
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL 9, NO. 3, MARCH 2010 449

O n F a s t a n d A c c u r a t e D e t e c t i o n

o f U n a u t h o r i z e d W i r e l e s s A c c e s s

P o i n t s U s i n g C l o c k S k e w s

Suman Jana and Sneha K. Kasera

Abstract—We explore the use of clock skew of a wireless local area network access point (AP) as its fingerprint to detect unauthorized
APs quickly and accurately. The main goal behind using clock skews is to overcome one of the major limitations of existing
solutions—the inability to effectively detect Medium Access Control (MAC) address spoofing. We calculate the clock skew of an AP
from the IEEE 802.11 Time Synchronization Function (TSF) time stamps sent out in the beacon/probe response frames. We use two
different methods for this purpose—one based on linear programming and the other based on least-square fit. We supplement these
methods with a heuristic for differentiating original packets from those sent by the fake APs. We collect TSF time stamp data from
several APs in three different residential settings. Using our measurement data as well as data obtained from a large conference
setting, we find that clock skews remain consistent over time for the same AP but vary significantly across APs. Furthermore, we
improve the resolution of received time stamp of the frames and show that with this enhancement, our methodology can find clock
skews very quickly, using 50-100 packets in most of the cases. We also discuss and quantify the impact of various external factors
including temperature variation, virtualization, clock source selection, and NTP synchronization on clock skews. Our results indicate
that the use of clock skews appears to be an efficient and robust method for detecting fake APs in wireless local area networks.

Index Terms—IEEE 802.11, fingerprint, MAC address spoofing, fake access point, time stamp.

-------------------- ♦ --------------------

1 Introduction

With advances in microtechnology and wireless net­

works, networked mobile systems are becoming

increasingly prevalent. There is also an ever growing

demand for ubiquitous services. These two factors are

fueling a wide-scale deployment of wireless networks

including the IEEE 802.11 wireless local area networks.

However, because of their importance in providing ubiqui­

tous services and their inherent vulnerability due to

broadcast nature of the wireless medium, the wireless local

area networks (WLANs) are also becoming targets of a

variety of attacks. One of the ways in which a WLAN can be

attacked is by introducing one or more unauthorized fake
Access Points (APs) in the network [1], [2], [3], [4], A fake

AP can be set up by a malicious attacker (Fig. 1) to

masquerade as an authorized AP by spoofing the author­

ized AP's medium access control (MAC) address. This fake

AP is used to fool a wireless node in the WLAN into

accessing the network through the fake AP instead of the

authorized one. The fake AP can then launch a variety of

attacks thereby compromising the security of the wireless

communication. Setting up fake APs is not hard. Public

domain programs including rghieap [5] sniff 802.11 probe

request frames to find out the default AP of the probing

wireless node, and then, impersonate the default AP.

• The authors are with the School of Computing, University of Utah, Salt

Lake City, UT 84112. E-mail: sumanj@gmail.com, kasera@cs.utah.edu.

Manuscript received 23 Oct. 2008; revised 28 May 2009; accepted 4 Aug.

2009; published online 12 Aug. 2009.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2008-10-0425.

Digital Object Identifier no. 10.1109/TMC.2009.145.

Therefore, detecting unauthorized APs is a very important

task of WLAN intrusion detection systems (WIDSs).
The new wireless security enhancement 802.l l i RSNA

(Robust Security Network Association) uses traditional
cryptographic methods (i.e., digital certificates) to provide
strong mutual authentication between wireless clients and
the APs. Although this solution, if implemented properly,
will make the fake AP attack less likely, the following
practical issues can still make wireless networks using
802.11i RSNA vulnerable. First, management and verifica­
tion of digital certificates across different domains are
known to be cumbersome. Second, as the current AP
selection algorithms use signal strength as the only criteria
for AP selection, users can be fooled to connect to the fake
AP that has a higher signal strength compared to the
original one but does not support any security measures
such as RSNA.1 Third, an attacker can also set up fake APs
having the same identifiers (MAC address, basic service set
identifier (BSSID) and service set identifier (SSID)) as the
original AP and evade detection by using different physical
channel characteristics (by using short/long preambles,
operating in a different channel, etc.). These facts motivate
us to find a viable noncryptographic solution to the fake AP
attack. We emphasize that this solution is not meant to
replace existing cryptographic methods. Rather, it should
be used in conjunction with the cryptographic methods to
achieve a higher level of security in WLANs. The current
state-of-the-art noncrypto methods for unauthorized AP
detection [1], [7], [3], [8], [4] cannot detect fake APs.

In this paper, we explore a passive online scheme that can
detect fake APs with high accuracy and minimum overhead.

1. This security rollback/downgrade attack is possible in 802.11i RSNA
networks [6],

1536-1233/10/$26.00 ® 2010 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS
Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sumanj@gmail.com
mailto:kasera@cs.utah.edu
mailto:tmc@computer.org

450 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

a-
Userl

Internet
Fake AP Original AP

User2
f t

WIDS Node

User3 User4

Fig. 1. A fake AP attack scenario.

This scheme, like the one proposed by Kohno et al. for
fingerprinting personal computers and servers [9], is based

on estimating clock skews of APs. An AP's clock skew acts

as its fingerprint. Kohno and coauthors [9], [10] have shown
that the clock skew of a device remains fairly consistent over
time but the clock skews vary significantly across devices
thereby arguing that the clock skew of a device can be used

as its reliable fingerprint. However, Kohno's scheme
focused on wide-area wired networks. Its application in a
local area setting can result in higher accuracy. Unlike

Kohno's scheme that uses TCP/ICMP time stamps, in our
scheme, we use the Time Synchronization Function (TSF)

time stamps in the IEEE 802.11 beacon/probe response
messages sent by the AP, to determine its clock skew. The

use of beacons has several advantages. First, beacons are
sent all the time and at a fast rate (typically, 10 to 100 frames

per second) independent of any application. Second, the
granularity of 802.11 TSF timer is 1 microsecond which is
much higher than that of TCP time stamp clocks. Third, as

the beacon time stamp is the actual time when an AP sends a

frame (i.e., the time after the channel is sensed to be free)
rather than the time when it is scheduled to send the frame,

we do not need to consider any significant unpredictable

delays incurred by the network as in the case of TCP time
stamps. Therefore, our scheme estimates more accurate
clock skews and much faster compared to the TCP/ICMP

time stamp approach [9]. We also improve upon the time
taken for estimating the clock skew by using high-precision

timers, at the fingerprinting node, that have resolutions in
the order of microseconds to measure the arrival time of
beacon frames.

We examine two different methods for estimating the
clock skew of an AP. Our first method is based on the linear

programming approach, first proposed by Moon et al. [11]
and later used by Kohno et al. [9]. This method finds a line
that upper bounds all the time offsets calculated from the

time stamps in the AP beacons and the time of arrival of

those beacons at fingerprinting node. The slope of this line
is our clock skew estimate. Our second method is based on

finding a line that is at the least-square distance from all the

time offsets. The slope of the line represents our estimate of
clock skew. As we show later in Section 5, both of these
methods perform their tasks fairly well. However, in the

special case when the frames transmitted by the fake AP are
interspersed with the frames transmitted from the author­

ized AP that is being faked, both of these methods fail to

determine clock skews accurately. These methods are not

even designed to handle this scenario. To achieve separa­
tion of frames with the same identifiers but from different

APs, we develop a novel heuristic for differentiating frames
sent by the fake AP and the authorized one that is being

faked. Our heuristic exploits differences both in the beacon
time stamp values of different APs as well as the different

rate of increment of those values. We also use our clock-
skew-based fingerprinting technique in a wireless ad hoc

setting to identify individual nodes but find that it is very

difficult to estimate a node's clock skew accurately in this
setting because of periodic clock synchronization among

the nodes.
For our experimentation and evaluation, we implement

our methodology on laptops running Linux and measure

the clock skews of a wide range of APs from different

manufacturers in three different residential settings. We
also use WLAN traces from the 2004 ACM Sigcomm

conference to compute the clock skews of the APs used at

the conference venue. From our experiments, we find that
an AP's clock skew remains consistent over time but the

clock skew varies across APs. Therefore, an AP's clock

skew can be used as its fingerprint. In our WLAN setting
with predictable beacon delays and high-resolution time

stamps, we can find clock skews very quickly, using 50-

100 packets in most cases. We also discuss and quantify

the impact of various external factors including tempera­
ture variation, virtualization, and NTP synchronization on

clock skew. Very importantly, we also explore the

possibility of engineering clock skews to allow a fake AP

to generate the clock skew of the original one. Our

exploration results indicate that the use of clock skews
appears to be an efficient and robust method for detecting

fake APs in WLANs.
In a real deployment, we expect our methodology to be

implemented on the WIDS nodes. In order to verify

whether or not an AP is genuine, a WIDS node can

compute the clock skew of the AP and compare with the

precomputed clock skew of the AP with the same identity

(e.g., MAC address).
The rest of this paper is organized as follows: Section 2

describes the threat model that we address in this paper. We
describe our clock skew estimation methodology in Section 3.
Section 4 contains a description of our implementation, and

Section 5 contains our experimental results. Fabrication of

clock skews is discussed in Section 6. In Section 7, we explore

the utility of our scheme in wireless ad hoc networks to
identify participating devices uniquely. We survey the
existing work on detecting unauthorized APs in Section 8.

