10 research outputs found

    An Improved Intrusion Prevention Sytem for WLAN

    Get PDF
    The volatile growth in wireless networks over the last few years resembles the rapid growth of the Internet within the last decade. The current IPS presents a less security. Unfortunately, our work combined with the work of others show that each of these mechanisms are completely futile. As a result, organizations with deployed wireless networks are vulnerable to illegal use of, and access to, their internal communications

    Detecting rogue access points that endanger the maginot line of wireless authentication

    Get PDF
    The rapid growth in deployment of wireless networks in recent years may be an indication that many organizations believe that their system will be adequately secured by the implementation of enhanced encryption and authentication. However, in our view, the emphasis on cryptographic solutions in wireless security is repeating the history of the “Maginot Line”. Potential attackers of wireless networks currently will find many ways to get access to wireless networks to compromise the confidentiality of information without the need to crack the encryption. In this paper we analyze how rogue access points threaten the security of an organization’s wireless network and examine the popular approaches to defend against rogue access points. We argue that, while it is easy to detect access points, distinguishing between rogue access points and legitimate access points of the organization and of other organizations is a major problem which still needs to be solved

    Detection of Rogue Access Point in WLAN using Hopfield Neural Network

    Get PDF
    The serious issue in the field of wireless communication is the security and how an organization implements the steps against security breach. The major attack on any organization is Man in the Middle attack which is difficult to manage. This attack leads to number of unauthorized access points, called rogue access points which are not detected easily. In this paper, we proposed a Hopfield Neural Network approach for an automatic detection of these rogue access points in wireless networking. Here, we store the passwords of the authentic devices in the weight matrix format and match the patterns at the time of login. Simulation experiment shows that this method is more secure than the traditional one in WLAN

    Detecting And Eliminating Rogue Access Points In Ieee-802.11 Wlan - A Multi-Agent Sourcing Methodology

    Get PDF
    For the Wireless Networks, presence of unapproved access points is becoming the major security issue. If this kind of network threats are not detected and mitigated on time, those will lead to the serious network damage and data loss. There are many researchers proposed solutions to overcome this security problem of WLAN, but those proposed tools having limitations or maybe they not automated to adopt the frequent changes in WLAN. We are into this research to present the new approach based on Master and Slave agents. This proposed approach not only looking for fast detection of Rogue Access points in the network but also presenting the solution to mitigate the WLAN from them. In short new framework is dealing with detecting as well as eliminating the Rough Access Points in the network. In proposed approach, the Master and slave agents are automatically scanning the networks for any unauthorized access points using the skew intervals. Thi

    IEEE 802.11 user fingerprinting and its applications for intrusion detection

    Get PDF
    AbstractEasy associations with wireless access points (APs) give users temporal and quick access to the Internet. It needs only a few seconds to take their machines to hotspots and do a little configuration in order to have Internet access. However, this portability becomes a double-edged sword for ignorant network users. Network protocol analyzers are typically developed for network performance analysis. Nonetheless, they can also be used to reveal user’s privacy by classifying network traffic. Some characteristics in IEEE 802.11 traffic particularly help identify users. Like actual human fingerprints, there are also unique traffic characteristics for each network user. They are called network user fingerprints, by tracking which more than half of network users can be connected to their traffic even with medium access control (MAC) layer pseudonyms. On the other hand, the concept of network user fingerprint is likely to be a powerful tool for intrusion detection and computer/digital forensics. As with actual criminal investigations, comparison of sampling data to training data may increase confidence in criminal specification. This article focuses on a survey on a user fingerprinting technique of IEEE 802.11 wireless LAN traffic. We also summarize some of the researches on IEEE 802.11 network characteristic analysis to figure out rogue APs and MAC protocol misbehaviors

    Traffic characteristics mechanism for detecting rogue access point in local area network

