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Abstract

The edge of the Internet is increasingly wireless. Enterprises large and small, homeowners,

and even whole cities have deployed Wi-Fi networks for their users, and many users never

need to— or never bother to— use the wired network. With the advent of high-throughput

wireless networks (such as 802.11n) some new construction, even of large enterprise build-

ings, may no longer be wired for Ethernet. To understand Internet traffic, then, we need to

understand the wireless edge.

Measuring Wi-Fi traffic, however, is challenging. It is insufficient to capture traffic in

the access points, or upstream of the access points, because the activity of neighboring

networks, ad hoc networks, and physical interference cannot be seen at that level. To truly

understand the MAC-layer behavior, we need to capture frames from the air using Air

Monitors (AMs) placed in the vicinity of the network. Such a capture is always a sample

of the network activity, since it is physically impossible to capture a full trace: all frames

from all channels at all times in all places.

We have built a monitoring infrastructure that captures frames from the 802.11 network.

This infrastructure includes several “channel sampling” strategies that will capture repre-

sentative traffic from the network. Further, the monitoring infrastructure needs to modify its

behavior according to feedback received from the downstream consumers of the captured

traffic in case the analysis needs traffic of a certain type. We call this technique “refocus-

ing”. The “coordinated sampling” technique improves the efficiency of the monitoring by

utilizing the AMs intelligently.

Finally, we deployed this measurement infrastructure within our Computer Science

building to study the performance of the system with real network traffic.
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CHAPTER 1

INTRODUCTION

Wireless 802.11 LANs [3, 4] have become increasingly ubiquitous [33, 67]. As the ac-

cess to these networks has steadily grown, dependence on them has also grown. Earlier,

Airports, cafes and college campuses were examples of “hotspots” of 802.11 technology

( also known as Wireless Fidelity – Wi-Fi) deployment. But as the density of deployment

has grown (for example, some airlines have started deploying WIFI on airplanes [33]) the

applications have become more compelling. Indeed, in highly dense Wi-Fi deployments,

like urban city centers, Voice over Wireless LAN (WLAN) can actually be considered as

a potential replacement for cell phones. Many businesses, universities and individuals are

using them for critical applications. These applications often include VoIP [29, 31] (Voice

over Internet Protocol), first responder apparatus [51], secure data transfer, inventory and

shop-floor control systems, and video conferencing [52]. Key infrastructure is increasingly

being deployed on wireless networks. Consequently the security and management of these

wireless networks is increasingly important.

Often, the data being transferred on 802.11 networks is confidential. Access to this

data may put the privacy of individuals, or the secrecy of sensitive corporate or military

data, at risk. Cryptographic security [26] ensures the privacy of data through encryption.

However, it does not guarantee protection from malicious attacks that aim to disrupt key

services in the network and consequently the workings of the organization that the network

1



serves. For example, a Denial of Service (DOS) attack removes service from legitimate

users of a wireless network. A Reduction of Quality (ROQ) attack allows service to con-

tinue but degrades the bandwidth, latency, or jitter in a way that negatively affects the user

experience, and potentially provides some gain to the attacker. For example, some cheating

attacks on the network will enable the attacker to gain unfair bandwidth on the network,

and other attacks simply disrupt normal network service. An unscrupulous company may

be motivated to run ROQ attacks on on a competing company’s network during periods of

critical use causing (possibly) monetary harm to the competition.

Because the wide commercial application of 802.11 wireless technology is relatively

new, the attacks and the vulnerabilities are only now being understood. So are the coun-

termeasures. New vulnerabilities to the network are discovered every week [8]. With the

increasing proliferation of small Wi-Fi devices (like the iPhone) there are increasing points

of failure (as each of these devices are susceptible to known 802.11 vulnerabilities and

new ones introduced by bugs in those new devices) that are not well understood. Most

enterprises that deploy 802.11 wireless networks rely on reactive diagnoses of network

problems; they do not monitor the wireless network full-time. These are usually human-

intermediated with both the reporting and the administering parties adding delay in the

response to the problems. This turnaround time to respond to attacks or other such prob-

lems may be unacceptably long.

Many of the vulnerabilities are in the protocol. There are a large number of devices

already deployed in the field. Even if, eventually, the vulnerabilities are understood and

fixed, the implementation of the protocol is susceptible to bugs.
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With a real-time monitoring system, however, the 802.11 frames may already have been

captured, and if there was a malicious attack, the attack may be detected and reported and

the attacker possibly identified right away. However, if the system waits for the client to

complain, the attacker might have left the scene, or the problem might be undiagnosed for

a long period. The offending frames are certainly no longer available. Ideally the problems

need to be automatically diagnosed or even pre-empted before ever being encountered by

humans. It is critical that these networks are constantly monitored and that problems are

addressed rapidly with minimal dependency on people to report problems.

Rogue Access Point. If there is an Access Point (AP) that does not belong to the enter-

prise infrastructure but is plugged into the wired network of the enterprise, it is called a

“Rogue AP” [16, 73, 68]. This AP represents an entry point into the enterprise network. If

it is insecure, outsiders can gain unauthorized access to the network. Such an AP may not

be intentionally malicious, as it may be placed there by an employee who wishes extend

the network for ease of use, or to remedy a “hole” in the wireless coverage of the enter-

prise. The AP may, however, be put to malicious use by someone who wishes to enter the

network. If the installer of the AP is malicious, the intent might be to gain access to clients

of the network who might inadvertently connect to the AP. Determining the existence and

locations of such rogue APs is much more difficult without any monitoring infrastructure.

If the existence of such an AP is known, to locate the rogue AP so as to disable it would

be a non-trivial task for an administrator without the help of such an infrastructure. The

administrator would need to go to the location of the complaint and then measure the traf-

fic around that area then attempt to triangulate. A pre-installed monitoring infrastructure

could help localize the transmitter, reducing the effort on the part of the administrator.
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There are some rogue AP detection techniques that can be enabled with such a preinstalled

infrastructure [16, 73, 68].

Connectivity Problems. Users of an infrastructure wireless network may sometimes ex-

perience reduced quality of service, in the form of dropped sessions, slowness in browsing

speeds, or unavailability of the network. In wired systems, the locations where this prob-

lem occurs are easily determined and monitored as they are localized to an Ethernet port

on a switch or to the switch itself. In wireless systems, the locations are not so easily deter-

mined as the client may be geographically situated in any part of the AP’s coverage area.

Furthermore, the coverage area of the AP may shift from time to time. The following few

paragraphs outline a few scenarios in which a client’s connectivity may suffer.

Lack of coverage. The problem experienced by the client may be due to the area not

being adequately covered. As these phenomena can be stochastic, they may not be easily

observable once missed. A dedicated monitoring infrastructure, however, can observe and

capture these phenomena as they occur. Any complaints that are later made can then be

correlated with events observed by the monitoring system.

Malicious attacks. If the problem is caused by intentional malicious attacks, like a

deauthentication or disassociation attack (there is no frame-level authentication of frames

and therefore any frame, like a disassociation frame, can be spoofed), this reason may

never be known if the wireless trace is not captured (as the attacker may have already

left the scene). Unless every client is willing to record the transmissions it observes, the

only option is to have a monitoring infrastructure with complete coverage of the wireless

network. An example of an attack on the MAC protocol is a disassociation attack [27].

In this form of attack, an attacker spoofs the disassociation frames of a legitimate AP and
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forwards them to a client associated to the AP. The client, thinking that the frames are

genuine, disassociates from the AP. Later it tries to associate back to the AP. A flood of

such spoofed disassociation frames has the effect of denying service to the client.

Interference. There might be sources of microwave radiation in the vicinity of the

wireless network that interfere with the transmissions by the clients and the APs in the net-

work (for example, from microwave ovens [41]). The interference may also be caused by

misbehaving wireless cards (intentional or unintentional). This interference can, again, be

observed reliably by the administrator only if there is a dedicated monitoring infrastructure.

More so, if the interference is intermittent.

1.1 Monitoring Systems

The network may be monitored in several different ways. Packet “sniffers” ( devices that

capture frames or packets from either the wire, routers, switches, or the air. Also called

Air Monitors (AMs)) may be installed on the wired network (or indeed, the AP controllers

themselves may capture frames), as shown in Figures 1.1- 1.3, where wireless APs connect

to the wired network. These sniffers will be able to observe much but not all of the wireless

traffic and only at the IP or higher layers. The MAC-layer (802.11) headers will not be

included. The management and control frames will be missed, as they are not forwarded

past the AP. A system could monitor all APs using SNMP(Figure 1.2), and indeed this is

a common approach. SNMP, however, only reports statistical information about the the

current or past state of the AP. Some APs report major events with syslog records, but

these typically only capture high-level information. Neither of these approaches supply
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AP Controller

APAP

APAP

Sniffer

Figure 1.1: Packet Sniffers at on the wired network.

MAC layer information about traffic or information about ad-hoc traffic in the network. In

addition, transmissions that are not a part of the infrastructure network will not be observed

using these monitoring methods as they will not be forwarded past the AP. This deficiency

is important because there are several known vulnerabilities in the 802.11 MAC protocol

(e.g., its lack of frame-level authentication enables spoofing of MAC addresses), attacks on

which cannot be detected without monitoring at the MAC layer. The APs themselves may

monitor traffic for signs of attacks, but they will need to multitask between serving clients

and monitoring. We believe that the solution is to use real-time frame capture from the air

(Figure 1.4), using wireless sniffers, as it offers the capability to capture 802.11 wireless

traffic at the MAC layer.

Wireless monitoring involves coverage of three dimensions — space, time and fre-

quency spectrum. Coverage, in the wireless monitoring context, is the ability to capture

802.11 frames at a particular location, and on a particular channel, for a given period
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AP Controller

APAP

APAP

SNMP

SNMP

Figure 1.2: SNMP based monitoring.

AP Controller

APAP

APAP

Sniffer

Figure 1.3: Wireless traffic captured on the wired port of an AP.
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AP Controller

APAP

APAP

SnifferSniffer

Figure 1.4: Wireless traffic captured off the air.

of time. It is important to maximize coverage so that any frames that carry attacks on the

network can be captured by the monitoring system. “Holes” in the coverage may allow

some such frames to slip by unnoticed. In our work, we attempt to maximize coverage

over these three dimensions using the available resources. The limiting resources are the

number of AMs, the number of radios on each AM, the computational and memory re-

sources on the AMs and servers, and the bandwidth available for forwarding frames and

other measured data. We developed this monitoring infrastructure as the “Measurement”

portion of the MAP [24] (Measure, Analyze, Protect) project [62]. We place our AMs in

the geographical area where the wireless network is located, sample the valid 802.11 spec-

trum and carefully merge streams of captured traffic from multiple AMs. Changing one

aspect of the system (in terms of placement and sampling) affects the coverage in one or

more of the three dimensions. For example, if an AM changes from channel A to chan-

nel B, there is no coverage of channel A at that particular geographical location until the
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Figure 1.5: Dynamic multichannel monitoring
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AM changes back to channel A. Over time, the measurement system monitors different

subspaces within the space, time and frequency universe (Figure 1.5). Even with a large

number of AMs, the coverage in the monitoring space is likely to be incomplete; capturing

every 802.11 frame in the monitoring space is simply infeasible. There may always be

channels that have occasional transmissions that cannot be observed by any AM near that

location. Therefore, even highly provisioned monitoring systems must necessarily sample

the available space of transmissions. Since global coverage (no holes) is not practical (and

perhaps not even possible), we wish to maximize extent of coverage as much as possible

with available resources and by using new sampling techniques.

Therefore, we developed new techniques for monitoring the wireless network effec-

tively. To achieve this goal, we have incrementally approached the problem of sampling

the monitoring area in the context of a fully functional system. Our sampling techniques

are practical; we validate this claim by deploying this system and evaluating its efficacy in

capturing traffic. Our contribution, in the end, is to provide a flexible sampling platform

to capture traffic that adapts its behavior according the changes in the characteristics of

the traffic, and that can be modified according to changes in the consuming application’s

focus. This platform is made efficient by coordinating the behavior of the AMs to reduce

redundant capture. Finally, we provide metrics to compare different traces and apply these

metrics in comparing sampled traces and the corresponding full capture traces (where a

“full capture” trace is one which is captured by a sniffer that stays on one particular chan-

nel for the entire period of capture).

The following sections describe some background needed for understanding the prob-

lems in monitoring wireless networks. The next chapter describes related work we have
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in the literature. Chapter 3 describes and evaluates the basic two sampling techniques of

Equal and Proportional sampling. Chapter 4 describes Refocusing and the capture of traffic

that is important to the consumers. Chapter 5 describes how to make the monitoring system

more efficient using Coordinated Sampling. Chapter 6 evaluates the techniques described

in Chapters 3–5 using two metrics that we believe have not been used in this context before.

Chapter 7 presents a summarizes the dissertation and discusses future work.

1.2 Background

The transmitting nodes in wireless networks may be mobile. Also, the transmission area of

wireless transmitters is not circular. As the propagation medium is a non-circular, possibly

changing area, the physical location for monitoring the wireless network is not easily de-

termined. Therefore the first challenge in monitoring wireless networks is the placement of

the AMs. As the transmission range of the transmitters changes, the placement of the AMs

is only approximate and the coverage is variable.

Also, there might be multiple transmissions (on different frequency channels) at a sin-

gle location in space. Indeed the transmission loads on different channels are also variable.

Therefore, we need to measure all channels and recognize the variable nature of the trans-

missions. Given the number of channels, as shown in Figure 1.6 (up to 14 channels in

802.11b/g, 25 more in 802.11a and all of these reused in 802.11n, except with different

hardware), there are a large number of simultaneous transmissions possible in a single lo-

cation.
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1.2.1 Wired vs. Wireless

There has been a vast quantity of work in monitoring and measuring wired networks. Due

to the spatially diverse nature of wireless network transmissions, the challenges involved

in monitoring them differ with wired networks where the precise location for sniffing is the

wire used in the network.

In wireless networks, it is not known beforehand where in space the transmissions can

be observed. The traffic in the wireless network may originate at APs, clients associated to

these APs, or even APs or clients that lie outside the control of the network administrator,

but affect transmissions in the network. Two wireless nodes may have set up an ad-hoc

network and may be transmitting with no AP in between. Clients may show up in areas

where no transmission has ever been seen before, and once observed, they may change

their location during transmission. They may change their associations (to APs), and in

doing so may use a different channel. APs that are unknown to the network managers may

appear in the network. We want to capture all the traffic between these entities irrespective

of their dynamic nature. We use AMs to capture traffic.

