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ABSTRACT

In the post-PC era, mobile devices will replace desktops and become the main 
personal computer for many people. People rely on mobile devices such as 
smartphones and tablets for everything in their daily lives. A common 
requirement for mobile computing is wireless communication. It allows mobile 
devices to fetch remote resources easily. Unfortunately, the increasing demand 
of the mobility brings many new wireless management challenges such as 
security, energy-saving and location-awareness. These challenges have already 
impeded the advancement of mobile systems. In this dissertation we attempt to 
discover the guidelines of how to mitigate these problems through three general 
communication patterns in 802.11 wireless networks. We propose a 
cross-section of a few interesting and important enhancements to manage 
wireless connectivity. These enhancements provide useful primitives for the 
design of next-generation mobile systems in the future.

Specifically, we improve the association mechanism for wireless clients to 
defend against rogue wireless Access Points (APs) in Wireless LANs (WLANs) 
and vehicular networks. Real-world prototype systems confirm that our scheme 
can achieve high accuracy to detect even sophisticated rogue APs under 
various network conditions. W e also develop a power-efficient system to reduce 
the energy consumption for mobile devices working as software-defined APs. 
Experimental results show that our system allows the Wi-Fi interface to sleep for 
up to 88% of the total time in several different applications and reduce the 
system energy by up to 33%. W e achieve this while retaining comparable user 
experiences. Finally, we design a fine-grained scalable group localization 
algorithm to enable location-aware wireless communication. Our prototype 
implemented on commercial smartphones proves that our algorithm can quickly 
locate a group of mobile devices with centimeter-level accuracy.
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1 Introduction

The world has become increasingly mobile. As a result, mobile devices such as 

smartphones and tablets, as the embodiment of today’s mobile computing, have 

replaced desktops to become the main personal computing platforms. According 

to Cisco's prediction, by the end of 2013, the number of mobile-connected devices 

will exceed the number of people on this planet, and by 2017 there will be nearly

1.4 mobile devices per capita [5]. Not only has there been extraordinary growth in 

popularity, the diversity of mobile devices has also increased rapidly. New types of 

mobile devices such as "smart" watches, glasses and even driverless vehicles have 

emerged recently. In our homes and enterprises, our recreation and profession, 

mobile computing is playing a more and more important role. It is becoming an 

essential and ubiquitous tool of the modern world.

Communication is the core of mobile computing. It allows mobile devices to 

connect to networks and fetch remote resources. Due to the increasing demand of 

mobility, traditional wired networks are now insufficient. If users have to use cables 

for communication, their movement will be significantly reduced. Wireless commu­

nication has no such restriction and thereby becomes an indispensable feature to 

mobile computing. The majority of today's mobile devices have already integrated 

multiple interfaces to support various wireless networks such as 802.11 networks 

(a.k.a., Wi-Fi), cellular networks and Bluetooth networks.

In the past decade, wireless communication has been greatly improved in band­
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width and latency. However, mobility brings new challenges such as security, 

energy-efficiency and location-awareness. Security is of growing importance as 

more and more personal data are stored on mobile devices and transmitted through 

wireless communications. Without careful protection, users' privacy will be vio­

lated. Unlike workstations behind the firewalls, mobile devices typically operate 

under risky circumstances, so they have more opportunities to be attacked by ad­

versaries. To improve mobile security, mobile devices must have the capability to 

defend against various attacks on their own. Energy is another important consid­

eration for mobile devices. Mobility prevents mobile devices from always being 

plugged in to power sources. Insufficient battery life has seriously impeded the 

advancement of mobile technology. Given the fact that today's battery technol­

ogy has hardly improved, while wireless networking is a significant contributor to 

battery drain, more efficient power-saving techniques for wireless communication 

are highly desired. Finally, location-aware wireless communication becomes useful 

due to mobility. Knowing the location allows mobile devices to adapt to varying en­

vironments and thereby improve the quality of wireless communication. Location- 

based techniques like this could also bridge the perception gap between human and 

machine, thus enabling more intuitive methods of communication such as transfer­

ring data by swinging a device towards the target user. Furthermore, location could 

help secure wireless communication (e.g., distance-bounding). However, there is 

little research on how to obtain the in-situ location of mobile devices without the 

support of network infrastructure. It is advantageous to design new localization 

schemes that can be applicable to anywhere. All the concerns rising from the se­

curity, energy and localization motivate our work presented in this dissertation.

Our research seeks to mitigate the problems of security, energy, and localization 

for mobile computing, but these problems exist in so many scenarios that we cannot 

enumerate all of them. In this dissertation we only consider a few enhancements

2



In te rn e t

Client

Client

Client

Figure 1.1: Illustration of mobile devices acting as clients

for managing wireless connectivity in 802.11 networks. These enhancements will 

shed light on a more generalized design of the next-generation mobile systems. In 

any 802.11 wireless network, a mobile device must operate in one of three modes: 

client, AP  and ad hoc. Based on this division, 802.11 wireless communication can 

be broadly classified into three patterns: client-to-AP, AP-to-client and client-to- 

client. By studying individual problems for different communication patterns, we 

attempt to discover the guidelines for the security, energy management and local­

ization enhancements.

For security, we study the most common communication pattern: client-to-AP, 

which is illustrated in Fig. 1.1. As an important part of this pattern, the wireless 

Access Point (AP) is a bridge that connects wireless clients to wired backbone 

networks. Mobile devices working as wireless clients associate to an AP to transfer 

data. It is worth noting that clients cannot directly communicate with each other. 

All the communications have to go through the AP which then routes the packets 

to the desired destination. Thus, a critical security issue arises for each client: 

How to determine which A P  is a legitimate A P  for association? A legitimate AP is 

referred to as the AP deployed by network administrators, whereas a rogue AP is



Internet

Cellular Tower 

!  2.5G /3G /4G

Gateway

Figure 1.2: Illustration of a mobile device acting as a softAP

set up by the adversary who seeks to steal clients' information. A rogue AP will try 

every method to masquerade as a legitimate AP to avoid detection. Therefore, it is 

challenging for a client to detect rogue APs. We investigate this security problem 

and propose specific detection schemes for different network architectures.

As for energy issues, we study a new communication pattern for mobile devices. 

In this pattern, a mobile device performs as a software-defined AP, allowing other 

devices such as laptops and tablets to achieve everything from file transfer to Inter­

net connectivity without relying on existing traditional APs. In the literature, these 

types of devices are typically called softAPs. Fig. 1.2 shows an example of a softAP 

sharing cellular connectivity such as 3G or 4G  through Wi-Fi. Other devices can 

then associate to share the Internet access. Energy issues are rarely considered in 

this new pattern, because traditional APs do not rely on batteries. Old wisdom tells 

us that performance is more important than the energy. However, this is not true 

anymore for battery-powered mobile devices. Our initial findings can shed light for 

further research on this topic.

As mobile users are increasingly grouped to exchange files or perform collab-

4
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Figure 1.3: Illustration of mobile devices acting as peers in ad hoc wireless networks

orative tasks when meeting together, the ad hoc communication pattern becomes 

more and more popular. To improve this communication pattern, we strive to en­

able location-aware wireless networks. Fig. 1.3 shows a typical wireless ad hoc 

network. In this network, inter-connected mobile devices can directly communicate 

with each other. The ad hoc pattern increases the demand for more intuitive ways 

to identify communication parties. In traditional networks, devices are labeled with 

unique network addresses. To transfer data, the sender has to specify the network 

address of the destination. This is not intuitive for humans, because the addresses 

are long and semi-arbitrary. As a complimentary approach to the network address, 

we propose the use of location to establish wireless communication. For exam­

ple, users can simply swing their device towards the destination devices to transfer 

files. This technique will bridge the perception gap between the physical world and 

digital world. The future development of mobile applications will benefit from our 

scheme.

In summary, the architecture of this dissertation is shown in Fig. 1.4. Across
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RogueDetector 
Chapter 2

VR-Defender 
Chapter 3

Client Mode

DozyAP 
Chapter 4

SG-LOC 
Chapter 5

AP Mode Ad hoc Mode

Mobile devices in 802.11 Wireless Communication

Figure 1.4: Architecture of the dissertation. Across three general communication patterns, 
a few useful and important enhancements are grouped by security, energy and location

three general patterns of wireless communications, where mobile devices operate 

in client, AP and ad hoc modes, we propose three useful and important enhance­

ments to improve security, energy, and localization.

1.1 Problems

Specifically we address four particular problems as follows.

1.1.1 Rogue AP detection in Wi-Fi networks

Public areas such as coffee shops, airports, and campuses all provide Wi-Fi access 

to users, where people can use mobile devices such as smartphones and tablets to 

access the Internet freely. This thesis presents a practical timing-based technique 

to prevent wireless clients from connecting to potentially rogue APs. Our detection 

scheme is a pure user-centric approach that only leverages the Round Trip Time 

(RTT) between clients and local Domain Name System (DNS) resolvers without any 

support from the network administrators. We implemented the detection technique 

on commercially available mobile devices and evaluated the performance based on 

extensive experiments. Our detection scheme achieves more than 90% accuracy
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in distinguishing rogue APs from legitimate APs under lightweight traffic conditions 

and more than 60% accuracy under heavyweight traffic conditions.

1.1.2 Vehicular rogue AP detection

Increasingly, city-wide Wi-Fi networks are deployed around the world. As a result, 

people in vehicles can access the Internet via roadside APs, called Drive-thru In­

ternet [7]. This thesis considers the problem of rogue APs that are set up in moving 

vehicles seeking to lure mobile users to associate by mimicking legitimate road­

side APs. Because the users are moving in vehicles, and the non-malicious APs 

are roadside, and therefore immobile, users will leave the radio range of each AP 

and connect to another AP periodically. Vehicular rogue APs, however, are able 

to maintain a long connection with users, thus having more time to launch various 

attacks. We propose a practical user-side detection scheme to prevent users from 

connecting to vehicular rogue APs. Users can merely measure the received sig­

nal strength of beacons broadcasted by APs and actively send several messages 

to validate whether an AP is a rogue AP. W e have implemented and evaluated 

our detection technique on commercial off-the-shelf devices in the real world. We 

observed that our detection scheme can achieve more than 90% accuracy in the 

experiments.

1.1.3 Power saving for Wi-Fi tethering

Wi-Fi tethering (i.e., sharing the Internet connection of a mobile phone via its Wi-Fi 

interface) is a useful feature and is widely supported on commercial smartphones. 

Yet existing Wi-Fi tethering schemes consume excessive power; they keep the Wi­

Fi interface in a high power state regardless if there is ongoing traffic or not. In 

this thesis we propose DozyAP to improve the power efficiency of Wi-Fi tethering. 

Based on measurements in typical applications, we identify many opportunities for
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a tethering phone to sleep to save power. We design a simple yet reliable sleep pro­

tocol to coordinate the sleep schedule of the tethering phone with its clients without 

requiring tight time synchronization. Furthermore, we develop a two-stage, sleep 

interval adaptation algorithm to automatically adapt the sleep intervals to fit ongo­

ing traffic patterns of various applications. DozyAP does not require any changes 

to the 802.11 protocol and is incrementally deployable through software updates. 

We have implemented DozyAP on commercial smartphones. Experimental results 

show that, while retaining comparable user experiences, our implementation can 

allow the Wi-Fi interface to sleep for up to 88% of the total time in several different 

applications, and reduce the system power consumption by up to 33% under the 

restricted programmability of current Wi-Fi hardware.

1.1.4 Group Localization for wireless networks

Mobile devices are often grouped to exchange files or perform collaborative tasks 

when meeting together. In these local groups, the relative locations of other group 

members is critical to enabling location-aware applications for wireless communi­

cation. Ideally, the localization process should be fine-grained, efficient, low-cost, 

scalable, and user-friendly. Existing solutions do not satisfy all of these criteria. 

They are some techniques that can only provide room-level positioning resolution, 

while other techniques require a strong collaboration between every device to ex­

change information or synchronize time. Some techniques rely on infrastructure 

support, and others require special hardware. In this thesis we consider these cri­

teria and propose SG-LOC, a system of grouping and locating mobile phone users 

by performing a simple gesture. W e have implemented and evaluated our sys­

tem on commercial smartphones. Our experiments have shown that SG-LOC can 

achieve less than 1° orientation error and can successfully build a simple map of 

five people in an office room with 20cm error on average.
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1.2 Contributions

This thesis contributes to the following three aspects: mobile security, energy man­

agement of wireless networks and mobile localization. Each aspect is described 

as follows.

1.2.1 Contributions to mobile security

The rogue AP problem is a critical security problem for wireless clients. However, 

there is little research on rogue AP detection, especially regarding "smart" but mali­

cious rogue APs. In this thesis, we deeply investigate both static and mobile rogue 

APs that are likely to be set up in the real world. Our main contributions are as 

follows:

1. We are the first to propose a timing-based detection scheme to defend against 

static rogue AP in 802.11 networks. Our solution can detect sophisticated 

rogue APs that try to avoid detections as opposed to "accidental" rogue APs, 

for example, deployed by an innocent employee in an office. The detection 

algorithm can be purely performed by end users without any help from network 

administrators.

2. We are the first to study the mobile rogue AP problem in vehicular networks. 

Similarly, a novel user-side detection algorithm is designed to reduce the risk 

of "man-in-the-middle" attacks.

3. Our schemes are compatible with 802.11 standards. W e have implemented 

prototype systems on commercial hardware and evaluated them through real- 

world experiments. Our experience and findings will help the further research 

on this topic.
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1.2.2 Contributions to energy management

To the best of our knowledge, we are the first to study the important problem of 

how to save energy for softAPs in Wi-Fi tethering. The main contributions are in 

the following aspects:

• We study the characteristics of existing Wi-Fi tethering. We show that current 

Wi-Fi tethering is power hungry, wasting energy unnecessarily. W e analyze 

the traffic patterns of various applications and identify many opportunities to 

optimize the power consumption of Wi-Fi tethering.

• We propose DozyAP to improve power efficiency of Wi-Fi tethering. W e de­

sign a simple yet reliable sleep protocol to schedule a mobile softAP to sleep 

without requiring tight time synchronization between the softAP and its clients. 

We develop a two-stage adaptive sleep algorithm to allow a mobile softAP to 

automatically adapt to the traffic load for the best sleep schedule.

• We implement the DozyAP system on commercially available off-the-shelf 

(COTS) smartphones and evaluate its performance through experiments with 

real applications and simulations based on real user traces. Our evaluation 

results show that DozyAP is able to significantly reduce power consumption 

of Wi-Fi tethering and retain comparable user experience at the same time.

1.2.3 Contributions to mobile localization

This is the first work integrating commercial hardware such as Inertial Measure­

ment Units (IMUs), speakers and microphones to locate mobile devices without 

the support of network infrastructure. The main contributions are as follows:

• We develop SG-LOC, a system to efficiently group and locate mobile users in 

proximity, where the localization process cleverly leverages dead reckoning
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and multilateration algorithms without any infrastructure support.

• We characterize the challenges of implementing SG-LOC, namely significant 

drift in integration of sensors, signal detection in environment with highly self­

correlated ambient noise, sampling rate drift between different devices, and 

choosing the best gesture.

• SG-LOC operates in the application layer and does not require any modifica­

tion to the OS. W e have implemented SG-LOC on commercial smartphones 

and performed an extensive evaluation.

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2 we describe a rogue 

AP detection technique for Wi-Fi networks. Then we present VR-Defender to de­

fend against vehicular rogue APs for Drive-thru Internet in Chapter 3. In Chapter 

4, we introduce DozyAP system to improve the power efficiency of Wi-Fi tethering. 

In Chapter 5, we present a localization algorithm to facilitate location-aware wire­

less communications among a group of devices. W e conclude the dissertation in 

Chapter 6 .
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2 Client-side Rogue AP Detection

Security, energy management and location-awareness are three important aspects 

to enhance today's mobile technologies. In this opening chapter, we identify oppor­

tunities to improve mobile security through a particular problem: the detection of 

rogue APs. A rogue AP allows an adversary to launch a man-in-the-middle attack, 

thus posing a security threat to mobile clients. This chapter shows how to prevent 

clients from associating to malicious rogue APs without relying on any administrator 

or infrastructure support.

2.1 Introduction

The proliferation of IEEE 802.11 networks (WLAN) in public spaces such as airports 

and coffee houses has increased the interest of security and privacy when using 

such networks. A thread called rogue access points, or rogue APs, has emerged 

as an important security problem in WLANs [1--3, 57, 7 6 ,8 6 ,9 3 ]. A rogue AP is 

defined as an illegal access point that is not deployed by the WLAN administrator. 

Two types of rogue APs can be set with different equipments. The first type uses 

a typical wireless router connected directly into an Ethernet jack in a wall. The 

second type of rogue APs are set on a portable laptop with two wireless cards, 

one connected to a real AP and the other configured as an AP to provide Internet 

access to WLAN stations. W e will further explore the differences between these 

two types of rogue APs in later sections. In this chapter we focus on the detection
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Figure 2.1: Demonstration of the hardware for setting up a rogue AP. The requirement is 
only a laptop with two wireless adaptors: A is an internal wireless adaptor which is con­
nected to a legitimate AP, and B is an external wireless adaptor which behaves as a legiti­
mate AP to induce users.

of the second type of rogue APs.

Fig. 2.1 illustrates that a laptop with two wireless adaptors can be easily set as 

the rogue AP considered in this chapter. For example, we let the internal wireless 

adaptor connect to a legitimate AP, and the external wireless adaptor pretend to 

be a real AP to induce users. In Linux, running command iptables -t nat -A 
POSTROUTING -o interface -j MASQUERADE can bridge packets from one adaptor 

to the other easily. According to 802.11 standard, when multiple APs exist nearby, 

a WLAN client will always choose the AP with the strongest signal to associate. To 

attract clients, therefore, a rogue AP needs to be close to clients so that its signal 

can be stronger than other legitimate APs. The rogue AP can then passively wait 

for users to connect to it, or actively send a fake de-associate frame to force users to 

change connection. Note that, the setting here only demonstrates the basic steps 

of setting up a rogue AP to launch attacks. In practice, a rogue AP needs further 

configuration to avoid easy detections, such as spoofing MAC address, SSID and 

vendor name, setting up a DHCP server to assign valid IP addresses to connected 

clients.

Once an innocent client is connected to a rogue AP, the adversary can manip­

ulate and monitor the incoming and outgoing traffic of the client, and further launch
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different kinds of attacks. For instance, the adversary can easily launch phishing 

attacks by redirecting the user's web page request to a fake one to steal the user's 

sensitive information such as bank account and password.

The previous work has explored several approaches for rogue AP detection. 

One category of solutions is to measure some identities/fingerprints of an AP such 

as SSID, MAC address, RSSI, and clock skew. A rogue AP is detected when 

its identities are compared to those of legitimate APs. The other category of ap­

proaches is to analyze network traffic at the gateway to detect the presence of rogue 

APs (more details are described in Section 2.2). These existing approaches cannot 

effectively detect rogue APs from the client’s side, especially in the strong adver­

sary model considered in this chapter, where rogue APs are aware of the current 

detection schemes, and try to evade the detections. Here we list some challenges 

for designing a detection scheme:

• Clients may not have access to the information about legitimate APs, espe­

cially those APs deployed in hotspots. Therefore, it is not possible to compare 

the identity of an AP with that of authorized APs stored in the database.

• Clients have less privileges than administrators. They are limited by the set­

tings of the network. For example, clients cannot set dedicated servers for 

detection. They cannot use the existing protocols that are not supported by 

the local network. Also, without the assistance from network administrators, 

it is not easy for clients to collect network traffic at the gateway. Therefore, 

some existing solutions cannot work.

• Malicious rogue APs know the detection schemes and manage to escape 

from detections. They can forge their identities, block or fake certain mes­

sages, and directly reply to clients without forwarding messages to legitimate 

APs. Therefore, simple defenses could be easily circumvented. In Section
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2.3.2, we will look at the strategy for a sophisticated adversary in more detail.

In this chapter, we propose a timing-based rogue AP detection technique that 

allows end users to independently determine whether an AP is legitimate or not 

without the assistance from the WLAN administrators. To the best of our knowl­

edge, we are the first to propose a rogue AP detection scheme that can be purely 

implemented by end users. Our main contributions are listed as follows:

1. We propose a timing-based rogue AP detection algorithm that is compatible 

with existing networking protocols and can be applied to 802.11 based net­

work without further modifications.

2. Our solution can detect powerful rogue APs that manage to avoid detections 

as opposed to "accidental" rogue APs deployed, for example, by an innocent 

employee in an office [20].

3. We implement our scheme using commercial hardware and evaluate the per­

formance in real-world networks. Extensive experiments show our algorithm 

achieves more than 90% accuracy in distinguishing rogue APs from legitimate 

APs in lightly-loaded traffic conditions and more than 60%  accuracy in heavy 

traffic conditions.

The rest of the chapter is organized as follows. W e describe the related work, 

and problem formulation in Sections 2.2 and 2.3 respectively. Our algorithm is 

detailed in Section 2.4, and our implementation is presented in Section 2.5. Finally, 

we discuss the evaluation results in Section 2.6 and conclude in Section 2.7.

2.2 Related Work

The threat of rogue APs has attracted significant attentions from both industrial and 

academic researchers. Existing rogue AP detections can be broadly classified into
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two categories.

The first category relies on special hardware such as wireless sniffers to monitor 

wireless network for rogue AP detection. These sniffers usually scan the spectrum 

at 2.4 and 5GHz for unauthorized traffic. The sniffers will alert the system adminis­

trators when such traffic is detected. Some commercial products [1--3] have been 

developed using this technique. In these products, a variety of identifying charac­

teristics including MAC addresses, vendor name, and SSID are used to distinguish 

between a legitimate AP and a rogue AP. Other alternatives collect RSS values [75], 

radio frequency variations [26], and clock skews [46] as fingerprints to identify rogue 

APs. For example, work by [46] calculates every AP’s clock skew by collecting their 

beacons and probe response messages. If any AP's clock skew is different from 

existing clock skews in the database, the AP is then identified as a rogue AP. Other 

work like [17 ,20 ,57 ,93] proposes several hybrid detection schemes consolidating 

both wired and wireless-side efforts. For instance, in [93], special packets are sent 

to a specified wired station through wired network. If wireless sniffers capture such 

packets on air, the tested machine is identified as a rogue AP.

However, deploying wireless sniffers to adequately cover large scale networks 

such as public hotspots is very expensive. Our solution on the other hand has 

a much lower operating cost. In addition, our solution can be performed by the 

end users who have a natural interest in not connecting to a rogue AP, rather than 

relying on system administrators to disable the rogue APs.

In the second category, detecting the presence of rogue APs is achieved by an­

alyzing network traffic at the gateway. In [24], the authors were among the earliest 

to suggest using temporal characteristics, such as inter-packet arrival time to detect 

rogue APs. Later work by [76] builds on this idea by creating an automated clas­

sifier. In [85] and [86], two similar detection schemes are proposed by examining 

the arrival time of consecutive ACK pairs in TC P traffics. Work in [84] and [58] uti­
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lizes the round trip time of TCP traffic to detect rogue APs, based on the CSMA/CA  

mechanism and physical properties of half duplex channel. Recent research [83] 

detects rogue APs by extracting characteristics unique to a wireless stream from 

network traffic.

The prior work focuses on detecting rogue APs that are directly connected to 

a wired network. Our detection scheme instead targets a different type of rogue 

AP attack, where the rogue AP is connected to legitimate APs. Furthermore, the 

prior work all considers detecting the rogue APs from network administrator's point 

of view, which is only feasible in corporate networks. In public networks like those 

found in coffee shops, users cannot assume that the network provider will imple­

ment any rogue AP detection scheme. Our proposed scheme can be executed by 

end users without any help from network administrators.

2.3 Problem Formulation

We consider a scenario when a wireless station tries to join a WLAN to access the 

Internet. After scanning the channels, the station will discover multiple APs within 

its communication range. Some of these APs are legitimate and some might be 

rogue APs. Our objective is to design an algorithm that helps the station to detect 

the rogue AP. The detection algorithm should function in all IEEE 802.11 based 

wireless networks without requiring additional modification. Our proposed scheme 

is a client-centric approach, where end users can perform the scheme on their own. 

It can be combined with administrator-centric approaches (described in Section 2.2) 

to reduce the risk of rogue APs.

We assume that the rogue AP will be launched using a mobile device with two 

wireless interfaces. The first interface connects the rogue AP to the legitimate AP. 

The second interface pretends to be a legitimate AP to induce users to connect to
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Legitimate AP Legitimate AP

SSID: W-M_Wireless SSID: W-M_Wireless

Stronger or Closer Rogue AP

SSID: W-M Wireless

/ \
(a) Without Rogue AP (b) With Rogue AP

Figure 2.2: This figure shows the setup of a rogue AP. A rogue AP is connected to the 
wired network through a legitimate AP. Some stations inadvertently connect to the rogue 
AP because the rogue AP is closer and broadcasts stronger signals to them.

it. When a user associates to the rogue AP, the rogue AP will forward packets from 

the second interface to the first interface, and then towards the legitimate AP. This 

way, the user will still be able to access the Internet as if connected to a real AP. 

Fig. 2.2 illustrates the setup.

We do not consider a rogue AP setup where the adversary directly plugs the 

rogue AP into an Ethernet jack in the wall. There are three reasons for this.

First, there are a limited number of available Ethernet jacks in public places like 

airports. Since a rogue AP that needs an Ethernet cannot launch an attack without 

an available Ethernet jack, this makes this type of rogue AP attacks less likely in 

such places.

Second, rogue APs convince users to associate with them by offering a better 

connection as indicated by a stronger signal strength. Ethernet based rogue APs 

must remain connected to the Ethernet while launching the attack. As such, it is 

difficult for such rogue APs to physically move closer to users to increase their
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Figure 2.3: Illustration of rogue AP attacks. In our experiments, a rogue AP is deployed at 
location A, B and C.

signal strength to induce people to connect to them, thus limiting their impact.

Finally, network administrators can use other methods [17,20,83,86] to disallow 

devices from accessing the network via Ethernet jacks, if they are not registered 

or do not "behave" as wired stations. In this case, the rogue AP will be unable to 

provide Internet access to users, making them easy to be detected.

2.3.1 Rogue AP Effectiveness

To demonstrate the effectiveness of our rogue AP, we set up a testbed shown in 

Fig. 2.3. The station is placed in an office several meters away from a legitimate 

AP mounted on the ceiling. The SNR of legitimate AP measured by the station is 

40dbm. We then setup the rogue AP and place it at three separate locations A, B, 

and C. Location A is one meter away from the station, location B is three meters 

away, and location C is 6 meters away behind a wall. The goal is to determine if 

we could induce the station to connect to the rogue AP instead of the legitimate AP. 

Table 2.1 shows the SNR values received by the station when the rogue is placed 

at different locations. By default, the station will select the AP with the highest SNR  

to connect. In our experiments, when the rogue AP's SNR is greater than 40 dbm, 

it is highly likely that the station will be lured into connecting with the rogue AP.



TX Power 
(dbm)

SNR (dbm)
A (1m) B (3m) C (6m through a wall)

18 (default) 71 55 40
14 67 51 36
10 61 47 33

Table 2.1: Average SNR under different distance and tx power

2.3.2 Adversary Model

Here we consider some defenses that can be circumvented by a sophisticated ad­

versary.

Identity verification: Users can run programs like traceroute to determine 

whether the connected AP is a rogue AP, and traceroute will return the number 

of intermediate hops to a host site. From the output, the station will learn that a 

suspicious AP exists in the route.

