, which is absurd.
This means that any reasonably performing solver should never exhibit exponential growth
over benchmarks parametric in R̂P or |Pub|. Since Algorithm 2 should never be the most
performing algorithm for both op = min and op = max, no benchmark should stimulate an
exponential growth with the increase in R̂P or |Pub| behaving like Algorithm 2 (O(2R̂P|Pub|)).
For this reason, Algorithm 2 does not contribute to our methodology and then does not appear
in Tables 6.2 and 6.3.

The methodology described above is used in Section 6.2 to evaluate the benchmarks from
(64) and in Section 6.3 to guide the design of new benchmarks. The benchmarks evaluation
is confirmed by the experimental results presented in Section 8.1.
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Table 6.2 Methodology to generate benchmarks with op = min

Parameter Complexity Algorithm Conditions

|Plb|
Hard 3

|R| and R̂P must be set so that

R̂P
|Plb|

< 2|R|

Easy 1
|R| and R̂P must be set so that

R̂P
|Plb|

> 2|R|

|R|
Hard 1

R̂P and |Plb| must be set so that

2|R| < R̂P
|Plb|

Easy 3
R̂P and |Plb| must be set so that

2|R| > R̂P
|Plb|

R̂P
Hard 3

|R| and |Plb| must be set so that

R̂P
|Plb|

< 2|R|

Easy 1
|R| and |Plb| must be set so that

R̂P
|Plb|

> 2|R|

|C|
Hard Not applicable

Those parameters do not contribute
to the UAQ problem complexity for
op = min, because they do not
appear in the complexity results for
op = min

Easy Always

r̂s
Hard Not applicable

Easy Always

t̂
Hard Not applicable

Easy Always
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Table 6.3 Methodology to generate benchmarks with op = max

Parameter Complexity Algorithm Conditions

|Plb|
Hard Not applicable

|Plb| does not contribute to the UAQ
problem complexity for op = max,
because it does not appear in the
complexity results for op = maxEasy Always

|R|
Hard 1

|C|, r̂s and t̂ must be set so that
2|R| < r̂s|C|t̂

Easy 4
|C|, r̂s and t̂ must be set so that
2|R| > r̂s|C|t̂

R̂P

Hard Not applicable
R̂P does not contribute to the UAQ
problem complexity for op = max,
because Algorithms 1 and 4 should
always perform better than Algorithm 2.Easy Always

|Pub|
Hard Not applicable

|Pub| does not contribute to the UAQ
problem complexity for op = max,
because Algorithms 1 and 4 should
always perform better than Algorithm 2.Easy Always

|C|
Hard 4

|R|, r̂s and t̂ must be set so that
r̂s|C|t̂ < 2|R|

Easy 1
|R|, r̂s and t̂ must be set so that
r̂s|C|t̂ > 2|R|

r̂s
Hard 4

|R|, |C| and t̂ must be set so that
r̂s|C|t̂ < 2|R|

Easy 1
|R|, |C| and t̂ must be set so that
r̂s|C|t̂ > 2|R|

t̂
Hard 4

|R|, |C| and r̂s must be set so that
r̂s|C|t̂ < 2|R|

Easy 1
|R|, |C| and r̂s must be set so that
r̂s|C|t̂ > 2|R|
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6.2 Benchmarks from (64)

In previous work (see, e.g., (13; 53; 64; 90)), various benchmark problems parametric in
any of the aforementioned dimensions have been put forward. To the best of our knowledge,
the most extensive collection of parametric benchmarks so far is presented in (64) and
summarized in Table 6.4.

Table 6.4 Parametric Benchmarks from (64)

Name |R| |P| R̂P |C| r̂s t̂ |Plb| |Pub|

roles 25..200 500 3 10 10 3 7 20
d 100 500 3 10..100 10 3 7 23
rolesPerConstr 300 1000 3 20 10..100 3 5 30
t 100 500 3 20 25 2..12 6 10
plb 100 500 3 10 10 3 1..11 20−|Plb|

To illustrate, consider the benchmark problems named “roles” in the table. They are
parametric in |R| (with |R| ranging from 25 to 200), have 500 permissions (|P|) with every
permission being assigned to exactly 3 roles (R̂P), and 10 MER constraints (|C|); each MER
constraint involves 10 roles (r̂s) with bound 3 (̂t). The cardinality of Plb and Pub are set to 7
and 20 respectively. Only the optimization objective min is considered.

Table 6.5 compares the complexities of Algorithms 1 and 3 for all the benchmarks
proposed in (64). Algorithm 4 is not taken into account, because it solves only problems
with op = max.

Table 6.5 Comparing algorithm performances

Name A1: 2|R| A3: R̂P
|Plb|

roles 3.4×107..1.6×1060 2187
d 1.5×1030 2187
rolesPerConstr 2×1090 243
t 1.3×1030 729
plb 1.3×1030 3..1.8×105

From Table 6.5, we can observe that Algorithm 3 is likely to be the most efficient for
all the benchmarks. Besides, in all the benchmarks except plb the value of |Plb| is fixed.
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Algorithm 3 is therefore insensitive to the value of the respective parameter (|R| for roles,
|C| for d, r̂s for rolesPerConstr, and t̂ for t) and so it should be reasonably efficient when
applied to these problems. We can expect that all the benchmarks but plb can be used to
check whether UAQ solvers are as effective as Algorithm 3 as the value of the respective
parameter increases. On the contrary, benchmark plb is parametric in |Plb|, therefore we
expect that the solving time of Algorithm 3 (and of any other solver) increases exponentially
as |Plb| increases.

While the benchmarks in (64) are a first attempt to provide a comprehensive evaluation
along a number of significant dimensions, they still suffer from the following shortcomings:

1. only the optimization objective min is considered, and they are therefore not suitable
for evaluating the performance of the solvers when different optimization objectives,
most notably max, are considered;

2. it is not always clear if these benchmarks are adequate.

6.3 The new benchmarks

Driven by the methodology introduced in Section 6.1, we propose two new sets of parametric
UAQ problems, one with op = min and one with op = max. The benchmarks with op = min
are summarized in Table 6.6 and described as follows:

Table 6.6 Benchmark specifications for op = min

Name |R| |Pub| R̂P |C| r̂s t̂ |Plb|

Plb_bigR 200 400 5 0 - - 5..50
Plb_smallR 10 400 5 0 - - 5..50

R_bigPlb 10..100 400 5 0 - - 100
R_smallPlb 10..100 400 5 0 - - 2

RPhat_bigPb 200 400 2..12 0 - - 10
RPhat_medPlb 200 400 2..12 0 - - 4
RPhat_smallPlb 200 400 2..12 0 - - 1

Pub 200 100..1000 5 50 8 3 10

C 200 400 5 10..100 8 3 10

rshat 100 400 5 10 5..50 3 10

that 1000 1000 1 50 20 2..8 10
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• Plb_bigR and Plb_smallR are both parametric in |Plb|. Plb_bigR can be used to stress-
test solvers for increasing values of |Plb|: for large values of |R| (here set to 200), the
best known algorithm (i.e. Algorithm 3) is exponential in |Plb| and thus we expect
any solver to exhibit the same behavior. Plb_smallR can instead be used to check the
effectiveness of solvers: Algorithm 1 is in O(2|R|) and thus we know that the problem
can be solved efficiently for sufficiently small values of |R| (here set to 10).

• R_bigPlb and R_smallPlb are both parametric in |R| and are dual to Plb_bigR and
Plb_smallR respectively. R_bigPlb can be used to stress-test solvers for increasing
values of |R|: for large values of |Plb| (here set to 100), the best known algorithm
(i.e. Algorithm 1) is exponential in |R| and thus we expect any solver to exhibit the
same behavior. R_smallPlb can be used to check the efficiency of solvers: Algorithm
3 is in O(R̂P

|Plb|
) and thus we know that the problem can be solved efficiently for

sufficiently small values of |Plb| (here set to 2).

• RPhat_bigPlb, RPhat_medPlb, RPhat_smallPlb are parametric in R̂P and can be used
to check the effectiveness of solvers: Algorithm 3 is in O(R̂P

|Plb|
) and thus we know

that the problem can be solved efficiently for sufficiently small values of |Plb| (here
set to 10, 4, and 1 respectively). Note that |Plb| is the degree of the polynomial and
therefore the time spent by the solver may differ significantly (for the values of |Plb|
considered) as R̂P increases.

• Pub is parametric in |Pub|. As already noted in Section 6.1, Algorithm 2 should always
perform worst than Algorithm 3. As a consequence, |Pub| should not contribute to
the UAQ problem complexity. Therefore this benchmark can be used to check the
effectiveness of solvers.

• C, rshat, and that, are parametric in |C|, r̂s and t̂ respectively. Since for op = min these
parameters do not contribute to the asymptotic complexity of any algorithm presented
in Section 5.1, these benchmarks can be used to check the effectiveness of solvers.

Notice that we do not include benchmarks parametric in the “size” of the role hierarchy since,
as already pointed out in Section 5, it does not contribute to the complexity of the UAQ
problem.

The benchmarks with ob j = max are summarized in Table 6.7 and described below:
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Table 6.7 Benchmark specifications for op = max

Name |R| |Pub| R̂P |C| r̂s t̂ |Plb|

R_bigCt 10..100 400 5 50 8 3 10
R_smallCt 10..100 400 5 5 3 2 10

Pub 200 100..1000 5 50 8 3 10

RPhat 200 400 20..60 50 25 4 4

C_bigR 200 400 5 10..100 8 3 10
C_smallR 10 400 5 10..100 8 3 10

that_bigR 1000 1000 1 50 20 2..12 10
that_smallR 20 400 5 10 12 2..12 10

rshat_bigCt 200 400 5 10 5..50 3 10
rshat_medCt 200 400 5 3 5..50 3 10
rshat_smallCt 200 400 5 1 5..50 3 10

Plb 200 400 5 20 5 2 5..50

• R_bigCt and R_smallCt are parametric in |R|. R_bigCt is designed to stress test solvers
for increasing values of |R|: when |C| and t̂ are such that |C|̂t is sufficiently large (here
set to 150), the best algorithm (Algorithm 1) is exponential in |R| and thus we expect
any solver to exhibit the same behavior. R_smallCt is instead designed to check the
effectiveness of solvers: when |C| and t̂ are such that |C|̂t is sufficiently small (here set
to 10), Algorithm 4 can efficiently solve the problems independently from the size of
|R| and any efficient solver should do the same.

• Pub is parametric in |Pub|. Since Algorithm 1 should perform better than Algorithm 2,
Pub can instead be used to check the efficiency of solvers.

• RPhat is parametric in R̂P and is analogous to the previous case. We then expect that
RPhat can be solved efficiently.

• C_bigR and C_smallR are parametric in |C|. C_bigR can be used to stress-test solvers
for increasing values of |C|: for large values of |R| and |Pub| Algorithm 4 is to be
preferred to Algorithm 1. Since Algorithm 4 is exponential in |C|, we expect solvers to
exhibit the same behavior. C_smallR can be used to check the efficiency of solvers:
Algorithm 1 is in O(2|R|) and thus the problem can be solved efficiently for sufficiently
small values of |R|.
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• that_bigRPub and that_smallR, parametric in t̂, are analogous to the previous case.
We then expect that solvers exhibit exponential growth over that_bigRPub, while
that_smallR can be solved efficiently.

• rshat_smallCt, rshat_medCt and rshat_bigCt are parametric in r̂s. rshat_smallCt

can be used to check the effectiveness of solvers. Algorithm 4 is in O(r̂s|C|̂t) and thus
the problem can be solved efficiently for sufficiently small values of |C|̂t. rshat_medCt

and rshat_bigCt can be used to see how the values of |C|̂t affect the complexity of the
problem.

• Plb is parametric in |Plb|. Since for op = max this parameter does not contribute to the
asymptotic complexity of any algorithm presented in Section 5.1, this benchmark can
be used to check the effectiveness of solvers.

The benchmarks designed in Table 6.6 and in Table 6.7 have been generated through
UAQ-Solve, a tool which will be introduced in Section 7.1. Both UAQ-Solve and the
benchmarks are available online1.

Let us consider Plb (the last benchmark in Table 6.7) as example. The benchmark is
parametric in |Plb|, which ranges from 5 to 50, with a step of 5 (not precised in the table). For
any value of |Plb| x, we generate 10 instances. For any instance, we create an RBAC policy
considering |R|= 200 roles and |P|= |Pub|= 400 permissions. In particular, any permission
is assigned to exactly R̂P = 5 roles.

Then, we generate |C| = 20 SS-DMER(rs, t̂) constraints with t = t̂ = 2: for each con-
straint we randomly select r̂s = |rs|= 5 among the |R| roles.

We then create a query consisting of |Plb|= x permissions and |Pub|= |P| permissions.
In fact, as already mentioned in Section 5, all the permissions in P\Pub must not be granted;
therefore all the roles that activate these permissions cannot be included in a solution. These
roles and the permissions in P\Pub can thus be safely removed from the policy (in polynomial
time). By doing that, we simply exclude UAQ problems that are de facto equivalent to UAQ
problems that meet our assumptions.

In Sections 8.2.1 and 8.3.1 we will evaluate our benchmarks and we will prove that they
are empirically adequate. The introduction of these suite of benchmarks is an important
contribution. In fact, the lack of adequate benchmarks made it difficult to assess the efficiency
of the different techniques used to tackle the UAQ problem. Even more so, it made it difficult
to compare their performance. By providing a complete and empirically adequate suite of
benchmarks, we are de facto offering the possibility to both

1https://github.com/GioGazza/uaq_prolem.git

https://github.com/GioGazza/uaq_prolem.git
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• assess the performance of a single solver, and

• compare the performance of the different solutions.



Chapter 7

A MaxSAT-based solver

7.1 UAQ-Solve

UAQ-Solve is a command-line tool implemented in Perl and C. It is freely available online1.
We implemented UAQ-Solve to fulfill two functionalities: generating new benchmarks and
solving benchmarks. We used UAQ-Solve to generate a set of hard UAQ problem instances
that have been used to stress-test solvers at the MaxSAT Evaluation 2018 (10).

7.1.1 UAQ-Solve as benchmarks generator

Following the common approach (13; 53; 64; 90), UAQ-Solve focuses on families of prob-
lems that are parametric on aspects of the UAQ problem that may contribute to its complexity;
namely, each benchmark generated by UAQ-Solve is parametric in only one dimension. All
the other aspects are set to a predefined, constant value. The following dimensions are
provided as input to UAQ-Solve thorough a specification file:

• the number of roles |R|;

• the number of permissions |P|;

• the number of roles a permission is assigned to R̂P;

• the minimum number of permissions assigned to each role;

• the number of MER constraints |C|;

• the number of roles bounded by each MER constraint r̂s;

1https://github.com/GioGazza/uaq_prolem.git.

https://github.com/GioGazza/uaq_prolem.git
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• the MER bound t̂;

• the number of permissions whose activation is requested |Plb|;

• the permissions upper bound |Pub|.

For each UAQ problem instance, UAQ-Solve first creates the permission assignment relations
among the |R| roles and the |P| permissions. The relations are randomly selected, however
UAQ-Solve eventually discharges the relations that violate the clause on the R̂P, namely if
the permission considered in the relation is already assigned to R̂P roles.

UAQ-Solve then generates |C| SS-DMER constraints: for all of them, it randomly selects
the set rs. The value for t is the one provided in the specification file.

Finally, it generates the query, in which |Plb| permissions are requested and |P| \ |Pub|
permissions are denied.

For the sake of completeness, we provide an example of specification file in Listing 7.1
and one of the resulting instances of UAQ problem generated by UAQ-Solve in Listing 7.2.
With the specification file in Listing 7.1, UAQ-Solve generates a benchmark parametric in
the number of roles |R|. In particular, the parameter ranges from 5 (ROLES_MIN = 5) to 15
(ROLES_MAX = 15), with step 5 (ROLES_STEP = 5). For every step, UAQ-Solve generates
3 instances (INSTANCES_MAX - INSTANCES_MIN = 3).

Listing 7.1 Specification file

1 --INSTANCES_MIN =0 --INSTANCES_MAX =3 --SESSIONS_MAX =1
2 --ROLES_MIN =5 --ROLES_MAX =15 --ROLES_STEP =5
3 --NUM_PERMS =10 --PERMS_PER_ROLE =1 --ROLES_PER_PERM =2
4 --NUM_MERS =1 --ROLES_PER_CONSTR =2 --MER_BOUND =2
5 --PERMS_LB_START =2 --PERMS_UB =9

Listing 7.2 is one of the instances generated with 5 roles (r1, r2, ..., r5 in row 2).
Besides, the instance has 10 permissions (NUM_PERMS = 10, risulting in p1, p2, ..., p10
in row 3). As visible in rows 10 - 14, each role has assigned at least one permission
(PERMS_PER_ROLE = 1), while each permission is assigned exactly to 2 roles
(ROLES_PER_PERM = 2). The problem is constrained by 1 Single-Session DMER
(NUM_MERS = 1), which allows the activation of only 1 role (MER_BOUND = 2) among the
2 roles (ROLES_PER_CONSTR = 2) r2 and r4, see row 18. Row 20 presents the query, in
which 2 permissions (p1 and p2) are requested (PERMS_LB_START = 2) and 1 permission
(p3) is denied (NUM_PERMS - PERMS_UB = 1).
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Listing 7.2 Instance of UAQ problem generated by UAQ-Solve

1 users : alice ;
2 roles : r1 r2 r3 r4 r5 ;
3 perms : p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 ;
4 sesss : s1 ;
5

6 sof [ s1 ] : alice ;
7 --
8 ua [ alice ] : r1 r2 r3 r4 r5 ;
9 --

10 pa [ r1 ] : p10 ;
11 pa [ r2 ] : p5 p7 p9 ;
12 pa [ r3 ] : p1 p2 p3 p4 p6 p8 p9 p10 ;
13 pa [ r4 ] : p2 p3 p4 p6 p7 p8 ;
14 pa [ r5 ] : p1 p5 ;
15 --
16 --
17 --
18 mer ss d 2 r2 r4 ;
19 --
20 QUERY s1 MIN GRANT p1 p2 DENY p3 ;

7.1.2 UAQ-Solve as benchmarks solver

UAQ-Solve is also a solver for the UAQ problem that implements a reduction of the UAQ
problem to Partial Maximum Satisfiability (PMaxSAT) problem in case of permission-
based optimization or to Partial Weighted Maximum Satisfiability (WPMaxSAT) problem
in case of joint optimization. The reduction enables UAQ-Solve to leverage state-of-the-art
(W)PMaxSAT solvers taken off-the-shelf to solve UAQ problems. This approach takes
advantage of the fast-paced advancements achieved by a lively and dedicated research
community that organizes the MaxSAT Evaluation on a yearly basis since 20062. The
MaxSAT Evaluation (MSE) is the primary competition like event focusing on the evaluation
of MaxSAT solvers. Its declared goals are:

• the assessment of state-of-the-art MaxSAT solvers;

• the promotion of MaxSAT as a suitable solution for solving instances of a wide range
of NP-hard optimization problems;

2https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/
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• the collection and distribution of valuable and heterogeneous benchmarks for further
scientific evaluations.