As we do not know the location of most transmitting radios (we do in the case of APs),

the propagation distance of the transmitted frames is not predictable. Even the coverage

area of an AP (the area in which it can serve clients) might vary from time to time due to

environmental factors. Due to this changing coverage, an AM might sometimes capture

frames from an AP but later, might not. Therefore, the placement of AMs is a difficult

challenge (compared to traffic capture in wireless networks).

We do not know precisely what area is covered by an AM. We can only estimate the

capture areas by experimentation with some AMs and clients. Due to the uncertainty in the
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capture area of the AMs and the transmission areas of APs, the capture areas of neighboring

AMs must necessarily overlap to ensure spatial coverage. This overlap means that, on

occasion, the same frames are captured at multiple AMs, and yet some frames are captured

by only one AM. Figure 1.7 shows that AM1 will capture many frames of the AP but AM2

will capture only a few as it is on the border of the coverage of the AP. Similarly, AM2 will

only capture many client frames but AM1 may capture only a few. In this situation, the sets

of captured frames need to be merged to create a complete picture of the dialogue between

the AP and the client; of course, the duplicates in the two streams also need to be removed.

1.2.2 Multi-channel monitoring

In wired networks, sampling is sometimes necessary in high-speed links simply because the

measurement hardware may not able to keep up with the rate of frames being transferred.

As the bandwidth available in wireless networks is substantially lower than that of wired

networks, this challenge is not currently a concern (It may however be an issue in 802.11n).

In wireless networks, however, the challenge is different: there are multiple channels

at the same geographical location that can be used to transfer 802.11 frames. We wish

to monitor all of these channels simultaneously as there may be transmissions on any of

them, even if the network infrastructure is using only one, or a few, of them. Therefore,

even if the coverage of neighboring AMs overlaps, there are holes on particular channels

at any given time. Therefore the problem of holes is not resolved by merely overlapping

adjacent AM coverage areas. There are two possible solutions to this problem. The first

solution is to attach multiple radios to one device so that each radio can monitor one chan-

nel. This way, each channel can be completely monitored. At the moment, this method
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(or a method in which we place multiple single-radio devices at one location – which has

similar drawbacks) is not feasible because the resulting hardware may be bulky and expen-

sive. An example of such a multi-radio device is the “porcupine”, developed at Indiana

University [6]. Any solution that relies on increasing the total number of radios on the

hardware is, in the end, not scalable. Also, even after provisioning as many radios as there

are channels, there may still be situations in which all the transmissions are not captured. It

is difficult to guarantee to capture all traffic that was transmitted within an area. Therefore,

we believe that all 802.11 monitoring systems necessarily sample, i.e., they only capture a

subset of all the traffic on the network.

A compromise solution is to monitor multiple channels with one radio, periodically

changing the channel (Figure 1.5). We call this technique “channel sampling” as it results

in collecting only a sample of the frames passing through all the channels. In its simplest

form, channel sampling involves the radio moving sequentially through each channel in the

wireless network, in a predetermined order, and spending equal amounts of time on each.

We call the technique where each radio is autonomous in its pattern of channel sampling,

independent sampling. If the radios sample the different channels available, there must be

a provision to modify the sampling mechanism according to the needs (also called focus)

of the monitoring system. It may be necessary to dynamically adapt (refocus) the system

in order to capture more relevant traffic. Finally, if there is a controlling mechanism that

coordinates the sampling on multiple radios externally, we call the sampling coordinated.

In this thesis, we make four contributions:

• We developed and studied the two basic techniques of equal and proportional sam-

pling.
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• We introduced the concept of refocusing and developed software for it that allows

consumers of monitored traffic to request a focus that is most suitable to their needs.

• We introduced and implemented smart coordination among AMs so that the moni-

toring system can monitor the space of {frequency × space × time} using as little

hardware as possible.

• We used two metrics to compare 802.11 traces captured using various sampling tech-

niques to traces captured using full capture on a single channel.
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CHAPTER 2

RELATED WORK

There has been work focused on various applications of wireless monitoring. There have

been few studies about the mechanisms of wireless monitoring. The previous work has

focused on the architecture of wireless monitoring and about merging of wireless traces

from different sources. In our project (MAP) we have implemented a trace merger that we

use in many of our experiments. We identify channel sampling, coordinated sampling, and

refocusing as three primary challenges in 802.11 wireless monitoring. To the best of our

knowledge, there has been no prior work in this exact area.

In the following sections, we describe previous work done that highlights the impor-

tance of wireless monitoring and measurement-based studies and analyses that could ben-

efit from using our techniques.

2.0.3 802.11 flaws and security issues

Cam-Winget et al. discuss several security flaws in 802.11 network [18]. They describe

authentication and encryption mechanisms used in 802.11i to alleviate the flaws in WEP

(Wired Equivalent Privacy). Neither WEP nor 802.11i, however, are solutions to the in-

herent lack of authentication for MAC-layer management and control frames in the 802.11

protocol.
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Bellardo and He [14, 34] discuss several 802.11 attacks. One method for detecting these

attacks is to capture all frames and recognize particular attack signatures [32]. Clearly, all

frames cannot be captured using any channel sampling mechanism. However, merging can

be used to create a more complete picture that can be used for signature detection. Another

mechanism is to detect the effect of the attack on the network (also known as anomaly

detection), such as looking for clients that obtain unfair bandwidth allocation [47]. In a later

chapter, we discuss channel sampling strategies that enable the AM to spend more time

on channels that appear more important. We expect that using the appropriate sampling

strategy is critical in anomaly detection.

2.0.4 Fault detection and analysis

Adya et al. [9] discuss a management and fault-detection infrastructure that depends on

wireless monitoring by clients. They, however, assume the existence of some control over

the clients in the network as they expect to deploy software on the clients. Our system

(which we detail in later chapters) monitors the network without any direct control over or

cooperation from the clients.

An early study of wireless LANs by Duchamp and Reynolds focused on the study of

wireless networks in terms of throughput and error rates [25]. The measurement, how-

ever, did not involve sniffers and used the transmitter and receiver statistics for its results.

Their system, though it measures wireless statistics, is not a monitoring system. Using a

dedicated system with channel sampling strategies would enhance the study. MOJO is a

physical layer anomaly detection system using wireless sniffers, but no channel sampling

strategies were used to gather a sample from across all channels [63].
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2.0.5 Wired-side sniffing

There have been many wireless network characterization studies that use wired-side meth-

ods like SNMP polling, syslog collection or wired-side sniffing to monitor wireless net-

works [37, 12, 66, 13, 36, 44, 23]. Others use wired side monitoring to predict client mo-

bility in wireless networks [65, 64] and to build realistic mobility models from traces [42].

Henderson and Kotz provide good primer on measuring wireless LANs [35]. Mishra et alu̇se

internal measurements from their wireless driver to generate the neighbor graphs that are

needed in their roaming algorithm [54, 53]. Wired-side monitoring collects traces that

are either aggregated summaries or incomplete. These studies can benefit from wireless

sniffing as it will provide deeper knowledge of the traffic.

2.0.6 Wireless-side sniffing

Characterization studies using wireless sniffing are less common, and are typically con-

cerned with only measuring the known channels on which APs are assigned [40, 60, 71].

Jardosh et al. [40, 39] deploy three sniffers, one for each known infrastructure channel.

They simply co-locate the three sniffers and do not use any sophisticated placement strat-

egy. The study focuses on congestion in networks. We focus on detecting attacks, and

expect attackers to use any means available to them. Therefore, we use Channel Sampling

to monitor the network so that we can detect anomalies or problems that exist on the chan-

nels on which APs are deployed as well as those that do not have APs deployed, but still

may be used for attacks. Mishra et al˙ [54] use wireless sniffing on known channels for

their empirical study on MAC-layer handoffs.
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Portoles-Comeras et al. assess the performance of multi-radio sniffers as compared to

multiple single-radio sniffers [56]. They extend their work in an evaluation of the efficacy

of various off-the-shelf sniffers in capturing traces when deployed as multi-radio sniffers

in various different permutations of vendor origin [57].

Chandra et al. demonstrate a cooperative client-based monitoring system for automated

fault diagnosis using multi-layer information [20]. The clients themselves periodically cap-

ture traffic and share it with other clients through a peer-to-peer network for a cooperative

diagnosis. Their system responds to requests by peers with specific multi-layer attributes,

not full network traffic traces.

Bahl et al. implemented a monitoring system (“DAIR”) using inexpensive USB based

802.11 radios deployed around a corporate environment on preexisting desktops that have

wired network connections [10]. They do not, however, tackle the problem of channel sam-

pling, nor do they use refocusing as a measurement technique. They only deploy sniffers

on known infrastructure channels.

Another DAIR paper by Chandra et al. [19] provides a management system for wireless

LANs. Their system, however, focuses solely on infrastructure channels and does not

consider security applications, and does not attempt any channel sampling mechanism.

A few recent papers describe offline tools to capture and merge wireless frames from

multiple AMs located around a building [22, 50, 72]. These papers concentrate on methods

for synchronizing traces collected across multiple AMs into a single chronological trace,

inferring missing frames, reconstructing transport-layer flows, and detecting performance

artifacts and network inefficiencies. Most of these tools work only on offline traces and

those that are online do not use channel sampling. Yeo et al. [70, 71, 69] describe an
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infrastructure for wireless monitoring. The authors identify three challenges of wireless

monitoring: capacity of each sniffer, sniffer placement and data collection. The authors

perform several experiments using synthetic traffic and a multi-sniffer monitoring system.

They describe an offline merging algorithm using beacons for time synchronization and

heuristics for sniffer placement using signal strength.

Jigsaw [22] requires four radios per location, clearly an expensive solution. When few

AMs are available, each radio must sample many channels, and our system of refocusing

helps to gather the most relevant information with limited resources. In Jigsaw the authors

place 39 monitoring “pods” around the building with four radios each. Each radio (AM)

monitors a separate channel (infrastructure channels 1, 6, 11 and another channel). In

their coverage experiments, their clients associate with APs and transfer data using scp.

They report that their sniffers capture about 90% of all the scp frames sent to and from

the clients. This experiment assumes that only traffic on the same channels as the APs

that can be observed by both the AM and the client, or that can be observed by both

the AM and the AP, needs to be monitored. There is no experiment in the paper that

reports the results in the scenario where only the AP or the client is in the range of the

transmitting radio but not the AM. (Or, is it the authors’ claim that there cannot be any

such transmitters? This claim is, of course, much harder to verify.) Due to the static

allocation of channels to AMs, if there is an AM in range, it may be on a different channel.

This case is important in a security scenario where an attacker may be hidden from the AM

but may be in range of a client or AP. With the increasing numbers of channels available for

transmission in 802.11 networks, simply increasing the number of radios in a “pod” cannot

be the answer. It is clear, therefore, that channel sampling is the only practical technique
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to cover a large monitoring area. The claim made in the second Jigsaw paper [21] that

monitoring platforms from DAIR [10] and Jigsaw provide “the ability to observe every

link-layer network transmission across location, frequency and time” is overly optimistic,

to say the least.

Mahajan et al. [50] describe a tool “Wit” that includes an offline merging mechanism to

combine multiple traces and an inference engine to determine missing frames. They use this

tool to infer frames that were missed in the capture from SIGCOMM ’04; this trace is also

used in an earlier paper by Rodrig et al. [60] that analyzes the traces and presents statistics

about airtime utilization, transmission rate adaptation and retransmission probability in

those traces. In these papers, there is no attempt at dynamic channel sampling.

The popular “war driving” tool, Kismet [5], includes configuration options for channel-

hopping sequences and channel-dwell times (channel intervals) but it does not possess the

ability to dynamically modify its behavior based on current channel conditions. Only static

schedules are supported.

2.0.7 What’s new?

The bulk of my work is about the relatively unstudied challenges of channel sampling, refo-

cusing and coordinated sampling. Most prior work approaches the problem of monitoring

by making assumptions about the traffic. The assumption is generally that there is only

one channel or a small fixed number of channels to monitor. We approach the problem

of monitoring from the other direction. We assume that there may be a large, unknown

number of channels to be monitored and that we have far fewer radios than are sufficient to

capture traffic on all the channels at all locations. We believe that such an approach is supe-
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rior because the conditions may change and sometimes too rapidly for human intervention.

We are unaware of any work that looks at channel-sampling or channel-hopping strategies,

refocusing and coordinated sampling.
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CHAPTER 3

INDEPENDENT SAMPLING

An ideal wireless monitoring system would capture every transmitted frame on every chan-

nel at every location in its deployment area. As a matter of fact, the guidelines of the NSA

for 802.11 Wireless Intrusion Detection Systems (Wireless IDS) recommend that every

“over the air” 802.11 frame be captured and analyzed [2]. Certainly some monitoring sys-

tems attempt to reach this goal by using dense radio deployments. It is, however, trivially

obvious that every frame cannot be captured at every location and every channel. Therefore,

any monitoring system must necessarily sample the dimensions of channel×space×time.

Using the available sniffing hardware most efficiently to capture the maximum number of

frames is a goal of our system.

To capture as much relevant traffic as possible, we first try to maximize the total number

of unique frames captured by arranging for AMs to spend most of their time on the busiest

channels observed. At the same time, we believe that AMs also need to spend a minimum

time on the quieter channels to capture a sample of the traffic. This is one type of channel

sampling strategy. This strategy attempts to maximize capture of traffic on the network.

Any sampling strategy in which each AM individually makes the decision of changing

channels is an independent strategy. If decisions to change channel are made by looking at

information from multiple AMs, we call that strategy coordinated. Some of the strategies

are adaptive in nature, so that more time is spent on channels that are considered more “im-
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portant” in some respect (e.g., channels with more traffic are more important than channels

with less traffic) even if the actual channel that is “important” changes with time.

A sampling cycle is one pass through every channel being monitored. We consider two

strategies that visit all available channels, in order, once per sampling cycle. Each sampling

strategy is, therefore, defined in terms of the time spent on each channel, and how that time

is adjusted in response to current conditions.

In the first strategy, the AM subdivides every sampling cycle into equal intervals, one

for each channel being sampled. We call this strategy the “Static/Equal” sampling strategy.

In the other strategy, the AM counts the number of frames per second that are observed

on each channel, extracts the proportion of load (in terms of frames per second) on each

channel, and uses that number to compute proportion of the next sampling cycle to spend

on each channel. We call this strategy the “Frames/Proportional” strategy. The input is

“Frames/sec” observed on each channel, we compute the “Proportion” for each channel,

and we use this information to affect the time we spend on each channel 1. We avoid

spending zero time on any channel by ensuring a minimum time is spent on every channel.

We pick this time to be greater than 2× the time taken to transmit the largest possible

802.11 frames at the slowest rate (50 ms).

