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Abstract

A prototype robot that moves on a monorail along the greenhouse for weed elimination 
between cucumber plants was designed and developed. The robot benefits from three 
arrays of ultrasonic sensors for weed detection and a PIC18 F4550-E/P microcontroller 
board for processing. The feedback from the sensors activates a robotic arm, which 
moves inside the rows of the cucumber plants for cutting the weeds using rotating blades. 
Several experiments were carried out inside a greenhouse to find the best combination 
of arm motor (AM) speed, blade rotation (BR) speed, and blade design. We assigned 
three BR speeds of 3500, 2500, and 1500 rpm, and two AM speed of 10 and 30 rpm to 
three blade designs of S-shape, triangular shape, and circular shape. Results indicated 
that different types of blades, different BR speed, and different AM speed had significant 
effects (P < 0.05) on the percentage of weeds cut (PWC); however, no significant interac-
tion effects were observed. The comparison between the interaction effect of the factors 
(three blade designs, three BR speeds, and two AM speeds) showed that maximum mean 
PWC was equal to 78.2% with standard deviation of 3.9% and was achieved with the 
S-shape blade when the BR speed was 3500 rpm, and the AM speed was 10 rpm. Using 
this setting, the maximum PWC that the robot achieved in a random experiment was 
95%. The lowest mean PWC was observed with the triangular-shaped blade (mean of 
50.39% and SD = 1.86), which resulted from BR speed of 1500 rpm and AM speed of 
30 rpm. This study can contribute to the commercialization of a reliable and affordable 
robot for automated weed control in greenhouse cultivation of cucumber.

Keywords: agricultural robot, weed control, cucumber, greenhouse
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1. Introduction

The demand for off-season cultivation of fruits and vegetables require different aspects of auto-

mation and robotics in closed-field plant production environments like greenhouses [1]. Modern 

greenhouse bioproduction systems are required to exhibit integration of automation, biological 

culture practices, and control systems through the concept of Automation-Culture-Environment-

oriented SYStems analysis (ACESYS) as defined in [2, 3]. The growth condition for Solanaceae 

vegetables in the greenhouse provides the leeway for the growth of other plants as well. In green-

house cultivation of Cucumber (Cucumis sativus), the growth of weeds like cleavers, amaranth, 

camelthorn, grass quack, and oat wild decreases the final crop yield and quality. These weeds 
compete with cucumbers for nutrients, water, and photosynthesis. During the growing period, 

weeds use a large portion of water and nutrient, and because of their physiological properties, 

they grow simultaneously and rapidly with the original plant. It is, therefore, necessary to elimi-

nate them before causing serious damage to the original plants. Various mechanical and chemical 

methods, as well as cultivation techniques, have been proposed to prevent the growth of weeds, 

including mechanical techniques, hand picking, spraying, environment heating, herbicides and 

biocontrols, and soilless cultural practices. For example, weed biocontrol is the suppression 

of weeds by insects and microorganisms that feed on the target plants or otherwise parasitize 

them. The success in this method is not always guaranteed because biocontrol is species specific, 
and there are hundreds of serious weed species. Cultural control includes those management 

practices that modify the agro-ecosystem to make the pasture, crop, or forest ecosystem resis-

tant to weed establishment, i.e., integrating sheep or goats to browse brush species and fowl to 

graze herbs and grasses [4]. Prior to the development of modern herbicides, rancher and forest 

managers relied mainly on mechanical methods of weed control, such as grubbing, bulldozing, 

dragging, cabling, and mowing. Compared to mechanical weed control methods, herbicides 

are more effective at a lower cost. Herbicidal weed control results in greater grass production 
in pastures than does clipping of weeds [5]. In order to apply chemical directly to the weed’s 

vascular tissue, a direct chemical application end effector is required to cut the weed’s stem and 
spread the chemical on the cut surface. An example of such application can be found in [6] where 

a prototype weed control robot was developed to spray weeds in cotton plants in the seed line. 
A real-time intelligent weed control system was introduced in [7] for selective herbicide applica-

tion to in-row weeds using machine vision and chemical application. A minirobot to perform 

spraying activities based on machine vision and fuzzy logic has been described in [8, 9]. More 

examples of autonomous vehicle robot for spraying the weeds can be found in [10–12].