To these aims, every year a call for solvers and a call for benchmarks encoding instances of
interesting NP-hard optimization problems are opened. Specifically, the proposed bench-
marks are used to evaluate the performance of the different solvers. Solvers can be submitted
to different tracks: one of the most interesting for our scopes is the incomplete track, which
is dedicated to incomplete solvers. In contrast to the complete solvers, which execute until
they find an optimum solution, the incomplete solvers execute at most until a pre-set timeout:
if they find an optimum solution before the timeout, they return it; otherwise, they return the
best solution found.

The MaxSAT Evaluation mandates the participants to follow a set of rules, which are
published in the MaxSAT Evaluation web page3: in particular, it establishes the input and
output formats that all the participant solver must conform to. The PMaxSAT problem
instance must be read from the file given as a parameter to the solver. The format chosen for
encoding the PMaxSAT problem is the Weighted Conjunctive Normal Form (WCNF), which
is characterized by the following parameters line (first row of the file):

p wcnf nbvar nbclauses top

where nbvar is the number of variables, nbclauses is the number of clauses and top is the
weight given to the hard clauses. In particular, top must be greater than the sum of the
weights given to the soft clauses. After the parameters line, one clause per row follows.
Each clause is a disjunction of variables and is delimited by the weight of the clause (at the
beginning of the row) and a 0 (in the end of the row). Each variable is labelled with an integer
number.

Regarding the output, it must consist of the following elements:

• Comments: optional lines starting with "c " and containing extra information;

• Solution Status: mandatory line starting with "s " followed by the answer of the solver,
which must be one among the following: "OPTIMUM FOUND" when the optimum
solution is found, "UNSATISFIABLE" when there is no truth assignment satisfying the
hard clauses, and "UNKNOWN" otherwise. The incomplete solvers typically return
"UNKNOWN" unless they can verify that the best solution found corresponds to the
optimum one;

3https://maxsat-evaluations.github.io/2019/rules.html

https://maxsat-evaluations.github.io/2019/rules.html
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• Solution Cost: mandatory line starting with "o " followed by an integer representing
the solution cost, namely the sum of the weights of the clauses falsified by the solution.
Obviously, the cost of a solution found by an incomplete solver is greater or equal to
the cost of the solution found by the complete solver: greater in case the incomplete
solver could not find an optimum solution, equal otherwise;

• Solution Values: mandatory line starting with "v " followed by the truth assignment.
The latter is the list of variables, each one eventually preceded by a − in case of
negation.

In case of incomplete solver, the output may contain more "s", "o" and "v" lines to report
the improvements in the solution. The input and output formats standardization enables
UAQ-Solve to easily integrate any PMaxSAT solver participating in the competition as plug
& play systems. In fact, it is enough to:

1. install the solver or however compile its code in the machine, and

2. specify the command line used to execute the solver in the main script of UAQ-Solve.

Consequently to the aforementioned rules, the first step for UAQ-Solve to solve a UAQ
problem instance is to encode the clauses presented in Section 5.2 in Weighted Conjunctive
Normal Form (WCNF). UAQ-Solve supports the encoding for both permission-based opti-
mization, role-based optimization, and joint optimization. Listing 7.3 is the WCNF encoding
of the instance presented in Listing 7.2 for permission-based optimization with op = min4.

Listing 7.3 WCNF encoding of the instance in Listing 7.2

1 p wcnf 15 41 41
2 41 -1 15 0
3 41 -2 10 0
4 41 -2 12 0
5 41 -2 14 0
6 41 -3 6 0
7 41 -3 7 0
8 41 -3 8 0
9 41 -3 9 0

10 41 -3 11 0
11 41 -3 13 0

4The other configurations can be inferred from Section 5.2 and are reported in Appendix B for the sake of
completeness.
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12 41 -3 14 0
13 41 -3 15 0
14 41 -4 7 0
15 41 -4 8 0
16 41 -4 9 0
17 41 -4 11 0
18 41 -4 12 0
19 41 -4 13 0
20 41 -5 6 0
21 41 -5 10 0
22 41 -6 3 5 0
23 41 -7 3 4 0
24 41 -8 3 4 0
25 41 -9 3 4 0
26 41 -10 2 5 0
27 41 -11 3 4 0
28 41 -12 2 4 0
29 41 -13 3 4 0
30 41 -14 2 3 0
31 41 -15 1 3 0
32 41 -2 -4 0
33 41 6 0
34 41 7 0
35 41 -8 0
36 1 -9 0
37 1 -10 0
38 1 -11 0
39 1 -12 0
40 1 -13 0
41 1 -14 0
42 1 -15 0

Row 1 is the parameters line: the UAQ problem reduced to PMaxSAT consists of
nbvar = 15 variables, 5 for the roles and 10 for the permissions, and nbclauses = 41,
clauses which will be explained below. The variables are labeled with integers from 1 to
15: in particular, variables 1 - 5 correspond to the roles (r1, r2, ..., r5), while variables 6
- 15 correspond to the permissions (p1, p2, ..., p10). The weight of the hard instances is
(top = nbclauses = 41): this condition ensures the fulfillment of the requirement of having
top greater than the sum of the weights of the soft clauses. Rows 2 - 31 are the hard clauses
related to the Core RBAC, namely:

1. (¬r∨ p) for all p ∈ P and r ∈ Rp (rows 2 - 21);
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2. (¬p∨
∨
{r : r ∈ Rp}) for all p ∈ P (rows 22 - 31).

Row 32 corresponds to the encoding for the MER constraint SS-DMER({r2,r4},2). Here
we use a naive way of converting the constraints like SS-DMER(rs, t), which consists in
explicitly excluding all the possible combinations of t roles in rs being simultaneously
activated, namely:

∧
S⊆rs,
|S|=t+1

∨
r∈S

¬r

To this aim, we use the algorithm proposed in (26)5, which generates all the combinations
of M elements drawn without replacement from a set of N elements. Unfortunately, this
encoding requires

( |rs|
t+1

)
clauses, which in the worst case of t = (|rs|/2− 1) amounts to

O(2|rs|/
√
|rs|/2) clauses. This complexity bound is obtained through the Stirling’s approx-

imation of n!. A more elaborate result can be found in (81). However, also the smarter
encoding proposed in (79)6 can be selected. This encoding is based on a parallel counter
circuit designed by Muller and Preparata (65). Their counter recursively splits the input
bits xi (namely the variables for the roles in rs) into two halves and counts the number of
1 in each half. The results are then added using a standard binary adder. The result of the
adder finally feeds a comparator, which checks whether the counter value is less than t. This
encoding requires 7|rs|−3|log|rs||−6 clauses and 2|rs|−2 auxiliary variables. 7

Rows 33 - 35 are the clauses for the User Authorization Query, namely:

• a unit clause p for each p ∈ Plb (p1 and p1, rows 33 and 34) and

• a unit clause ¬p for each p ∈ P\Pub (p3, row 35);

Since the Core RBAC, the MER constraints, and the UAQ clauses are hard, they are all
preceded by the weight 41.

Finally, rows 36 - 42 correspond to the clauses related to the extra permission optimization
(minimization), namely:

5http://www.netlib.no/netlib/toms/382
6http://www.carstensinz.de/software.html
7 From some experimental results, it seems that the first encoding is still more convenient for problems with

op = min. For op = max, the Sinz encoding is more convenient above all for benchmarks parametric in t̂, for
which the first encoding could actually explode. In the other cases, according to our experience, the difference
in the solving time provided by the two encodings is not relevant in case of easy instances. It could be in the
order of seconds or tens of seconds when the solving time is around 100 seconds. However, this bias is not such
as to invalidate our experiments: except the case of benchmarks parametric in t̂ for op = max, we have never
noticed a substantial difference in the behavior of the solvers. Obviously, the type of encoding to use deserves a
further investigation when a real system must be implemented.

http://www.netlib.no/netlib/toms/382
http://www.carstensinz.de/software.html
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• a unit clause ¬p with weight set to 1 if op = min.

Since the latter are soft clauses, they are all preceded by the weight 1.
Once the problems are encoded in WCNF format like in Listing 7.3, UAQ-Solve can

finally solve them exploiting one of the available solvers. At the time of writing, UAQ-Solve
includes the following solvers:

• LMHS8 (complete and incomplete versions): LMHS is a MaxSAT solver imple-
menting the implicit hitting set algorithm (50) for MaxSAT (34; 50). After a first
preprocessing through MaxPre (82) which simplifies the problem, the MaxSAT cost
function is given as input to CPLEX 12.7 (45), which is an optimizer, while the CNF
formula (hard clauses and soft clauses) are given as input to MiniSat 2.2 (37), which
is used as satisfiability checker. In the implicit hitting set loop, MiniSat checks the
satisfiability of the formula excluding a hitting set in order to find an unsatisfiable core.
Unsatisfiable cores are then accumulated in a set, for which the CPLEX finds a mini-
mum–cost hitting set with reference to the cost function. LP-based reduced-cost fixing
techniques for MaxSAT (38) together with bounds enable to simplify the problem by
hardening or relaxing some soft clauses during the search. While the optimizer proves
the lower bounds, the upper bounds on the optimal solution cost are found during core
minimization procedure and non–optimal hitting set phase;

• Loandra9 (complete and incomplete versions): Loandra is a MaxSAT solver whose
architecture consists of two closely interleaved parts: the preprocessor and the solver.
The former is MaxPre (45), modified to support the addition of clauses, while the
former is a reimplementation of the PMRES MaxSAT algorithm (67) extended with
weight-aware core extraction as described in (19). First, Loandra preprocesses the
input instance, which is then given as input to the solver. Loandra makes extensive use
of SAT-based preprocessing using labels (1; 2): each soft clause is first extended with a
fresh variable, then the preprocessor is invoked on the clauses in Fh∪{C∨ lC|C ∈ Fs},
where Fh and Fs are the sets of hard and soft clauses respectively and lC is the fresh
variable introduced for the soft clause C. During the preprocessing phase, MaxPre
is forbidden from resolving on the added labels. The preprocessed instance is then
converted back to standard MaxSAT: all the clauses, including the soft ones, are treated
as hard and a soft clause ¬lC is introduced for each fresh variable introduced in the
previous phase. Each soft clause has the same weight of the corresponding original

8https://github.com/psaikko/LMHS
9https://github.com/jezberg/loandra

https://github.com/psaikko/LMHS
https://github.com/jezberg/loandra
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clause for which the fresh variable was introduced. Actually, during the initialization
of the solver, the soft clauses of the form ¬lC are not introduced; instead, the literals
are reused as assumption variables to be used in core extraction. The preprocessed
instance is then provided as input to the solver. Loandra also leverages stratification
and clause hardening (8), clause cloning through assumptions and reusing assumption
variables as relaxation variables (19). During the solver execution, all cardinality
constraints added due to core relaxation are also added to the preprocessor as well.
When the working formula is sufficiently modified, the execution is switched back to
the preprocessor. The latter tries to further simplify the working formula: in case of
success, the solver is reinitialized again on the simplified formula. Once the solver
terminates, the preprocessor rebuilds the optimal model for the original formula and
finally Loandra terminates the execution;

• MaxHS10 (complete and incomplete versions): MaxHS (33) is a MaxSat solver
that leverages the Implicit Hitting Set approach, using CPLEX 12.7 (45) as Integer
Programming solver and minisat 2.2 11 as SAT solver in a hybrid approach to MaxSat
solving. Using an LP relaxation and the reduced costs associated with the optimal
LP solution, MaxHS can harden or immediately falsify some soft clauses, as better
explained in (38). In addition, when sets of soft clauses having the same weight of
which at most one can be falsified or at most one can be satisfied are detected, the soft
clauses themselves can be more compactly encoded with a single soft clause to better
exploit such information. MaxHS maintains an upper bound and a lower bound, which
are the costs related to the best model found and the optimal solution respectively.
CPLEX is responsible for providing valid lower bounds. When the gap between the
lower bound and upper bound is low enough, the upper bound model corresponds to
the optimal solution. Consequently, MaxHS terminates the execution;

• Maxino12 (complete solver): Maxino is a MaxSAT solver built on top of the SAT
solver Glucose 4.1 (24). Besides, Maxino implements the algorithm K, which is based
on k-ProcessCore (54). The latter is in turn a parametric algorithm generalizing OLL
(15), ONE (54), and PMRES (67). In a first moment, the MaxSAT instance undergoes
a process known as relaxation, in which non-unary soft clauses are replaced with fresh
variables. In particular, the soft clause C is replaced with the clause C∨¬x, where x is
the fresh variable introduced for C. During the relaxation, the weight associated with

10https://github.com/fbacchus/MaxHS
11http://minisat.se/MiniSat.html
12https://alviano.net/software/maxino

https://github.com/fbacchus/MaxHS
http://minisat.se/MiniSat.html
https://alviano.net/software/maxino
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the soft clause is associated with the corresponding fresh variable. After the relaxation,
the normalized problem consists of hard clauses and soft literals. Consequently, the
computational problem amounts to maximize the linear function defined by the soft
literals, which are subject to the set of hard clauses. With this definition, a model of
the constraints that satisfies all the soft literals is an optimum model. Maxino tackles
the problem by leveraging the unsatisfiable core analysis. If during the search of
the optimum model an inconsistency arises, the unsatisfiable core returned by the
SAT solver is analyzed. The analysis of unsatisfiable core is preceded by a shrink
procedure (7) with the aim of reducing the size of the unsatisfiable core, even if the
procedure does not necessarily returns an unsatisfiable core of minimal size. After the
analysis of the unsatisfiable core, ONE, OLL, PMRES and K introduce a set of new
constraints making use of new soft literals, which replace the soft literals involved in
the unsatisfiable core. The bound used in the constrains introduced by K is calculated
starting from k, which is dynamically determined based on the size of the analyzed
unsatisfiable core. Finally, the solver executes over the modified problem. This process
can be iterated until there is no model that satisfies all replaced soft literals, namely
until the optimum model is found;

• Open-WBO13 (complete and incomplete versions): Open-WBO is a MaxSAT solver
that implements a variety of algorithms for solving MaxSAT and Pseudo-Boolean
(PB) formulas. All the algorithms are based on a sequence of calls to a MiniSAT-like
solver (37). Open-WBO has been one of the best solvers in the MaxSAT Evaluations
of for different years. Different versions of Open-WBO do exist: in our work we
make use of Open-WBO-LSU and Open-WBO-RES. The former is based on a linear
search algorithm SAT-UNSAT (20) with lexicographical optimization for weighted
problems (48). Open-WBO-LSU performs a sequence of calls to a SAT solver, while
refining an upper bound on the number of unsatisfied soft clauses. In order to restrict
the upper bound at each iteration, a cardinality constraint must be encoded into CNF
for unweighted problems, while a pseudo-Boolean constraint must be encoded into
CNF for weighted problems. In the first case, Open-WBO-LSU leverages the Modulo
Totalizer encoding (83), in the second one, it uses the Generalized Totalizer encoding
(GTE) (72). Open-WBO-RES is based on the unsatisfiability-based algorithms MSU3
(60) and OLL (3), which work by iteratively refining a lower bound on the number of

13https://github.com/sat-group/open-wbo

https://github.com/sat-group/open-wbo
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unsatisfied soft clauses until an optimum solution is found. Both MSU3 and OLL use
the Totalizer encoding for incremental MaxSAT solving (70);

• QMaxSAT and QMaxSATuc14 (complete and incomplete versions): QMaxSAT
is a SAT-based MaxSAT solver which uses CNF encoding of Pseudo-Boolean (PB)
constraints (56). The version leveraged in UAQ-Solve is an adjustment of the solver
Glucose 3.0 (14; 37). QMaxSAT implements a model-guided algorithm, in which a
blocking variable is added to each soft clause. Solving the MaxSAT problem is then
reduced to find the SAT model that minimizes ∑

m
i=1 wi ·bi, where wi is the weight of

the soft clause Ci and m is the number of soft clauses involved in the MaxSAT problem.
The PB constraints ∑

m
i=1 wi ·bi < k are manipulated by Glucose, which encodes them

into SAT. According to k and the sum of the weights of the soft clauses, one of the
following encodings is used to encode the PB constraints: Totalizer (17), Binary Adder
(89), Modulo Totalizer (83), and Weighted Totalizer (44), and Mixed Radix Weighted
Totalizer (66). QMaxSATuc is a hybrid solver that follows and alternates both a core-
guided and a model-guided mode. In core-guided mode, the blocking variables are
negated and then passed as assumptions to Glucose, which treats each literal as a unit
clause. Glucose returns a subset of assumptions used in the UNSAT proof. Each soft
clause corresponding to a blocking variable in the subset constitutes an element in
the unsat-core. Then, a clause having all blocking variables in the subset as literals is
created and added to the clause database in order to eliminate the core. In addition, all
the blocking variables in the subset are subtracted from the set of blocking variables. In
model-guided mode, nothing is passed to Glucose as assumptions, like in QMaxSAT;

• WPM1-201215 (complete solver): WPM1 (24) is an extension to the Weighted Partial
MaxSAT problem of the Fu and Malik algorithm (42; 92), which was originally
designed for Partial MaxSAT. The Fu and Malik algorithm consists in iteratively
calling a SAT solver on a working formula. In case the latter is unsatisfiable, the
SAT solver provides an unsatisfiable core. The algorithm creates a new blocking
variable for each soft clause in the unsatisfiable core. Then a new working formula
is produced by adding the new blocking variables to the soft clauses of the core and
introducing a cardinality constraint saying that exactly one of the new variables should
be true. Finally, the counter of falsified clauses is incremented by one. This procedure
is repeated until the working formula is satisfiable. WPM1 is the weighted version

14https://sites.google.com/site/qmaxsat/
15http://ulog.udl.cat/?page_id=30

https://sites.google.com/site/qmaxsat/
http://ulog.udl.cat/?page_id=30
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of the algorithm just described and is built on top of the SAT solver picosat v.924
(21). The latter is iteratively called with a weighted working formula, but excluding
the weights. Differently from the Fu and Malik algorithm, when the SAT solver
returns an unsatisfiable core, the working formula is transformed by duplicating the
clauses of the core. In one of the copies, the clauses have the original weight minus
the minimum weight of the clauses of the unsatisfiable core; in the other copy, the
blocking variables are introduced with the minimum weight. Then the cardinality
constraint on the blocking variables is created as in the Fu and Malik algorithm. The
cardinality constraints introduced by WPM1 are translated into SAT through the regular
encoding (23). The latter ensures a linear complexity on the size of the cardinality
constraint. Finally, the cost is incremented by the minimum weight of the clauses of
the unsatisfiable core. The WPM1 solver included in UAQ-Solve actually applies the
stratified approach, an improvement that consists in restricting the set of clauses sent to
the SAT solver to force it to concentrate on those with higher weights. Consequently,
the SAT solver returns unsatisfiable cores with clauses with higher weights. Once the
SAT solver returns SAT, it is allowed to use clauses with lower weights. This expedient
contributes to increase the cost faster (25).

While launching the execution of UAQ-Solve, the user should specify one or more solvers to
use as an option in the command line. According to the solver specified, the proper command
line is selected and executed to run the solver. However, if the latter is not specified a default
solver is used16. Since the execution of the solvers over particularly hard instances can
consume many resources, UAQ-Solve executes the instances sequentially to avoid crashes.

Since we do not want to go into the details of the algorithms underlying the solvers and
their implementation, we treat the solvers as black boxes. As a consequence, UAQ-Solve
executes them with the default configurations set by the developers. It is obvious that,
knowing the underlying algorithms, one could find better configurations that could lead also
to better performance17. It is then important to point out that, for this reason, we do not have
any guarantee that the experimental results shown in Chapter 8 correspond to the actual best
performance of the solvers.