We conclude the paper in Section 9 by summarizing our

work and indicating directions for future work.

2 Threat Model

An adversary can set up an unauthorized AP to masquer­

ade as an authorized one.

There are two scenarios in which a fake AP can operate:

• The fake AP and the authorized AP that is being

faked are both active at the same time. As the current
AP selection mechanisms use signal strength as the
only selection criteria, the user will select the fake

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

JANA AND KASERA: ON FAST AND ACCURATE DETECTION OF UNAUTHORIZED WIRELESS ACCESS POINTS USING CLOCK SKEWS 451

AP if he measures the fake AP's signal strength to be
higher than the original AP.

• Only the fake AP is active and the authorized AP
being faked is inactive. This can happen when the
authorized AP has failed on its own or due to a
Denial-of-Service attack from the adversary, or when

the user moves to a location where only the fake AP
is reachable. The adversary can facilitate this by
tracking and following the user.

In our threat model, the adversary is powerful enough to

modify any of the MAC address, BSSID, and SSID fields of

any frame he wants. The adversary can also capture, collect,
and analyze any amount of data without being detected

even before actually trying to break into the network. If the

packets are sent across the network in encrypted form, the
adversary can gather enough packets needed to launch

password guessing attacks. It can also decrypt the packets

once it succeeds in guessing the password.
Our methodology will address the detection of unauthor­

ized APs in all these cases. As our method is based on a

physical characteristics of the AP (i.e., the clock skew), it can
detect MAC, BSSID, and SSID spoofing, whether the

authorized AP is active or not. We expect the clock-skew-

based methodology to be deployed in the WIDS nodes for
detecting unauthorized APs in WLANs. We assume that the

adversary cannot break into WIDS nodes. We also assume
that the attacker does not have access to any custom

hardware that can generate fake time stamps at a very fine
granularity. We discuss this issue in more detail in Section 6.

3 M et hodology

In an IEEE 802.11 infrastructure WLAN, there are two

methods that a client station (STA) may use to find an AP in

the WLAN [12].

• Active scanning: The STA sends a probe request

frame to determine which APs are within range. The
APs in the vicinity then reply back with probe

response frames.
• Passive scanning: The STA learns about the APs in

the WLAN by listening to the beacon frames

broadcast by the APs.

The probe response and the beacon frames both have an

8 byte time stamp. The time stamp field contains the value

of TSF timer of the AP when it sends the frame. The beacons

are scheduled to be sent at periodic intervals by the APs.

The time stamps in the beacon frames do not get affected by

the random medium access delays of the wireless medium

as hardware sets the time stamp value just before actual
transmission. The TSF timer is a 64 bit timer which is

initialized at the time of starting the AP and incremented

once every microsecond.

Our solution uses TSF time stamps in beacon/probe
response frames to estimate the clock skew of an AP and

uses the clock skew as the AP's fingerprint. An access
point's (or regular computer's) clock consists of primarily

two parts:

• Oscillator: An oscillator is controlled by a crystal
and it ticks at a fixed frequency.

• Counter: A counter keeps track of the number of
ticks produced by the oscillator.

The exact frequency of a crystal depends primarily on the

type of the crystal and the angle at which the crystal was

cut relative to its axes. However, in reality, even two

crystals of the same type and the same cut will have slightly

different frequencies due to the limited mechanical accu­

racy of the cutting process [13]. This is the primary reason

behind the existence of clock skew even between seemingly
similar clocks.

Let us assume that a fingerprinter node (a WIDS node)

has received n beacon frames from a particular AP. Let the

time stamp in the /'th beacon frame be T, and let t-, be the

time in microsecond when the fingerprinter receives the zth

beacon frame. Let Si be the size of the /th beacon frame and
Ri be the data rate at which /'th beacon frame is sent.

Therefore, the time, according to the AP's clock, when the
fingerprinter receives the packet is T, + Si / R,. Let our

estimated offset for the /th frame be denoted o; and the time

difference between the first received frame and the zth

frame according to the fingerprinter's clock be x, . Then,

Xi = ti - h, (1)

Oi = {{T + Si/Ri) - {Tl + Si/Ri)) - (ti - tl). (2)

In most of the cases, the beacon frames are sent at a

fixed-data rate and the size of the beacon frames remain

fixed as well [12]. So, we can assume that S;/R, = S\ /R.\.
This yields,

oi = (T - Ti) - (ti - ti). (3)

Now, if the clock skew of a particular device remains

constant and if we plot (x.j, o,j, we will get an approximately

linear pattern. The clock skew can be estimated as the slope

of this linear pattern. Let us call the set of points

(.i'i. o\), , (x„. on) the clock offset-set of the AP.

We evaluate two different methods for estimating the
clock skew from the offset-set—a linear-programming-

based method (LPM) that was proposed in [11] and later

used by [9] and a least-square fit (LSF) method.

3.1 Linear Programming Method (LPM)
LPM finds a line Sx + <f>, where 6 is the slope of the line and

<I> is the y-axis intercept, that upper bounds the points in the

clock offset-set of the AP and outputs the slope of the line, 8,
as the clock skew estimate. So, our clock skew estimation 8
is such that Vi = 1 ... n

S.Xi + (f) > Oi, (4)

and the following function is minimized:

n

1/ U■ ^ 2 (S-Xi + (t) ~ °i)- (5)
i=1

This problem can be solved using linear programming

methods for two variables.

The LPM method minimizes the effect of any unpre­
dictable delays as it has higher tolerance toward outliers.

The clock skew estimate remains stable even if there is
significant number of outliers. However, in our case, the

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

452 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

number of outliers is very less because no significant

random delay is involved in the communication path and

the TSF clocks have a higher precision than TCP time

stamp clocks.
Interestingly, LPM's nature to tolerate the outliers may

cause a serious security problem in our context. If an

adversary is able to mix small number of beacons from a

fake AP with the beacons of the authorized one, it is faking,

and if the clock skew of the fake AP is close to the clock
skew of authorized one, then this method might consider

the fake AP frames as outliers and estimate the clock skew
of the authorized AP as the clock skew of the set. In this

case, it will be difficult to detect the fake AP by comparing

the clock skews.

3.2 Least-Square Fitting (LSF)
We can also use LSF to estimate the clock skew of an AP
from its clock offset-set. Given an offset-set (x\,o\
(xn, on), LSF finds a line 6x + <p, where 6 is the slope of the

line and <j> is the y-axis intercept such that

n

- (S.Xi + (f>))2 (6)
2=1

remains minimum. The slope of the line 6 is estimated as
the clock skew of the clock offset-set.

One of the major differences of LSF from LPM is its lack

of tolerance toward outliers. Even if there are only a very

few outliers, the clock skew estimated by LSF will vary

significantly from the clock skew determined by the

majority of the points. This can cause problems while

estimating clock skew from noisy data. Kohno et al. [9]

decided not to use LSF for estimation of TCP clock skew

because TCP segments can undergo random delays in the

network which can affect the accuracy of the clock skew

estimate. However, as mentioned earlier, in our case, the

absence of any unpredictable delays makes the number of

outliers insignificant. Therefore, we can use the LSF to

estimate clock skews effectively. LSF has an advantage over

LPM in the scenario where an adversary tries to avoid
detection by interspersing frames from a fake AP with the

frames from the authorized one as described above. LSF's

sensitivity to the presence of even a small number of

outliers will help determining the fake AP in the above

scenario more effectively than LPM. So, it will be difficult

for the adversary to masquerade frames from the fake AP as

outlying data when LSF is used to estimate the clock skew.

We measure and compare the effectiveness of these two
methods in estimating clock skews in Section 5.

3.3 Differentiating Frames of Fake APs
Separation of the clock offset-sets of the fake AP(s) and the
authorized AP (if present) helps us to gain insight about the

fake APs. For example, if the attacker uses multiple fake

APs to fake one authorized AP, we can detect the fake APs
by separating the clock offset-sets.

The general problem of fitting multiple lines to a data set

is not new. In the domain of computer vision and image
processing, Generalized Hough Transform (GHT) [14], [15]

is a well-known technique that can be used for this purpose.

However, the main drawback of GHT is that it is

computationally intensive and requires a large amount of

storage. Even though techniques like Randomized Hough
Transform (RHT) [16] try to minimize these effects, the time

required by these techniques is still quite high. The use of
GHT is justified in the domain of image processing and

computer graphics because images normally contain large
number of edges and GHT can detect all of them together.

However, in our case, we expect to have very few lines.
Another approach to solve the problem of fitting multi­

ple lines to a data set is to model the data as a mixture
model and apply the well-known statistical method of
expectation maximization (EM) to separate the data [17].