The use of labor force that manually pulls out the weeds is still practiced by local growers. 

This is, however, not an efficient method since the availability of the skilled workforce that 
accepts repetitive tasks in the harsh greenhouse and field conditions impose uncertainties 
and timeliness costs [13]. It is, therefore, necessary to select a proper method for effective 
weed control. The trends in the agricultural robotics in the past 10 years show that automa-

tion of plant trimming with simultaneous localization and mapping techniques will change 

the industry in future [14]. The available time, labor, equipment, costs, and types of weeds 

and the areas infested need to be considered when planning a weed control program. In this 

regard, agricultural robotic and automation technology plays an essential role in improving 
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the interactions between human, machine, and plants [15]. For example, the prevention of 

musculoskeletal disorders in manual harvesting operations in Dutch greenhouses has moti-

vated various researchers for replacement of human labor by automatons robot for picking 

cucumber [16] and sweet pepper [13] fruits. Automation is a viable and sometimes necessary 

method to ensure maximum profits with minimum costs. In fact, one of the main purposes of 
agricultural automation has been always concerned with the substitution of human workforce 

by robots or mechanized systems that can handle the tasks more accurately and uniformly at 

a lower cost and higher efficiency [17–22].

Research and development in agricultural robotics date back to 1980s, with Japan, the 

Netherlands, and the USA as the pioneer countries. Example of such research works 

included the works of [7, 23] for robotic weed control and automated harvesting of tomato. 

Development of an autonomous weeding machine requires a vision system capable of detect-

ing and locating the position of the crop. Such vision system should be able to recognize the 

accurate position of the plant stem and protects it during the weed control [24]. A near-ground 

image capturing and processing technique to detect broad-leaved weeds in cereal crops under 

actual field conditions has been reported in the work of [25]. Here, the researchers proposed 
a method that uses color information to discriminate between vegetation and background, 

while shape analysis techniques were applied to distinguish between crop and weeds. Shape 

features of the radish plant and weed were investigated by [26]. They proposed a machine 

vision system using a charge coupled device camera for the weed detection in a radish farm 

resulting 92% success rate of recognition for radish and 98% for weeds.

A combined method of color and shape features for sugar beet weed segmentation was pro-

posed by [27] with 92% success rate in classification. This rate increased to 96% by adding two 
shape features. Another approach extracted a correlation between the three main color com-

ponents R, G and B, which constitute weeds and sugar beet color classes by means of discrimi-

nant analysis [28]. Their method resulted in different classification success rates between 77 
and 98%. The segmentation of weeds and soybean seedlings by CCD images in the field was 
studied by [29]. Texture features of weed species have been applied for distinguishing weed 

species by [30] with grass and broadleaf classification accuracies of 93 and 85%, respectively. 
Textural image analysis was used to detect weeds in the grass [31]. Gabor wavelet features of 

NIR images of apples were extracted for quality inspection and used as input to kernel PCA 

[32]. Kernel PCA first maps the nonlinear features to linear space, and then, PCA is applied 
to separate the image Gabor wavelet (5 scales and 8 orientations) combined with kernel PCA 

that had the highest recognition rate (90.5%). Improvements in vision-based control system 

[13, 33–36] have enabled several applications of robotic manipulators for greenhouse and 

orchard tasks and have contributed to the decrease in workload and labor’s fatigue, while 

improving the efficiency and safety of the operations. These achievements were considered a 
challenge in the earlier agricultural robotics works [23, 37, 38]. For example, spray equipment 

for weed control has been developed with vertical spray booms that increase the deposition in 

the canopy [39–41]. Some of these alternatives are self-propelled vehicles such as Fumimatic® 

