47 research outputs found

    Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB

    Get PDF
    In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP.Ā Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Autonomous Sweet Pepper Harvesting for Protected Cropping Systems

    Full text link
    In this letter, we present a new robotic harvester (Harvey) that can autonomously harvest sweet pepper in protected cropping environments. Our approach combines effective vision algorithms with a novel end-effector design to enable successful harvesting of sweet peppers. Initial field trials in protected cropping environments, with two cultivar, demonstrate the efficacy of this approach achieving a 46% success rate for unmodified crop, and 58% for modified crop. Furthermore, for the more favourable cultivar we were also able to detach 90% of sweet peppers, indicating that improvements in the grasping success rate would result in greatly improved harvesting performance

    Robotic Crop Interaction in Agriculture for Soft Fruit Harvesting

    Get PDF
    Autonomous tree crop harvesting has been a seemingly attainable, but elusive, robotics goal for the past several decades. Limiting grower reliance on uncertain seasonal labour is an economic driver of this, but the ability of robotic systems to treat each plant individually also has environmental benefits, such as reduced emissions and fertiliser use. Over the same time period, effective grasping and manipulation (G&M) solutions to warehouse product handling, and more general robotic interaction, have been demonstrated. Despite research progress in general robotic interaction and harvesting of some specific crop types, a commercially successful robotic harvester has yet to be demonstrated. Most crop varieties, including soft-skinned fruit, have not yet been addressed. Soft fruit, such as plums, present problems for many of the techniques employed for their more robust relatives and require special focus when developing autonomous harvesters. Adapting existing robotics tools and techniques to new fruit types, including soft skinned varieties, is not well explored. This thesis aims to bridge that gap by examining the challenges of autonomous crop interaction for the harvesting of soft fruit. Aspects which are known to be challenging include mixed obstacle planning with both hard and soft obstacles present, poor outdoor sensing conditions, and the lack of proven picking motion strategies. Positioning an actuator for harvesting requires solving these problems and others specific to soft skinned fruit. Doing so effectively means addressing these in the sensing, planning and actuation areas of a robotic system. Such areas are also highly interdependent for grasping and manipulation tasks, so solutions need to be developed at the system level. In this thesis, soft robotics actuators, with simplifying assumptions about hard obstacle planes, are used to solve mixed obstacle planning. Persistent target tracking and filtering is used to overcome challenging object detection conditions, while multiple stages of object detection are applied to refine these initial position estimates. Several picking motions are developed and tested for plums, with varying degrees of effectiveness. These various techniques are integrated into a prototype system which is validated in lab testing and extensive field trials on a commercial plum crop. Key contributions of this thesis include I. The examination of grasping & manipulation tools, algorithms, techniques and challenges for harvesting soft skinned fruit II. Design, development and field-trial evaluation of a harvester prototype to validate these concepts in practice, with specific design studies of the gripper type, object detector architecture and picking motion for this III. Investigation of specific G&M module improvements including: o Application of the autocovariance least squares (ALS) method to noise covariance matrix estimation for visual servoing tasks, where both simulated and real experiments demonstrated a 30% improvement in state estimation error using this technique. o Theory and experimentation showing that a single range measurement is sufficient for disambiguating scene scale in monocular depth estimation for some datasets. o Preliminary investigations of stochastic object completion and sampling for grasping, active perception for visual servoing based harvesting, and multi-stage fruit localisation from RGB-Depth data. Several field trials were carried out with the plum harvesting prototype. Testing on an unmodified commercial plum crop, in all weather conditions, showed promising results with a harvest success rate of 42%. While a significant gap between prototype performance and commercial viability remains, the use of soft robotics with carefully chosen sensing and planning approaches allows for robust grasping & manipulation under challenging conditions, with both hard and soft obstacles

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    BLOB Analysis for Fruit Recognition and Detection

    Get PDF
    Robot application in agriculture can ease the farming process, especially as the harvesting robot for seasonal fruit that is available in a short time. The addition of "eye" as the image sensor is an important feature for a harvesting robot. Thanks to the increment of technology, the camera is getting smaller with better performance, and lower prices. The cheap sensors and components make the creation of cheap and effective robot possible. Image processing is necessary for object detection, and open source software is available now for this purpose. This paper proposes BLOB analysis for object detection of 5 fruits with different shapes and colors. The simulation results show that the proposed method is effective for object detection regardless the shapes, colors, and noises

    Review on humanā€like robot manipulation using dexterous hands

    Get PDF
    In recent years, human handā€based robotic hands or dexterous hands have gained attention due to their enormous capabilities of handling soft materials compared to traditional grippers. Back in the earlier days, the development of a hand model close to that of a human was an impossible task but with the advancements made in technology, dexterous hands with three, four or fiveā€fingered robotic hands have been developed to mimic human hand nature. However, humanā€like manipulation of dexterous hands to this date remains a challenge. Thus, this review focuses on (a) the history and motivation behind the development of dexterous hands, (b) a brief overview of the available multiā€fingered hands, and (c) learningā€based methods such as traditional and dataā€driven learning methods for manipulating dexterous hands. Additionally, it discusses the challenges faced in terms of the manipulation of multiā€fingered or dexterous hands

    Development of a Field Robot Platform for Mechanical Weed Control in Greenhouse Cultivation of Cucumber

    Get PDF
    A prototype robot that moves on a monorail along the greenhouse for weed elimination between cucumber plants was designed and developed. The robot benefits from three arrays of ultrasonic sensors for weed detection and a PIC18 F4550-E/P microcontroller board for processing. The feedback from the sensors activates a robotic arm, which moves inside the rows of the cucumber plants for cutting the weeds using rotating blades. Several experiments were carried out inside a greenhouse to find the best combination of arm motor (AM) speed, blade rotation (BR) speed, and blade design. We assigned three BR speeds of 3500, 2500, and 1500Ā rpm, and two AM speed of 10 and 30Ā rpm to three blade designs of S-shape, triangular shape, and circular shape. Results indicated that different types of blades, different BR speed, and different AM speed had significant effects (PĀ <Ā 0.05) on the percentage of weeds cut (PWC); however, no significant interaction effects were observed. The comparison between the interaction effect of the factors (three blade designs, three BR speeds, and two AM speeds) showed that maximum mean PWC was equal to 78.2% with standard deviation of 3.9% and was achieved with the S-shape blade when the BR speed was 3500Ā rpm, and the AM speed was 10Ā rpm. Using this setting, the maximum PWC that the robot achieved in a random experiment was 95%. The lowest mean PWC was observed with the triangular-shaped blade (mean of 50.39% and SDĀ =Ā 1.86), which resulted from BR speed of 1500Ā rpm and AM speed of 30Ā rpm. This study can contribute to the commercialization of a reliable and affordable robot for automated weed control in greenhouse cultivation of cucumber
    corecore