However, the EM algorithm requires the initial parameters

to be guessed and the accuracy of the results depends on
the values of these initial parameters. Furthermore, EM

requires multiple iterations to converge.
We note that the complexities and the computation

intensiveness of these algorithms arise from their attempt to
solve a general problem without any domain-specific
assumptions. In our problem domain, we have some
specific characteristics of the data that help us to create a
less complex and lightweight solution. We know the
following facts about the clock offset-sets:

• The thickness of the lines in the clock offset-set plot
(i.e., the variance of the points in the set) remains
mostly constant across the APs.

• The amount of noise in the data is negligible.

Keeping these facts in mind and borrowing ideas from both

of the aforementioned methods, we design a lightweight
heuristic that solves our problem efficiently.

Our heuristic relies on the fact that if a clock offset-set is
calculated from the beacons received from different APs,

then the clock offset-set will contain certain jumps (i.e.,

sudden big changes in the value) at the boundary where
one packet is from one AP and the successive packet is from

another AP. Our heuristic identifies these jumps and
differentiates the data based on it.

We exploit this fact to differentiate packets from different
APs. Let Aij be the relative skew between two samples in the

clock offset-set (x̂ y-,) and (Xj,yj). Ay is defined as follows:

A ij = | y% — yj\/\xi — Xj |, (7)

where |a; is the absolute value of x.
We introduce a tunable parameter called threshold to

differentiate between jump and consistent increment. Thus,

two consecutive points (x^yi) and (Xj,yj) in the clock
offset-set are considered to be a jump if and only if
A > threshold. Using this definition of jump, we can

segregate the clock offset-set data into separate groups
based on the jumps taken.

In Algorithm 1, threshold is the only parameter that can

be and must be tuned. A limit can also be imposed on the

count field to filter out small number of outliers that are not
part of any data set. However, we do not expect the WLAN

samples to contain outliers that are not part of any sample,
and hence, we do not set any limit on or tune the count

field. The value of threshold can be estimated empirically
from the clock offset-set of a single AP. Algorithm 2

describes the algorithm for finding the threshold value from
the test data.

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

JANA AND KASERA: ON FAST AND ACCURATE DETECTION OF UNAUTHORIZED WIRELESS ACCESS POINTS USING CLOCK SKEWS 453

Algorithm 1. Separate clock offset-set points based on

originating AP

accumulator[0].dataset ■<= [(xi,yi)]

accumulator [0\.current-point -4= (x\,y\)
accumulator[0\.current-offset ■<= 1
accumulator [0].count 1

for * = 2 to n do

for each entry j in accumulator do

k -4= accumulator[j].current-offset
if A,-/. < threshold then

add (x, , !];) to data set of accumulator entry j
accumulator[j\.count ■<= accumulator\j].count +

1

accumulator\j\. current -point -4= (xi,yi)
accumulator[j].current-offset •<= i

end if

end for

if none of the entry in accumulator satisfies

(Aik < threshold) then

add a new accumulator entry p

p.dataset -4= [(a?*,?/*)]
p.count <= 1
p.current-point ■<= (xi,yi)
p.current-off set <= i

end if

end for

output number of entries in accumulator as number of

different data sets

output the data sets of accumulator entries as different

data sets from the APs

Algorithm 2. Calculate threshold from test clock offset-set

finalthreshold 0

for each test data set do

threshold ■<= A 12

for i = 3 to n do

if > threshold then

threshold •<= A,;(j_!)

end if

end for

if threshold > finalthreshold then

finalthreshold •<= threshold
end if

end for

output finalthreshold as final calculated threshold

We estimate the threshold using the above algorithm from
different test data sets. We find that the threshold estimated
from a very small amount of data (i.e., 50-100 packets
depending on the received time stamp resolution) is enough

to separate a wide variety of data sets. From our experi­
mental results, we find that the threshold value depends on
the fingerprinter as well as on the AP which is being
fingerprinted. However, these variations are very small
compared to the variations in relative skew caused by mixing
beacons from different APs. Our results suggest that we can
use the same threshold to separate beacon packets from
diverse set of APs. Our results also show that the value of
threshold estimated by the test data depends on the method

we use to generate the receiver's time stamps. For example, if

we use our modified Mad Wifi driver, described later in
Section 4, then the threshold is estimated as 0.003, whereas if
we use jiffies2 to estimate the time stamp, then the value of
threshold becomes 0.05.

Once the data sets are separated using the above

heuristic, we can use either LPM- or LSF-based methods

to estimate the exact clock skew of different fake APs.

4 Implementation

We implement our methodology for capturing beacon

frames, recording time stamps, and computing clock skews

of APs, presented in the last section, on two laptops—an

Acer TravelMate 2303 NLC running Ubuntu Linux 7.4 and

an Acer Aspire running SUSE Linux 10.1. We use two

wireless cards—a Linksys WPC 55AG and a Intel PRO/

Wireless 3945ABG. The Linksys card uses an Atheros chipset

that works with the Mad Wifi driver. We chose these cards

because they both support the monitor mode and also

because their drivers are open source. The availability of the

source code allows us to modify the drivers to measure the
arrival time of beacon frames with higher resolution as

described below. As the success of our methodology is

closely tied to how precisely we can measure time, most of
our implementation effort targets obtaining high-precision

time measurements and we will focus on this very aspect of

our implementation in the rest of this section.

In order to accurately estimate the clock skew of an AP,

we need to precisely measure the time when a beacon frame

reaches the wireless LAN card of the fingerprinter. We will

now describe and discuss three different mechanisms that

we explore for the purpose of accurately measuring the
arrival time of a beacon frame at the fingerprinter. We first

explore the use of sniffers such as tcpdump [18], to find the
arrival time of a frame. Even though this mechanism does

not require any changes in the system, we note that the time

stamp generated by tcpdump includes variable processing

time of the operating system. Therefore, use of tcpdump

time stamp is not suitable for our purpose.
Next, we explore using the Prism monitoring headers in

the MadWifi driver [19] and the Intel 3945ABG driver [20].

These drivers allow additional Prism monitoring headers to

be added to frames arriving at the wireless card which has

a 4-byte time stamp field. The drivers use it to report the

time when the packet is received by the wireless cards.

However, we find that the precision of the time reported by

MadWifi is not accurate enough to detect the clock skew

quickly and accurately. In Linux, MadWifi driver puts the

current value of the jiffies variable in the time stamp field.
jiffies is a counter incremented at regular intervals by the

Linux kernel through timer interrupts. By default, it is

incremented once every 4 ms in recent Linux kernels

(newer than 2.6.13). This interval is a configurable para­

meter that can also be set to 1 ms or 10 ms [21]. Therefore,
the highest resolution available for incrementing jiffies in

Linux is 1 ms. Making the jiffies counter arbitrarily small is

not desirable because the number of timer interrupts being

invoked per second depends on this value and will increase

1. jiffies is a variable maintained and incremented once in every 4 ms by
the Linux kernel.

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

454 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

significantly. High timer interrupt overhead can lead to

unstable system behavior. Now, as noted before in Section 3,

the TSF counter in the AP is incremented once every

microsecond. Therefore, the clock skew of an AP cannot be

estimated quickly and accurately with a 1 ms precision

clock at fingerprinter's end.
The 1 ms resolution limitation of jiffies leads us to explore

a third mechanism. Here, our goal is to use a microsecond

precision time stamp. However, a microsecond precision

time stamp will quickly overflow a 4 byte field that the

Prism header allows and has room for. To deal with this

problem, we use another header called the Radiotap header

that has an 8 byte time stamp field. Normally, when the

Mad Wifi or the IPW 3945 ABG drivers receive a frame, the

current value of the TSF timer of the fingerprinter is stored

in the time stamp field of the Radiotap header [19], [20].

Both these drivers maintain a microsecond resolution TSF

timer. However, this TSF timer is synchronized to the time

stamps of the received beacon frames. Therefore, it cannot

be used for an accurate measurement of the clock skew. We

modify both the drivers to call do_gettimeofday, which

supports microsecond resolution, each time a frame is

received and stores the time stamp in the 8 byte time stamp
field of the Radiotap header. We show in Section 5 that

using this improvement clock skews can be estimated

accurately by examining 50-100 packets in most of the cases.

We end this section by analyzing the overheads caused by
our monitoring scheme.

The use of do_gettimeofday in our scheme does not add

any significant performance overhead because time stamps
are recorded only when a wireless card is in the monitor

mode and the Radiotap headers are enabled. Moreover, we

also introduce an ioctl system call to turn this feature on or

off allowing us to turn off this feature when we are not

measuring clock skews. As the packet capture for measur­

ing skew only takes small amount of time (2-3 minutes), the
overhead due to enabling this feature only for that duration

is not significant.