(IDM S.L, Almería, Spain) and Tizona (Carretillas Amate S.L., Almería, Spain), or autono-

mous vehicles such as Fitorobot (Universidad de Almería, Cadia S.L., Almería, Spain) that 

have been designed specifically to move without difficulty over loose soils and in spaces with 
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a large number of obstacles [41]. These vehicles rely on inductive sensors to follow metal 

pipes buried in the soil. Few studies have addressed the navigation problem of vehicles in 

greenhouses operating completely autonomously [9, 11, 15]. The main challenge of these 

systems is that localization approaches needed for feeding the closed-loop controllers would 

lead to inaccurate measurements after a few steps fail for long trajectories [42]. A stereovision 

system along with an image processing algorithm was used to recognize the weeds and also 

to estimate their location in the field. In order to experiment with vision sensors and agricul-
tural robots, [13] created a completely simulated environment in V-REP, ROS, and MATLAB 

for improvement of plant/fruit scanning and visual servoing task through an easy testing and 

debugging of control algorithms with zero damage risk to the real robot and to the actual 

equipment. In another study, [43] designed a field survey mobile robot platform based for 
navigating inside greenhouses and open-field cultivation for automated image acquisition. A 
functional model shown in Figure 1 was introduced by [44] in the field test of an autonomous 
robot for deleafing cucumber plants grown in a high-wire cultivation system. This model was 
also adapted and used by [13] for the robotic harvesting of sweet pepper and on a greenhouse 

field survey mobile platform [43]. Artificial neural networks have also been used by many 
researchers to discriminate weeds [45, 46] with machine vision as shown in Figure 2. A fixed-
position weed robot was presented by [47], which is interfaced to a standard belt-conveyor 

displacement system and provides the robot with pallets containing the crops. These reviews 

indicate that a commercial robotic platform for the elimination of weeds in a cucumber green-

house has not been materialized yet. In addition, most of the research works in the area of 

robotic weed control are applicable prior to the plant growth or in some cases when the main 

plant height is between 0.2 and 0.3 m.

Figure 1. Task sequence during leaf picking of cucumber, adapted from [44].
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The overall objective of this study was to design and develop an affordable robotic weed 
control system for application in greenhouse cultivation of cucumbers where plants can reach 

to a height of 10 m. Our design is based on mechanical weed removal techniques without 

using chemical materials. The specific objectives were to determine (i) the best blade design 
for cutting the weeds among cultivation rows, (ii) the best blade rotation (BR) speed, and (iii) 
the best arm motor (AM) speed.

2. Materials and methods

2.1. Overview of the prototype robot weed

A flowchart of the methodology is shown in Figure 3. A prototype robot was designed using 

AutoCAD software 2011 v18.1 (Autodesk Inc., San Rafael, CA, USA). Schematic views of the 

prototype robot, as well as the corresponding dimensions and parts are shown and illus-

trated in Figures 4 and 5. The main mechanical components of the robotic platform consist 

of a monorail, main chassis, ball bearings, wheels, arms, blade, and adjusting mechanism. 

Major electrical components include DC motors, microswitches, a 12 V 7.2–9 amp sealed lead 

acid battery, SRF05 ultrasonic sensors, pic 18F4550 microcontroller, and 2 × 24 LCD monitor 
(Figure 6). We began with the design of a monorail that was responsible to support the robot 

navigations and stops between two cucumber rows inside the greenhouse. The monorail has 

a width of 0.06 m and was placed 0.4 m above the ground (Figure 5A and B). The algorithm 

for robot navigation between two consecutive stops points on the monorail is also illustrated 

in the flowchart of Figure 5. Right after the robot is switched on, it starts moving on the 

monorail that is fixed along the greenhouse from one row to another. Upon reaching the first 

Figure 2. Mechatronic paradigm followed in this research, adapted from [41].
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stopper point on the rail, the robot strikes the first microswitch, which sends a deactivation 
signal to the first motor responsible for moving the robot. While stopped between two cucum-

ber plant rows, the robot scans for weeds and determines the distance between the detected 

weed and the blade arm using the ultrasonic sensors. Subsequently, a command signal is 

sent to the arm motor and blade motor for activating the blade rotation as illustrated in the 

flowchart of Figure 5.

