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Abstract—We explore the use of clock skew of a wireless local area network access point (AP) as its fingerprint to detect unauthorized 
APs quickly and accurately. The main goal behind using clock skews is to overcome one of the major limitations of existing 
solutions—the inability to effectively detect Medium Access Control (MAC) address spoofing. We calculate the clock skew of an AP 
from the IEEE 802.11 Time Synchronization Function (TSF) time stamps sent out in the beacon/probe response frames. We use two 
different methods for this purpose—one based on linear programming and the other based on least-square fit. We supplement these 
methods with a heuristic for differentiating original packets from those sent by the fake APs. We collect TSF time stamp data from 
several APs in three different residential settings. Using our measurement data as well as data obtained from a large conference 
setting, we find that clock skews remain consistent over time for the same AP but vary significantly across APs. Furthermore, we 
improve the resolution of received time stamp of the frames and show that with this enhancement, our methodology can find clock 
skews very quickly, using 50-100 packets in most of the cases. We also discuss and quantify the impact of various external factors 
including temperature variation, virtualization, clock source selection, and NTP synchronization on clock skews. Our results indicate 
that the use of clock skews appears to be an efficient and robust method for detecting fake APs in wireless local area networks.

Index Terms—IEEE 802.11, fingerprint, MAC address spoofing, fake access point, time stamp.
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1 Introduction

With advances in microtechnology and wireless net­

works, networked mobile systems are becoming 

increasingly prevalent. There is also an ever growing 

demand for ubiquitous services. These two factors are 

fueling a wide-scale deployment of wireless networks 

including the IEEE 802.11 wireless local area networks. 

However, because of their importance in providing ubiqui­

tous services and their inherent vulnerability due to 

broadcast nature of the wireless medium, the wireless local 

area networks (WLANs) are also becoming targets of a 

variety of attacks. One of the ways in which a WLAN can be 

attacked is by introducing one or more unauthorized fake 
Access Points (APs) in the network [1], [2], [3], [4], A fake 

AP can be set up by a malicious attacker (Fig. 1) to 

masquerade as an authorized AP by spoofing the author­

ized AP's medium access control (MAC) address. This fake 

AP is used to fool a wireless node in the WLAN into 

accessing the network through the fake AP instead of the 

authorized one. The fake AP can then launch a variety of 

attacks thereby compromising the security of the wireless 

communication. Setting up fake APs is not hard. Public 

domain programs including rghieap [5] sniff 802.11 probe 

request frames to find out the default AP of the probing 

wireless node, and then, impersonate the default AP.
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Therefore, detecting unauthorized APs is a very important 

task of WLAN intrusion detection systems (WIDSs).
The new wireless security enhancement 802.l l i  RSNA 

(Robust Security Network Association) uses traditional 
cryptographic methods (i.e., digital certificates) to provide 
strong mutual authentication between wireless clients and 
the APs. Although this solution, if implemented properly, 
will make the fake AP attack less likely, the following 
practical issues can still make wireless networks using 
802.11i RSNA vulnerable. First, management and verifica­
tion of digital certificates across different domains are 
known to be cumbersome. Second, as the current AP 
selection algorithms use signal strength as the only criteria 
for AP selection, users can be fooled to connect to the fake 
AP that has a higher signal strength compared to the 
original one but does not support any security measures 
such as RSNA.1 Third, an attacker can also set up fake APs 
having the same identifiers (MAC address, basic service set 
identifier (BSSID) and service set identifier (SSID)) as the 
original AP and evade detection by using different physical 
channel characteristics (by using short/long preambles, 
operating in a different channel, etc.). These facts motivate 
us to find a viable noncryptographic solution to the fake AP 
attack. We emphasize that this solution is not meant to 
replace existing cryptographic methods. Rather, it should 
be used in conjunction with the cryptographic methods to 
achieve a higher level of security in WLANs. The current 
state-of-the-art noncrypto methods for unauthorized AP 
detection [1], [7], [3], [8], [4] cannot detect fake APs.

In this paper, we explore a passive online scheme that can 
detect fake APs with high accuracy and minimum overhead.

1. This security rollback/downgrade attack is possible in 802.11i RSNA 
networks [6],
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Fig. 1. A fake AP attack scenario.

This scheme, like the one proposed by Kohno et al. for 
fingerprinting personal computers and servers [9], is based 

on estimating clock skews of APs. An AP's clock skew acts 

as its fingerprint. Kohno and coauthors [9], [10] have shown 
that the clock skew of a device remains fairly consistent over 
time but the clock skews vary significantly across devices 
thereby arguing that the clock skew of a device can be used 

as its reliable fingerprint. However, Kohno's scheme 
focused on wide-area wired networks. Its application in a 
local area setting can result in higher accuracy. Unlike 

Kohno's scheme that uses TCP/ICMP time stamps, in our 
scheme, we use the Time Synchronization Function (TSF) 

time stamps in the IEEE 802.11 beacon/probe response 
messages sent by the AP, to determine its clock skew. The 

use of beacons has several advantages. First, beacons are 
sent all the time and at a fast rate (typically, 10 to 100 frames 

per second) independent of any application. Second, the 
granularity of 802.11 TSF timer is 1 microsecond which is 
much higher than that of TCP time stamp clocks. Third, as 

the beacon time stamp is the actual time when an AP sends a 

frame (i.e., the time after the channel is sensed to be free) 
rather than the time when it is scheduled to send the frame, 

we do not need to consider any significant unpredictable 

delays incurred by the network as in the case of TCP time 
stamps. Therefore, our scheme estimates more accurate 
clock skews and much faster compared to the TCP/ICMP 

time stamp approach [9]. We also improve upon the time 
taken for estimating the clock skew by using high-precision 

timers, at the fingerprinting node, that have resolutions in 
the order of microseconds to measure the arrival time of 
beacon frames.

We examine two different methods for estimating the 
clock skew of an AP. Our first method is based on the linear 

programming approach, first proposed by Moon et al. [11] 
and later used by Kohno et al. [9]. This method finds a line 
that upper bounds all the time offsets calculated from the 

time stamps in the AP beacons and the time of arrival of 

those beacons at fingerprinting node. The slope of this line 
is our clock skew estimate. Our second method is based on 

finding a line that is at the least-square distance from all the 

time offsets. The slope of the line represents our estimate of 
clock skew. As we show later in Section 5, both of these 
methods perform their tasks fairly well. However, in the 

special case when the frames transmitted by the fake AP are 
interspersed with the frames transmitted from the author­

ized AP that is being faked, both of these methods fail to 

determine clock skews accurately. These methods are not

even designed to handle this scenario. To achieve separa­
tion of frames with the same identifiers but from different 

APs, we develop a novel heuristic for differentiating frames 
sent by the fake AP and the authorized one that is being 

faked. Our heuristic exploits differences both in the beacon 
time stamp values of different APs as well as the different 

rate of increment of those values. We also use our clock- 
skew-based fingerprinting technique in a wireless ad hoc 

setting to identify individual nodes but find that it is very 

difficult to estimate a node's clock skew accurately in this 
setting because of periodic clock synchronization among 

the nodes.
For our experimentation and evaluation, we implement 

our methodology on laptops running Linux and measure 

the clock skews of a wide range of APs from different 

manufacturers in three different residential settings. We 
also use WLAN traces from the 2004 ACM Sigcomm 

conference to compute the clock skews of the APs used at 

the conference venue. From our experiments, we find that 
an AP's clock skew remains consistent over time but the 

clock skew varies across APs. Therefore, an AP's clock 

skew can be used as its fingerprint. In our WLAN setting 
with predictable beacon delays and high-resolution time 

stamps, we can find clock skews very quickly, using 50- 

100 packets in most cases. We also discuss and quantify 

the impact of various external factors including tempera­
ture variation, virtualization, and NTP synchronization on 

clock skew. Very importantly, we also explore the 

possibility of engineering clock skews to allow a fake AP 

to generate the clock skew of the original one. Our 

exploration results indicate that the use of clock skews 
appears to be an efficient and robust method for detecting 

fake APs in WLANs.
In a real deployment, we expect our methodology to be 

implemented on the WIDS nodes. In order to verify 

whether or not an AP is genuine, a WIDS node can 

compute the clock skew of the AP and compare with the 

precomputed clock skew of the AP with the same identity 

(e.g., MAC address).
The rest of this paper is organized as follows: Section 2 

describes the threat model that we address in this paper. We 
describe our clock skew estimation methodology in Section 3. 
Section 4 contains a description of our implementation, and 

Section 5 contains our experimental results. Fabrication of 

clock skews is discussed in Section 6. In Section 7, we explore 

the utility of our scheme in wireless ad hoc networks to 
identify participating devices uniquely. We survey the 
existing work on detecting unauthorized APs in Section 8. 

