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Abstract
In recent years, human hand‐based robotic hands or dexterous hands have gained
attention due to their enormous capabilities of handling soft materials compared to
traditional grippers. Back in the earlier days, the development of a hand model close to
that of a human was an impossible task but with the advancements made in technology,
dexterous hands with three, four or five‐fingered robotic hands have been developed to
mimic human hand nature. However, human‐like manipulation of dexterous hands to this
date remains a challenge. Thus, this review focuses on (a) the history and motivation
behind the development of dexterous hands, (b) a brief overview of the available multi‐
fingered hands, and (c) learning‐based methods such as traditional and data‐driven
learning methods for manipulating dexterous hands. Additionally, it discusses the chal-
lenges faced in terms of the manipulation of multi‐fingered or dexterous hands.
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1 | INTRODUCTION

Grippers are the most essential part of a robot as it is the
medium between the robot and the environment. To achieve a
successful grasp, the objects must be both contacted, as well as
avoid slipping and causing damage while the objects are picked
and placed [1, 2]. Manipulation tasks with grippers were first
used in the industrial environment and have seen tremendous
success in handling, sorting, picking, and placing hard objects.
Whereas in agriculture and food industries, the handling ob-
jects are fragile and damageable, [3] thus the success rate is
exceptionally low. Soft fruits are prone to get damaged during
robotic harvesting or food packaging, thus the development of
a suitable end‐effector and grasping methodology [4] is a
difficult aspect of the development of an autonomous har-
vesting system.

Due to the lack of flexibility and adaptability of the tradi-
tional grippers in grasping soft and deformable fruits [5] the
performance of the robotic system in practical application is
limited [6]. Since the nature of the soft fruits, such as shape and
size vary from one another, the development of various sensors
and control strategies is needed. Position, force, slippage, and
temperature sensors can be integrated into a gripper to be more

flexible and agile. Control strategies based on the feature
extraction from an image and haptic/force feedback from the
sensors can be adopted to make the system more robust.
Additionally, in soft fruit harvesting, the challenge also lies in
identifying and picking up the underlying fruits, as they tend to
grow in clusters [7]. Clustered environments limit the ability of
the vision system to recognise the region of interest (ROI) to
grasp the soft fruits. Additionally, strategic grasping planning
for the manipulator is required to harvest specific fruit without
damaging the other. The traditional grippers fail to harvest
occluded fruits lying within dense clusters. Thus, there is a need
to develop a robust mechanism for detecting the occluded fruits
and planning the grasping/manipulating motions, and a
compliant control strategy for grasping or manipulations.

Visual sensors are the most appropriate for identifying
objects and obstacles, and then grasping points and
approaching paths towards the objects with obstacle avoidance
can be planned. The visual sensors which provide real‐time
data, such as the position and orientation of the object to be
grasped are often mounted on a fixed base. However, it re-
stricts the point of view once the manipulator is in action and
is difficult to analyse if the object has been successfully grasped
or not. Thus, it is possible to control the grasping and handling
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process by integrating visual sensors into or onto the grippers,
also known as eye‐in‐hand vision. Nowadays, stereo cameras
[8] are used for grasped object recognition, localisation, and
3D information acquisition [9]. However, mechanical infor-
mation cannot be deduced. On the other hand, tactile sensors
can provide mechanical information, such as pressure, contact
forces, torques, slip, vibrations, and temperature when a
gripper contacts an object [9]. The studies show that tactile
information/sensors can significantly increase the accuracy of
grasping in addition to visual feedback [10, 11].

Nevertheless, the traditional methods, such as tactile, visual,
and visuo‐tactile servoing methods consider the physical
properties [12] limiting its robustness over the data‐driven
learning‐based methods for grasping soft fruits. Supervised
learning‐based identification of grasp locations from an image
was presented [13, 14] predicted grasp locations without severe
overfitting via Convolution Neural Network (CNN). Similarly,
Yu et al. [15] proposed an R‐YOLO model for detecting the
pose of strawberries for harvesting. Whereas Murali et al. [16]
proposed a system to grasp novel objects without knowing the
location and physical properties based on tactile sensing.
Similarly, Dang and Allen [17] proposed the use of tactile
feedback for predicting grasp stability without visual or geo-
metric information. These studies are focussed on either
perceiving visual and depth or tactile sensing information for
grasping and manipulating an object.