5 Experim ental R esults

We use experimental traces from two very different settings
to test our methodology for detecting unauthorized APs.
Our first set of traces is from data collected during the ACM
Sigcomm 2004 conference [22], The Sigcomm conference
network comprised 5 different APs. Five PCs, each with
three Netgear WAG 311 wireless adapters, were used for
wireless sniffing. The details of the data collection settings
can be found in [22]. As the Sigcomm data set represents a
heavily used 802.11 wireless network, we use it to estimate
the number of frames needed to estimate the clock skew
accurately in a loaded network. Kohno et al. [9] performed
extensive measurements to show that clock skews of
networked devices remained consistent over a long time.
Our main goal here is to verify that this observation holds in
case of APs as well, and estimate how quickly and
accurately we can estimate the clock skew of APs.

We obtain our second set of traces by collecting wireless

data in three different residential settings each with multi­

ple APs operating simultaneously. One residential setting

(residential setting A) has 8 APs and two other ones

TABLE 1
Skew Estimates for Samples (Collected by Chihuahua)

with Different Sample Sizes

Packets examined skew(using LPM) skew(using LSF)

100 49.36 ppm 42.73 ppm

200 50.69 ppm 46.14 ppm

300 51.21 ppm 47.98 ppm

400 51.21 ppm 48.42 ppm

500 51.21 ppm 49.06 ppm

600 51.21 ppm 49.32 ppm

The samples contain beacon frames sent by sigcomm-nat.

(residential setting B and residential setting C) have 21 APs

and 12 APs, respectively, from different manufacturers. We

use two laptops that implement our measurement metho­

dology, as described in the last section, to collect the packet

traces. We collect the packet traces on multiple days in same

residential settings to verify the consistency of AP clock

skews over time.

We use the measure parts per million, essentially fis/s,

denoted as ppm, to quantify clock skew. We describe the

results of our experiments with the Sigcomm and the

residential traces in the following sections.

5.1 Results from the Sigcomm Trace
Each packet in the Sigcomm traces has a prism header

which contains receive time stamp of that packet. As stated

in Section 4, the time stamps in Prism headers are in terms

of jiffies. We also note in Section 4 that the resolution

obtained with jiffies is in milliseconds.3 Therefore, the
Sigcomm data do not contain very precise time measure­

ments in comparison to the data we collect with micro­
second resolution. However, the Sigcomm data can still be

used for estimating clock skews, albeit using more samples.
First, to check the consistency of the AP clock skew over

time, we create 20 equal sized sample data sets by selecting
blocks of packets starting from random offset from the trace
collected by the machine chihuahua and measure the clock
skew of a particular AP, with SSID sigcomm-nat, for each
data set. We find that the clock skew estimate remains
around 51.25 ppm (using LPM) and between 51.09 and
51.37 ppm (using LSF) for each of the sets. This reaffirms
that the clock skew of an AP remains consistent over time.
Next, we try to figure out the speed of convergence of our
procedure, i.e., what is the minimum number of packets
that we need to examine to get a close skew estimate. We
start with the skew estimates for the first 100 packets, and
then, increment the number of packets by 100 and measure
the clock skew in each of the cases. The skew estimate
results are shown in Table 1.

As can be seen in Table 1, the minimum number of

packets needed to converge to a clock skew is 300 (using
LPM). However, when we use LSF, even 600 packets are not

enough to converge to a small range of clock skews. In fact,

900 packets (not shown in the table) are required to

converge to the 51.09-51.37 range. Later, we will show in

3. As the Sigcomm trace was collected in 2004 (when 2.4 Linux kernels
were latest ones), we assume that the resolution of jiffies is 10 ms. However,
this assumption does not have any effect on the consistency of an AP clock
skew or on the comparison between the clock skews of different APs. It only
helps us in estimating absolute values of the skews which are easier to
comprehend than comparing them using their ratio.

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

JANA AND KASERA: ON FAST AND ACCURATE DETECTION OF UNAUTHORIZED WIRELESS ACCESS POINTS USING CLOCK SKEWS 455

52.0 r-

51 .8
CD
CO
-g 51.6
o
O
-22 51 .4

51.0 —1— 1 —1— 1 L-O 5 10 15 20 25 30 35
Experiment No

Fig. 2. Skew estimates of samples containing 300 packets taken at
different times by chihuahua. The samples contain beacon frames sent
by sigcomm-nat.

Section 5.2 that LSF can also estimate clock skews accurately
using the same number of packets as LPM if we use the
higher resolution receiver time stamps. To verify if the clock

skew estimated by monitoring 300 packets using LPM

remains consistent over time, we take 32 random samples,

each of size 300 packets, from the trace and we estimate the
clock skew for each sample. Fig. 2 shows the estimated
clock skew as a function of the experiment number. We find

that all the estimates remain very close to 51.25 ppm which

is the actual estimate of the skew made over all the packets
(shown by the dashed line in Fig. 2).

Thus, we can see that even using lower resolution time

stamps (i.e., jiffies), we can estimate clock skews fairly

accurately. However, we require 300 or more packets. In
Section 5.2, we show that using higher resolution time

stamp, we can estimate skews much faster.

We also examine the skew estimates for different APs
based on the time measurement data collected at different

machines. The skew estimate results based on data from
four different machines are shown in Fig. 3. We note that

the clock skew estimates differ across different measure­

ment nodes. This observation suggests that we must

compare clock skews only from the same measuring node.

5.2 Results from the Residential Traces
In this section, we will refer to the Acer TravelMate 2303
NLC laptop as laptopl and Acer Aspire laptop as laptop2.
We use the monitor mode supported by the wireless cards
in both the laptops for capturing beacon frames and also

enable the Radiotap headers in the packets (as described in
Section 4) that we capture.

First, we measure the clock skew of two different Linksys
APs (Linksysl and Linksys2). The packets for this trace are
collected using laptopl. Fig. 4 plots the offset-sets for the
APs. Next, in order to study the consistency of the clock
skews of different APs over time, we collect offset-sets from
eight different APs (including Linksysl and Linksys2) in
residential setting A on two different days while keeping all
the other parameters (i.e., the time span of capture, etc.)
same.4 Table 2 shows the skew estimates of all APs in
residential setting A on two different days using LPM and
LSF. As we did not have control over all the APs,
manufacturer name is predicted based on the manufacturer
specific first 3 bytes of the MAC address. The clock skew

4. We do not have any control over the amount of wireless traffic
generated in these experiments. However, the traffic variation does not
affect our results.

AP

Fingerprinter

Chihuahua Mo ave Sonoran Kalahari

skew

(LPM)

skew

(LSF)

skew

(LPM)

skew

(LSF)

skew

(LPM)

skew

(LSF)

skew

(LPM)

skew

(LSF)

sigcomm-nat 51.25 51.20

sigcomm-nat-foye 40.30 40.39 34.99 35.29 44.91 45.00

sigcomm-public- 48.16 48.21 49.94 49.34

sigcomm-public- 48.82 48.90 32.59 32.62 42.69 42.98

Fig. 3. Skew estimates of different APs by chihuahua, Kalahari, Mojave,
and Sonoran. All skew estimates are in part per million.

estimates measured in residential settings B and C are
shown in Tables 3 and 4, respectively.

For all the three tables, we are able to estimate the clock
skews accurately by analyzing 50-100 packets in most of the

cases. Therefore, we find that microseconds resolution

receiver time stamps that we use in our methodology result
in a big improvement over millisecond resolution receiver

time stamps that needed about 300 packets (or more for LSF)
for accurate estimation of the clock skew (as shown in

Section 5.1). This provides almost 20 times improvement over

Kohno's results [9] where, on average, 1,000-2,000 packets
were needed for a correct skew estimation. If we consider

average time taken to estimate the skew, using higher

precision time stamps in a more predictable WLAN setting

takes only 2-3 minutes, whereas Kohno's clock skew
estimates performed in a wide-area setting with coarser time

stamps [9] take about 30 minutes-1 hour to converge. This
makes our use of clock skew in the WLAN settings 15-20 times

faster. We also make other important observations from these

tables. First, clock skews are different for different APs.
Second, the clock skew for a given AP is consistent over the

two measurements. Third, clock skews obtained using LPM

closely match those obtained using LSF.

5.3 Differentiating Frames of Fake APs
To simulate the attack scenarios where a fake AP and an
authorized AP are active at the same time, we construct

synthetic data sets by mixing beacon packets collected in real

packet captures from multiple APs. While creating this data

sets, we preserve the order in which the packets were received
by the fingerprinter. As the fake AP and the authorized AP,

both have the same MAC address, and the fingerprinter has

no way of separating the packets. We analyze the effect of this
intermingling on our estimation methods. We also test the

Fig. 4. TSF clock offset-sets for two different Linksys APs. Clock skew
estimations are -64.23 and -45.69 ppm.