We conclude the paper in Section 9 by summarizing our 

work and indicating directions for future work.

2 Threat  Model

An adversary can set up an unauthorized AP to masquer­

ade as an authorized one.

There are two scenarios in which a fake AP can operate:

•  The fake AP and the authorized AP that is being 

faked are both active at the same time. As the current 
AP selection mechanisms use signal strength as the 
only selection criteria, the user will select the fake
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AP if he measures the fake AP's signal strength to be 
higher than the original AP.

•  Only the fake AP is active and the authorized AP 
being faked is inactive. This can happen when the 
authorized AP has failed on its own or due to a 
Denial-of-Service attack from the adversary, or when 

the user moves to a location where only the fake AP 
is reachable. The adversary can facilitate this by 
tracking and following the user.

In our threat model, the adversary is powerful enough to 

modify any of the MAC address, BSSID, and SSID fields of 

any frame he wants. The adversary can also capture, collect, 
and analyze any amount of data without being detected 

even before actually trying to break into the network. If the 

packets are sent across the network in encrypted form, the 
adversary can gather enough packets needed to launch 

password guessing attacks. It can also decrypt the packets 

once it succeeds in guessing the password.
Our methodology will address the detection of unauthor­

ized APs in all these cases. As our method is based on a 

physical characteristics of the AP (i.e., the clock skew), it can 
detect MAC, BSSID, and SSID spoofing, whether the 

authorized AP is active or not. We expect the clock-skew- 

based methodology to be deployed in the WIDS nodes for 
detecting unauthorized APs in WLANs. We assume that the 

adversary cannot break into WIDS nodes. We also assume 
that the attacker does not have access to any custom 

hardware that can generate fake time stamps at a very fine 
granularity. We discuss this issue in more detail in Section 6.

3 M et hodology

In an IEEE 802.11 infrastructure WLAN, there are two 

methods that a client station (STA) may use to find an AP in 

the WLAN [12].

•  Active scanning: The STA sends a probe request 

frame to determine which APs are within range. The 
APs in the vicinity then reply back with probe 

response frames.
•  Passive scanning: The STA learns about the APs in 

the WLAN by listening to the beacon frames 

broadcast by the APs.

The probe response and the beacon frames both have an

8 byte time stamp. The time stamp field contains the value 

of TSF timer of the AP when it sends the frame. The beacons 

are scheduled to be sent at periodic intervals by the APs. 

The time stamps in the beacon frames do not get affected by 

the random medium access delays of the wireless medium 

as hardware sets the time stamp value just before actual 
transmission. The TSF timer is a 64 bit timer which is 

initialized at the time of starting the AP and incremented 

once every microsecond.

Our solution uses TSF time stamps in beacon/probe 
response frames to estimate the clock skew of an AP and 

uses the clock skew as the AP's fingerprint. An access 
point's (or regular computer's) clock consists of primarily 

two parts:

•  Oscillator: An oscillator is controlled by a crystal 
and it ticks at a fixed frequency.

•  Counter: A counter keeps track of the number of 
ticks produced by the oscillator.

The exact frequency of a crystal depends primarily on the 

type of the crystal and the angle at which the crystal was 

cut relative to its axes. However, in reality, even two 

crystals of the same type and the same cut will have slightly 

different frequencies due to the limited mechanical accu­

racy of the cutting process [13]. This is the primary reason 

behind the existence of clock skew even between seemingly 
similar clocks.

Let us assume that a fingerprinter node (a WIDS node) 

has received n beacon frames from a particular AP. Let the 

time stamp in the /'th beacon frame be T, and let t-, be the 

time in microsecond when the fingerprinter receives the zth 

beacon frame. Let Si be the size of the /th beacon frame and 
Ri be the data rate at which /'th beacon frame is sent. 

Therefore, the time, according to the AP's clock, when the 
fingerprinter receives the packet is T, + Si / R,. Let our 

estimated offset for the /th frame be denoted o; and the time 

difference between the first received frame and the zth 

frame according to the fingerprinter's clock be x, . Then,

Xi = ti - h, (1)

Oi = {{T + Si/Ri) - {Tl + Si/Ri)) - (ti - tl). (2)

In most of the cases, the beacon frames are sent at a 

fixed-data rate and the size of the beacon frames remain 

fixed as well [12]. So, we can assume that S;/R, = S\ /R.\. 
This yields,

oi = (T - Ti) - (ti - ti). (3)

Now, if the clock skew of a particular device remains 

constant and if we plot (x.j, o,j, we will get an approximately 

linear pattern. The clock skew can be estimated as the slope 

of this linear pattern. Let us call the set of points 

(.i'i. o\ ), ,  (x„. on) the clock offset-set of the AP.

We evaluate two different methods for estimating the 
clock skew from the offset-set—a linear-programming- 

based method (LPM) that was proposed in [11] and later 

used by [9] and a least-square fit (LSF) method.

3.1 Linear Programming Method (LPM)
LPM finds a line Sx + <f>, where 6 is the slope of the line and 

<I> is the y-axis intercept, that upper bounds the points in the 

clock offset-set of the AP and outputs the slope of the line, 8, 
as the clock skew estimate. So, our clock skew estimation 8 
is such that Vi = 1 ... n

S.Xi + (f) > Oi, (4)

and the following function is minimized:

n

1/ U■ ^ 2 ( S-Xi + (t) ~ °i)- (5)
i=1

This problem can be solved using linear programming 

methods for two variables.

The LPM method minimizes the effect of any unpre­
dictable delays as it has higher tolerance toward outliers. 

The clock skew estimate remains stable even if there is 
significant number of outliers. However, in our case, the

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.



452 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

number of outliers is very less because no significant 

random delay is involved in the communication path and 

the TSF clocks have a higher precision than TCP time 

stamp clocks.
Interestingly, LPM's nature to tolerate the outliers may 

cause a serious security problem in our context. If an 

adversary is able to mix small number of beacons from a 

fake AP with the beacons of the authorized one, it is faking, 

and if the clock skew of the fake AP is close to the clock 
skew of authorized one, then this method might consider 

the fake AP frames as outliers and estimate the clock skew 
of the authorized AP as the clock skew of the set. In this 

case, it will be difficult to detect the fake AP by comparing 

the clock skews.

3.2 Least-Square Fitting (LSF)
We can also use LSF to estimate the clock skew of an AP 
from its clock offset-set. Given an offset-set (x\,o\
(xn, on), LSF finds a line 6x + <p, where 6 is the slope of the 

line and <j> is the y-axis intercept such that

n

- (S.Xi + (f>))2 (6)
2=1

remains minimum. The slope of the line 6 is estimated as 
the clock skew of the clock offset-set.

One of the major differences of LSF from LPM is its lack 

of tolerance toward outliers. Even if there are only a very 

few outliers, the clock skew estimated by LSF will vary 

significantly from the clock skew determined by the 

majority of the points. This can cause problems while 

estimating clock skew from noisy data. Kohno et al. [9] 

decided not to use LSF for estimation of TCP clock skew 

because TCP segments can undergo random delays in the 

network which can affect the accuracy of the clock skew 

estimate. However, as mentioned earlier, in our case, the 

absence of any unpredictable delays makes the number of 

outliers insignificant. Therefore, we can use the LSF to 

estimate clock skews effectively. LSF has an advantage over 

LPM in the scenario where an adversary tries to avoid 
detection by interspersing frames from a fake AP with the 

frames from the authorized one as described above. LSF's 

sensitivity to the presence of even a small number of 

outliers will help determining the fake AP in the above 

scenario more effectively than LPM. So, it will be difficult 

for the adversary to masquerade frames from the fake AP as 

outlying data when LSF is used to estimate the clock skew.