2.2. Design of the mechanical parts

The moving mechanical arm consists of a chassis, a small arm, and the main arm. Two main 

criteria were considered in designing the robot frame including minimum weight (for increas-

ing the motor efficiency), and strength (for standing vibrations). The frame was made from 
an iron band bearing with the dimensions of 0.02 × 0.18 × 0.005 m. In order to provide sup-

port for the battery, bearing bases, microswitches, and the main arm, we installed additional 
extensions to the frame in a way that the robot gravity center is placed on the monorail. The 

battery is the heaviest part of the robot and can power the robot for 2 h. It was installed on 
the central frame above the rails and wheels. The battery weight creates stability for the robot 
when the main arm is outstretched, and this weight and location for the battery can hold the 
spinning wheel implemented in place. We placed several holes on the frame to facilitate the 

installation of the motor, wheels, and the required electrical fragments (Figure 5C and D). 

The robot makes use of four ball bearings of diameter 0.02 m, out of which three were used 

to hold the robot to the rail and to facilitate a smooth movement (two bearings were placed 

Figure 3. Flowchart of the research methodology.
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on the right and one on the left side). The fourth bearing was used to act as the second wheel 

for the robot. All the ball bearings have a diameter of 0.02 m and are installed on the central 

frame. The diameter of the robot main wheel is 0.04 m, and the ideal speed was determined 

using trial and errors and time-motion studies during the conducted tests. The arm frame is 

made of an iron band bearing with a dimension of 0.02 × 0.2 × 0.005 m. A blade was installed 
on the main arm that moves forward and enables robot access to the weeds between the main 

plants. A shank protector in one of the holes in the arm frame makes the movement and the 

selection of the angle for smooth cutting.

Figure 4. The CAD model design of the weed control robot.
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2.3. Design of the electronic parts: sense and action mechanism

Major electronic components of the robot are three sets of SRF05 ultrasonic sensors, a 

PIC18F4550 microcontroller, and a 2 × 24 LCD monitor (Figure 6). The ultrasonic sensors were 

placed in a row having 0.10 m distance from each other. The sensors are specially positioned 

in a way that they cover the space between two cucumber plants on the cultivation row. 

As mentioned earlier, upon receiving a signal indicating weed existence, the microcontroller 

program determines the distance between the weed and the sensors and whether the weed 

is on the left, right, or middle of the sensors. This signal activates the cutting mechanism. 
Finally, the information of the entire process, including the distance between weed and sen-

sors, and the specific sensor that identified the weed are shown on the robot LCD. During 
the experimental phase, we considered several improvements and adjustment on the sensing 

part and corresponding microcontroller program. For example, we used a tube pipe cover for 

each of the ultrasonic sensors to change the circular waves to linear waves. This was necessary 

Figure 5. The mechanism and flowchart for the robot navigation and control on the monorail showing (A) the monorail 
layout, (B) the robot mounted on the monorail, (C) the robot main body and manipulator arm, and (D) the joint setup 

between the robot and the monorail.

Figure 6. Major electrical module and wiring connections of the weed control robot.
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because sound waves that broadcast from transmitters of ultrasonic sensors are circular. 
When these sensors are close to the ground, the broadcasting waves that bounce off from the 
ground are misinterpreted as weeds.

The robot movements are supported by three 12 V, 0.89 A DC motors that are labeled for this 

paper by motor 1, 2, and 3. The first motor was fixed directly to the wheels in front of the robot 
and was responsible for the robot movement on the monorail. To select the optimum speed 

for the robot, six motor speeds of 30, 40, 50, 60, 80, and 120 rpm were tested. We found that the 

motor with 60 rpm, 1.358 N·m torque, 12 V, 0.89 A had the best performance in the greenhouse 

under study. The second motor was connected to the small arm and is responsible to rotate the 

big arm that moves the blade of the robot at a selected speed of 10 rpm and torque of 8.15 N·m. 

The third motor was fixed to the frame of the main arm for rotating the blade at a high speed 
of 3500 rpm for efficient weed cutting and removal. This frame can move up and down and can 
fix the distance between the blade and the ground level. It should be noted that the 3500 rpm 
blade rotation speed and the 10 rpm arm motor speed were found from the experiments.