However, the rogue AP can evade this detection by monitoring the wireless 

channel to learn the SSID and MAC address of a legitimate AP, and then setup the 

rogue AP to have the same parameters. The rogue can then avoid forwarding the 

real AP’s reply to the user, thus giving the impression that it is connected to the 

same gateway as a legitimate AP.

Traffic monitoring: Traffic monitoring is a technique to distinguish between 

wireless and wired traffic. For instance, [86] monitors all the traffic at a gateway 

and computes the interval between two consecutive TC P ACK packets. A longer 

interval indicates that the TCP packets are traveling over a wireless connection.

However, since the user connecting to a legitimate or rogue AP must use a 

wireless link, the resulting interval between TC P ACKs will experience high variance 

due to fluctuating channel conditions. This makes the traffic monitoring technique 

unsuitable for rogue AP detection.

Simple timing: The station may use the timing information such as the round
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trip time (RTT) to detect a rogue AP. Since the rogue AP consists of an additional 

wireless link to the legitimate AP, this may lead to a delay when transmitting data. 

The station can determine the RTT by sending a message such as a ping request 

or TCP data packets [84] and wait for a reply.

However, the rogue AP can simply forge a response to the user, thus avoiding 

the time penalty of the additional wireless link. For instance, the rogue AP can 

generate a ping response to return to the user without forwarding the request to 

the real AP. Similarly when the user sends a TCP packet, the rogue AP can return 

the ACK to the user directly.

2.4 Our protocol

Our rogue AP detection protocol uses timing information based on the round trip 

time (RTT). The intuition is to let the user probe a server in the local network and 

then measure the RTT from the response. The user repeats this process for a 

number of times and records all the RTTs. If the mean value of RTTs is statistically 

larger than a certain threshold, we regard the associated AP as a rogue AP. We 

begin with examining the motivation and challenges of this approach, followed by 

some background discussion. W e then propose our protocol and show how to 

determine the parameters.

2.4.1 Motivation and challenges

There are two reasons for using RTT-based method to detect rogue APs. First, 

when a user connects to the network via a rogue AP, all his packets traverse two 

wireless hops, one between the user and the rogue AP, and the other between the 

rogue AP and the real AP. When the user is communicating with a real AP, there is 

only one wireless hop. This additional hop will introduce an unavoidable time delay
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provided that the rogue AP is forced to communicate with the real AP. Second, 

it is easy for a user to measure RTTs. Unlike non-timing methods mentioned in 

the related work, measuring RTTs does not require any special equipment, such 

as sniffers [1,2] or radio frequency analyzers [79]. It also does not require any 

modification to the AP.

However, using RTT to detect rogue APs requires addressing three issues:

(1) The first issue is which server to contact. A server in the local network is 

preferred over a remote server on the Internet because the RTT-based method is 

sensitive to the delay in the wired network. Probing a remote server may lead to 

significant variance of RTT due to the dynamic routing path and Internet traffic.

(2) The second issue is what type of probe message to use. W e want a probe 

message that cannot be easily manipulated by the rogue AP, and can reach the 

server regardless of network configuration. As we mentioned earlier, a simple ping 

message can be easily returned by the rogue AP to evade detection and might be 

blocked by some network administrators. In addition, our probe message has to 

adhere to the existing networking protocols so as to avoid requiring assistance from 

the network provider.

(3) Finally, we have to consider the effect of network traffic conditions. A busy 

channel may adversely affect RTT timing and lead to incorrect rogue AP detection.

2.4.2 Background

Our solution lets the station contact a DNS server, and uses the DNS lookup as 

the probe message. In addition, we use two 802.11 management frames, probe 

request and probe response, to determine the effects of network traffic.

DNS server and lookup: The basic function of D N S  is to provide a distributed 

database that maps human-readable host names (e.g., www.cs.wm.edu) to IP ad­

dresses (e.g., 128.239.26.64). The servers managing this distributed database
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are known as DNS servers. Current networks typically cache the queried records 

to achieve high performance.

There are two typical types of DNS lookups: a recursive query and a nonrecur­

sive query. In a recursive DNS lookup, a station queries a local server for a host 

name. If this server cannot answer the query, it will contact the root DNS server 

which will then recursively ask other servers to determine the IP address. In a non­

recursive query, the local DNS server will only search the cached records locally 

without contacting the root DNS server. If no matches are found, the local server 

will send a "host not found" message back to the station.

In our algorithm, we use nonrecursive query as the probe message to measure 

the RTT between the user and the DNS server. The user will send a DNS request 

for a host name with the nonrecursive option. The user then waits for the response 

from the local DNS server and measures the RTT. The user repeats this process 

using a different host name each time.

Our proposed scheme is efficient since most local networks may have a local 

DNS server or resolver for performance reasons [48]. Therefore, a station can 

always send a request to the local DNS server and the time spent on the wired 

network is small due to the local communication. Furthermore, since DNS lookup 

support is mandatory, all networks will have this function. Finally, since the DNS  

response varies for different queries, the adversary cannot predict in advance the 

user's query. The adversary also cannot determine whether a particular query can 

actually be satisfied by the real DNS server. Any rogue AP that returns an incorrect 

answer will be detected by the user. This forces a rogue AP to forward the request 

to the real DNS server to ensure that the reply is correct. Details of how to generate 

and verify user's queries are presented in Section 2.4.7.

Network traffic conditions: To determine the wireless traffic conditions, we 

measure another RTT using probe request and probe response messages. These
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messages are typically used when a station is scanning for APs.

There are two advantages of using probe request and response. First, by calcu­

lating the durations between these two packets, we can estimate the channel traffic 

and the AP's workload. The reason is that in a busy channel, both the probe re­

quest and response will take a long time to transmit due to channel contention and 

retransmission after signal collisions. Similarly, when the AP has a heavy work­

load, i.e., the AP is sending many packets for other associated stations, the probe 

response message has to wait in the AP's transmission queue for a long time be­

fore being sent out. Second, it is difficult for a rogue AP to replicate a busy channel 

by intentionally delaying the probe response because commercial wireless card 

drivers do not dispatch this kind of low level management frames to OS. Further­

more, it is difficult to delay a probe response since this function is not supported by 

regular wireless drivers.

However, a regular probe request has a drawback in that it is a broadcast mes­

sage and every AP that overhears this request will respond. This leads to multiple 

responses, which will create unnecessary channel contention and lead to biased 

RTT measurements. Furthermore, a broadcast message will not be retransmitted 

if lost. The associated AP that does not receive the probe request correctly will 

never reply. This may affect the RTT values. Therefore, we modify the probe re­

quest packet to be a unicast message. This is done by putting the MAC address 

of the target AP into the destination field in the probe request. This will ensure 

that only the target AP will respond and other APs will not. Also, the station will 

automatically retransmit the probe request if needed.

2.4.3 Protocol overview

Here we present the overview of our rogue AP detection scheme. W e use sta to 

indicate a station. For a given APX within sta 's communication range, the station
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Algorithm 1 Detecting Rogue AP (APX)
1: Connect and associate with APX 
2: for i =  1 to n do
3: Send unicast probe request to APX, record round trip time RTTprobe =

R T T p r o b e  T d a t a { p r o b e ) .

4: Send DNS lookup to local DNS server, record round trip time R TTdns =
R TTdns -  Tdata(dns).

5: end for 
6: Filter out outliers
7: RTTprobe = Mean of remaining R TTprobe 
8: R TTdns = Mean of remaining R TTdns 
9: Uprobe = Standard deviation of remaining R T T probe 

10: adns = Standard deviation of remaining R T T dns 
11: A t  =  R TTdna — RTTprobe 
1 2 .  9  =  f  (c fp ro b e i ® d n s )

13: if A t > 9 then 
14: APX is a rogue AP
15: end if

runs the Algorithm 1 to determine whether APX is a rogue AP.

Our algorithm consists of two phases. The first phase (lines 2-5) measures the 

RTTs, and the second phase (lines 6-15) analyzes the collected RTTs and decides 

if the tested AP is rogue.

In the first phase, the station repeatedly sends a probe request (line 3) and a 

DNS lookup (line 4) for n rounds. R TTwobe (R TTdns) records the round trip time 

between the probe (DNS) request and response. Note that we subtract the data 

transmission time Tdata from both R TTprobe and R TTdns, because probe packets and 

DNS packets have different packet sizes and transmission rates which may vary 

in each round. After eliminating the effects caused by data transmission time, we 

can compare R TTprobe and R T T dns fairly. The detail of how to calculate Tdata is 

discussed in next subsection. The choice of parameter n captures the tradeoff be­

tween the overhead and accuracy. Larger n incurs a larger overhead, but increases 

the detection accuracy. We describe this issue in Section 2.4.6.

In the second phase, we first filter out some outlier RTTs (line 6 ). After that,
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we calculate the mean value (lines 7-8) and standard deviation (lines 9-10) of both 

R TTprobe and R TTdns. Finally, in lines 11-15, we check the difference between these 

two RTTs A£ (line 11) against a threshold parameter 6 (line 12) to determine whether 

this is a rogue AR The threshold 6 reflects the delay induced by the extra wireless 

transmissions in rogue AP case, and is calculated by crwobe and adns according to 

experimental measurements. W e present the detail of function /  in Section 2.4.5.

2.4.4 Outlier filter

As mentioned earlier, after measuring n sample values of the RTTs, our algorithm 

runs a filtering process to eliminate some abnormally large values of RTTs that may 

exist in the n  samples due to dynamic network conditions. W e call these abnormal 

values outliers. These outlier values may affect the final outcome. For example, 

assuming we have 50 RTT samples, and 49 samples are 1ms and a single sample 

is 100ms. Without filtering out 100ms sample, we arrive at a mean value of 2.98ms, 

which is not representative of the majority of the samples.

There are many ways to define an outlier. In this chapter, we consider a con­

ventional definition based on the value distance. Consider n sample values are il­

lustrated in a one-dimension space and each value is represented by a data point. 

The distance between any two data points is defined as the absolute difference 

between their values. Let D k(p) represent the distance between data point p and 

its k-th nearest neighbor point, an outlier is defined as follows: Given k and m, we 

first sort all n samples according to the value o f D k(p). The data points with the top 

m largest values of D k(p) are called outliers.

Algorithm 2 illustrates the filtering process. W e set k =  m  =  0.2 • n, where n is 

the number of samples, i.e., we will filter out 20% abnormal values.
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Algorithm 2 k-nearest neighbors outlier filter

1: k =  m =  0.2 • n 
2: for i  =  1 to n do 
3: dt =  D k{R TTi)
4: end for
5: Sort all di in increasing order 
6: Remove the top m  largest values

Parameters Values
802.11b 802.11g 802.11a

tslot 20 us 9 us 9 iis
tDIFS 50 us 34 iis 28 us
tpCLP 192/96 /is 192/96 or 20 /is 20 iis

31 15 15

Table 2.2: IEEE 802.11 characteristics

2.4.5 Parameter values

Here we explain how to derive Tdata and 0 used in Algorithm 1. W e begin with a 

quick review of the 802.11 protocol.

IEEE 802.11 medium access control adopts CSMA/CA model and the distributed 

coordination function (DCF). Before transmitting a frame, a station first senses 

whether the channel is idle. If the channel is idle, the station will transmit im­

mediately. Otherwise the frame transmission will be deferred until the channel 

becomes available. After the channel is free for certain period of time, which is 

defined as DIFS, the station starts a back-off operation with a slot counter whose 

value is randomly selected between 0 and the size of a contention window (C W min). 

This back-off counter decreases by one for each idle slot time. When the back-off 

counter becomes zero, the station transmits the frame. When the destination re­

ceives the frame successfully, it sends a MAC layer ACK back to notify the sender. 

If the sender does not receive an ACK, it will retransmit the packet. Table 2.2 lists 

some timing parameters in 802.11 standard that we will use later.

Based on 802.11 mechanism, we can express the delay for transmitting a packet
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as

T d e la y  =  t d e f e r  +  t D I F S  +  t bf  +  T d a ta  +  ^ r e t r a n s m i t  i

where tdef er is the time deferred due to a busy channel medium, t retTansmit is the 

time for retransmission if no ACK is received, and tbf is the random back-off time.

The expected value of t bJ is given by

c w~r—    fV m i n  ,
t b f  —  ------------ ^ --------------  * t s lo t -

Data transmission time T da ta  depends on the data size (L-byte payload) and the 

transmission rate (r Mbps),

r  (T -r'i - I (28 +  L ) ■ 8bits
J - d a t a { T , r )  —  t p C L P ----- H----------------------------------- ,

r

where t P C L P  is the physical layer packet overhead of any IEEE 802.11 packet in­

cluding two parts: the Physical Layer Convergence Protocol (PCLP) preamble used 

for synchronization and the PCLP header. According to the standard, TPClp  is 

192/ . is  (96fis) for long (short) preamble, using ERP-DSSS modulation scheme (sup­

porting 1-11 Mbps). The TPClp  is 20fxs, using ERP-OFDM modulation scheme 

(supporting 6-54 Mbps) [81]. The value 28 is the length of MAC header plus CRC  

checksum. For every measured RTT at each round, the station is aware of the data 

size (L) and transmitting rate (r) for every incoming and outgoing packet. The sta­

tion can thus compute the exact values of T d a t a ( p r o b e )  and T d a t a ( d n s ) ,  and subtract 

them from RTTs to eliminate the effect of different transmission time.

In order to derive 6, we need to analyze the RTTs. For a legitimate AP, the path 

taken for an entire probe request and response is

S T A  - »  A P  ->■ S T A ,
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and the path taken for an entire DNS lookup and answer is

STA  —> A P  —> S E R V  —»• A P  —> STA.

For simplicity, we only consider the network overhead, but ignore the time for AP 

and DNS server to process the packets. There, after subtracting Tdata, these two 

RTTs for probe and DNS can be expressed as

& rT rr  rp st a~+aP i rp a p —¥sta
x l J  1  probe  ~  overhead  ' ove rhead

and

■overhead 1 w ire d  T  x  o ve rh e a d '
f t r p r p  rriS tQ —ta p  . an  , rj~iQ.p—tStCL

1 dns ^  ■* overhead  ‘ w ire d  ' overh<

where Twerhead is used to indicate the remaining part of Tde,ay after deducting Tdata. 

Since the RTTs of DNS and probe are measured at approximately the same time, 

we assume the network conditions are stable during that time period1, so we can 

regard T^^ead  of probe and DNS as the same. Thus, the difference between two 

RTTs is

A t =  RTTdns ~  RTTprobe =  Tw ir e d ■

Based on our extensive experimental measurements (which will be shown later in 

Section 2.6), A t is no larger than 1.3 ms, even when we consider several hops 

between sending a DNS lookup and receiving the answer back in the idle network 

traffic condition.

On the other hand, if the tested AP is a rogue AP, the path taken for probe

1 [88] mentions that wireless network traffic remains stable within approximately 150 -  250 ms in 
practice.
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messages is still

STA  -> R A P  -> STA, 

but the path for DNS messages is

STA  -» R A P  ^  A P  ^  S E R V  ->• A P  ->■ iL4P  -> STA .

Similarly, we get

A^' =  RTTdns — RTTprobe

  r p r a p —* a p  , r p  , r p a p —* r a p
de lay  '  w ire d  ' de lay

For a station, it is difficult to estimate Tdeiay between the rogue AP and its associated 

legitimate AP, since the station does not know the transmission rate and network 

condition at the AP side. However, based on our experiments, we observe that At' 

is larger than 1.3 ms. In order to effectively detect a rogue AP, 9 needs to be set

between A t and A t' as A t <  6 <  A t'. Therefore, we set the threshold 6 to be 1.3

ms.

However, the threshold 9 may not perform well under heavy traffic condition. 

This is because that the heavy traffic congests the AP causing long tx-queue, 

packet loss, and retransmission. The mean value and variance of RTTs for both 

probe and DNS will become larger. Additionally, heavy workload may delay each 

packet waiting in the AP's queue until packets buffered ahead are transmitted.

To overcome this problem, we dynamically adjust the threshold 9 according 

to the standard deviation of RTTprobe and R T T dns. Based on our extensive ex­

periments, we find that the standard deviation is a good indicator of traffic load. 

Heavy traffic conditions usually result in larger deviation than light traffic conditions. 

Fig. 2.4 illustrates the mean value of A t against the average value of standard devi-

30



4
° Legitimate AP 
• Rogue AP

. - • " O+ +

\

OO
o o 

° oG
°

f(x )= ax + /3

3 1 2 3 t
Standard deviation of RTT

Figure 2.4: Mean value of At against the average value of standard deviation of RTTprobe 
and RTTdns under different traffic load condition

ation of RTTpr0be and R TTdns. In the figure, each data point indicates a test case for 

a legitimate AP or a rogue AP. They are plotted with respect to their mean values 

of At and their standard deviations of RTT. As shown in the figure, we can divide 

the data points into two groups, one for legitimate APs and the other for rogue APs, 

by a single line. From the data, we empirically set

e =  / ( ^ ,  adn.) = a • + ft (2 .1)

where the a  and /? values are 0.49 and 1.3 respectively. W e derive these param­

eters by adjusting the line to let the most number of data points of legitimate APs 

above the line, and the most number of data points of rogue APs below the line. 

The particular line with the furthest mean distance to each data point is selected.

Finally, recall in Algorithm 1, after measuring enough samples of RTTs, a station 

computes the A t and 9. If A t >  9, the station will mark the AP it connects to as a 

rogue AP. Then the station will choose another AP for test.
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Figure 2.5: Illustration of the trend of mean value and standard deviation of A t  against the 
number of samples.

2.4.6 Number of samples

In our experiments, we find that when the wireless traffic is lightly-loaded, our de­

tection algorithm can detect rogue AP with high probability even if we use a small 

number of samples. However, when the traffic is heavy, the algorithm needs more 

samples to achieve desired accuracy. In order to reduce the detection time with­

out sacrificing accuracy, we present a heuristic algorithm to adjust the number of 

samples dynamically, rather than using a fixed number.

The intuition is based on the experimental observations. In Fig. 2.5, we illus­

trates the trend of the mean and standard deviation of A t against the sample size. 

In the horizontal axis, each pair of two bars present the mean value of A t and the 

standard deviation of RTT every 10 samples. W e observe the values may vary a 

lot if the sample size is not large enough. But once collecting enough number of 

samples, the variance will be stable. Therefore, to check whether the number of 

samples is large enough, we re-calculate the variance of the whole samples every 

10 samples, and compare it with previous values. When the difference of the vari­

ances is smaller than a predefined threshold, we stop sampling. This is because 

additional samples will not help detection.

legitimate AP

■ IM e a n  of A t 
[ _ ]  Standard Deviation
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2.4.7 DNS operations

Our scheme has two DNS operations. The first is to determine a set of n different 

host names for measuring n samples of RTTs. The second operation is verifying 

DNS answers.

Determining DNS queries. W e generate DNS queries as follows. In a station, 

two pools are constructed. The first pool contains valid host names that can be 

extracted from local caches of web browsers (like firefox and IE). The other pool 

contains some randomly generated host names. We do not know whether they 

are valid or not. Once the two pools have been constructed, we will randomly 

select a pool to pick a host name to test. Then, we delete that host name from 

the pool to avoid using it again. This prevents a rogue AP from remembering the 

corresponding answers. Note that if we need a lot of samples, we assign a smaller 

weight to the first pool to prevent it from exhausting too fast.

Verifying DNS answers. Suppose that a station hears m +  1 (m >  1) APs 

composed of m  legitimate APs and one rogue AP. The station will first randomly 

select one AP and send a recursive DNS query to it.

Assuming this selected AP is not a rogue AP, it will execute this recursive query. 

This forces the local DNS server to provide an answer to the query by querying 

other name servers on the Internet and cache the response. The station then uses 

the same host name and queries all other APs in non-recursive queries. Now the 

answer to the query should be cached on the DNS server. W e then execute Al­

gorithm 1 on the remaining APs. The legitimate APs will respond accordingly with 

a reasonably short RTT. For the rogue AP, if it chooses to forward the query, the 

rogue AP will be detected by our algorithm. If the rogue AP does not forward the 

query, the rogue AP does not know the correct answer and can only return a "host 

not found" message. The station can thus determine that AP is a rogue AP.
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Figure 2.6: Illustration of the architecture of the testbed

If the selected AP is a rogue AP, it must forward the recursive DNS query to the 

real AP. This is because if the rogue AP does not forward the query, the DNS server 

would not contain the correct answer. When the station runs our algorithm, all the 

other APs will reply with a "host not found" message. When this happens, the 

rogue AP will be detected, since a legitimate AP will always execute the recursive 

DNS query.

We then repeat the process for the remaining APs to detect the rogue AP. In 

this chapter, we do not consider the case of multiple rogue APs colluding with each 

other. This will be examined in our future work.

2.5 Implementation and Setup

This section describes the experiment setup and system implementation in detail.

2.5.1 Hardware description

Fig. 2.6 illustrates the infrastructure of our testbed which consists of two APs and 

three laptops: one laptop is used as a traffic generator, and the remaining laptops 

serve as a station and a rogue AP. Server A is the DNS server in the campus 

network. To investigate the effect of wired link on our algorithm, another DNS server 

B in the same subnet of APs is utilized.
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Commercial Wireless Cards Chipset Driver
Intel PRO/Wireless 3945ABG Intel ipw3945 (v1.2.2)

TP-Link TL-W N610G Atheros madwifi (vO.9.4)
D-Link W NA-2330 Atheros madwifi (vO.9.4)

Dell wireless 1390 WLAN Broadcom BCM4311

Table 2.3: Description of commercial wireless cards, chipsets and corresponding drivers 
used in our experiments

The hardware specification of each component is described as follows.

Access Points: We use a Linksys WPA54G and D-Link D I-624+A for our APs. 

Both APs operate in the 802.11g mode.

Wireless Stations: All laptops in Fig. 2.6 are 2G H z x86 machines running Linux 

2.6x kernel. The traffic generator and the station are equipped with a TP-Link TL- 

W N610G wireless card while the rogue AP possesses 2 wireless cards, one TP- 

Link TL-W N610G, and the other Intel 3495ABG.

DNS Server: Both DNS servers are campus servers connected in local wired 

networks at different locations.

2.5.2 Software description

Drivers: W e use Madwifi (v0.9.4) driver [11] for the wireless cards with Atheros 

chipset, ipw3945 (v1.2.2) driver [9] for those with Intel chipset, and BCM4311 linux 

driver for those with Broadcom chipset. Table 2.3 lists all wireless cards, chipsets 

and corresponding drivers used in our experiments.

Click toolkit on station: On the station side, we implement the proposed

algorithm using Click [49] toolkit with the wireless card turned into monitor mode. 

Click toolkit is a powerful tool over the driver layer. It is well connected with the 

wireless card's monitor mode and provides a flexible programming environment 

to implement our protocol. The most important feature is that we can inject raw 

data by using Click, such that our unicast probe request can be sent easily. The
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Unmodified probe request

Frame
Control Duration FF:FF FF:FF:FF:FF SA BSS ID Seq ctl

2 2 6 6 6 2

bytes

Our probe request MAC address o f AP 
/

Frame
Control Duration 00:17:9A:68:9A:91 SA BSS ID Seq ctl

2 2 6 6 
MAC header

6 2

Figure 2.7: MAC header comparison between unmodified probe request and our probe 
request

comparison between two probe requests are shown in Fig 2.7.

Configuration on the rogue AP: For the rogue AP, one of its wireless cards 

is configured to work in the AP mode, and the other wireless card is configured to 

the station mode and connects to a legitimate AP. Tunneling these two interfaces 

is achieved by adding rules in iptables.

We use a tool called macchanger to spoof the MAC address of a legitimate AP. A 

station connected to the rogue AP will be assigned a valid IP address by dnsmasq, 

as if it obtains it from a legitimate AP. The adversary's strategies mentioned before 

are implemented by netfilter/iptables.

Traffic load: We use channel utilization as in [47] to quantify the traffic load. 

The channel utilization per second is computed by adding (1) the time spent by the 

on-air transmission of all data (including retransmitting), management, and control 

frames transmitted during a second, and (2) the overhead for each frame, such as 

DIFS and SIFS. This overhead is a part of channel utilization, since the channel 

remains unavailable at that time. In our experiments, the traffic generator will send 

packets with constant bit rate (CBR) to generate a required channel utilization.

Recording RTTs: Click toolkit leverages libpcap [10] to push/pull packets

to/from the WLAN driver (shown in Fig. 2.8). Once a probe request (or DNS lookup)
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Figure 2.8: Basic journey of a packet and the place where we record RTTs.

is created in a click module, the packet will be sent to the WLAN driver for link-level 

processing before being pushed to the tx-queue of the wireless card. W e record the 

transmission time just before the packet is pushed to the tx-queue. It is known this 

time is not the instance when the packet is actually transmitted, since the packet 

must wait until previous packets in the queue have been transmitted. To account 

for this delay, we regulate the rate in which packets are added to the tx-queue such 

that there is at most one packet in the queue at all times.

When the wireless card receives a probe or DNS response, we record the arrival 

time when an interrupt is delivered to the driver. This may incur a slight delay 

since the kernel has to process the interrupt. Since we determine A t by subtracting 

RTTprobe from R TTdns, this delay is eliminated.

Unlike previous method mentioned in [40] where RTTs are recorded in user 

space, our method can record more accurate RTTs. That is because each packet 

is timestamped close to the time when the packet is actually being sent or received. 

This may prevent including the delay for packets walking through the kernel. Thus, 

our measured RTTs are not affected by the workload of the station.
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Figure 2.9: Testing the accuracy of our detection algorithm at different locations in real 
world. Location 1 is in the China State Key laboratory of Novel Software Technology at 
Nanjing University, and location 2 is in the campus at College of William and Mary.

2.6 Evaluation

Here we present the experimental results of our rogue AP detection algorithm. We 

use real settings to evaluate the robustness of our algorithm in practice. Our ex­

periments are performed in two campuses referred to as location 1 and location

2. The configurations in both places follow similar architecture shown in Fig 2.6. 

However, the network environment including AP's capacity, the workload of local 

DNS server, the number of users, and interference may be different.

Fig. 2.9 shows the observable experience of our detection algorithm in those two 

places. In the location 1, we first use the algorithm to test a real AP 50 times. Our 

approach only fails 3 times. The false positive rate is only 6%. Then, We repeat 

tests for determining a rogue AP. At this time, detection fails 8 times. The false 

negative rate is nearly 16%. Similar experiments are conducted in the location 2. 

The corresponding false positive rate and false negative rate are 12.5% and 5%  

respectively. As we see, our detection accuracy is about 90% in total. That is really 

robust in practice.

In the following, we investigate the performance of our detection scheme, while
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considering some factors that may affect our algorithm. Recall that, the key of our 

approach is using the round trip time to detect a rogue AP. We consider the following 

factors that have influence on timing RTT.

Data transmission rate: RTT is inversely proportional to data transmission 

rate. High transmission rate usually leads to small RTT. In Section 2.6.1, we inves­

tigate whether a rogue AP can manipulate its transmission rate to avoid detection.

Location of DNS server: In some small hotspots (eg. coffee shops, restau­

rants), APs are usually connected to a close DNS server or resolver provided by 

ISP. This server may be located some hops away from APs. In this case, we have 

possibility to falsely identify a legitimate AP as a rogue AP due to large RTT. Section 

2.6.2 describes the impact of this factor. We show that our scheme can tolerate a 

DNS server with several hops away.

Wireless traffic: As mentioned early, wireless traffic may incur large variance 

of RTT. That is because some packets may be sent immediately with no contention, 

but some packets may be deferred for a long time due to collision or interference 

with others. The variance may hide rogue AP's additional wireless link, and make 

the detection hard. In Section 2.6.3, we evaluate our algorithm under different 

wireless traffic conditions.