The aforementioned solvers have been included in UAQ-Solve because of their placement
at the MaxSAT Evaluation 2017 and 2018, which are summarized in Tables 7.1 (complete
tracks) and 7.2 (incomplete tracks). We also included WPM1-2012, a complete solver which

16In the our configuration, the default solver, but it can be easily changed.
17The configuration that could lead to the best performance could also vary from problem to problem.

However, this is out of scope in this thesis.
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was ranked first for the Crafted category and second for the Industrial category at the MaxSAT
Evaluation 2012. However, as already stated before, it is easy to integrate other solvers in the
tool. In the future, we will include other solvers that participated in the competition in 2018
and 2019.

Table 7.1 Solvers placement at MaxSAT Evaluation 2017 and 2018 for Complete Tracks

Solver
Unweighted
Complete

Track

Weighted
Complete

Track

MaxHS 2nd in 2017
1st in 2017
3rd in 2018

Maxino
3rd in 2017
3rd in 2018

Open-WBO-RES 1st in 2017

QMaxSAT 2nd in 2017

QMaxSATuc 3rd in 2017

Table 7.2 Solvers placement at MaxSAT Evaluation 2017 and 2018 for Incomplete Tracks

Solver
Unweighted
Incomplete
Track (60 s)

Unweighted
Incomplete

Track (300 s)

Weighted
Incomplete
Track (60 s)

Weighted
Incomplete

Track (300 s)

LMHS-inc 2nd in 2017 3rd in 2017

MaxHS-inc 2nd in 2017 3rd in 2017 2nd in 2017

Open-WBO-LSU 1st in 2017 2nd in 2017 3rd in 2017

Since any complete solver runs until it finds an optimum solution, we make use of the
software runsolver18 to force a timeout: if the solver can not find an optimum solution
before the timeout, a SIGTERM and then a SIGKILL signals are sent and the UAQ problem
instance is labelled as "skipped". The default value for the timeout is 10 minutes, but it can
be modified providing the desired values as argument.

The output of UAQ-Solve is a set of files containing some statistics on the experiments,
in particular:

18http://www.cril.univ-artois.fr/~roussel/runsolver

http://www.cril.univ-artois.fr/~roussel/runsolver
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• A file containing the details of the encoding for any UAQ instance: the encoding time,
the number of variables and the number of clauses19;

• A file containing the mean encoding time and the mean number of variables and clauses
for every step of the dimension under examination;

• A file containing the solving details for any UAQ problem instance: the number
of variables and clauses in the WCNF encoding, the solving time and the status
(OPTIMUM, BEST in case of incomplete solver, UNSAT and SKIPPED);

• A file containing the mean number of variables and clauses of the WCNF encoding,
the mean and median solving time and the percentage of skipped problems for every
step of the dimension under examination;

• A file containing the quartiles of the solving time for every step of the dimension under
examination.

For the sake of completeness, in Listings 7.4, 7.5, 7.6, 7.7 and 7.8 we report the content of
the five output files for the benchmark generated by UAQ-Solve with the specification file in
Listing 7.1.

Listing 7.4 Summary encoding file for the benchmark generated with Listing 7.1

1 RPP #MERS MERB RPC Filename T V C
2 2 1 2 2 ss-d-5-2-0-MIN.uaq 0.004 15 41
3 2 1 2 2 ss-d-5-2-1-MIN.uaq 0.004 15 41
4 2 1 2 2 ss-d-5-2-2-MIN.uaq 0.004 15 41
5 2 1 2 2 ss-d-10-2-0-MIN.uaq 0.004 20 41
6 2 1 2 2 ss-d-10-2-1-MIN.uaq 0.004 20 41
7 2 1 2 2 ss-d-10-2-2-MIN.uaq 0.004 20 41
8 2 1 2 2 ss-d-15-2-0-MIN.uaq 0.004 25 41
9 2 1 2 2 ss-d-15-2-1-MIN.uaq 0.008 25 41

10 2 1 2 2 ss-d-15-2-2-MIN.uaq 0.004 25 41

Listing 7.5 Plot encoding file for the benchmark generated with Listing 7.1

1 RPP #MERS MERB RPC NR NP Plb TMed TMean NV NC DIMACS ERRS
2 2 1 2 2 5 10 2 0.004 0.004 15 41 3 0
3 2 1 2 2 10 10 2 0.004 0.004 20 41 3 0
4 2 1 2 2 15 10 2 0.004 0.005 25 41 3 0

19The interested reader can find details on the encoding of our benchmark in Appendix C.
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Listing 7.6 Summary file for the benchmark generated with Listing 7.1

1 RPP #MERS MERB RPC Filename T V C Res
2 2 1 2 2 ss-d-5-2-0-MIN.dimacs 0.000 15 41 UNSAT
3 2 1 2 2 ss-d-5-2-1-MIN.dimacs 0.000 15 41 OPTIMUM
4 2 1 2 2 ss-d-5-2-2-MIN.dimacs 0.000 15 41 UNSAT
5 2 1 2 2 ss-d-10-2-0-MIN.dimacs 0.000 20 41 OPTIMUM
6 2 1 2 2 ss-d-10-2-1-MIN.dimacs 0.000 20 41 OPTIMUM
7 2 1 2 2 ss-d-10-2-2-MIN.dimacs 0.000 20 41 OPTIMUM
8 2 1 2 2 ss-d-15-2-0-MIN.dimacs 0.000 25 41 OPTIMUM
9 2 1 2 2 ss-d-15-2-1-MIN.dimacs 0.000 25 41 OPTIMUM

10 2 1 2 2 ss-d-15-2-2-MIN.dimacs 0.000 25 41 OPTIMUM

Listing 7.7 Plot file for the benchmark generated with Listing 7.1

1 RPP #MERS MERB RPC NR NP Plb TMed TMean NV NC PUNSAT PSK DIMACS ERRS
2 2 1 2 2 5 10 2 0.000 0.000 15 41 0.67 0 3 0
3 2 1 2 2 10 10 2 0.000 0.000 20 41 0 0 3 0
4 2 1 2 2 15 10 2 0.000 0.000 25 41 0 0 3 0

Listing 7.8 Quantiles file for the benchmark generated with Listing 7.1

1 RPP #MERS MERB RPC NR NP Plb B1-H B2 -L B3-U W_t W_b
2 2 1 2 2 5 10 2 0 0 0 0 0
3 2 1 2 2 10 10 2 0 0 0 0 0
4 2 1 2 2 15 10 2 0 0 0 0 0

UAQ-Solve can also be used to compare the performance of different solvers providing the
solvers to compare and the timeout. When used to compare complete solvers, for each UAQ
problem instance, UAQ-Solve provides the solving time; when used to compare incomplete
solvers, UAQ-Solve provides the cost of an optimum solution found by a complete solver
and the cost of the solutions found by the incomplete solvers. This is an interesting piece
of information, because it gives an idea of the quality of the best solutions found by the
incomplete solvers related to the optimum ones.

For example, Listing 7.9 presents the results of the comparison of the complete solvers
Loandra, LMHS and MaxHS over the benchmark generated with the specification file in
Listing 7.1. The benchmark is really simple, thus here there is not a clear difference in the
solving times.
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Listing 7.9 Solving times of different complete solvers over the benchmark generated with
Listing 7.1

1 RPP #MERS MERB RPC FILE Loandra LMHS MaxHS
2 2 1 2 2 ss -d-5-2-0-MIN.dimacs 0 0.004 0.004
3 2 1 2 2 ss -d-5-2-1-MIN.dimacs 0 0.004 0
4 2 1 2 2 ss -d-5-2-2-MIN.dimacs 0 0.004 0
5 2 1 2 2 ss -d-10-2-0-MIN.dimacs 0 0.004 0
6 2 1 2 2 ss -d-10-2-1-MIN.dimacs 0 0.004 0
7 2 1 2 2 ss -d-10-2-2-MIN.dimacs 0 0.004 0
8 2 1 2 2 ss -d-15-2-0-MIN.dimacs 0 0.004 0
9 2 1 2 2 ss -d-15-2-1-MIN.dimacs 0 0.004 0

10 2 1 2 2 ss -d-15-2-2-MIN.dimacs 0 0.004 0

In the same way, we show the results of the comparison of the incomplete solvers Loandra-
inc and LMHS-inc. The -1 in rows 2 and 4 are due to the fact that the related instances are
unsatisfiable. Since the other instances are very easy to solve, the incomplete solvers found
the optimum solution before the timeout and, consequently, the costs of the solutions found
by both Loandra-inc and LMHS-inc are the same as the ones of the complete solver.

Listing 7.10 Solution costs over the benchmark generated with Listing 7.1

1 RPP #MERS MERB RPC FILE OPT Loandra -inc LMHS -inc
2 2 1 2 2 ss -d-5-2-0-MIN.dimacs -1 -1 -1
3 2 1 2 2 ss -d-5-2-1-MIN.dimacs 5 5 5
4 2 1 2 2 ss -d-5-2-2-MIN.dimacs -1 -1 -1
5 2 1 2 2 ss -d-10-2-0-MIN.dimacs 2 2 2
6 2 1 2 2 ss -d-10-2-1-MIN.dimacs 1 1 1
7 2 1 2 2 ss -d-10-2-2-MIN.dimacs 0 0 0
8 2 1 2 2 ss -d-15-2-0-MIN.dimacs 0 0 0
9 2 1 2 2 ss -d-15-2-1-MIN.dimacs 0 0 0

10 2 1 2 2 ss -d-15-2-2-MIN.dimacs 0 0 0



Chapter 8

Experimental results

This chapter describes the major results of our work. In particular:

Section 8.1 demonstrates that state-of-the-art benchmarks are incomplete and unsatisfactory.
In fact, as predicted by our methodology, they only consists of instances that never
stimulate an exponential behavior. According to our methodology, only the benchmark
parametric in |Plb| in principle could stimulate that behavior. UAQ-Solve can solve
all the instances contained in the benchmarks (even the one parametric in |Plb|) in a
fraction of a second, as we will show in Figure 8.1. The latter shows also that UAQ-
Solve outperforms the solvers 2D-Opt-Search and 2D-Opt-CNF over the benchmarks.
Another issue is that all the benchmarks were designed for op = min, thus benchmarks
for op = max are totally missing;

Section 8.2 contains the evaluation of our benchmarks designed through our methodology
for op = min. The benchmarks are evaluated by running UAQ-Solve over them. All
the benchmarks proposed stimulate the behavior for which they were designed. We
conclude that the suite of benchmarks designed for op = min is empirically adequate.
The set of benchmarks consists of:

• Two benchmarks parametric in |Plb| having different values of |R|. One of them
is solved in exponential time; all the instances of the other benchmark are always
solved in around 1 to 6 seconds regardless of the value of |Plb| (see Figure 8.4a);

• Two benchmarks parametric in |R| having different values of |Plb|. Similarly to
the previous case, one benchmark is solved in exponential time; all the instances
of the other benchmark are solved in a fraction of a second, regardless the value
of |R| (see Figure 8.5a);
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• Three benchmarks parametric in R̂P having different value of |Plb|. All the
benchmarks are solved in polynomial time. These benchmarks highlight the
influence of |Plb|, which, according to our methodology, is the degree of the
polynomial (see Figure 8.6a);

• Four benchmarks, each of them parametric in one of the remaining dimensions,
namely |Pub|, |C|, r̂s, and t̂. Over all these benchmarks, the increase in the solving
time is not relevant (see Figure 8.7).

Figure 8.8 will show the comparison of the performance of UAQ-Solve over some of
the benchmarks encoded for permission-based and joint optimization. The experiment
shows that joint optimization is not particularly detrimental for performance. Finally,
we evaluate 2D-Opt-Search and 2D-Opt-CNF over the benchmarks. UAQ-Solve
outperforms them for the majority of the instances (see Figure 8.1);

Section 8.3 contains the evaluation of our benchmarks designed through our methodology
for op = max. The benchmarks are evaluated by running UAQ-Solve over them.
All the benchmarks proposed but one stimulate the behavior for which they were
designed. We conclude that the suite of benchmarks designed for op = max is
empirically adequate. The set of benchmarks consists of:

• Two benchmarks parametric in |R| having different values for |C|̂t. One of them
is solved in exponential time, while the other is solved in almost constant time
(see Figure 8.16);

• One benchmark parametric in |Pub|. Contrary to our expectation, UAQ-Solve
solves this benchmark in exponential time (see Figure 8.17). We should better
investigate in the future;

• Two benchmarks parametric in |C|, having different values of |R|. One of them is
solved in exponential time, while the other is solved in almost constant time (see
Figure 8.18);

• Two benchmarks parametric in t̂, having different values of |R|. One of them is
solved in exponential time; all the instances contained in the other benchmark
are solved in a fraction of second (see Figure 8.19);

• Three benchmarks parametric in r̂s having different values of |C|̂t. All the
benchmarks are solved in polynomial time. These benchmarks highlight the
influence of |C|̂t, which, according to our methodology, is the degree of the
polynomial (see Figure 8.20);
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• One benchmark parametric in R̂P and one benchmark parametric in |Plb|. All
the instances are solved in a fraction of a second, regardless of the value of the
parameter under examination.

Figure 8.22 will show that the performance of UAQ-Solve deteriorates with joint
optimization;

Section 8.4 compares the performance of different PMaxSAT solvers over some of our
benchmarks. The experimental results show that:

1. Focusing on a singular dimension, the solver that best performs on small values
of the parameter may not be the best also for big values of the same parameter,
see Maxino over Plb_bigR in Figure 8.27a;

2. The solver that best performs over a certain class of UAQ problems could not be
the best also for the other classes. For example, in Figure 8.27a, for high values
of |Plb|, MaxHS is the best solver among the ones under test, while, in Figure
8.29a, the best solver is Maxino;

3. In general, the solvers exhibit the same behavior, however it may happen that a
solver clearly outperforms the others, see Maxino over that_bigR in Figure 8.33a.

Section 8.5 shows the results of the execution of incomplete solvers over our benchmarks.
From the experiments it appears that:

• The cost of the best solution found comes closer to the cost of the optimum
solution with the increase of the timeout (see Figure 8.34a);

• The incomplete solver seems to be able to quickly find a good solution, then it
takes more time to converge to the optimum one (see Figure 8.35a);

• Considering the time spent by any complete solver to find the optimum solution,
the error ε of the solution found by an incomplete solver in 1 second is acceptable
(see Figure 8.36b);

• It may happen that any incomplete solver finds a solution that minimizes the
solution cost, but that it does not have enough time to prove that it actually is an
optimum solution;

• Although any incomplete solver could provide a sub-optimal solution, in terms
of solution cost (namely, in case of op = min, safety), the use of any incomplete
solver is still more convenient than using a complete solver with op = any (see
Figure 8.36e);
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• Over hard benchmarks and with high timeouts (such as 600 seconds), the incom-
plete solvers could be less performing than the complete ones (see Figure 8.37);

• The performance of a complete and an incomplete solver seem to be comparable
when executing over easy benchmarks (see Figure 8.38).

The experiments have been conducted on a PC with 2 64-bit Intel Xeon CPU X7350
(8 core) @ 2.93GHz and 47 GB RAM running Linux (Ubuntu 16.04.5 LTS). For every
experiment, we set the timeout to 600 seconds. After this threshold, the instance under test
was labelled as "SKIPPED".

In the following chapter we do not provide any information on the encoding time and the
number of variables and clauses for a number of reasons:

• The time spent by UAQ-Solve to encode the benchmarks in WCNF is not particularly
relevant;

• In principle, the RBAC policy could be encoded once. At run-time it would be enough
to add to the encoding the clauses related to the DMER constraints1 and to the query.
This would further decrease the time spent for getting the WCNF encoding;

• The dimension of the encodings follows the complexity results presented in Sec-
tion 5.22;

• In earlier research, we thought that the problem complexity could depend only on the
number of variables and clauses. However, we have evidence that this does not hold3.

We also point out that when we talk about the solving time of UAQ-Solve, we do not include
the encoding time.

The reader interested in more details on the encoding can find them in Appendix C.

8.1 Benchmarks from (64)

In Section 8.1.1, we leverage the methodology introduced in Section 6.1 to evaluate the
benchmarks from (64) and presented in Table 6.4 by running UAQ-Solve, leveraging the
PMaxSAT solver Loandra. The result of the evaluation is that the suite of benchmarks is

1If MS-DMER, SS-HMER and MS-HMER constraints are used, they must be properly reduced to SS-DMER
constraints, see Section 4.4

2O(|R||P|) clauses and O(|R|+ |P|)
3See Appendix C
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incomplete and unsatisfactory, because it consists only of easy benchmarks. In fact, our
methodology predicted that the solving time of UAQ-Solve over four of the five benchmarks
would not have increased in a relevant way. The only benchmark that in principle could
exhibit an exponential growth is the one parametric in Plb. However, all its instances are
solved in less than 10 millisecond, thus meaning that the benchmark is empirically inadequate.
In addition, the benchmarks were designed only for op = min.

Secondly, in Section 8.1.2, we use the same benchmarks to experimentally evaluate and
compare the performance of the following solvers:

• 2D-Opt-Search (64): a search-based solver leveraging the FPP result;

• 2D-Opt-CNF (64): a SAT-based solver that leverages the reduction of the UAQ De-
cision Problem to SAT, zChaff4 as SAT solver a state-of-the-art SAT solver and a
two-dimensional binary search to solve UAQ problems;

• UAQ-Solve.

The reason why we decided to compare UAQ-Solve with 2D-Opt-Search and 2D-Opt-CNF
is that they are proposed by the same authors as the benchmarks and the code is available
online5. The results show that UAQ-Solve outperforms both 2D-Opt-search and 2D-Opt-CNF
over all the benchmarks.

8.1.1 Benchmarks evaluation

In the evaluation step, we run UAQ-Solve over the benchmarks instances encoded with simple
permission optimization, namely with op = min, or = any and pri = p. The pink lines in
Figure 8.1 represent the results of the evaluation of the benchmarks. In particular, Figure 8.1a
shows the median solving time of UAQ-Solve over the roles benchmark. The value of |R|
ranges from 25 to 200, however the median solving time never exceeds 4 milliseconds. This
result confirms the prediction we presented in Section 6.2: in fact, the value of the other
UAQ problem dimensions makes Algorithm 3 preferable to Algorithm 1.

Figures 8.1b, 8.1c, and 8.1d present the median solving time of UAQ-Solve over the
benchmarks related to the MER constraints features, namely d, rolesPerConstr, and t. In
the related benchmarks, both |C| and r̂s vary from 10 to 100, while t̂ varies from 2 to 12.
The plots present a slight increase on varying of C and r̂s, whose maximum values are 8
milliseconds and 16 milliseconds respectively. Instead, the median solving time is a constant

4http://www.princeton.edu/ chaff/zchaff.html
5https://ece.uwaterloo.ca/~tripunit/uaq/.

https://ece.uwaterloo.ca/~tripunit/uaq/
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value of 4 milliseconds on varying of t̂. Also these results confirm our expectation: in fact,
for op = min the algorithms presented in Section 5.1 are insensitive to the variation of the
parameters under discussion.