On the other hand, the grasping strategy of the human hand
relies on vision and sense of touch for object handling and
manipulation. With the help of sensory feedback and fore-
knowledge under the control of the brain, human hands can
provide stable, adaptable, and flexible grasping and other
outstanding manipulation abilities. To interoperate with the
variable and complex environment, all robots must use sensors,
such as tactile sensors, visual sensors, hearing sensors, and so
forth. With the use of multiple sensors, robotic grippers aim to
perceive both tactile and visual modalities of human hands to
evaluate the results of the current grasp [18]. Most of the soft
fruit harvesting is still carried out manually by human hands.
This shows that the human hand with both visual and tactile
capabilities can adapt itself to the dynamic environment in a
compliant manner to perform various grasping and manipula-
tion tasks. Thus, with similar compliant control strategies, the
robotic grippers can adapt to the dynamic environment with
ease.

The haptic feedback in humans can be classified as tactile
and kinaesthetic. The tactile deals with the sense one feels in the
fingertips or on the surface, allowing the human brain to feel the
pressure, touch, texture, and vibration while operating. While
kinaesthetics refers to the sense from one's muscles, joints, and
tendons to feel the weight, stretch, or joint angles of the hand.
Based on this information, researchers have designed tactile
sensors with various sensitivity ranges with resistive, piezo-
electric capacitive and optical sensors to achieve human‐like
dexterous in‐manipulation. Nowadays the robotic system is
adopting an eye‐in‐hand vision system to provide the local vi-
sual information between the object contact surface and the
hand to fine‐tune the position and orientation while grasping.

Though it is not a human‐like approach, it provides better re-
sults when compared with the existing vision system mounted
onto a fixed base. With the integration of depth sensors and
eye‐in‐hand approaches, object‐oriented 3D surface models can
be created, thus producing better results for the dexterous
grasping of 3D objects.

Additionally, with high dexterity levels [19] human hand can
grasp without causing any damage [6] by adjusting the force and
pressure based on the nature of the object. Also, humans can
identify and pick fruits within a dense cluster without damaging
the structure of the plant and the fruit. In recent years, the
development of the multi‐fingered hand or dexterous hand has
gradually increased. The dexterous hands are available with
three or five fingers [20]: More fingers can lead to more contact
points, which makes it easier to form a more robust grasp. The
traditional way of controlling the dexterous hand is through the
opening and closing of the fingers in a binary way [21], however,
these control strategies fail to adapt themselves to a dynamic
environment. Thus, with the help of compliant control strate-
gies, visual and tactile perception can be integrated with the
dexterous hand to perform complex grasping and manipulation
tasks.

Thus, this paper aims to provide an overview of human‐like
robot manipulation using dexterous hands. Initially, various
actuated and underactuated dexterous hands with three‐to‐five
fingers and manipulation strategies adopted for dexterous
hands are reviewed, this includes traditional methods such as
visual, tactile, and visuo‐tactile servoing and learning‐based
methods, such as learning from observation (LfO), imitation
learning (IL), learning from demonstration (LfD) [22], and
reinforcement learning (RL) [23] are reviewed. The rest of the
paper is organised as follows: Section 2—Dexterous Hands,
provides an overview of various off‐shelf dexterous hands with
technical details and the summary is shown in Table 1. Section 3
—Manipulation, provides information about control strategies:
traditional and learning‐based methods. In Section 4—Chal-
lenges and Discussions, challenges related to the development of
a compliant model of dexterous hands and various control
strategies are discussed and the summary of this paper is pro-
vided in Section 5—Conclusions and References section