AP's workload: AP's workload is related to the utilization of AP's queue. It is 

caused by network traffic, but not equivalent to the traffic. W e examine this factor 

in Section 2.6.4.

Finally, Section 2.6.5 discusses the accuracy of our algorithm by using different 

number of samples, and Section 2.6.6 shows how much time we will spend to test 

an AP.
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RAP Average RTT after removing outliers (ms)
Rate

adaptation
R T T p r o b e 0.72 0.73 0.73 0.73 0.72
R T T dna 2.66 2.71 2.65 2.67 2.66

A t 1.94 1.98 1.92 1.94 1.94
e 1.33 1.32 1.32 1.33 1.33

Fixed
54Mbps

R T T p r o b e 0.73 0.72 0.73 0.74 0.73
R T T dns 2.92 3.13 2.98 3.92 2.84

A t 2.19 2.41 2.25 3.18 2.11
9 1.32 1.43 1.33 1.44 1.32

Table 2.4: Comparison between rate adaptation and fixed 54Mbps under idle traffic condi­
tion

2.6.1 Data transmission rate

Most wireless devices adopt rate adaptation algorithms to adjust their transmission 

rate with respect to varied wireless conditions. However, since there are no speci­

fications with regards to rate adaptation in 802.11 networks, the rogue AP is free to 

use any 802.11 transmission rate to try to avoid detection. The idea is that a rogue 

may attempt to always use the highest rate when connected to a legitimate AP so 

as to reduce the RTT.

To test, we first set up a rogue AP to use the default rate adaptation in idle traffic 

condition, and run our detection algorithm. W e then repeat the experiment using 

the same traffic condition, except we set the rogue AP to always use the highest 

possible transmission rate of 54Mbps. In both tests, we use the same settings, 

where sample size n =  100 and contacting the DNS server B. Table 2.4 shows 

the results for the two tests, where R TTprobe (or R T T dns) is average RTT between 

probe (or DNS) request and the response minus the data transmission time (see 

lines 7-8 in Algorithm 1), A t =  R TTdns -  R TTprohe, and 9 is computed according to 

Eq.(1). In our algorithm, if A t >  9, the tested AP is identified as rogue; otherwise 

as legitimate. W e observe that (1) even if the rogue AP were set to always send at 

the highest possible rate, we can still detect the rogue AP, and (2) the performance
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Figure 2.10: Delay for transmitting 64 byte packets via different number of hops on wired 
link, t is the mean of delay, and A is the variance.

gain by the rogue AP in using a fixed rate appears to be minor, since rate adaptation 

can quickly converge to use the best possible rate even if the initial rate is much 

lower. In fact, in a practical environment, using a fixed rate may result in a worse 

performance since more packets will be dropped when traffic conditions fluctuate. 

This is shown in the larger A t  values in fixed rate experiments. These results are 

omitted due to page limit. Lastly, since utilizing a fix rate yields no benefits, we let 

the rogue AP use rate adaptation for the rest of our experiments.

2.6.2 Location of DNS server

To illustrate the delay introduced by multiple wired hops, we send 64 byte packets to 

a local host located at two, four, and five hops away from the station, and measure 

the time taken for the host to respond. Fig. 2.10 shows the results. W e find that the 

increased time resulting from additional hops is every small. One additional hop 

only incurs less than 0.1 millisecond time.

Next, we examine our detection algorithm when tested APs are connected to 

different DNS servers under idle traffic condition. In the first test, we let the legit­

imate AP and the rogue AP both use a far DNS server A (see Fig. 2.6). Packets 

sent by the station need 3 wired hops to reach the DNS server, and 2 wired hops
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Average RTT after removing outliers (ms)
Legitimate R T T p r o b e 0.633 0.633 0.632 0.634 0.634

AP R T T dns 1.152 1.151 1.148 1.156 1.130
A t 0.519 0.518 0.516 0.522 0.025

(Server B) e 1.314 1.315 1.316 1.316 1.503
Rogue R T T p r o b e 0.671 0.663 0.664 0.664 0.661

AP R T T d n s 2.151 2.219 2.452 2.371 2.455
A t 1.48 1.556 1.788 1.707 1.794

(Server B) 9 1.357 1.345 1.357 1.362 1.362
Legitimate R T T p r o b e 0.73 0.0.72 0.73 0.73 0.73

AP R T T d n s 1.59 1.60 1.58 1.62 1.67
A t 0.86 0.89 0.85 0.89 0.94

(Server A) 9 1.33 1.36 1.33 1.33 1.35
Rogue R T T p r o b e 0.74 0.74 0.74 0.74 0.75

AP R T T d n s 2.76 2.92 2.71 2.67 2.84
A t 2.02 2.18 1.97 1.93 2.09

(Server A) 9 1.41 1.43 1.39 1.41 1.41

Table 2.5: Average RTT for DNS server under idle traffic situation

for the response coming back. In the second test, we have both legitimate and 

rogue APs connect to a close DNS server B which is located in the same subnet 

with APs. Table 2.5 shows the results. We see that our algorithm is able to detect 

the rogue AP even when the DNS server is located at the place several hops away.

2.6.3 Wireless Traffic

Here, we examine the effects of wireless traffic on our detection algorithm. Since we 

adopt a timing-based approach, variations in network traffic may adversely affect 

our results. To only evaluate the negative impact, we ignore the traffic occurs on 

the channel used between rogue AP and real AP, since this will help us to detect 

the rogue AP. We only consider the wireless traffic between the station and the 

tested AP, and set the rogue AP to use the most favorable conditions to avoid 

detection. Because the rogue AP can best avoid detection when it can forward 

packets from the station to the real AP as fast as possible, we let the connection 

between the rogue AP and the AP A be free of any traffic, thus ensuring the fastest
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Figure 2.11: Empirical CDF of RTT for legitimate AP A and rogue AP in idle traffic situation, 
while the DNS server is B, transmission rate is automatic, and n =  100.

possible transmission between the rogue AP and real AP. In our experiments, this 

connection is set to the channel 11 with idle traffic and good quality of signals. 

We then test the rogue AP against AP B, both of which are set to the channel 1. 

We use separate laptops as a traffic generators to control the amount of traffic on 

that channel. W e experiment over three traffic conditions, idle traffic, half-saturated 

traffic, and saturated traffic. In all experiments, we set n — 100 and use DNS server 

B.

Idle traffic: W e create idle traffic condition by restricting data packets on the 

channel. But note that, idle traffic does not mean the channel utilization (as men­

tioned in Section 2.5.2 (d)) is zero (nearly 10% in our testbeds), since there are 

management frames including beacons and so on. Fig. 2.11 describes the empiri­

cal CDF of RTT for a legitimate AP and a rogue AP measured in one experiment. 

The complete results are listed in Table 2.5. As we can see, the value of A t  is 

small, and the 9 varies a little in idle traffic situation. For the legitimate AP, all A t 

are smaller than corresponding 9, whereas all A t for the rogue AP are larger than 

9. Our scheme achieves nearly 100% accuracy, and the total testing time is no 

longer than 1s.

Half-saturated traffic: We define a half-saturated traffic condition when the 

ratio of on-air time of all transmitted packets to the total time is nearly 45%. The
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Figure 2.12: Empirical CDF of RTT for legitimate AP B and rogue AP in half saturated traffic 
situation, while DNS server is B, transmission rate is automatic, and n =  100.

Average RTT after removing outliers (ms)
Legitimate RTTprobe 1.895 1.67 2.009 1.664 1.787

AP R T T d n s 2.788 3.486 3.291 3.415 3.133
A t 0.893 1.816 1.282 1.751 1.346

(Server B) e 2.556 2.572 2.825 2.586 2.585
Rogue R T T p r o b e 1.744 2.067 2.69 2.749 1.982

AP R T T d n s 4.692 All 6.215 6.222 4.838
A t 2.948 2.703 3.525 3.473 2.856

(Server B) e 2.821 2.634 2.896 3.156 2.672

Table 2.6: Average RTT in half saturated traffic situation

traffic generators periodically send packets to create this condition. The experiment 

is then repeated to test our algorithm. We find that as the traffic load increases, the 

average RTT for both probe and DNS messages also increase. At the same time, 

our algorithm is still able to identify the rogue AP with high probability. Fig. 2.12 

illustrates CDF for one experiment. The details are shown in Table 2.6.

Saturated traffic: Here, we let the traffic generators send enough packets to 

create a 90% channel utilization before starting the experiments. Fig. 2.13 and Ta­

ble 2.7 describe the results. We find that under heavy traffic condition, the variance 

of RTT for a probe request (DNS lookup) becomes large. The values range from 

several milliseconds to hundreds of milliseconds. As a result, some of the legitimate 

APs may be incorrectly classified as a rogue AP.

In summary, Fig. 2.14 shows the trends of the mean value of A t  and the thresh-

44



Legitimate AP Rogue AP

Max=471.'Max=281.30.8 0.8
L i.

KTTprabc =67.34°  0.6 °  0.6

q.0.4
Ll I

0.2 0.2 — Probe AP 
DNS

Probe AP 
DNSM in= 1.949 ■Min=2.323

100 300 100 200 
RTT (ms)

300 400200
RTT (ms)

Figure 2.13: Empirical CDF of RTT for legitimate AP B and rogue AP in saturated traffic 
situation, while DNS server is B, transmission rate is automatic, and n = 100.

Average RTT after removing outliers (ms)
Legitimate RTTprobe 37.78 41.07 52.55 54.63 29.36

AP RTTdns 38.46 45.22 61.28 64.43 41.72
A t 0.68 4.15 8.73 9.80 12.36

(Serv B) 9 7.70 11.57 14.12 13.49 9.56
Rogue RTTprobe 53.04 63.18 67.34 59.18 54.95

AP R TTdna 69.13 82.34 79.46 77.59 69.36
A t 16.09 19.16 12.12 18.41 14.41

(Serv B) 9 12.42 13.29 11.73 12.86 15.33

Table 2.7: Average RTT in saturated traffic situation

old 9 for both legitimate AP (a) and rogue AP (b) varying against the channel utiliza­

tion. In the experiments, we set n =  100 and contact the DNS server B. In the figure, 

the circles represent the false detections. As we see, the threshold 9 according to 

the standard deviation of RTT can reflect the traffic condition. Large channel utiliza­

tion incurs a large value of 9. By dynamically adjusting the threshold, our detection 

algorithm can achieve relatively high accuracy under different channel utilization.

2.6.4 AP's workload

Besides the channel contention of wireless traffic, AP's workload also affects packet's 

RTT. When an AP suffers heavy workload, each packet needs more time to pro­

cess, and has to wait in the queue of the AP until packets ahead are sent out. It 

will adversely affect the detection. Hence, we focus on AP's workload to evaluate
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Figure 2.14: Illustration of the trend of the mean value of A t and the threshold 6 varying 
against the channel utilization.

the performance of our approach in this subsection.

We conduct four sets of experiments. For all experiments, we use the same 

settings except changing the throughput of the AP. For each set, we test our detec­

tion algorithm 10 times. In the first set, we restrict the AP with idle workload, that 

is either the uplink or downlink throughput is smaller than 10kps. For the second 

set, to create 1Mbps throughput for both uplink and downlink of the AP, a wireless 

station is used to transmit UDP packets at constant bit rate to another wireless sta­

tion through the AP. Similarly, 2Mbps and 5Mbps throughput are generated for the 

third and fourth set separately.

Fig. 2.15 shows the comparison of four kinds of situations. In the figure, the dark 

shaded bar describes the number of correct detections out of 10 times, and the light 

shaded bar indicates the number of wrong detections. W e find our algorithm works 

well when the AP's workload is lower than 5Mbps. After that, the performance 

decreases.

Note that we only consider the case of an AP being falsely identified as a rogue 

AP due to the workload. W e ignore the case that a rogue AP may suffer heavy 

workload, since that will help us to detect the rogue AP. Therefore, we assume a
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Figure 2.15: Histogram of the accuracy of our detection algorithm under different AP's 
workloads. The "Correct" means a legitimate AP is correctly identified, and the "Wrong" 
indicates falsely detecting an AP as a rogue AP.

rogue AP will never have heavy workload.

2.6.5 Number of samples

Previously, we found that our algorithm does not work well when the wireless traffic 

is saturated. Here, we are curious whether increasing n  could improve the perfor­

mance. In our experiments, we increase the original value of n  from 100 to 300. 

Again, we test a legitimate AP and rogue AP separately under different channel 

utilization. Both tests are repeated 10 times. The detection accuracy is the ratio of 

the number of the tests in which the AP is correctly identified over the total number. 

Fig. 2.16 illustrates the accuracy of our algorithm against the channel utilization.

We find that using n =  100 is enough to achieve 100 percent of detection ac­

curacy in low traffic situation. However, the accuracy falls to 65% as the channel 

becomes increasingly saturated. When setting n =  300, we are able to obtain 80% 

as the channel saturation increases.
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Figure 2.16: Detection accuracy against channel utilization

2.6.6 Testing time

To evaluate the efficiency of our detection algorithm, we use testing time, which is 

approximately the product of the mean value of RTT and the sample size. W e do not 

consider other factors such as the time needed to associate to an AP or to obtain an 

IP address because those factors are dependent on specific AP configuration and 

may vary widely from one AP to another. Clearly, heavy traffic and large number of 

samples will lead to long testing time. Table 2.8 shows the time for testing a rogue 

AP under three traffic conditions. As we see, our algorithm requires less than one 

second under lightly-loaded traffic condition, and tens of seconds for heavy traffic 

condition.

Detection time (second)
Idle Half saturated Saturated

n =  100 0.2 0.9 11.3 AP
0.3 1.1 17.2 RAP

n =  300 0.5 2.7 39.1 AP
0.8 3.2 50.7 RAP

Table 2.8: Testing time under different network traffic conditions
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2.7 Conclusion

The ease of setting up a successful rogue AP makes this form of wireless attack a 

serious security problem. While existing techniques can alleviate this threat, they 

nonetheless require active participation on the part of the network administrator. In 

this chapter, we present a practical, timing-based scheme for the end user to avoid 

connecting to rogue APs. This is done without any assistance from the network 

administrator.
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3 Vehicular Rogue AP Detection

To deeply study the rogue AP problem, we consider another interesting and prac­

tical type of rogue AP which is set up in a moving vehicle for Drive-thru Internet. 

Unlike the rogue APs considered in the previous chapter, vehicular rogue APs are 

always moving and therefore more difficult to be detected. This chapter presents 

a novel scheme to prevent users from connecting to vehicular rogue APs.

3.1 Introduction

The Drive-thru Internet [7] has been of special interest in wireless communication 

research area for several years. The goal of Drive-thru Internet is to provide seam­

less Internet access to mobile users in moving vehicles by exploiting IEEE 802.11 

technology [28,64]. Fig. 3.1 illustrates a typical Drive-thru Internet scenario, where 

the IEEE 802.11-based access points (APs) are deployed along the roads -- within 

the city or on a freeway. Mobile users in vehicles (i.e., vehicular clients) connect to 

these APs (so called roadside APs) for the Internet access. Recently, many city- 

wide Wi-Fi infrastructure for Drive-thru Internet has already been deployed in the 

real world. For example, Google provides a free wireless Internet service to the city 

of Mountain View [8].

Due to the ubiquitous deployment of APs, the problem of rogue APs has emerged 

as a well recognized security issue. A rogue AP is a malicious AP that pretends to 

be a legitimate AP to induce users to connect. Once an innocent user has associ-
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Figure 3.1: Illustration of a typical Drive-thru Internet scenario

ated to a rogue AP, the adversary can then launch various attacks via manipulating 

user's packets. For example, the adversary can launch phishing attacks to redirect 

user's web page requests to fake ones, seeking to steal user's secrets such as 

bank account numbers and passwords.

Rogue APs in vehicular networks can be broadly classified into two categories: 

stationary and mobile. In the first category, a stationary rogue AP is set up at 

a fixed place, such as in a building facing a busy road. Due to the mobility of 

vehicular clients, these types of rogue APs are unlikely to keep a long connection 

with clients. As a result, the time window for adversaries to steal users' secrets is 

short and the damage is restricted. In addition, a stationary rogue AP usually keeps 

active for a long time in a place. It is relatively not difficult for authorities to detect 

such a rogue AP. Previous works [1 7 ,2 0 ,2 4 , 39, 57, 7 6 ,8 3 -8 6 , 93] have already 

proposed several methods to detect stationary rogue APs. However, there is little 

work on how to defend against a mobile rogue AP or a vehicular rogue AP, where 

a malicious rogue AP is set up in a moving vehicle. Since a mobile rogue AP could 

follow traffic on a road, such an AP is able to maintain a long connection with users. 

Thus, this type of mobile rogue APs are more dangerous because they have more 

time to launch various attacks.

In this chapter, we consider the problem of detecting vehicular rogue APs from
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user's perspective. It is challenging because the duration for a vehicular client con­

nected to an AP is short, so that the time left for the detection is restricted. Accord­

ing to IEEE 802.11 standards, when the signal strength of a connected AP is less 

than a threshold, the client will perform a handoff [36] and re-associate to another 

AP with the strongest signal strength nearby. Accordingly, it is meaningless to de­

termine whether or not an AP is rogue while such an AP is out of the client's reach. 

Another challenge is that the information obtained by clients has to go through APs. 

To evade detection, a rogue AP can impersonate a legitimate AP by providing fake 

information such as MAC address, BSSID and other configurations. There is no 

trusted authorities that can be used to validate this information.

Considering the above challenges, we propose a practical detection scheme 

that prevents users from connecting to vehicular rogue APs. Our solution is com­

patible with IEEE 802.11 standards and imposes little modification to the AP side. 

The only change to existing APs is to add their GPS information in each beacon 

they broadcast. Based on that, clients are able to measure the received signal 

strength (RSS), coupled with several test packets with controlled transmission (tx) 

power and data rate to detect rogue APs. To the best of our knowledge, we are the 

first to consider the vehicular rogue AP problem and propose a practical user-side 

detection scheme. Our main contributions are listed as follows:

1. W e are the first to study the vehicular rogue AP problem. The vehicular rogue 

APs considered in this chapter are set up in moving vehicles by malicious 

attackers. They are powerful and capable of forging anything to escape from 

detection.

2. We propose a practical scheme to defend against vehicular rogue APs. Our 

approach is a pure user-centric method that can be performed by end users 

without any help from network administrators. In addition, our approach is 

compatible with 802.11 standards.
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3. We implement our scheme using commercial off-the-shelf devices including 

APs, wireless cards, antennas, and GPS modules. In addition, we show our 

scheme is effective in real world environment through extensive experiments 

on realistic road conditions.

The rest of the chapter is organized as follows. Section 3.2 discusses the re­

lated work. Section 3.3 describes the adversary model. Our detection algorithms 

are detailed in Section 3.4. The implementation and evaluation are presented in 

Section 3.5. Last, we discuss the limitation of our solution in Section 3.6 and con­

clude in Section 3.7.

3.2 Related Work

The threat of rogue APs has attracted the attention of both industrial and academic 

researchers. Previous research has been mainly focused on detecting static rogue 

APs in enterprise or hotspot scenarios. Existing schemes can be broadly classified 

into to three categories.

The first category relies on sniffers to monitor wireless traffic. These sniffers 

usually scan spectrum to examine the 2.4 and 5GHz frequencies. Once detecting 

any traffic from unauthorized APs, they will alert the administrator. This approach 

usually demands well controlled infrastructure such as enterprise networks, where 

the administrator can easily deploy sniffers and cut off the access of rogue APs 

to Internet. Some commercial products [1 -3 ] have been developed following this 

technique. In academic community, an architecture for diagnosing various faults 

in WLAN including rogue APs, is presented in [17], where multiple APs and mobile 

clients installing a special diagnostic software cooperate to perform RF monitor­

ing. In [20], another monitoring infrastructure called DAIR is proposed, where USB 

wireless adapters are attached to desktop machines for capturing more compre­
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hensive traffic to reduce false detection rate. Different from this type of solution, 

our defending scheme does not reply on sniffers. That is because a small amount 

of sniffers may not catch vehicular rogue APs well, but extensive deployment of 

sniffers is impractical.

The technique used in the second category is leveraging fingerprints to iden­

tify rogue APs. Since an advanced adversary can easily spoof a rogue AP's MAC 

address, SSID, vendor name, and configuration to escape from the detection, the 

previous work often adopted the fingerprints that cannot be easily forged. For ex­

ample, the work by [46] calculated every AP's clock skew by collecting their beacons 

and probe responses. Since clock skew is difficult to forge , any AP with unknown 

clock skew is identified as a rogue AP. In addition to clock skew, RSS values [75], 

radio frequency variations [26] are also used. However, a major drawback of this 

type of schemes is that the AP validation requires to access a database containing 

the fingerprints of all legitimate APs. This database may not be available for end 

users before they connect to the AP. Our solution differs from such schemes in that 

we do not assume the clients know the fingerprints of legitimate APs in advance. 

Therefore, our detection scheme can apply to not only network administrators but 

also end users who use the wireless network for the first time.

The last category exploits the features of wireless traffic to detect the presence 

of rogue APs [39,57,86,93]. In [39], a practical timing based scheme is proposed. 

The method employs the round trip time between user and local DNS server to 

detect rogue APs without assistance from network administrators. [84] utilizes the 

immediate switch connecting rogue APs to measure round trip time of TCP traffic. 

Other work by [24,76] uses the spacing between packets to distinguish wireless 

networks from wired networks. In [86], inter-arrival time of ACK-pair is used to 

detect rogue APs. In [93], wired verifier and wireless sniffers are deployed at the 

same time to detect layer-3 rogue APs. Since we consider a new type of rogue AP,
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it is unclear whether previous solutions could work in vehicular networks. Although 

some schemes might work, it may spend much time on analyzing the network traffic. 

Our solution is more efficient and user-centric.

3.3 Adversary model

Vehicular rogue APs considered in this chapter are set up in moving vehicles by 

malicious attackers. The goal of the rogue AP is to induce clients to connect. If 

any client associates to a vehicular rogue AP, the adversaries succeed. Several 

assumptions are described as follows.

(1) We assume the vehicular rogue APs and vehicular clients stay on the same 

lane of a road and follow traffic. In other words, the relative distance between 

a rogue AP and a client will not change too much. The vehicular rogue APs on 

the opposite lane are not considered, because the time window for them to launch 

further attacks is extremely limited. Even though some clients may associate to the 

rogue APs on the other lane by accident, they will quickly move out of the range.

(2) Previous work [39] assumes that rogue APs have to connect to existing le­

gitimate APs to access Internet, so they suffer from multi-hop wireless transmission 

and are slower than legitimate APs. Here we do not hold this assumption, as well as 

any other assumptions about the back-end infrastructure for vehicular rogue APs 

to access Internet.

(3) We assume that rogue APs are able to transmit any packet with arbitrary 

tx power and inject packets with any content. For example, the adversary can 

generate fake re-associate frames to force clients to re-select APs immediately, 

and provide whatever fake information to clients.

(4) We assume the adversary cannot modify the firmware of wireless cards. For 

example, the rogue AP cannot control Ack frames. Although Ack frames can be
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generated by software, they cannot be sent back to clients within pre-determined 

Ack timeout. It is mentioned that the time interval between data and Ack is a SIFS  

(10 fis in 802.11g [82]). Software (not firmware) Ack cannot be prepared within 

such a short interval [62],

(5) We do not consider the Drive-thru Internet is capable of using RADIUS- 

based 802.1X authentication of users, since it requires each vehicle to have the 

correct key to access the network. While this may be possible, for example, every 

car when registered with the DM V is issued the appropriate credentials, it is unclear 

how well this will work in practice. Thus, we only consider the open 802.11 network 

where any car can connect.

Based on these assumptions, the adversary can launch two types of attacks.

Basic attack. In the basic attack, vehicular rogue APs broadcast beacons 

with the maximum tx power. The maximum power will lead to the strongest sig­

nal strength with which the vehicular rogue APs have most probability to attract 

users to connect. The advantage of the basic attack is its easy setup. Without 

any complicated configuration, the basic attack can be launched anytime and any­

where.

Advanced attack. The major difference between the advanced attack and the 

basic attack is that the former attack needs background preparation before creating 

a vehicular rogue AP. For example, the adversary could first drive along the road as 

a client to profile RSS values from existing roadside APs, and then tune tx power to 

make the signal strength received by nearby clients similar to the profiled values. By 

doing so, RSS-based solution cannot work well, because the RSS values measured 

by the clients appear like "real". Compared to the basic attack, the advanced attack 

is more time-consuming, but is more difficult to be detected.
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3.4 Our Solution

The algorithms for detecting basic attacks and advanced attacks are presented 

separately. In both algorithms, each AP needs to broadcast its physical location 

such as GPS coordinates. Since the IEEE 802.11 standards allow adding arbitrary 

information elements with variable-length in beacons, the GPS information can be 

easily included in beacons which are broadcasted by every AP periodically. To 

determine AP's location, the network administrator can resort to an external GPS  

module and measure it offline. Upon receiving a beacon, clients know the AP's 

location. If any AP refuses to expose its GPS location, the client will never connect 

to that AP for security consideration. For a legitimate AP, it always reports its actual 

GPS coordinates which indicate a fixed location alongside the road. However, a 

vehicular rogue AP is afraid of reporting its true GPS location, because that location 

indicates such an AP is always moving on the road. A  user can easily detect it 

and avoid connecting to that AP. Hence the vehicular rogue AP has to forge GPS  

location to escape from the simple detection. The problem of detecting rogue APs 

is then converted to the problem of verifying whether an AP lies on its GPS location. 

Any AP who lies on its location is deemed as a rogue AP; otherwise, it is a legitimate 

AP.

3.4.1 Defending against basic attacks

First, we present the algorithm to defend against basic attacks. The basic idea of 

this algorithm is to leverage RSS on the client side to verify whether the rogue AP 

lies on its location. Since the rogue AP is not physically at the reported location, the 

RSS values should be able to tell the difference especially when the car is always 

moving. The intuition is shown in Fig. 3.2. Suppose a vehicular client moves on a 

road and receives m  beacons at different places. The RSS value of each beacon
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Figure 3.2: Intuition of defending against basic attacks, where a vehicular client needs to 
measure RSS and its own GPS location at multiple places

is denoted as rss* where i e  [1,• • • ,m ], and each location gpsi indicates the exact 

location where the beacon is received. Thus, based on AP's reported location gpsap 

and its own gpsit the client can continuously compute the distance between the AP 

and itself (i.e., dx, d2, • • • , dm). On the other hand, the distance can also be inferred 

from RSS values. If the distances computed from GPS coordinates significantly 

differ from those inferred from RSS values, that AP is highly likely to be a vehicular 

rogue AP.

How to infer the distance from RSS? W e adopt a widely used log-distance 

propagation model to characterize the relationship between distance and RSS. In 

this model, the received signal power decreases logarithmically with distance and 

it is expressed as

where Pt is referred to as transmit power of the sender, Pr(d) is the received sig­

nal strength at a distance of d, and c is a correction constant which captures the 

effects of transmit frequency, antenna gains of both sender and receiver, as well 

as other factors in the environment. The path loss exponent 7 determines the rate 

of attenuation when the signal propagating through the space, which is dependent 

on the propagation environment. A  larger 7  means the environment is lossy and 

will cause the fall of RSS faster with distance.

(3.1)
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In the scale of decibel (dB), Eq. 3.1 can be rewritten as

Pr (d) =  Pt +  c -  107 log10(d) +  (3.2)

which depicts a linear relationship between RSS and the logarithmical distance. 