Finally, 8.1e shows the experimental results obtained by running UAQ-Solve against
the plb benchmark. Contrary to our expectation, UAQ-Solve could solve all the problems
contained in the benchmark in few milliseconds (at most 4) even for largest value of
|Plb| (11), while it should have exhibited an exponential growth. This result means that the
benchmark plb is experimentally inadequate.

We can thus conclude that the set of benchmarks provided by (64) is incomplete and
unsatisfactory: in particular, it consists only of instances that can be used to check the solvers’
performance over easy UAQ problems.
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(a) roles benchmark (b) d benchmark

(c) rolePerConstr benchmark (d) t benchmark

(e) plb benchmark

Figure 8.1 Median solving time of 2D-Opt-Search, 2D-Opt-CNF and UAQ-Solve over the
benchmarks presented in Table 6.4 with permission-based optimization
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8.1.2 Solvers evaluation

After the evaluation provided in the previous subsection, we know that the benchmarks
under test consist of easy instances of UAQ problem. We can then use them to assess the
solvers’ performance: here we expect that any reasonably efficient solver solve them quickly.
If this is not the case, we conclude that the solver under evaluation is empirically inefficient
against the particular family of UAQ problem. In addition to the curves already discussed
in Subsection 8.1.1, Figure 8.1 shows the performance of the solvers 2D-Opt-Search and
2D-Opt-CNF over the examined benchmarks.

It is immediate to note that UAQ-Solve always outperforms both 2D-Opt-Search and
2D-Opt-CNF for all the benchmarks. Apart from roles, UAQ-Solve and 2D-Opt-CNF exhibit
similar behavior, however there is always a distance of two orders of magnitude between the
median solving time of the two solvers. Instead, the median solving time of 2D-Opt-CNF
over roles slowly increases with the increase in |R|, while UAQ-Solve always takes 1 or
4 milliseconds. When running over the benchmarks roles, |C|, r̂s, and t̂, 2D-Opt-search
always outperforms 2D-Opt-CNF. In particular, for rolesPerConstr there is a distance of
at least one order of magnitude between the median solving time of 2D-Opt-search and
2D-Opt-CNF. On the contrary, for plb, the shapes of the curves representing the median
solving time are completely different: while 2D-Opt-CNF always solves the instances in 320
milliseconds regardless of the value of |Plb|, 2D-Opt-Search exhibits an exponential growth,
from 4 milliseconds when |Plb|= 1 to more than 15 seconds when |Plb|= 11.

In Figure 8.2 we present the results of the execution of the solvers over the benchmarks
encoded with joint optimization, namely with op = min, or = min and pri = p. Also in
this case, UAQ-Solve solves all the problems in a fraction of second, outperforming both
2D-Opt-Search and 2D-Opt-CNF. However, contrary to the case with permission-based
optimization, 2D-Opt-Search always performs worse than 2D-Opt-CNF. Except for plb, the
curves representing the median solving time of UAQ-Solve and 2D-Opt-Search is similar, but
UAQ-Solve always performs three orders of magnitude better. Instead, the behavior of the
two solvers is different for plb: the median solving time of UAQ-Solve is 8 milliseconds for
every value of |Plb| of which we have evidence; on the contrary, the median solving time of
2D-Opt-Search grows from 5 to 162 seconds with |Plb| ranging from 1 to 11. 2D-Opt-CNF
over roles and d shows the same behavior as UAQ-Solve, but the latter always performs
two orders of magnitude better. Over the other benchmarks, the median solving time of
2D-Opt-CNF is fluctuating, however always at least one order of magnitude higher compared
to UAQ-Solve. For the sake of completeness, in Figure 8.3 we report the difference between
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the performance of the three solvers with joint and permission-based optimization, namely

∆T Median = T Median joint−T Medianpermission−based.
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(a) roles benchmark (b) d benchmark

(c) rolePerConstr benchmark (d) t benchmark

(e) plb benchmark

Figure 8.2 Median solving time of 2D-Opt-Search, 2D-Opt-CNF and UAQ-Solve over the
benchmarks presented in Table 6.4 with joint optimization
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(a) roles benchmark (b) d benchmark

(c) rolePerConstr benchmark (d) t benchmark

(e) plb benchmark

Figure 8.3 ∆T Median of 2D-Opt-Search, 2D-Opt-CNF and UAQ-Solve over the benchmarks
presented in Table 6.4
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The impact of joint optimization on the performance of UAQ-Solve is a fraction of
second. In the plots related to rolesPerConstr, t̂, and |Plb|, some points related to the median
solving time of 2D-Opt-CNF are missing, because for those values of the parameter under
examination 2D-Opt-CNF performs better on the instances encoded with joint optimization,
rather than the ones with permission-based optimization. However, the maximum value of
DeltaT Median is 2.215 seconds.

The joint optimization mainly impacts on the performance of 2D-Opt-Search: in fact,
for roles, d, and rolesPerConstr, DeltaT Median increases respectively from 2.908 to 11.624
seconds with |R| ranging from 25 to 200, from 7.247 to 24.59 seconds with |C| ranging from
10 to 100, from 20.084 to 71.303 seconds with r̂s ranging from 10 to 100. For t, DeltaT Median

is between 14 and 16 seconds for each value of t̂ for which we have evidence. Finally, for
plb, DeltaT Median is less than 10 seconds when |Plb| ≤ 10, then it rapidly increases from
10.702 to 147.196 seconds.

8.2 Our benchmarks with op = min

In this section, we repeat the same operations we described in Section 8.1 over the benchmarks
designed in Section 6.3 and presented in Tables 6.6, which are characterized by op = min.
First, in Section 8.2.1 we use the methodology introduced in Section 6.1 to evaluate the
benchmarks by running UAQ-Solve leveraging Loandra. The result of the evaluation is that
we demonstrate that the suite of benchmarks is complete and satisfactory. In particular, it
consists of both easy and hard benchmarks which are empirically adequate. As already
explained in Section 6.1, the methodology is also valid when the UAQ problem instances
are encoded with joint optimization (with optimization priority p). Consequently, for the
sake of completeness, we compare UAQ-Solve performance over the benchmarks Plb_bigR,
R_bigPlb, and RPhat_bigPlb with different optimization configurations. In particular:

1. op = min and or = any (permission-based optimization);

2. op = or = min;

3. op = min and or = max;

In all the configurations, permission optimization is the priority (pri = p). The result of
the experiment shows that joint optimization is not detrimental for performance. In fact, the
median solving time of UAQ-Solve over the benchmarks encoded for joint optimization is
similar to the one for permission-based optimization.
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Finally, in Section 8.2.2 we experimentally evaluate the solvers 2D-Opt-Search and
2D-Opt-CNF by comparing their performance with UAQ-Solve performance. The reason
why we decided to make this comparison is that the work by Mousavi et al. (64) is the most
similar to our work. The results show that UAQ-Solve outperforms the other solvers over the
vast majority of the instances.

8.2.1 Benchmarks evaluation

In the first step, we run UAQ-Solve over our benchmarks encoded with permission-based
optimization, then with joint optimization.

Benchmarks parametric in |Plb|

In Figures 8.4a and 8.4b we show respectively the median solving time and the percentage of
skipped problems of UAQ-Solve over the benchmarks parametric in |Plb|, namely Plb_bigR

(pink) and Plb_smallR (blue). As expected, the former behaves like Algorithm 3 and exhibits
a clear exponential growth with the increase in |Plb|. In particular, UAQ-Solve reached
the timeout for the 40% of the instances when |Plb| = 30, while all the instances have
been skipped when |Plb| = 40. Also the median solving time over Plb_smallR meets the
expectation by slightly varying between ~2 and ~6 seconds. In fact, the small value of |R|
would make it more convenient to use Algorithm 1, which is not affected by |Plb|. None
among the instances have been skipped.

(a) Median time (b) Skipped problems

Figure 8.4 Median solving time and percentage of skipped problems of UAQ-Solve over the
benchmarks parametric in |Plb| with permission-based optimization
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Benchmarks parametric in |R|

Figures 8.5a and 8.5b present respectively the median solving time and the percentage of
skipped problems of UAQ-Solve over the benchmarks parametric in |R|, namely R_bigPlb

(pink) and R_smallPlb (blue). This experiment is dual to the previous one: the methodology
foresees an exponential growth like Algorithm 1 over R_bigPlb; on the contrary, due to the
small value of |Plb|, the methodology suggests that the algorithm that best performs over
R_smallPlb is Algorithm 3, whose complexity does not depend on the parameter under
examination.

The results confirm our prediction: the median solving time of UAQ-Solve over R_bigPlb

quickly grows from ~2 seconds when |R|= 10 to the timeout when |R|= 40. Note also that,
from this value on, all the instances have been skipped, while UAQ-Solve could solve all the
problems before the timeout when |R| ≤ 30.

On the contrary, the median solving time even decreases over R_smallPlb. Besides,
UAQ-Solve efficiently solved 100% of the instances.

(a) Median time (b) Skipped problems

Figure 8.5 Median solving time and percentage of skipped problems of UAQ-Solve over the
benchmarks parametric in |R| with permission-based optimization

Benchmarks parametric in R̂P

Figure 8.6a presents the median solving time and the percentage of skipped problems of UAQ-
Solve over the benchmarks parametric in R̂P, namely RPhat_bigPlb (pink), RPhat_medPlb

(blue) and RPhat_smallPlb (yellow). This experiment is of particular interest: our method-
ology foresees that, with an adequately high number of roles, the complexity of this class of
UAQ problem is polynomial with degree |Plb| as Algorithm 3 (O(R̂P

|Plb|
)). This is confirmed
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by the results shown in Figure 8.6a: the latter shows the median solving time of UAQ-Solve
over the three benchmarks, each with a different value for |Plb|, i.e. 1 (RPhat_smallPlb),
4 (RPhat_medPlb) and 10 (RPhat_bigPlb). As expected, the complexity of the problem
increases with the increasing of both R̂P and |Plb|: UAQ-Solve quickly solves all the problems
in RPhat_smallPlb, while the plot is considerably more steep for RPhat_bigPlb. Besides,
over RPhat_bigPlb, UAQ-Solve reached the timeout for 10% and 30% of the instances when
R̂P is 11 and 12 respectively. The results are consistent with the growth of polynomials of
degree 1 and 10 respectively. The plot for RPhat_mediumPlb represents an intermediate
situation.

(a) Median time (b) Skipped problems

Figure 8.6 Median solving time and percentage of skipped problems of UAQ-Solve over the
benchmarks parametric in R̂P with permission-based optimization

Other benchmarks

Figure 8.7 presents the median solving time of UAQ-Solve over the remaining benchmarks,
namely Pub, C, rshat, and that, which are parametric in Pub, |C|, r̂s and t̂ respectively. We
do not present the histograms representing the percentage of skipped problems because
UAQ-Solve never reached the timeout over the aforementioned benchmarks.

The plot for Pub in Figure 8.7a indicates that the time spent by UAQ-Solve is not
insensitive to |Pub|. With the actual configuration used, Algorithm 3 is the best algorithm
among the ones presented in Section 5.1 to solve the instances contained in the benchmark
under examination. Consequently, the performance of a reasonable good solver over Pub

should not be influenced by the increase in Pub. However, in our benchmarks Pub = P: we
have to consider that, as presented in Section 5.2, the size of the encoding is in O(|R||P|)
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and thus it grows linearly with |P|. Therefore, a slight increase in the median solving time
over Pub is not surprising: it could be caused more by the nature of the encoding then by the
difficulty of the generated problems itself.

Figures 8.7b, 8.7c, and 8.7d show the results of the experiments over the benchmarks
parametric in the features of the MER constraints. Among the algorithms presented in
Section 5.1, only Algorithm 4 is sensitive to the variation of these parameters. However,
this algorithm is not adequate to solve UAQ problems with op = min. Consequently, any
reasonably performing solver should not be affected by the variation of the MER constraint
features. The results of UAQ-Solve over C and that confirm the expectation, with a median
solving time around 0.1 seconds and 0.01 second respectively over all the instances consid-
ered. Instead, the median solving time moderately grows with r̂s, however the increase (0.56
second) is not relevant, given the large range of the parameter considered (5≤ r̂s≤ 50).

(a) Median time over Pub (b) Median time over C

(c) Median time over rshat (d) Median time over that

Figure 8.7 Median solving time of UAQ-Solve over the benchmarks parametric in |Pub|, |C|,
r̂s and t̂ with permission-based optimization
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Permission-based optimization versus joint optimization

Figure 8.8 shows the results of the execution of UAQ-Solve over Plb_bigR, R_bigPlb, and
RPhat_bigPlb under different optimization configuration: permission-based optimization
(pink), joint optimization with op = or = min (blue) and joint optimization with op = min

and or = max (yellow).
For each benchmark considered, the shape of the three plots is similar, as expected. In

particular, the curves related to permission-based optimization and joint optimization with
or = min almost overlap, while a decrease in performance occurs when or = max. This
is evident also in the figures representing the percentage of skipped problems: the pink
and the blue histograms are similar for Plb_bigR, while they coincide for R_bigPlb. Over
RPhat_bigPlb performance in case of joint optimization with or = min is even better than
the case with simple permission-based optimization. In fact, in the former case UAQ-Solve
never reached the timeout, while in case of permission-based optimization the percentage
of skipped problems is 10% when R̂P = 11 and 30% when R̂P = 12. Instead, in case of
or = max, the percentage of skipped problems is always higher than in the other two cases:
this is particularly evident for RPhat_bigPlb over which the solver reached the timeout for
the 60% of the instances when R̂P ≥ 10.

The fact that it is easier for a PMaxSAT solver to deal with problems with op = or = min

is rather intuitive given the correlation among the activation of roles and the activation of
permissions in the encoding6, see Section 5.2.

6(¬r∨ p) for all p ∈ P and r ∈ Rp and (¬p∨
∨
{r : r ∈ Rp}) for all p ∈ P.
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(a) Median time over Plb_bigR (b) Skipped problems over Plb_bigR

(c) Median time over R_bigPlb (d) Skipped problems over R_bigPlb

(e) Median time over RPhat_bigPlb
(f) Skipped problems over
RPhat_bigPlb

Figure 8.8 Median solving time and percentage of skipped problems of UAQ-Solve over
Plb_bigR, R_bigPlb and RPhat_bigPlb with different optimization configurations



8.2 Our benchmarks with op = min 100

8.2.2 Solvers evaluation

In the previous subsection, we evaluated the benchmarks proposed and presented in Table 6.6.
All of them satisfy the expectations and can thus be used to evaluate different solvers’ perfor-
mance. In particular, the benchmarks of hard instances, namely Plb_bigR and R_bigPlb, can
be used to stress-test the solvers, while the other ones can be used to check the efficiency of
the solvers. In particular, in this section we compare UAQ-Solve with solvers that tackle the
UAQ problem through a different approach, namely 2D-Opt-Search and 2D-Opt-CNF.

Benchmarks parametric in |Plb|

Figure 8.9 shows the results of the experiment over the benchmarks parametric in |Plb|,
namely Plb_bigR (hard benchmark, above) and Plb_smallR (easy benchmark, below).

(a) Median time over Plb_bigR (b) Skipped problems over Plb_bigR

(c) Median time over Plb_smallR (d) Skipped problems over Plb_smallR

Figure 8.9 Median solving time and percentage of skipped problems of 2D-Opt-Search,
2D-Opt-CNF and UAQ-Solve over the benchmarks parametric in |Plb| with permission-based
optimization
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In particular, the plots in Figure 8.9a and the histograms in Figure 8.9b respectively
represent the median solving time and the percentage of skipped problems of the three
solvers over Plb_bigR. It is evident that UAQ-Solve outperforms both 2D-Opt-Search and
2D-Opt-CNF. The median solving time of 2D-Opt-Search quickly increases from 1.58
seconds when |Plb| = 5 to the timeout when |Plb| = 10. Besides, when |Plb| ≥ 10, the
percentage of skipped problems is always 100%. 2D-Opt-CNF perform even worst: in fact,
all the instances have been skipped even for the smallest value of |Plb|.

As presented in Figures 8.9c and 8.9d, UAQ-Solve outperforms 2D-Opt-Search and 2D-
Opt-CNF also over Plb_smallR. However, in this case, 2D-Opt-CNF performs more similarly
to UAQ-Solve, which efficiently solves all the instances. On the contrary, 2D-Opt-Search
reaches the timeout for all the instances when |Plb| ≥ 10.

Benchmarks parametric in |R|

Figure 8.10 shows the median solving time and the percentage of skipped problems of the
three solvers under examination over R_bigPlb (hard benchmark, above in the figure) and
R_smallPlb (easy benchmark, below in the figure). UAQ-Solve outperforms the other solvers
over the difficult benchmark. 2D-Opt-CNF performs similarly to UAQ-Solve over R_bigPlb,
even if it reaches the timeout for the majority of the instances already when |R|= 20. The
percentage of skipped problems increases to 80% when |R| = 30 and then to 100% when
|R|= 40. Instead, 2D-Opt-Search reached the timeout for the 100% of the instances even for
the smallest value of the parameter.

Notice that 2D-Opt-Search performs remarkably well for R_smallPlb: in fact, it even
outperforms UAQ-Solve when |R| ≤ 40. On the contrary, 2D-Opt-CNF quickly reaches the
timeout also over the easy benchmark: in particular, the percentage of skipped problems is
100% when |R| ≥ 20. It seems then evident that 2D-Opt-CNF in general does not scale well
with the increasing of the number of roles.



8.2 Our benchmarks with op = min 102

(a) Median time over R_bigPlb (b) Skipped problems over R_bigPlb

(c) Median time over R_smallPlb (d) Skipped problems over R_smallPlb

Figure 8.10 Median solving time and percentage of skipped problems of 2D-Opt-Search,
2D-Opt-CNF and UAQ-Solve over the benchmarks parametric in |R| with permission-based
optimization

Benchmarks parametric in R̂P

Figure 8.11 presents the median solving time and the percentage of skipped problems of
UAQ-Solve, 2D-Opt-Search and 2D-Opt-CNF over the benchmarks parametric in R̂P, namely
RP_bigPlb (above in the figure), RP_medPlb (in the middle) and RP_smallPlb (below in
the figure), which are characterized by |Plb|= 10, |Plb|= 4 and |Plb|= 1 respectively7.

7We remember that a reasonably good solver should behave like a polynomial of degree |Plb|.
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(a) Median time over RPhat_bigPlb
(b) Skipped problems over
RPhat_bigPlb

(c) Median time over RPhat_medPlb
(d) Skipped problems over
RPhat_medPlb

(e) Median time over RPhat_smallPlb
(f) Skipped problems over
RPhat_smallPlb

Figure 8.11 Median solving time and percentage of skipped problems of 2D-Opt-Search,
2D-Opt-CNF and UAQ-Solve over the benchmarks parametric in R̂P with permission-based
optimization
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2D-Opt-Search behaves like than UAQ-Solve, even if less performing: in fact, the
difference in the slopes due to the value of |Plb| is evident. However, 2D-Opt-Search over
RPhat_bigPlb reaches the timeout for all the instances when R̂P ≥ 4, while the percentage
of problems skipped by UAQ-Solve is 10% when R̂P = 11 and 30% when R̂P = 12.

On the contrary, it is clear that 2D-Opt-CNF does not perform well on this class of UAQ
problem: in fact, it always reaches the timeout for 100% of the instances contained in the
benchmarks considered, regardless of the value of R̂P.