    Get PDF
    Rogue Access Point (RAP) is a network vulnerability involving illicit usage of wireless access point in a network environment. The existence of RAP can be identified using network traffic inspection. The purpose of this thesis is to present a study on the use of local area network (LAN) traffic characterisation for typifying wired and wireless network traffic through examination of packet exchange between sender and receiver by using inbound packet capturing with time stamping to indicate the existence of a RAP. The research is based on the analysis of synchronisation response (SYN/ACK), close connection respond (FIN/ACK), push respond (PSH/ACK), and data send (PAYLOAD) of the provider’s flags which are paired with their respective receiver acknowledgment (ACK). The timestamp of each pair is grouped using the Equal Group technique, which produced group means. These means were then categorised into three zones to form zone means. Subsequently, the zone means were used to generate a global mean that served as a threshold value for identifying RAP. A network testbed was developed from which real network traffic was captured and analysed. A mechanism to typify wired and wireless LAN traffic using the analysis of the global mean used in the RAP detection process has been proposed. The research calculated RAP detection threshold value of 0.002 ms for the wired IEEE 802.3 LAN, while wireless IEEE 802.11g is 0.014 ms and IEEE 802.11n is 0.033 ms respectively. This study has contributed a new mechanism for detecting a RAP through traffic characterisation by examining packet communication in the LAN environment. The detection of RAP is crucial in the effort to reduce vulnerability and to ensure integrity of data exchange in LA

    On fast and accurate detection of unauthorized wireless access points using clock skews

    Get PDF
    Journal ArticleWe explore the use of clock skew of a wireless local area network access point (AP) as its fingerprint to detect unauthorized APs quickly and accurately. The main goal behind using clock skews is to overcome one of the major limitations of existing solutions-the inability to effectively detect Medium Access Control (MAC) address spoofing. We calculate the clock skew of an AP from the IEEE 802.11 Time Synchronization Function (TSF) time stamps sent out in the beacon/probe response frames. We use two different methods for this purpose-one based on linear programming and the other based on least-square fit. We supplement these methods with a heuristic for differentiating original packets from those sent by the fake APs. We collect TSF time stamp data from several APs in three different residential settings. Using our measurement data as well as data obtained from a large conference setting, we find that clock skews remain consistent over time for the same AP but vary significantly across APs. Furthermore, we improve the resolution of received time stamp of the frames and show that with this enhancement, our methodology can find clock skews very quickly, using 50-100 packets in most of the cases. We also discuss and quantify the impact of various external factors including temperature variation, virtualization, clock source selection, and NTP synchronization on clock skews. Our results indicate that the use of clock skews appears to be an efficient and robust method for detecting fake APs in wireless local area networks

    A Dynamically Refocusable Sampling Infrastructure for 802.11 Networks

    Get PDF
    The edge of the Internet is increasingly wireless. Enterprises large and small, homeowners, and even whole cities have deployed Wi-Fi networks for their users, and many users never need to--- or never bother to--- use the wired network. With the advent of high-throughput wireless networks (such as 802.11n) some new construction, even of large enterprise build- ings, may no longer be wired for Ethernet. To understand Internet traffic, then, we need to understand the wireless edge. Measuring Wi-Fi traffic, however, is challenging. It is insufficient to capture traffic in the access points, or upstream of the access points, because the activity of neighboring networks, ad hoc networks, and physical interference cannot be seen at that level. To truly understand the MAC-layer behavior, we need to capture frames from the air using Air Monitors (AMs) placed in the vicinity of the network. Such a capture is always a sample of the network activity, since it is physically impossible to capture a full trace: all frames from all channels at all times in all places. We have built a monitoring infrastructure that captures frames from the 802.11 network. This infrastructure includes several channel sampling strategies that will capture repre- sentative traffic from the network. Further, the monitoring infrastructure needs to modify its behavior according to feedback received from the downstream consumers of the captured traffic in case the analysis needs traffic of a certain type. We call this technique refocusing . The coordinated sampling technique improves the efficiency of the monitoring by utilizing the AMs intelligently. Finally, we deployed this measurement infrastructure within our Computer Science building to study the performance of the system with real network traffic