We measure and compare the effectiveness of these two 
methods in estimating clock skews in Section 5.

3.3 Differentiating Frames of Fake APs
Separation of the clock offset-sets of the fake AP(s) and the 
authorized AP (if present) helps us to gain insight about the 

fake APs. For example, if the attacker uses multiple fake 

APs to fake one authorized AP, we can detect the fake APs 
by separating the clock offset-sets.

The general problem of fitting multiple lines to a data set 

is not new. In the domain of computer vision and image 
processing, Generalized Hough Transform (GHT) [14], [15] 

is a well-known technique that can be used for this purpose. 

However, the main drawback of GHT is that it is

computationally intensive and requires a large amount of 

storage. Even though techniques like Randomized Hough 
Transform (RHT) [16] try to minimize these effects, the time 

required by these techniques is still quite high. The use of 
GHT is justified in the domain of image processing and 

computer graphics because images normally contain large 
number of edges and GHT can detect all of them together. 

However, in our case, we expect to have very few lines.
Another approach to solve the problem of fitting multi­

ple lines to a data set is to model the data as a mixture 
model and apply the well-known statistical method of 
expectation maximization (EM) to separate the data [17]. 

However, the EM algorithm requires the initial parameters 

to be guessed and the accuracy of the results depends on 
the values of these initial parameters. Furthermore, EM 

requires multiple iterations to converge.
We note that the complexities and the computation 

intensiveness of these algorithms arise from their attempt to 
solve a general problem without any domain-specific 
assumptions. In our problem domain, we have some 
specific characteristics of the data that help us to create a 
less complex and lightweight solution. We know the 
following facts about the clock offset-sets:

•  The thickness of the lines in the clock offset-set plot 
(i.e., the variance of the points in the set) remains 
mostly constant across the APs.

•  The amount of noise in the data is negligible. 

Keeping these facts in mind and borrowing ideas from both 

of the aforementioned methods, we design a lightweight 
heuristic that solves our problem efficiently.

Our heuristic relies on the fact that if a clock offset-set is 
calculated from the beacons received from different APs, 

then the clock offset-set will contain certain jumps (i.e., 

sudden big changes in the value) at the boundary where 
one packet is from one AP and the successive packet is from 

another AP. Our heuristic identifies these jumps and 
differentiates the data based on it.

We exploit this fact to differentiate packets from different 
APs. Let Aij be the relative skew between two samples in the 

clock offset-set (x̂ y-,) and (Xj,yj). Ay is defined as follows:

A ij = | y% — yj\/\xi — Xj |, (7)

where |a; is the absolute value of x.
We introduce a tunable parameter called threshold to 

differentiate between jump and consistent increment. Thus, 

two consecutive points (x^yi) and (Xj,yj) in the clock 
offset-set are considered to be a jump if and only if 
A > threshold. Using this definition of jump, we can 

segregate the clock offset-set data into separate groups 
based on the jumps taken.

In Algorithm 1, threshold is the only parameter that can 

be and must be tuned. A limit can also be imposed on the 

count field to filter out small number of outliers that are not 
part of any data set. However, we do not expect the WLAN 

samples to contain outliers that are not part of any sample, 
and hence, we do not set any limit on or tune the count 

field. The value of threshold can be estimated empirically 
from the clock offset-set of a single AP. Algorithm 2 

describes the algorithm for finding the threshold value from 
the test data.
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Algorithm 1. Separate clock offset-set points based on 

originating AP

accumulator[0].dataset ■<= [(xi,yi)] 

accumulator [0\.current-point -4= (x\,y\) 
accumulator[0\.current-offset ■<= 1 
accumulator [0].count 1 

for * = 2 to n do 

for each entry j  in accumulator do 

k -4= accumulator[j].current-offset 
if A,-/. < threshold then

add (x, , !]; ) to data set of accumulator entry j  
accumulator[j\.count ■<= accumulator\j].count + 

1

accumulator\j\. current -point -4= (xi,yi) 
accumulator[j].current-offset •<= i 

end if 

end for

if none of the entry in accumulator satisfies

(Aik < threshold) then 

add a new accumulator entry p

p.dataset -4= [(a?*,?/*)] 
p.count <= 1
p.current-point ■<= (xi,yi) 
p.current-off set <= i 

end if 

end for

output number of entries in accumulator as number of 

different data sets 

output the data sets of accumulator entries as different 

data sets from the APs

Algorithm 2. Calculate threshold from test clock offset-set 

finalthreshold 0 

for each test data set do 

threshold ■<= A 12 

for i = 3 to n do

if > threshold then

threshold •<= A,;(j_!) 

end if 

end for

if threshold > finalthreshold then 

finalthreshold •<= threshold 
end if 

end for

output finalthreshold as final calculated threshold

We estimate the threshold using the above algorithm from 
different test data sets. We find that the threshold estimated 
from a very small amount of data (i.e., 50-100 packets 
depending on the received time stamp resolution) is enough 

to separate a wide variety of data sets. From our experi­
mental results, we find that the threshold value depends on 
the fingerprinter as well as on the AP which is being 
fingerprinted. However, these variations are very small 
compared to the variations in relative skew caused by mixing 
beacons from different APs. Our results suggest that we can 
use the same threshold to separate beacon packets from 
diverse set of APs. Our results also show that the value of 
threshold estimated by the test data depends on the method 

we use to generate the receiver's time stamps. For example, if

we use our modified Mad Wifi driver, described later in 
Section 4, then the threshold is estimated as 0.003, whereas if 
we use jiffies2 to estimate the time stamp, then the value of 
threshold becomes 0.05.

Once the data sets are separated using the above 

heuristic, we can use either LPM- or LSF-based methods 

to estimate the exact clock skew of different fake APs.

4 Implementation

We implement our methodology for capturing beacon 

frames, recording time stamps, and computing clock skews 

of APs, presented in the last section, on two laptops—an 

Acer TravelMate 2303 NLC running Ubuntu Linux 7.4 and 

an Acer Aspire running SUSE Linux 10.1. We use two 

wireless cards—a Linksys WPC 55AG and a Intel PRO/ 

Wireless 3945ABG. The Linksys card uses an Atheros chipset 

that works with the Mad Wifi driver. We chose these cards 

because they both support the monitor mode and also 

because their drivers are open source. The availability of the 

source code allows us to modify the drivers to measure the 
arrival time of beacon frames with higher resolution as 

described below. As the success of our methodology is 

closely tied to how precisely we can measure time, most of 
our implementation effort targets obtaining high-precision 

time measurements and we will focus on this very aspect of 

our implementation in the rest of this section.

In order to accurately estimate the clock skew of an AP, 

we need to precisely measure the time when a beacon frame 

reaches the wireless LAN card of the fingerprinter. We will 

now describe and discuss three different mechanisms that 

we explore for the purpose of accurately measuring the 
arrival time of a beacon frame at the fingerprinter. We first 

explore the use of sniffers such as tcpdump [18], to find the 
arrival time of a frame. Even though this mechanism does 

not require any changes in the system, we note that the time 

stamp generated by tcpdump includes variable processing 

time of the operating system. Therefore, use of tcpdump 

time stamp is not suitable for our purpose.
Next, we explore using the Prism monitoring headers in 

the MadWifi driver [19] and the Intel 3945ABG driver [20]. 

These drivers allow additional Prism monitoring headers to 

be added to frames arriving at the wireless card which has 

a 4-byte time stamp field. The drivers use it to report the 

time when the packet is received by the wireless cards. 