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

456 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

TABLE 2
Clock Skew Estimates in Residential Setting A as Measured from laptop2

AP 1st Measure(LPM) 1st Measure(LSF) 2nd Measure(LPM) 2nd Measure(LSF)

Linksysl -64.23 ppm -64.10 ppm -64.90 ppm -64.77 ppm

Linksys2 -45.69 ppm -45.96ppm -46.94 ppm -46.71 ppm

Linksys3 -62.05 ppm -61.84 ppm -62.77 ppm -62.64 ppm

Belkin 1 -56.37 ppm -56.57 ppm -56.71 ppm -56.85 ppm

Belkin2 -1105.50 ppm -1105.69 ppm -1106.29 ppm -1106.06 ppm

Netgearl -58.08 ppm -57.78 ppm -58.86 ppm -59.25 ppm

Dlinkl -47.27 ppm -47.17 ppm -47.80 ppm -48.14 ppm

Unknown1 -40.91 ppm -40.99 ppm -41.61 ppm -41.47 ppm

efficiency of our algorithm for separating the packets using

these synthetic data sets.

Table 5 shows that in some cases (e.g., cases 1, 2, and 4),

the skew estimated using LPM is same as the skew of one of

the APs whose packets are intermingled.5 These results

suggest that when we use LPM, we might miss a fake AP

operating at the same time as the authorized AP. This points
to a serious problem in using LPM. On the contrary, the

skews estimated by LSF are exceptionally large than the

actual clock skews of each of the contributing AP. So, by just

observing the skew value, we can conclude that some fake
APs are active. Therefore, when using higher resolution

receive time stamps LSF alone can be used to detect fake APs.

However, if the receive time stamps are of low resolution,

both LPM and LSF should be used. This is because LPM uses

fewer packets than LSF to estimate the clock skew accurately.

On the other hand, LSF detects the mixing of packets from

different sources with a higher success rate than LPM.
We apply our packet separation algorithm (Algorithm 1),

as described in Section 3, to all the five synthetic data sets
that we use for Table 5 as well as to 10 other synthetic data
sets created from traces collected by laptopl. Recall that
Algorithm 1 requires a threshold that is used to differentiate
between the jumps and the consistent increments of the
clock offsets. We calculate this threshold using Algorithm 2
for each data set. Once this threshold has been determined,
we use Algorithm 1 to separate out the beacon packets of the
fake APs from the ones sent by the authentic ones. We find
that for all data sets, our algorithm accurately predicts the
number of APs generating the data and correctly separates
the offset-set corresponding to each AP. Algorithm 1 can
also be used to separate packets in real time. Fig. 6 shows
how the accuracy of separation increases with increase in
the number of packets used to estimate the threshold. We
observe that 75 packets are needed to estimate a threshold
that achieves 99 percent accurate packet separation on
average (over the five synthetic traces used in Table 5).
These separated packets from the fake APs must be ignored
by the wireless users. These packets can also be used to
fingerprint the fake APs and determine their locations.

5.4 Impact of External Factors on Clock Skews
We now discuss the impact of external factors on clock skews.

5. In some cases (e.g., cases 3 and 5), LPM estimates the skew to be 0 ppm
because some of the clock offset-set values become extremely large due to
the intermingling of packets. As LPM tries to use the highest values in the
clock offset-set to estimate clock skew, it finds that the differences between
these large values are negligible compared to the values themselves.
Therefore, in these cases, LPM approximates the clock skews as 0 ppm. An
example is shown in Fig. 5.

5.4.1 Effect of Virtual APs on Clock Skew

Virtual APs use single wireless hardware to simulate

multiple APs with different MAC Addresses, SSIDs, and

BSSIDs. In this aspect, virtual APs are not much different

TABLE 3
Clock Skew Estimates (Using LPM) in

Residential Setting B as Measured from laptopl

AP Clock Skew AP Clock Skew

Linksysl 22.53 ppm MeruNetworks 1 28.14 ppm

Linksys2 17.51 ppm MeruNetworks2 32.53 ppm

Unknown 31.66 ppm Trapeze Networks 1 23.66 ppm

Linksys3 20.67 ppm Trapeze Networks2 11.50 ppm

Linksys4 24.95 ppm Dlink2 30.50 ppm

Linksys5 23.54 ppm Linksys6 23.21 ppm

Unknown1 42.33 ppm Trendwar 34.28 ppm

Unknown2 36.22 ppm Dlink3 12.84 ppm

Unknown3 39.28 ppm Unknown5 35.5 ppm

DLinkl 30.85 ppm Linksys7 27.70 ppm

Unknown4 33.26 ppm

TABLE 4
Clock Skew Estimates (Using LPM) in

Residential Setting C as Measured from laptop2

AP Clock Skew AP Clock Skew

Linksysl -42.01 ppm Apple 1 -33.35 ppm

Linksys2 -21.21 ppm Un known1 -34.56ppm

Linksys3 -35.16 ppm ActionTec 1 -32.77ppm

Linksys4 -28.04 ppm Microsoft 1 -7.93 ppm

Unknown4 -37.54 ppm Unknown2 -31.48 ppm

Unknown5 -46.34 ppm Unknown3 -36.08 ppm

4e+ll

^ 3e+ll
'to ~ c
o o
$ 2e+ll
o
S-o
£
.5 le+ll

v
o

° -le+ll

-2e+ll
O 5e+06 le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

Time -From beginning o-F experiment, (in microseconds)

Fig. 5. LPM and LSF output using clock offset-set calculated from
mixed beacon packets of three different APs (Case 5 in Table 5).
The skew estimated by LPM is 0 ppm and LSF skew estimate is
4,256,390,000 ppm.

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

JANA AND KASERA: ON FAST AND ACCURATE DETECTION OF UNAUTHORIZED WIRELESS ACCESS POINTS USING CLOCK SKEWS 457

TABLE 5
Measure of Skew from the Synthetic Data Set

Case Data Sets mixed original skews skew(using LPM) skew(using LSF) Data sets estimated

1 2 62.05,62.47 62.47 4614750000 2

2 2 40.91,48.60 40.91 363843000 2

3 2 60.03,45.69 0 406340000 2

4 2 60.61,1106.31 1106.31 4729570 2

5 3 55.14,60.61,1106.31 0 4256390000 3

All skews are absolute values. Note that the skews estimated by LSF are extremely large because of the mixing which helps us to detect the
presence of fake APs much faster than LPM.

from virtual machines where multiple machines are
simulated on the same hardware. However, from our

experiments, we find that unlike the virtual machine clocks
which normally have higher skew than real machines, as

shown by Kohno et al. [9], all virtual APs being emulated on
a particular hardware have the same clock skew, and the

clock skew is in the same range as the real AP clock skews.
This happens because while sending the time stamp, all
virtual APs read from the same hardware timer and send

the value unaltered. Virtual APs do not maintain separate
virtual clocks. Therefore, all virtual APs using the real

hardware clock will have the same clock skew as the real

hardware clock. We test with five different APs (three
Trapeze networks APs running their default firmware and
two Linksys WRT54G APs running the DD-WRT firmware

[23]). We simulate four virtual APs on each of the five real
APs. Our results, as shown in Table 6, confirm the above

argument. This implies that our methodology can also be
used to distinguish virtual APs from real APs.

5.4.2 Effect of Temperature on Clock Skew

It has been shown in existing work [9], [10] that under normal

PC operating temperatures, the clock skew of a device
remains constant within ±1 ppm. It has also been noted [10]

that this temperature change can also occur due to varying
processor load. However, Pasztor and Veitch [24] have

shown that for small time periods (less than 1,000 seconds),
the clock skew variance remains less than ±0.1 ppm. The
results presented in another existing work [10] also support

this observation as the change of clock skew due to

temperature variance in their results occurs gradually.
Therefore, in order to be able to track any changes in the
clock skew of genuine APs and for detecting fake ones in the

presence of clock skew variation with temperature, we
propose using a "rolling signature" scheme described in
Algorithm 3. We propose that an AP's clock skew must be

Fig. 6. Mean correct packet separation rate versus number of packets
examined to estimate threshold.

updated to a new value if the difference between the new

measured value and the old value is within a threshold. The

nodes that measure clock skews (e.g., WIDS nodes) should

collect packets from different APs and execute Algorithm 3

over each 50-100 beacon frame block. Since collection of

50-100 beacon frames typically takes much less than 1,000s,

we can assume that the clock skew variance due to

temperature will cause the consecutive clock skew estimates
to differ only by approximately ±0.1 ppm rather than

±1 ppm. This method thus enables our scheme to compare
measured clock skews with a higher precision in comparison

to the one used by Kohno et al. [9].

Algorithm 3. Fake AP detection algorithm

Calculate new skew
if (newskew - currentskew) < max skew variance then

currentskew newskew
AP is original

else

Fake AP detected,

end if

As, we measure relative skew between two physical
clocks, extrapolating the findings of [24], we can set max
skew variance to ±0.2 ppm. In our high precision residential
traces, when using the same fingerprinter, all but one pair of
access points (Linksys5 and Trapeze Networks 1 in Table 3)
differ by more than 0.2 ppm.