The newly introduced X$ is a random variable with zero mean, which reflects the 

attenuation caused by flat fading [31]. Such a log-distance model has been verified 

to predict RSS well in various locations including outdoor scenario by previous re­

search [65] and our real world experiments. However, the model parameters (i.e., 

c and 7 ) should be adjusted according to specific outdoor space. As mentioned 

in [41,65], 7 normally ranges from 2 to 6 , where 2 is for propagation in free space 

and 6 is for heavily lossy environment.

Overview of algorithm. The overview of the algorithm is described in Algo­

rithm 3. For each AP that a client tries to associate to, this algorithm is performed 

to test whether such an AP is a rogue AP. The inputs of the algorithm are gpsap, time 

series data rss, and gpsi where i e [1, 2, • • • , m ). Namely gpsap denotes the reported 

location of the tested AP, rss* is the received signal strength of the ith beacon, and 

gpsi is the location of the client where the ?th beacon is received. The parameter m  

determines the number of samples demanded to perform the algorithm. Now let us 

assume all inputs are available. Later, we will elaborate how to obtain them. The 

output of the algorithm is either true or false, which means the tested AP is a rogue 

AP or not respectively. Initially, the client computes the distance dt between the 

reported location of the AP and itself (from line 1 to line 3). Next, rs s t and d* are fit 

into Eq. 3.2 to estimate the parameter 7  using least square method. If the value of 

7  is within the normal range from 2 to 6 , the algorithm terminates and returns false 

otherwise true.

Fig. 3.3 illustrates an example of the least square fit of the samples collected
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Algorithm 3 Detecting Basic Rogue APs

Input: gpsap, rs s i and gpsi where i  € [1,2 , • • • , m] 
Output: true or false 

1: for k  =  1 to m  do 
2: d{ =  \\gpsap -  gpsi\\
3: end for
4: Use least square fit of <  rs s u >  to estimate 7 
5: if 7  falls into the range from 2 to 6 then 
6: Return false
7: else
8: Return true
9: end if

- 4 5
Measured samples 
Least square fit-5 0

-5 5

-7 0

-7 5

100 150
Distance (meter)

200 250

Figure 3.3: Illustration of the least square fit of the measured samples collected from a real 
roadside AP

from a real roadside AP. As we see, the estimated parameter 7  indeed falls into the 

normal range from 2 to 6 . We also tested many other APs using different devices 

and in varying environment. They all have similar results, but most vehicular rogue 

APs yield out-of-range results. The results are presented in Section 3.5.

How to obtain GPS and RSS? When receiving a beacon, a client can mea­

sure its RSS value. However, the frequency of GPS update in practice is much 

slower than that of receiving a beacon. For example, most commercial GPS mod­

ules update GPS coordinates less than 1 Hz, whereas a client may receive about 

10 beacons within 1 second. It then raises a problem of how to assign a location for
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each beacon. To address this problem, we assume that the client did not change 

the speed during the interval of GPS update. This is true, because the interval is 

very small so that the speed diversity can be ignored. Next we apply interpolation 

on GPS data. Suppose two GPS updates occur at timestamps u and t j t  and the co­

ordinates change from gpsfa ) to gps(tj). Between them, the client receives several 

beacons with rssk where i  <  k <  j .  To estimate gps(tk), we have

gps(tk) =  gps(ti) +  (gps(tj) -  g p s fc )) ■ [k
Zj T>i

How to deal with RSS noise? Due to many reasons such as dynamic envi­

ronment interference, the measured RSS may suffer from some extreme values. 

With these abnormal values the model parameters may be estimated inaccurately. 

Therefore, we have to filter out them before applying the least square fit. The pro­

cess is simple as follows: the client checks consecutive three RSS values. If the 

difference between the median value and the average of its prior and following val­

ues exceeds a threshold r ,  the median value is replaced by the average value. 

Heuristically, we set r  to 5 dBm.

How to determine the number of samples? The number of samples m  affects 

the time duration and the accuracy of the detection. A larger m  typically leads to a 

more accurate result but costs longer time to finish. To determine m, we propose a 

method that can adaptively involve more samples until the estimated parameter 7  

becomes stable. In the approach, once an AP is first discovered, the client keeps 

measuring RSS in background. Every time duration A t  (second), all the accumu­

lated RSS values for that AP are fitted into Eq. 3.2 to estimate 7 . If 7  does not 

change within a threshold 9 for continuous two A t,  7  is deemed to be stable and 

we stop to involve more samples. This method works well in practice by setting 

A t  =  1 and 9 =  0.5. The experiment results are presented in Section 3.5.
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3.4.2 Defending against advanced attacks

As mentioned in Section 3.3, by profiling in advance, a sophisticated rogue AP is 

able to tune tx power to mimic the RSS trend of a roadside AP. In this case, the de­

tection cannot merely rely on RSS values because they appear like "real". Hence, 

our algorithm for basic attacks cannot work. It is much more challenging than de­

fending against basic attacks, because the adversary is more sophisticated. In this 

section, we present a novel user-side algorithm for defending against advanced 

attacks. This algorithm demand clients to send probe requests to the AP and per­

form a series of lie-detection tests. Note that this algorithm is complementary to the 

previous algorithm. They can be combined together to make the detection more 

accurate.

Background. Before presenting the detail, let us first introduce some back­

ground knowledge. In wireless communication, the transmission distance that can 

be achieved between two wireless devices is influenced by the tx power of the 

sender and the rx sensitivity of the receiver. Out of this distance, the receiver can­

not receive packets correctly. As a sender, there are two ways to adjust the trans­

mission distance in purpose. Tweaking tx power is one of them. Fig. 3.4 shows 

RSS values versus various tx powers at distance of one meter between a sender 

and a receiver in our experiments. As we see, the average RSS values decrease 

linearly with tx power. That means large tx power leads to long communication 

distance.

Using rx sensitivity is another way to change the transmission distance. With 

greater rx sensitivity, the device is able to receive weaker signals, thus owning 

longer transmission distance. In particular, rx sensitivity is influenced by data rate 

which is controlled by the sender. Different data rate achieved by different mod­

ulation schemes requires different rx sensitivity. When RSS value is less than rx
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Figure 3.4: Average RSS values versus varying tx powers

Rates (Mbps) Standard Modulation Rx sensitivity (dBm)
6 802.11a/g BPSK/OFDM -82
9 802.11a/g BPSK/OFDM -81
12 802.11a/g QPSK/OFDM -79
18 802.11a/g QPSK/OFDM -77
24 802.11a/g QAM -16/OFDM -74
36 802.11a/g QAM -16/OFDM -70
48 802.11a/g QAM -64/OFDM -66
54 802.11a/g QAM -64/OFDM -65

Table 3.1: Modulations for 802.11a/g

sensitivity, the packet cannot be demodulated correctly. Table 3.1 presents an ex­

ample of mapping between data rate (modulation) and rx sensitivity for each data 

rate supported in 802.11a/g networks. It is seen that a fast data rate typically re­

quires a large rx sensitivity, thus leading to a short communication distance.

Intuition. Given a certain tx power and data rate, the communication range 

between the client and the AP is determined. If the reported location yields a sig­

nificant departure from that range, there should be something wrong. For example, 

an AP claims far away from the client, but it can receive packets with very low tx 

powers and high data rates. Such an AP is likely to be a rogue AP. The client her­

self could perform this test according to the reported location of the AP. However, 

the problem is that different AP may have different rx sensitivity for each data rate,
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which may affect the correctness of the test. For instance, the succuss in receiving 

a packet with low tx power and high data rate may be due to a powerful antenna 

rather than a short distance. To cope with this problem, our algorithm choose a 

different strategy that the client will test each AP with a vector of power-and-rate 

combinations in the order from the low-power/high-rate end to the high-power/low- 

rate end. In this vector, the AP could receive the packets at the beginning but 

fail after a certain combination. Such a combination is labeled as the boundary of 

the vector, which reflects the communication distance. After testing several times, 

if the client finds that the reported distance changes a lot but the boundary rarely 

changes, then such an AP is deemed as a rogue AP. The rationale behind this idea 

is that the relative distance between a legitimate roadside AP and a client changes 

when the client is moving on the road, but the distance between a mobile rogue AP 

and the client never changes so much.

Overview of the algorithm. Algorithm 4 describes the detail. The procedure 

send_probe_requests is used to send probe requests with varying tx powers and 

data rates to test an AP. Instead of exhausting all the combinations, we only picks 

a subset to reduce the finish time. Suppose the maximum tx power of a client is 

pw rmax =  27dBm, then the power set is {7dBm ,  17dBm, 27d B m }.  The selected rate 

set is always limited to {54Mbps, 48Mbps, 36Mbps, 24Mbps), since it can separate 

the 10dBm difference well. The vector of combinations is as follow:

{7dBm/54Mbps, 7dBm /48M bps , 7dBm /24M bps , • • • , 27dB m /24M bps).

It should be noticed that according to our experiments the current ordering of the 

vector strictly follows the communication distance from short to long . For each 

combination, the client sends several probe requests to the AP. If more than half 

of packets got Ack back, such an combination is deemed as receivable else non-
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Algorithm 4 Detecting Advanced Rogue APs

procedure: send_probe_requests
pw rse t 4 - {p w rmax% 1 0 ,p w rmax% 10 +  10,•■• ,p w rmax}  
rateset <- {54,48,36,24} 
for i  =  1 to s ize (pw rset)  * s ize (ra teset)  do 

Set tx power to p w rs e t \c e i l (siIe(i^ ^ )]
Set data rate to ra tese t[ i% s ize (ra tese t)]
Send n probe requests to AP with tx power and data rate above. If more than 
half receive Ack back, then V[ i )  =  1; Otherwise, V[ i ]  =  0 

end for
1: if AP is first discovered (weak RSS) then 
2: Call send_probe to obtain a vector V
3: end if
4: if client intends to associate to that AP (strong RSS) then 
5: Call send_probe to obtain another vector V '
6 : end if
7: Find the boundary in both V  and V ' such that the ratio of 1 to the number of 

elements before the boundary and the ratio of 0 to the number of elements after 
the boundary are maximized.

8: if boundary(V ) — b o u n d a ry (V ') <  th re sho ld  then 
9: Such an AP is a rogue AP

10: end if

receivable, denoted by 1 or 0 separately. Based on this vector, the boundary is 

computed such that the ratio of 1 to the number of elements before the boundary 

and the ratio of 0 to the number of elements after the boundary are maximized. 

In the algorithm, the client calls this procedure twice: once at the time when first 

discovering the AP (weak RSS), and the other time when trying to associate to 

that AP (strong RSS). By comparing the boundary of two vectors, if the difference 

does not exceed a threshold, the client will never connect to that AP. The reason 

is that the physical distance has changed a lot so the boundary difference should 

reflect this change. If not, such an AP is deemed as a rogue AP. In this chapter, we 

heuristically set this threshold to 4 based on our experiments.
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3.5 Evaluation

In this section, we present our experimental setup, the methodology and exper­

imental results, which attempt to answer the following questions: 1) What is the 

performance of both basic algorithm and advanced algorithm working in practice? 

2) What is the time cost of determining whether or not an AP is a rogue AP? 3) How 

does the speed of a vehicle affect the performance?

3.5.1 Experimental setup and methodology

The devices used in our experiments are comprised of a roadside AP, a vehicular 

rogue AP, and a vehicular client.

Roadside AP. A commercial outdoor AP (Deliberant CPE 2-12) was configured 

as a roadside AP. The specification of this model can be found in [6], The AP was 

mounted on top of a tripod that is 2m high (see the left part of Fig. 3.5). When 

deploying the AP alongside the road, we used a GPS receiver (GlobalSat BU-353) 

to measure its physical location. To enable broadcasting the GPS information via 

beacons, we loaded the AP with OpenWrt [15] firmware and a modified Wi-Fi driver. 

The extra content in each beacon has 18 bytes including 1 byte element ID, 1 byte 

length, 8 bytes latitude, and 8 bytes longitude.

Vehicular rogue AP. A laptop connected with an external omni-antenna and 

a GPS receiver (see the right part of Fig. 3.5) mounted on the roof of a car was 

configured as a vehicular rogue AP. The laptop was running a 2.6.27-generic Linux 

kernel with madwifi driver (svn r4128). Similar to the roadside AP, we modified the 

madwifi driver to support GPS broadcast. We did not set up the Internet access for 

all APs, since it does not affect the performance of our algorithms. In basic attacks, 

we fixed the tx power by executing command iwconf ig  txpower [v a lu e ] with the 

maximum power value. In advanced attacks, we tried to automatically adjust tx
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Figure 3.5: Experimental setups of a roadside AP (left) and a vehicular rogue AP (right)

power to mimic the real trend of RSS values, but eventually we found that it was re­

ally difficulty to make it work in practice. Most of time, the advanced rogue AP could 

be detected by our basic algorithm. To ease evaluation, we optimistically assume 

the rogue AP can escape from our basic algorithm and evaluate our advanced al­

gorithm without changing the tx power of the AP. This is reasonable because our 

algorithm does not rely on any configuration of APs.

Vehicular client. The vehicular client used the same hardware as the vehicular 

rogue AP. The Wi-Fi interface of the client was set to monitor mode which could 

capture all the packets in air. Injecting and receiving packets were achieved by libp- 

cap. The control of per-packet tx power and data rate was done by radiotap header. 

In Linux, the IEEE 802.11 MAC layer allows arbitrary injected packet composed in 

the following format:

[radiotap header] + [ieee80211 header] + [payload].

IEEE80211 _RAD10TAP_RATE and IEEE80211_RADI0TAP_DMB_TX_P0WER in the radio- 

tap header are used to control the data rate and the tx power of injected packets. 

Given different values, a packet can be transmitted with the desired power and 

data rate. Note that to control per-packet tx power, h a l_ tp c  must be enabled while
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Name Notation
AP Deliberant CPE 2-12 based on W DB-500 platform

Laptop Lenovo T61 with 2.0G Hz processor and 1G RAM
GPS GlobalSat BU-353 USB GPS receiver

Wireless card CB9-GP Cardbus 802.11a/b/g based on Atheros chipset
Antenna 7 dBi MA24-7N magnetic-mount omnidirectional

Table 3.2: Equipment description

loading the madwifi module. Table 3.2 summarizes all the equipment used in our 

experiments.

The experiments were conducted in a suburban area, where we could freely 

drive along the road and stop to collect measurements. In the experiments, a road­

side AP was placed at a parking lot around 60m away from the road. Two cars 

configured to be a vehicular rogue AP and a vehicular client were driven along 

the road passing through the roadside AP. The roadside AP broadcasted its ac­

tual GPS location, and the rogue AP broadcasted a location close to the roadside 

AP. W e took two sets of experiments to evaluate our vehicular rogue AP detection 

schemes. The first set of experiments was used to evaluate the performance of our 

basic algorithm, where the client passively listened beacons. The second set was 

to evaluate the advanced algorithm, where the client actively sent probe requests 

to the AP.

3.5.2 Experimental results

Basic attack evaluation. First, we tested if legitimate roadside APs could pass 

our basic algorithm. As an example, Fig. 3.6 illustrates the measured RSS values 

against the logarithmical distance in an experiment. The client started the algorithm 

when observing the first beacon from a roadside AP and terminated the algorithm 

when 7 was stable. In total, the client collected 110 beacons within 11 seconds. 

The estimated 7 was 3.31 eventually, which falls into the valid range from 2 to 6 .
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Figure 3.6: Result of our basic algorithm in the case of a legitimate AP

Therefore, the AP is labeled as a legitimate AP correctly. Although the finish time 

seems a little long, it should be noticed that this cost only occurs once when the 

client initially turns on the Wi-Fi and tries to find an AP to connect. After that, the 

client will wait for a certain period until the signal strength of current AP becomes 

weak. Only at that time, the client needs to find another AP for handoff. During the 

waiting period, the client should have collected enough RSS values from nearby 

APs to determine which APs are rogue APs. To investigate the robustness of our 

algorithm, we also conducted experiments in different environments. W e observed 

that 7 varied across environments but they all felt into the normal range.

Next, we tested the performance of the algorithm when the tested AP is a rogue 

AP. Fig. 3.7 shows the result. As we see, after collecting 90 beacons, 7 was stable 

at 1. It is clear that the tested AP is a rogue AP.

Advanced attack evaluation. Fig. 3.8 and Fig. 3.9 depicts the experimental 

results of our advanced algorithm in respect to a legitimate roadside AP and a 

vehicular rogue AP. The figure only shows a part of the vector which contains the 

0/1 boundary. The first test occurred when the first beacon was received, and the 

second test was performed when the client tried to associate to that AP. It is seen
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Figure 3.7: Results of our basic algorithm in the case of a vehicular rogue AP
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Figure 3.8: Results of our advanced algorithm in case of a roadside AP

that the boundary for a roadside AP changed significantly due to the mobility of the 

vehicle. By contrast, the boundary changed little when the tested AP is a rogue AP. 

We also evaluated the performance at different locations. W e observed that our 

algorithm could achieve more than 90% accurate to label an AP correctly. Due to 

page limit, the results are not presented in this chapter.

Finish time versus vehicle speed. The finish time of our basic algorithm is 

determined by the duration when 7 becomes stable. We have investigated the 

finish time and the difference of 7 (the value when the algorithm is terminated to the 

ground truth) against different vehicle speeds. The finish time is measured in unit
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Figure 3.9: Results of our advanced algorithm in case of a vehicular rogue AP
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Figure 3.10: Finish time and 7 difference versus the vehicle speed

of second, and the ground truth of 7  is derived when all beacons (from entering to 

leaving the communication range of the AP) are used for least square fit. Fig. 3.10 

presents the results. As we see, the faster the speed of vehicle, the quicker the 

algorithm can finish. Again, this cost only incurs when the Wi-Fi interface is initially 

turned on. After that the cost can be amortized by background scan. In addition, 

we find our algorithm can estimate 7  accurately. The difference of 7  is within 0.3.
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3.6 Discussion

Our solutions make use of physical characteristic such as path loss and the percent­

age of acknowledged tx packets to determine the discrepancy between the rogue 

AP's actual location and its reported location. This makes our solutions vulnerable 

to the following factors.

One factor is that outdoor wireless condition is unpredictable. Although our 

solution relies on a well-known signal propagation models, it is inevitable that there 

will be instances where the actual conditions deviate from the models. When this 

happens, our solution is not able to detect the rogue AP successfully. W e can 

mitigate by adopting a more accurate model in our solution. In addition, it is unclear 

how well the adversary can take advantage of this limitation since the adversary is 

unable to predict the channel conditions as well. Finally, we have observed that our 

solutions may not work as well in some locations where there are a lot of buildings. 

We will investigate more complex environments and refine our algorithms in our 

future work.

Another factor is that the wireless interference may have a negative effect on 

the packet reception. It is difficult for a sender to infer that an unsuccessful packet 

transmission is caused by either bad signal strength or interference. When this 

happens, our advanced algorithm may not detect the rogue AP well. However, the 

adversary cannot easily utilize this uncontrolled factor to increase the probability of 

escaping from the detection. In the future work, we will study how to reduce the 

detection errors caused by the interference.
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3.7 Conclusion

Attacks from vehicular rogue APs have raised a serious security problem for Drive- 

thru Internet. In this chapter, we are the first to demonstrate the feasibility of this 

type of rogue APs and present a practical defending scheme to prevent users from 

connecting to vehicular rogue APs. W e implement our approach on commercially 

available hardware and perform extensive real-world experiments that confirm the 

efficacy of our solutions.
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4 Power Saving for Wi-Fi Tethering

The previous chapters discover the guidelines for improving mobile security. How­

ever, the concepts of security and energy are closely related with each other. A 

system or algorithm design for mobile computing that considers only security but 

not energy is unlikely to work well in practice. If an enhancement is at the ex­

pense of the energy consumption, it will not be accepted by battery-powered mo­

bile devices. In this chapter we study the problem of how to save power without 

compromising the user experience. Our power-efficient system called DozyAP can 

significantly reduce the power consumption of mobile devices working as softAPs 

in Wi-Fi tethering, while retaining a good user experience.

4.1 Introduction

Wi-Fi tethering, also known as a "mobile hotspot", means sharing the Internet con­

nection (e.g., a 3G connection) of an Internet-capable mobile phone with other 

devices over Wi-Fi. As shown in Figure 4.1, a Wi-Fi tethering mobile phone acts 

as a mobile software access point (softAP). Other devices such as laptops, tablet 

PCs and other mobile phones can connect to the mobile softAP through their Wi-Fi 

interfaces. The mobile softAP routes the data packets between its 3G interface and 

its Wi-Fi interface. Consequently, all the devices connected to the mobile softAP 

are able to access the Internet.

Wi-Fi tethering is highly desired. Main-streaming smartphones including iPhones
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Figure 4.1: Illustration of a typical setting of Wi-Fi tethering

(iOS 4.3+), Android phones (Android 2.2+) and Windows phones (Windows Phone 

7.5+) all provide built-in support of Wi-Fi tethering. There were also many third- 

party Wi-Fi tethering tools with customized features in App markets. W e believe 

there are two main reasons why Wi-Fi tethering is so desirable. First, cellular data 

networks provide ubiquitous Internet access over the world but the coverage of Wi­

Fi networks is much limited. Second, it is common for people to own multiple mobile 

devices but likely they do not have a dedicated cellular data plan for every device. 

As a result, it demands to share a data plan among multiple devices, e.g., sharing 

the 3G connection of an iPhone with a Wi-Fi only iPad. Wi-Fi tethering provides a 

convenient way to do this.

However, Wi-Fi tethering significantly burdens smartphone's battery. When en­

abling tethering, the Wi-Fi interface always stays in high power state and never 

sleeps even when there is no data traffic going on. This increases the power con­

sumption by one order of magnitude and reduces the battery life from days to hours 

(more details in Section 4.2.1). To save power, Windows Phone automatically turns 

off Wi-Fi tethering if the network is inactive for a time threshold of several minutes. 

However, this method has two drawbacks. First, the Wi-Fi interface still operates in 

a high power state for the idle intervals less than the threshold, leading to waste of 

energy. Second, it harms usability. If a user does not generate any traffic for a time 

period longer than the threshold (e.g., while reading a long news article) and then
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starts to use the network again (e.g., by clicking another news link), the user will 

have to go back to the smartphone and manually re-enable Wi-Fi tethering, which 

results in poor user experience.

The IEEE 802.11 standard defines the power saving mechanism for wireless 

stations in client mode, ad hoc mode, but not in AP mode. That is because tradi­

tional APs are externally powered by cables, so that power saving is not an crucial 

issue for those APs. However, old wisdom does not work for the battery-powered 

smartphones operating in Wi-Fi tethering. Hence, it is time to think about how to 

save power for smartphones working as softAPs.

Recently, Wi-Fi Direct specification introduces a power saving protocol for Wi-Fi 

Direct devices acting as APs. The protocol operates in the media access control 

(MAC) Layer and allows APs to notify clients with newly defined messages when 

they are going to sleep. However, existing 802.11 devices including most smart­

phones cannot benefit from the new feature supplied by Wi-Fi Direct. Future mobile 

devices may have a chipset that can support Wi-Fi Direct. However, due to the lack 

of the programmability of Wi-Fi chipsets in Wi-Fi industry, a device vendor still may 

find it difficult to implement its own tethering solution independent of the one deliv­

ered by the chipset vendor. In this chapter, we propose a new approach for device 

vendors and software developers to implement a power-efficient Wi-Fi tethering so­

lution without underlying support. To demonstrate its efficacy, we design DozyAP, 

a system to reduce power consumption of Wi-Fi tethering on smartphones while 

still retaining a good user experience.

The key idea of DozyAP is to put the Wi-Fi interface of a softAP into sleep to 

save power. We measured the traffic pattern of various online applications used 

in Wi-Fi tethering. We find that the Wi-Fi network is idle for a large portion of total 

application time (more details in Section 4.2.2), which means the AP could sleep 

during this idle time. Furthermore, we know that the cellular interface is typically
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slower than Wi-Fi interface. Thus, the Wi-Fi interface of a softAP could sleep while 

waiting for the data transmission through the cellular network. All of these indicates 

there are many opportunities to reduce softAP's power consumption. With DozyAP, 

a softAP can automatically sleep to save power when the network is idle and wake 

up on demand if the network becomes active again.

Putting a softAP into sleep imposes two challenges. First, without a careful 

design, it may cause packet loss. Existing Wi-Fi clients assume that APs are always 

available for receiving packets, so whenever a client receives an outgoing packet 

from applications, it will immediately send the packet to its AP. However, if the AP 

is in the sleep mode, this packet will be lost, even after the retries that occur at 

the low layers of the network stack. Second, putting an AP to sleep will introduce 

increased network latency and may impair user experience if the extra latency is 

user perceivable.

DozyAP addresses the first challenge with a sleep request-response protocol 

with which a softAP and its clients negotiate and agree on a valid sleep schedule. 

To avoid possible packet loss, a client will transmit packets only when the softAP is 

active and buffer outgoing packets otherwise. To address the second challenge, we 

design an adaptive sleep scheme and limit the maximum sleep duration. Conse­

quently, DozyAP is able to reduce power consumption of Wi-Fi tethering with negli­

gible impact on the network performance. DozyAP does not require any changes to 

the 802.11 protocol and is incrementally deployable via software updates to mobile 

devices.

We have implemented the DozyAP system on existing commercial smartphones 

and evaluated its performance using various applications and the traces from real 

users. Evaluation results show that DozyAP can put the Wi-Fi interface of a softAP 

to sleep for up to 88% of the total time in several different applications. Due to 

the restricted programmability of current Wi-Fi hardware on smartphones, forcing a
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softAP to sleep or wake up consumes considerable overhead. Thus, DozyAP only 

saves power by up to 33% while increasing network latency by less than 5.1%.

It is noticed that tethering can be also enabled by USB, bluetooth and Wi-Fi 

in ad-hoc mode. However, USB tethering has drawbacks that can only support 

one client. Also, connecting phones to devices such as tablets is not easy due to 

the constrained interface and complicated system configuration. Bluetooth suffers 

high energy consumption per bit transmission cost and low bandwidth [74], thus 

consuming more energy than Wi-Fi. Ad-hoc mode of Wi-Fi is less used than the in­

frastructure mode in practice. The OS on many mobile devices including Windows 

phones, Android phones and iPhones hides such a mode, preventing a device from 

connecting to an ad hoc network [87]. Due to the above reasons, those tethering 

methods are out of scope of this dissertation.

To the best of our knowledge, we are the first to study the power efficiency of a 

softAP in Wi-Fi tethering. The main contributions of this chapter are:

• We study the characteristics of existing Wi-Fi tethering and present our find­

ings. We show that current Wi-Fi tethering is power hungry, wasting energy 

unnecessarily. We analyze the traffic patterns of various applications and 

identify many opportunities to optimize the power consumption of Wi-Fi teth­

ering.

• We propose DozyAP to improve power efficiency of Wi-Fi tethering. We de­

sign a simple yet reliable sleep protocol to schedule a mobile softAP to sleep 

without requiring tight time synchronization between the softAP and its clients. 

We develop a two-stage adaptive sleep algorithm to allow a mobile softAP to 

automatically adapt to the traffic load for the best sleep schedule.

• We implement DozyAP system on commercially available off-the-shelf (COTS) 

smartphones and evaluate its performance through experiments with real ap-
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plications and simulations based on real user traces. Evaluation results show 

that DozyAP is able to significantly reduce power consumption of Wi-Fi teth­

ering and retain comparable user experience at the same time.

The rest of the chapter is organized as follows. In Section 4.2 we report our 

findings on existing Wi-Fi tethering, with focus on the power consumption and the 

traffic patterns of various applications. Based on the findings, in Section 4.3 we 

design DozyAP that can schedule a mobile softAP to sleep, and present the design 

details. We describe our implementation in Section 4.4 and evaluate it in Section 

4.5. We discuss limitations of DozyAP and future work in Section 4.6, survey the 

related work in Section 4.7, and conclude in Section 4.8.