Similarly, we can easily imagine a Clients/Proportional strategy (in which AMs count

the number of client stations seen) or the BSSIDs/Proportional strategy (in which the AMs

count the number of BSSIDs (Basic Service Set Identifiers) seen on each channel). Given
1The net effect of the strategy is that the number of frames captured is increased. Clearly, the strategy that

maximises the frame capture while using a single radio is one that is always on the channel with the highest
frame-rate. As we cannot know instantaneous channel frame rates, and we depend on historical information,
we end up “hedging our bets” among the channels according to the observed frame-rates in the last cycle.
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any counter with an observed value on each channel, in each cycle the time spent on each

channel is in proportion to the observed values from the preceding cycle.

We can conceive of various strategies to satisfy different needs of the monitoring sys-

tem. For example, we may deem that a channel with more clients is more “important.” In

that case, a Clients/Proportional strategy is appropriate as it would spend more time on the

more “important” channels. In this way, we can implement various strategies where each

strategy represents a possible “focus” of a consumer of the traffic.

We conducted experiments using the Frames/Proportional and the Static/Equal schemes.

Henceforth we call these the Proportional and Equal strategies respectively.

3.1 Mobility and Sampling

Mobility can affect the ability of a monitoring system to capture samples of traffic. As

clients move through the monitoring area, the performance of the sampling techniques

may worsen.

Speed. Clients moving at different speeds can affect the sampling in different ways or

each to a different extent. A fast moving client (e.g., moving at the speed of a car) may

move through the coverage area of an AM in a few seconds. Moving at the speed of 100

kilometers per hour (kph), a car would pass through the diameter of the coverage area of

an AM, approximately (a conservatively high) 100 meters, in 3.6 seconds. If this duration

that a client in a moving car spends in the coverage area is less than the cycle time being

used in sampling, the proportional strategy may not be able to react in time to spend more

time on the channel being used by the client. If the cycle time was one that we use in
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our experiments (2.2 seconds) the proportional strategy may or may not be able to see a

higher number of frames on the channel being used by the client, depending on whether the

channel was early or later in the second cycle. We can see, therefore, that unless very small

cycle times are used, 802.11 networks may be unable to detect the source of “hit-and-run”

types of attacks. To make matters worse, in most cases, coverage area of AMs in urban

environments will be much less then 100 meters. (In the order of 25 meters.) Therefore,

the opportunity to dynamically adjust the channel sampling time would be even less.

At lower speeds, where a mobile client takes several seconds to move through the cov-

erage area of an AM, a proportional sampling strategy can have sufficient time to react to

the increase in traffic. For example, a bicyclist moving at a speed of 20 kph would take 14.4

seconds to pass through the coverage area. If the proportional strategy were using our cycle

time of 2.2 seconds, it would be multiple cycles before the client is outside the coverage

area, enabling the strategy to adapt several times over.

Remember that, however, changing channels takes a non-zero amount of time. The

shorter the cycle lengths, the greater the number of times that channel switches are done. If

channel switching time was zero, then shorter cycle times would be preferable. As it is not

(it is in the order of tens of milliseconds), it is better to strive for a low number of channel

changes. Therefore, a balance needs to be maintained between cycle time and channel

switching time.
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3.2 Implementation of the Proportional Strategy

Let n be the number of 802.11 channels to be monitored, and T be the time for one complete

sampling cycle. Let fi,j be the frame count for channel i in the cycle j and Ii,j be the time

spent (the interval) on channel i in cycle j.

On initializing the sniffer, there are no observations on which to calculate our frame

count metric. We therefore begin with an Equal cycle, where the radio spends Ii,1 = T/n

time on each channel. At the end of this first cycle, {fi,1} contains the number of frames

captured on each channel in the first cycle.

We cannot allow any channel’s interval to become too small to capture a frame, because

then fi,j = 0 and for all future cycles, the interval for channel i will be zero. In our

implementation we therefore limit the minimum interval size M .

The time to be spent on channel i in the next cycle j + 1 is based on the proportions

observed during cycle j:

Ii,j+1 =
(fi,j/Ii,j)∑n
i=1(fi,j/Ii,j)

× (T − (M × n)) + M (3.1)

Equation (3.1) calculates the proportion of frames per unit time that is captured on

channel i in the cycle j. This proportion is multiplied by the total cycle time T less the

minimum time spent on every channel so that the interval Ii,j+1 spent on channel i in the

next cycle is in the same proportion as the observed frame rate 2.

2nearly the same proportion, as we first allot the minimum interval size M and then the remaining time
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The above equation implements the Frames/Proportional strategy. If the channel with

the highest frame rate were the most important, this strategy would be well suited to capture

important traffic.

If, however, the most important channel is the one with the highest number of clients,

the above equation would change. The fi,j in the above equation would be replaced by ci,j

which is the number of clients observed in the cycle j on channel i. This change would

result in implementation of the Clients/Proportional strategy. Similarly, other strategies can

be easily implemented according to the definition of what is “important’.

3.3 Dingo: a controllable sniffer

We developed a set of software components, named dingo,3 that collectively enable a va-

riety of frame sampling policies to be defined and controlled, and their effects monitored.

dingo comprises two main components: amsniffer, which runs on each AM device, and

amcontroller, which runs on a more powerful central Linux server. dingo also employs an

additional software component, a merger developed as part of earlier work, and described

below. Figure 3.1 shows the principal components of this software and the communication

paths between them.

The role of the merger is to receive the streams of frames captured by the AMs and

to merge these into a chronologically consistent order, with any duplicates removed, to

enable analysis of the traffic. The information in each consolidated frame is retained for

a period of one second during which the merger anticipates the arrival of duplicate frames

from other AMs. Duplicates are counted and discarded, and a record of the receiving AMs
3A dingo is an Australian native dog renowned for its ability to track prey in bleak conditions.
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Figure 3.1: The dingo Architecture
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and their frequencies are collated and forwarded as a UDP/IP frame stream to any number

of subscribers, such as our amcontroller. The details of the merger are available in the

Appendix.

The amsniffer component runs on each AM; multi-radio AMs can run an instance for

each radio. (In our experiments we found that it is more effective to invoke two instances

of amsniffer, each listening on a different interface, than it is for a single process to mon-

itor two interfaces in an interleaved manner.) Command-line options to amsniffer indicate

which wireless interface should be employed, the default sniffing policy to be followed,

and the destination for captured frames.

The amsniffer captures features from each frame header and transmits it over a wired

Ethernet infrastructure to the merger using UDP/IP. The role of the merger is to inter-

leave the AMs’ streams of frames into a chronologically consistent ordering, and to re-

move frames captured in duplicate by multiple AMs. For duplicates, the output record

includes a list of the receiving AMs and signal strength. The merger’s output is forwarded

to subscribing applications and to our amcontroller.

The role of the amcontroller is to determine scheduling policies and to disseminate

them to the AMs. Policies specify a sequence of channel numbers, and the duration for

which the interface should listen on each channel. A typical scheduling cycle will involve

visiting each channel, collecting a variety of statistics about the traffic observed on each

channel. Each instance of amsniffer executes its current scheduling policy for a requested

number of cycles or until directed by amcontroller to execute a new policy, either an ex-

isting pre-stored policy or one computed by the amcontroller. We found that our devices

can experience a significant delay when changing from one channel to another, and that
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this delay is minimized by visiting requested channels in ascending order (approximately

30ms when ascending, 300ms when descending), so we limit all schedules to this order,

descending only once at the end of the cycle.

Notice that our approach does not require specific policies to be “hard-wired” into am-

sniffer. Each amsniffer may receive a distinct scheduling policy, perhaps determined from

the type and extent of traffic recently sampled by that amsniffer and its neighbors, or to con-

sistently monitor traffic in a particular geographical region. The ability to remotely program

the AMs provides the greatest opportunity to experiment with new sampling strategies.

In the experiments described in the subsequent section, we used an older version of

dingo, called basset. Basset was not as well-instrumented as Dingo and was missing the

amcontroller component. It ran independently on each sniffer without any interaction with

other components other than to forward captured frames to the merger.

3.4 Testbed

Our testbed consisted of two Intel x86 sniffers with Atheros-based wireless cards. The

sniffers ran Linux (Fedora Core 4 with kernel 2.6.14 and the MadWiFi driver) for our

experiments. The two sniffers were placed 90 cm apart in a research lab that had a crowded

radio environment with several 802.11 experiments in progress at any given time. The

production network in the building used channels 1, 4, 8, and 11.
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3.5 Experiment

We sniffed the 11 legal 802.11b channels using the Equal sampling strategy on one sniffer

and the Proportional Count sampling strategy on the other sniffer. We experimented with

various cycle times T = {1.1 sec, 2.2 sec, . . . , 22 sec}. Each of these experiments was run

for 10 minutes. (The whole process was then repeated, swapping the strategy assignment

to sniffer to discount for radio-propagation differences. We merely summed the results for

each of these two configurations as the result was only volume-based.)

3.5.1 Results

We first consider the results of a 10-minute experiment with T=11sec, examining the vol-

ume of frame capture and the time spent on each channel.

Figures 3.2(a), 3.3(a), 3.4(b) and 3.4(a) show the volumes of traffic collected on each

channel using different strategies and time periods and Figures 3.2(b) and 3.3(b) show the

time spent on each channel over that 10 minute period using the two strategies. In Figure

3.2(a) we can see that using the Proportional Strategy results in a capture that is skewed

towards the most busy channels (1,7,8) resulting in a greater number of frames being cap-

tured by the sniffer than when the sniffer uses the Equal strategy (we believe that the chan-

nel 7 appeared busy because of transmissions bleeding from channel 8). Figures 3.2(b)

and 3.3(b) show that the time spent on the channels was proportional to the observed frame

rates on each channel (Proportional) and equal (Equal) as expected. We can see that the

channels with maximum capture volume were indeed the busier channels by looking at

Figure 3.3(a).
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(b) For Proportional strategy, time spent on each channel is proportional
to traffic observed (T = 11 sec).

Figure 3.2: Frame volume and time spent on each channel using the Proportional strategy.
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(b) Confirming equal time spent on each channel (T = 11 sec).

Figure 3.3: Frame volume and time spent on each channel using Equal strategy.
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(b) Proportional strategy (T = 3.3 sec).

Figure 3.4: Frame volume observed on each channel in Proportional strategy and Equal strategy.
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In a separate experiment with a smaller cycle time (T=3.3sec), there was, by chance

(Figure 3.4(a)), a huge spike on channel 8. On further investigation we determined that

the data was HTTP traffic from one client. Using the Equal sampling strategy, about

19 megabytes of traffic was captured in the run that lasted 10 minutes—about twice the

volume as in other runs. Simultaneously, however, the sniffer running the Proportional

sampling strategy (Figure 3.4(b)) captured nearly 80 megabytes of data. This volume was

approximately 8 times the volume collected by other runs of the Proportional strategy. This

result indicates that the Proportional sampling strategy is indeed successful in increasing

the data capture to match the observed load. The Proportional sampling strategy captured

six times as many frames on channel 8 than the Equal strategy in this particular case. All

the other cases with cycle times T=1.1, ... , 22sec had results very similar to those shown

in Figures 3.2(a)–3.3(b).

3.5.2 IDS Experiment

One use of sampling is for detecting security breaches in wireless networks. In the case

of denial-of-service attacks, a malicious attacker may be motivated to disrupt as much

traffic as possible. To achieve this goal, the attacker will need to monitor the channels to

determine which channel has the highest load. Once this channel is determined, the attack

can be launched on that channel.

To determine the effectiveness of our system in such a threat scenario, we mimicked

this attack strategy. We periodically measured the traffic on each channel and launched

an attack on the channel with the highest number of frames. Each attack was of random
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duration (between 0 and 12 seconds) with intervals of random length (between 5 and 12

seconds) between each attack.

We used a Linux laptop as the attacker’s machine, running the Auditor distribution of

Linux. We ran the deauthentication attack file2air, which spoofs the MAC address of an

AP and sends flood of deauthentication messages to a victim so as to deny service. We

configured file2air to send a flood of deauthentication frames with interframe intervals of

1 millisecond.

We sampled the 11 802.11b/g channels using the Proportional the Equal strategies. To

detect the attack, we ran the popular IDS tool snort-wireless [7] on the traces captured using

the two sampling strategies.

We observed that snort-wireless detected a greater number of abnormal sequence num-

ber gaps (which indicate MAC spoofing) in the traces collected from the Proportional (Fig-

ure 3.5) strategy than the Equal sampling strategy. Snort-wireless also generated more

alerts (Figure 3.6) in the Proportional trace. This indicates that the Proportional Count

strategy captured more attack instances than in the Equal sampling strategy. A paired t-test

indicates that the two strategies perform differently at the 1% level. Figures 3.5 and 3.6

show the number of sequence number gaps and alerts flagged, with total cycle times vary-

ing from 1.1 seconds to 3.1 seconds, and a minimum interval time of 0.5 seconds in each

run. Although there is no trend over the increasing cycle times, snort-wireless consistently

detects a greater number of abnormal sequence number gaps and flags more alerts in the

Proportional Count sampling strategy than the Equal strategy. Our expectation that more

attacks would be detected using smart sampling was therefore correct.
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Figure 3.5: Number of abnormal sequence number gaps detected by snort-wireless. snort-wireless
detects more abnormal sequence number gaps in the trace captured by the Proportional Count sam-
pling strategy than the Equal strategy.
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Figure 3.6: Number of Alerts flagged by snort-wireless. snort-wireless consistently flags more
alerts in the trace captured using the Proportional Count sampling strategy than the Equal strategy.
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3.6 Deployment and Performance of Sniffing

We deployed 20 Aruba AP70 AMs among and between production 802.11a/b/g Aruba

APs, as shown in Figure 3.7. The AP70 has a 266MHz MIPS IDT32434 CPU, 32MB

DRAM, two Atheros AR5212 802.11a/b/g NICs (network interface controllers), and two

Ethernet NICs. We installed OpenWRT Linux (Kamikaze branch, r5494) and Madwifi

(v0.9.2) on each, and a copy of dingo, our channel sampling software that sniffs through

libpcap (v0.9.5). Dingo can sniff on both of the NICs, but in the experiments it sniffed only

one radio and only 802.11b/g, as our 802.11a network is in limited use. We connected all

the AMs to the merger through our wired building network, which is switched 100Mbps

Ethernet, without routers in the middle.

Since frames (not bytes) are the unit of capture and analysis, we4 focus on frame-related

performance metrics. In our experiments we computed, for every 60-second interval, the

workload of each sniffer as frames per second received by the NIC (FPS) 5. the frame drop

rate, and the CPU load rate, defined as follows.

NIC-received FPS =
# frames received by NIC in one minute

60 seconds
,

drop rate = 1− # frames captured by sniffer
# frames received by NIC

,

CPU load rate =
virtual CPU time in seconds

60 seconds
.