2.4. Blade design and analysis

Three types of blade, namely the S-shaped, the triangle-shaped, and the circular-shaped blade 

(Figure 7) were initially considered in the weed cutting experiments. We conducted several 
tests to find the best blade width (equal to 0.1 m) for matching the 0.4 m distance between 
two cucumber plants. Based on our field tests, we found that the S-shaped blade was the most 
efficient design for the purpose of weed cutting. The blade was built from double stainless steel 
material to resist the corrosion in high humidity greenhouse environment. Analysis and calcu-

lations were carried out for finding the blade tip speed and corresponding vector components 
according to the formulations given in [48]. The corresponding diagrams of this analysis are 

shown schematically in Figure 7. It can be observed from Figure 7A that the direction of the tip 

of the blade follows a cycloid curve on the ground level. The component of blade speed in the 

direction of robot forward speed vector, as well as the demonstration of vector gradient in the 

blade speeds, is shown in Figure 7B–D. Here, WB is the circular speed of the blade (rad/s), Vf is 

the forward speed of robot [m/s], Vbf = Vf + Vb is the ratio of the total speed of blade to ground 

[m/s], vb = rb × WB is the circumferential speed of blade [m/s], rb is the radius of blade [m], U 

represents the direction of the robot movement, and V is the linear speed of blade [m/s]. The 
speed of the tip of the blade on the ground is equal to the sum of robot forward speed and its 

circumferential speed. Having the direction of robot moving (U), the direction of the moving 

blade will be in the direction of Vbf, which changes its direction as the blade rotates in the time 

frame t [s]. Therefore, to find the components of U and V, the speed of the blade tip can be writ-

ten as the component of blade speed in direction of moving U [48], that is Vu = Vf – rb × WB Sin 

(θ), and Vv = Vbv = Vb × Cosθ = rb × WBcos (θ), where θ = WB × t is the angle between blade and 

movement direction, Vu and Vu are the speed component [m/s], and t [s] is the measured time 
from the initial angle θ = 0. Therefore, the speed of the blade tip with respect to the ground is 

calculated as    | Vbf |   =  √ 

___________

     | Vv |     
2

  +    | Vu |     
2

    . Figure 7E shows forces and torque vectors of the cutting strike 
on the weed stem. Here, the force fb [N] is the bending strength of the plant body, fr is the 

cutting force [N], Ip is the pant geometry hardness torques, and mp is the weight of the cutting 
part of the plant [kg]. During the trial and error experiments, it was found that a minimum 
strike speed of between 50 and 75 m/s is required for cutting the weeds.
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2.5. Experiment setup

The weed control robot was tested in a 5000 m2 greenhouse in Jiroft city (28°40′41″N 57°44′26″E) 

located to the south of Kerman province of Iran (Figure 8). We planted over 10,000 cucumber 

seeds in pots and placed them in the greenhouse with spaces between the two plants being 

0.4 m. It should be noted that in order to manually remove the weeds from 1 ha of the green-

house under study, four seasonal workers had to perform the task every day, for 8 months 

(equivalent to 832 man/hour). Three experiments were conducted at different growth stages 
as follows: (i) during the seedling and germination stage, 15 days after the crop was cultivated 

Figure 7. Design of the cutting blade, (A): calculating the velocity of rotating blade in stickles, (B): component of blade 
speed in direction of moving U, (C, D): calculating U and V, (E): components of forces, and (F): vector demonstration of 

the blade speed. Adapted from [48].
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and the surrounding weeds were also 15 days old (these weeds usually have thin and very 

flexible stalks and are 10 cm high), (ii) during the vegetation and early fruiting stage, when 
the cucumber plants were 2 months old, and (iii) during the mature fruiting stage, when the 

plants were at their mature height. Three types of blades were selected, namely the S-shaped, 

triangular-shaped, and circular-shaped blade. For each blade, we assigned three blade rota-

tion (BR) speeds of BR1 = 3500, BR2 = 2500, and BR3 = 1500 rpm with two arm motor (AM) 

speed of AM1 = 10 and AM2 = 30 rpm. A factorial design with two-way analysis of variance 

(ANOVA) was used to determine variation effects in the cutting weed performance of each 
blade due to BR speed, AM speed, and their interaction. For the kth blade type, under the ith 

level of blade speed and the jth level of arm speed factor, the two-way ANOVA model was 

stated as   Y  
ijk

   = μ +  b  
i
   +  a  

j
   +   (b . a)   

ij
   +  ε  

ijk
   , where   Y  

ijk
    is the dependent variable representing the percent-

age of weeds cut (PWC) in an experiment. Time and motion study was conducted for the 

robot to move from one stopper to another. For motor no. 1, with a typical rotational speed of 