4.2 Understanding Wi-Fi Tethering

In this section we report our findings on the characteristics of Wi-Fi tethering through 

real measurements on existing commercial smartphones. W e focus on two char­

acteristics: the power consumption and the traffic pattern of various online applica­

tions used in Wi-Fi tethering. Furthermore, we provide some background on Wi-Fi 

power management to set up the context of our DozyAP design.

4.2.1 Power Consumption

We first measure the power consumption of existing commercial smartphones re­

garding the Wi-Fi tethering. W e impose no traffic but simply turn on/off the Wi-Fi 

tethering, i.e., the Wi-Fi interface and the 3G interface were kept on but idle. We 

used a Nexus One phone (Android 2.3.6), a HTC HD7 Windows Phone (Windows 

Phone 7.5) and an iPhone 4 (iOS 4.3.5) for experiments. For the Nexus One and 

the HTC HD7, we measured the power consumption of the whole system using a 

Monsoon Power Monitor [12]. However, it is impossible to use the Monsoon Power
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Figure 4.2: Measured power consumption of Wi-Fi tethering on Nexus One and HTC HD7 
without background traffic

Monitor to measure the power consumption of the iPhone without damaging the 

phone. Instead, we used MyWi 5.0 [13], a very popular third-party Wi-Fi tether­

ing tool on iOS that is able to tell the draining current of the battery, to measure 

the power consumption of the iPhone 4 when Wi-Fi tethering is enabled. In all the 

experiments, the display was turned off.

With Wi-Fi tethering disabled, the power consumption of all smartphones was 

pretty low, because the Wi-Fi and 3G interfaces were in sleep for most of the time. 

The average power consumption was only 20m W  for the Nexus One and 30mW  

for the HTC HD7, respectively. For the iPhone 4, MyWi read a draining current of 

6mA, equivalently a power consumption of 22mW.

With Wi-Fi tethering enabled, the power consumption of the smartphones in­

creased significantly. Figure 4.2 shows the results of the Nexus One and the HTC  

HD7 smartphones. We can see that both smartphones operated in a high power 

state constantly even though there was no traffic at all. There are periodic spikes in 

the plots, caused by periodic Wi-Fi beacon transmissions. On average the power 

consumption was 270mW  for the Nexus One and 302m W for the HTC HD7. For the 

iPhone 4, MyWi read a draining current of 90mA, equivalently a power consump­

tion of 333mW. While software reading may not be as accurate as the Monsoon
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Power Monitor, the result still clearly indicates that Wi-Fi tethering on the iPhone 

4 has similar power consumption as on the Nexus One and the HTC HD7. Also, 

we tested phones with the latest OS versions such as Android v4.x. The power 

consumption was similar.

The above results demonstrate that existing Wi-Fi tethering schemes on all the 

three mobile platforms are power hungry. They consume an order o f magnitude 

more power than necessary when there is no ongoing traffic, i.e., in idle network 

state. In next subsection we will show that such idle states occurs frequently in 

various typical Internet access scenarios.

Intuitively, the Wi-Fi interface should be put to sleep when the Wi-Fi network 

is idle. As the battery is a very scarce resource on smartphones, this calls for a 

power-efficient Wi-Fi tethering solution and motivates us to conduct the work in this 

chapter.

4.2.2 Traffic Pattern

Next, we study how frequently the Wi-Fi network is actually in an idle state and 

how long the idle state typically lasts. We enabled Wi-Fi tethering on a Nexus One 

smartphone with a China Unicom 3G connection. A Wi-Fi client is connected to 

such a mobile softAP. On the client side, we launched various applications to ac­

cess the Internet and they are used normally. In the meantime, we used a Lenovo 

T61 laptop running Linux 2.6.32 as a Wi-Fi sniffer to capture all the packets ex­

changed between the client and the softAP. We studied two different clients: a 

Nexus One smartphone and a Wi-Fi version iPad 2. Seven applications were mea­

sured including news reading, online book reading, video streaming, search, Map, 

email and RSS.

Note that some websites detect the type of client devices and return different 

content for different device types. For example, when the Nexus One smartphone
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Figure 4.3: Traffic pattern of seven applications. From left to right: CDF of packet inter­
arrival intervals in total application time; CDF of packet inter-arrival intervals in total packets; 
Probability of sleeping for 100ms after an idle threshold.

is used, Baidu News automatically redirects to its mobile version that returns less 

complex webpages than the normal version. Similarly, Youku streams low bitrate 

video clips to the Nexus One smartphone but high bitrate ones of the same videos 

to the iPad 2. As a result, the same application may behave differently on different 

devices. For each application, we study the traffic patterns by analyzing the packet 

inter-arrival time of all the captured packets.

Figure 4.3 shows the results of the Nexus One. Due to the space limitation, we 

omit the iPad 2 case which also has similar results. W e first study the distribution of 

packet inter-arrival intervals in the total application time which indicates the period 

from the first packet to the last one. The left figure in Figure 4.3 shows the Cumu­

lative Distribution Function (CDF) for all the applications, where the y-axis depicts 

the percentage of packets with inter-packet intervals less than or equal to a specific 

value in the x-axis to the total application time. To make the curves easy to read, 

we only show the data for the time intervals less than one second. W e can see that 

the intervals under 200ms only take less than 30% of the total application time for 

all the applications on the Nexus One. For the iPad 2, the corresponding number 

is 35%. For some applications, these intervals consume as low as 20%  or even 

less than 10% on the Nexus One or the iPad 2. If we consider the network "idle" 

during the packet inter-arrival intervals larger than 200ms, then we can say that the
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Wi-Fi network was idle for 70% -90%  of the total application time. This shows that 

these applications only spent a small portion of time for the Internet access and 

their network traffic is very sparse and bursty.

There are two main reasons for the above findings. First, all the applications 

consist of two phases: a content fetching phase and a content consuming phase. 

Once users download some content from a remote server (e.g., a Web server), they 

need to spend time to consume the content (e.g., reading the text). The content 

consuming time may vary from seconds to tens of seconds to even minutes. During 

such a time, the network is mostly idle. In the email case, replying to emails and 

composing new ones also result in significant network idle time. Secondly, the 

bandwidth of 3G is much lower than that of Wi-Fi. According to 3GTest [45], 3G 

typically offers 500Kbps-1Mbps downlink throughput for US carriers but the Wi-Fi 

offers much higher data rates (54Mbps for 802.11a/g and 300Mbps for 802 .11n). 

Furthermore, 3G has much higher RTTs, ranging from 200ms to 500ms [45], than 

that of Wi-Fi. Consequently, the Wi-Fi interface of a softAP in Wi-Fi tethering often 

has to wait for data to be received from or transmitted over 3G. Such a waiting 

period will put the Wi-Fi interface in an "idle" state.

While the results are somehow as expected for those interactive applications, 

we are surprised to see that similar patterns were observed in the video streaming 

case. Even for the iPad 2 on which a high bitrate video clip was continuously played 

back, the packet inter-arrival intervals larger than 200ms took more than 60%  of the 

total streaming time. After carefully checking the captured trace, we found that it 

used a large video buffer when streaming video clips. It aggressively downloaded 

video content until the video buffer was full. Then it stopped video downloading. 

The downloaded bits were constantly consumed and drained from the buffer. Once 

the buffer level became lower than a threshold, the aggressive downloading was 

resumed again.
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The large percentage of the Wi-Fi idle time in these applications demonstrates 

that there are many opportunities to reduce the power consumption of Wi-Fi tether­

ing. During the large network idle intervals, the Wi-Fi interface of a mobile softAP 

should sleep to save power. More specifically, there are two kinds of network idle 

intervals that we exploit in this chapter. The first one is the long network idle inter­

vals resulting from the user content consuming behavior. The second one is the 

relatively shorter network idle intervals that occur during the content downloading. 

The latter case is mainly caused by the RTTs of 3G: after a client sends a request 

packet to a remote server, it has to wait for at least a RTT of 3G to get the first 

response packet from the server. For example, to access a W eb server, we can 

typically see two such network idle intervals: one for the DNS name lookup for the 

server and the other for making a TCP connection to the server.

We further study how putting a softAP to sleep can affect the network perfor­

mance. The middle figure in Figure 4.3 shows the CDF of packet inter-arrival inter­

val in total packets, where the y-axis depicts the percentage of the packets whose 

inter-packet interval is less than or equal to a specific value in the x-axis to the total 

number of packets. We can see that the inter-packet intervals under 150ms cover 

more than 80% of all the packets for all the applications. For some applications the 

number is as high as 90% or even 95%. This means that if we use an idle threshold 

of 150ms to decide whether to put the softAP to sleep or not, most of the packets 

will not be affected. The right figure in Figure 4.3 further shows the probability that 

the softAP could successfully sleep for extra 100ms after waiting for different idle 

thresholds. W e found that 150ms was a good threshold to optimize the energy 

saving and minimize the incurred network latency in terms of sleeping probability 

and the number of involved packets.

All the above findings demonstrate that a mobile softAP could and should sleep 

to save power in Wi-Fi tethering, which provides the foundation for our DozyAP
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design.

4.2.3 Background: Wi-Fi Power Saving

The IEEE 802.11 standard defines a Power Saving Mode (PSM ) to save power for 

Wi-Fi clients [16]. In PSM, the Wi-Fi interface of a client always stays in a very low 

power state to save power and cannot receive or transmit any data. If an AP needs 

to send some packets to a client in PSM, the AP will first buffer the packet and 

set the Traffic Indication Map (TIM) in its beacons, which are broadcasted typically 

every 100ms. A PSM client periodically (i.e., every a certain number of beacon 

intervals) wakes up to listen to beacons. If the client detects a TIM  for itself, it 

sends a individual PS-Poll frame to notify the AP of sending a buffered packet. 

Otherwise, it goes to sleep immediately. When the AP transmits a buffered packet 

to the client, a MORE flag in the header of the data frame is set if the AP has more 

packets for the client. This allows the client to decide when to stop sending PS-Poll 

frames.

On the Nexus One, the above static PSM scheme is called "PM_MAX". PM_MAX  

allows a client to sleep as long as the AP does not have any packet for it. However, 

this leads to long network latency and hence low network efficiency. Therefore, 

on the Nexus One, another power saving scheme called "PM_FAST" is used. In 

PM_FAST, a client stays in active unless its Wi-Fi interface is idle for a threshold of 

200ms. Then it sends a Null-Data frame with power management flag set to 1 to 

tell its AP that it will sleep soon. If such a frame is acknowledged, the client is able 

to go to sleep since all packets destined for it will be buffered at AP. Otherwise, the 

client cannot go to sleep. Once the client detects a T IM  for itself from beacons, it 

notifies the AP that it is active and ready to receive packets by a single Null-Data 

frame with power management flag set to 0. Many other Wi-Fi devices today also 

implement a similar scheme known as adaptive PSM [50]. PM_FAST is designed
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Figure 4.4: Interaction of a softAP and a client using the sleep request-response protocol

for fast system response and PM_MAX is more suitable for background services. 

By default Nexus One smartphones use PM_FAST if the screen is on and switch 

to PM_MAX if the screen is turned off.

4.3 DozyAP Design

Guided by the findings in Section 4.2, we design the DozyAP system that aims to 

reduce the power consumption of Wi-Fi tethering by putting the Wi-Fi interface of 

a mobile softAP into sleep mode whenever possible. Below we present the detail 

of DozyAP and the rationale of the design decisions. W e start with a single client 

and describe the extension to support multiple clients later on.

4.3.1 Scheduling a SoftAP to Sleep

We design a simple sleep request-response protocol to enable a mobile softAP to 

safely sleep in Wi-Fi tethering according to its own best schedule. While the softAP 

can sleep at will, it can only do so when the client agrees, to avoid possible packet 

loss. Therefore, before entering sleep mode, a softAP sends a sleep request to its 

client. If the client sends back a sleep response to accept the sleep request, the 

softAP then enters the sleep mode. Otherwise, it will continue to stay in the active
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The Sleep “Request-Response” Protocol

Ethernet Header Type Sequence
Number Sleep Duration

T  0x1: sleep request 
0x2: sleep response

Figure 4.5: Packet format of the sleep protocol.

state. Figure 4.4 shows a typical interaction procedure between a softAP and a 

client. At time t u the softAP decides to sleep and enters sleep mode at time t2 after 

receiving the client's agreement. When the sleep times out at time t3, the softAP 

wakes up and continues to communicate with the client.

Packet form at. Both the sleep request and the sleep response are transmitted 

as a normal Wi-Fi unicast data packet. This design does not require any modifi­

cation on existing Wi-Fi standard and is easy to implement. Figure 4.5 shows the 

packet format. The sleep protocol is implemented directly on top of the underlying 

link layer without TCP/IP headers in the middle to reduce the overhead. The sleep 

protocol packets have three fields. The "Type" field indicates the packet type: "0x1" 

means sleep request and "0x2" means sleep response. The "Sequence Number" 

field is a unique ID to identify a sleep request-response pair. It starts from zero and 

increases by one for every new sleep request. The "Time Duration" field specifies 

how long (in milliseconds) the softAP requests to sleep. All the sequence numbers 

and time durations are decided by the softAP. When the client accepts a sleep 

request, it simply copies the sequence number and time duration from the sleep 

request packet into its sleep response packet. Sleep response packets are used 

only for accepting a sleep request. If the client does not agree the softAP to sleep, 

it simply chooses not to send out the sleep response. There is only one case that 

the client will decline the sleep request of the softAP: it has more data packets to 

transmit. In that case, the client will send a data packet, instead of the sleep re­

sponse packet, to the softAP. The softAP then learns that the client has declined the
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sleep request and thus stays active. This design reduces the overhead of the sleep 

protocol because a sleep response packet is transmitted only when it is necessary.

State machine. Figure 4.6 shows the state machine of a softAP and a client. 

A softAP has three states: Normal, Pre-sleep and Sleep. In the Normal state, the 

softAP is active and can transmit and receive packets normally. When the Wi-Fi 

interface of the softAP is idle for a time period larger than a pre-defined threshold, 

the softAP sends a sleep request packet to its client with a sequence number seq 

and a time duration dur. Then it enters the Pre-sleep state and waits for a sleep 

response. If it receives the right sleep response with the same sequence number 

seq and time duration dur, it will put its Wi-Fi interface into sleep mode and enter 

the Sleep state; if it receives any packet other than the expected sleep response, 

it will go back to the Normal state and invalidate the sleep request. In the Sleep 

state, the Wi-Fi interface of the softAP is turned to sleep to save power. Thus, 

the softAP cannot receive any packets over Wi-Fi. If it receives any data from its 

3G interface, it will buffer them during the whole period of Sleep  state. When the 

sleep timeout expires and some data are buffered, the softAP wakes up its Wi-Fi 

interface, switches to Normal state, and transmits the buffered data to the client. 

Otherwise, it moves back to the Pre-sleep state, sends out another sleep request 

with a new sequence number new jseq  and a new time duration new_dur, and waits 

for the next sleep response.

The state machine of a client has only two states: Normal and Block. In the 

Normal state, the client communicates with the softAP as normal. It may use any 

Wi-Fi power saving schemes such as PM_MAX, PM_FAST or none. If the client 

receives a sleep request from the softAP and agrees, i.e., it does not have any 

packets to transmit, it tentatively sets its Wi-Fi power saving scheme to PM_MAX, 

sends back a sleep response to the softAP, and enters the Block state. Note that by 

switching to PM_MAX, the firmware automatically sends a Null-Data frame to tell
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Normal

Event: rx sleep_resp(seq, dur) 
Action: put Wi-Fi interface to sleep

Event: sleep timeout but no buffered packets 
Action: wake up Wi-Fi interface and send

sleep_req(new_seq, new_dur)

Event: rx steep_req(seq, dur) and no buffered packets 
Action: set PS scheme and send back sleep_resp(seq, dur)

BlockNormal

Event: sleep timeout or rx any packet 
Action: restore PS scheme

Figure 4.6: State machine for a softAP (top) and a client (bottom)

the softAP that the client is going to sleep. Do this way, the client can go to sleep 

as quickly as possible (i.e., immediately after the sleep response). In contrast, 

if a client that uses PM_FAST does not change to PM_MAX before sending the 

sleep response, it will wait for 200ms idle period to send out a Null-Data frame. 

However, as the softAP has already entered the Sleep state once receiving the 

sleep response, it cannot receive the Null-Data frame afterwards. As a result, the 

Null-Data frame is not acknowledged and the client cannot go to sleep as supposed. 

Therefore, it is essential for clients to switch to PM _M AX to maximally save power. 

In the Block state, the Wi-Fi interface of the client is in power saving mode and the 

client knows that the softAP is sleeping. Thus, it blocks all the packet transmissions 

by buffering all the packets from applications. If the sleep schedule times out or the 

client receives a data packet from the softAP, it restores the previous power saving 

scheme (e.g., back to PM_FAST) and moves back to the Normal state. At this time, 

both the softAP and the client can communicate normally. Otherwise, the softAP

89



will send a new sleep request to try to sleep again.

4.3.2 Synchronization

One advantage of the sleep request-response protocol is that it does not require 

tight time synchronization between the softAP and the client. If the softAP and the 

client can synchronize their time perfectly, they can coordinate their sleep schedul­

ing to avoid packet loss without transmitting any extra sleep request and response 

packets. However, this is hard to achieve in practice. Although very fine-grained 

hardware timestamps (e.g., at microsecond granularity) exists at link layer, such 

timestamps are segregated inside firmware and are not available to the Wi-Fi driver 

and applications. It is possible to do time synchronization by explicitly exchanging 

packets with timing information between the softAP and the client. Such time syn­

chronization must be done periodically due to clock drift, which increases power 

consumption. Due to these considerations, we intentionally avoided the time syn­

chronization approach.

Interestingly, the proposed sleep protocol can achieve loose synchronization 

between a softAP and a client, with a desirable property: the client will never con­

clude that the softAP is awake while it is sleeping. Therefore, our approach will not 

lead to packet loss that would arise from wrong attempts of sending packets while 

the softAP is actually in sleep mode. In normal case, this is obvious because the 

softAP will sleep only after it receives a sleep response from the client. However, 

due to the uncertainty and complexity of wireless communication, the sleep pro­

tocol may not work as smoothly as expected. Below we analyze several possible 

abnormal cases and their consequences, as illustrated in Figure 4.7.

Packet loss. First, sleep request or response packets may be lost during their 

transmissions. For example, a sleep request may be lost. In this case, the softAP 

will stay in active. If later on the client or the softAP has data to transmit, they start
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Figure 4.7: Abnormal cases, (a) a sleep request is lost, (b) a sleep response is lost, (c) a 
sleep response is delayed, (d) a data packet is delayed.

to communicate as normal. Or the softAP will send out a new sleep request after 

the network remains idle for a period longer than the pre-defined idle threshold, 

as shown in Figure 4.7(a). The worst effect of losing a sleep request is that the 

softAP would waste some energy for staying in unnecessary active state between 

two successive sleep requests. Similarly, if a sleep response is lost, the softAP 

also has to stay in active until the next sleep request. However, in this case, as the 

client has concluded that the softAP is in sleep, it will stay in the Block state and 

start to buffer packets. Thus, it may further incur extra delay up to the idle threshold 

to the client, as shown in Figure 4.7(b).

Packet out-of-order. Second, packet transmission may be delayed due to the 

hardware queuing and wireless contention. As a result, there is a slight chance that 

packets may not arrive at their destinations in the expected order. For example, 

Figure 4.7(c) shows the case that a sleep response is delayed by the clientus 

hardware. The softAP receives sleep response 1 after sleep request 2 is sent 

out. In this case, the softAP just ignores sleep response 1 but it has to stay in 

active between the two sleep requests. Figure 4.7(d) shows a more complex case. 

The client has already passed a packet to the firmware and the packet is waiting 

for transmission in the hardware queue. At this moment the client receives a sleep 

request from the softAP. As the client does not have more data to transmit, it replies 

a sleep response. However, once the softAP receives the data packet, it resets its
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idle timer, stays in active and ignores the sleep response. Consequently, the softAP 

and the client are out of sync: the softAP stays in active, wasting energy, but the 

client assumes the softAP is in sleep and delays its packets transmission.

Based on the above analysis, we can see that those abnormal cases would at 

most cause some overhead in energy and transmission latency, but they would 

not break the desired synchronization property of our sleep protocol. A client will 

never try to send packets when the softAP is actually in sleep. The softAP and the 

client may run out of sync temporally, but will always resume sync after the sub­

sequent sync response. This demonstrates the robustness of our sleep protocol. 

In addition, in the Wi-Fi tethering, the bottleneck is usually the 3G connection as 

its bandwidth is much lower than that of Wi-Fi. The necessity airtime of Wi-Fi is 

usually light, and thus, the above abnormal cases can rarely happen.

It is noticed that the sleep request-response protocol operates above the MAC 

layer, thus all the MAC layer frames such as beacons and Null-Data cannot be seen 

by the protocol. That is why DozyAP has to explicitly exchange sleep requests and 

responses to negotiate a sleeping schedule. If the protocol is applied to the MAC 

layer, the negotiation can be performed through existing MAC layer frames. For 

example, if a client does not have data to transmit, it sends a null-data frames with 

power management flag set to 1. Once observing that all clients have been in 

sleep mode, the AP automatically turns off. Owing to the tight time synchronization 

existing at MAC layer, both AP and clients could wake up almost at the same time 

when the pre-determined sleep timeout or next beacon is due. Then AP could send 

buffered packets and clients could upload buffered packets.

4.3.3 Adaptive Sleeping

Our sleep protocol allows a softAP to sleep. The next natural question is: how long 

should it sleep? The simplest solution is certainly to sleep for a fixed interval. How­
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ever, it is difficult to determine such an interval, because the RTT of 3G connection 

varies and the packet arrival time is irregular. In our design, we come up with an 

adaptive sleep scheduling algorithm to adapt to the traffic pattern and also the 3G 

network property. Our adaptive sleep algorithm consists of two stages, namely a 

short sleep stage and a long sleep stage, that are designed to exploit the two dis­

tinctive phases (i.e., the content downloading phase and the content consumption 

phase) of interactive applications, respectively.

Sleep algorithm. Figure 4.8 shows how the two-stage adaptive sleep algorithm 

works. The basic idea is to probe the optimal sleep interval such that the softAP 

can wake up shortly before a packet arrives. Starting with an initial conservative 

sleep interval, the sleep interval is gradually increased, at a conservative pace, 

until a packet has arrived during the last sleeping. Then the initial sleep interval is 

updated dynamically. For sake of easier expression, all the successive sleep slots 

are collectively called a sleep cycle.

More concretely, when the Wi-Fi interface remains idle for a time period of 

thresh, the softAP will enter the short sleep stage. It first sleeps for a time pe­

riod of init which equals to min initially. When the softAP wakes up, it either goes 

back to the ACTIVE mode if there are pending outgoing or incoming packets, or 

continues to sleep for a fixed interval of step. Depending on the real packet arrival 

pattern, the length of the sleep cycle may become longer and longer between two 

subsequent wake-ups. The sleep period can be expressed as i n i t  +  N *  step where 

N  is the number of continuous sleep slots after the first sleep slot of init.

As waking the Wi-Fi hardware up introduces certain energy overhead [59], it is 

desirable to reduce the number of unnecessary wake-ups. This calls for a good init 

value that can let the softAP sleep as long as possible while still being able to wake 

up in time, i.e., to avoid or shorten the probing process. W e determine the init value 

by exploiting the sleep history. W e use parameters cur and pre to track the gross

93



1: // Parameters:
2: thresh, min, max, init, step, cur, pre, thresh l, long; 

3: ACTIVE:
4: measure the Wi-Fi network idle time;

5: SHORT SLEEP:
6: i f  (Wi-Fi network idle time > thresh)
7: first = true',
8: sleep for a time period o f init,
9: while (1)
10: cur -  firs t! in it : (cur + step)', firs t = false',
11: if  receive or transmit a packet
12: i f  {cur < - mil)
13: init - max(mi7 -  step, min)',
14: pre = cur, goto ACTIVE;
15: i f  {{cur > init + step) && (pre > init + step))
16: init = min( in it + step, max),
17: i f  {cur >= thresh J )
18: pre = cur, goto LONG SLEEP;
19: sleep for a time period of step;

20: LONG SLEEP:
21: while (1)
22: sleep for a time period of long,
23: i f  receive or transmit a packet;
24: goto ACTIVE;

Figure 4.8: The two-stage adaptive sleep algorithm.

length of all successful sleep slots in the current sleep cycle and that in the previous 

sleep cycle, respectively. That is, we have cur equals to i n i t + ( N - 1 ) * s t e p  because 

a sleep cycle is always ended up by a false sleep slot during which a packet has 

arrived and been buffered. Parameter pre is simply a running record of the previous 

cur. Based on the values of cur and pre, we adjust the value of init with a simple 

algorithm INITJJPDATE as follows: if both cur and pre are greater than current 

init plus step, we increase i n i t  by step for the next sleep cycle. If cu r  is less than 

or equal to current i n i t  minus step, we decrease i n i t  by step. To avoid excessive 

latency that may be caused by an overly greedy i n i t  value, we cap it to the value 

of max. In SHORT_SLEEP stage, if the softAP has continuously been in sleep for 

a time period of th resh  J ,  it goes to LONG_SLEEP stage. In LO NG_SLEEP stage, 

the softAP simply sleeps for a time period of long  periodically until it quits from sleep
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Figure 4.9: Short sleep and long sleep example.

to communicate with the client.

Example. Figure 4.9  illustrates the algorithm with a concrete example. Some 

details such as the time for waking up the Wi-Fi interface between continuous sleep 

slots are omitted for sake of easier reading. Assume current value of i n i t  is 200ms 

and the value of step is 100ms, in the first short sleep circle (the 460ms one), after 

th resh  (150ms) idle time for triggering sleep request-response protocol, the softAP 

will first sleep for 200ms, followed by two 100ms sleep slots. Suppose the value of 

i n i t  is then qualified to increase to 300ms. In the second short sleep circle, after 

150ms idle time, the softAP will first sleep for 300ms followed by one more 100ms 

sleep slot. In the content consuming period, after sleeping for a time period of 

t h r e s h j ,  the softAP enters the long sleep stage and periodically sleeps for a time 

period of long  (500ms).

The above algorithm is specially designed for the traffic patterns of typical ap­

plications in Wi-Fi tethering as shown in Section 4.2.2. The short sleep stage is 

designed for the softAP to sleep between the time when the client sends out a 

request to a remote server and the time when the first response packet from the 

remote server is received. That duration is roughly a RTT of the 3G connection 

(typically hundreds of milliseconds [45]). The purpose of i n i t  parameter is exactly 

to estimate the 3GCS RTT in an elegant way, based on the length of last two sleep 

cycles. Note that our algorithm is conservative in the sense that it tries to reduce
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the energy consumption under minimal impairment to user experience, i.e., extra 

latency incurred. W e decrease the value of i n i t  quickly, by considering only the 

length of the current sleep cycle, but increase the value of i n i t  slowly by consid­

ering the length of both the current and the previous sleep cycles. In addition, we 

use the parameter th resh  to prevent the softAP from entering the short sleep stage 

during burst data transmission period (e.g., multiple response packets from a re­

mote server for the same client request such as fetching a picture. In Section 4.4 

we describe the parameter values used in our implementation.

In summary, our sleep algorithm automatically adapts to the traffic pattern of 

applications and achieves a good balance between power saving and network per­

formance.