4I am grateful to Yong Sheng and Keren Tan for running these performance evaluation experiments.
5We count the number of frames received by the NIC by retrieving statistics of the Atheros HAL provided

by the Madiwifi driver.
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Figure 3.7: Testbed deployment in our CS department building. The 19 Aruba AP70 APs (not
shown) provide 802.11a/b/g service to over 80 faculty, students and staff members in about 1,600
square meters of usable space. We deployed 20 Aruba AP70 AMs (arrows) throughout.
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The 60-second granularity is appropriate for our purposes, since our day-long, building-

wide experiments provide a large enough population of samples, while remaining moder-

ately sensitive to bursty traffic.

We ran three experiments, each with 20 AMs configured as follows.

1. Normal-nosampling: locked on channel 11, the busiest one in our building;

2. Normal-equal: Equal strategy, sampling channels 1 to 11 over a cycle of 5.5 seconds,

3. Normal-proportional: Proportional strategy, sampling channels 1 to 11 over a cycle

of 5.5 seconds.

Each experiment lasted 24 hours, during the period Monday–Wednesday November

27–29, 2006. Experiments (b) and (c) both included an AM that was fixed on channel 11

(the busiest channel).

During the 24 hours of Monday, November 27, 2006 (experiment Normal-proportional),

our 20 AMs (each covering approximately 80 m2) captured 317.1 million frames, which

were merged to 161.1 million frames (50.82%). Our system observed 98 distinct access

points (specifically, BSSIDs) and 696 distinct clients (STAs) in or close to our CS de-

partment building.6 The pre-merger trace consumed 37.8 GB, while the post-merger trace

consumed 23.4 GB.7 The statistics logged from all MAP components totaled about 1 GB.

6Although our building has 19 production APs, our sniffers could hear some APs from neighboring build-
ings, and many research APs. Also, each production AP advertised multiple BSSIDs

7All traces collected are pcap format including all AMEX features, and overhead of pcap, Ethernet, IP
and UDP headers in each AMEX packet. To first approximation, it is the amount of bandwidth consumed by
MAP.
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3.6.1 Without Channel Sampling

We plotted the mean value (with 20-80% error bars) of frame drop rate and CPU load rate

against the NIC-received FPS in 3.8, over data collected in experiment Normal-nosampling.

We also plotted the CDF (cumulative distribution function) of NIC-received FPS; in more

than 90% of cases (one-minute intervals over the three-day experiment for all AMs) our

sniffer dropped fewer than 20% of frames. Overall, AMs captured 86.9% of total frames

received by NICs.

Due to the limited CPU processing power, the AMs dropped many more frames dur-

ing heavy traffic bursts. Most of these frames were dropped by pcap, since its internal

buffer overflowed. We should be able to reduce the drop rate by tuning the AMEX feature-

extraction code, by extracting fewer features, and by configuring pcap and the Madwifi

driver with larger buffers. However, the linear relationship between CPU load and work-

load size (when the NIC received fewer than 1000 frames per second) suggests that some

dropped frames are inevitable.

This result suggests that running any computation-intensive analysis software on AMs

will degrade sniffing performance badly. For similar reasons, the APs themselves would be

inadequate for sniffing or detecting attacks.

3.6.2 With Channel Sampling

To evaluate the impact of channel sampling on the performance of sniffing, we com-

pared the Normal-nosampling experiment with those of the Normal-equal and Normal-

proportional experiments.
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Figure 3.8: Performance of sniffing, no channel sampling.
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According to Figure 3.9, at the same level of NIC-received FPS, the frame drop rate

with channel sampling was significantly higher than staying on one channel. These drops

were due in large part to the five-millisecond overhead delay that Atheros AR5212 chipset

typically needs to switch frequency and resynchronize [59], during which time the sniffer

is “deaf” and unable to capture frames. At a given NIC-received FPS, the Proportional

strategy dropped fewer frames than the Equal strategy, because it spent more time on busy

channels and was thus able to capture more frames between hops.

Figure 3.10 shows that the Proportional strategy allowed the NIC to receive even more

frames did the AM fixed on the busiest channel, because it adaptively switched channels in

response to bursty traffic.

3.11 examines the long-term frame rate, per AM per hour. We use this data to focus on

the different drop rates; the drop rate is 100% minus the capture rate marked here. Averaged

over the whole day, the Proportional strategy had a slightly higher drop rate than the Equal

strategy (44% and 40% dropped, respectively), because the proportional policy brought

more frames to the NIC and pushed the system to work at a higher FPS— at which level

the AM tends to drop more frames. In terms of total frames captured per hour, however,

the Proportional strategy captured more than double the number of frames than the Equal

strategy, while still covering all channels.

In summary, frequent channel hopping had a noticeably negative effect on capture ef-

fectiveness. On the other hand, the Proportional strategy captured far more frames overall.

Therefore the impact of frame loss due to channel hopping is balanced by the greater cap-

ture using the Proportional strategy.
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Figure 3.9: Frame drop rate of each strategy across 1 minute intervals through the day.
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3.7 Conclusions

In this chapter we motivate the need for smart channel-sampling strategies. We exper-

imented with the Equal and Proportional sampling strategies and demonstrated that the

Proportional strategy was successful in capturing more traffic and was also more useful in

capturing some types of attacks. We demonstrated the deployment of our software across

the computer science department with 20 sniffers and live traffic.

The strategies discussed in this chapter adapt to the changing character of the wireless

traffic. However, these strategies cannot be changed according to the needs of the consumer

of the traffic. In the subsequent chapters, we explore more general and flexible sampling

strategies and we show how to make sampling more efficient.
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CHAPTER 4

REFOCUSING

Monitoring systems capture traffic in wireless networks so that it can be forwarded to down-

stream components that analyze this traffic. Different components have different goals. For

example, a wireless intrusion-detection system has a goal of detecting ongoing attacks or

intrusions on the wireless network. Channel sampling enables the monitoring system to

capture a subset of the frames being transmitted in the air. Our dynamic sampling strate-

gies capture traffic by spending time on the channels according to the importance of the

channels. This importance metric is defined statically in our strategies. As the relative

importance of the channels changes, the strategy will capture more traffic from the appro-

priate channels. If, however, the monitoring system has multiple downstream components,

there can be multiple definitions of what is important and the definition may change from

time to time. A wireless-network administrator may desire real-time information to the

administrator about the health of the network. A rogue-AP detector will attempt to scan the

airwaves for traffic from unknown APs. As the different components have different goals,

the nature of the traffic that they wish to see varies (i.e., each one has a different focus). The

administrative utility may need a wide perspective of the network. The IDS may wish to

frequently modify the type of traffic it processes, i.e., refocus so that it can identify different

types of intrusions possibly being caused by different attackers.
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If all the traffic on all channels at all locations is captured, this change of focus is merely

a filter in the collection pipeline of a trace in the case of channel sampling; however, the

complete traffic may not be available in a trace. Therefore, to bridge the gap between full

capture and channel sampling with fixed strategies, our monitoring infrastructure needs to

be able to change focus quickly according to the needs of downstream components (con-

sumers of the captured traffic).

Refocusing is the act of directing the monitoring system to pay more attention to certain

types of traffic than others. (Alternatively, it can be defined as the dynamic modification of

the channel-sampling strategy according to the needs of downstream applications.)

In particular, there are many definitions of “important”. The channel with more traffic is

not necessarily the most important channel. It may be the channel with the most traffic from

a particular client, the channel with more traffic with particular PHY layer characteristics,

or the channel with a large number of new clients.

For example, consider a channel that wants the monitoring system to spend more

time capturing traffic from MAC address aa:bb:cc:dd:ee:ff and destined to MAC address

11:bb:33:dd:55:ff. In this case, the controller needs to direct the AMs to spend more time

capturing traffic on the channels that observe these MAC addresses. The channels that carry

more frames of this type are more important than those channels that carry fewer frames

of this type. In this chapter I describe our approach for enabling changing definitions of

importance.

In the previous chapter this concept is partly represented by the few different strategies:

the Frames/Proportional strategy gives greater importance to channel with higher frame

rates, whereas the Clients/Proportional strategy gives more importance to channels with a
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greater number of clients. These strategies are static and predefined, however; we wish to

support the creation and installation of new strategies on the fly. We provide functionality

to address several different goals simultaneously in addition to quickly changing the focus

to suit the varying goals of the downstream components.

4.1 Integration with Dingo

We introduce dingo, our controllable sniffer, in the previous chapter. Here we describe

dingo’s facility that enables quick refocusing.

While sampling traffic, each amsniffer maintains a small number of counters, including

the number of frames captured on each channel, the total length of those frames, and the

number of frames matching one or more Boolean predicates provided by the amcontroller.

At the end of each cycle, each amsniffer sends its counters to the amcontroller for consider-

ation in future scheduling decisions. The range of policies described in the earlier chapter

are based on these simple counts gathered at the AMs. For example, a policy employing

Proportional sampling spends time on each channel proportional to the recently observed

frame rate on that channel.

The dingo predicates are written in a small language, similar to C’s expressions. The

language supports all precedence levels, equality and relational operators, and data types

including integer, Boolean, string, and MAC address. About 30 keywords in the language

correspond to the attributes of each captured frame and the wireless environment in which it

was captured. Our predicates provide access to the 802.11 header attributes and a few PHY-

layer attributes, and are analogous to the expressions supported by the popular tcpdump
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utility and Berkeley packet filter. For example, predicates may determine whether a cap-

tured frame was a control, management, or data frame, may examine the source, destina-

tion, and BSSID MAC addresses of frames, examine a frame’s length, payload length, the

channel on which it arrived, or its relative signal strength.

To support refocusing, dingo’s amcontroller uses the predicate counters in a modified

form of proportional sampling, scheduling each amsniffer to spend time on each channel

in proportion to the number of frames matching the predicate. In this manner, amsniffers

focus on the traffic of interest, while still devoting a small amount of time on other chan-

nels to determine if the traffic pattern is observed there. For example, the predicate “src

== 00:16:cb:b7:18:82” could be used to focus on traffic from a stolen laptop’s wireless in-

terface. Any amsniffers capturing frames matching this predicate will be instructed by the

amcontroller to devote more sampling time to the channels recently carrying that traffic.

AMs not capturing traffic from this laptop will continue to follow a default sampling pol-

icy. If the laptop associates with a different access point using another channel, or moves

within range of different AMs, the shorter time spent on other channels will facilitate those

AMs to focus on the laptop. A short cycle time, typically 1 or 2 seconds, enables each

amsniffer to quickly identify and focus on required traffic patterns. Again, this ability to

remotely program the AMs with a wide variety of predicates facilitates experimentation. A

few examples of the predicates are shown in Table 4.1.
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Table 4.1: Examples of predicates that can be used in dingo for matching against frames.

Description Predicate
Is the source address in

the frame “aa:bb:cc:dd:ee:ff”? src ==aa:bb:cc:dd:ee:ff

Is length of the frame > 100? len > 100

Is the frame a beacon? isbeacon

Is the frame a deauthentication frame? isdeauth

Is the frame a disassociation frame OR is isdisassoc||dst ==11:aa:22:bb:33:cc
the destination MAC address equal

11:aa:22:bb:33:cc?

Match everything (Proportional sampling) true

Match nothing (Equal sampling) false
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4.2 Applications of refocusing

We believe that refocusing has many applications in wireless research, security, and net-

work management. Any application that requires more than cursory scanning of the traffic

in the wireless medium will sometimes desire an increased focus on some subset of the

traffic, and yet other applications will simultaneously need a baseline broad sampling. We

consider three classes of application.

Localization. If a Wi-Fi device needs to be geographically localized, the refocusing

system can focus more attention on it by capturing more frames to and from it. Refocusing

may aid in better localizing the laptop, by capturing more frames from as many different

perspectives (AMs) as possible. We can capture more samples in less time, increasing

the accuracy or reducing latency for estimating the location of the laptop using any of the

state-of-the-art methods. We describe one such experiment in Section 4.3.2.

VOIP-quality measurement. Consider an enterprise network manager who wishes to

monitor the quality of Voice-over-IP calls. If there are known VoIP clients using the Wi-Fi

network, we can focus on those MAC addresses and thus monitor the relevant channels,

more closely. Alternately, we could focus on channels with observed VoIP activity (by

recognizing the use of particular protocols) or through a higher-level metric like the jitter,

per-frame delay in the VoIP calls, or the observed congestion in a channel. For example,

the predicate may take the form “jitter > 30 ms”. Such high-level predicates cannot yet be

matched in dingo. This capability is part of our future work.

Security monitoring. For example, we can refocus on channels that carry an excessive

number of deauthentication messages, or on MAC addresses that are known to have been

recently spoofed. In the future, using our techniques, we can focus on channels where new
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clients appear, then study their packets to discern whether they seem especially vulnerable

to attack. The system can fingerprint new clients to determine if they are employing drivers,

cards, or operating systems with known vulnerabilities [17]. If indeed they are vulnerable,

we can refocus our sampling to more closely monitor them.

Network administrator tasks. Table 4.2 extracted from the Department of Defense’s

“Draft Joint Wireless Administrator Checklist” [1] contains a few examples of tasks that a

wireless-network administrator performs. Many of these tasks may benefit from a wireless

monitoring system with refocusing. Several of these tasks require the network adminis-

trator to locate the wireless device. In the next section, we describe our experiments that

demonstrate that localization is more accurate with refocusing than it is without refocusing.

4.3 Results

We set out to investigate whether refocusing can be a valuable tool in wireless measurement

systems. We seek to demonstrate the potential value of this approach by applying it to some

likely scenarios.

4.3.1 Improved volume of capture

In our CS department, we had deployed 20 Aruba AP70 AMs throughout the three floors of

the building as shown in Figure 4.1 1. The building also has 19 802.11a/b/g access points.

In this experiment, we only used one of the two wireless NICs on each AM.

1Unfortunately, in the course of these experiments, one of them was not working. Our results are therefore
based on these 19 AMs.

58



Table 4.2: Network Administrator Tasks

Does it benefit Does it benefit
Description of Task from monitoring? from refocusing?
Discover and physically X X
locate rogue devices
Identify and research X X
failed access attempts
Identify and research X X
communication problems
Track performance and X X
activity on the wireless network
Track the production AP software 7 7

and patch or update as appropriate
Track performance of encryption/ 7 7

authentication devices (RADIUS)
Verify that devices comply maybe maybe
with wireless policy
Verify that devices are not vulnerable X X
to known firmware/bugs
Use mobile device to identify and X X
document signal coverage of
wireless network devices
Use mobile device to identify X X
and document residential/commercial
wireless devices that are visible
during site surveys
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Figure 4.1: Path taken in the refocusing experiment
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We performed two experiments in which a laptop transmitted 10 UDP frames per sec-

ond to the non-existent MAC address 22:22:22:22:22:22 on a channel randomly selected

from the 11 802.11b channels. The laptop changed channels every 10 seconds. (The reason

that we changed channel every 10 seconds was because we wanted the the refocusing to

adjust the proportions on each channel fairly frequently and therefore test the refocusing

system more thoroughly. It would have taken far many more seconds for the Laptop to

reassociate to different APs in the network had we transmitted to a real destination MAC

address.) In each experiment, the laptop was carried around the fixed path (shown in Fig-

ure 4.1) in the CS department building for a period of 10 minutes. As we were only walking

(1–2 meters per sec) the refocusing strategy on an AM went through several cycles while

the transmitting laptop was in its coverage area.