2 | DEXTEROUS HAND

2.1 | Robotiq 3‐fingered adaptive robot
gripper

The 3‐fingered adaptive gripper shown in Figure 1a was
designed at the robotics laboratory at Laval University, Canada.
Initially, a single finger that could adapt itself based on the
pressure points was developed which later became the base for
developing their first gripper, MARS [24] Figure 1b, a gigantic,
12 degrees of freedom (DoF), fully adaptive with three inde-
pendently rotating fingers. Though the gripper could grasp a lot
of objects, it lacked its ability to industrial applications. Hence,
in the second version of the SARAH hand [25], a 10 DoF
gripper with two actuators was developed. It uses only two DC
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motors, one to control the opening and closing whereas the
other to change the orientation of the fingers to grasp based on
the geometry of the objects. The final version of the gripper is

shown in Figure 1c. It is a 3‐fingered with independent control
with a programmable force of 30–70 N, a stroke of 155 mm and
a payload of 10 kg. There are four grip modes, basic, wide,
pinch, and scissor to handle different shapes of objects. The
gripper can be integrated into any robotic platform, and it de-
pends on Modbus RTU (Rs‐485) as the primary protocol and
Modbus TCP, EtherNet, PROFINET etc. as secondary. Due to
the configuration, controllability and adaptability of each finger,
the gripper could be used for pick and place operations, as-
sembly, quality testing, and machine tending applications.

2.2 | iRobot‐Harvard‐Yale (iHY) hand

The iHY hand was developed as a part of the DARPA Auton-
omous Robotic Manipulation‐Hardware program by both
Harvard and Yale University. It has three tendon‐driven fingers
with five actuators, designed to be simple, durable, and inex-
pensive as shown in Figure 2. Also, a moderate hand can be used
on mobile robots to carry out basic tool use, in‐hand grasping
and fingertip grasping. The authors in ref. [26] provide the list of
functional activities that was decided to be performed with the
hand initially at the development stage. The hand is composed of
three fingers coupled by a single flexor tendon rather than dif-
ferential transmission and the fingers were mounted in a trian-
gular shape with two of them on one side and the other on the
opposite. Actuators are the major components for the hand,
iHY model used five actuators (EC‐20 Maxon Motor AG) to
control the fingers through a back driveable worn gear trans-
mission. Three actuators control the three fingers with a single
flexor throughout the finger, the adduction/abduction DoF is
driven by the fourth actuator and finally, the fifth actuator allows
the link angle of the thumb proximal and distal joints to operate
independently. The tip of the fingers and palm consists of tactile

F I GURE 1 (a) Robotiq three‐fingered adaptive robotic gripper,
(b) MARS Hand, and (c) SARAH Hand.

TABLE 1 Summary of the above‐reviewed dexterous hands.

Name DoF Fingers Sensors
Weight
(kg) Actuation

Robotiq 3‐fingered adaptive Robot
Gripper

5 3 Position, force, and current sensors 2.3 DC motors

MARS Hand [23] 12 3 Force sensor 9 Brushless DC motors

SARAH Hand [24] 10 3 Force sensor 4.9 DC motors

iRobot‐Harvard‐Yale (iHY) Hand [25] 9 3 Pressure and optic sensors DC motors

Shadow Hand [26] 20 5 Force/Pressure with position sensor 4.2/3.9 Electric motor/
Pneumatic

DLR Hand I [27] 16 4 Strain gauge‐based torque sensors and Hall‐effect
sensor

1.8 DC motors

DLR Hand II [27] 13 4 Torque, force‐torque, and angle sensors 1.8 DC motor

AR10 Robot Hand [28] 10 5 Torque/position sensors Servo

DoraHand [29] 6 3 Tactile (for force and position) sensors 1.2 Motors

IH2 Azzurra [30] 11 5 Encoders, force, proximity, and current sensors 0.6 Brushed DC motors

Allegro Hand [31] 16 4 Position and force sensors 1.09 DC motors

Inspire robotics dexterous Hand [32] 6 5 Force, position, and current sensors 0.5 Micro actuators

KADALAGERE SAMPATH ET AL. - 3

 25177567, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ccs2.12073 by T

est, W
iley O

nline L
ibrary on [02/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



arrays, each distal finger joint with flexure deformation sensors,
magnetic encoders at the proximal and an accelerometer at distal
finger links to measure the hand configuration and contact in-
formation. Overall, the iHY hand was capable of grasping,
collision handling, variable stiffness and finger pivoting and
pinching objects with varied shapes.