4.3.4 Supporting Multiple Clients

DozyAP can support multiple clients by repeatedly applying the sleep request- 

response protocol to each client. A client goes to sleep once it agrees to the AP's 

sleep request. A softAP can sleep only if it receives the sleep responses from all 

the clients. If some clients replied to a sleep response but other clients did not, 

the softAP has to stay awake in this case. This design makes sense because 

some clients may have data to send and the softAP must serve those clients. It is 

expected that the softAP sleeps less and consumes more power in the multi-client 

case. However, extending DozyAP to support multiple clients will not break the syn­

chronization property of the sleep protocol: no client will send a packet when the 

softAP is in sleep. Note that we considered the possibility of broadcasting the sleep 

requests as it can obviously reduce the overhead of the sleep protocol. However, 

we do not take this approach for two reasons. First, broadcast packets are less 

reliable because they are transmitted without link layer retransmissions. Second, 

the clients in PSM likely cannot receive broadcast packets, whereas the unicast

96



Wi-Fi/3G Router > 1

Wi-Fi Nic 3G

Packet
Buffer

Blocking
Controller

Wi-Fi Driver/Nic

Applications

Packet
Buffer

Sleep
Scheduler

Loadable Module Wi-Fi Driver

Figure 4.10: Implementation architecture of the client part (left) and the softAP part (right).

packets will be buffered in AP’s hardware transmission queue until clients wake up 

from PSM. Therefore, the improvement of using broadcast is expected to be very 

small in multi-client case, and for single client case, it is worse than using unicast.

Another minor issue with the multi-client case is the beacon. In our design a 

softAP does not send out beacons in the sleep mode. Thus, a new client cannot 

join the Wi-Fi network when the softAP is in sleep. However, the softAP sends 

out periodic beacons when it is active. Even in long sleep stage, it still wakes up 

periodically and can send out beacons. Consequently, a new client is still able to 

find the softAP but may experience slightly longer latency. As this only happens 

when a new client joins the network, we think it is acceptable.

4.4 Implementation

We have implemented the DozyAP system on a Nexus One smartphone running 

Android 2.3.6, with a Wi-Fi chipset of Broadcom BCM4329 802.11 a/b/g/n [27].

The overall architecture consists of two parts: the softAP part and the client part, 

as shown in Figure 4.10. The softAP part is directly modified from the open source 

Wi-Fi driver in which we embedded the sleep request-response protocol and the 

two-stage adaptive sleep algorithm. When the softAP is in sleep state, all the pack­

ets received from 3G interface are buffered. The client part is implemented as a 

loadable module where a packet buffer is implemented, together with a blocking
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controller to decide if and when application packets must be buffered. In our pro­

totype we use a special Ethernet type of Oxf f f f f (a reserved value that should not 

be used in products) for the packets of the sleep request-response protocol. In real 

deployment, other approaches can be used to implement the sleep protocol, e.g., 

using dedicated IP packets rather than the special Ethernet type. We use netfilter 

to intercept all the outgoing packets and to detect the packets of sleep requests 

and response. Implementing the client part as a loadable module does not require 

any modifications to the source code of the client OS. This makes it easy to deploy 

DozyAP on different types of client devices.

Putting a mobile softAP into sleep. One practical difficulty we met is how 

to put a mobile softAP to sleep. On smartphones (Nexus One, and other types of 

smartphones), most Wi-Fi MAC layer functionalities are implemented in the firmware 

running on the Wi-Fi chipset, not in the CPU-hosted Wi-Fi driver. When Wi-Fi teth­

ering is enabled, the firmware keeps the Wi-Fi always in a high power state. There 

is no interface available to change the power states. After trying many methods, 

all that we can do in the driver is to turn on/off the Wi-Fi interface when the softAP 

decides to wake up/sleep. By modifying the source of the driver, we hide the fact 

that the Wi-Fi interface is turned off. Thus, applications and the OS can work as 

normal as if the Wi-Fi interface is always on.

Energy overhead of turning on/off the Wi-Fi. It costs extra energy to switch­

ing on/off the Wi-Fi interface. W e measured such energy overhead on a Nexus 

One smartphone and Figure 4.11 shows the measurement results. Initially, the Wi­

Fi interface was off. Then we turned on the Wi-Fi interface for 100ms and turned it 

off again. W e can observe two artifacts: First, when the Wi-Fi interface is merely 

turned on without transmitting any packet, the system stays in an average power 

state of 400m W  which is higher than the normal power consumption of Wi-Fi teth­

ering in idle case as shown in Figure 4.2. We think this part of overhead is caused
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Figure 4.11: Power consumption of switching on/off the Wi-Fi interface.

by the CPU and I/O operations for waking up the Wi-Fi interface. Second, when 

the off command is issued, the power consumption reduced immediately, but re­

mains at a power level as high as 150mW  for about one second before entering a 

very low power state of 10mW. This finding is similar to what the authors reported 

in [59]. They pointed out that when the Wi-Fi interface goes to sleep, it first enters a 

"light sleep" state and then enters a "deep sleep" state after some time. W e cannot 

control this behavior but it significantly affects how much power we can save. We 

want to point out that this is a platform-specific limitation caused by the restricted 

programmability over the Wi-Fi hardware. Our design itself does not impose any 

limitation. If the smartphone can incur less wakeup overhead or enter the "deep 

sleep" state more quickly, our approach can save much more power.

Parameter values. We determine the parameter values based on the real- 

world traces described in Section 4.2. All the parameters are set in a conservative 

way to handle the variations of network conditions. W e set th re s h  to 150ms for 

triggering a softAP to enter sleep mode. With this parameter, the chance of sleep­

ing is maximized and the number of involved packets is limited to avoid introducing
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more network latency. Due to the overhead of wakeup, the sleep duration less than 

100ms may not yield much power saving. Thus, we set m in  to 100ms. Consider­

ing the RTT of 3G and to limit the maximum extra latency, we set m ax  to 500ms. 

The value of i n i t  varies between 100ms and 500ms. We set th resh_ l to 3s for 

switching to the long sleep stage where the softAP periodically sleeps for 500ms 

(i.e., long equals to 500ms). It should be noticed that different Wi-Fi chipsets may 

have the different overhead of waking up, and thereby affecting the choice of the 

parameter values above. The guideline is as follows: If the overhead is larger, then 

the parameters should be adjusted to avoid sleeping too frequently. Otherwise, it 

is better to set to gain more power saving.

4.5 Evaluation

We evaluate the performance of DozyAP by answering the following questions. 1) 

How much power can DozyAP save for a mobile softAP in various applications? 

2) What is the impact of DozyAP on client side power consumption? 3) How much 

extra latency does DozyAP introduce? 4) How much power can be saved in multi­

client case? 5) What is the performance degradation if clients are not changed?

4.5.1 Experiment Setup

Hardware devices. W e used a Nexus One smartphone as a softAP with a China 

Unicom 3G connection (WCDMA), and another Nexus One smartphone as a client 

to run applications. Both smartphones run Android 2.3.6. W e used a Monsoon 

Power Monitor [12] to measure the power consumption. We repeated every exper­

iment for at least five times to compute average results.

Applications and methodology. W e used five of the applications described in 

Section 4.2, including news reading, book reading, video streaming, search, and
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Figure 4.12: Power saving and energy saving of the softAP in idle (I), busy download (D), 
and the five applications of news reading (N), book reading (B), video streaming (V), search 
(S), and map (M)

map. To make the experiments repeatable, we analyze the captured trace of the 

applications to find out all the HTTP requests contained in the traces except video 

streaming. Then we wrote a test program in Java to send out those HTTP requests 

with the exact same order and timing as the traces. The program uses the WebView  

class in the WebKit package [4]. Thus, we could easily repeat every experiment. 

For the video streaming, we manually played the same video clip.

Traces. To evaluate DozyAP with more diverse and realistic traffic patterns, we 

asked the authors of MoodSense [53] for the traces collected from real users. In 

MoodSense, the authors conducted a two-month field study with 25 iPhone users 

and collected their network traffic everyday using tcpdump [78]. W e selected the 

traces of the top eight most active 3G users. For each of them, we further selected 

the trace of the day when the user generated the largest 3G traffic volume. We 

used the eight-day traces to evaluate the performance of DozyAP.

4.5.2 Power Consumption

Average power. We first measured the power consumption of a mobile softAP with 

DozyAP and without DozyAP. Besides the five applications, we also measured two 

extreme cases: idle and busy download. In the idle case, we measured the power 

consumption of the softAP with one client associated but without any network traffic.
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In the busy download case, we measured the power consumption of downloading 

a 1MB file from a Web server. The dark bars in Figure 4.12 show the average 

power saving of DozyAP. Without explicit mention, the error bars depict the mini­

mum and maximum values in all the experiments. W e see that DozyAP can reduce 

the average power by 12.2% to 32.8%  for the five applications. In the idle case, it 

can save power by 36.5%. Even for the busy download case, the average power 

can be reduced by 3.3%. It is worth noting that the power saving percentage is 

calculated in the total power consumption of the whole system, including the power 

consumed by CPU and 3G. 3G consumes significant power when transmitting and 

receiving data. If we only consider the power consumption of Wi-Fi, the power 

saving percentage will be even higher in busy download and the five applications.

Total energy. As DozyAP buffers packets and delays their transmission, it may 

lead to longer application time comparing with the case without DozyAP. Thus, we 

also measured the total energy for the busy download case and the five applica­

tions. Total energy does not make sense for the idle case. The light bars in Fig­

ure 4.12 show the results. W e see that DozyAP does not increase the total energy. 

Instead, it can save the total energy by 12.2% to 32.9%  for the five applications, 

which is almost the same as the result of average power. As we show in Section 

4.5.3, DozyAP indeed introduces very little network latency which has negligible 

impact on the total energy. Even in the busy download case, DozyAP can save the 

total energy by 2.3%.

Wi-Fi interface sleep time. As we point out in Section 4.4, with the current 

commercially available smartphones, forcing the softAP to go to sleep or wakeup 

can be only achieved by turning off/on the Wi-Fi interface. That results in significant 

overhead (see Figure 4.11). If we have more control on the power states of the Wi-Fi 

hardware (e.g., if we can directly modify the firmware or if we have a MadWifi [11] 

style driver which implements most MAC layer functions in driver rather than in
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Figure 4.13: Wi-Fi interface sleep time of the softAP in idle, busy download and the five 
applications

Figure 4.14: Wi-Fi interface sleep time calculated based on the traces of eight real users

firmware), DozyAP should be able to save significantly more power. W e measured 

how much time DozyAP can put the Wi-Fi interface of a mobile softAP to sleep. 

Figure 4.13 shows the results. We see that the Wi-Fi interface of a softAP can 

stay in sleep mode for 47% -88%  of the total time in the five applications. Even 

in the busy download case, we can turn the Wi-Fi interface to sleep for 11% of 

the total time. These results demonstrate the potential of DozyAP to significantly 

reduce the power consumption of Wi-Fi tethering. Given proper control over the 

Wi-Fi hardware, more energy is expected to be saved from sleeping.

We also evaluated the Wi-Fi interface sleep time with the real traces of the eight 

users in MoodSense [53]. To do it, we wrote a program to analyze the packet inter­

arrival time of the traces and calculate the Wi-Fi interface sleep time as if these 

traces have happened in Wi-Fi tethering. To make the calculation reasonable, we 

ignored all the inter-packet arrival intervals larger than 5 minutes. That is, for any

o%
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Figure 4.15: Power increasing of the Nexus One client in idle, busy download and the five 
applications

intervals larger than 5 minutes, we treated it as if the user stopped using the phone 

and turned Wi-Fi tethering off. This treatment is conservative because a user may 

spend more than 5 minutes to read a long news article or Wi-Fi tethering might not 

be turned off even the user stopped using the phone for 5 minutes. Figure 4.14  

shows the calculated results. W e see that DozyAP is able to allow the Wi-Fi inter­

face of a softAP stay in sleep mode for 77% -95%  of the time for the mixed multi­

application user traffic. The numbers in Figure 4.14 are higher than the ones in 

Figure 4.13. The reason is that the experiments in Figure 4.13 focused on single 

application usage only. In practice users may use multiple applications one by one. 

Switching from one application to another leads to more network idle time.

Power consumption of a client. We also measured the power consumption 

of the Nexus One client in the idle case, busy download and the five applications. 

Figure 4.15 shows the results. We see that DozyAP can increase the power con­

sumption of the client by less than 7.1% for these five applications. The reason 

is that the client needs to wake up to receive the sleep requests from the softAP 

and send back the sleep responses when the network is idle. Thus, the idle case 

introduces the highest overhead but it is still only 8%. Compared to the large power 

saving of the softAP, this small overhead is acceptable.

Multiple applications on single client. In some cases, multiple applications
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Figure 4.16: Finish time of busy download and the five applications

may run on a single client simultaneously. We evaluated DozyAP in a typical sce­

nario where a user is reading news in the foreground meanwhile listening online 

music in the background. To do it, we first started Douban FM  (which is a popular 

app in China like Last.fm). Once the music began to load, we started the news 

reading program (the same as before) immediately. The average power saving 

and energy saving over ten experiments is 14.5% and 14.2% respectively.

4.5.3 Latency

DozyAP incurs extra network latency because it delays packet transmissions when 

a softAP is in sleep mode. If the extra latency is user perceivable, it may impair 

user experience. As all the five applications are about fetching remote Web content, 

users care about the page loading time which is the period from the time when a 

user sends out a webpage request to the time when the webpage is fetched and 

rendered by the browser. The page loading time metric is widely used to evaluate 

the performance of browsers and W eb servers. W e evaluated the finish time of 

loading content which is the sum of the page load time of all the webpage requests 

in an application. The WebView object used in our test program could tell when a 

webpage is loaded. In the experiments, we sent out all the webpage requests of 

an application one by one without any time interval and calculated the total finish 

time.
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Figure 4.17: BSD vs. DozyAP in news reading (N), book reading (B), video streaming (V), 
search (S), map (M), email (E), and RSS (R)

Figure 4.16 shows the average result and the variance in busy download and 

the five applications. We see that DozyAP introduces very small extra network 

latency, ranging from 0.9% to 5.1%. Such small extra latency is hardly perceivable 

by users because of two reasons. First, as the 3G network has limited throughput 

and large RTT, it takes several hundred milliseconds to even seconds to load a 

webpage. Second, the time variance of the page loading time is pretty large, up 

to several seconds. That is, even without DozyAP, users already experience long 

page loading time with large variance. Therefore, the small latency increase of less 

than 5.1% is very hard to detect.

In addition, we compared our adaptive sleeping algorithm to BSD algorithm [50]. 

The reason why we choose BSD is that it is the-state-of-the-art algorithm that can 

adapt to the sleep duration without the MAC layer or lower layer support. To be fair, 

we investigated BSD and our algorithm based on on the same traffic traces col­

lected from the user studies (as mentioned in Section 4.2). The results are shown 

in Fig. 4.17. As we see, BSD algorithm may introduce extra network latency and 

more wakeups in most cases. This extra latency may delay the application finish 

time. The increased number of wakeups may cost more energy due to the wakeup 

overhead.
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4.5.4 Multiple Clients

We first evaluated the performance of DozyAP with two clients associated: a smart­

phone and a tablet. Each client ran the same programs simultaneously. Figure 4.18 

shows the average energy saving and power saving in busy download, the five ap­

plications and the idle case. As expected, the most power and energy savings 

are lower than the ones in single client scenario. However, the saving in down­

load case does not drop as much as other applications. That is because no matter 

one or multiple clients were downloading, the cellular bandwidth was similarly sat­

urated so that the chance for softAP to sleep is equivalent. Another finding is that 

the power saving for video streaming has a significant drop from about 28% to less 

than 10%. The reason is that two clients were competing in streaming video so that 

both of them needed more time to finish. Thus, the softAP had less opportunity to 

sleep.

W e also conducted user studies to evaluate DozyAP with more clients. In the 

experiments, four clients with two phones, a tablet and a laptop were tethered to a 

DozyAP-enabled smartphone. They were asked to access Internet freely, such as 

reading news, checking and replying emails, listening Internet radios, and search­

ing interesting places on Google Map. Since clients behave differently in each 

experiment, it is difficult for us to obtain the ground truth about the power con-

■  Power Saving 
.ft Energy Saving

saving and energy saving of softAP with two clients
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Figure 4.19: Performance of DozyAP w/ four clients. The ratios of sleep time and delayed 
packets are measured, whereas the ratio of power saving is approximated based on the 
ratio of sleep time.

sumption without DozyAP. Thus, we only measured the sleep time to approximate 

the power saving and count the buffered packets to show the incurred network 

latency. The results are shown in Fig. 4.19. W e see that DozyAP allows the Wi­

Fi to sleep for 59% of total application time and only causes about 1.4% delayed 

packets. From the experiments in Fig. 4.12 and Fig. 4.13, we observed that the 

sleep-to-power-saving translation ratio was around 18% to 36%. Therefore, the 

approximated power saving for our four-client tests is about 16.2%  on average.

It is worth noting that the energy gain of DozyAP mainly depends on the traffic 

rather than the number of clients. Even if a single client is associated, it may gener­

ate continuously bursty traffic such as downloading. The power saving in that case 

is still less than the case of multiple clients but with sparse traffic.

4.5.5 Comparison with client-independent solution

To show the necessity of changing clients, we compared DozyAP to a straightfor­

ward client-independent solution, where the AP periodically wakes up after a sleep. 

If not receiving any data, the AP waits for a fixed time period and then goes back 

to sleep again. In this approach, the softAP wakes up and sleeps without noti­

fying clients, so the packets transmitted by the clients may be lost. W e use a  to 

denote the ratio of the wakeup duration to the sleep duration and investigated the
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performance degradation with varying a.

We selected four applications including browsing websites (both 3G and regular 

websites), searching, downloading, and video streaming. The performance metrics 

are as follows:

• Timeout ratio. It depicts the percentage of the connection timeout reported 

by the client's web browser. The connection timeout is caused by the loss of 

HTTP requests when the client sent those requests but the softAP in sleep 

mode did not receive them.

• Latency increasing ratio. With respect to page (or download) finish time, 

latency increasing ratio presents the increased latency normalized by the 

benchmark finish time in DozyAP. A large ratio means that more delays are 

introduced by the client-independent solution mentioned above.

• Traffic increasing ratio. Due to the retransmission of lost packets, the client 

may send or receive more packets. Traffic increasing ratio is used to describe 

the percentage of the number of increased packets to the number of total 

packets.

• Power saving ratio and energy saving ratio. The meaning of these metrics 

are the same as mentioned before. Note that these metrics are measured 

on the AP side, whereas the above three metrics are measured on the client 

side.

Table 4.1 shows the averaged results over ten tests when a  — 0.4. Other values 

of a  yielded worse results, so we do not present them here. As we see, without 

modifying the clients the timeout ratio is between 20% -40% , thereby impairing the 

user experience of Internet access. Both latency and traffic are heavily increased, 

where video streaming has the lowest increasing ratio and searching has the high-
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Timeout Latency Traffic Power Energy

Web(3G) 20% 46% 15% 20% - 11%

Web 40% 38% 7% 20% -7%

Search 30% 74% 50% 29% -26%

Download 40% 17% 4% 17% -3%

Video 20% 12% 1% 16% -3%

Table 4.1: Performance of client-independent solution

est increasing ratio. The power saving by the client-independent solution is com­

petitive to softAP, because the Wi-Fi interface is also turned off periodically. How­

ever, due to longer application finish time, the client-independent solution actually 

spends more energy than existing Wi-Fi tethering schemes. Therefore, it demands 

modifying the clients to achieve better performance.

4.6 Discussion and Future Work

DozyAP requires patching the OS of smartphones working in Wi-Fi tethering and 

installing a loadable module on a client, which may be a hurdle for device vendors 

to overcome in practice. Despite this, we believe this problem is not very difficult 

to tackle, for instance, through Over The Air (OTA) upgrade. It also may be diffi­

cult to upgrade the software of dumb Wi-Fi client devices, e.g., music players and 

e-readers. However, to access the Internet, most people use "smart" devices in­

cluding smartphones, tablets and laptops. All these devices are programmable and 

upgradable. Although our current implementation is based on Linux-style OS ker­

nel including iOS, for Windows based devices a similar approach can be used via 

loadable Network Driver Interface Specification (NDIS) [14] driver.

DozyAP takes advantage of the speed discrepancy between cellular and Wi­

Fi. One may argue that such an advantage will not exist when 4G is deployed. 

However, the speed of Wi-Fi increases fast too. With 11n and 11ac, there is still a
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big gap between cellular and Wi-Fi. In addition, our solution benefits not only from 

such a speed discrepancy, but also from the long content consuming time of users.

Our implementation uses fixed parameter values derived from the measurement 

results, which can be improved. For example, one may use a dynamic approach to 

tune the parameters to better adapt to the network conditions. Even though we use 

fixed values, we take a conservative way, e.g., the sleep time starts from a small 

value of 100ms. As shown in Figure 8 , the tuning procedure of parameter in it is 

also conservative.

More power can be saved through transmission power adaptation. The built- 

in Wi-Fi tethering on existing smartphones always uses the highest transmission 

power. It wastes energy because a softAP is often close to its clients in Wi-Fi 

tethering. We plan to design a scheme to automatically adjust the transmission 

power based on the network conditions (e.g., RSSI and packet loss). W e also 

plan to further take advantage of the bandwidth discrepancy between 3G and Wi­

Fi to create more opportunities for a softAP to sleep. The basic idea is shaping the 

traffic between 3G and Wi-Fi. For downlink traffic, the softAP can buffer the packets 

received from 3G and send them to the client over Wi-Fi in batch. For uplink traffic, 

if the 3G connection is congested, the softAP can ask the client to stop sending 

more data. Thus, the Wi-Fi interface of both the softAP and the client can sleep 

longer.

DozyAP could be implemented in the MAC layer for further improvement if the 

Wi-Fi firmware is open on smartphones. The current implementation of DozyAP 

incurs the performance penalty from three aspects. First, explicit transmission of 

sleep request and response packets consume extra power for both AP and clients. 

Second, the overhead of switching on and off Wi-Fi interface is considerable. Third, 

additional power consumption is imposed by the CPU computation, since DozyAP 

has to involve the CPU to generate packets and run algorithms that are supposed
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to run on Wi-Fi chipsets.

4.7 Related Work

Wi-Fi power saving. There has been a lot of research effort devoted to power 

saving in Wi-Fi [1 9 ,2 3 ,3 3 ,4 4 ,5 0 ,5 5 ,5 9 ,6 8 ,7 0 ,7 2 ], focusing on improving the ex­

isting PSM in general or targeting at specific applications or usage scenarios. To 

name some recent work, Catnap [33] exploits the bandwidth discrepancy between 

Wi-Fi and broadband to save energy for mobile devices. NAPman [72] employs 

an energy-aware scheduling algorithm to reduce energy consumption by eliminat­

ing unnecessary retransmissions. SleepWell [59] coordinates the activity circles of 

multiple APs to allow client devices to sleep longer. All these solutions are for Wi-Fi 

clients only. DozyAP is complementary, focusing on the power efficiency of APs. 

Putting an AP to sleep is more challenging than putting a client to sleep because 

client devices expect that their AP is always on. To avoid packet loss, a softAP in 

DozyAP must coordinate its sleep schedule with its clients, which is different from 

existing work.

There is little work on power saving of APs. In [90,96], the authors propose to ex­

tend the IEEE 802.11 standard to support power saving access points for multi-hop 

solar/battery powered applications. Without building any real systems, they focus 

on protocol analysis and simulation, assuming Network Allocation Vector (NAV) can 

be used. Our work focuses on system design and implementation. W e build real 

systems on commercial smartphones and do evaluation with real experiments. In 

addition, the NAV-based approach cannot work on existing smartphones because 

NAV is only visible in firmware. Cool-Tether [74] considers an alternative way to 

address the mobile hotspot problem that involves reversing the role of the phone 

and the client. However, it significantly increases the power consumption of the
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client and does not support multiple clients. In [29], the authors design algorithms 

to save power for APs with Wi-Fi Direct. Since Wi-Fi Direct is a separate mode 

on devices, it cannot be used for tethering till now. Furthermore, we measured the 

power consumption of current Wi-Fi Direct enabled devices, it is slightly higher than 

tethering.

Traffic-driven design. Adapting to traffic load for better sleeping is not a new 

idea [19,70]. Traffic patterns in different applications and scenarios have also been 

studied in some papers and the similar observations are identified (e.g., the large 

portion of network idle time) [50,55]. DozyAP builds on top of the basic techniques 

and applies them to Wi-Fi tethering scenario. Furthermore, DozyAP can be im­

proved by leveraging existing literature, e.g., by traffic shaping [33,68] and sleeping 

in short intervals [55].

Sleep scheduling. Sleep/wake scheduling has been extensively studied in 

Bluetooth domain, e.g., [35,54] and sensor network domain, e.g., [80,89]. How­

ever, those approaches usually focus on MAC layer design, resulting in a new 

MAC protocol, and often require time synchronization. DozyAP employs a sim­

ple application-level protocol to coordinate the sleep schedule of a softAP with its 

client, without requiring time synchronization or any modifications on existing IEEE  

802.11 protocol. Thus, DozyAP is easy to deploy on existing smartphones.

Dedicated Wi-Fi tethering devices. MiFi [60] is a dedicated mobile Wi-Fi 

hotspot device. However, such a device also stays in a high power state even 

without any ongoing traffic. W e measured a Huawei E5830 MiFi device and found 

the average power consumption was as high as 420 mW in idle case. W e believe 

MiFi devices can benefit from DozyAP design if they are programmable.
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4.8 Conclusion

In this chapter we have studied the power efficiency of Wi-Fi tethering. W e show 

that Wi-Fi tethering on existing smartphones is power hungry and wastes energy 

unnecessarily, but there are many opportunities to save power by putting a mobile 

softAP to sleep. We propose DozyAP system to improve the power efficiency of 

Wi-Fi tethering. DozyAP employs a lightweight yet reliable sleep request-response 

protocol for a mobile softAP to coordinate its sleep schedule with its clients without 

requiring tight time synchronization. Based on our findings on the traffic patterns of 

typical applications used in Wi-Fi tethering, we design a two-stage adaptive sleep 

algorithm to allow a mobile softAP to automatically adapt to the ongoing traffic load 

for the best power saving. We have implemented DozyAP system on commercial 

smartphones. Experimental results demonstrate that DozyAP is able to signifi­

cantly reduce the power consumption of Wi-Fi tethering without impairing the user 

experience.
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5 Group Localization via Gestures

In addition to the security and energy-saving discussed in the previous chapters, 

location-awareness is desired more than ever as this world has become increas­

ingly mobile. However, current localization techniques are inadequate to meet dif­

ferent demands for location such as fine-resolution, low-cost and scalability. To 

shed light upon the general research that explores more comprehensive location- 

aware techniques for mobile systems, this chapter describes a novel group local­

ization scheme that can be used for mobile user to locate others in ad hoc wireless 

networks.

5.1 Introduction

Consider the following scenario. A group of people at a conference or a workshop 

come together in a room for a meeting. They may not know each other in advance, 

so have no knowledge about each other's name. They would like, however, to 

share information or exchange electronic documents during the meeting. They will 

use their electronic devices (smartphones or laptops) to quickly set up a local net­

work and then localize each person on a simple map. This location information is 

extremely useful for people to identify each other. If the involved people choose 

to remain anonymous, they can use an intuitive gesture to transfer information be­

tween each other. For example, when two people would like to share files, they can 

use swipe-to-share, in which users can directly send files by swiping their phones
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towards the receiver. This type of technology can be potentially applied to other 

scenarios as well. Game players use gestures to communicate with each other in 

recently emerging phone-to-phone games [97]. People or parties exchange elec­

tronic documents during contract negotiation.