60 rpm, and the wheel diameter of 0.04 m, the forward speed of the robot (VF) becomes 0.1256 

m/s. Hence, the required time T [s] for the robot to travel the distance of X = 0.40 [m] between 
two consecutive stoppers is equal to T = 3.2 s using Eq. (1). The possibility for the robot to pass 

through the two stoppers within a row was considered for the consequent calculations. For 

the arm motor, the typical speed is 10 rpm, which implies that it takes T = 6 s for the robot to 

remove the weed between two plants.

  T =   3.6 × X ______ 
 V  
F
  
    (1)

3. Results

Results of statistical analysis are summarized in Tables 1–3 showing that the effects of blade 
type (T), blade rotation (BR) speed, and arm motor (AM) speed are significant at the 0.05 level. 
Moreover, it was found that the S-shaped blade with a mean (μ) of 67.8% and standard error (σ) 

Figure 8. Outside and inside views of the experimental site (top), and corresponding factorial design of experiment 

(bottom) for determining the best combination of blade type, blade speed, and arm speed.
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of 3.052% had the highest effect, and triangular-shaped blade with μ = 61.38% and σ = 3.083% 

had the lowest effect on the percentage of the weeds cut (PWC). The BR factor was significant 
at P < 0.05, indicating that blade rotation speed of 3500 rpm with μ = 78.23% and σ = 1.71% had 

the highest effect and the 1500 rpm with μ = 50.39 and σ = 1.86% had the lowest effect. The 
AM speed factor was also found to be significant at P < 0.05, which indicates that the speed 
of 10 rpm with μ = 69.1% and σ = 2.45% had the highest effect and the speed of 30 rpm with 
μ = 59.8% and σ = 2.46% has had the lowest effect on the PWC. It was found that (Table 1) dif-

ferent blade shapes with the AM speed of 10 rpm had a significant effect on the PWC. While the 
mean PWC by the S-shaped blades was the highest, increasing AM speed to 30 rpm reduced the 

efficiency of the S-shaped blade (as well as with the other two blades), resulting a mean PWC of 
59.39%. According to the P-values in Table 2, while all of the main effects of blade type, BR, and 
AM speeds are significant at 0.05 level, their interactions were not found to have a significant 

Blade type μ: Mean percentage of weeds cut (%) σ: Std. error (%)

A: S shaped 67.8 3.05

B: Triangular shape 61.38 3.08

C: Circular shape 64.3 3.38

Blade rotation speed (rpm)

1500 50.3 1.86

2500 64.9 1.51

3500 78.2 1.71

Arm motor speed (rpm)

10 69.148 2.457

30 59.88 2.461

Table 1. Factor effects on the percentage of weeds cut.

Model Sum of squares Mean sum of squares P-value

Blade type (T) 110.3 110.3 0.0462

Blade rotation speed (BR) 6977.1 3488.6 0.000

Arm motor speed (AM) 1157.4 1157.4 0.000

Error 1264.6 26.3

Interaction types P-value

T × BR 114.1 57.1 0.1272

T × AM 5.4 5.4 0.6493

BR × AM 73.6 36.8 0.2560

T × BR × AM 16 8 0.7356

Table 2. Variance analysis and effects of the robot blade type (T), blade rotation (BR) speed, and arm motor (AM) speed 
on the percentage of weed cutting performance.
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effect on the PWC. The results provided in Table 3 show that the difference between the two 
blades, S-shape and triangular shape is significant at the 0.05 level. In other words, the mean of 
weeds cut by these two blades are significantly different, and according to the mean differences 
column, the mean of the PWC by the S-shape blade is larger than the PWC by the triangular-

shaped blade. The mean difference between the S-shaped and the circular-shaped blade with 
P-value of 0.036 is also significant at the 0.05 level. This implies that the average PWC by these 
two blades are significantly different, and according to the mean differences column, the mean 
PWC by the S-shaped blade is larger than the mean of the PWC by the circular-shaped blade. It 

was found that the difference between the means of the triangular-shaped blade and circular-
shaped blade with the P-value of 0.076 is not significant at the 0.05 level, that is, the mean of the 
PWC by these two blade types are not significantly different.