5.4.3 Effect of NTP Synchronization of Fingerprinter’s

Clock on Skew Estimate

Unlike the approach used by Kohno et al. [9], we do not
synchronize the fingerprinter's clock using the Network
Time Protocol (NTP) or any other clock synchronization
mechanism. Rather, we measure clock skew of an AP
relative to the fingerprinter. Our measurement times are
expected to be small (2-3 minutes) and the time stamps are
measured in microseconds. NTPv4 is accurate within
10 milliseconds over the wide-area Internet and within
200 microseconds over an LAN. The default minimum
polling interval for NTP is 64 seconds [25]. However, in our

TABLE 6
Skew of Virtual APs

AP Virt. API Virt. AP2 Virt. AP3 Virt. AP4

1 23.66 23.66 23.66 23.66

2 17.53 17.54 17.17 17.34

3 28.55 28.56 28.56 28.55

4 32.45 32.46 32.45 32.45

5 21.24 21.28 21.27 21.24

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

458 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

TABLE 7
Comparison of Clock Skew Estimates of Same APs Measured

from laptop2 Running on AC Power and Battery Power

AP Skew (AC power) Skew (battery power)

Linksysl -64.23 ppm 272.62 ppm

Linksys2 -45.69 ppm 254.10 ppm

The measurements were taken in residential setting A.

case, as the time stamps are measured in microseconds and
the estimates of the clock skews are in the range of 100 ppm,
enabling NTPv4 will not provide enough accuracy to make
the clock skew estimates independent of the fingerprinter's
own clock skew. However, in our problem definition, the
fingerprinter (a WIDS node in a WLAN environment)
remains the same. So, this dependence on the fingerprin­
ter's clock is not an issue in our scheme.

5.4.4 Selection of Fingerprinter’s Clock Source

As mentioned earlier in Section 4, in a PC running Linux,
gettimeofday system call provides microsecond resolution
time stamps, gettimeofday internally uses PC's internal clock
source to generate microsecond granularity time stamps.
However, any modern PC normally has more than one clock
source. The actual number and type of the clock sources
depend on the particular model of the processor and the
motherboard being used in the PC. The Linux kernel chooses
the best available clock source in the PC for tracking time
stamps that are reported by the gettimeofday system call.
Some common clock sources are [26]—Programmable Inter­
val Timer (PIT), Time Stamp Counter (TSC), Advanced
Configuration and Power Interface Power Management
Timer (ACPI PMT), and High-Precision Event Timer (HPET).

As all these internal clock sources are physically different,
they will have different clock skew. As described earlier, our
estimates of the AP's clock skew are also dependent on the
fingerprinter's clock skew. Therefore, while using time
stamps from gettimeofday to measure clock skew of an
AP, we must check whether the same clock source is being
used by the kernel for all the measurements. The Linux
kernel dynamically selects the most accurate clock source
available as the internal clock source for the kernel. The
accuracy of certain clock sources can change depending on
different conditions. For example, in a particular device,
TSC might be initially selected as the clock source for
gettimeofday. However, after some time if that device
switches to battery power from AC power, the Linux kernel
will decrease the frequency of the processor (assuming that
the processor supports frequency scaling that has been
enabled) to save power. This will cause the TSC to go slower
and might result in inconsistent time values. In this
situation, the kernel will select some other clock source
instead of TSC. Table 7 shows the change in clock skew
estimates caused by the change of power source. To avoid
these scenarios, for all our measurements, we use ACPI PMT
clock source as this clock source is available in almost all
modern laptops and its frequency does not get affected by
external events including a switch to battery power.

6 Fabricat ion o f C lo ck S kew s

Our approach to detect a malicious AP is based on the clock

skew of the AP. As an AP broadcasts beacon packets, an

attacker can also listen to those packets, and then, calculate

the relative clock skew of the AP with respect to its own
clock skew. Using this clock skew estimate, an attacker can

try to masquerade as the original AP by generating fake

time stamps by adding proper offsets (those calculated from

the measured skew) to its own time stamp. Let S denote the

relative skew of the original AP as calculated by the
attacker. Now the attacker can read its own time stamp T*

and try to generate fake sequence of time stamps TFi using
the following equation:

TFi = Ti + S*Ti. (8)

There can be two scenarios where an attacker can try to

fake an original AP based on whether the original AP is

active at the time of attack or not. If the attacker and the

original AP are both active at the same time, the attacker's
beacon frames will get mixed with the beacons sent by the

original AP. As the attacker cannot control the time when

the original AP sends its beacons, some of the beacons from
the attacker might reach the receiver earlier than the

beacons from the original one and some might reach later.

As a result, the calculated skew will differ from the skew of

the original AP (as shown in Table 5) and the attacker can
be detected.6

Now, consider the scenario where only the attacker is

active and it is fabricating time stamps by using the relative
skew of the original AP that it calculated when the original

AP was active. In order to test how accurately the attacker
can fabricate time stamps, we examine systems that use the

open-source MadWifi and Intel 3945ABG drivers. In these

systems, channel sensing is done by the wireless hardware

for the performance reasons. Furthermore, the time stamp

in the beacon packets is set by the hardware when it

actually transmits the packet. None of the wireless hard­

ware supported by these drivers allow the time stamp to be
set by software. However, these drivers support a mode

called the raw packet injection mode, where the drivers can

transmit any byte stream as a link layer frame without any
modification. Thus, an attacker can send beacon frames

with forged time stamps using this mode. Even with this

capability, an attacker cannot fabricate the original APs

clocks skew as we explain below.
In an IEEE 802.11 wireless network medium access

control, before sending any frame, the sender is required to
sense the channel for any other ongoing communication. If

the sender finds the channel to be idle for the Distributed

Interframe Sequence (DIFS) duration, the sender delays its
transmission by a number of random time slots. The length

of each time slot is chosen from the interval [0, CW] (where

CW is the contention window size). If the channel is still
idle after the random delay, depending on configuration,

either the sender does the Request to Send (RTS)/Clear to

Send (CTS) handshake, and then, sends the data, or directly

sends the data bypassing RTS/CTS handshake. These two

random delays, waiting time for the medium to be free and

random back off time before actual transmission, make the
exact time between when a wireless frame is handed over to

6. Additionally, the sequence number of the received beacons will
not increase monotonically as it should if only one AP is active as
shown by [27],

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

JANA AND KASERA: ON FAST AND ACCURATE DETECTION OF UNAUTHORIZED WIRELESS ACCESS POINTS USING CLOCK SKEWS 459

Fig. 7. TSF clock offset-sets for the original AP. Clock skew estimation
for this AP is -178.83 ppm (using LPM).

Fig. 8. TSF clock offset-sets for the attacker with forged time stamps.
Clock skew estimation is -35 ppm (using LPM).

the driver and when it is actually sent unpredictable.

Therefore, the forged time stamp used by the attacker will

not reflect the actual time of transmission, and thus, will not

result in the same clock skew as that of the original AP.
To test the effectiveness of clock skew fabrication

quantitatively, we first measure the clock skew of an AP

from an attacker PC. The RTS/CTS mechanism is disabled.

We also modify the rfakeap program [28] to send beacon

packets with forged time stamps created by offsetting the

attacker's time stamp with the skew of the original AP

measured by the attacker. We shut down the original AP

and run this modified rfakeap program on the attacker PC.

We calculate the clock skew of the attacker PC based on the

time stamps in the rfkeap beacons. We show the results of

our clock skew calculations in Figs. 7 and 8. As expected, we

see that the attacker's clock skew using forged time stamps

differs significantly from the skew of the original AP.

One might be able to design a wireless card in the future

that allows beacon time stamps to be directly set by software.

We now argue that even when armed with such a wireless
card, it will be hard for an attacker fabricating the clock skews

to go undetected. In an IEEE 802.11 network, an AP schedules

transmission of a beacon frame every beacon interval. The

time instant at which an AP schedules transmission of a

beacon is called the Target Beacon Transmission Time

(TBTT). IEEE 802.11 defines time zero as a TBTT. The

subsequent TBTT values are multiples of the beacon interval.

Now, even though each beacon is scheduled to be sent at a

TBTT, the actual time at which a beacon is transmitted

depends on the time to process the beacon and the time to

acquire the shared medium. The actual time at which the

beacon is transmitted is included in the beacon. Therefore,

based on the beacon number and the beacon interval and the

actual time of beacon transmission, a receiver (e.g., a WIDS

node) can determine the delay between scheduling a beacon

and the actual transmission of the beacon. Let T denote this

delay. Let Tb be the beacon processing delay and Tc be the
contention delay in acquiring the wireless medium. Then,

T = Tb + T('. Note that in systems running the MadWifi and

the Intel 3945ABG drivers, the beacon frames are prioritized

over data frames. The beacon frames and the data frames

have separate hardware queues. Thus, the number of data
frames in the data queue has no impact on the actual beacon

transmission time.

A WIDS node that observes a large number of beacon

frames can find the minimum values of T. This minimum

value corresponds to the situation where the medium

contention time Tc is minimum. Now, when an attacker

armed with the capability to directly set beacon time stamps

wishes to fake the clock skew of an AP, it must calculate the
actual offset by performing a floating point multiplication

and an addition/subtraction operation (as shown in (8)).