Benchmark parametric in |Pub|

Figure 8.12 shows the results of the experiment over the benchmark parametric in |Pub|,
namely Pub. The latter is supposed to be an easy benchmark: in fact, the median solving
time of UAQ-Solve over Pub increases with |Pub|, however it never reaches the timeout.

(a) Median time over Pub (b) Skipped problems over Pub

Figure 8.12 Median solving time and percentage of skipped problems of 2D-Opt-Search,
2D-Opt-CNF and UAQ-Solve over the benchmark parametric in |Pub| with permission-based
optimization

Nevertheless, both 2D-Opt-Search and 2D-Opt-CNF do not perform well over the bench-
mark. In particular, the former reaches the timeout for all the instances included in the
benchmark. Instead, the latter solves all the instances with |Pub| = 100 in ~16 seconds
(compared to the 4 milliseconds achieved by UAQ-Solve); then the 90% of the instances have
been skipped when |Pub|= 200; finally, 2D-Opt-CNF skipped all the remaining instances.

We already noticed in Section 8.2.1 that our approach is a little sensitive to the variation
of |Pub| due to the encoding; however, 2D-Opt-Search and 2D-Opt-CNF perform far worse.
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Benchmark parametric in |C|, r̂s, and t̂

This section presents the results of the execution of UAQ-Solve, 2D-Opt-Search, and 2D-
Opt-CNF over the benchmarks parametric in |C|, r̂s, and t̂. As already demonstrated in
Section 8.2.1, C, rshat, and that are easy benchmarks: in fact, the complexity of the UAQ
problem depends on the MER constraints features only when op = max.

However, as can be seen in Figures 8.13 and 8.14, while UAQ-Solve solves all the
instances contained in C and rshat in a fraction on a second, both 2D-Opt-Search and
2D-Opt-CNF could never find the optimum solution before the timeout: the percentage of
skipped problems of the two solvers over C and rshat is 100% for all the values of the two
parameters for which we have evidence.

On the contrary, as depicted in Figure 8.15, 2D-Opt-Search performs similarly to UAQ-
Solve over that, by solving all the instances in 20 milliseconds. By the way, 2D-Opt-CNF
still is ineffective over that: in fact, it takes 132 seconds to solve the problems for the
smallest value of t̂ (i.e. 2), then it reaches the timeout for the 90% of the instances when
t̂ = 3 and, after that value of the parameter, for the 100% of the instances.

(a) Median time over C (b) Skipped problems over C

Figure 8.13 Median solving time and percentage of skipped problems of 2D-Opt-Search,
2D-Opt-CNF and UAQ-Solve over the benchmark parametric in |C| with permission-based
optimization
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(a) Median time over rshat (b) Skipped problems over rshat

Figure 8.14 Median solving time and percentage of skipped problems of 2D-Opt-Search,
2D-Opt-CNF and UAQ-Solve over the benchmark parametric in r̂s with permission-based
optimization

(a) Median time over that (b) Skipped problems over that

Figure 8.15 Median solving time and percentage of skipped problems of 2D-Opt-Search,
2D-Opt-CNF and UAQ-Solve over the benchmark parametric in t̂ with permission-based
optimization

8.3 Our benchmarks with op = max

This section presents the evaluation of the benchmarks designed in Section 6.3 and presented
in Table 6.7, which are characterized by op = max. In the same way as we did in Section 8.3
for the benchmarks designed for op = min, we use the methodology introduced in Section 6.1
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and run UAQ-Solve leveraging Loandra over the benchmarks. As a result of the evaluation,
we can state that we provide an empirically adequate suite of benchmarks that includes
both easy and hard benchmarks. UAQ-Solve behaves as predicted by the methodology
over all the benchmarks but the one parametric |Pub|. In fact, contrary to our expectations,
UAQ-Solve over this benchmark exhibits a clear exponential growth. More investigations on
this behavior are needed.

For the sake of completeness, we also compare UAQ-Solve performance over the bench-
marks R_bigCt, Pub, that_bigRPub, C_bigR, and rshat_bigCt with different optimization
configurations. In particular:

1. op = max and or = any (permission-based optimization);

2. op = or = max;

3. op = max and or = min;

In all the configurations, permission optimization is the priority (pri = p). The results of
the comparison show that performance degrades with joint optimization.

8.3.1 Benchmarks evaluation

In the first step, we run UAQ-Solve over our benchmarks encoded with permission-based
optimization, namely with op = max and or = any.

Benchmarks parametric in |R|

Figure 8.16 depicts the median solving time and the percentage of skipped problems of
UAQ-Solve over the benchmarks parametric in |R|, namely R_bigCt (pink) and R_smallCt

(blue). As the name itself suggests, the former is characterized by high values for C and
t̂, which make Algorithm 1 the more adequate algorithm among the ones discussed to use
to solve the problems included in the benchmarks. Since Algorithm 1 is exponential with
respect to |R|, we expect the same behavior when running UAQ-Solve over the benchmarks.
This expectation is verified by the experiment: the median solving time clearly grows
exponentially with the increase of |R|. UAQ-Solve can solve all the instances before the
timeout when |R| ≤ 60; after that value, the percentage of skipped problems is always 100%.

On the contrary, since the value of |C|̂t is always higher than |R|, Algorithm 4 is the most
suitable over R_smallCt. Since the algorithm’s complexity does not depend on the parameter
under examination, we do not expect a substantial growth of the median solving time. Also
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in this case, our expectation is confirmed: UAQ-Solve could solve all the instances proposed
at most in 8 milliseconds.

(a) Median time (b) Skipped problems

Figure 8.16 Median solving time and percentage of skipped problems of UAQ-Solve over
the benchmarks parametric in |R| with permission-based optimization

Benchmarks parametric in |Pub|

Figure 8.17 presents the median solving time and the percentage of skipped problems of UAQ-
Solve over Pub. The time spent by UAQ-Solve to solve Pub does not meet the expectations:
in fact the plot has a clear exponential growth. This behavior can be due to the fact that this
class of problems is difficult to tackle for the PMaxSAT solver; another possibility is that, by
chance, we generated particularly difficult instances. This result needs to be better addressed
in the future.
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(a) Median time (b) Skipped problems

Figure 8.17 Median solving time and percentage of skipped problems of UAQ-Solve over
the benchmark parametric in |Pub| with permission-based optimization

Benchmarks parametric in |C|

Figure 8.18 presents the median solving time and the percentage of skipped problems of
UAQ-Solve over the benchmarks parametric in |C|, namely C_bigR and C_smallR.

Our methodology foresees that a reasonably good solver should solve C_bigR in expo-
nential time like Algorithm 4, while over C_smallR it should behave like Algorithm 1, whose
complexity is not influenced by the parameter under examination.

The results satisfy both the expectations. UAQ-Solve exhibits a clear exponential behavior
over C_bigR: in particular, it reaches the timeout for the 30% of the instances when |C|= 60,
for half the instances when |C|= 70, and later for all the instances. On the contrary, UAQ-
Solve solves all the instances contained in C_smallR in around 10 milliseconds.
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(a) Median time (b) Skipped problems

Figure 8.18 Median solving time and percentage of skipped problems of UAQ-Solve over
the benchmarks parametric in |C| with permission-based optimization

Benchmarks parametric in t̂

Figure 8.19 presents the median solving time and the percentage of skipped problems of
UAQ-Solve over the benchmarks parametric in t̂, namely that_bigR (pink) and that_smallR

(blue). According to our methodology, any solver should behave like Algorithm 3 and
consequently exhibit an exponential behavior with the growth in t̂. On the contrary, any
reasonable good solver over that_smallR should be insensitive to the variation of t̂, like
Algorithm 1.

As expected, the median solving time of UAQ-Solve over that_bigR grows exponentially.
Notice that when t̂ = 2, even if the median solving time is 80 milliseconds, the percentage of
skipped problems is already 20%. Then, it rapidly increases to 90% (when t̂ = 3) and finally
to 100% (when t̂ ≥ 4).

On the contrary, UAQ-Solve quickly solves the instances contained in that_smallR, even
if the median solving time is 238 milliseconds for the smallest value of the parameter under
examination and then decreases to 4 milliseconds.
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(a) Median time (b) Skipped problems

Figure 8.19 Median solving time and percentage of skipped problems of UAQ-Solve over
the benchmarks parametric in t̂ with permission-based optimization

Benchmarks parametric in r̂s

Figure 8.20 presents the median solving time and the percentage of skipped problems of
UAQ-Solve over the benchmarks parametric in r̂s, namely rshat_bigCt (pink), rshat_medCt

(blue) and rshat_smallCt (yellow). The latter are characterized by |C|̂t = 30, |C|̂t = 9 and
|C|̂t = 3 respectively. The benchmarks were designed adequately so that any reasonably
good solver performs over them like Algorithm 3, by exhibiting a polynomial behavior with
degree |C|̂t with the increase of r̂s.

This experiment is of particular interest; in fact, it demonstrates the influence of different
values of |C|̂t: the plots show that the problems can be solved quickly as r̂s increases as long
as the value of |C|̂t is sufficiently small, like 3 for rshat_smallCt. The plots for rshat_medCt,
and rshat_bigCt show the effect of larger values of |C|̂t, which is consistent with the growth
of polynomials of degree 9 and 30 respectively. In particular, in the latter case, the percentage
of skipped problems is 90% when r̂s = 25 and 100% when r̂s = 30.
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(a) Median time (b) Skipped problems

Figure 8.20 Median solving time and percentage of skipped problems of UAQ-Solve over
the benchmarks parametric in r̂s with permission-based optimization

Other benchmarks

Figures 8.21a and 8.21 show the median solving time of UAQ-Solve respectively over RPhat,
which is parametric in R̂P, and Plb, which is parametric in |Plb|. Given the values used
for the UAQ problem dimensions during the design phase, the methodology foresees that
a reasonably good solver performs similarly to Algorithm 1 over RPhat and Algorithm 3
over Plb. The complexity of the two algorithms does not depend on the parameters under
consideration; consequently, we expect that UAQ-Solve quickly solves all the instances in
the benchmarks. The plots in Figure 8.21 confirm our expectations. We do not present the
histograms representing the percentage of skipped problems, because UAQ-Solve did not
skip any instance contained in the two benchmarks.
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(a) Median time over RPhat (b) Median time over Plb

Figure 8.21 Median solving time of UAQ-Solve over the benchmarks parametric in R̂P and
|Plb| with permission-based optimization

Permission-based optimization versus joint optimization

In this section, we compare the performance of UAQ-Solve over R_bigCt, Pub, that_bigR,
C_bigR, and rshat_bigCt encoded with different optimization objectives. In particular, for
each benchmark, we show the median solving time and the percentage of skipped problems
with the following encodings: permission-based optimization (pink), joint optimization with
maximization of both permissions and roles as objectives (blue) and joint optimization with
maximization of permissions and minimization of roles as objectives (yellow).

Figure 8.22 shows the results of the execution of UAQ-Solve over R_bigCt. It is evident
that in this case joint optimization minimally affects performance: in fact, the curves repre-
senting the median solving time are almost overlapping. There is only a little difference in the
percentage of skipped problems: in fact, when, |R|= 60, it is 0% in case of permission-based
optimization and 10% in the other cases.
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(a) Median solving time (b) Percentage of skipped problems

Figure 8.22 Median solving time and percentage of skipped problems of UAQ-Solve over
R_bigCt with different optimization configurations

Differently from the previous case, joint optimization highly influence UAQ-Solve
performance over Pub. As shown in Figure 8.23a, while in case of permission-based
optimization the median solving time exponentially increases until it reaches the timeout
with |Plb|= 700, in the other two cases the percentage of skipped problem is 100% for each
value of the parameter under examination.

(a) Median solving time (b) Percentage of skipped problems

Figure 8.23 Median solving time and percentage of skipped problems of UAQ-Solve over
Pub with different optimization configurations

With regard to that_bigRPub, in case of permission-based optimization, the median
solving time of UAQ-Solve over it is different from the timeout only for the smallest value
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of the parameter, namely for t̂ = 2. As shown in Figure 8.24, performance further degrades
with joint optimization: when the role objective is different from any, the solver immediately
reaches the timeout for most of the instances.

(a) Median solving time (b) Percentage of skipped problems

Figure 8.24 Median solving time and percentage of skipped problems of UAQ-Solve over
that_bigRPub with different optimization configurations

Figures 8.25 and 8.26 present the results of the execution of UAQ-Solve over C_bigR

and rshat_bigCt respectively. Over both the benchmarks, a performance degradation occurs
in case of joint optimization. However, over both the benchmarks, the shape of the median
solving time in case of or =max is similar to the one related to permission-based optimization.
On the contrary, when or = min, UAQ-Solve over the two benchmarks can not solve almost
the totality of the instances before the timeout.

The result is consistent with the observation we made in Section 8.2.1, namely that, in
case of joint optimization, it is easier for a PMaxSAT solver to solve problems in which
or = op.
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(a) Median solving time (b) Percentage of skipped problems

Figure 8.25 Median solving time and percentage of skipped problems of UAQ-Solve over
C_bigR with different optimization configurations

(a) Median solving time (b) Percentage of skipped problems

Figure 8.26 Median solving time and percentage of skipped problems of UAQ-Solve over
rshat_bigCt with different optimization configurations

8.4 Solvers evaluation through our benchmarks

In the previous sections, we used the methodology introduced in Section 6.1 to evaluate

• the benchmarks from (64) and presented in Table 6.4 (Section 8.1),

• the benchmarks presented in Table 6.6, which we designed and generated leveraging
the methodology summarized in Table 6.2 (Section 8.2), and
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• the benchmarks presented in Table 6.7, which we designed and generated leveraging
the methodology summarized in Table 6.3 (Section 8.3).

The evaluation proved that the benchmarks from (64) are incomplete and unsatisfactory. On
the contrary, the benchmarks designed through our methodology are empirically adequate.
In particular, we provide a set of benchmarks that includes both easy and hard problems. The
first ones can be used to evaluate the solvers’ performance over easy problems, while the
second ones allow to stress-test the solvers. We can then use the benchmarks to compare the
performance of different solvers over the different classes of UAQ problem instances. In
particular, in this section we compare the performance of different PMaxSAT solvers over
Plb_bigR, R_bigPlb and RPhat_bigPlb with op = min, or = any and pri = p (permission-
based optimization) and Pub, C_bigR, rshat_bigCt and that_bigRPub with op = max, or =

any and pri = p (permission-based optimization). To this aim, UAQ-Solve makes use of the
following PMaxSAT solvers:

• LMHS;

• Loandra;

• MaxHS;

• Maxino;

• Open-WBO-RES;

• QMaxSAT;

• QMaxSATuc;

• WPM1-2012.

In the following, for each experiment, we provide:

• one plot (a) representing the median solving time of the different PMaxSAT solvers
over the benchmark under consideration;

• one plot (b) representing the minimum percentage of skipped problems PSKIPPEDmin,
the maximum percentage of skipped problems PSKIPPEDmax and the difference
between the median solving time of the slowest and the quickest solver, namely
∆T Median = max(T Median)−min(T Median).

The main findings of the experiments are that:
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1. Focusing on a singular dimension, the solver that best performs on small values of the
parameter may not be the best also for big values of the same parameter;

2. The solver that best performs over a certain class of UAQ problems could not be the
best also for the other classes;

3. In general, the solvers exhibit the same behavior, however it may happen that a solver
clearly outperforms the others.

We can conclude that, unsurprisingly, there is not a general best solver.

Plb_bigR

Figure 8.27 presents the results of the experiment over Plb_bigR. The median solving time
seems to grow exponentially with |Plb| for each solver considered; however, the slopes are
really different. For example, when |Plb|= 20, the median solving time for Maxino is around
1 second, while QMaxSAT, QMaxSATuc, and WPM1-2012 reach the timeout. In addition,
note that when |Plb| ranges from 35 to 50, the median solving time of MaxHS grows from
around 15 seconds to around 225 seconds, while all the other solvers reach the timeout. The
difference in performance is even more evident in Figure 8.27b: PSKIPPEDmin is 0% even
when PSKIPPEDmax is 100%. Besides, ∆T Median is almost 10 minutes when 20≥ |Plb|.

Another interesting fact is that the solver that best performs for small values of |Plb| and
the solver that best performs for high values of |Plb| are not the same: in fact, when |Plb|= 5
the median solving time is around 20 milliseconds for Maxino and around 250 milliseconds
for MaxHS; however, when |Plb|= 50 the median solving time is around 200 seconds for
MaxHS, while Maxino reached the timeout.

R_bigPlb

Figure 8.28 presents the results of the experiment over R_bigPlb. Even if all the solvers
reach the timeout when |R|= 60, before this value performance differs from solver to solver.
For example, when |R|= 10, the median solving time is 37 milliseconds for QMaxSATuc
and almost 47 seconds for LMHS, while WPM1-2012 even reaches the timeout.

The difference in performance is even more evident in Figure 8.28b. ∆T Median is 10
minutes (or close) until |R|= 30: for this value, PSMKIPPEDmax is 1, in fact WPM1-2012
reaches the timeout, while the median solving time for Open-WBO-RES is around 15 seconds.
∆T Median then decreases towards 0, when all of the solvers reaches the timeout. Besides,
PSKIPPEDmin is 0% until |R|= 40, while PSKIPPEDmax is 100% for all the values of |R|.
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RPhat_bigPlb

Figure 8.29 presents the results of the experiment over RPhat_bigPlb. All the solver exhibit
exponential growth. However, contrary to the cases analyzed above, it seems that there
is a general best solver: in fact, Maxino performs best almost for all the values of R̂P for
which we have evidence, even if Open-WBO-RES could show comparable performance for
higher values of the parameter. As shown in Figure 8.29b, DeltaT Median rapidly increases
from around 36 seconds when R̂P = 6 to 10 minutes when R̂P = 7. In fact, for this value,
WPM1-2012 reaches the timeout for 70% of the instances.

Pub

Figure 8.30 presents the results of the experiment over Pub. The shape of the curves
representing the median solving time is similar for all the solvers. When |Pub| = 700, all
the solvers reached the timeout. However, ∆T Median is almost 10 minutes when |Pub|= 600.
In fact, for this value, QMaxSAT skips all the instances, while Loandra can solve all the
instances before the timeout.

As for Plb_bigR, it sometimes happens that a solver that performs well for small values
of |Pub| is not among the best solvers for bigger values of the parameter. For example,
Maxino is one of the best performing solvers when |Pub| ≤ 400, but it is also one of the worst
when |Pub| ≥ 500. It is also interesting to note that, for these values of the parameter, the
best performing solver is WPM1-2012, which actually is the oldest solver among the ones
considered in these experiments.

C_bigR

Figure 8.31 presents the results of the experiment over C_bigR. Also in this case, the shape
of the curves representing the median solving time of the different solvers is rather similar. In
fact, for all the solvers, the median solving time is less than 100 milliseconds when |C| ≤ 40,
then it quickly grows to reach the timeout, for some solvers when |C|= 70 and for others
when |C|= 80. This is also reflected in ∆T Median, whose value is less than 200 milliseconds
when |C| ≤ 50, then grows to around 193 seconds when some of the solvers reach the timeout
and finally decreases to 0 when all the solvers reach the timeout.