In the first experiment our AMs used the traditional equal-time sampling strategy in

which the AMs spend equal time on all the channels. In the second experiment, we re-

focused the AMs to spend more time on the channels that were observed to capture more

frames from the experimental laptop, using the predicate “dst == 22:22:22:22:22:22”. The

reason we used equal-time sampling was that when an AM sees no matching frame, the

strategy it falls back to is equal sampling. Also, we believe that if we had used propor-

tional sampling, our low rate of transmission of 10 frames per second would have been

insufficient to cause the proportional strategy to give more time to the appropriate chan-

nel (as the frame rate on the busy channels in the building are much higher). On the less

busy channels, therefore, the equal strategy would capture more matching frames than the

proportional strategy.
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Figure 4.2 plots the number of frames that matched the predicate, as seen in the output

of the AMs in both cases. We can see that every AM consistently captured more frames

from our mobile laptop when we ran the refocusing strategy than when we ran the equal-

time strategy.

In Figure 4.3 we present the number of frames that did not match the predicate. Al-

though the refocused strategy captured fewer such frames than the equal-time strategy, it

still provided a flow of such baseline traffic sufficient for use by other subscribers. That

is, the refocusing requested by one application does not preclude ongoing monitoring by

background activities, at least in this case.

4.3.2 Localization experiment

Our hypothesis is that refocusing will allow an application to more accurately, and more

quickly, determine the location of a given wireless client. We chose a technique, the Nearest

Neighbor in Signal Space (NNSS) method, described by Bahl et al. [11]. This localization

algorithm uses observed signal strengths of frames heard by clients from APs. We used

the dual of this algorithm and constructed the signal space by using the RSSI of captured

frames from the client at AMs to populate our signal space.

Firstly, we calibrated the corridor of the third floor of our building. We measured the

signal strength at every AM from the frames of a client transmitting 50 frames at every

five feet along the corridor. In this phase, we configured all of the AMs to capture traffic

on channel 1, and configured the client to transmit on channel 1. In the second phase, we

configured the AMs to sample equally on every channel, and we captured a trace of the

client transmitting 10 frames at every 10 feet along the corridor. Finally, we configured
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the AMs to refocus on the MAC address of our client and captured a trace of the trans-

missions of the client at the same locations as in the second case. With our refocusing

mechanism we observe localizations that were, on average, 1.95 feet more accurate than

without refocusing.

Across all locations in the trace collected using refocusing, we averaged the error in

localization using 1, 2, 3, ..., 15 frames. Figure 4.4 shows that average error decreased

(from 34 feet when we use only 1 frame to about 25 feet when 15 frames are used,) as we

use an increasing number of frames for estimating the location of the transmitting laptop.

There are upward jumps where in some cases the average error worsens with increasing

number of frames, but overall there is a clear downward trend. This trend shows that there

may be cases when a higher number frames are desirable when using channel sampling.

Refocusing will enable the system to more quickly capture a larger number of matching

frames.

4.4 Conclusion

In these experiments we demonstrated that refocusing achieves the stated goal of capturing

a subset of the traffic that is more relevant to the consumers of the traffic. The focus of the

monitoring system can be based on any field of the 802.11 header and the physical-layer

headers that are available for each frame that is captured. The predicates can be com-

posed using Boolean operators, and a combined focus that is needed satisfy the refocusing

requirements of multiple downstream components can be met. The Proportional strategy

described in the previous chapter is simply a “true” predicate, in which the counter for the
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appropriate channel is incremented for every frame observed on the channel. Similarly, the

Equal strategy from the previous chapter can be described with a “false” predicate, which

matches no frame and the proportions on the channel remain equal (at 0).

Therefore we claim that the refocusing functionality makes our framework substantially

more general and it subsumes the strategies described in the previous chapter.
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CHAPTER 5

COORDINATED SAMPLING AND MORE

EFFICIENT CAPTURE

Consider a monitoring system with AMs deployed densely enough to be in range of any

client in the monitored area; there will necessarily be some areas covered by more than one

AM. That is, more than one AM can sniff frames from the same client. We say that two

AMs are neighbors if they have recently captured a redundant frame. Redundant frames

are, in most cases, wasted effort (that is, the time that a sniffer spent capturing a redundant

frame could have been used to capture a frame, on another channel, that would otherwise

have been unseen). When employing proportional (or refocused) sampling, neighboring

AMs will observe the same channel to be busy (or to contain more frames matching the

refocusing predicate) and therefore choose to spend more time on that same channel. We

define overlap as the total amount of time that neighboring AMs spend on the same chan-

nels. This overlap results in redundant frame capture by neighboring AMs. Therefore, to

better address the goal of maximizing unique frame capture we need to reduce the amount

of overlap, hopefully resulting in the AMs capturing more frames from distinct channels.

When considering the resources required to capture frames, a smaller overlap results in a

higher efficiency.
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Our hypothesis is that scheduling the channels on AMs, such that the coverage includes

minimal overlap, as shown in Figures 5.1 and 5.2, should result in greater unique frame

capture.

In this chapter we describe a “coordinated sampling” strategy and compare it to an inde-

pendent sampling strategy that does not consider neighbor relationships. As clients move,

we anticipate that the neighbor relationships among AMs in the network will change and

the traffic volume on channels will fluctuate. Therefore, our coordination must dynamically

change the schedule provided to the AMs. For example, a client may move from a location

covered by a single AM to a location where the coverage of two AMs overlaps, causing

those two AMs to recognize that they are now “neighbors”.

Our approach has three goals:

• maximize unique traffic capture through proportional sampling,

• capture representative traffic by ensuring that all channels are sampled and that there

is coverage over space and time, and

• minimize redundant frame capture by coordinating neighbor’s schedules.

Our approach recognizes three constraints:

• a single radio can capture traffic only on one channel at a time,

• deploying a sniffer costs money and space, hence limits deployment, and

• no frames are captured during channel changes, which take time.
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5.1 System Architecture for Coordinated Sampling

The amsniffer component of dingo is flexible and is capable of running a static schedule

provided to it by the amcontroller. We use this facility to run efficient schedules on the

AMs (that have little overlap between neighboring AMs), that have been constructed on

the amcontroller as opposed to schedules that have been constructed by hand and sent, via

the controller, to the AMs (as shown in Figure 5.3).

One or more instances of amsniffer may be invoked when an AM is rebooted, or on

demand via a network connection to the AM. Command-line options to amsniffer indicate

which wireless interface should be employed, a default sniffing strategy to be followed, and

to where the frame-capture information should be sent. We have dual-radio sniffers; our

experiments have determined that it is better to invoke two distinct instances of amsniffer

per AM, each listening on a different interface, than it is for a single process to monitor two

interfaces in an interleaved manner.

A sampling schedule specifies a sequence of channel numbers and the duration, in

milliseconds, for which the interface should listen on each channel. Our experiments with

our wireless routers have demonstrated that there can be a significant delay when changing

from one channel to another, and that this delay is minimized by visiting all available

channels in ascending order. A typical cycle involves visiting each channel, capturing

frames, transmitting a summary of each frame to the merger, collating and forwarding

simple statistics about the traffic to the amcontroller. Each instance of amsniffer executes

its current schedule for an indicated number of cycles or until directed by amcontroller to

commence execution of a new schedule.
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Each amsniffer maintains a set of simple counters including the number and the total

length of frames captured on each channel during a scheduling cycle. At the end of each

cycle, each counter’s value is sent to the amcontroller for future scheduling decisions, and

each counter is cleared. Our earlier strategies (Chapters 3 and 4) are based on these simple

counts gathered at the AMs. For example, the proportional strategy spends time on each

channel proportional to the recently observed frame rate on that channel.

The amcontroller is a subscriber of merged traffic from the merger. Using the merger’s

stream of individual frame information, the amcontroller maintains a neighbor graph record-

ing which pairs of AMs recently saw the same frames. A edge ei,j exists in the graph if

AMi and AMj have recently captured at least one common frame. This graph is recom-

puted periodically to reflect the changing nature of the captured traffic. For example, the

combination of AMs capturing common frames from a particular mobile client will vary

over time as that client moves. Over a longer period of time, the same sets of AMs are

anticipated to form long-lived overlapping clusters, reflecting their physical proximity to

each other and thus, their likelihood of seeing common frames. With reference to our goal

of maximizing the number of unique frames captured, we need to ensure that neighboring

AMs are not simultaneously listening on the same channels, so as to reduce the likelihood

of them capturing common frames.

Periodically, every 20 seconds in our implementation, the amcontroller constructs the

neighbor graph and uses recent frame counts to build a new coordinated schedule, as de-

scribed in the previous section. The full schedule consists of a new schedule for each AM.

Each schedule ensures that its AM listens on each available channel for a specified period,
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avoiding (as much as possible) overlap with its neighbors’ schedules. Each AM’s new

schedule is transmitted to the AM for execution until the arrival of a new schedule.

5.2 The coordination algorithm

We developed the following approach to reduce the amount of overlap among neighboring

AMs, based on statistics of recently captured traffic.

The output of the coordinated sampling strategy is a channel sampling schedule for

each AM, identifying the order and duration of visits to each channel. Consider the set of

AMs AM1, AM2, ..., AMn. Let these be vertices in a graph. Let there be an edge ei,j,c in

the graph if the two AMs AMi and AMj are neighbors and are also on the same channel c;

as time progresses, edge ei,j,c comes and goes in the graph as AMi and AMj follow their

respective schedules. Let ti,j,c be the amount of time that the edge ei,j,c exists in the graph.

The objective function is as follows:

Z = min
∑

i=1..n

∑
j=1..n

∑
c∈C

ti,j,c

where Z is the minimum overlap across all schedules. The minimum value of Z is

unknown. The search space of all possible schedules is very large, Cn, where C (the set

of available channels) is on the order of 11-25, and n (the number of AMs) could be in the

tens or hundreds. For example in our experiments, the search space of schedules among

all AMs would be 1120. Clearly, a brute-force search of all possible schedules to find the

value for Z is infeasible. Instead we use an approach for minimizing the overlap that is

inspired by the method of simulated annealing. Our method generates a series of schedules
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by perturbing each schedule a little. If a new schedule has lower overlap, we keep it; if

not, we keep it anyway with probability p. This method allows our algorithm to jump out

of local minima. Each time we reduce p by a factor of δ and terminate the algorithm when

p ≤ P , where δ > 1 and 0 < P < 1 are tunable parameters.

Our algorithm is portrayed in Figure 5.4.

This algorithm takes a randomized, greedy approach: if we reduce the overlap between

two neighboring AMs, the overall overlap is likely to reduce as well. However, even if it

does not, we accept the permutation of a schedule with a (decreasing) probability p. We

rotate the channel ordering of one AM in a pair of neighboring AMs with the maximum

pairwise overlap so that we can take larger steps towards a more efficient solution. This

choice seems to work well in our experiments. In our coordinated sampling experiments

(described later), we start off all the AMs using a schedule that spends equal time on every

channel, and run the above algorithm every 20 seconds.

5.2.1 Simulation Results

We conducted simulations using 20 AMs, randomly generated proportional schedules and

a random network topology: we assigned twenty AMs IDs 1 to 20 and a pair of AMs (with

IDs AMID1 and AMID2) were neighbors if |AMID1−AMID2| > 3 (so that the number

of neighbors of every AM is always constant). In these simulations, we used the coor-

dinated sampling algorithm described above and compared it to a purely greedy approach

where no schedule with a greater overlap is ever picked. Our probabilistic approach enabled

the schedule to jump out of local minima and consistently produced schedules that had 5 to

7 percent lower overlap than the pure greedy approach. The pure greedy approach termi-
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1. Identify the neighbor relationships among all AMs.

2. Create a new schedule S in which each AM spends time on each channel in propor-

tion to traffic measurements provided by the AMs, and a minimum amount of time

on quiet channels. Each AM’s schedule starts with a randomly selected channel but

progresses in order around all channels.

3. Calculate pairwise overlap tij between every pair of neighbors i, j, and the total

overlap T =
∑

tij .

4. Set p = 1.

5. do // permute AM schedules to find a better schedule

(a) Among all pairs of AMs not yet considered in this loop, choose the pair with

maximum overlap and rotate the channel order of one of the two AMs to create

a new schedule S ′; compute its overlap T ′.

(b) If the new schedule has less overlap (T ′ < T ), retain it (set S = S ′ and T = T ′);

otherwise, with probability p, retain it anyway.

(c) Set p = p/δ.

while p > P and there are other pairs to consider.

6. Accept schedule S and send each AM its new schedule.

This algorithm takes a greedy approach: if we reduce the overlap between two neigh-

boring AMs, the overall overlap is likely to reduce as well. We rotate the channel ordering

of one AM in a pair of neighboring AMs with the maximum pairwise overlap so that we
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Figure 5.4: The coordinated sampling algorithm
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nated in approximately 11ms, whereas the randomized approach took between 35-45ms to

terminate. We ran the experiment 100 times with different random starting schedules each

time. We also used the standard “simulated annealing” algorithm [43, 48]. This approach

resulted in schedules that have about 20-30 percent greater overlap than our approach. The

simulated annealing approach also took >200ms to terminate. We ran this simulation 100

times as well, with a different random starting schedule every time.

Thus, we see that our randomized and greedy approach not only results in more opti-

mized schedules, but also does so in less time.

5.3 Coordinated Sampling Experiments

We ran our experiments on the Aruba AP70 testbed described in Section 3.6. Figure 3.7

shows the floor plan and location of the AMs. We conducted our experiments on 802.11b.

The production APs for the wireless network operate on 802.11b/g channels 1, 4, 8 and

11. Several experimental networks (such as a mesh network and some experimental APs)

operate on channel 11.

5.3.1 Experimental setup

We used both radios of each AP70 by running two copies of amsniffer. One instance

of amsniffer ran an independent proportional strategy while the other ran the coordinated

strategy described above. We used δ = 1.08 and our P value was 0. (We used integer

values in our implementation and p ran down from RAND MAX to P (=0). We generated

a random number between 0 and RAND MAX using a uniform random number generator
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to compare with p in every iteration.) We used the cycle time of 2.2 seconds for both

strategies. The independent sampling strategy however, re-calculates the proportions every

2.2 seconds and the coordinated sampling strategy re-calculates the proportions every 20

seconds. As a result, the coordinated strategy is less responsive to the short term dynamics

of the traffic.