These operations must be performed by the embedded

processor in the wireless card which will increase the Tb
value thereby increasing the minimum value of T. For the

typical 150-250 MHz processors [29], Tb will increase at

least by a few microseconds. This increase in the minimum

value of T can be detected at the WIDS node. Currently, a

special wireless card that allows beacons time stamps to be

directly set by software does not exist. Hence, we cannot

verify our argument in a real implementation.

7 Use o f C lock S kew in W ireless A d Ho c

Netw orks to Identify Individual No d e s

In this section, we explore the possibility of using clock

skews to uniquely identify different devices participating in

a wireless ad hoc network. According to the IEEE 802.11

protocol specifications, all nodes in an ad hoc network must

broadcast beacon packets periodically containing time

stamps according to their own clock. The time stamps in

these beacon packets are meant for synchronizing the clocks

of all nodes. Each participating device periodically syn­

chronizes its clock using the beacon time stamps it receives,

by applying a clock synchronization algorithm that ensures

the monotonicity of each node's clock. As mentioned in

Section 6, in 802.11 infrastructure networks, beacons are

only sent at TBTT. Similarly, in an IEEE 802.11 ad hoc

network, to avoid collision while sending these beacon

frames, each node waits for TBTT before attempting to send

a beacon packet. At TBTT, each node backs off for a random

amount of time before sending the beacon. During this

random time interval, if a node detects any other node

transmitting a beacon, it cancels its transmission. If a node

does not detect any other node transmitting beacon packets

during the entire random time interval, it sends its own

beacon packet. After receiving a beacon packet, each node

updates its clock according to Algorithm 4:

Algorithm 4. Beacon generation and Clock synchronization

in IEEE 802.11 ad hoc networks

At each TBTT calculate a random delay and wait for

that period,

if a beacon arrives within the delay then

-1 x104 -

-2 x104 -

O 5 x1 O7 1.0x10® 1.5 x1 O8 2.0 x108 2.5 x108
Time from beginning of experiment(in microsec)

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

460 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

5x10* —■-.-,-i-1-■-,-i-•-1-,-.-.-.-1-,-i-.-•—

H 4x1CP- o
So
B 3x10*
'e

iT 2xio>
CO

'o
5 1x10*
CJ>

O —*-*---*-1-•-*-•-•-'-•-*-*-*-'-•-•-*-*—-O 5x1(7 1.0x10* 1 .5x1 CP 2.0x1 CT
Time from beginning of experiment (in microseconds)

Fig. 9. Clock offset-sets calculated from beacon packets sent by two
nodes participating in our ad hoc network. Clock skew estimates (214.89
and 215.11 ppm) are very close due to fast synchronization.

if beacon's time stamp > local clock's time stamp then

Update local clock's time stamp to the beacon's

time stamp

end if

else

Send a beacon with local clock's time stamp

end if

This algorithm ensures that over a period of time, the
clock of each node will catch up to the fastest clock. This
frequent synchronization makes it very difficult to estimate
the accurate clock skew from beacon time stamps as all the
clock skew estimates tend to be close to the clock skew of
the fastest clock. To test the effect of the synchronization
mechanism on our algorithms that we describe in earlier
sections of this paper, we use a simple two-node IEEE
802.11 wireless ad hoc network. We collect beacon frames
sent by each of the two nodes at the other node. According
to Algorithm 4, a node's clock will synchronize with the
time stamps sent by the other node with the faster clock.
Our two-node ad hoc network w ill result in a fast
synchronization of the slower clock. In larger networks,
all but the node with the slowest clock will synchronize
slowly because for each of these nodes, there will be some
slower nodes whose time stamps will be ignored by that
particular node. Furthermore, in larger networks, the
opportunities to transmit beacon packets might be missed
due to higher wireless medium contention. We wish to
study the effect of fast synchronization on our algorithms in
order to understand their applicability in ad hoc settings.
Our two-node testbed suffices for this purpose. Fig. 9 shows
the effect of fast synchronization on our clock-skew-based
scheme. We observer that the clock offset-sets of two nodes
almost overlap each other. The estimated clock skews of the
two nodes are thus very close to each other. This shows that
in wireless ad hoc networks, it is very difficult to calculate
accurate clock skews of participating nodes using beacon
packet time stamps.

One of the possible ways to solve this problem is to
collect time stamp samples from a node's clock more
frequently. However, beacon packets are only sent after a
beacon interval. If we decrease the beacon interval to
increase the frequency of time stamp samples, the
synchronization process will also become faster which will
not help our cause. To address this problem, we explore the
use of probe response packets instead of beacon packets,
which also contain the same TSF timer time stamps as the
beacon packets. However, unlike beacon packets, a node in
an ad hoc network sends a probe response packet

Fig. 10. Clock offset-sets calculated from probe response packets sent
by two nodes participating in our ad hoc network.

whenever it receives a probe request packet. Therefore,
we can send probe request frames and can get time stamp
values from the resulting probe response packets at a faster
rate than using the beacon packets. However, we also note
here that the fingerprinter's clock does not have unlimited
accuracy. Therefore, if we send probe request packets too
fast causing the probe response time stamps to be very
close to each other, the estimated clock offset-set will not be
accurate due to the errors caused by the measurement
process. We test this phenomenon in our two-node ad hoc
network by allowing probe requests to be sent by the two
nodes as fast as the hardware and the medium allow.
Fig. 10 shows the clock offsets we obtain from probe
response packets. We find that the slower clock (i.e., the
clock with lower clock skew) gets periodically synchro­
nized with the faster clock. However, the offset-set of the
faster clock also shows irregularities unlike the offset-set
calculated from the beacon packets. These irregularities are
caused by the errors introduced by the limited accuracy of
the measurement process as mentioned earlier. Our results
show that probe requests should be sent at a rate that is low
enough to minimize the measurement errors compared to
the measured clock offset-set but high enough to generate
enough probe response frames before the clock gets
synchronized, to allow us to estimate the clock skew
accurately.

In this paper, we only show the results from a two-node
ad hoc network. However, for larger networks, with the

increase in the number of nodes, we expect the synchroni­
zation interval for most of the nodes to increase due to the
monotonic synchronization algorithm (Algorithm 4), and
higher medium contention time. Therefore, in larger ad hoc

networks, it might be possible to gather enough probe

response packets from participating nodes to estimate their
clock skews accurately before their clocks get synchronized.

We plan to devise a practical algorithm to estimate a node's

clock skew accurately in larger ad hoc networks in the
future as an extension to our current work.

8 R elated W o r k

For understanding the related work on detecting unauthor­
ized APs, we first distinguish between rogue APs and fake
APs. A rogue AP is set up by some naive user for
convenience and higher productivity [1], [2], [3], [4], If this
AP's security is not carefully managed, this seemingly
innocuous practice opens up the network to unauthorized
wireless hosts, who can now become part of the network
and launch different types of attacks. In contrast, a fake AP

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

JANA AND KASERA: ON FAST AND ACCURATE DETECTION OF UNAUTHORIZED WIRELESS ACCESS POINTS USING CLOCK SKEWS 461

is set up by a malicious attacker to masquerade as an
authorized AP. In this paper, we focus on fake APs.
Currently, there are two main methods for detecting rogue
APs—one that monitors wireless networks either manually
or in an automated fashion by sniffing wireless frames to
detect rogue APs based on MAC address, BSSID, and SSID-
based filtering [1], [7], [3], [8], [4], [30], and the other that
monitors IP traffic to differentiate wireless network access
from wired access using interpacket delay patterns [31],
[32], [33]. However, these approaches are ineffective in
detecting fake APs mainly because all of the identity fields
(e.g., MAC address) can be easily spoofed.

Bahl et al. [27] proposed a method to detect fake APs
by monitoring the anomaly in the monotonicity of the
"sequence number" field of beacon frames sent by the
authorized AP and the fake AP which is masquerading as
the authorized one. However, this method can only detect
the presence of a fake access point; on the contrary, our
scheme can detect and separate out packets from fake AP.
Another serious drawback of this method is that it will
only work if both the authorized AP and the fake AP are
active at the same time. Bahl et al. [27] also suggested the
use of a location detection algorithm to detect the fake AP
if the authorized AP is inactive at the time of detection.
The accuracy of this method depends on the accuracy of
the location detection algorithm. If the fake AP operates at
a location that is very close to the authorized AP's
working location, then this location detection method will
be ineffective. Our solution removes these constraints and
detects unauthorized APs in realistic scenarios. Yin et al.
proposed a method for detecting rogue APs that also act
as layer 3 routers. However, this work is also vulnerable
to MAC spoofing. Franklin et al. [34] introduced a
technique to fingerprint wireless device drivers. However,
an attacker can also use fake APs with the same wireless
device drivers by choosing the same model and the same
manufacturer as the original one to evade detection.