    Secure and Reliable Wireless Communication through End-to-End-based Solution

    Get PDF
    In the past few decades, network architectures and protocols are often designed to achieve a high throughput and a low latency. Security was rarely considered during the initial design phases. As a result, many network systems are insecure by design. Once they are widely deployed, the inherent vulnerabilities may be difficult to eliminate due to the prohibitive update cost. In this dissertation, we examine such types of vulnerabilities in various networks and design end-to-end-based solutions that allow end systems to address such loopholes. The end-to-end argument was originally proposed to let end hosts implement application-specific functions rather than letting intermediate network nodes (i.e., routers) perform unneeded functions. In this dissertation, we apply the end-to-end principle to address three problems in wireless networks that are caused by design flaw with following reasons: either because integrating solutions into a large number of already deployed intermediate nodes is not a viable option or because end hosts are in a better position to cope with the problems. First, we study the problem of jamming in a multihop wireless network. Jamming attacks are possible because wireless networks communicate over a shared medium. It is easy to launch a jamming attack but is difficult to defend against it. To ensure the end-to-end packet delivery, we propose a jamming-resilient multipath routing algorithm that maximizes end-to-end availability based on the availability history between sources and destinations. Second, we investigate caller ID spoofing attacks in telephone networks in which an attacker can send a fake caller ID to a callee rather than her real one to impersonate as someone else. Such attacks are possible because there is no caller ID authentication mechanism in operator interconnection protocols. Modifying current protocols to verify caller ID between operators may be infeasible due to the scale of deployed systems. So, we propose two schemes to detect caller ID spoofing attacks based on end-to-end verification. Finally, we examine evil twin access point attacks in wireless hotspots. In such attacks, an adversary sets up a phishing access point that has the same Service Set IDentification (SSID) as the legitimate ones in the hotspot. Such attacks are easy to launch because of how 802.11 standards are designed. Existing solutions take away convenience from the user while providing security. Our aim is to detect evil twin access point attacks in wireless hotspots without modifying how access point works in hotspots and without additional infrastructure support. We propose an end-to-end-based mechanism that can effectively detect evil twin access point attacks in wireless hotspots

    Towards Secure, Power-Efficient and Location-Aware Mobile Computing

    Get PDF
    In the post-PC era, mobile devices will replace desktops and become the main personal computer for many people. People rely on mobile devices such as smartphones and tablets for everything in their daily lives. A common requirement for mobile computing is wireless communication. It allows mobile devices to fetch remote resources easily. Unfortunately, the increasing demand of the mobility brings many new wireless management challenges such as security, energy-saving and location-awareness. These challenges have already impeded the advancement of mobile systems. In this dissertation we attempt to discover the guidelines of how to mitigate these problems through three general communication patterns in 802.11 wireless networks. We propose a cross-section of a few interesting and important enhancements to manage wireless connectivity. These enhancements provide useful primitives for the design of next-generation mobile systems in the future.;Specifically, we improve the association mechanism for wireless clients to defend against rogue wireless Access Points (APs) in Wireless LANs (WLANs) and vehicular networks. Real-world prototype systems confirm that our scheme can achieve high accuracy to detect even sophisticated rogue APs under various network conditions. We also develop a power-efficient system to reduce the energy consumption for mobile devices working as software-defined APs. Experimental results show that our system allows the Wi-Fi interface to sleep for up to 88% of the total time in several different applications and reduce the system energy by up to 33%. We achieve this while retaining comparable user experiences. Finally, we design a fine-grained scalable group localization algorithm to enable location-aware wireless communication. Our prototype implemented on commercial smartphones proves that our algorithm can quickly locate a group of mobile devices with centimeter-level accuracy
    corecore