Results of analysis of variance also showed that the mean differences between the BR 
speeds are significant, indicating that the resulted PWC with BR1 = 1500, BR2 = 2500, and 
BR3 = 3500 rpm are not equal. More specifically, the PWC in 1500 rpm was found to be 
smaller than those of 2500 and 3500 rpm. In addition, the mean PWC in 2500 rpm was also 

smaller than that of 3500 rpm. This can also be observed from the bar plots of Figure 9, 

Mean differences P-value

Blade type

A-B 6.4444 0.000

A-C 3.5000 0.036

B-C −2.9444 0.076

Blade rotation (rpm)

BR1-BR2 −14.5556 0.000

BR1-BR3 −27.8333 0.000

BR2-BR3 −13.2778 0.000

Table 3. Comparison of significant difference between blade types (A: S-shape, B: Triangular shape, and C: Circular 
shape), and blades rotation speed (BR1: 1500, BR2: 2500, and BR3: 3500 rpm).

Figure 9. Comparison of the effects of various blade types on (left) and various blade rotation speeds (right) on the 
percentage of weeds cut.
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Figure 10. Bar plots describing percentage of weeds cut with different blade type, blade rotation speed, and robot arm 
speed.
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showing that the mean PWC in 1500 rpm is the smallest (59.39%) and that of 3500 rpm 

was the largest (78.23%). The bar plots in Figure 10 illustrate descriptive statistics and fre-

quency of the PWC for the experiments with the robot using all factors (blade types A, B, 

C, blade rotation speeds of 1500, 2500, 3500 rpm, and arm motor speed of 10 and 30 rpm). 

It can be seen from Figure 10 that the average PWC by the blades was significantly differ-

ent. Consequently, the highest PWC cut was related to S-shaped at the blade rotation speed 

of 3500 rpm. In each motor arm speed, the increase in the rotational blade speed caused 

an increase in the PWC. In each rotational blade speed, if the motor arm speed increases, 

the PWC cut will decrease. Comparing the interactions between the three different types of 
blades, blade speed, and the speed of the arm the following results was obtained: the highest 

PWC in the entire experiment was 95%, which was obtained when the S-shaped blade at the 

rotational speed of 3500 rpm was used and motor speed was 10 rpm. The lowest PWC was 

45%, which was obtained when the blade speed was 1500 rpm, AM speed was 30 rpm, and 

the blade type was triangular in shape. The analysis of the interaction of the BR speed and 

blade type showed that (i) none of the mutual interactions was significant in the variance 
test, (ii) t-test showed that if the rotational speed of the blade is low, the blade type will have 

a significant effect on the PWC, and (iii) for all the blade types, the highest PWC cut was at 
BR speed of 3500 rpm.

4. Conclusion

In this study, we designed, developed, and fabricated a prototype robot for mechanical 

weed control in greenhouse cultivation of cucumber. Automatic weed cutting experiments 
that were carried using the robot consist of ultrasonic sensor, which senses the existence of 

weeds between the cucumber plants. The robot then moves between cucumber rows on a 

monorail in the greenhouse, with an arm that moves the blade between the plants for cut-

ting the detected weeds. The entire process of weed detection, moving the arm and blades, 

and weeds cutting is carried out in 10 s. Among the three blade types tested (S-, triangular-, 
and circular shapes), it was concluded that the S-shape was the most efficient design. For 
the best blade rotation (BR) and arm motor (AM) speeds, it was concluded that as the AM 

speed increased, the percentage of weeds cut (PWC) reduces; therefore, the motor with 10 
rpm, 8.15 N·m torque, 12 V, and 0.89 A was selected to for moving the arm. The average 

weeds cut at 10 and 30 rpm was 69.1 and 58.9%, respectively. Finally, it was concluded 

that the best robot performance corresponding to the highest percentage of weeds cut was 

achieved with the S-shaped blade when the BR speed was 3500 rpm, and the AM speed 

was 10 rpm.
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