However, we find that the precision of the time reported by 

MadWifi is not accurate enough to detect the clock skew 

quickly and accurately. In Linux, MadWifi driver puts the 

current value of the jiffies variable in the time stamp field. 
jiffies is a counter incremented at regular intervals by the 

Linux kernel through timer interrupts. By default, it is 

incremented once every 4 ms in recent Linux kernels 

(newer than 2.6.13). This interval is a configurable para­

meter that can also be set to 1 ms or 10 ms [21]. Therefore, 
the highest resolution available for incrementing jiffies in 

Linux is 1 ms. Making the jiffies counter arbitrarily small is 

not desirable because the number of timer interrupts being 

invoked per second depends on this value and will increase

1. jiffies is a variable maintained and incremented once in every 4 ms by 
the Linux kernel.
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significantly. High timer interrupt overhead can lead to 

unstable system behavior. Now, as noted before in Section 3, 

the TSF counter in the AP is incremented once every 

microsecond. Therefore, the clock skew of an AP cannot be 

estimated quickly and accurately with a 1 ms precision 

clock at fingerprinter's end.
The 1 ms resolution limitation of jiffies leads us to explore 

a third mechanism. Here, our goal is to use a microsecond 

precision time stamp. However, a microsecond precision 

time stamp will quickly overflow a 4 byte field that the 

Prism header allows and has room for. To deal with this 

problem, we use another header called the Radiotap header 

that has an 8 byte time stamp field. Normally, when the 

Mad Wifi or the IPW 3945 ABG drivers receive a frame, the 

current value of the TSF timer of the fingerprinter is stored 

in the time stamp field of the Radiotap header [19], [20]. 

Both these drivers maintain a microsecond resolution TSF 

timer. However, this TSF timer is synchronized to the time 

stamps of the received beacon frames. Therefore, it cannot 

be used for an accurate measurement of the clock skew. We 

modify both the drivers to call do_gettimeofday, which 

supports microsecond resolution, each time a frame is 

received and stores the time stamp in the 8 byte time stamp 
field of the Radiotap header. We show in Section 5 that 

using this improvement clock skews can be estimated 

accurately by examining 50-100 packets in most of the cases. 

We end this section by analyzing the overheads caused by 
our monitoring scheme.

The use of do_gettimeofday in our scheme does not add 

any significant performance overhead because time stamps 
are recorded only when a wireless card is in the monitor 

mode and the Radiotap headers are enabled. Moreover, we 

also introduce an ioctl system call to turn this feature on or 

off allowing us to turn off this feature when we are not 

measuring clock skews. As the packet capture for measur­

ing skew only takes small amount of time (2-3 minutes), the 
overhead due to enabling this feature only for that duration 

is not significant.

5 Experim ental R esults

We use experimental traces from two very different settings 
to test our methodology for detecting unauthorized APs. 
Our first set of traces is from data collected during the ACM 
Sigcomm 2004 conference [22], The Sigcomm conference 
network comprised 5 different APs. Five PCs, each with 
three Netgear WAG 311 wireless adapters, were used for 
wireless sniffing. The details of the data collection settings 
can be found in [22]. As the Sigcomm data set represents a 
heavily used 802.11 wireless network, we use it to estimate 
the number of frames needed to estimate the clock skew 
accurately in a loaded network. Kohno et al. [9] performed 
extensive measurements to show that clock skews of 
networked devices remained consistent over a long time. 
Our main goal here is to verify that this observation holds in 
case of APs as well, and estimate how quickly and 
accurately we can estimate the clock skew of APs.

We obtain our second set of traces by collecting wireless 

data in three different residential settings each with multi­

ple APs operating simultaneously. One residential setting 

(residential setting A) has 8 APs and two other ones

TABLE 1
Skew Estimates for Samples (Collected by Chihuahua) 

with Different Sample Sizes

Packets examined skew(using LPM) skew(using LSF)

100 49.36 ppm 42.73 ppm

200 50.69 ppm 46.14 ppm

300 51.21 ppm 47.98 ppm

400 51.21 ppm 48.42 ppm

500 51.21 ppm 49.06 ppm

600 51.21 ppm 49.32 ppm

The samples contain beacon frames sent by sigcomm-nat.

(residential setting B and residential setting C) have 21 APs 

and 12 APs, respectively, from different manufacturers. We 

use two laptops that implement our measurement metho­

dology, as described in the last section, to collect the packet 

traces. We collect the packet traces on multiple days in same 

residential settings to verify the consistency of AP clock 

skews over time.

We use the measure parts per million, essentially fis/s, 

denoted as ppm, to quantify clock skew. We describe the 

results of our experiments with the Sigcomm and the 

residential traces in the following sections.

5.1 Results from the Sigcomm Trace
Each packet in the Sigcomm traces has a prism header 

which contains receive time stamp of that packet. As stated 

in Section 4, the time stamps in Prism headers are in terms 

of jiffies. We also note in Section 4 that the resolution 

obtained with jiffies is in milliseconds.3 Therefore, the 
Sigcomm data do not contain very precise time measure­

ments in comparison to the data we collect with micro­
second resolution. However, the Sigcomm data can still be 

used for estimating clock skews, albeit using more samples.
First, to check the consistency of the AP clock skew over 

time, we create 20 equal sized sample data sets by selecting 
blocks of packets starting from random offset from the trace 
collected by the machine chihuahua and measure the clock 
skew of a particular AP, with SSID sigcomm-nat, for each 
data set. We find that the clock skew estimate remains 
around 51.25 ppm (using LPM) and between 51.09 and 
51.37 ppm (using LSF) for each of the sets. This reaffirms 
that the clock skew of an AP remains consistent over time. 
Next, we try to figure out the speed of convergence of our 
procedure, i.e., what is the minimum number of packets 
that we need to examine to get a close skew estimate. We 
start with the skew estimates for the first 100 packets, and 
then, increment the number of packets by 100 and measure 
the clock skew in each of the cases. The skew estimate 
results are shown in Table 1.

As can be seen in Table 1, the minimum number of 

packets needed to converge to a clock skew is 300 (using 
LPM). However, when we use LSF, even 600 packets are not 

enough to converge to a small range of clock skews. In fact, 

900 packets (not shown in the table) are required to 

converge to the 51.09-51.37 range. Later, we will show in

3. As the Sigcomm trace was collected in 2004 (when 2.4 Linux kernels 
were latest ones), we assume that the resolution of jiffies is 10 ms. However, 
this assumption does not have any effect on the consistency of an AP clock 
skew or on the comparison between the clock skews of different APs. It only 
helps us in estimating absolute values of the skews which are easier to 
comprehend than comparing them using their ratio.
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Fig. 2. Skew estimates of samples containing 300 packets taken at 
different times by chihuahua. The samples contain beacon frames sent 
by sigcomm-nat.

Section 5.2 that LSF can also estimate clock skews accurately 
using the same number of packets as LPM if we use the 
higher resolution receiver time stamps. To verify if the clock 

skew estimated by monitoring 300 packets using LPM 

remains consistent over time, we take 32 random samples, 

each of size 300 packets, from the trace and we estimate the 
clock skew for each sample. Fig. 2 shows the estimated 
clock skew as a function of the experiment number. We find 

that all the estimates remain very close to 51.25 ppm which 

is the actual estimate of the skew made over all the packets 
(shown by the dashed line in Fig. 2).

Thus, we can see that even using lower resolution time 

stamps (i.e., jiffies), we can estimate clock skews fairly 

accurately. However, we require 300 or more packets. In 
Section 5.2, we show that using higher resolution time 

stamp, we can estimate skews much faster.

We also examine the skew estimates for different APs 
based on the time measurement data collected at different 

machines. The skew estimate results based on data from 
four different machines are shown in Fig. 3. We note that 

the clock skew estimates differ across different measure­

ment nodes. This observation suggests that we must 

compare clock skews only from the same measuring node.

5.2 Results from the Residential Traces
In this section, we will refer to the Acer TravelMate 2303 
NLC laptop as laptopl and Acer Aspire laptop as laptop2. 
We use the monitor mode supported by the wireless cards 
in both the laptops for capturing beacon frames and also 

enable the Radiotap headers in the packets (as described in 
Section 4) that we capture.