The sniffers running the independent strategy forwarded the frames they captured to

one merger, and the sniffers running the coordinated strategy forwarded the frames they

captured to another merger. The amcontroller received the output of the latter merger and

used this information to create and update the neighbor graphs. As we were only merging

traffic from 19 AMs, we could use the same server for both mergers and the amcontroller.

In larger networks, we would run multiple mergers on different servers.

The output from each of the mergers was saved to disk for later analysis of the perfor-

mance of the respective schemes.

5.3.2 Results

We conducted two experiments over a period of one hour each, and recorded the number

of unique frames captured by both the proportional and coordinated approaches in 20-

second intervals. On every invocation, the coordinated scheduling algorithm described

earlier required a total of between 33 and 35 milliseconds to determine new schedules for

all of the 19 AMs; we consider this cost insignificant relative to the frequency of scheduling.

Initial random channel assignments resulted in a total channel overlap time of between 128

and 167 milliseconds. After an average of 253 iterations, this total channel overlap time was

reduced to between 23 and 32 milliseconds (indicating an 80% reduction in overlap from
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the random schedule to the coordinated schedule), meaning that neighboring AMs were

successfully scheduled for different channels most of the time. The randomized portion of

the algorithm entailed that every time the algorithm was invoked, the number of iterations

that reduced the overlap ranged between 34 and 38, the number of iterations that increased

the overlap but were not chosen were approximately 200 and the number of iterations that

increased the overlap and were chosen anyway ranged between 2 and 6.

Our logs indicated that the number of active neighboring AM pairs observed every time

the neighbor graph was recomputed (every 20 seconds during the experiment) was between

10 and 65. The mean number of neighbor pairs was 38.3 and the variance was 42.9. This

indicates that the AM neighbor relationship was highly variable. This observation further

supports our assumption that there is overlap in coverage of different AMs and that this

overlap varies with time, indicating that we may need to recompute the neighbor graphs

and the schedules often.

The data collected shows that coordinated sampling was successful for increasing unique

frame capture. Figure 5.5 shows that, over a one-hour period, coordinated sampling cap-

tured over 10% more unique frames in nearly all 20-second intervals than did independent

proportional sampling. The Student’s t-test applied to these two sets of capture indicates

that the means of the two sets of data were significantly different (t = 2.85, p-value =

0.005567). This result supports our hypothesis that coordinated sampling will, by using

global information, decrease overlap and capture frames more efficiently.

Figure 5.6 is the histogram of the number of frames that were seen by one AM, two

AMs and so on. The histogram of the coordinated-sampling experiment is markedly more

skewed towards the left than the histogram of the independent-sampling experiment. We
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see that the number of frames exclusively captured by one AM under coordinated sampling

was about 35% more than the number of frames exclusively captured by a single AM under

independent-sampling, thus achieving our goal of reducing redundant capture.

This result is logical because coordination reduces the amount of time that neighboring

AMs overlap in their channel. Neighboring AMs are more likely to hear the same frames

than distant AMs. If neighboring AMs spend less time on the same channel simultaneously,

there will be fewer cases in which two or more AMs hear the same frame.

5.4 Mobility and Coordinated Sampling

Mobility can affect the behavior of coordinated sampling. As clients move through the

monitoring area, there will be churn in the neighbor relationships between AMs, and there-

fore the time spent on different channels in different schedules will change.

Number of mobiles. Client mobility will affect the way in which the neighbor graph is

computed in coordinated sampling. If only one client is situated in the coverage area of two

AMs, then if those two AMs capture the same frame from the client, they are considered to

be neighbors in the neighbor graph. Later, if that client moves away, then those two AMs

are no longer considered to be neighbors.

If there are a large number of mobile clients in the coverage area of AMs the neighbor

relationships may remain stable. However, if there are few fast moving mobiles in the

coverage area of AMs with overlapping coverage, then the AM neighbor relation may

frequently change. This state of flux may not be desirable as it may cause inefficiency in

the capture, as decisions will be for coordination based on information that becomes stale
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very quickly. The aging of the neighbor graph needs to be tuned according to the mobility

observed in the monitoring area. If there are a few mobiles with very high mobility in the

network, the graph needs to be recomputed more often than if there were a large number

of mobiles or very few, slow-moving ones. The reason is that, if there are quick moving

mobile clients, the neighbor relationships are likely likely to change quickly. Note that, if

two AMs both have the potential of capturing the same frame from one location, if there

is no client in that location, there is no need to “coordinate” these AMs and we can reduce

the constraint on the schedule. Then, we need to quickly react when a client arrives and

re-impose that constraint.

We had few mobile clients in our network and therefore, our aging took place at a

relatively slow 20 seconds (i.e., if the last frame seen in common by a pair of AMs was

more than 20 seconds ago, that pair of AMs are no longer neighbors). This space, however,

can be explored further with different parameters used in the mobility model.

5.5 Conclusion

We found that, as per our hypothesis, neighboring AMs indeed often have overlapping

coverage and this overlap varies with time. We also found that our coordinated scheduling

algorithm reduces overlap up to 80% over that of randomly generated schedules.

We found that using these efficient schedules, which minimize the time that neighboring

AMs spent on the same channel, resulted in a greater number of unique frames captured.

We achieved our goal of maximizing the number of unique frames captured and reducing

the number of redundant frames.
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It should be noted that even though we used the frame-rate proportional strategy when

constructing the schedules for our experiments, any strategy may be coordinated. The strat-

egy only determines the amount of time to be spent on every channel. Once this is known,

the coordinated scheduling algorithm can create schedules with lower overlap. Therefore

the coordination is independent of the strategy used to determine the channel sample du-

ration. An equal strategy can be coordinated just as easily as a proportional one, and

coordination can be used in conjunction with refocusing where the strategy used is one

that calculates time spent on every channel proportional to the number of frames matching

some predicate.
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CHAPTER 6

TRACE COMPARISON METRICS

A full trace of traffic from a network will have the most information about the network. It is

difficult to capture a full trace. A sampled trace with the greatest amount of information is

the next-best option. We describe several different sampling mechanisms in earlier chapters

that attempt to achieve this goal.

The cost for full capture is much higher than the cost for sampled capture. The full

trace will require many more radios to capture the trace for the same length of time. If

a monitoring system has one AM per location, full capture would require at least in n

times the number of radios as sampled capture would, where there are n channels to be

monitored. If, using sampling, we can gather information similar to that of full capture, the

“cost” of monitoring is much reduced and the goals of monitoring are better satisfied.

It is natural to question how well a captured trace using sampling represents the hypo-

thetical full trace. In this chapter we describe trace comparison methods and metrics we

have developed to evaluate the ability of our network-sampling methods to capture rep-

resentative traces. Furthermore, such similarity metrics can be used to compare traces in

other contexts.

In the following sections we describe and evaluate our methods and metrics for compar-

ing network traces, and we describe the setup and results of our experimental evaluation.
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6.1 Trace Comparison

Our goal is to develop methods to measure how closely a sampled trace represents a full

trace. This measure of closeness (or similarity) is one way to estimate the “quality” of our

sampling techniques.

Furthermore, if we can characterize a trace with a compact representation, we can

quickly compare it to a large set of other traces. Given a large collection of traces, such as

those in CRAWDAD,1 a researcher may be able to quickly determine which traces from the

collection are “similar” to a trace in question, allowing the researcher to choose only those

that are similar— or dissimilar— for download. The definition of similarity depends on

the planned uses of the trace, so we need to develop generalizable methods. For example,

one researcher may be interested in mobility patterns and another may be interested in the

traffic mix at the MAC layer.

To achieve this goal, then, we must be able to characterize the trace by extracting rep-

resentative attributes as a vector of numbers. A method to compare two or more vectors is

then required so that we can determine the similarity, or the lack thereof, in pairs or sets of

traces.

6.1.1 Representative attributes of 802.11 traces

802.11 traces consist of individual 802.11 frames. Each frame consists of multiple fields

and a capture timestamp, which help distinguish it from other frames. Frames of different

types and subtypes, from various sources to destinations, can be counted and vectors of

these counts are one way to represent the entire trace.
1http://www.crawdad.org
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Fine Granularity: 10 Second Buckets

A trace can be represented by a series of counts of frames (or counts of particular frame

types) over the entire duration of the trace. We created hour-long summaries using the

counts of the total number of frames in 10-second intervals and the counts of the number

of beacons in 10-second intervals. These take the form <x1, x2, x3, x4,..., x360> where

xi’s are the number of frames or beacons observed in the ith 10-second interval. We used a

short interval because we wanted to capture quick bursts introduced by humans periodically

using the network.

We create a frequency distribution from this data and then we use the Kullback-Leibler

divergence metric (also known as the relative entropy) to determine the divergence between

pairs of traces represented in the above form.

KL divergence indicates the number of extra bits required in encoding samples from P

by using the distribution of Q [46] where P and Q are probability distributions (in our case,

each corresponding to one trace).

The divergence of Q from P is defined to be

DKL(P ||Q) =
∑

i

P (i)× log
P (i)

Q(i)

For two distributions, P and Q, the smaller the value of DKL the closer the distributions

are. Usually, Q is a model that represents P . In our case, Q is extracted from the sampled

trace and P is extracted from the full trace.
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Coarse Granularity: Hour-long buckets

A representative vector can be a list of counts of various types and subtypes of frames

observed in a trace. For example,

<# of control frames, # of management frames, # of data frames>

or it may be a higher-level observed statistic of the trace. For example,

<# of new clients per minute, # of frames per minute, # of frames per minute per

client>

may be representative of a trace if the application in mind is in some way related to ob-

served mobility within a trace. The choice of this tuple is important as it must capture the

specific attribute of the trace in which the user is interested.

The 802.11 frame format defines a 2-bit frametype field, to characterize a frame as a

management, control, or data frame, and a further 4-bit subtype field to further characterize

the frame within its type. Of the 64 possible frametypes, many are reserved for future use,

leaving only 25 frametypes defined. Of these, many are rarely seen in actual traces, either

because of their specialized role or because the network being monitored may not be used

in a way that requires that frame type. For example, a network may employ no ad-hoc

networking and, thus, only carry frames between mobile clients and access points. The

capture of unexpected frametypes, even reserved frametypes, may identify the presence

of an intruder transmitting a specific attack sequence. We did not see any of the reserved

frametypes in our traces, however.

In our process of choosing the fields to use for the tuple, we went through the following

steps:
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1. Summarize each trace into a vector based on frame attributes; in our case, we listed

the number of each valid frame subtype in the trace as members of a 25-element

vector.

2. Discard those subtypes that have a very low occurrence. We encountered several

subtypes that occurred only once or never in every hour-long trace.

3. Calculate the Coefficient of Variation (COV) for the counts of each remaining fram-

etype. Sort them from the highest to lowest. This step tells us which of the frame

subtype counts have the greatest variation.

4. Choose the three frame subtypes with the highest COV such that they are not cor-

related to each other (for example, Deauthentication and Disassociation frames are

usually sent by APs in pairs, and RTS and CTS occur in pairs as well). Use these

triples as data points that represent each hour-long trace. Our analysis, of traces we

collected in Sudikoff, revealed these frametypes to be the Deauthentication manage-

ment frametype, the Request-to-Send (RTS) control frametype, and the standard Data

frametype. We had no initial intention to employ one of each of the three frametype

categories; the result is just a coincidence. The results are shown in Figure 6.1.

5. Normalize the set of these data points such that the length of each vector is 1.

6. We cluster the resulting data points as described in the following section.

Similarity metrics can be computed at different levels of granularity in wireless traces.

For example, an hour-long trace may summarized as a 3–tuple of counts of most variable

subtypes (as in our analysis), if the gross traffic patterns in that trace vary little. However, if
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STYPE_CFACK_CFPOLL_NULL

STYPE_CFPOLL_NULL

STYPE_CFACK_NULL

STYPE_CFEND_CFACK

STYPE_DEAUTH

STYPE_CFEND

STYPE_ATIM

STYPE_DISASSOC

STYPE_CFACK_CFPOLL

STYPE_CFACK

STYPE_RTS

STYPE_CFPOLL

STYPE_REASSOC_REQ

STYPE_CTS

STYPE_AUTH

STYPE_ASSOCREQ

STYPE_REASSOC_RESP

STYPE_PS

STYPE_DATA

STYPE_ASSOCRESP

STYPE_ACK

STYPE_NULL

STYPE_PROBEREQ

STYPE_PROBERESP

STYPE_BEACON

Figure 6.1: The final three chosen frame types. The ordering of frametypes is descending from top
to bottom according to COV. The circled frametypes represent the ones chosen for the tuple. The
crossed-out frametypes represent the ones that have a higher COV but are discarded because of low
means or because of correlation with other, chosen, frametypes.

90



a trace is collected across a whole week, a mere summary of the frametype counts may hide

most of the high-level variation in the trace. The degree of summarization depends on the

granularity of the traffic that the user or application needs. Indeed, the user may not wish

to hide the variation that may take place within an hour, making the hour-long summaries

too coarse. We determined that for our purposes, there was sufficient variation in the week-

long trace so that summaries of hour-long slices of this trace provided sufficient granularity.

(The hour-long trace would be sufficiently large to include gross group behavior, like the

length of a class, which is either 50 minutes or 1 hour 50 minutes long.)

We gathered all the single-hour summaries of the week-long traces collected in our

experiments after the degree of granularity was determined. We employed the standard

“K-means” clustering technique to group similar hour-long traces into clusters. K-means

clustering algorithms partition data points so that the resulting clusters minimize the total

intra-cluster sum-of-square distance of all points in each cluster. Our selected K-means

algorithm requires, as input, the number of desired clusters and the number of required

iterations. We employed the “R” statistical package [58] and the clustering packages avail-

able in that framework (Rcmdr [28]). To plot the 3-dimensional clusters, we employed the

package “Scatterplot3d” [49].

The K-means algorithm needs a distance metric so that it can compute the nearness of

different points in the dataset. We use Euclidean distance as the distance between points in

the 3-space that we have constructed.

We represent each trace as a set of clusters. Each cluster is a set of tuples from our

summaries of hour-long slices of the full week-long trace. Clustering enables us to gather

together multiple “similar” (close in Euclidean space) into a much smaller and manageable

91



set of points (centroids of the clusters). Once the clusters for a trace are constructed, we

need to be able to compare one “clustering” (set of clusters) that represents a week-long

trace to the clustering from another trace.