It is our expectation that this type of group localization should meet the following 

criteria: (1) Scalability. The solution should be lightweight so that it can scale to a 

reasonable sized group. (2) Accuracy. While exact positioning is not required, 

the localization error should be reasonably small so that group members can be 

identified. (3) Security. Only devices within certain range can be included in the 

group. The design should be resilient to adversary attacks.

A large body of research has been dedicated to localization without Global Po­

sitioning System (GPS) for various purposes over decades. Most work relies on in­

frastructure support such as Wi-Fi access points (APs) and cellular towers, where 

the location of each device is either assigned by central server or self-computed 

and shared with other devices via network communication. However, the infras­

tructure support may not be available in every phone-to-phone scenario, thus lim­

iting the generality of such approaches. On the other hand, if the location is self­

computed from such as RSSI, RF signature, or magnetic fields, malicious users 

may cheat on their locations to launch attacks. Moreover, these techniques typi­

cally cannot achieve satisfactory accuracy. Other localization approaches demand 

special hardware design, complex signal processing, or access of very low layer 

information. Due to the constraints, those approaches can not be easily applied 

to smartphones. Recent work proposes some acoustic ranging based techniques 

that can be used for smartphones with speakers/microphones. However, they have 

some practical limitations. In BeepBeep [66], every device beeps at least once to 

measure the distance between each other and then calculate the location of each 

device. The limitations of this approach are: (1) at least three devices are needed
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to perform localization, otherwise only distance can be derived; (2) all devices have 

to collaboratively beep, thus making the approach not scale well with the number of 

devices; and (3) this approach requires that every user agrees on the same beep­

ing order and is synchronized well to avoid the collision of beeping simultaneously. 

Based on BeepBeep, another localization algorithm that can be used between two 

phones is proposed in [71]. This approach requires time synchronization and still 

does not scale well with multiple devices.

In this chapter, we propose SG-LOC, a system to efficiently group and locate 

mobile devices. The localization process of SG-LOC cleverly strengthens Beep­

Beep using on-broad sensors and Multilateration algorithms. In our system, the 

beeps are only emitted by a single user who is responsible for setting up a lo­

cal network. During the localization, a user is requested to hold her phone and 

draw a simple gesture. After that, the locations of other devices are calculated and 

shared with other users when they join the network. Our approach does not rely 

on infrastructure support for communication. Furthermore, the localization process 

scales well with the number of devices. W e have implemented SG-LOC on com­

mercial smartphones. The experimental results show that our system can achieve 

centimeter-level accuracy.

To the best of our knowledge, this is the first use of on-broad sensors and audio 

to locate mobile devices. The main contributions of this work are:

• We design SG-LOC, a system to efficiently group and locate mobile users in 

proximity. The localization process cleverly leverage on-broad sensors and 

multilateration algorithms without any infrastructure support.

• We characterize the challenges of implementing SG-LOC, namely significant 

drift in integration of inertial measurement unit (IM U ) sensors, signal detection 

in environment with highly self-correlated ambient noise, sampling rate drift 

between different devices, best moving strategy for drawing gestures.
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• SG-LOC operates in the application layer without relying on any modification 

to the OS. We have implemented SG-LOC on commercial smartphones and 

performed extensive evaluation.

The rest of the chapter is organized as follows. The related work is presented 

in Section 5.2. The main idea and system architecture of SG-LOC, followed by 

the algorithm for each component, are described in Section 5.3. W e present our 

implementation in Section 5.4 and evaluation in Section 5.5. Limitations and the 

future work are discussed in Section 5.6. Finally, we conclude in Section 5.7.

5.2 Related Work

Localization without GPS has been studied over two decades. Most of techniques 

can be broadly classified into two categories based on the type of media: Radio 

Frequency (RF) based techniques and Acoustic techniques. W e name some re­

lated works in the following.

RF based techniques. In these techniques, location is determined by measur­

ing the radio signals sent from Wi-Fi APs or cellular towers. Among them, received 

signal strength (RSS) is commonly leveraged, since it can be easily measured by 

commercial wireless cards. By profiling RSS fingerprints for each location, localiza­

tion is performed by finding a location with the matched fingerprint [21 ,63 ,92 ,94]. 

Besides that, FM radio [30] and channel responses from multiple OFDM subcarri­

ers [73] are recently proposed as signatures. Different from signature-based ap­

proaches, several techniques exist for deriving range, angle and proximity informa­

tion from radio signals, and then positions can be inferred by applying geometric 

algorithms. Time-of-arrival (TOA) systems such as [95] determine the distance 

between devices by measuring RF propagation delays. Time-difference-of-arrival 

(TDOA) systems such as [51] rely on the signal difference in arrival time and
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phase on time-synchronized devices to determine range. Angle-of-arrival (AOA) 

systems [34] utilize the directions from which a signal is received to derive po­

sitions. Through measuring the RSS of RF signals, the location of devices can 

be also determined by employing a radio propagation model [22, 32, 38]. These 

approaches do not provide provisions to accurately locate nearby mobile users in 

any circumstance, since they typically need profiling in advance, special hardware 

design, or only provide coarse-grained precision (e.g., room-level).

Acoustic techniques. Acoustic techniques can measure the range more pre­

cisely, owing to its relatively slow speed compared with RF signal. Hence, most 

acoustic localization schemes leverage range-based approaches. Many systems 

such as [42,43,69] adopt custom hardware to measures the time-of-flight of mod­

ulated ultrasonic signals to estimate the range between devices. The ENSBox 

system [37] leverages microphone array to obtain orientation information for local­

ization. These approaches cannot be applied to mobile phones without additional 

hardware. The BeepBeep system [66] designed to work with ordinary mobile de­

vices with speaker/microphone introduces a novel way to measure the range based 

on the elapsed time between two time-of-arrival (ETOA) of two audio tones. Based 

on BeepBeep, the work [71] uses multiple speakers and microphones to perform 

phone-to-phone localization in 3D space. SwordFight [97] improves BeepBeep 

by supporting fast and continuous phone-to-phone ranging. Different from those 

approaches, only a single device emits audio tones in our work, thus eliminating 

the requirement of time synchronization and significantly improve the scalability. 

Recent work [52] proposes another acoustic TDOA-based ranging technique for 

mobile phone self-localization with infrastructure support. In addition, acoustic fin­

gerprint is also used for indoor localization such as the work [77].

Miscellaneous. There also has been research focused on hybrid techniques 

of both RF based and acoustic localization. W ALRUS [25] can achieve room-level
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localization in office environment by broadcasting the identity of the room through 

sound and Wi-Fi channels. Centaur [61] improves the resolution of localization by 

acoustic ranging plus Bayesian inference. Acoustic ranging techniques are also 

leveraged to detect driver phone use [91], and pair indented devices by a pointing 

gesture [67]. Other related works in the context expect for localization is to lever­

age IMU sensors for the movement recognition. The techniques proposed in the 

work [18] can recognize human handwriting using phones. Methods described in 

the work [56] can recognize human activities. Those algorithms relies on IMU sen­

sors to extract the features of the movement, while our targeted problem is more 

challenging that demands measuring the precise displacement of the movement.

5.3 System Design and Algorithm

In this section, we introduce SG-LOC, a system uses acoustic signals to group and 

locate mobile phone users in proximity simultaneously. In our system, a user who is 

responsible for setting up a local network is requested to move her phone through 

a simple gesture to locate other users. After the network is set up, the relative 

location of each user is displayed on every user's screen. Next, we present the key 

idea of our system followed by the architecture and its components.

5.3.1 Overview

In the rest of this chapter, the user who initiates the process of localization is called 

the sender and other users are called receivers. The main idea of our localization 

scheme is illustrated in Fig. 5.1 for the case of one sender and one receiver. To 

locate the receiver, the sender will move her phone through a simple gesture, say 

from Loci to Loc2 to Loc3 and then back to Loci. During the movement, several 

audio tones are emitted in different locations. Suppose the receiver is located at
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Figure 5.1: Illustration of the algorithm where the sender’s phone moves from Loci to Loc2 
to Loc3 and back to L o c i. The receiver's phone is stationary at Loc4.

Loc4. Due to the spatial change of sender's location between two consecutive 

tones, the time interval measured by the sender is different from that measured by 

the receiver. Fig. 5.2 depicts such a difference for the first segment of the movement 

(i.e., from Loci to Loc2), where tA and tB are the time intervals measured by the 

sender and the receiver respectively. Because the Loc2 is closer to the receiver, 

tB is slightly smaller than tA. With tA -  tB and the speed of sound, we can compute 

the distance difference dd using the following equation:

dd =  d\4 — C?24 =  c ■ (tA — tB),

where di4 is defined as the distance between Loci and Loc4 and d24 refers to the 

distance between Loc2 and Loc4. Given dd, a hyperbolic curve is determined, 

which indicates the possible locations of the receiver (i.e., every point on the curve 

will incur the same distance difference). Any pair of tones can determine such a 

curve, so that the receiver is finally located at the intersection point. Leveraging 

this idea, our system can position multiple receivers on a 2D plane by just three 

beeps. The remaining questions are how to obtain the coordinates of each point 

(i.e., Loci, Loc2 and Loc3) and how to measure the distance difference. W e utilize
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Figure 5.2: Illustration of the difference of beep interval between the sender and the re­
ceiver.

IMU sensors to address the first issue, and use speakers/microphones for the sec­

ond issue. In the following sections, we elaborate the system architecture followed 

by each component.

5.3.2 Architecture

Fig. 5.3 depicts the system architecture of SG-LOC. In our system, only the sender 

emits beeps which are triggered by motion sensors. The rule is as follows: the 

first beep is triggered by the initial movement. That location is referred to as the 

origin (0,0). During the movement, each pause will trigger a beep sound. When the 

phone returns to the original location, the last beep is played. Using this rule, each 

beep is emitted at the ending point of every segment. As a result, the Doppler effect 

that harms the accuracy of any acoustic localization scheme is mitigated naturally. 

The reason why we need the sender return back to the origin is to compensate 

various drifts that we elaborate later.

Specifically, the movement tracking algorithm (T) and beep detection algorithm (2) 

on the sender side are used to track the trail of the movement and measure the 

beep intervals respectively. On the receiver side, the beep intervals derived from 

the microphone are transmitted to the sender at the time of association. Based on
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Figure 5.3: System architecture of SG-LOC

the movement trail and the beep intervals, the sender can calculate the coordinates 

when emitting a beep. Based on the beep intervals on both sender and receiver 

sides, the sender can derive the distance difference mentioned in Section 5.3.1. 

All of these are finally used to compute the location of receivers via our positioning 

algorithm. In next sections, each component is presented in detail.

5.3.3 Positioning Algorithm

Since three beeps are minimal requirement to position a device in a 2D plane, we 

first present the positioning algorithm for three beeps and then extend it to more 

than three beeps.

Positioning algorithm for three beeps. Suppose a receiver is located at the 

coordinates {x,y).  The coordinates of three beeps are (0, 0), ( x i , yx), and (x2 ,y2) re­

spectively. The distance difference derived from beep intervals on both the sender 

and receiver sides are denoted as ddx and dd2. Thus, we have the following equa­
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tions:

ddi =  y / ( x -  x \ ) 2 +  ( y ~  V i ) 2  -  \A 2 +  y2

dd2 =  y/ (x -  x2)2 +  ( y -  Vi)2 ~  \ A 2 +  V2 (5.1)

Combining the above two equations produces a linear equation for x  and y in terms 

of Ax +  By  =  C,  where A, B  and C a re  all constant variables given (xi ,yi ) ,  (x2,y2 ), 

ddi and dd2. Now either x or y can be expressed by the other variable and substi­

tuted back into Eq. 5.1 to derive the closed-form for x and y using (x i, yi),  (x2, 2/2), 

ddx and dd2.

The triangle inequality states that the difference of lengths of any two sides must 

be less than the length of remaining side. That means the absolute values of ddi

and dd2 must be less than the moving lengths ^ /x \ +  y \ and y jx \  +  y\ respectively.

In practice, due to measurement errors ddi may be slightly larger the \Jx2 +  y'f or 

less than -  yjx2 +  y2 where i e  1,2. In both cases, we cannot solve the equations. 

Instead, if in the former case, the receivers are estimated somewhere in the mov­

ing direction. Otherwise, the receivers are deemed in the opposite of the moving 

direction.

Solving Eq. 5.1 may produce one, two or none solutions in practice. If two 

solutions exist, additional information is needed to select one point. For example, 

in a meeting room where all people are sitting around a table and every people is 

in front of the others, the solution indicating that the receiver in behind should be 

ignored. For the none solution case, extra beeps are needed.

Positioning algorithm for more than three beeps. With more than three 

beeps, the happenings of abnormal cases can be reduced and the positioning 

accuracy can be improved. Let the coordinates of the first beep be (0,0) and 

(xt, Vi) i  =  1, 2,3, • • • for other beeps. W e have an equation for each delta distance
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as follows:

ddi = V (x -  xi)2 + ( y -  Vi)2 -  \A 2 + y2-

Similar to Eq. 5.1, combing every ddi and ddi yields a linear equation in two vari­

ables x  and y. Suppose there are n  beeps. All of n . -  2 linear equations can be 

expressed in the following matrix form

A i  B i C i

A 2  B 2 X C 2

y
1

i£
CQC41e

«

..........11

o
e

I

As long as n >  4, variables x  and y can be solved without substituting them back to 

the equation of ddi. The least squares method can be used to find an approximate 

solution to the overdetermined system. The point derived by such a method has 

the minimal distance to all the curves. However, according to our experience, least 

squares method does not work well in practice, since some curves are more noisy 

than others due to measurement errors. Including these curves for calculation may 

degrade the overall accuracy. Our method is to first select a unique set of three 

beeps from n beeps. The total number of sets is equal to Q ) . For each set, the 

positioning algorithm for three beeps is applied to extract possible solutions. The 

direction of those points to the origin is then calculated. The majority of points within 

a certain angle (10° is used in current implantation) are kept and others are filtered 

out as outliers. Finally, the geometric centroid of all remaining points is determined 

as the location of the target. Although the accuracy of localization may be slightly 

deteriorated when a very accurate solution is averaged by several less accurate 

solutions, this method can output a good solution for general cases.
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5.3.4 Movement tracking algorithm

Our system uses IMU sensors namely accelerometer and gyroscope to track the 

movement of the phone. These motion sensors on smartphones are typically low 

cost Micro-Electro-Mechanical Systems (M EM S) that are not specifically used to 

track the precise movement. Therefore, the accurate displacement measurement 

of the phone is challenging. The main measurement errors come from the follow­

ing sources. First, accelerometer and gyroscope are expected to report the read­

ings on axes of phone's frame. However, if the internal measurement units are 

slightly misaligned with the phone frame during fabrication, the reported readings 

are drifted. The second error source is from the gravity. If the screen plate of the 

phone is not orthogonal to the gravity direction, both x-axis and y-axis readings may 

be added by a small component of the gravity. For example, if the screen plate is 

skewed about 1 degree, the gravity provides O . l l m j s 2 (i.e., 9.8m / s 2 * s in ( p i /180)) 

component to x-y axis plate, thus the phone appears to move 8.5cm distance after 

1s even though it is actually stationary. Hence, how to remove the gravity correctly 

is critical to the displacement measurement. Third, owing to the Brownian motion, 

white noise is generated by thermal agitation due to the random charge carrier mo­

tion inside the sensors, resulting in a noisy signal sensor output. Last, during the 

movement phone’s orientation may change, while each sensor reading is in phone's 

instantaneous coordinate system. For example, before moving the phone's y axis 

is towards the north. After moving once, the phone's y axis is towards the east. The 

current y axis readings are actually the x axis readings before, and the x axis read­

ings now are the negative y axis readings before. Without transforming all sensor 

readings into a reference coordinate system, the estimated positions are not useful.

To derive displacement, we double integrate the readings from accelerometer. 

The first integration transforms the acceleration to velocity, and the second inte­
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gration then converts the velocity to the displacement. Since the sensor readings 

are generated at a certain sampling rate, we use the trapezoidal rule to numerically 

approximate the integral between two samples. Suppose a sample is generated at 

timestamp t x followed by another sample at t 2, and the values of each sample are 

denoted by f ( t x) and f ( t 2) respectively. The trapezoidal rule works by approximat­

ing the region under the function /  between t x and t 2 by calculating:

As mentioned above, there exist many errors in sensor readings. If we directly 

apply double integration on raw readings, these errors will accumulated by each 

integration and lead to significant drift. To address this problem, we propose the 

following approaches to reduce the drift.

Motion detection. The integration will accumulate the errors into drift. Typically, 

the longer the period of integration, the larger the drift. To reduce the drift, it is 

important to decrease the integration period. The first step is to detect when the 

phone is moving and when it is not, and only integrate on the period when the 

motion is detected. To detect the motion, we separate all samples into bins with 

each size equal to 10 samples and compute the standard deviation of each bin. If 

the deviation in a bin is greater than a pre-defined threshold, the first sample in such 

a bin is conservatively regarded as the starting of a movement. Given a motion is 

detected, if the deviations in consecutive two bins are less than the threshold, the 

stop of that movement is detected.

Rotation transformation. Rotation transformation seeks to transform the ac­

celeration from phone's frame to a global reference frame. Since the effect of grav­

ity is consistent, it can be eliminated by velocity compensation described later. To 

perform rotation transformation, we first need to compute the rotation matrix. The
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gyroscope measures the instantaneous angular speed around phone's x, y, and z  

axis. Given the initial phone's frame is the reference frame, the output of the gyro­

scope is integrated over time to calculate the angle rotation from sampling instance 

to the initial. Again, we only integrate the readings when movement is detected. 

Suppose at timestamp t u the angle changes on x, y, z axis are roll (<p), pitch (9), 

and yaw (t/>) respectively. The rotation matrix is calculated as follows,

1 0 0 cosO 0 sinO cosip —simp 0

0 COS(f> —sin4> 0 1 0 simp C O S  ip 0

0 sincp COS(p —sinQ 0 cos9 0  0 1

The product of the rotation matrix and the accelerometer readings in phone's frame 

yields the transformed acceleration.

Velocity compensation. When users hold their phones to draw a triangle, it 

is natural for them to stop at three corners. During the stop, the phone should 

be stationary and its speed is zero. However, the acceleration residues caused 

by the gravity and the misalignment of internal sensors typically are integrated to 

a non-zero velocity at a stop. If the velocity is not compensated, the integrated 

displacement will drift significantly. The method to compensate the velocity is as 

follows. First, we detect three segment movements using the method just men­

tioned before. At the end of each segment, if the integrated velocity is not zero, all 

velocities integrated within such a segment is adjusted to the following value:

v ' i t j )  =  v( t j )  -  v { tk) t j  _  t l . i  e [i , k }
tk W

where v ' ( t j )  denotes the adjusted velocity at t j t  v(t j ) refer to the originally integrated 

velocity at t js U and t k represent the starting and ending time of a segment. Using 

this method, constant gravity and sensor misalignment offset can be eliminated at
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the same time.

Relative displacement compensation. In our scheme, the phone will return to 

the original point after drawing a triangle. Thus, the relative displacement between 

the starting point and ending point should be zero. However, due to the errors 

mentioned at the beginning of this section, the integrated displacement may not be 

zero. To have an accurate displacement measurement, we need to compensate the 

integrated displacement over time. Slightly different from the velocity compensation 

that is applied to each segment, the relative displacement compensation is applied 

to the whole triangle once. First, we detect the beginning of the first segment t lt 

the end of the last segment tn, and all stationary duration before a timestamp 

ti. The displacement is adjusted as follows:

d'(ti) =  d(ti) -  d(tn) t% tl St^
tn St(tn)

5.3.5 Beep detection algorithm

Due to the uncertainty delay between the instance when a command is issued to 

emit a tone and the instance when the tone is physically emitted by the hardware, 

the actual interval between two beeps on the sender side cannot be accurately 

determined by the beep issuing time in the software. To address this problem, 

we adopt the method similar to works [66], where the sender needs to record audio 

waves from its microphone when beeping. Since the distance between the sender’s 

speaker and its microphone never changes, the time interval between two beeps 

captured by the microphone is exactly the same as they are physically emitted by 

the speaker.

Furthermore, we can detect the starting points of beeping by processing the au­

dio files recorded from the microphone, and calculate the time interval by counting 

how many samples between two beeps. Compared with directly using software
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timestamps to calculate the interval, converting the number of samples to time can 

yield more accurate results. That is because the sampling is typically performed by 

hardware. Each sample is performed at a specific rate (e.g., 44.1 kHz). The num­

ber of samples divided by the sampling rate yields the time duration. This method 

can cancel out the uncertainty delay between the instances when the beep is de­

tected by the hardware and seen by the software. Furthermore, this method does 

not require dock synchronization between devices. It is practical for implementa­

tion. As shown in Fig. 5.2, at Loci and Loc2, the sender A emits two beeps. Both A 

and the receiver B record audio from their microphones and obtain TDOA: tA and 

t B■ Then beep interval is calculated as t A -  t B .

5.3.5.1 FFT-based beep detection

For better performance, the beep signal should be designed carefully to cope with 

the following issues. First, the sound signal will be attenuated and distorted by the 

communication channel, and negatively affected by the environment noise. Thus, 

the signal should be designed to have a good Signal-to-Noise Ratio (SNR) at the 

receiver. Second, the signal should have a better resistance to multi-path and 

non-Hne-of-sight (NLOS) effects. Due to these effects, the first arrival signal at the 

receiver may not have the largest energy. It imposes difficulties to detect the arrival 

signal and determine the DTDOA accurately. Based on the above considerations, 

we choose a linear chirp waveforms.

The waveform detection is performed by the matched filtering process, where 

the emitted signal is correlated with received signals to determine when a beep 

is present in the received signals. Let {«*} (i =  1, 2, ■■■ ,n ) denote the signal se­

quence recorded from the microphone, and { tn}  ( i =  1,2,••• ,m) represent the 

emitted signal (i.e., a beep). In matched filtering, a sliding window with the length 

equal to m  moves from the beginning to the end of { w j  sample by sample. The
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sample correlation coefficient r  is computed as follows:

r = T.Zi(ui -y)

where u and v are sample means of the sliding window and {v{} respectively. The 

value of r  may vary for each sample. A large r  means there is a high similarity 

between two sequences. As a result, any sample with a much larger coefficient than 

its nearby samples is identified as the arrival of a beep. The number of samples 

between two beeps divided by the sampling rate infers the beep interval.

However, the calculation of correlation coefficient is computationally expensive 

especially when n  is large. Some work [61,66] offloads the computation to a power­

ful cloud server or leverage the parallel GPU hardware to accelerate the process. 

Such approaches work but at the expense of extra communication overhead or 

power consumption. In recent work, Qiu et al [71] propose to use an energy thresh­

old to reduce the search space in the sample sequence. However, setting such a 

threshold is challenging because the ambient noise may be large compared to the 

emitted sound in some scenarios. If the threshold is set too low, the computation 

overhead is still considerable. By contrast, if the threshold is set too high, not all 

beeps can be captured. To overcome this problem, Zhang et al. [97] uses auto­

correlation to estimate a rough position of a beep and then apply cross-correlation 

to identify the exact position. Auto-correlation characterizes the self similarity of a 

sequence. In their approach, a beep is composed of two same sequences: one 

followed by the other. If a sequence is found most similar to its half-lag (-shift) se­

quence, a beep is detected. Auto-correlation can be computed fast but inherently 

has fatten peak, so it is difficult to detect the position of a beep accurately. That is 

why cross-correlation is used in the second stage. However, this method cannot 

be applied to the scenario with highly self-correlated ambient noise, such as AC.
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Figure 5.4: Beep detection by auto-correlation and cross-correlation, where sampling rate 
is 44.1kHz

Fig. 5.4 shows results of both auto-correlation and cross-correlation of recorded 

samples in our office. It is seen that the auto-correlating hardly detect beeps due 

to the background noise.

In this work, we propose a fast Fourier transform (FFT) based filter to reduce 

the unnecessary search space. First, the emitted chirp sound is converted to fre­

quency domain by FFT. Next, the received sequence is divided into equal blocks 

with the same size as the chirp. In each block, FFT is computed to find whether a 

similar spanning frequency is detected. If so, a beep is found. In this block and its 

previous block, we then use cross-correlation to derive the accurate position. Oth­

erwise, we skip this block to reduce computation overhead. It should be noticed 

that the previous block must be considered, because a beep may cross two con­

secutive blocks in received signals. Without taking the previous block into account, 

we may have a chance to miss a beep. Suppose N  beeps are emitted each with 

length equal to m  and the received signal has n  samples in total. To detect the 

position of all beeps, our approach needs about © (n logm ) time to process FFT  

plus © (m 2) time to calculate cross-correlation. Later in the evaluation section, we 

present experiment results to confirm the efficiency of this method.
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5.3.5.2 Sampling rate drift

In practice, different smartphones may have a slight drift on a given sampling rate. 

In other words, during a certain period of time, two phones are very possible to 

collect different number of samples even though the sampling rate is the same. 

According to our experiments, this drift often occurs on different brand of phones. 

For examples, two phones: a Samsung Galaxy Nexus and a HTC evo 3D, are used 

for test. The nexus emitted two beeps separated by 3s. Both phones were station­

ary and recorded samples from their microphones. W e found that the number of 

samples recorded by evo was always less than that of nexus by 14 samples. In that 

case, the measured distance difference is inaccurate. To our best knowledge, this 

is the first work that pinpoints the impact of sampling rate drift on acoustic ranging 

systems.

To cope with this problem, we request users to move their phones back to the 

original location. The first beep and the last beep are then emitted at the same 

location. With this assumption, we can estimate the speed of drift and compensate 

the measured beep intervals. According to our extensive experiments, we found 

the drift rate is constant over time. Hence, a linear model is good enough to correct 

the intervals.

5.4 Impact of measurement errors

In this section, we discuss the impact of possible measurement errors on the local­

ization accuracy and then present the guidelines for our system design. Basically, 

there are two sources of errors in our system: distance difference errors due to 

the acoustic subsystem and displacement measurement errors owing to the IMU 

sensors.
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5.4.1 Distance difference errors

In our acoustic subsystem, some factors may cause inaccurately measuring the 

distance changes between sender and receiver due to sender's movement. First, 

since we use acoustic signals to detect the distance change, the resolution of 

detecting a tiny change in distance is determined by the sampling rate of speak­

ers/microphones. For example, recent commercial sound cards support maximum 

44.1kHz sampling rate, so that the minimal interval between consecutive samples 

is 22.7^s. With the speed of sound equal to 341 m/s, a sample difference is trans­

lated to 0.8cm changes in distance. In that case, the measured distance changes 

can be only the multiples of 0.8cm,  resulting in resolution-related errors. Second, 

the acoustic signal will be distorted on both phase and frequency when received at 

the receiver due to the multi-path effect and the ambient noise during propagation. 

Thus, the cross-correlation method may not detect the precise time when the beep 

arrives. As a result, the distance difference derived by both sender and receivers 

may include errors. To analyze the impact of these errors, we assume there exists 

a bound A r. It means that if the exact distance difference is r, the measured value 

r '  should fall into the range [r -  A , r  +  A]. According to the results from previous 

research and the verification by our experiments, the standard deviation of distance 

difference errors are within 1cm in practice. Therefore, we set A r =  1.