First, we measure the clock skew of two different Linksys 
APs (Linksysl and Linksys2). The packets for this trace are 
collected using laptopl. Fig. 4 plots the offset-sets for the 
APs. Next, in order to study the consistency of the clock 
skews of different APs over time, we collect offset-sets from 
eight different APs (including Linksysl and Linksys2) in 
residential setting A on two different days while keeping all 
the other parameters (i.e., the time span of capture, etc.) 
same.4 Table 2 shows the skew estimates of all APs in 
residential setting A on two different days using LPM and 
LSF. As we did not have control over all the APs, 
manufacturer name is predicted based on the manufacturer 
specific first 3 bytes of the MAC address. The clock skew

4. We do not have any control over the amount of wireless traffic 
generated in these experiments. However, the traffic variation does not 
affect our results.

AP

Fingerprinter

Chihuahua Mo ave Sonoran Kalahari

skew

(LPM)

skew

(LSF)

skew

(LPM)

skew

(LSF)

skew

(LPM)

skew

(LSF)

skew

(LPM)

skew

(LSF)

sigcomm-nat 51.25 51.20

sigcomm-nat-foye 40.30 40.39 34.99 35.29 44.91 45.00

sigcomm-public- 48.16 48.21 49.94 49.34

sigcomm-public- 48.82 48.90 32.59 32.62 42.69 42.98

Fig. 3. Skew estimates of different APs by chihuahua, Kalahari, Mojave, 
and Sonoran. All skew estimates are in part per million.

estimates measured in residential settings B and C are 
shown in Tables 3 and 4, respectively.

For all the three tables, we are able to estimate the clock 
skews accurately by analyzing 50-100 packets in most of the 

cases. Therefore, we find that microseconds resolution 

receiver time stamps that we use in our methodology result 
in a big improvement over millisecond resolution receiver 

time stamps that needed about 300 packets (or more for LSF) 
for accurate estimation of the clock skew (as shown in 

Section 5.1). This provides almost 20 times improvement over 

Kohno's results [9] where, on average, 1,000-2,000 packets 
were needed for a correct skew estimation. If we consider 

average time taken to estimate the skew, using higher 

precision time stamps in a more predictable WLAN setting 

takes only 2-3 minutes, whereas Kohno's clock skew 
estimates performed in a wide-area setting with coarser time 

stamps [9] take about 30 minutes-1 hour to converge. This 
makes our use of clock skew in the WLAN settings 15-20 times 

faster. We also make other important observations from these 

tables. First, clock skews are different for different APs. 
Second, the clock skew for a given AP is consistent over the 

two measurements. Third, clock skews obtained using LPM 

closely match those obtained using LSF.

5.3 Differentiating Frames of Fake APs
To simulate the attack scenarios where a fake AP and an 
authorized AP are active at the same time, we construct 

synthetic data sets by mixing beacon packets collected in real 

packet captures from multiple APs. While creating this data 

sets, we preserve the order in which the packets were received 
by the fingerprinter. As the fake AP and the authorized AP, 

both have the same MAC address, and the fingerprinter has 

no way of separating the packets. We analyze the effect of this 
intermingling on our estimation methods. We also test the

Fig. 4. TSF clock offset-sets for two different Linksys APs. Clock skew 
estimations are -64.23 and -45.69 ppm.
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TABLE 2
Clock Skew Estimates in Residential Setting A as Measured from laptop2

AP 1st Measure(LPM) 1st Measure(LSF) 2nd Measure(LPM) 2nd Measure(LSF)

Linksysl -64.23 ppm -64.10 ppm -64.90 ppm -64.77 ppm

Linksys2 -45.69 ppm -45.96ppm -46.94 ppm -46.71 ppm

Linksys3 -62.05 ppm -61.84 ppm -62.77 ppm -62.64 ppm

Belkin 1 -56.37 ppm -56.57 ppm -56.71 ppm -56.85 ppm

Belkin2 -1105.50 ppm -1105.69 ppm -1106.29 ppm -1106.06 ppm

Netgearl -58.08 ppm -57.78 ppm -58.86 ppm -59.25 ppm

Dlinkl -47.27 ppm -47.17 ppm -47.80 ppm -48.14 ppm

Unknown1 -40.91 ppm -40.99 ppm -41.61 ppm -41.47 ppm

efficiency of our algorithm for separating the packets using 

these synthetic data sets.

Table 5 shows that in some cases (e.g., cases 1, 2, and 4), 

the skew estimated using LPM is same as the skew of one of 

the APs whose packets are intermingled.5 These results 

suggest that when we use LPM, we might miss a fake AP 

operating at the same time as the authorized AP. This points 
to a serious problem in using LPM. On the contrary, the 

skews estimated by LSF are exceptionally large than the 

actual clock skews of each of the contributing AP. So, by just 

observing the skew value, we can conclude that some fake 
APs are active. Therefore, when using higher resolution 

receive time stamps LSF alone can be used to detect fake APs. 

However, if the receive time stamps are of low resolution, 

both LPM and LSF should be used. This is because LPM uses 

fewer packets than LSF to estimate the clock skew accurately. 

On the other hand, LSF detects the mixing of packets from 

different sources with a higher success rate than LPM.
We apply our packet separation algorithm (Algorithm 1), 

as described in Section 3, to all the five synthetic data sets 
that we use for Table 5 as well as to 10 other synthetic data 
sets created from traces collected by laptopl. Recall that 
Algorithm 1 requires a threshold that is used to differentiate 
between the jumps and the consistent increments of the 
clock offsets. We calculate this threshold using Algorithm 2 
for each data set. Once this threshold has been determined, 
we use Algorithm 1 to separate out the beacon packets of the 
fake APs from the ones sent by the authentic ones. We find 
that for all data sets, our algorithm accurately predicts the 
number of APs generating the data and correctly separates 
the offset-set corresponding to each AP. Algorithm 1 can 
also be used to separate packets in real time. Fig. 6 shows 
how the accuracy of separation increases with increase in 
the number of packets used to estimate the threshold. We 
observe that 75 packets are needed to estimate a threshold 
that achieves 99 percent accurate packet separation on 
average (over the five synthetic traces used in Table 5). 
These separated packets from the fake APs must be ignored 
by the wireless users. These packets can also be used to 
fingerprint the fake APs and determine their locations.

5.4 Impact of External Factors on Clock Skews
We now discuss the impact of external factors on clock skews.

5. In some cases (e.g., cases 3 and 5), LPM estimates the skew to be 0 ppm 
because some of the clock offset-set values become extremely large due to 
the intermingling of packets. As LPM tries to use the highest values in the 
clock offset-set to estimate clock skew, it finds that the differences between 
these large values are negligible compared to the values themselves. 
Therefore, in these cases, LPM approximates the clock skews as 0 ppm. An 
example is shown in Fig. 5.

5.4.1 Effect of Virtual APs on Clock Skew

Virtual APs use single wireless hardware to simulate 

multiple APs with different MAC Addresses, SSIDs, and 

BSSIDs. In this aspect, virtual APs are not much different

TABLE 3
Clock Skew Estimates (Using LPM) in 

Residential Setting B as Measured from laptopl

AP Clock Skew AP Clock Skew

Linksysl 22.53 ppm MeruNetworks 1 28.14 ppm

Linksys2 17.51 ppm MeruNetworks2 32.53 ppm

Unknown 31.66 ppm Trapeze Networks 1 23.66 ppm

Linksys3 20.67 ppm Trapeze Networks2 11.50 ppm

Linksys4 24.95 ppm Dlink2 30.50 ppm

Linksys5 23.54 ppm Linksys6 23.21 ppm

Unknown1 42.33 ppm Trendwar 34.28 ppm

Unknown2 36.22 ppm Dlink3 12.84 ppm

Unknown3 39.28 ppm Unknown5 35.5 ppm

DLinkl 30.85 ppm Linksys7 27.70 ppm

Unknown4 33.26 ppm

TABLE 4
Clock Skew Estimates (Using LPM) in 

Residential Setting C as Measured from laptop2

AP Clock Skew AP Clock Skew

Linksysl -42.01 ppm Apple 1 -33.35 ppm

Linksys2 -21.21 ppm Un known1 -34.56ppm

Linksys3 -35.16 ppm ActionTec 1 -32.77ppm

Linksys4 -28.04 ppm Microsoft 1 -7.93 ppm

Unknown4 -37.54 ppm Unknown2 -31.48 ppm

Unknown5 -46.34 ppm Unknown3 -36.08 ppm
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Fig. 5. LPM and LSF output using clock offset-set calculated from 
mixed beacon packets of three different APs (Case 5 in Table 5). 
The skew estimated by LPM is 0 ppm and LSF skew estimate is 
4,256,390,000 ppm.
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TABLE 5
Measure of Skew from the Synthetic Data Set