We know that each cluster has a cluster “center” to which the points in the cluster are

nearer than centers of other clusters. As the K-means algorithm is parameterized with the

number of centers, we can ensure that every clustering has the same number of clusters. If

we have two such clusterings C1 and C2, we attempt to match the each cluster in C1 to a

cluster from C2 such that the sum of the distances between centers of matched clusters is

the minimum as shown in Figure 6.2. If we consider these centers to be vertices of a graph,

and the distances between them are the weights of edges between the vertices, then, we can

see that the problem is the same as the Assignment problem [45] or the Stable Marriage

Problem [30] where the cost of the matching is either to be minimized or maximized. (In

Figure 6.3 the two sets represent the clusterings and the members of the set are cluster

centers. The arrows represent a bijection between the sets and the weights are distances

between cluster centers.)

This minimum sum of distances is our Dissimilarity metric. If the minimum sum ob-

tained is higher in one pair of clusterings A and B than another pair C and D, then A and

B are more dissimilar than C and D. The following equation shows how to calculate the

dissimilarity between two set of points in space:

D = min
∀S∈A↔B

{∑
d(ai, bj) | (ai, bj) ∈ S

}

where d(a, b) is the Euclidean distance between two points a and b and ↔ is a bijection

between two sets, and A and B are two clusterings.
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Say the light green clusters

represent full capture and

the light blue some sort of

sampling. The dots inside

are the hour long triples

d1 d2 d3 are the distances

between the centroids

of the clusters such that

d1+d2+d3 is the minimum

among all possible such

distances. The lower

 diagram shows a possible

 sum of distances that is not

 minimal.

Such a minimal sum of

distances, as shown in the upper

diagram, would be the “distance”

or the “similarity” between the

two traces.

d3

d2

d1

d3

d2d1

Case 1

Case 2

Figure 6.2: The sum of distances between cluster centers in the matching used in Case 1 is less
than the sum of distances between cluster centers in the matching shown in Case 2.
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Set 1 Set 2

d1

d2

d3

Figure 6.3: The Sets represent clusterings and the elements of the sets are cluster centers. The
arrows are a matching between the sets and the weights are the distances or “cost” of the individual
pairing.

6.2 Related Work

The evaluation section draws on work done in classification, information retrieval and doc-

ument retrieval. We used the Euclidean similarity metric after also exploring the cosine

metric described by in the area of text retrieval [61, 15, 38]. We use the “R” statistical

package for all our computations [58].

Petrovic et al. [55] use cluster evaluation metrics in an IDS by detecting compact clus-

ters. Their hypothesis is that attack traces form tight clusters because the frames are all

similar to each other. They do not use clustering to compare sampled traces to full capture

traces.

We do not know of any previous work that uses clustering techniques to compare sam-

pled network traces to full traces.
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Table 6.1: First week

Hour AM Set Radio Used Strategy
1 1 wifi0 Full Capture on channel 1
1 1 wifi1 Static/Equal/Time
1 2 wifi0 Full Capture on channel 1
1 2 wifi1 Frames/Proportional/Time
2 1 wifi0 Full Capture on channel 1
2 1 wifi1 Frames/Proportional/Time
2 2 wifi0 Full Capture on channel 1
2 2 wifi1 Static/Equal/Time
3 1 wifi0 Full Capture on channel 1
3 1 wifi1 Static/Equal/Time
3 2 wifi0 Full Capture on channel 1
3 2 wifi1 Frames/Proportional/Time
. . .
. . .

6.3 Experimental Results

We used the same monitoring testbed described in Chapter 3. We divided the 20 AMs (Fig-

ure 3.7) into two groups of 10 AMs each, and we used both radio interfaces on each AM.

We ran two week-long experiments so that we could compare the traces from three differ-

ent sampling strategies with each other and with a full (unsampled) trace from channel 1.

The parameters of the two week-long experiments are described in Tables 6.1 and 6.2.

Note that interface “wifi0” remained on channel 1, to obtain “full capture” while interface

“wifi1” alternated two sampling strategies.

In this section we use the Kullback-Leibler divergence metric to determine the diver-

gence between the sampled trace and the full capture.
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Table 6.2: Second week

Hour AM Set Radio Used Strategy
1 1 wifi0 Full Capture on channel 1
1 1 wifi1 Coordinated Sampling
1 2 wifi0 Full Capture on channel 1
1 2 wifi1 Frames/Proportional/Time
2 1 wifi0 Full Capture on channel 1
2 1 wifi1 Frames/Proportional/Time
2 2 wifi0 Full Capture on channel 1
2 2 wifi1 Coordinated Sampling
3 1 wifi0 Full Capture on channel 1
3 1 wifi1 Coordinated Sampling
3 2 wifi0 Full Capture on channel 1
3 2 wifi1 Frames/Proportional/Time
. . .
. . .

Our hypothesis is that our new the clustering distance metric will demonstrate that the

sampled traffic that we captured in our experiments is “closer” to the full trace captured

simultaneously on another radio of the same sniffer than to traces from a different week.

6.3.1 Similarity in Capture Volume

As mentioned above, we counted the number of beacons in every 10-second interval on

channel 1 of an hour-long trace. As described above, for every hour of sampling on any

AM, we have its corresponding full trace captured on a different interface of the same

AM. Clearly, the absolute number of beacons intercepted by the sampling technique on

channel 1 will be far smaller than the absolute number of beacons intercepted by the full

capture. (Beacons are very regular and are sent at a lower transmission rate. Therefore

the number of beacons observed in a sampled interval should closely track the number of
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beacons observed in a full trace.) We know, however, the fraction of time of the 10-second

bucket that the sampling technique spends on channel 1. We can estimate the number of

beacons the sampling interface would have observed had it been capturing fully on channel

1. We do this by simply scaling the number of beacons observed by the sampling interface

up by the inverse of the fraction of time it spent on channel 1 (Figures 6.4–6.6). This

method gives us numbers for the 10-second intervals that are in the same ballpark as the

full capture (if indeed the sampling strategy was capturing traffic representative in terms

of the relative volumes of frames in every 10-second interval). We repeated this process

for estimating all the frames (not only beacons) and plotted the graphs with 10-second

intervals.

Figures 6.7–6.9 show the estimated number of frames captured by the Equal, Propor-

tional and Coordinated sampling strategies respectively. Each of these are compared to the

corresponding full capture on channel 1 for the same hour.

In general, it is evident that the sampling strategies follow the trends of the baseline

full-capture graph.

There are two artifacts in the graphs that need explanation. First, every 60 seconds, in

all the graphs, there is a significant reduction in the frame capture during one 10-second

bucket. In our experiments, we had a watchdog process that opened an SSH connection

into the AM to check if the sniffer was still running. Because our AMs are resource-

limited devices, and also because they were constantly running near 97% capacity, the task

of creating the SSH connection caused the AMs to drop frames.

Second, we notice that the sampled interface seems to have collected between 5% and

25% more frames than the full-capture interface. In our experiments, we found that one
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every 10 seconds track the number of beacons captured by the simultaneous full trace on channel 1.
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Figure 6.9: The estimated number of frames on channel 1 captured by coordinated sampling every
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interface (wifi1) on our AMs consistently captured more traffic than the other (wifi0). The

reason for difference this might be in software (priority on the bus) or it might be that one

radio is more sensitive than the other. However, this phenomenon was consistent across all

our AMs and in all our experiments. In Figure 6.10 we show the result of an experiment

where we performed full capture on both interfaces of one AM on channel 1. We can see

that there was a consistently higher capture using wifi1 than wifi0.

We then calculated the Kullback-Leibler (KL) divergence. Table 6.3 also shows that the

value of the KL divergence was the highest for Equal sampling against full capture. This

means that the probability distribution constructed using the hour-long equal sampling data

is the furthest from the distribution of the corresponding hour’s full capture data. You can

see in the table that the KL divergence metric was better for Proportional sampling and was

best for Coordinated sampling. In contrast, the distribution of the Equal sampling data was

different from the distribution of the Coordinated sampling data and the Full capture from

the first week was different from the Full Capture from the second week. We believe that

because Proportional collects a larger sample than Equal and Coordinated collects a larger

sample (both by spending a greater amount of time on the channel under consideration)

than Proportional sampling, the respective estimates of frames scaled up to 10 seconds

tend to match the full captures more closely.

6.3.2 Inter-Clustering Distance

In this section, we present results from the experiments described in Section 6.1.1. We can

see that the axes in Figures 6.11–6.18 are labeled “Deauthentication”, “RTS”, “Data”: the

triple of common frame subtypes that had the highest COV. The different colors (or shades
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Figure 6.10: The number of frames captured by the interface “wifi0” in every 10 seconds interval
on the AP70 is consistently less than the number of frames captured by the interface “wifi1” when
both interfaces capture traffic continuously on channel 1.

Table 6.3: Kullback-Leibler Divergence (Section 6.1.1)

Strategies How different?
Equal Sampling v. Full Capture (Figure 6.4) 0.531

Proportional Sampling v. Full Capture (Figure 6.5) 0.387
Coordinated Sampling v. Full Capture (Figure 6.6) 0.221

Equal Sampling (Week 1) v. Coordinated Sampling ( Week 2) 1.395
Full Capture (Week 1) v. Full Capture (Week 2) 0.490
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of grey if printed using a black and white printer) for the points in the graphs represent

the clusters that the K-means clustering algorithm assigned to them. The points are all

normalized to be unit vectors.

Figures 6.11– 6.14 show that there is an outlying data point that has high “Deauthen-

tication” value. On the other hand, in Figures 6.15–6.18 the highest values for the Deau-

thentication coordinate were much lower. We looked deeper at the data and we noticed that

there was a period of a few hours early in the first week that there were a high number of

deauthentication frames being transmitted. (It is possible that there was a Denial of Service

attack in progress.)

Interestingly, the outlier validates our process of selecting the Deauthentication feature

from the vector of counts of subtypes, to some extent. The sudden spike in Deauthentica-

tion frames (two hours long in the whole week) caused the increase in the variance in the

Deauthentication feature and, since we use the COV for picking frames, we chose this fea-

ture. As we see in Table 6.4 (Table 6.4 shows the results of the distance metric described

in Section 6.1.1; the lower the value of the distance metric, the “closer” the clusterings

are to each other. The value is the lowest for the clustering of coordinated sampling vs.

the clustering of corresponding full capture.) our distance metric indicated that the data

from the two weeks was “different”. The fact that there was a spike in the Deauthentica-

tion coordinate for two of the points in the first week would contribute substantially to the

difference.

Our hypothesis is that the reason for a lower distance between the clusterings of coor-

dinated sampling and full capture is that coordinated sampling captures a greater number

of unique frames and therefore a better sample.
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Figure 6.11: K-means clustering of hour-long traces of a week of traffic captured using Equal
sampling on channel 1 (Week 1).

Table 6.4: Inter-cluster distance as described in section 6.1.1. In the table, the left-hand distribution
corresponds to “P” and the right hand distribution corresponds to “Q” from the equation described
in Section 6.1.1.

Strategies How different?
Equal Sampling v. Full Capture (both Week 1) 0.223

Proportional Sampling v. Full Capture (both Week 1) 0.376
Proportional Sampling v. Full Capture (both Week 2) 0.204
Coordinated Sampling v. Full Capture (both Week 2) 0.038

Proportional Sampling (Week 1) v. Proportional Sampling (Week 2) 0.606
Full Capture (Week 1) v. Full Capture (Week 2) 0.921

107



Figure 6.12: K-means clustering of hour-long traces of a week of traffic captured using full capture
on channel 1 on the same AMs as the Equal sampling (Week 1).
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Figure 6.13: K-means clustering of hour-long traces of a week of traffic captured using proportional
sampling on channel 1 (Week 1).
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Figure 6.14: K-means clustering of hour-long traces of a week of traffic captured using full capture
on channel 1 on the same AMs as the proportional sampling (Week 1).

110



Figure 6.15: K-means clustering of hour-long traces of a week of traffic captured using proportional
sampling on channel 1 (Week 2).
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Figure 6.16: K-means clustering of hour-long traces of a week of traffic captured using full capture
on channel 1 on the same AMs as the proportional sampling (Week 2).
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Figure 6.17: K-means clustering of hour-long traces of a week of traffic captured using coordinated
sampling on channel 1 (Week 2).
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Figure 6.18: K-means clustering of hour-long traces of a week of traffic captured using full capture
on channel 1 on the same AMs as the coordinated sampling (Week 2).
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This hypothesis is not borne out, however, as we can see that the value of the distance

metric between proportional sampling and full capture in the first week is greater than the

value of the distance metric between equal sampling and full capture in the first week.

This would indicate that either the sample captured using equal sampling was better than

the sample captured using proportional sampling or that the distance metric is not a good

measure of sample representativeness. We looked deeper into the data and counted the

number of unique frames captured using each of equal sampling, proportional sampling

(from both weeks) and coordinated sampling. However, the proportional sampling strategy

captured more frames on channel 1 than equal sampling did. Therefore it seems likely that

the distance metric is somehow lacking.

To try to shed some light on this, we further investigated by finding the sum of the

distances between the individual points (the point representing each hour from the pro-

portional sampling and the full capture and the same for the equal sampling and the full

capture). In this distance metric as well, the proportional sampled trace was further away

from the full capture than the equal trace was from full capture.

In contrast, the distance between the clustering of the first week’s full capture and the

clustering of the second week’s full capture is high. This difference implies that the data

from the first week was substantially different from the data of the second week. This is

intuitive as one would expect the traffic patterns to be different in two different weeks.
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6.4 Conclusion

Any monitoring system implicitly or explicitly samples the set of frames being transmit-

ted, across time and space. We applied the Kullback-Leibler divergence computation for

computing the divergence between fine granularity summaries of traces. The results for the

experiments indicate that this metric was applicable and indicates that sampling performs

well in capturing a representative subset (Equal, Proportional and Coordinated sampling in

increasing order of representativeness).

Our “cluster matching” distance metric also indicates that using clusters formed using

the K-means clustering algorithm on the coarser granularity triples have potential to be

useful in representing traces (the distance between the clusterings of sampled traffic and full

capture on channel 1 was less than the distance between the clusterings of traffic captured

in two separate weeks). However, the counter-intuitive result in the table indicates that

further work needs to be done to improve the metric in some way so that it distinguishes

between traces more reliably.
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CHAPTER 7

SUMMARY

Wi-Fi networks are ubiquitous and are widely accepted in the marketplace. On the other

hand, there are several vulnerabilities inherent in the 802.11 protocol. The wide acceptance

of 802.11 and the host of technologies and applications that it enables makes increasing

numbers of devices and their data vulnerable to the problems of the protocol. Therefore, it

is also widely accepted that wireless monitoring is needed.

In this thesis we describe the possible architectures of systems for monitoring 802.11

networks. There are various methods for capturing traffic to and from the wireless network.