Note that, also in this case the best solver depends on the actual value of |C|: in fact,
when |C| ≤ 50 Maxino and Loandra are among the most performing solvers; on the contrary,
they are not among the most efficient when |C|= 60.
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rshat_bigCt

Figure 8.32 presents the results of the experiment over rshat_bigCt. Also over this bench-
mark, the curves representing the median solving time are similar: their values are less
than 100 milliseconds when r̂s ≤ 15 and quickly increase to the timeout when r̂s = 25.
QMaxSATuc is the best performing solver over the values of r̂s for which we have evidence,
while LMHS is the least performing one when r̂s = 20. For this value, ∆T Median is around
368 seconds, while before it is less than 50 milliseconds. Finally, ∆T Median is 0 when r̂s≥ 25,
value for which all the solvers reach the timeout for the majority of the instances.

that_bigR

Figure 8.29 presents the results of the experiment over that_bigR. All the solvers under
examination but Maxino can solve the instances before the timeout only for the smallest
value of the parameter, namely t̂ = 2. On the contrary, the median solving time of Maxino
over the benchmark grows until around 12 seconds when t̂ = 8. After this value, also Maxino
reaches the timeout for all the instances, like the other solvers. Consequently to this behavior,
∆T Median immediately increases from less than 200 milliseconds to around 10 minutes; then
it decreases to 0 seconds when also Maxino reaches the timeout. It is then clear that Maxino
is by far the best performing solver among the ones under examination over that_bigR.

Summary

In this section, we compared different PMaxSAT solvers by running them over some of our
benchmarks. From the analyses provided, it appears that:

1. Focusing on a singular dimension, the solver that best performs on small values of the
parameter may not be the best also for big values of the same parameter, see Maxino
over Plb_bigR;

2. It is not necessarily true that the solver that best performs over a certain class of UAQ
problems is the best also for the other classes. For example, in Figure 8.27a, for high
values of |Plb|, MaxHS is the best solver among the ones under test, while, in Figure
8.29a, the best solver is Maxino;

3. In general, the solvers exhibit the same behavior, however it may happen that a solver
clearly outperforms the others, see Maxino over that_bigR.
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It is then clear that, for the implementation of an RBAC system, the choice of the proper
solver to use must be taken carefully, according to the dimensions of the RBAC system
itself. Our sets of benchmarks can be used to support this choice. In addition, UAQ-Solve
makes it easy to include a new solver into the experiments: in fact, it is enough to specify the
command to execute the solver.

Moreover, a possible interesting evolution of UAQ-Solve could be the integration of
Machine Learning techniques to automatically select the proper solver to use according to
the relevant dimensions of the UAQ problem.
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(a) Median solving time of different PMaxSAT solvers

(b) Mininum and maximum percentage of skipped problems and ∆T Median benchmark

Figure 8.27 Performance of different PMaxSAT solvers over Plb_bigR benchmark
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(a) Median solving time of different PMaxSAT solvers

(b) Mininum and maximum percentage of skipped problems and ∆T Median

Figure 8.28 Performance of different PMaxSAT solvers over R_bigPlb benchmark



8.4 Solvers evaluation through our benchmarks 124

(a) Median solving time of different PMaxSAT solvers

(b) Mininum and maximum percentage of skipped problems and ∆T Median

Figure 8.29 Performance of different PMaxSAT solvers over RPhat_bigPlb benchmark
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(a) Median solving time of different PMaxSAT solvers

(b) Mininum and maximum percentage of skipped problems and ∆T Median

Figure 8.30 Performance of different PMaxSAT solvers over Pub benchmark
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(a) Median solving time of different PMaxSAT solvers

(b) Mininum and maximum percentage of skipped problems and ∆T Median

Figure 8.31 Performance of different PMaxSAT solvers over C_bigR benchmark



8.4 Solvers evaluation through our benchmarks 127

(a) Median solving time of different PMaxSAT solvers

(b) Mininum and maximum percentage of skipped problems and ∆T Median

Figure 8.32 Performance of different PMaxSAT solvers over rshat_bigCt benchmark
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(a) Median solving time of different PMaxSAT solvers

(b) Mininum and maximum percentage of skipped problems and ∆T Median

Figure 8.33 Performance of different PMaxSAT solvers over that_bigRPub benchmark
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8.5 Use of incomplete solvers

In Section 6.3 we presented two sets of benchmarks, one for op = min and the other for
op =max. Both of them contain easy benchmarks as well as hard benchmarks. In Sections 8.2
and 8.3 we used our methodology to evaluate them. In particular, the experimental results
demonstrated that they are empirically adequate.

On the one hand, the results provided are good and constitute an important contribution,
since to our knowledge no one before provided benchmarks evaluated systematically; on
the other hand, having regard to the long time needed to solve some hard instances, one
could ask if this approach can be really used in practice: a user can not wait for 10 minutes to
have the authorization to access a certain resource she is legally requesting. For this reason,
it is necessary to reach a compromise between the security objective (least privilege or
availability) and usability. The so-colled incomplete solvers already introduced in Section 7.1
can come to the aid: we remember that if at the preset timeout the incomplete solver did not
find the optimum solution, it simply returns the best solution found. In this section, we focus
on the benchmarks designed for op = min encoded with permission-based optimization.

Section 8.5.1 shows the results of the execution of the incomplete solver LMHS-inc over
hard benchmarks with small timeouts: in particular, we analyze the quality of the solutions
found using the optimum solutions found by MaxHS (complete solver) as a comparison.
Here, the main findings are that:

• The cost of the best solution found comes closer to the cost of the optimum solution
with the increase of the timeout (see Figure 8.34a);

• The incomplete solver seems to be able to quickly find a good solution, then it takes
more time to converge to the optimum one;

• Considering the time spent by any complete solver to find the optimum solution, the
error of the solution found by an incomplete solver in 1 second is acceptable;

• It may happen that any incomplete solver finds a solution that minimizes the solution
cost, but that it does not have enough time to prove that it actually is an optimum
solution;

• Although any incomplete solver could provide a sub-optimal solution, in terms of
solution cost (namely, in case of op = min, safety), the use of any incomplete solver is
still more convenient than using a complete solver with op = any.
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In Section 8.5.2, we compare the performance of some incomplete solvers with the
performance of the equivalent complete versions over hard benchmarks. The results of the
experiment show that incomplete solvers could be less performing than the complete ones
over hard benchmarks and with high timeouts (such as 600 seconds, in this case).

Finally, in Section 8.5.3, we present the performance of the incomplete solver Loandra-
inc in comparison with the equivalent complete version. According to the results, the
performance of a complete and an incomplete solver seem to be comparable when executing
over easy benchmarks.

8.5.1 Incomplete solvers over hard instances with a small timeout

In the following, we present the results of the execution of LMHS-inc over Plb_bigR,
R_bigPlb, and RPhat_bigPlb with op = min, or = any, and pri = p. For each benchmark,
we run LMHS-inc with different timeouts, namely 1, 2, 3, 4 and 5 seconds. In order
to evaluate LMHS-inc performance, we define the following quantities parametric in the
parameter under consideration in the benchmark (x)8:

∆cost(x) = Mediani(Costinc(xi)−Costopt(xi)),

where Costinc(xi) and Costopt(xi) are respectively the cost of the solution found by LMHS-inc
and by MaxHS for the ith instance in x,

ε(x) = Mediani(
Costinc(xi)−Costopt(xi)

Costopt(xi)
),

ε/∆T = Mediani(
Costinc(xi)−Costopt(xi)

Costopt(xi)× (Topt(xi)−Tinc(xi))
),

where Topt(xi) and Tinc(xi) are the solving time of MaxHS and LMHS-inc respectively over
the ith instance in x (Tinc(xi) is at most equal to the timeout),

Costopt(x) = Mediani(Costopt(xi)),

Costinc(x) = Mediani(Costinc(xi)),

8In the following, with f (x) = Mediani(g(xi)) we mean that, when x = x0, f (x0) is the median of the values
of g calculated in the 10 instances of the benchmark characterized by x = x0.
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∆any(x) = Mediani(Costany(xi)−Costinc(xi)),

where Costany(xi) is the cost of the solution found by MaxHS with op = any over the ith

instance in x, and

εany(x) = Mediani(
Costany(xi)−Costinc(xi)

Costany(xi)
).

The use of all the aforementioned quantities enables to have a general overview of the
performance of the incomplete solver under examination.

In particular, ∆cost suggests the distance among the solution of the complete solver and
the optimum solution, in terms of cost. We have to remember that, when our objective is the
least privilege, the more the cost is high, the more we are exposed to high risk.

Instead, ε represents the error of the solution provided by LMHS-inc. ε/∆T is another
important value, because, differently from ε , it also considers the time spent by MaxHS to
find the optimum solution. In fact, since the UAQ problem complexity increases with the
parameter under consideration, we expect that ε increase with the parameter: namely, the
increase in ε could not be due to the bad performance of LMHS-inc, but to the increase of
the problem complexity.

As regards Costinc and Costopt , we expect that Costinc decreases and get closer to Costopt

with the increase of the timeout.
Finally, ∆any and εany are used to show the benefit we have by using LMHS-inc with

respect to MaxHS with no optimization: in fact, even when LMHS-inc is not able to find an
optimum solution, the best solution found by the incomplete solver still could be better, in
term of cost, than any solution found without any particular objective.

For each benchmark, we show 5 figures:

1. One plot showing ∆cost for each timeout used, namely 1, 2, 3, 4 and 5 seconds;

2. One plot showing ε for each timeout used;

3. One plot showing ε and ε/∆T with timeout 1 second and the median solving time of
the complete solver;

4. One plot showing Costinc with the increase of the timeout and Costopt ;

5. One plot showing ∆any and εany with timeout 1 second. For all the experiments, MaxHS
with op = or = any could solve all the problems in less than 40 milliseconds.
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In the following subsections, we show the results of the experiments over the different
benchmarks.

Plb_bigR

The results of the experiment over Plb_bigR are presented in Figure 8.34. In particular,
Figure 8.34a presents ∆cost for LMHS-inc with different timeouts. All the plots have the
same shape and increase with the increasing of |Plb|. This behavior is not surprising: in
fact, for the smaller values of |Plb|, namely when |Plb| ≤ 15, LMHS-inc is able to find an
optimum solution regardless of the timeout t. Then, the incomplete solver is not able to
find the optimum solution in 1 second, in fact the related plot starts increasing. However,
LMHS-inc still can find the optimum solution until |Plb|= 30 with the other timeouts. After
that value, ∆cost increases in all the cases, even if with different slopes. It is interesting to note
that LMHS-inc finds a reasonably good solution for all the problems already after 1 second,
then ∆cost visibly improves when the timeout is 2 seconds: for example, when |Plb| = 50,
∆cost is 14 after 1 second and 7.5 after 2 seconds. After 2 seconds, the improvement of the
solutions is slower. This is reflected in ε , in Figure 8.34b, where the improvement of solution
from t = 1 to t = 2 is tangible: in this range, ε goes from around 0.12 to around 0.65.

This behavior is particularly clear also in Figure 8.34d, which shows the trend of the
median cost of the solutions found by LMHS-inc with the increasing of the timeout for
|Plb|= 50: Costinc rapidly decreases from 128 for t = 1 to 120.5 for t = 3, then it decreases
more smoothly towards Costopt , which is 116.

Focusing on the best solution found after 1 second, Figure 8.34c shows that ε reaches
around 0.12 when |Plb|= 50, which is not a bad result, considering that MaxHS takes more
than 200 seconds to find an optimum solution. In fact, ε/∆T is less than 0.001. Here we also
observe that ε/∆T decreases with the increase of |Plb|.

With regard to the comparison with the solutions found by MaxHS with op = any, as
visible in Figure 8.34e, ∆any decreases from 364 to 222, while εany decreases from around
0.92 to around 0.63. This is logical, because the problem becomes more complex with the
increase of |Plb|. However, when |Plb|= 50, ∆any is still 222, which is a relevant value.

Plb_bigR contains 100 instances. LMHS-inc reaches the timeout of 1 second over 71 of
them. It is very interesting that for 12 of them (having 15≤ |Plb| ≤ 35) the cost is the same
as the optimum solutions found by MaxHS. This means that the solver finds an optimum
solution before the timeout, but it does not have enough time to prove it.
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R_bigPlb

Figure 8.35 shows the results of the experiment over R_bigPlb. Also in this case, the
∆cost plots (in Figure 8.35a), as well as the ε plots (in Figure 8.35b), have the same shape.
However, differently from the previous experiment, there is not an important improvement of
the solution from t = 1 second to t = 2 seconds. In particular, it seems that LMHS-inc easily
finds a reasonably good solution for all the instances and for any value of |R| just after one
second (with ε less than 0.1 when |R|= 50), then it is harder for it to find better solutions.
This is confirmed by Costinc in Figure 8.35d, which is the median cost of the solutions found
by the incomplete solver over the instances characterized by |R|= 40. The convergence of
Costinc to Costopt is slow: in fact, Costinc decreases from 258.5 to 252 with |R| ranging from
10 to 50. However, ε (in Figure 8.35c) is still less than 0.1 when |R|= 40, while ε/∆T is less
than 0.001. In particular, ε/∆T decreases from around 0.001 when |R|= 20 to around 0.0002
when |R|= 40. This is due to the fact that the median solving time of MaxHS increases from
56 milliseconds to 406 seconds with |R| ranging from 10 to 50.

Finally, Figure 8.35e shows that ∆any and εany increase, the former from 12 to 51 and
the latter from 0.04 to 0.17, confirming that it is still more convenient to use an incomplete
solver than a complete solver with no optimization objective.

RPhat_bigPlb

Figure 8.36 presents the results of the experiments over RPhat_bigPlb. As shown in Fig-
ure 8.36a, when R̂P ≤ 7 LMHS-inc is able to find an optimum solution before the timeout,
in fact ∆cost for t = 1 second is 0. Then, ∆cost increases to 3 when R̂P = 9 and to 7 when
R̂P = 12. ε (Figure 8.36b) behaves similarly, reaching a maximum value of around 0.09 when
R̂P = 12. The best solution found by the incomplete solver improves with t = 2 seconds, for
which ∆cost and ε have a similar shape as in the case of t = 1 second. However, the maximum
values for ∆cost and ε are respectively 3 and 0.04. The solution further improves with t = 3.
Finally, LMHS-inc can find an optimum solution for all the instances proposed when t = 4
and t = 5. The improvement of the solution with the increase of the timeout is also visible in
Figure 8.36d, which shows Costinc for R̂P = 12. In particular, Costinc decreases from 85.5
when R̂P = 2 to 78 when R̂P = 12, thus arriving very close to Costopt , which is 77.5.

Figure 8.36c shows that the quality of the solutions found by the incomplete solver is
acceptable also after 1 second: in fact, ε is at most around 0.1 when R̂P = 50. This is a
good result, considering that MaxHS needs around 44 seconds to find the optimum solution.
Consequently, also ε/∆T is low, around 0.002.
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Finally, Figure 8.36e shows the benefit of using LMHS-inc with t = 1 in comparison to
MaxHS with op = any. Both ∆any and εany decrease, the former from 366.5 to 304 and the
latter from around 0.94 to around 0.78 with R̂P ranging from 2 to 12. Even if the values of
∆any and εany decrease with the increase of the parameter under consideration, their values
are still important when R̂P = 12.

Rphat_bigPlb contains 110 instances. LMHS-inc reaches the timeout of 1 second over
53 of them. It is very interesting that 16 of them (having R̂P ≥ 7) have the same cost provided
by the complete solver, meaning that they actually are optimum. Even more interesting is
that MaxHS over them takes from around 4 seconds to around 30 seconds to find an optimum
solution. This means that sometimes it is far easier to find an optimum solution than proving
that it actually is optimum.
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(a) ∆cost (b) ε with different timeouts

(c) ε , ε/∆T and median solving time (d) Costopt and Costinc with |Plb|= 50

(e) εany and ∆any

Figure 8.34 Comparison between MaxHS and LMHS-inc over Plb_bigR
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(a) ∆cost (b) ε with different timeouts

(c) ε , ε/∆T and median solving time (d) Costopt and Costinc with |R|= 40

(e) εany and ∆any

Figure 8.35 Comparison between MaxHS and LMHS-inc over R_bigPlb
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(a) ∆cost (b) ε with different timeouts

(c) ε , ε/∆T and median solving time (d) Costopt and Costinc with |R̂P|= 12

(e) εany and ∆any

Figure 8.36 Comparison between MaxHS and LMHS-inc over RPhat_bigPlb
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8.5.2 Incomplete solvers over hard instances with timeout 600 seconds

In Section 8.4 we used our benchmarks to evaluate some complete solvers. For the sake of
completeness, here we repeat the same experiments by running some incomplete solvers, in
order to compare their performance with the performance of the respective complete version.
In particular, here we evaluate the following incomplete solvers: LMHS-inc, Loandra-inc,
MaxHS-inc, Open-WBO-LSU, QMaxSAT-inc, and QMaxSATuc-inc. To this aim, we execute
them over the benchmarks Plb_bigR, R_bigPlb, and RPhat_bigPlb with the same timeout
used during the evaluation of the complete solvers, namely 600 seconds. The results of this
comparison are shown in Figure 8.37. For each benchmark, we show:

• T Median, namely the median solving time of the incomplete solvers under examina-
tion;

• ∆T Median, namely the difference among the median solving time of the incomplete
solver and the median solving time of the respective complete version.

Every incomplete solver over the three benchmarks exhibits similar behavior to the
respective complete solver. When running over Plb_bigR (Figures 8.37a and 8.37b), LMHS-
inc, QMaxSAT-inc and QMaxSATuc-inc perform almost like the complete versions: in
particular, LMHS-inc only takes around 12 seconds more than LMHS when |Plb| = 30;
in particular, T Median is around 107 seconds, compared to the 94 seconds for LMHS.
When |Plb|= 15, QMaxSATuc-inc takes around 25 seconds more than QMaxSATuc, which
solves the instances in around 35 seconds. However, for the same value of the parameter,
QMaxSAT-inc performs better than QMaxSAT, spending around 13 seconds less. Instead,
MaxHS-inc outperforms MaxHS for almost all the cases: in particular, it takes around 26 and
36 seconds less then MaxHS when |Plb|= 45 and |Plb|= 50 respectively. On the contrary,
when |Plb|= 25, ∆T Median presents a peak for Loandra-inc and Open-WBO-LSU, around 110
seconds the former and around 120 seconds the latter. These peaks are due to the fact that
the incomplete solvers reach the timeouts before the complete ones. In fact, later T Median

is again 0 when also the complete solvers reach the timeout.
When running over R_bigPlb, the only solver which does not perform worse than the

related complete solver is LMHS; however, performance is not good in both the cases.
MaxHS-inc performs worse than MaxHS when 30 ≤ |R| ≤ 60, then they both reach the
timeout. Like in the previous case, ∆T Median reaches a maximum for Loandra-inc, Open-
WBO-LSU, QMaxSAT-inc, and QMaxSATuc-inc: in particular, the maximum values are
around 300 seconds, which is high considering the corresponding values of T Median. Again,
the peaks are due to the fact the incomplete solvers reach the timeout before complete ones.
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The results of the experiment over RPhat_bigPlb is surprising: in fact, even if the solvers
under examination do not reach the timeout, T Median is not monotonic for most of the
solver. In particular, QMaxSAT-inc and QMaxSATuc-inc sometimes outperform QMaxSAT
and QMaxSATuc respectively, sometimes the opposite situation is verified. On the contrary,
Loandra-inc performs worse and worse than Loandra when |R| ≥ 8. Differently from the
others, LMHS-inc is the only solver that behaves exactly like the respective complete version.