Case Data Sets mixed original skews skew(using LPM) skew(using LSF) Data sets estimated

1 2 62.05,62.47 62.47 4614750000 2

2 2 40.91,48.60 40.91 363843000 2

3 2 60.03,45.69 0 406340000 2

4 2 60.61,1106.31 1106.31 4729570 2

5 3 55.14,60.61,1106.31 0 4256390000 3

All skews are absolute values. Note that the skews estimated by LSF are extremely large because of the mixing which helps us to detect the
presence of fake APs much faster than LPM.

from virtual machines where multiple machines are 
simulated on the same hardware. However, from our 

experiments, we find that unlike the virtual machine clocks 
which normally have higher skew than real machines, as 

shown by Kohno et al. [9], all virtual APs being emulated on 
a particular hardware have the same clock skew, and the 

clock skew is in the same range as the real AP clock skews. 
This happens because while sending the time stamp, all 
virtual APs read from the same hardware timer and send 

the value unaltered. Virtual APs do not maintain separate 
virtual clocks. Therefore, all virtual APs using the real 

hardware clock will have the same clock skew as the real 

hardware clock. We test with five different APs (three 
Trapeze networks APs running their default firmware and 
two Linksys WRT54G APs running the DD-WRT firmware 

[23]). We simulate four virtual APs on each of the five real 
APs. Our results, as shown in Table 6, confirm the above 

argument. This implies that our methodology can also be 
used to distinguish virtual APs from real APs.

5.4.2 Effect of Temperature on Clock Skew 

It has been shown in existing work [9], [10] that under normal 

PC operating temperatures, the clock skew of a device 
remains constant within ±1 ppm. It has also been noted [10] 

that this temperature change can also occur due to varying 
processor load. However, Pasztor and Veitch [24] have 

shown that for small time periods (less than 1,000 seconds), 
the clock skew variance remains less than ±0.1 ppm. The 
results presented in another existing work [10] also support 

this observation as the change of clock skew due to 

temperature variance in their results occurs gradually. 
Therefore, in order to be able to track any changes in the 
clock skew of genuine APs and for detecting fake ones in the 

presence of clock skew variation with temperature, we 
propose using a "rolling signature" scheme described in 
Algorithm 3. We propose that an AP's clock skew must be

Fig. 6. Mean correct packet separation rate versus number of packets 
examined to estimate threshold.

updated to a new value if the difference between the new 

measured value and the old value is within a threshold. The 

nodes that measure clock skews (e.g., WIDS nodes) should 

collect packets from different APs and execute Algorithm 3 

over each 50-100 beacon frame block. Since collection of 

50-100 beacon frames typically takes much less than 1,000s, 

we can assume that the clock skew variance due to 

temperature will cause the consecutive clock skew estimates 
to differ only by approximately ±0.1 ppm rather than 

±1 ppm. This method thus enables our scheme to compare 
measured clock skews with a higher precision in comparison 

to the one used by Kohno et al. [9].

Algorithm 3. Fake AP detection algorithm 

Calculate new skew
if (newskew - currentskew) < max skew variance then 

currentskew newskew 
AP is original 

else

Fake AP detected, 

end if

As, we measure relative skew between two physical 
clocks, extrapolating the findings of [24], we can set max 
skew variance to ±0.2 ppm. In our high precision residential 
traces, when using the same fingerprinter, all but one pair of 
access points (Linksys5 and Trapeze Networks 1 in Table 3) 
differ by more than 0.2 ppm.

5.4.3 Effect of NTP Synchronization of Fingerprinter’s 

Clock on Skew Estimate

Unlike the approach used by Kohno et al. [9], we do not 
synchronize the fingerprinter's clock using the Network 
Time Protocol (NTP) or any other clock synchronization 
mechanism. Rather, we measure clock skew of an AP 
relative to the fingerprinter. Our measurement times are 
expected to be small (2-3 minutes) and the time stamps are 
measured in microseconds. NTPv4 is accurate within
10 milliseconds over the wide-area Internet and within 
200 microseconds over an LAN. The default minimum 
polling interval for NTP is 64 seconds [25]. However, in our

TABLE 6 
Skew of Virtual APs

AP Virt. API Virt. AP2 Virt. AP3 Virt. AP4

1 23.66 23.66 23.66 23.66

2 17.53 17.54 17.17 17.34

3 28.55 28.56 28.56 28.55

4 32.45 32.46 32.45 32.45

5 21.24 21.28 21.27 21.24
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TABLE 7
Comparison of Clock Skew Estimates of Same APs Measured 

from laptop2 Running on AC Power and Battery Power

AP Skew (AC power) Skew (battery power)

Linksysl -64.23 ppm 272.62 ppm

Linksys2 -45.69 ppm 254.10 ppm

The measurements were taken in residential setting A.

case, as the time stamps are measured in microseconds and 
the estimates of the clock skews are in the range of 100 ppm, 
enabling NTPv4 will not provide enough accuracy to make 
the clock skew estimates independent of the fingerprinter's 
own clock skew. However, in our problem definition, the 
fingerprinter (a WIDS node in a WLAN environment) 
remains the same. So, this dependence on the fingerprin­
ter's clock is not an issue in our scheme.

5.4.4 Selection of Fingerprinter’s Clock Source 

As mentioned earlier in Section 4, in a PC running Linux, 
gettimeofday system call provides microsecond resolution 
time stamps, gettimeofday internally uses PC's internal clock 
source to generate microsecond granularity time stamps. 
However, any modern PC normally has more than one clock 
source. The actual number and type of the clock sources 
depend on the particular model of the processor and the 
motherboard being used in the PC. The Linux kernel chooses 
the best available clock source in the PC for tracking time 
stamps that are reported by the gettimeofday system call. 
Some common clock sources are [26]—Programmable Inter­
val Timer (PIT), Time Stamp Counter (TSC), Advanced 
Configuration and Power Interface Power Management 
Timer (ACPI PMT), and High-Precision Event Timer (HPET).

As all these internal clock sources are physically different, 
they will have different clock skew. As described earlier, our 
estimates of the AP's clock skew are also dependent on the 
fingerprinter's clock skew. Therefore, while using time 
stamps from gettimeofday to measure clock skew of an 
AP, we must check whether the same clock source is being 
used by the kernel for all the measurements. The Linux 
kernel dynamically selects the most accurate clock source 
available as the internal clock source for the kernel. The 
accuracy of certain clock sources can change depending on 
different conditions. For example, in a particular device, 
TSC might be initially selected as the clock source for 
gettimeofday. However, after some time if that device 
switches to battery power from AC power, the Linux kernel 
will decrease the frequency of the processor (assuming that 
the processor supports frequency scaling that has been 
enabled) to save power. This will cause the TSC to go slower 
and might result in inconsistent time values. In this 
situation, the kernel will select some other clock source 
instead of TSC. Table 7 shows the change in clock skew 
estimates caused by the change of power source. To avoid 
these scenarios, for all our measurements, we use ACPI PMT 
clock source as this clock source is available in almost all 
modern laptops and its frequency does not get affected by 
external events including a switch to battery power.