Wired sniffers can capture traffic at the APs, or on the switches. Servers can receive peri-

odic SNMP, syslog or other event or summary data from the APs. Or, we can use radios to

capture traffic directly off the air. The latter is the most challenging task, but it is necessary

as some data can only be gathered using wireless sniffers, also known as Air Monitors or

“AMs”.

In this thesis, we explored 802.11 monitoring using AMs. In the first two chapters,

we make the case for sampling. We discuss the large number of channels available in

802.11. With the diversity of protocols and channels available, it is difficult to capture

all the transmissions in the air, at every location, on every channel, all the time. If it is

possible, it is surely infeasible for most enterprises. Therefore, we recognize that sampling

is an integral part of 802.11 monitoring. We designed, implemented and evaluated several
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channel sampling techniques in the context of a building-wide deployment of AMs that are

being used by a large number of users. The number of AMs in the deployment are far fewer

than what would be needed for full coverage of the network.

We describe “coverage” of wireless sniffers, and the challenges that are involved in

capturing traffic off the air. We point out that the coverage of AMs is not only geographic

location, but also time and frequency that the AM monitors.

The wireless medium is dynamic and as the environment changes the capture strategies

need to adapt to these changes. In the third chapter, we introduce two sampling strate-

gies. One is static (Equal) and the other is dynamic (Proportional). Both strategies scan

through the channels periodically. The proportional strategy spends time on the channels

that is proportional to the frame rate observed on those channels in the previous sampling

cycle. The equal strategy does not change its behavior from cycle to cycle. The propor-

tional strategy is used when the user of the monitoring system believes that the channels

with a higher frame rate are more “important”. The equal strategy is used when the user of

the system believes that all channels are equally important. We introduce “dingo” — our

channel-sampling software that implements these two strategies. The “amsniffer” compo-

nent of dingo is installed on the AMs and it captures traffic from the air. We show that the

proportional strategy captured more traffic and enables the detection of more attacks than

the equal strategy. We also discuss how we can implement other such strategies that are

proportional to the observed traffic. For example, we mention the Client/Proportional and

the BSSID/Proportional strategies in which the channels with either the highest number

of Clients or the highest number of BSSIDs are the most important. One possible exten-

sion of the proportional strategy that we have not tried is to use first order or second order
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derivatives to estimate the proportions. Also, we could use a weighted moving average of

proportions to estimate the “importance.”

In the fourth chapter, we introduce the concept of focus in the context of a monitor-

ing system. The focus of the monitoring system is the subset of traffic in the air that the

consumers of the traffic are most interested in. We provide a mechanism for consumers

to request a particular focus and (if needed) to refocus the monitoring system. The “am-

controller” receives these requests and forwards them to the AMs. These requests take the

form of predicates. An example predicate is “src==aa:bb:cc:dd:ee:ff”, which is matched

on the AM against every frame seen by the AM. The amsniffer software maintains an array

of counts of matching frames, one element of the array for each channel being monitored.

The count is reset before the beginning of every cycle. The sniffer then spends time on the

various channels in proportion to the counts observed in the previous cycle. We deployed

this scheme in our testbed and conducted experiments to determine its usefulness. The

scheme was successful in capturing far more frames matching the predicate supplied than

the “non-refocused” scheme.

In the fifth chapter, we introduce schemes to make the capture of traffic more efficient.

In a densely deployed network, there are areas where the coverage of AMs necessarily

overlaps with neighboring AMs. The proportional strategies exacerbate this problem be-

cause AMs usually hear similar traffic proportions on the channels as their neighbors and

therefore tend to spend more time on the same channels as their neighbors. We define two

AMs that have observed the same frame in the recent past as neighbors. As all the AMs

send traffic to the merger, so we can extract the neighbor relationships using the merger.

We used this neighbor information to coordinate the schedules of the AMs in the system
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to minimize the time that neighboring AMs spend on the same channel. We developed and

implemented a “coordinated scheduling” algorithm for this purpose. This algorithm is im-

plemented in the amcontroller. The amcontroller, using traffic from the merger, extracts the

neighbor relationships and creates schedules for the AMs to follow. We ran experiments to

compare the traffic capture using the independent proportional strategy to the coordinated

scheme. Our results show that the coordinated strategy was successful in reducing the num-

ber of frames that were captured redundantly at multiple AMs and therefore in increasing

the volume of captured traffic.

All the schemes mentioned above sample wireless traffic. The only reason that we

sample traffic is because we cannot capture all the frames transmitted into the air. The

question, therefore, is “How representative is the sample being collected of the full trace?”

In the sixth chapter, we introduce two metrics that we use to compare traces. Using the

first of these metrics, we demonstrated that the sampled traces were indeed close to the

full-capture trace. This result supports our position that our sampling schemes can be used

in place of expensive deployments that attempt to cover every channel all the time at every

location, especially when cost is an issue. There was a counter-intuitive result when we

used the second metric and we believe that more work needs to be done to improve the

usefulness of that metric. We also propose that these metrics can be used in comparing

traces in other situations, such as when choosing from a database of traces.

Thus, we have introduced various channel-sampling schemes, and we have validated

their efficacy in capturing traffic that is cognizant of the demands of the consumers of the

traffic and also representative of the characteristics of the traffic in the air.

Therefore, our contributions in this thesis are as follows:
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• We developed and studied the two basic techniques of Equal and Proportional sam-

pling.

• We introduced and the concept of Refocusing and developed software for it that al-

lows consumers of monitored traffic to request a focus that is most suitable to their

needs.

• We introduced and implemented smart coordination among AMs so that the moni-

toring system can effectively monitor the space of {frequency × space × time} with

limited hardware.

• We used two metrics to compare 802.11 traces captured using various sampling tech-

niques to traces captured using full capture on a single channel.

7.1 Future Work

There are some extensions of our work that we believe would be useful to the community.

Large-scale deployment. The next step for our project is to deploy the sniffing infras-

tructure in multiple buildings across the campus of the college. There are many scalability

questions that could be asked in this stage of the project. The various components and

schemes in the infrastructure would be stress-tested in this exercise.

• Can dingo’s amcontroller keep up with controlling the increasing number of AMs?

The coordination algorithm will need to coordinate a greater number of schedules.

• Can the merger scale as greater number of streams of traffic will flow into it?
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It may be necessary to extend the architecture, possibly involving a hierarchy of mergers,

to deal with these issues of scale.

Spatial sampling. As mentioned above, a given AM placement may not always capture

the best (in terms of volume) sample of traffic over a long period due to the dynamic nature

of the wireless environment. Placing monitors in every square inch of space is not feasible.

We can get nowhere near perfect coverage in terms of space.

In this thesis, we describe “channel sampling” as a technique for dynamic allocation

of channels. Similarly, we can conceive of “spatial sampling” for dynamic positioning of

an AM. An AM will be placed in a location to collect frames for some period, and then

it will be moved to another location. We could cycle through the predetermined locations

available to the AP, while pausing for periods to be determined dynamically according to

the observed metrics. As space is not discrete (unlike channels), an AM cannot pause at

every possible location. The pause could be longer for locations observed to be more busy

and shorter for idle locations, resulting in proportional spatial sampling.

Trace Comparison. In Chapter 6 we note that the clustering based distance metric needs

deeper study. The counter-intuitive nature of the result indicates that the parameterization

may be incompletely explored or that the distance metric itself is flawed or incomplete. The

space of various features of the trace is large and so are the possible variations of param-

eters of the clustering techniques used. Further, there are several choices in the clustering

technique used.

Trace-comparison techniques have applications beyond merely estimating the quality

of sampling. More precise trace-comparison techniques can enable a host of applications.
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For example, if a researcher wishes to pick traces from a database that are similar to traces

or different from traces that he already has, a trace comparison technique would be handy.

Even further, we can imagine that precise representation of traces can enable trace genera-

tion according to a set of parameters that can be specified to match the type of trace that is

needed.

Mobility. As we have mentioned earlier, mobility will affect sampling and its perfor-

mance. Our campus is non-mobile [36], therefore, our experiments did not test the interac-

tion of mobility and sampling to any great extent. Further study would be useful to examine

this interaction.

The dynamic sampling strategies depend on the observations in one cycle to predict

“importance” of channels in future cycles. A low cycle time would be useful in reacting

quickly to mobile clients. However, there is a down-side to this approach. The quicker

the AMs switch channels, the higher the overhead from changing channels. There is, in

the end a tradeoff between short cycle times and overhead from changing channels. With

improving sniffer hardware and software, this tradeoff will become easier to manage as the

channel switching time is likely to reduce.
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APPENDIX

I am grateful to Bennet Vance for carefully designing and implementing the Merger com-

ponent of the system.

Merging

The role of the merger is to combine the packet streams from multiple sniffers to produce

a single coherent picture of the traffic in the air.

Figure 1 shows the motivation for merging. Five 802.11 frames (labeled x to x+4) are

transmitted. Although there exist two sniffers in the vicinity of the transmitter of these

frames, suppose that neither sniffer is able to capture all five frames (due to reflections,

noise and so forth). Each sniffer only hears a subset of the frames. The purpose of the

merger is to reconstruct the actual traffic based on these incomplete packet captures. Note

that our merger cannot reconstruct all traffic: if a frame is not heard at any sniffer, the

merger does not attempt to insert an artificial frame.

To merge captured frame streams we use frame timestamps. When a frame is captured

at a sniffer it is timestamped with the sniffer’s clock. But as the sniffers’ clocks are not per-

fectly synchronized, frames received at multiple sniffers typically receive different times-

tamps at each sniffer. One of the merger’s main tasks is to resolve these discrepancies by

applying corrections to the sniffers’ timestamps. In the following we discuss the merger’s

overall architecture, its timestamp synchronization and clock correction mechanism, and

efficiency considerations in its implementation.
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Figure 1: Our system uses sampling and careful merging.
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We note that the standard network time protocol (NTP) is insufficient for synchroniz-

ing the sniffer’s clocks, as it is unable to reduce the asynchrony to the necessary level

(microseconds) (see below). So, although NTP may be used to initially synchronize sniffer

clocks, we still need to compensate for ongoing drift when we merge the frame streams.

Merger Architecture

Figure 2 diagrams the merger’s principal data structures and the manner in which data flows

through them. The left-hand side of the diagram is the input side, while the right-hand side

is the output side. The input side includes buffer space to hold incoming frames. The

output side maintains one queue for each sniffer; the entries in these queues are not frames

but frame references. Their order in the queue for a given sniffer reflects the order in which

the corresponding frames were received at that sniffer: the oldest references appear near

the lower-right corner of the diagram, and the most recent ones near the upper-right corner.

When the merger receives a frame from one of the sniffers, it proceeds to update its

data structures as follows. First, it uses the frame’s FCS (Frame Check Sequence) as a key

into a hash table. The entries in the hash table are list anchors for lists of frames that share

the same FCS. (Different frames rarely share the same FCS value.) The order of the frames

within each list is determined by the frames’ corrected timestamps, so the most recent

frames can be found near the heads of the lists, and the most aged frames towards their

tails. Once the list for the incoming frame’s FCS has been found or created, the merger

searches through the list for the frame (if any) whose corrected timestamp most closely

agrees with that of the incoming frame. If the timestamps are in close enough agreement
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(according to a defined degree of proximity), the incoming frame is considered to have

already have been heard by another sniffer and is deleted.1 Otherwise the incoming frame

is inserted into the list at the appropriate position. In either case, the merger appends a

frame reference to the appropriate queue as illustrated on the output side of the diagram;

this reference ensures that the frame’s position in the output stream will be consistent with

the other frames heard by the same sniffer(s). Bidirectional horizontal links connect the

entries in the output-side queues with the frames they reference.

The merger’s output control is illustrated in the lower-right corner of the diagram. The

heads of the sniff-order queues are funneled into a selection component that is responsible

for identifying the oldest entry at any of the n queues. The merger periodically polls the

selected entry to see whether it is ready for output. A frame is ready for output if its age

exceeds a defined threshold, that is, if it has been queued long enough to be confident that

no preceding frame will arrive from another sniffer.

Synchronization and Clock Correction

For the merger to assess correctly the ordering and spacing of frames received at one sniffer

but not another, the merger depends on accurate relative timing information from the differ-

ent sniffers. Even when they are synchronized by NTP, however, we have found that clocks

at different sniffers can vary substantially (often by milliseconds) and require correction.

Moreover, the differences between clocks drift over time, often by many microseconds

per second, so the clock corrections need to be updated frequently to maintain consistency

among the different sniffers’ timestamps.
1We do not compare the frame contents; there is only a tiny chance that two different frames arrive at the

same time and have the same FCS.
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To synchronize sniffer clocks, we associate a clock correction variable ci with each

sniffer Si. When we receive a frame from sniffer Si with raw (uncorrected) timestamp ri,

we compute a corrected timestamp ti = ri + ci that for most purposes we use in place of

the raw timestamp. If a frame is received at multiple sniffers, its imputed timestamp—the

timestamp attached to the outputted frame—is the average of the corrected timestamps ti

from all the sniffers.

Following Yeo et al. [72] we use beacon frames as synchronization events. Suppose a

given beacon is heard by both Si and Sj , and that Si gives it raw timestamp ri while Sj

gives it raw timestamp rj . The corrected timestamps ti and tj are computed as described

above. Since wireless frames are transmitted over the air at the speed of light, the actual

times at which the beacon is received by Si and Sj must be nearly identical, and so ti and tj

should be nearly identical as well. To align the corrected times we augment ci by (tj−ti)/2

and cj by (ti − tj)/2. The revised clock corrections, when added to ri and rj , respectively,

result in new (equal) values for ti and tj .

This simple clock-correction adjustment strategy is adequate for keeping up with grad-

ual drift among sniffer clocks on the order of microseconds per second. It may be inade-

quate if sniffer clocks are subject to sudden jumps, as might occur if they are periodically

synchronized by a central switch, for example. While we have considered various mecha-

nisms for dealing with large clock jumps, we do not describe these here.
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AMEX

To reduce the volume of forwarded traffic while retaining the relevant information from

each individual frame, AMs forward information in a compressed frame format that we

call AMEX (for AM EXtractor). This format includes only the interesting features of each

frame and packs the features for several frames into each UDP datagram sent from the AM

to the merger.

Our AMEX encoding scheme allows us to redefine the set of interesting features dy-

namically to adapt to changing conditions. Thus, each AMEX frame includes a header

(with a bitmap that indicates which AMEX features are present), data specific to the AM

(e.g., the timestamp and signal strength of the received 802.11 frame), and the selected fea-

tures from the 802.11 header (such as the source MAC address) or PHY-layer information

provided by the 802.11 driver (such as the rate).

I am grateful to Joshua Wright for implementing the AM extraction modules.
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