Our use of clock skew to fingerprint a remote device is

not new. Kohno et al. [9] have already shown that clock
skew can be used as a reliable fingerprint for a device.

However, our contribution is significant because we apply

the clock-skew-based fingerprinting to a scenario where the

detections are much faster, accurate, and less vulnerable to
spoofing attacks compared to Kohno's original scenario that

uses TCP time stamps.

9 C o n clu sio n s and Future W o r k

In this paper, we explored the use of clock skews to detect
unauthorized access points in wireless local area networks.
We developed a methodology that benefits from higher
precision time stamps and higher predictability in a local
area setting. We evaluated this methodology using traces
from the ACM Sigcomm 2004 conference and two different
residence areas. We showed that our high-precision skew
estimation is an order of magnitude faster and uses an
order of magnitude less packets compared to the existing
TCP-/ICMP-based techniques [9]. We also discussed and
quantified the impact of various external factors including
temperature variation, virtualization, and NTP synchroni­
zation on clock skew. We also explored the possibility of
engineering clock skews to allow a fake AP to generate the
clock skew of the original one. Our exploration results

indicate that the use of clock skews appears to be an
efficient and robust method for detecting fake APs in
WLANs. We also used our clock-skew-based fingerprinting
technique in wireless ad hoc setting to identify individual
nodes and showed that it is more difficult to estimate a

node's clock skew accurately due to periodic clock
synchronization among the nodes. As part of future work,
we plan to devise a practical algorithm to estimate a node's
clock skew accurately in ad hoc wireless networks where
the number of participating nodes is large enough to slow
down the clock synchronization process. Our solution

addresses the problem of detecting fake APs effectively,
but the general problem of finding a noncrypto method to
detect MAC address spoofing by any wireless host still
remains an interesting open problem.

A ckn ow ledgm ents

This research was supported in part by ONR/ARL MURI

grant W911NF-07-1-0318.

R eferen ces

[1] "AirDefense, Wireless Lan Security," http ://airdefense.net, 2009.

[2] "AirWave Management Platform," http://airwave.com, 2009.

[3] "Cisco Wireless LAN Solution Engine (WLSE)," h ttp ://
www.cisco.com, 2009.

[4] "Rogue Access Point Detection: Automatically Detect and Manage
Wireless Threats to Your Network," http://www.proxim.com,

2009.

[5] "Raw Glue AP," http://rfakeap.tuxfamily.org, 2009.

[6] C. He and J.C. Mitchell, "Security Analysis and Improvements for
IEEE 802.l l i , " Proc. Ann. Network and Distributed System Security

Symp. (NDSS), 2005.
[7] "AirMagnet," h ttp ://www.airmagnet.com, 2009.

[8] "NetStumbler," h ttp ://www.netstumbler.com, 2009.

[9] T. Kohno, A. Broido, and K.C. Claffy, "Remote Physical Device
Fingerprinting," IEEE Trans. Dependable Secure Computing, vol. 2,

no. 2, pp. 93-108, Apr.-June 2005.
[10] S.J. Murdoch, "Hot or Not: Revealing Hidden Services by Their

Clock Skew," Proc. Conf. Computer and Comm. Security (CCS '06),

pp. 27-36, 2006.

[11] S.B. Moon, P. Skelly, and D. Towsley, "Estimation and Removal of

Clock Skew from Network Delay Measurements," technical

report, Univ. of Massachusetts at Amherst, 1998.

[12] IEEE Standard 802.11— Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, The Institute of Electrical

and Electronics Engineers, Inc., 1999.

[13] IEEE Guide for Measurement of Environmental Sensitivities of

Standard Frequency Generators, IEEE Standards Coordinating

Committee 27-SCC27- on Time and Frequency, 1995.

[14] P. Hough, Method and Means for Recognizing Complex Patterns, US
Patent 3069654, 1962.

[15] D.H. Ballard, "Generalizing the Hough Transform to Detect

Arbitrary Shapes," Readings in Computer Vision: Issues, Problems,

Principles, and Paradigms, pp. 714-725, Morgan Kaufmann, 1987.

[16] L. Xu and E. Oja, "Randomized Hough Transform (RHT): Basic

Mechanisms, Algorithms, and Computational Complexities,"
CVGIP: Image Understanding, vol. 57, no. 2, pp. 131-154,1993.

[17] A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum Like­

lihood from Incomplete Data via the EM Algorithm,"]. Royal

Statistical Soc., vol. 39, no. 1, pp. 1-38,1977.
[18] "tcpdump," http://www.tcpdump.org/, 2009.

[19] "MadWifi—Multiband Atheros Driver for WiFi," http: / / madwifi.
org, 2009.

[20] "Intel PRO/Wireless 3945abg Driver for Linux," h ttp ://

ipw3945.sourceforge.net, 2009.

[21] "Linux Kernel Source Code," http://www.kernel.org, 2009.
[22] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, J. Zahorjan, and E.

Lazowska, "CRAW DAD Dataset of Wireless Network Measure­
ment," Proc. SIGCOMM '04, Oct. 2006.

[23] "DD-WRT," http://www.dd-wrt.com, 2009.

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

http://airdefense.net
http://airwave.com
http://www.cisco.com
http://www.proxim.com
http://rfakeap.tuxfamily.org
http://www.airmagnet.com
http://www.netstumbler.com
http://www.tcpdump.org/
http://www.kernel.org
http://www.dd-wrt.com

462 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

[24] A. Pasztor and D. Veitch, "PC Based Precision Timing without

GPS," SIGMETRICS Performance Evaluation Rev., vol. 30, no. 1,

pp. 1-10, 2002.

[25] "Network Time Protocol Version 4 Reference and Implementation

Guide," http://www.eecis.udel.edu/emills/database/reports/

ntp4/ntp4.pdf, 2009.

[26] D. Bovet and M. Cesati, Understanding the Linux Kernel, third ed.
O'Reilly Media, Inc., Nov. 2005.

[27] P. Bahl et al., "Enhancing the Security of Corporate Wi-Fi

Networks Using DAIR," Proc. MobiSys, pp. 1-14, 2006.
[28] "Raw Fake AP," http://rfakeap.tuxfamily.org, 2009.

[29] "Broadcom Product Brief BCM-5354," http://www.broadcom.

com/collateral/pb/5354-PB01-R.pdf, 2009.
[30] A. Adya et al., "Architecture and Techniques for Diagnosing

Faults in IEEE 802.11 Infrastructure Networks," Proc. ACM
MobiCom, pp. 30-44, 2004.

[31] R. Beyah et al., "Rogue Access Point Detection Using
Temporal Traffic Characteristics," Proc. IEEE Global Telecomm.

Conf. (GLOBECOM), Dec. 2004.
[32] C. Mano et al., "Ripps: Rogue Identifying Packet Payload Slicer

Detecting Unauthorized Wireless Hosts through Network Traffic

Conditioning," ACM Trans. Information and System Security, vol. 11,
no. 2, 2007.

[33] W. Wei et al., "Passive Online Rogue Access Point Detection Using

Sequential Hypothesis Testing with TCP ACK-Pairs," Proc.
Internet Measurement Conf. (IMC), pp. 93-108, 2007.

[34] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J.V. Randwyk, and

D. Sicker, "Passive Data Link Layer 802.11 Wireless Device
Driver Fingerprinting," Proc. 15th Conf. USENIX Security Symp.

(USENIX-SS '06), pp. 12-12, 2006.

Suman Jana received the bachelor’s degree in
computer science from Jadavpur University,
India. He is currently working toward the
master’s degree at the School of Computing,
University of Utah. His primary research inter­
ests are in the fields of network security and
computer systems.

Sneha K. Kasera received the master’s degree
in electrical communication engineering from
the Indian Institute of Science Bengaluru, and
the PhD degree in computer science from the
University of Massachusetts Amherst. He is an
associate professor in the School of Computing
at the University of Utah in Salt Lake City. From
1999 to 2003, he was a member of technical
staff in the Mobile Networking Research Depart­
ment of Bell Laboratories. He has held research

and development positions at Wipro Infotech and Center for Develop­
ment of Advanced Computing at Bengaluru, India. His research
interests include computer networks and systems encompassing mobile
and pervasive systems and wireless networks, network security and
reliability, social network applications, overload and congestion control,
multicast communication, Internet measurements, and inferencing. He
is a recipient of the 2002 Bell Labs President’s Gold Award for his
contribution to wireless data solutions. He has served in many technical
program committees including those of ACM Mobicom, ACM Sig-
metrics, IEEE Infocom, IEEE ICNP, and IEEE SECON, and among
others. He is an associate editor of ACM Sigmobile MC2R, and also
serves in the editorial boards of ACM/Springer WINET and Elsevier
COMNET Journals.

▻ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: The University of Utah. Downloaded on February 16,2010 at 14:09:16 EST from IEEE Xplore. Restrictions apply.

http://www.eecis.udel.edu/emills/database/reports/
http://rfakeap.tuxfamily.org
http://www.broadcom
http://www.computer.org/publications/dlib