Consider on a 2D plane the sender moves along a segment and beeps at two 

spots. If the distance change is measured without any error, a curve consisting of 

possible locations should pass through the exact receiver. However, measurement 

errors make the curve depart from the actual locations. A lower bound and a upper 

bound of such a departure are determined by r  -  A r  and r  +  A r. Fig. 5.5 illustrates 

an example, where the target's phone is located at the coordinates (0,500), while 

the sender’s phone is moved from (0,0) to (21, 21) and beep at each point. The
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Figure 5.5: Possible sector of the target device determined by a single movement, where 
the maximum measurement errors of distance change is ±1 cm

angle between the target's direction and the direction of movement is defined as 

8. The target may exist at any point within the sector embraced by both lower 

bound and upper bound curves. W e define a  as the angle of such a sector. A 

smaller a  is better with respect to the localization accuracy. This example is used to 

demonstrate the impact of different direction of movement (i.e., 8) on the localization 

accuracy (i.e., a). Note that even though different numbers rather than (0,500), 

(21,21), and ± lcm  are used, the conclusion is still similar.

Fig. 5.6 depicts the relation between 8 and a, where the value of 8 ranges from 

-180° to 180°. The positive angles represent the clockwise rotations, whereas the 

negative angles refer to the counter-clockwise rotations. W e see that in the case 

that the sender's device is moved towards or opposite to the direction of target, 

the corresponding a  is largest, i.e., the lowest localization accuracy. However, in 

the other case that the direction of movement is perpendicular to the direction of 

target, the smallest a  is achieved. Therefore, the first guideline for movements is 

conducted that it is better to move perpendicular than parallel to the direction o f 

target.
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Figure 5.6: Relation between 9 and a, where 9 defines the angle of target direction and 
moving direction and a refers to the sector angle both illustrated in Fig. 5.5

From Fig. 5.6, we find that any negative 0 and its corresponding positive 9 with 

the same absolute value have the same a. In fact, they have different capability 

to locate the target. Among all errors in the sector determined by the lower bound 

and upper bound curves, if the estimated direction of target is greater than the exact 

direction of target (i.e., on its right side), we define these errors as positive ones. By 

contrast, if estimated location of target is on the left side, we define them as negative 

errors. Fig. 5.7 shows the percentage of positive and negative errors against 9. It 

is seen that when 9 is negative, angle errors are prone to be positive. On the other 

hand, positive 9s are likely to cause negative angle errors. Recall that our scheme 

demands at least two movements to compute a determined location of target. By 

overlapping positive errors and negative errors, the final error should be reduced 

significantly. Therefore, the second guideline for movements is that if moving more 

than once, the directions of movements are better to flank the direction o f target.

5.4.2 Displacement errors

We have already discussed the effect of errors in measuring the distance differ­

ence on the localization accuracy. In this section, we elaborate the effect of errors
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Figure 5.7: Distribution of angle errors against 6

in measuring the displacement of sender's phone. The reasons why we have dis­

placement errors are described before. Suppose the exact movement of sender's 

phone is from (0,0) to (a^, y x). Due to errors, the estimated trail of movement is from 

(0 ,0 ) to ( x [ , y [ )  that may (1) have variant distance, and (2) rotate slightly from the 

exact direction of movement. In the following, each case is discussed individually. 

First, we assume that (xi, y x) and ( x [ , y [ )  are in the same direction but have differ­

ent distance \ J x [ 2 +  y ' 2 ±  y / x x2 +  y x2. The maximum deviation between { x \ , y [ )  

and ( x , y )  determines an error region. We then vary the direction of movement 

and examine the area of the error region. The results are quite similar to Fig. 5.6 

and Fig. 5.7. It is concluded that moving perpendicularly to the direction of target 

is better than moving in parallel. Second, we assume the distance is accurately 

measured but in different orientation fj- ^  In this case, we find the direction of 

movement has little effect on the localization accuracy. Combining two cases, the 

aforementioned guidelines are still valid.

Positive error

Negative error
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Figure 5.8: Distribution of angle errors against 0

5.4.3 Better moving strategy

How to decide a moving strategy is important because it affects the accuracy of 

localization. If knowing the location of target in advance, the best strategy for two 

movements is shown in Fig. 5.8(a) according to the guidelines. However, that strat­

egy may result in a poor estimation for a target whose location is approximately 

parallel to the direction of movement like Fig. 5.8(b). Therefore, without knowledge 

of target's location, an equilateral triangle is the best moving strategy to achieve a 

better performance for any target on average. That is because no matter where 

the target is located, we can find two sides that can embrace the direction of target 

(see Fig. 5.8).

In practice, our scheme is not very sensitive to the shape of triangle. People are 

free to draw any shape of triangle without sticking to a perfect equilateral triangle. 

Instead of the shape, how people draw the triangle such as the speed of movement 

is more critical to the accuracy. It also should be noticed that to improve the robust 

of our localization algorithm, five beeps are emitted along a triangle gesture. We 

design a new moving strategy to draw a triangle: starting from the middle of the
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bottom side to the left corner to up corner to right corner and then back to the 

origin. That strategy combines the benefits of both line and triangle gestures. The 

detail is described in the evaluation section.

5.5 Security Enhancement

In this chapter, we consider two types of attacks. In the first attack, malicious users 

may launch Denial-of-service (DoS) attacks to disrupt the process of localization. 

Here, we assume adversaries can eavesdrop legitimate beeps but can hardly jam  

those beeps. First, since each beep is very short and randomly emitted by users, 

predicting the precise timing for jamming is very difficult. Second, it is easy to be 

detected if adversaries jam the sound channel for a long time. Instead, a very 

effective DoS attack is for the adversaries to generate fake beeps to impersonate 

the sender and prevent other users from correctly calculating beep intervals. To 

mitigate this attack, our security-enhanced system leverage a hash chain to ensure 

that users can derive beep intervals based on legitimate beeps.

Before emitting beeps, the sender first generates a random number R  and cal­

culates a hash chain of R. Let hn(R)  denote the output of hashing R  n times. 

Initially, the head of the hash chain (say, hW0(R))  is broadcasted to users via bea­

cons. When the user emits a beep, a linear chirp sound followed by an audio tone 

encoded with the next value in the chain (say, h " ( R ) ,  h9S(R) and so forth) is played. 

After locating every beep in samples, the receiver can decode a hash value for that 

beep. To verify whether the ith beep is valid, the receiver computes the hashing of 

the received value one more time (e.g., h(h98(R)). If the output matches the value 

for the i  -  1th beep (say h " ( R ) ) ,  the beep is accepted otherwise rejected. Each 

time the hash value is different, and thus cannot be guessed or duplicated by an 

attacker.
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Without broadcasting the head of pre-calculated hash chain, our scheme still 

works but relies on receivers to supply all hash chains (one by the sender and 

others by adversaries) to the sender for authentication. In this case, all hash chains 

of previous beeps are stored. For a new beep, the receiver computes the hashing 

one more time and tries to match with all stored chains. If matched, such a beep is 

added to an existing hash chain. Otherwise, a new chain is created. In addition, any 

beep with duplicated hash value is directly discarded. At the end, the beep intervals 

for all chains are reported. The sender only accepts the intervals belonging to its 

own chain.

For the second attack, we consider spoofing attacks where malicious users who 

are not in proximity of benign users (e.g., outside the room) try to join the group. 

Without physically staying closer to users, the adversaries cannot hear all beeps 

and report valid beep intervals when associating to the network. The user who 

is responsible for setting up the network can thereby exclude these adversaries. 

However, more sophisticated adversaries can still join the network by by sending 

the forged intervals or replaying intervals reported by benign users. To defend 

against this attack, each user has to prove it received all beeps. The details are 

described as follows.

As mentioned above, each beep is identified by a unique hash value. Suppose 

m  beeps are emitted by the sender and their hash values are v u v2, - - -  ,vm- All 

these beeps can be found by checking whether vx =  h(v2), v2 =  h(v3) and so forth. 

To report the intervals between consecutive two beeps, the receiver has to supply 

a hashed value of h{vx ©  v2 ©  • • • © vm, I D )  to prove all beeps are actually heard. 

The adversaries who did not hear all beeps cannot calculate ©  v2 © • • • ©  vm. 

Replaying other uses’ requests also does not work because the reported intervals 

are assigned by each user's ID.
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5.6 Implementation

We implemented our localization scheme on Google Galaxy Nexus running An­

droid v4.2.1 as a sender and various other Android phones such as Galaxy Nexus 

(v4.2.1), Nexus S (v4.1.x), HTC 3D EVO (v4.1.x) and Samsung Droid Charger 

(v2.3.x) as receivers. In the following, we present the details of our implementation.

5.6.1 Beep signal design

Similar to previous research [52,61,66], we choose a linear chirp as a beep, since 

the linear chirp offers good pulse compressibility and increased signal-to-noise ra­

tio (SNR), thus making beep signals easy to be detected. For a linear chirp, the 

signal frequency increases over time. Given the duration of such a chirp and the 

increasing factor, we can determine the frequency range of a chirp. According to 

our experience, the frequency range will affect the accuracy of beep detection. The 

maximum range of spectrum that Galaxy Nexus can support is within [0,22.05k] Hz. 

To study the effect of different frequency ranges, we first designed a linear chirp 

with audible frequency range [1k,5k] Hz (humans can hear audio frequencies up to 

[19k,20k] Hz). Then, we tested another linear chirp with near inaudible frequency 

range [18k,22k] Hz. After playing these two chirps separately, we found that re­

ceivers can detect both signals but with varying levels of accuracy to pinpoint the 

precise location of the beep in recorded samples. As illustrated in Fig. 5.9, lower 

frequencies (left figure) typically have smaller sidelobes (marked by left and right 

circles) compared to the correlation peak (marked by the middle circle). It is easy to 

distinguish the correlation peak from other sidelobes. However, higher frequencies 

have large sidelobes, so that once the beep signal is distorted by ambient noise 

and multipath effect, the correlation peak may be smaller than a sidelobe. Hence, 

the location of the beep is likely to be falsely identified. To make our system robust
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Figure 5.9: Comparison of two frequency ranges of beeps

to dynamic environment, the frequency range of beep is set to [1 k,5k] Hz.

For the length of a beep sound, we tested three different durations: 25ms, 50ms 

and 100ms under 44.1kHz samples rate, and found the length has little effect on 

the accuracy of beep detection. To reduce the computation overhead, we set the 

length of beeps to 25ms.

5.6.2 Beep playing design

In our implementation, the time when to play a beep sound is triggered by the 

movement of the gesture. Before the phone is moved, the first beep is played. 

Thereafter, once a pause of movement is detected at the ending point of a segment, 

a beep is emitted. The reasons why we choose to play a beep when phone is 

relatively stationary are in two aspects. First, Doppler shifts can be mitigated. If a 

beep is emitted when the phone is moving, the beep may be shifted in frequency 

domain, making the detection inaccurate. Second, it is easy to find the positions for 

beep playing from the gesture trail. Since it is difficult to control both IMU sensors 

and microphone to physically start at the same time, as well as obtain the precise 

timestamp of each audio sample, translating the beep playing time in samples to
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beep playing location in the moving trail is not easy. Using this method, each beep 

is emitted when the phone is stationary, so by looking at the ending point from 

the moving trail, we can derive the beep playing location without complex time 

matching.

We use AudioTrack class with static mode to play beeps. The buffer size is 

set to be the minimal for a sample rate of 44.1kHz. We noticed that the beep 

sound occupies less space than the minimal buffer size. In this case, the beep 

is not actually sent out until the buffer is full. To reduce the playing lag, we call 

AudioTrack.stop to force playing the sound once the buffer is written. To record 

waves from microphone, we use AudioRecord with an additional shadow buffer to 

reduce the contention when copying buffer to memory.

5.7 Evaluation

In this section, we use real-world experiments to assess the performance of SG- 

LOC. We have evaluated our localization algorithms by answering the following 

questions: 1) What is the accuracy of displacement determination algorithm based 

on IMU sensors? 2) How severe are the sampling drifts of microphone on commer­

cial smartphones? 3) What is the accuracy of localization algorithms with respect 

to both angle and distance errors? 4) What is the on average computation time to 

locate other devices. 5) What is the power consumption of SG-LOC?

In experiments, we use a Galaxy Nexus smartphone with stock Android v.4.2.2 

as a sender. Other smartphones including another Galaxy Nexus, HTC EVO 3D, 

Nexus S, Droid Charger running various Android versions from v2.x to v4.x are 

used as receivers. Note that the main contribution of this work is the localization 

scheme, so the network setup is not evaluated.
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Figure 5.10: Comparison of different gesture with and without pause

5.7.1 Accuracy of IMU sensors

Different gestures and moving strategies have varying effect on the accuracy of 

our displacement determination algorithm. W e investigated the performance under 

line, triangle and circle gestures with and without pause during the movement. To 

obtain the ground truth, we first drew specific trails (i.e., line, triangle and circle) as 

references and asked users to move their phones following the trails.

In the first experiment, a line gesture is tested. Starting from the middle of the 

line, phone is moved along the line and first towards the left ending point then to 

the right ending point and then back to the origin. At two ending points, movement 

will pause for a short time which is decided by users. After the displacement is 

calculated by our algorithm, we measure the errors between the estimated ending 

points and the exact points. The experiment is repeated 30 times. The left cylin­

der in Fig. 5.10 depicts the average results with error bar presenting the standard 

deviation.

In the second experiment, a triangle gesture is tested. As explained in Section 

5.4, drawing a triangle here is slightly different from a regular triangle drawing. 

The movement first starts from the middle of the bottom side, then towards the
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left corner, up corner, right corner respectively and then back. At each corner, the 

movement is also paused. For comparison, we conducted the third experiment with 

drawing a circle through three reference points without any pause. The middle and 

right cylinders in Fig. 5.10 show results for each case.

It is seen that line gesture has the smallest estimation error which is slightly less 

than triangle gesture and significantly less than circle gesture. W e conclude that 

pausing can significantly help the displacement estimation and the gesture costing 

short time is typically better the gesture costing long time. Therefore, we use simple 

gestures with natural pause, namely line and triangle for localization.

5.7.2 Validation of sampling drifts

To demonstrate how severe the sampling drifts are, we measured several phones. 

The results are shown in Table 5.1, where a Galaxy Nexus phone is a sender and 

other phones are receivers. Six beeps are played with intervals ranging from 0.5s 

to 2.5s. Both the sender and receivers were never moved during the whole exper­

iment. Without the sampling drift, the number of samples collected between two 

beeps on sender and receiver sides should be exactly the same (e.g., like the case 

of two Galaxy Nexus phones).

However, we indeed observed the drifts between phones of different brands. 

Table 5.1 shows the rounded mean values of ten experiments. The results are 

quite stable. Among these ten experiments, the maximum deviate we observed is 

only one sample. The positive values means the sampling rate of the sender is 

faster than that of the receiver and the negative values means the opposite. We 

also changed the roles of sender and receiver for each phone, the same drifts were 

observed.

From the table, we see the drifts linearly increase over time. This validates our 

compensation approach described in Section 5.3. That is why the last beep has to
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Galaxy Nexus 0.5s 1.0s 1.5s 2 .0s 2.5s
Galaxy Nexus 0 0 0 0 0
HTC EVO 3D 3 5 7 9 11

Nexus S 2 3 5 7 9
Galaxy S2 -4 -8 -12 -16 -20

Table 5.1: Drifts in terms of number of samples over time under 44.1kHz sampling rate 

be emitted when phone is requested to move back to the origin.

5.7.3 Accuracy of determining direction

Line gesture. As mentioned in Section 5.4, drawing a line is the best for targets 

located in the center region. From Section 5.7.1, we also know that drawing a 

line could introduce less displacement measurement errors. Due to these rea­

sons, we first tested our localization algorithms with a line gesture. The gesture 

radius is about 20cm, so two ending points of the line are located at (-20 ,0 ), (20,0). 

Consequently, four beeps are played at (0,0), (-20,0), (20,0) and back to (0,0) (all 

units are centimeters). The last beep is used to compensate the unknown sam­

pling drifts. Two beep intervals are calculated based on the first-second beep pair 

and the first-third beep pair to derive corresponding delta distances. Receivers are 

placed along a line which is perpendicular to the moving line, each with 41cm away 

from the other. The tested orientations of receivers thereby range from -38° to 35° 

with respect to y axis in clockwise rotation. Each location is tested 5 times.

Fig. 5.11 shows the results. W e found that the average angle errors were within 

2.5° and the accuracy decreased when the receivers departed from the center. 

This is consistent with the the analysis in Section 5.4. It should be noticed that we 

indeed tested the cases where receivers were located out of the center region. The 

results are bad that we often could not find a solution, hence the results were not 

plotted in the figure. In summary, a line gesture achieves good performance for 

locating targets in the center region, but bad in the following cases. First, when the
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Figure 5.11: Angle errors with line gesture given targets are located in the left region

angle towards y axis is larger than 40 degree, the degrades significantly. Second, 

a line gesture may not distinguish between the front and back region.

Triangle gesture. To overcome the above problems, a triangle gesture with five 

beeps is used. A regular triangle only incurs three beeps at each corner. However, 

our moving strategy that the movement starts from the middle of the bottom side 

can produce five beeps, thus including the same advantages of line gestures. In 

following experiments, we investigated our scheme in several locations where a 

line gesture cannot work well. The moving radius is kept the same and the trial 

is from the coordinates (0,0) to (-20,0) to (0,20) to (20,0) then back to (0,0). The 

receivers is set to the coordinates (-264,-366), (-264,-244), (-264,-122), (-264,0), (- 

264,122), (-264,244) and (-264,-366) respectively. Each location is tested 5 times.

The results are shown in Fig. 5.12. It is seen that the average angle errors 

are less than 6 degree. Owing to the symmetry, similar results are obtained for 

receivers located in the right panel. Considering both Fig. 5.11 and Fig. 5.12, our 

localization algorithm can achieve less than 6° angle error in general given gesture 

radius equal to 20cm.
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Figure 5.12: Angle errors with triangle gesture given targets are located in the left region

Moving radius. In addition to the shape of gestures, the moving radius also 

has effect on the accuracy. As a rule of thumb, large radius will incur less local­

ization errors. We validate this rule in the following experiments, where receivers 

are placed in the center of a sender. W e tested triangles with different moving ra­

dius. First, the movement is from the coordinates (0,0) to (-20,0) to (0,20) to (20,0) 

and back to (0,0). Next, the moving radius increases, and the moving trail is from 

(0,0) to (-40,0) to (0,40) to (40,0) and back to (0,0). Fig. 5.13 depicts the CDF of 

angle errors. We see that the gesture with radius equal to 40cm achieves better 

performance. Note that the mean values here are worse than the results shown in 

Fig. 5.11, because the outputs in our algorithm for more than three beeps are aver­

aged by any possible solutions. Accurate results are deteriorated by the relatively 

inaccurate results.

5.7.4 Accuracy of determining distance

Our localization algorithms can estimate the direction of receivers accurately, but in 

poor estimation of the distance. That is because the relative movement of sender's 

phone is too small compared to the distances between sender and receivers. A
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Figure 5.13: Angle errors against different moving radius

slight measurement error either in IMU sensors or acoustic systems may cause a 

significant departure from the exact point. The larger the distances between sender 

and receivers, the bigger the errors. According to our experience, the average 

errors are around 1 m when receivers are 2m far away from the sender, and 3m 

when receivers are 5m far.

However, to locate group users, we believe that the order of distance is more 

useful than the absolute distance. In the case of multiple users located in the same 

direction, our localization scheme is still worthy as long as the order of distance 

to the sender is correctly determined. In this section, we present the experiment 

results that shows how far two users are apart away in the same direction, our 

algorithm can detect the correct order with more than 90% probability. This metric 

is also known as the localization resolution.

From Fig. 5.14, we found that given the moving radius equal to 20cm, the lo­

calization resolution is about 30cm within 1m distance between a sender and a 

receiver. That means given a receiver is 1 m far away from the sender, when the 

distance of another user to the sender is within 70cm our algorithm can determine 

who is closer with high probability. Otherwise if two receivers are within 30cm
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Figure 5.14: Localization resolution versus relative distance between sender and receivers 
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distance, our algorithm will fail to determine the order. The localization resolution 

degrades when the relative distance increases. However, the larger moving radius 

is required if high resolution is needed.

5.7.5 Computation time

The finish time of localization process consists of two parts: the movement dura­

tion and computation time. When a phone is moving, samples collected from the 

microphone and IMU sensors are stored in memory or disk (when memory is full). 

The entire duration varies according to the shape and radius of the gesture, but 

it typically can be finished within 10s. Our algorithm then calculates the moving 

trail based on sensor readings, beep intervals based on microphone readings, and 

eventually the coordinates of the receivers. Given that all samples are in memory, 

the cross-correlation method is first tested then followed by our method. Table 5.2 

lists the results. It is seen that our FFT-based correlation method can reduce the 

finishing time by more than 90%.
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Gesture Line(4 beeps) Triangle (5 beeps)

Samples
Mean

Std
389734
16249

427008
9523

Finish time (s)

Cross-correlation (Mean) 
Cross-correlation (std) 

SG-LOC (mean) 
SG-LOC (std)

46.06
1.78
3.09
0.07

50.4
1.16
3.68
0.05

Table 5.2: Comparison of finish time of detecting different number of beeps: traditional 
cross-correlation method versus our SG-LOC method

Measured Power Data

2600- -

2400

2200 •  -

2000 •  "

Beep
1800 -  -

1800-  - .......... • ■• • • v ................................................

1 uu/,1” M i
1200-1 f—

6320

mW

6360 63806340

< >

Figure 5.15: Power consumption of emitting a beep sound

5.7.6 Power consumption

In our system, a significant contributor to battery drain is the speaker when emitting 

beeps. Fig. 5.15 plots the consumed power for a beep. It is seen that the average 

power jumps from around 1300mW to 2300m W  during 25ms (i.e., the duration of 

a beep). This overhead also motivates our work to reduce the number of beeps.

W e measured the power consumption of our system on both the sender and 

receiver sides. For locating others, the sender has to turn on the speaker, the 

microphone and IMU sensors, but the receiver only needs to open the microphone.
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Figure 5.16: Comparison of different moving strategy

As a result, the sender is expected to consume more energy than the receiver. 

Fig. 5.16 shows the power consumption. In comparison the system power without 

SG-LOC is measured when both the screen and Wi-Fi are turned on. As we see, the 

power consumption for the sender increased by 24%  (from 1143mW to 1429mW) 

when our system is running, while the power consumption for the receiver merely 

increased by 6% (from 1062mW to 1134mW).

Another significant source of power consumption is the computation overhead. 

Hence, we also measured the power for the computation separately. From the re­

sults, we found the computation usually incurred around 900m W  power consump­

tion.

5.7.7 Field test

Finally, we conducted a field test in our office room with 3mx5m size to measure 

the overall accuracy of our system. Five smartphones are placed on the table 

(seen in Fig. 5.17), a user is requested to draw a triangle gesture using the phone 

without any other limitation. The results show the estimated coordinates of four 

phones have less than 1° direction errors and less than 20cm distance errors on

152



Figure 5.17: Field test environment

average. The distance errors are reasonably small so that the smartphones are 

placed correctly on the map. When the map is transmitted to all the users, each 

other users can identify each other correctly by viewing the locations.

5.8 Discussions

Continuously tracking. SG-LOC is originally designed for locating and grouping 

users in the network setup stage. To enable the continuous track of users after 

that, the localization scheme proposed in SG-LOC can be applied periodically. The 

alternative method to achieve continuously tracking is to leverage IMU sensors. 

Any rotation or movement of the phone will be detected by the sensors and updated 

to other users.

Accurate distance measurement. Our localization scheme can find accurate 

orientations of other users but achieve relatively less distance accuracy. To mitigate 

this problem, our scheme can be performed on multiple devices. With the angle 

information of each pair of devices, a more accurate distance can be derived.

Extension to 3D. In current implementation, 2D location is provided but our 

scheme is not limited to 2D only. With more beeps emitted during the movement, 

our positioning algorithm can be extended to 3D space with little modification. This
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will be studied in our future work.

5.9 Conclusion

In this chapter, we consider the problem of efficiently and securely grouping and 

locating mobile phone users in proximity. A system called SG-LOC is proposed to 

leverage a simple gesture to perform localization during network setup. By using 

internal motion sensors and speakers/microphones, our scheme combines gesture 

detection and acoustic techniques for a user to locate other users in an efficient, 

low-cost and scalable manner. We have designed, implemented and evaluated our 

system on commercial smartphones. The extensive experiments have shown that 

SG-LOC can achieve centimeter-level accuracy.
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6 Conclusion and Future Work

Mobile computing has played an important role in the modern world. Wireless com­

munication, allowing mobile devices to connect to networks and fetch remote re­

sources, is an indispensable function to mobile computing. Massively popular mo­

bile applications rely on wireless communication to perform their functions. The en­

hancements of existing wireless technologies will directly advance mobile technolo­

gies. Among all the existing problems, security, energy-efficiency, and location- 

awareness are the most important for the following reasons. First, many mobile 

devices access large amount of sensitive data under risky circumstances. This per­

sonal data is not protected by comprehensive security mechanisms because of the 

limited resources of mobile devices. Second, today's mobile devices increasingly 

perform many complex tasks, thus consuming more energy than ever before. Given 

the fact that battery technology has hardly been improved while wireless communi­

cation is a big contributor to the battery drain, it is urgent to reduce the power con­

sumption while retaining network performance. Third, traditional location-oblivious 

wireless communication has become inadequate to meet the increasing demand 

of mobility. Location-awareness will lead to a more intuitive communication experi­

ence and improve the quality of communication. However, little research considers 

infrastructure-less localization. These problems have impeded the advance of mo­

bile systems.

The goal of this dissertation is to mitigate the challenges of security, energy

155



and localization for mobile computing. Through three communication patterns in

802.11 wireless networks, we investigate a collection of disparate-but-interrelated 

problems that are faced in today's wireless management. W e enhance the secu­

rity of the association mechanism for wireless clients to avoid connecting to mali­

cious rogue APs under various network conditions. This is the first work that does 

not require administrator or infrastructure support. W e also study the problem of 

power-saving for mobile devices working as software-defined APs. Since AP mode 

was recently introduced to mobile devices, there is little research in this domain. 

Our proposed technique will shed light upon the general research that explores 

comprehensive energy solutions for mobile computing systems. Lastly, we investi­

gate the practical feasibility of location-aware wireless communication and design 

a fine-grained, efficient, lightweight and scalable localization algorithm. This tech­

nique allows mobile devices to know the relative location of others in a network 

without the support of network infrastructure and therefore has more advantages 

than existing solutions.

The following guidelines derived from our studies are intended to improve the 

design of advanced mobile computing systems.

• In a mobile computing environment, any device is potentially untrusted. Be­

fore establishing connectivity, a mobile device should verify the authenticity 

of the other side in its own right. This helps prevent unauthorized individu­

als from masquerading as legitimate devices and gaining access to sensitive 

data.

• Hardware technology behind mobile computing improves continuously. This 

constantly invalidates old wisdom, so we should challenge existing solutions 

to keep the system design consistent with the advance of hardware.

• When developing power saving systems, we should first consider the charac-
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teristics of their applications. The application-specific design typically achieves 

more power savings than the general design.

• An important feature of today's mobile devices is the integration of diverse 

sensors on broad. This sensor data may provide the insight into user's con­

text. Extracting the context to infer location can achieve very high accuracy 

and therefore is a promising research topic for mobile computing.

We have made some progress in improving the security, energy-efficiency and 

location-awareness of mobile computing. In the future, we will continue working 

on these challenging problems in wireless communication and mobile computing. 

For example, more and more mobile devices use cloud-based services to upload 

sensitive data and computational tasks for processing. How to overcome security 

concerns by redacting, removing or replacing sensitive data from records that are 

sent to the cloud becomes increasingly important. W e attempt to continue research 

on this problem. Additionally, the improvement of hardware technologies will intro­

duce complicated mobile devices (e.g., from single core to multi-cores). Energy 

efficiency will continue to be a source of interesting research problems. Finally, the 

increasing demand of mobility will drive the research on localization techniques to 

support various levels of location-awareness applications.
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