6  Fabricat ion  o f  C lo ck  S kew s

Our approach to detect a malicious AP is based on the clock 

skew of the AP. As an AP broadcasts beacon packets, an

attacker can also listen to those packets, and then, calculate 

the relative clock skew of the AP with respect to its own 
clock skew. Using this clock skew estimate, an attacker can 

try to masquerade as the original AP by generating fake 

time stamps by adding proper offsets (those calculated from 

the measured skew) to its own time stamp. Let S denote the 

relative skew of the original AP as calculated by the 
attacker. Now the attacker can read its own time stamp T* 

and try to generate fake sequence of time stamps TFi using 
the following equation:

TFi = Ti + S*Ti. (8)

There can be two scenarios where an attacker can try to 

fake an original AP based on whether the original AP is 

active at the time of attack or not. If the attacker and the 

original AP are both active at the same time, the attacker's 
beacon frames will get mixed with the beacons sent by the 

original AP. As the attacker cannot control the time when 

the original AP sends its beacons, some of the beacons from 
the attacker might reach the receiver earlier than the 

beacons from the original one and some might reach later. 

As a result, the calculated skew will differ from the skew of 

the original AP (as shown in Table 5) and the attacker can 
be detected.6

Now, consider the scenario where only the attacker is 

active and it is fabricating time stamps by using the relative 
skew of the original AP that it calculated when the original 

AP was active. In order to test how accurately the attacker 
can fabricate time stamps, we examine systems that use the 

open-source MadWifi and Intel 3945ABG drivers. In these 

systems, channel sensing is done by the wireless hardware 

for the performance reasons. Furthermore, the time stamp 

in the beacon packets is set by the hardware when it 

actually transmits the packet. None of the wireless hard­

ware supported by these drivers allow the time stamp to be 
set by software. However, these drivers support a mode 

called the raw packet injection mode, where the drivers can 

transmit any byte stream as a link layer frame without any 
modification. Thus, an attacker can send beacon frames 

with forged time stamps using this mode. Even with this 

capability, an attacker cannot fabricate the original APs 

clocks skew as we explain below.
In an IEEE 802.11 wireless network medium access 

control, before sending any frame, the sender is required to 
sense the channel for any other ongoing communication. If 

the sender finds the channel to be idle for the Distributed 

Interframe Sequence (DIFS) duration, the sender delays its 
transmission by a number of random time slots. The length 

of each time slot is chosen from the interval [0, CW] (where 

CW is the contention window size). If the channel is still 
idle after the random delay, depending on configuration, 

either the sender does the Request to Send (RTS)/Clear to 

Send (CTS) handshake, and then, sends the data, or directly 

sends the data bypassing RTS/CTS handshake. These two 

random delays, waiting time for the medium to be free and 

random back off time before actual transmission, make the 
exact time between when a wireless frame is handed over to

6. Additionally, the sequence number of the received beacons will 
not increase monotonically as it should if only one AP is active as 
shown by [27],
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Fig. 7. TSF clock offset-sets for the original AP. Clock skew estimation 
for this AP is -178.83 ppm (using LPM).

Fig. 8. TSF clock offset-sets for the attacker with forged time stamps. 
Clock skew estimation is -35 ppm (using LPM).

the driver and when it is actually sent unpredictable. 

Therefore, the forged time stamp used by the attacker will 

not reflect the actual time of transmission, and thus, will not 

result in the same clock skew as that of the original AP.
To test the effectiveness of clock skew fabrication 

quantitatively, we first measure the clock skew of an AP 

from an attacker PC. The RTS/CTS mechanism is disabled. 

We also modify the rfakeap program [28] to send beacon 

packets with forged time stamps created by offsetting the 

attacker's time stamp with the skew of the original AP 

measured by the attacker. We shut down the original AP 

and run this modified rfakeap program on the attacker PC. 

We calculate the clock skew of the attacker PC based on the 

time stamps in the rfkeap beacons. We show the results of 

our clock skew calculations in Figs. 7 and 8. As expected, we 

see that the attacker's clock skew using forged time stamps 

differs significantly from the skew of the original AP.

One might be able to design a wireless card in the future 

that allows beacon time stamps to be directly set by software. 

We now argue that even when armed with such a wireless 
card, it will be hard for an attacker fabricating the clock skews 

to go undetected. In an IEEE 802.11 network, an AP schedules 

transmission of a beacon frame every beacon interval. The 

time instant at which an AP schedules transmission of a 

beacon is called the Target Beacon Transmission Time 

(TBTT). IEEE 802.11 defines time zero as a TBTT. The 

subsequent TBTT values are multiples of the beacon interval. 

Now, even though each beacon is scheduled to be sent at a 

TBTT, the actual time at which a beacon is transmitted 

depends on the time to process the beacon and the time to 

acquire the shared medium. The actual time at which the 

beacon is transmitted is included in the beacon. Therefore, 

based on the beacon number and the beacon interval and the 

actual time of beacon transmission, a receiver (e.g., a WIDS 

node) can determine the delay between scheduling a beacon 

and the actual transmission of the beacon. Let T denote this 

delay. Let Tb be the beacon processing delay and Tc be the 
contention delay in acquiring the wireless medium. Then, 

T = Tb + T( '. Note that in systems running the MadWifi and 

the Intel 3945ABG drivers, the beacon frames are prioritized 

over data frames. The beacon frames and the data frames 

have separate hardware queues. Thus, the number of data 
frames in the data queue has no impact on the actual beacon 

transmission time.

A WIDS node that observes a large number of beacon 

frames can find the minimum values of T. This minimum 

value corresponds to the situation where the medium

contention time Tc is minimum. Now, when an attacker 

armed with the capability to directly set beacon time stamps 

wishes to fake the clock skew of an AP, it must calculate the 
actual offset by performing a floating point multiplication 

and an addition/subtraction operation (as shown in (8)). 

These operations must be performed by the embedded 

processor in the wireless card which will increase the Tb 
value thereby increasing the minimum value of T. For the 

typical 150-250 MHz processors [29], Tb will increase at 

least by a few microseconds. This increase in the minimum 

value of T can be detected at the WIDS node. Currently, a 

special wireless card that allows beacons time stamps to be 

directly set by software does not exist. Hence, we cannot 

verify our argument in a real implementation.

7 Use  o f  C lock  S kew  in W ireless  A d Ho c  

Netw orks  to Identify Individual No d e s

In this section, we explore the possibility of using clock 

skews to uniquely identify different devices participating in 

a wireless ad hoc network. According to the IEEE 802.11 

protocol specifications, all nodes in an ad hoc network must 

broadcast beacon packets periodically containing time 

stamps according to their own clock. The time stamps in 

these beacon packets are meant for synchronizing the clocks 

of all nodes. Each participating device periodically syn­

chronizes its clock using the beacon time stamps it receives, 

by applying a clock synchronization algorithm that ensures 

the monotonicity of each node's clock. As mentioned in 

Section 6, in 802.11 infrastructure networks, beacons are 

only sent at TBTT. Similarly, in an IEEE 802.11 ad hoc 

network, to avoid collision while sending these beacon 

frames, each node waits for TBTT before attempting to send 

a beacon packet. At TBTT, each node backs off for a random 

amount of time before sending the beacon. During this 

random time interval, if a node detects any other node 

transmitting a beacon, it cancels its transmission. If a node 

does not detect any other node transmitting beacon packets 

during the entire random time interval, it sends its own 

beacon packet. After receiving a beacon packet, each node 

updates its clock according to Algorithm 4:

Algorithm 4. Beacon generation and Clock synchronization 

in IEEE 802.11 ad hoc networks 

At each TBTT calculate a random delay and wait for 

that period, 

if a beacon arrives within the delay then

-1 x104 -

-2 x104 -

O 5 x1 O7 1.0x10® 1.5 x1 O8 2.0 x108 2.5 x108 
Time from beginning of experiment(in microsec)
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Fig. 9. Clock offset-sets calculated from beacon packets sent by two 
nodes participating in our ad hoc network. Clock skew estimates (214.89 
and 215.11 ppm) are very close due to fast synchronization.