It is then clear that there are situations in which it is more convenient to use complete
solvers and others in which incomplete solvers are more suitable. However, we have to
consider that:

• The incomplete solver "terminates only when it is able to prove that its best model is
in fact optimal. However, often it is able to find very good upper bounding models
or even optimal models long before termination (proving a model to be optimal is
generally as hard or even harder than finding it)"9 (in particular, they were talking
about MaxHS);

• In our context, we will never use incomplete solvers over difficult problems with high
timeouts: on the contrary, we are interested in their use with a small timeout to enable
usability, while preserving a certain level of safety.

8.5.3 Incomplete solvers over easy instances

Our last experiment aims at comparing the performance of the incomplete solver Loandra-inc
with the performance of the complete solver Loandra. In particular, we execute the two
solvers over Plb_smallR, R_smallPlb, RPhat_medPlb, RPhat_smallPlb, Pub, C, rshat, and
that, which have been demonstrated to be easy benchmarks.

Figure 8.38 presents the results of the experiment: for each benchmark, we provide the
median solving time of both the solvers. The results demonstrate that Loandra-inc performs
similarly to (and consequently could be used in place of) Loandra over all the benchmarks.

9https://helda.helsinki.fi//bitstream/handle/10138/237139/mse18_proceedings.pdf?
sequence=1

https://helda.helsinki.fi//bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1
https://helda.helsinki.fi//bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1
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(a) T Median over Plb_bigR (b) ∆T Median over Plb_bigR

(c) T Median over R_bigPlb (d) ∆T Median over R_bigPlb

(e) T Median over RPhat_bigPlb (f) ∆T Median over RPhat_bigPlb

Figure 8.37 Performance of incomplete solvers over hard benchmarks with timeout 600
seconds
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(a) Plb_smallR benchmark (b) R_smallPlb benchmark

(c) RPhat_medPlb benchmark (d) RPhat_smallPlb benchmark

(e) Pub benchmark (f) C benchmark

(g) rshat benchmark (h) that benchmark

Figure 8.38 Performance of UAQ-Solve leveraging Loandra and Loandra-inc over the easy
benchmarks presented in Tables 6.6 and 6.7 with permission-based optimization
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8.5.4 Summary

In this section we presented the results of a number of experiments aiming at evaluating the
incomplete solvers. In particular.

• We executed LMHS-inc over difficult benchmarks and provided a general overview
of the quality of the best solutions provided using different timeouts (1, 2, 3, 4 and 5
seconds);

• We compared some incomplete solvers with the respective complete version with 600
seconds as timeout;

• We compared the performance of Loandra-inc and Loandra over easy benchmarks.

From the experiments it appears that:

• The more the timeout of the incomplete solver increases, the more the cost of the best
solution found is close to the cost of the optimum solution;

• It may happen that any incomplete solver finds a solution that minimizes the solution
cost, but that it does not have enough time to prove that it actually is the optimum
solution;

• Considering the time spent by any complete solver to find the optimum solution, the
solutions found by LMHS-inc in 1 second is acceptable. In particular, the error ε is
always at most 0.13;

• It seems that the incomplete solver can quickly find a good solution, then it takes more
time to converge to the optimum one;

• Although any incomplete solver could provide a sub-optimal solution, in terms of
solution cost (namely, in case of op = min, safety), the use of any incomplete solver is
still more convenient than using a complete solver with op = any;

• Over hard benchmarks and with high timeouts (such as 600 seconds), the incomplete
solvers could be less performing than the complete ones;

• The performance of Loandra-inc and Loandra is comparable when executing over easy
benchmarks.
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Considering the outcome of the aforementioned experiments, we can then conclude that
the incomplete solvers are a valid solution to obtain a good compromise between the security
objective and usability. As a consequence, we propose their use to tackle the UAQ problem
for RBAC.

8.6 Summary of experimental results

This section aim at summarizing the main results presented in this chapter.

Section 8.1 demonstrated that state-of-the-art benchmarks are incomplete and inadequate
to assess the effectiveness of UAQ solvers. The suite of benchmarks consists only of
easy benchmarks, that cannot be used to stress-test solvers. They can only be used to
check if solvers are empirically efficient over them. In fact, we used them to compere
the performance of UAQ-Solve, 2D-Opt-Search and 2D-Opt-CNF. The result of the
comparison is that UAQ-Solve outperformed the other solvers over all the instances.
Another issue is that benchmarks for op = max are totally missing.

Section 8.2 contains the evaluation of our benchmarks designed through our methodology
for op = min. We evaluated the benchmarks by running UAQ-Solve over them. All
the benchmarks proposed stimulated the behavior for which they were designed. We
demonstrated that the suite of benchmarks designed for op = min is complete and
empirically adequate. In fact, it consists of both hard and easy benchmarks. The former
can be used to check the efficiency of the solvers. The latter can be used to stress-test
the solvers. We also shown that joint optimization does not seem to be particularly
detrimental for performance. We then shown that UAQ-Solve outperformed both
2D-Opt-Search and 2D-Opt-CNF over the vast majority of the benchmarks.

Section 8.3 contains the evaluation of our benchmarks designed through our methodology
for op = max. We evaluated the benchmarks by running UAQ-Solve over them. All the
benchmarks proposed but one10 stimulated the behavior for which they were designed.
The suite of benchmarks designed for op = max is complete and empirically adequate
and consists of both easy and hard benchmarks. Comparing the performance over the
same benchmarks encoded for permission-based and joint optimization, it turned out
that the performance of UAQ-Solve deteriorates with joint optimization.

10the one parametric in |Pub| over which UAQ-Solve exhibited an exponential growth.
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Section 8.4 compared the performance of different PMaxSAT solvers over some of our
benchmarks. The experimental results shown that:

1. Focusing on a singular dimension, the solver that best performs on small values
of the parameter may not be the best also for big values of the same parameter;

2. The solver that best performs over a certain class of UAQ problems could not be
the best also for the other classes;

3. In general, the solvers exhibit the same behavior, however it may happen that a
solver clearly outperforms the others.

Section 8.5 shown the results of the execution of incomplete solvers over our benchmarks.
From the experiments it appeared that:

• The cost of the best solution found comes closer to the cost of the optimum
solution with the increase of the timeout;

• The incomplete solver seems to be able to quickly find a good solution, then it
takes more time to converge to the optimum one;

• Considering the time spent by any complete solver to find the optimum solution,
the error of the solution found by an incomplete solver in 1 second is acceptable;

• It may happen that any incomplete solver finds a solution that minimizes the
solution cost, but that it does not have enough time to prove that it actually is an
optimum solution;

• Although any incomplete solver could provide a sub-optimal solution, in terms
of solution cost (namely, in case of op = min, safety), the use of any incomplete
solver is still more convenient than using a complete solver with op = any;

• Over hard benchmarks and with high timeouts (such as 600 seconds), the incom-
plete solvers could be less performing than the complete ones;

• The performance of a complete and an incomplete solver seem to be comparable
when executing over easy benchmarks.



Chapter 9

Conclusions and future work

9.1 Conclusions

In this dissertation, we introduced the problem of access control to healthcare data in Health
Information Systems. Healthcare data need to be adequately protected to establish trust
between the actors involved in the healthcare process; at the same time, healthcare data must
always be available when needed. As a consequence, usability is a fundamental feature
for the system to be accepted and adopted. In this thesis, we focused on the UAQ problem
for RBAC, which is key to support permission-level system-user interaction. In spite of
its computational intractability, several techniques have been proposed to tackle the UAQ
problem. However, none of them provides a valuable and satisfactory experimental evaluation
and, as a consequence, the actual efficiency of the solutions proposed is not clear. Most
of the techniques have been experimentally evaluated by running them against different
benchmarks problems. However, the current-state-of-affairs is unsatisfactory.

As a first contribution, we demonstrated that any UAQ problem leveraging the extended
DMER constraints introduced in (13) can be reduced to an “equivalent” UAQ problem
containing only the traditional DMER constraints provided that a succinct representation
of the current and past role activations is available. These results enable the use of existing
UAQ solvers to support the enforcement of SoD requirements.

As a second contribution, by leveraging the asymptotic complexity analysis of the solving
algorithms provided in (64), we proposed a methodology for evaluating existing benchmarks
or designing new ones. The aforementioned algorithms play a key role in the proposed
methodology, since they provide upper bounds on the asymptotic growth rate for UAQ
solvers which, to the best of our knowledge, are the best upper bounds currently available
in the literature. Yet, it must be noted that the proposed methodology will yield different,
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improved results as soon as new complexity results will become available. To the best of our
knowledge, this is the first approach to systematically assess the effectiveness of UAQ solvers.
The methodology leads to benchmarks capable to (i) stress-test solvers along dimensions of
the problem for which no polynomial-time technique is known but also (ii) to check their
effectiveness, by determining whether they efficiently solve problems that are known to be
solvable in polynomial time. We used our methodology to demonstrate that the benchmarks
introduced in (64) are unsatisfactory.

We then introduced UAQ-Solve, a tool with double functionality: as a generator of
benchmarks and as UAQ solver leveraging existing PMaxSAT solvers. By using UAQ-Solve,
we applied our methodology to generate a novel suite of parametric benchmarks that allows
for the systematic assessment of UAQ solvers over a number of relevant dimensions. These
include problems for which no polynomial-time algorithm is known as well as problems
for which polynomial-time algorithms do exist. The benchmarks proposed and used in this
thesis could be improved in consequence to the improvement of the methodology due to new
complexity results.

We used the new suite of benchmark problems as well as the benchmarks introduced
in (64) to experimentally evaluate three solvers: 2D-Opt-Search (64) a search-based solver,
2D-Opt-CNF (64) that combines the reduction of the UAQ Decision Problem to SAT, a
state-of-the-art SAT solver and a binary search, and UAQ-Solve. UAQ-Solve outperformed
both 2D-Opt-Search and 2D-Opt-CNF in the vast majority of the benchmark considered.

Besides, we executed UAQ-Solve over the proposed benchmarks leveraging different
PMaxSAT solvers to compare their performance. The result of this experiment is that,
unsurprisingly, there is no single best solver, even for the same class of benchmark instances.
In fact, the solver that best performs for small values of the parameter may be among the
worst solvers for big values of the same parameter. Over different benchmarks, the solver
that outperforms the others over a benchmark may be particularly inefficient over another
benchmark. The choice of the PMaxSAT solver to use must be taken carefully according to
the values of the UAQ problem dimensions. The use of UAQ-Solve over our benchmarks
can suggest the best possible choice.

Finally, we made some investigations on incomplete solvers. We showed that incomplete
solvers can perform similarly to complete ones over easy benchmarks. In addition, the
experiments reveal that the quality of the solutions provided by an incomplete solver after 1
second over hard problems seems to be good; namely, overall, the incomplete solvers offer a
good compromise between the optimality of the solutions and usability. Consequently, they
are suitable for all the contexts in which usability can not be set aside in favor of security,
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like healthcare, in our case. To the best of our knowledge, we are the first to propose the
use of incomplete solvers over UAQ problems to tackle usability.

9.2 Future work

Future improvements to our work can be achieved from the point of view of both benchmarks
generation and solving.

Regarding the benchmarks generation, the results of the evaluation of Pub for op = max

provided in Section 8.3.1 is not in line with our expectation. In fact, we did not expect
exponential growth. It is then necessary to investigate this behavior.

A possible future work could consist in the support for constraints other than the MER
constraints. The literature on constraints is huge, see for example (4; 5; 31; 49; 78; 87). Most
of the constraints proposed are variants of SMER and DMER constraints. For example, in
order to enforce SoD policies, in (4) Ahn and Sandhu suggest that permissions could be
declared mutually exclusive instead of roles. In this way, a user cannot simultaneously be
authorized for two or more mutually exclusive permissions. Instead, some works propose
the use of languages to specify SoD constraints, such as RCL2000 (4; 5) and SoDA (52). It
would be interesting to investigate whether and how these solutions can be leveraged in our
work for constraint specification. Moreover, many RBAC variants have been proposed with
different expressive features, such as temporal constraints on role activations (36), spatial
constraints (57; 58), and spatio-temporal constraints (85). It is worth investigating whether
and how our work could be expanded to include also these features.

From the point of view of problems solving, as a first future work, we can include other
newer solvers in UAQ-Solve: obviously, the solvers that best performed at the MaxSAT
Evaluation 2019 could be a good starting point. In addition, we mainly run experiments over
instances encoded with permission-based optimization: we should deepen the analysis on
joint-optimization.

As shown by the experimental results, the proper PMaxSAT solver to use must be
carefully chosen. The approach of choosing a solver for a given class of instances is not
satisfying: in fact, the results presented in Section 8.4 reveal that any solver over a benchmark
can outperform the others for small values of the parameter under consideration and be
among the worst performing solvers for big values of the same parameter (and vice-versa).
It is then clear that the solver must be selected on a per-instance basis. As future work, we
could include Machine Learning techniques to UAQ-Solve to automatically select the most
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likely best solver among the ones available. From the experimental results, we can deduce
that the following dimensions would be the most relevant features to consider:

• when op = min:

– |Plb|: in our experiment, the best solver over Plb_bigR is Maxino for small values
of |Plb| and MaxHS for big values of |Plb|;

– |R|: in our experiment, the best solvers over R_bigPlb are QMaxSAT and
QMaxSATuc for small values of |R| and MaxHS for medium values of |R|;

– R̂P: in our experiment, the best solver over RPhat_bigPlb is Maxino;

• when op = max:

– |Pub|: in our experiment, the best solver over Pub is Loandra for small values of
|Pub| and WPM1-2012 for big values of |Pub|;

– |C|: in our experiment, the best solvers over C_bigR are Maxino and QMaxSATuc
for small values of |C| and LMHS and MaxHS for big values of |C|;

– r̂s: in our experiment, the best solver over rshat_bigCt is QMaxSATuc;

– t̂: in our experiment, the best solver over that_bigRPub is Maxino.

However, we have to further improve our analysis, by generating and solving more UAQ
problems, including more solvers and setting a higher timeout. The use of Machine Learning
techniques may also be extended to the incomplete solvers, in order to select the solver that
provides the best quality solution given a certain timeout.

Regarding the problem of solver selection, it is worth following the work of Matos et al.
(61). Inspired by the success obtained by SATzilla1 for SAT (91), the authors propose a first
approach for a portfolio of algorithms for MaxSAT. This work leverages an oracle, which
is able to predict the most suitable MaxSAT solver for a given instance. This solution can
achieve significant performance improvements compared to existing solvers. Unfortunately,
Matos et al. still have not extended their work to PMaxSAT and MaxSAT solvers, but in the
paper they indicate this extension as future work.

Another important issue regarding the solvers performance is that, during the comparison
of the different PMaxSAT solvers, we executed both the complete and the incomplete solvers
with the default configurations. It is probable that they could have performed better using
the proper settings. Finding the proper configurations to use is not easy. To this aim,

1http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/


9.2 Future work 149

Ansótegui et al. improve the instance-specific algorithm configurator ISAC with the latest
in portfolio technology (9). Experimental results on SAT reveal that this combination is a
significant improvement in the ability to tune algorithms instance-specifically. The authors
apply the methodology to a number of MaxSAT problem domains and show that the resulting
solvers consistently outperform the best existing solvers. Given the good results obtained by
Ansótegui et al., in the future we could also leverage the solution they propose to improve
(hopefully) the solvers’ performance.

We finally make a consideration on the encoding. In this dissertation, we treated the
permissions as if they all have the same importance: in fact, in the encoding all permissions
are given the same weight. However, it is reasonable that the resources have different values.
For example, in the use case considered in this thesis, the information value depends on its
confidentiality. The more sensitive the information is, the more impact is high in case of
disclosure. Consequently, an interesting evolution of our work could be the extension of the
well-known least privilege principle to the "least risk principle": in UAQ-Solve, this could be
achieved by simply assigning to the permissions in P\Pub a weight proportional to the risk
related to the actions that can be performed through the permissions themselves.
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Appendix A

Proof of Theorem 4.4.1

Theorem 4.4.1 Let RP be an RBAC policy, σ = (S,α,π) be a valid state for RP and q is a

query for session s. It can be shown that ρ is a solution to q in RP and σ = (S,α,π) iff ρ is

a solution to q in RP′, where RP′ is obtained from RP by replacing the sets of constraints

C with C[s,σ ], where C[s,σ ] is a set of constraints in which MS-DMER, SS-HMER and

MS-HMER for the particular session s are replaced with SS-DMER constraints whose rs and

t varies with the state σ .

Theorem 4.4.1 is demonstrated in Proof A.0.2. The latter leverages Lemma A.0.1, which
is defined and proved below.

Lemma A.0.1 For all sets A, B and C

(A\B)∩C = (A∩ (B∪C))\ (A∩B) (A.1)

Proof A.0.1 We know that X \Y = X \ (X ∩Y ) holds for all sets X and Y . From this it

follows that

(A∩ (B∪C))\B = (A∩ (B∪C))\ ((A∩ (B∪C))∩B) (A.2)

The left hand side of (A.2) can be rewritten as follows:

(A∩ (B∪C))\B = (A\B)∩ ((B∪C)\B) = (A.3)

= (A\B)∩ (C \B) = (A.4)

= (A\B)∩C (A.5)
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By observing that

((A∩ (B∪C))∩B = (A∩ ((B∪C)∩B)) = (A.6)

= (A∩B) (A.7)

the right hand side of (A.2) can be rewritten to the right hand side of (A.1).

Proof A.0.2 (Theorem 4.4.1) We focus the case in which RP contains a single constraint

of the form MS-DMER(rs, t) only. The other cases can be dealt with analogously. Let

σ = (S,α,π), q a query for session s, ρ ⊆ Ruser(s) a solution to q in RP. We show that ρ

is also a solution to q in RP′, where RP′ is obtained from RP by replacing the constraint

MS-DMER(rs, t) with SS-DMER(rs \ ur, t−|rs∩ ur|), where ur =
⋃

s′∈Suser(s)\{s}α(s′). This

amounts to showing that ρ is such that for all s′′ ∈ S

|rs\ur∩α[s← ρ](s′′)|< t−|rs∩ur| (A.8)

where ur =
⋃

s′∈Suser(s)\{s}α[s← ρ](s′).

If s′′ = s,1 then by using (A.1), (A.8) can be rewritten to

|rs∩ (ur∪ρ)\ (rs∩ur)|< t−|rs∩ur|

which in turn can be rewritten to

|(rs∩ρ)\ (rs∩ur)|< t−|rs∩ur| (A.9)

Now, we know that (S,α[s← ρ],π[s← ρ]) satisfies MS-DMER(rs, t). Therefore, for all

u ∈U

|rs∩
⋃

s′∈Su

α[s← ρ](s′)|< t

From this it follows

|rs∩ (ρ ∪
⋃

s′∈Suser(s)\{s}
α(s′))|< t

which can be rewritten as

|(rs∩ρ)∪ (rs∩ur)|< t (A.10)

1The case s′′ ̸= s is analogous.
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Since X ∪Y = (X \Y )∪Y , then (A.10) is equivalent to

|((rs∩ρ)\ (rs∩ur))∪ (rs∩ur)|< t

which leads to (A.9) by observing that |X ∪Y |= |X |+ |Y | if X ∩Y = /0.



Appendix B

WCNF encodings

This appendix presents the different WCNF encoding of the instance shown in Listing 7.2
resulting from different encoding configuration. In particular, in Listing B.1

• op = min;

• or = any;

• pri = p,

while in Listing B.2

• op = max;

• or = any;

• pri = p.

In both the cases, the optimization is then permission-based. Listing B.1 was already shown
and widely discussed in Section 7.1 (Listing 7.3), but is reported here for completeness.

Listing B.1 WCNF encoding for op = min, or = any, and pri = p

1 p wcnf 15 41 41
2 41 -1 15 0
3 41 -2 10 0
4 41 -2 12 0
5 41 -2 14 0
6 41 -3 6 0
7 41 -3 7 0
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8 41 -3 8 0
9 41 -3 9 0

10 41 -3 11 0
11 41 -3 13 0
12 41 -3 14 0
13 41 -3 15 0
14 41 -4 7 0
15 41 -4 8 0
16 41 -4 9 0
17 41 -4 11 0
18 41 -4 12 0
19 41 -4 13 0
20 41 -5 6 0
21 41 -5 10 0
22 41 -6 3 5 0
23 41 -7 3 4 0
24 41 -8 3 4 0
25 41 -9 3 4 0
26 41 -10 2 5 0
27 41 -11 3 4 0
28 41 -12 2 4 0
29 41 -13 3 4 0
30 41 -14 2 3 0
31 41 -15 1 3 0
32 41 -2 -4 0
33 41 6 0
34 41 7 0
35 41 -8 0
36 1 -9 0
37 1 -10 0
38 1 -11 0
39 1 -12 0
40 1 -13 0
41 1 -14 0
42 1 -15 0

Listing B.2 WCNF encoding for op = max, or = any, and pri = p

1 p wcnf 15 41 41
2 41 -1 15 0
3 41 -2 10 0
4 41 -2 12 0
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5 41 -2 14 0
6 41 -3 6 0
7 41 -3 7 0
8 41 -3 8 0
9 41 -3 9 0

10 41 -3 11 0
11 41 -3 13 0
12 41 -3 14 0
13 41 -3 15 0
14 41 -4 7 0
15 41 -4 8 0
16 41 -4 9 0
17 41 -4 11 0
18 41 -4 12 0
19 41 -4 13 0
20 41 -5 6 0
21 41 -5 10 0
22 41 -6 3 5 0
23 41 -7 3 4 0
24 41 -8 3 4 0
25 41 -9 3 4 0
26 41 -10 2 5 0
27 41 -11 3 4 0
28 41 -12 2 4 0
29 41 -13 3 4 0
30 41 -14 2 3 0
31 41 -15 1 3 0
32 41 -2 -4 0
33 41 6 0
34 41 7 0
35 41 -8 0
36 1 9 0
37 1 10 0
38 1 11 0
39 1 12 0
40 1 13 0
41 1 14 0
42 1 15 0

Rows 1 to 35 are the same in Listings B.1 and B.2. In fact, they differ only for the soft
clauses (rows 36 - 42):
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• in Listing B.1, since op = min the soft clauses require that the variables 9, 10, 11, 12,
13, 14, and 15 (representing the activation of extra permissions) are false (see the ’-’ in
front of the variables);

• in Listing B.2, since op = max the soft clauses require that the variables 9, 10, 11, 12,
13, 14, and 15 are true (there is not a ’-’ in front of the variables);

Listings B.1 and B.2 are related to permission-based optimization. Instead, Listings B.3,
B.4, B.5, and B.6 are related to joint optimization. In particular, the priority is permission
optimization. The WCNF encodings contain

nbclauses = 46

clauses, namely 5 more than Listing B.1: this is due to the |Ru| = 5 clauses added for the
conditions on extra roles. The clauses on the activation of extra permissions have weight

Wp = |Ru|+1 = 5+1 = 6,

while the clauses on the activation of extra roles have weight

Wr = 1.

The hard clauses have weight

Wh = nbclauses+((|Ru|+1)× (|Pub|− |Plb|)) = 46+((5+1)× (9−2)) = 88.

We use the aforementioned formula to ensure that Wh is greater than the sum of the weights
given to the soft clauses. However, any other formula granting this condition would have
been adequate.

Listing B.3 presents the WCNF encoding resulting from the following configuration:

• op = min;

• or = min;

• pri = p.

With respect to Listings B.1, we notice the different weight Wh = 88 for the hard clauses
(rows 2 - 35) and the different weight Wp = 6 for the clauses related to the activation of extra
permissions (rows 36 - 42). Then there are additional clauses, namely the ones related to
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the activation of extra roles (rows 43 - 47), with weight Wr = 1. Since or = min, the clauses
indicates that we prefer that the variables representing the roles activation (1, 2, 3, 4, 5) are
false. In fact, there is a ’-’ in front of them.

Listing B.3 WCNF encoding for op = min, or = min, and pri = p

1 p wcnf 15 46 88
2 88 -1 15 0
3 88 -2 10 0
4 88 -2 12 0
5 88 -2 14 0
6 88 -3 6 0
7 88 -3 7 0
8 88 -3 8 0
9 88 -3 9 0

10 88 -3 11 0
11 88 -3 13 0
12 88 -3 14 0
13 88 -3 15 0
14 88 -4 7 0
15 88 -4 8 0
16 88 -4 9 0
17 88 -4 11 0
18 88 -4 12 0
19 88 -4 13 0
20 88 -5 6 0
21 88 -5 10 0
22 88 -6 3 5 0
23 88 -7 3 4 0
24 88 -8 3 4 0
25 88 -9 3 4 0
26 88 -10 2 5 0
27 88 -11 3 4 0
28 88 -12 2 4 0
29 88 -13 3 4 0
30 88 -14 2 3 0
31 88 -15 1 3 0
32 88 -2 -4 0
33 88 6 0
34 88 7 0
35 88 -8 0
36 6 -9 0
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37 6 -10 0
38 6 -11 0
39 6 -12 0
40 6 -13 0
41 6 -14 0
42 6 -15 0
43 1 -1 0
44 1 -2 0
45 1 -3 0
46 1 -4 0
47 1 -5 0

Listing B.4 presents the WCNF encoding resulting from the following configuration:

• op = min;

• or = max;

• pri = p.

The only difference with Listing B.3 is that in Listing B.4 the clauses in rows 43 - 47 do not
present ’-’ in front of the variables. In fact, in this case or = max, thus we want to maximize
the activation of roles.

Listing B.4 WCNF encoding for op = min, or = max, and pri = p

1 p wcnf 15 46 88
2 88 -1 15 0
3 88 -2 10 0
4 88 -2 12 0
5 88 -2 14 0
6 88 -3 6 0
7 88 -3 7 0
8 88 -3 8 0
9 88 -3 9 0

10 88 -3 11 0
11 88 -3 13 0
12 88 -3 14 0
13 88 -3 15 0
14 88 -4 7 0
15 88 -4 8 0
16 88 -4 9 0
17 88 -4 11 0
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18 88 -4 12 0
19 88 -4 13 0
20 88 -5 6 0
21 88 -5 10 0
22 88 -6 3 5 0
23 88 -7 3 4 0
24 88 -8 3 4 0
25 88 -9 3 4 0
26 88 -10 2 5 0
27 88 -11 3 4 0
28 88 -12 2 4 0
29 88 -13 3 4 0
30 88 -14 2 3 0
31 88 -15 1 3 0
32 88 -2 -4 0
33 88 6 0
34 88 7 0
35 88 -8 0
36 6 -9 0
37 6 -10 0
38 6 -11 0
39 6 -12 0
40 6 -13 0
41 6 -14 0
42 6 -15 0
43 1 1 0
44 1 2 0
45 1 3 0
46 1 4 0
47 1 5 0

Listing B.5 presents the WCNF encoding resulting from the following configuration:

• op = max;

• or = min;

• pri = p.

Listing B.5 differs from Listing B.3 only for the absence of ’-’ in front of the variables in
rows 36 - 42. In fact, in this case op = max, thus we wish to maximize the activation of
permissions.
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Listing B.5 WCNF encoding for op = max, or = min, and pri = p

1 p wcnf 15 46 88
2 88 -1 15 0
3 88 -2 10 0
4 88 -2 12 0
5 88 -2 14 0
6 88 -3 6 0
7 88 -3 7 0
8 88 -3 8 0
9 88 -3 9 0

10 88 -3 11 0
11 88 -3 13 0
12 88 -3 14 0
13 88 -3 15 0
14 88 -4 7 0
15 88 -4 8 0
16 88 -4 9 0
17 88 -4 11 0
18 88 -4 12 0
19 88 -4 13 0
20 88 -5 6 0
21 88 -5 10 0
22 88 -6 3 5 0
23 88 -7 3 4 0
24 88 -8 3 4 0
25 88 -9 3 4 0
26 88 -10 2 5 0
27 88 -11 3 4 0
28 88 -12 2 4 0
29 88 -13 3 4 0
30 88 -14 2 3 0
31 88 -15 1 3 0
32 88 -2 -4 0
33 88 6 0
34 88 7 0
35 88 -8 0
36 6 9 0
37 6 10 0
38 6 11 0
39 6 12 0
40 6 13 0
41 6 14 0
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42 6 15 0
43 1 -1 0
44 1 -2 0
45 1 -3 0
46 1 -4 0
47 1 -5 0

Listing B.6 presents the WCNF encoding resulting from the following configuration:

• op = max;

• or = max;

• pri = p.

Similarly to the previous cases, Listing B.5 and Listing B.6 are different only in the clauses
in rows 43 - 47. In case of Listing B.6, there is not a ’-’ in front of the variables. In fact,
or = max, meaning that we wish to maximize the activation of roles.

Listing B.6 WCNF encoding for op = max, or = max, and pri = p

1 p wcnf 15 46 88
2 88 -1 15 0
3 88 -2 10 0
4 88 -2 12 0
5 88 -2 14 0
6 88 -3 6 0
7 88 -3 7 0
8 88 -3 8 0
9 88 -3 9 0

10 88 -3 11 0
11 88 -3 13 0
12 88 -3 14 0
13 88 -3 15 0
14 88 -4 7 0
15 88 -4 8 0
16 88 -4 9 0
17 88 -4 11 0
18 88 -4 12 0
19 88 -4 13 0
20 88 -5 6 0
21 88 -5 10 0
22 88 -6 3 5 0



168

23 88 -7 3 4 0
24 88 -8 3 4 0
25 88 -9 3 4 0
26 88 -10 2 5 0
27 88 -11 3 4 0
28 88 -12 2 4 0
29 88 -13 3 4 0
30 88 -14 2 3 0
31 88 -15 1 3 0
32 88 -2 -4 0
33 88 6 0
34 88 7 0
35 88 -8 0
36 6 9 0
37 6 10 0
38 6 11 0
39 6 12 0
40 6 13 0
41 6 14 0
42 6 15 0
43 1 1 0
44 1 2 0
45 1 3 0
46 1 4 0
47 1 5 0

In case pri = r, the WCNF encodings would contain

nbclauses = 46

clauses. The clauses on the activation of extra permissions would have weight

Wp = 1,

while the clauses on the activation of extra roles would have weight

Wr = |Pub \Plb|+1 = 9−2+1 = 8

The hard clauses would have weight

Wh = nbclauses+(|Ru|× (|Pub|− |Plb|+1)) = 46+(5× (9−2+1)) = 86
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We use the aforementioned formula to ensure that Wh is greater than the sum of the weights
given to the soft clauses. However, any other formula granting this condition would have
been adequate.

Even if not considered in this thesis, for the sake of completeness, we report an example
of encoding for joint optimization with the activation of roles as priority. In particular,
Listing B.7 presents the WCNF encoding resulting from the following configuration:

• op = min;

• or = min;

• pri = r.

Unlike the previous cases, the clauses with the lowest weight are the ones related to the
activation of extra permissions (rows 36 - 42, with Wp = 1). Instead, the clauses related to
the activation of extra roles (rows 43 - 47) have weight Wr = 8. In this case op = or = min,
in fact all the variables of the clauses in rows 36 - 47 have a ’-’ in front of them, meaning
that we wish to minimize the activation of both roles and permissions.

Listing B.7 WCNF encoding for op = min, or = min, and pri = r

1 p wcnf 15 46 86
2 86 -1 15 0
3 86 -2 10 0
4 86 -2 12 0
5 86 -2 14 0
6 86 -3 6 0
7 86 -3 7 0
8 86 -3 8 0
9 86 -3 9 0

10 86 -3 11 0
11 86 -3 13 0
12 86 -3 14 0
13 86 -3 15 0
14 86 -4 7 0
15 86 -4 8 0
16 86 -4 9 0
17 86 -4 11 0
18 86 -4 12 0
19 86 -4 13 0
20 86 -5 6 0
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21 86 -5 10 0
22 86 -6 3 5 0
23 86 -7 3 4 0
24 86 -8 3 4 0
25 86 -9 3 4 0
26 86 -10 2 5 0
27 86 -11 3 4 0
28 86 -12 2 4 0
29 86 -13 3 4 0
30 86 -14 2 3 0
31 86 -15 1 3 0
32 86 -2 -4 0
33 86 6 0
34 86 7 0
35 86 -8 0
36 1 -9 0
37 1 -10 0
38 1 -11 0
39 1 -12 0
40 1 -13 0
41 1 -14 0
42 1 -15 0
43 8 -1 0
44 8 -2 0
45 8 -3 0
46 8 -4 0
47 8 -5 0

The WCNF encodings resulting from the remaining configurations, namely

• op = min, or = max, and pri = r;

• op = max, or = min, and pri = r;

• op = max, or = max, and pri = r

can be obtained from Listing B.7 by removing the ’-’ in front of the variables in rows 36 - 42
and 43 - 47 when needed, according to or and op.



Appendix C

Encoding time and number of variables
and clauses

For the sake of completeness, this annex presents plots representing

• The median encoding time;

• The number of variables; and

• The number of clauses

of the benchmarks designed in Chapter 6. In particular, Section C.1 presents the plots for
the benchmarks with op = min, while Section C.2 presents the plot for the benchmarks with
op = min.

All the plots presented below show that the median encoding time is acceptable. However,
in principle, the problems could be in part encoded once. At run-time it would be enough to
add the clauses related to DMER constraints1 and to the query.

In earlier research, we thought that the problem complexity could depend only on the
number of variables and clauses. However, we have evidence that this does not hold, as we
will show below.

1If MS-DMER, SS-HMER and MS-HMER constraints are used they must be properly reduced to SS-DMER
constraints, see Section 4.4
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C.1 Benchmarks with op = min

Benchmarks parametric in Plb

Figure C.1 shows the median encoding time, the number of variables and the number of
clauses for the benchmarks parametric in |Plb|, namely Plb_bigR and Plb_smallR. In both
the cases, the number of variables and clauses are constant. However, as already shown in
Figure 8.4a, UAQ-Solve over Plb_bigR exhibits an exponential behavior. This is a first clear
empirical proof that complexity is not related only to the number of clauses and variables.

(a) Plb_bigR (b) Plb_smallR

Figure C.1 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in Plb with op = min

Benchmarks parametric in |R|

Figure 8.5a shows the median encoding time, the number of variables and the number of
clauses for the benchmarks parametric in |R|, namely R_bigPlb and R_smallPlb. The curves
representing the number of variables are idential; the same holds for the number of clauses.
Nevertheless, UAQ-Solve solves R_bigPlb in exponential time, while over R_smallPlb the
median solving even decreases with the increase in |R|.
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(a) R_bigPlb (b) R_smallPlb

Figure C.2 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in |R| with op = min

Benchmarks parametric in R̂P

Figure C.3c shows the median encoding time, the number of variables and the number of
clauses for the benchmarks parametric in R̂P, namely RPhat_bigPlb, RPhat_medPlb, and
RPhat_smallPlb. The number of variables is costant and identical for the three benchmarks.
Also the number of clauses is the same for the benchmarks. However, as shown in Figure 8.6a
the median solving time over the benchmarks is a polynomial whose degree is |Plb|.



C.1 Benchmarks with op = min 174

(a) RPhat_bigPlb (b) RPhat_medPlb

(c) RPhat_smallPlb

Figure C.3 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in R̂P with op = min

Benchmarks parametric in |Pub|, |C|, |r̂s|, and t̂

Figure C.4 shows the median encoding time, the number of variables and the number of
clauses for the remaining benchmarks for op = min, namely Pub, C, rshat, and that. For
all these benchmarks the number of variables and clauses is higher than the ones shown in
Figure C.2a. However UAQ-Solve solves the instances contained in R_bigPlb in exponential
time, while it quickly solves all the instances contained in these benchmarks. Figure C.4c is
of particular interest: for r̂s = 50, the number of clauses is 198800 (compared to the 2800
clauses for R_bigPlb). Nevertheless, these instances are solved in less than 1 second.
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(a) Pub (b) C

(c) rshat (d) that

Figure C.4 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in |Pub|, |C|, |r̂s|, and t̂ with op = min

C.2 Benchmarks with op = max

Benchmarks parametric in |R|

Figure C.5 shows the median encoding time, the number of variables and the number of
clauses for the benchmarks parametric in |R|, namely R_bigCt and R_smallCt. The number
of variables in these benchmarks is similar, while the number of clauses for R_smallCt is
more than 2000 greater than the number of clauses for R_smallCt. However UAQ-Solve
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solves R_bigCt in exponential time and R_smallCt in at most 10 milliseconds, as shown in
Figure 8.16a.

(a) R_bigCt (b) R_smallCt

Figure C.5 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in |R| with op = max

Benchmarks parametric in |C|

Figure C.6 shows the median encoding time, the number of variables and the number of
clauses for the benchmarks parametric in |C|, namely C_bigR and C_smallR. The number
of variables and clauses contained in the WCNF encoding of the instances in C_bigR are
identical to the ones for C_smallR. Nevertheless, Figure 8.18a shows that UAQ-Solve solves
C_bigR in exponential time and C_smallR in almost constant time.
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(a) C_bigR (b) C_smallR

Figure C.6 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in |C| with op = max

Benchmarks parametric in t̂

Figure C.7 shows the median encoding time, the number of variables and the number of
clauses for the benchmarks parametric in t̂, namely that_bigR and that_smallR. Although the
number of variables is constant and the number of clauses is always in the range [8800,8900],
UAQ-Solve exhibits an exponential growth over that_bigR, as shown in Figure 8.19a.

(a) that_bigR (b) that_smallR

Figure C.7 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in t̂ with op = max
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Benchmarks parametric in r̂s

Figure C.8 shows the median encoding time, the number of variables and the number
of clauses for the benchmarks parametric in r̂s, namely rshat_bigCt, rshat_medCt, and
rshat_smallCt.

(a) rshat_bigCt (b) rshat_medCt

(c) rshat_smallCt

Figure C.8 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in r̂s with op = max

Benchmarks parametric in |Pub|, R̂P, and |Plb|

Figure C.9 shows the median encoding time, the number of variables and the number of
clauses for the benchmarks parametric in the remaining benchmarks for op = max, namely
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|Pub|, RPhat, and Plb. Here we note that the number of clauses for RPhat grows from 10800
to 82800, however all the instances in RPhat are solved in less than 100 milliseconds.

(a) Pub (b) RPhat

(c) Plb

Figure C.9 Median encoding time, number of variables and number of clauses in the bench-
marks parametric in |Plb| with op = max
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