if beacon's time stamp > local clock's time stamp then 

Update local clock's time stamp to the beacon's 

time stamp 

end if 

else

Send a beacon with local clock's time stamp 

end if

This algorithm ensures that over a period of time, the 
clock of each node will catch up to the fastest clock. This 
frequent synchronization makes it very difficult to estimate 
the accurate clock skew from beacon time stamps as all the 
clock skew estimates tend to be close to the clock skew of 
the fastest clock. To test the effect of the synchronization 
mechanism on our algorithms that we describe in earlier 
sections of this paper, we use a simple two-node IEEE 
802.11 wireless ad hoc network. We collect beacon frames 
sent by each of the two nodes at the other node. According 
to Algorithm 4, a node's clock will synchronize with the 
time stamps sent by the other node with the faster clock. 
Our two-node ad hoc network w ill result in a fast 
synchronization of the slower clock. In larger networks, 
all but the node with the slowest clock will synchronize 
slowly because for each of these nodes, there will be some 
slower nodes whose time stamps will be ignored by that 
particular node. Furthermore, in larger networks, the 
opportunities to transmit beacon packets might be missed 
due to higher wireless medium contention. We wish to 
study the effect of fast synchronization on our algorithms in 
order to understand their applicability in ad hoc settings. 
Our two-node testbed suffices for this purpose. Fig. 9 shows 
the effect of fast synchronization on our clock-skew-based 
scheme. We observer that the clock offset-sets of two nodes 
almost overlap each other. The estimated clock skews of the 
two nodes are thus very close to each other. This shows that 
in wireless ad hoc networks, it is very difficult to calculate 
accurate clock skews of participating nodes using beacon 
packet time stamps.

One of the possible ways to solve this problem is to 
collect time stamp samples from a node's clock more 
frequently. However, beacon packets are only sent after a 
beacon interval. If we decrease the beacon interval to 
increase the frequency of time stamp samples, the 
synchronization process will also become faster which will 
not help our cause. To address this problem, we explore the 
use of probe response packets instead of beacon packets, 
which also contain the same TSF timer time stamps as the 
beacon packets. However, unlike beacon packets, a node in 
an ad hoc network sends a probe response packet

Fig. 10. Clock offset-sets calculated from probe response packets sent 
by two nodes participating in our ad hoc network.

whenever it receives a probe request packet. Therefore, 
we can send probe request frames and can get time stamp 
values from the resulting probe response packets at a faster 
rate than using the beacon packets. However, we also note 
here that the fingerprinter's clock does not have unlimited 
accuracy. Therefore, if we send probe request packets too 
fast causing the probe response time stamps to be very 
close to each other, the estimated clock offset-set will not be 
accurate due to the errors caused by the measurement 
process. We test this phenomenon in our two-node ad hoc 
network by allowing probe requests to be sent by the two 
nodes as fast as the hardware and the medium allow. 
Fig. 10 shows the clock offsets we obtain from probe 
response packets. We find that the slower clock (i.e., the 
clock with lower clock skew) gets periodically synchro­
nized with the faster clock. However, the offset-set of the 
faster clock also shows irregularities unlike the offset-set 
calculated from the beacon packets. These irregularities are 
caused by the errors introduced by the limited accuracy of 
the measurement process as mentioned earlier. Our results 
show that probe requests should be sent at a rate that is low 
enough to minimize the measurement errors compared to 
the measured clock offset-set but high enough to generate 
enough probe response frames before the clock gets 
synchronized, to allow us to estimate the clock skew 
accurately.

In this paper, we only show the results from a two-node 
ad hoc network. However, for larger networks, with the 

increase in the number of nodes, we expect the synchroni­
zation interval for most of the nodes to increase due to the 
monotonic synchronization algorithm (Algorithm 4), and 
higher medium contention time. Therefore, in larger ad hoc 

networks, it might be possible to gather enough probe 

response packets from participating nodes to estimate their 
clock skews accurately before their clocks get synchronized. 

We plan to devise a practical algorithm to estimate a node's 

clock skew accurately in larger ad hoc networks in the 
future as an extension to our current work.

8 R elated  W o r k

For understanding the related work on detecting unauthor­
ized APs, we first distinguish between rogue APs and fake 
APs. A rogue AP is set up by some naive user for 
convenience and higher productivity [1], [2], [3], [4], If this 
AP's security is not carefully managed, this seemingly 
innocuous practice opens up the network to unauthorized 
wireless hosts, who can now become part of the network 
and launch different types of attacks. In contrast, a fake AP
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is set up by a malicious attacker to masquerade as an 
authorized AP. In this paper, we focus on fake APs. 
Currently, there are two main methods for detecting rogue 
APs—one that monitors wireless networks either manually 
or in an automated fashion by sniffing wireless frames to 
detect rogue APs based on MAC address, BSSID, and SSID- 
based filtering [1], [7], [3], [8], [4], [30], and the other that 
monitors IP traffic to differentiate wireless network access 
from wired access using interpacket delay patterns [31], 
[32], [33]. However, these approaches are ineffective in 
detecting fake APs mainly because all of the identity fields 
(e.g., MAC address) can be easily spoofed.

Bahl et al. [27] proposed a method to detect fake APs 
by monitoring the anomaly in the monotonicity of the 
"sequence number" field of beacon frames sent by the 
authorized AP and the fake AP which is masquerading as 
the authorized one. However, this method can only detect 
the presence of a fake access point; on the contrary, our 
scheme can detect and separate out packets from fake AP. 
Another serious drawback of this method is that it will 
only work if both the authorized AP and the fake AP are 
active at the same time. Bahl et al. [27] also suggested the 
use of a location detection algorithm to detect the fake AP 
if the authorized AP is inactive at the time of detection. 
The accuracy of this method depends on the accuracy of 
the location detection algorithm. If the fake AP operates at 
a location that is very close to the authorized AP's 
working location, then this location detection method will 
be ineffective. Our solution removes these constraints and 
detects unauthorized APs in realistic scenarios. Yin et al. 
proposed a method for detecting rogue APs that also act 
as layer 3 routers. However, this work is also vulnerable 
to MAC spoofing. Franklin et al. [34] introduced a 
technique to fingerprint wireless device drivers. However, 
an attacker can also use fake APs with the same wireless 
device drivers by choosing the same model and the same 
manufacturer as the original one to evade detection.

Our use of clock skew to fingerprint a remote device is 

not new. Kohno et al. [9] have already shown that clock 
skew can be used as a reliable fingerprint for a device. 

However, our contribution is significant because we apply 

the clock-skew-based fingerprinting to a scenario where the 

detections are much faster, accurate, and less vulnerable to 
spoofing attacks compared to Kohno's original scenario that 

uses TCP time stamps.

9 C o n clu sio n s  and  Future W o r k

In this paper, we explored the use of clock skews to detect 
unauthorized access points in wireless local area networks. 
We developed a methodology that benefits from higher 
precision time stamps and higher predictability in a local 
area setting. We evaluated this methodology using traces 
from the ACM Sigcomm 2004 conference and two different 
residence areas. We showed that our high-precision skew 
estimation is an order of magnitude faster and uses an 
order of magnitude less packets compared to the existing 
TCP-/ICMP-based techniques [9]. We also discussed and 
quantified the impact of various external factors including 
temperature variation, virtualization, and NTP synchroni­
zation on clock skew. We also explored the possibility of 
engineering clock skews to allow a fake AP to generate the 
clock skew of the original one. Our exploration results

indicate that the use of clock skews appears to be an 
efficient and robust method for detecting fake APs in 
WLANs. We also used our clock-skew-based fingerprinting 
technique in wireless ad hoc setting to identify individual 
nodes and showed that it is more difficult to estimate a 

node's clock skew accurately due to periodic clock 
synchronization among the nodes. As part of future work, 
we plan to devise a practical algorithm to estimate a node's 
clock skew accurately in ad hoc wireless networks where 
the number of participating nodes is large enough to slow 
down the clock synchronization process. Our solution 

addresses the problem of detecting fake APs effectively, 
but the general problem of finding a noncrypto method to 
detect MAC address spoofing by any wireless host still 
remains an interesting open problem.
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