2.3 | Shadow hand

The Shadow hand is an advanced humanoid hand capable of
trajectory tracking and hand movements to control its motion
[27]. There are two variants, one with electric motors and the
other with pneumatic muscles. Twenty DC motors are attached
to the forearm for the electric motor driven and 20 pairs of air
muscles for pneumatic driven. The hand has 24 joints and 20
degrees of freedom in total. Figure 3 shows the DC motor‐

driven Shadow hand. The thumb alone has five joints with 5
degrees of freedom whereas the fingers have four joints with 3
degrees of freedom. Force sensors were attached to each DoF
for the motor‐based hand while the muscle‐based hand is
attached with a pressure sensor for each muscle. The motor‐
based actuation system consists of force, position, motor
drive electronics and communications, 20 of them loaded into
the hand. On the other hand, the pneumatic muscle hand has
pressure, position, calve driving electronics and communica-
tions for 80 valves. Both the hand models use EtherCat with a
speed of 100mbps for communication and all the simulation,
configuration and control of the hand is based on Robot
Operating System (ROS). While all the control loops run at
1 kHz, the motor torque loop operates at 5 kHz. In the case of
the muscle hand, all the control loops are operated at 1 kHz.
The weight of the motor‐driven hand and muscle‐driven hands
are 4.2 and 3.9 kg and the time response are 1 and 0.2 s
respectively. The hand has degrees of freedom more than a
human and has been used in various applications, such as
grasping, in‐hand manipulation, highly sensitive medical sur-
geries, bomb disposal vehicles, household works, and in highly
reactive environments.

2.4 | DLR hand I and hand II

The German Aerospace Centre also known as DLR is the
national centre for aeronautics and space research with head-
quarters in Germany. Aeronautics, space, energy, trans-
portation, security, and digitisation are the main fields in which
extensive research and development activities are conducted.
Also, on behalf of the German Federal Government, it over-
sees the organising and conducting of the German space
programme. The space‐related research and development are
focussed on by the Institute of Robotics and Mechatronics at
DLR. Deployment of robots to perform operations in unde-
termined and unpredicted structures which are remote and
dangerous was the motivation behind the DLR hands as well as
some autonomous grasping techniques. Below are the hands
developed by the DLR for space applications.

2.4.1 | Hand I

DLR conducted several experiments called ROTEX [28] inside
the Spacelab during the Spacelab‐D2 Mission in 1993 to
confirm the functionality of a multi‐axis robot in space. Though
the experiments showed the successful common operations
performed with a two‐fingered gripper, future space missions
would need space robot assistants capable of performing tasks
like humans [28]. It was found that the considerable distance
between the robot tool centre point (TCP) and the palm's centre
necessitates substantial elbow motions to shift the hand ori-
entations, drastically reducing the robot's workspace. Based on
these restrictions, DLR Hand I, a four modular finger with a
size close to that of humans and complete actuators integration
within the hand structure was developed. The four identical

F I GURE 2 iRobot‐Harvard‐Yale (iHY) hand.

F I GURE 3 Shadow hand.
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fingers reduced the complexity of the system and each finger
had 4 degrees of freedom (DoF) (2 DoF—cardanic base with
intersecting axes for extension and adduction, and two inter-
phalangeal joints with one DoF). The hand uses three actuators
with a maximum force of 150N (21 mm diameter and 33 m
length) to control each of the four fingers. Dyneema tendons
are used for force transmission and all the electronics and
sensors are mounted into the fingers, however, the control
boards which provide external communication for the host
computer through an optical fibre link are mounted within the
palm. The DLR Hand I model used conventional strain gauge‐
based torque sensors to measure the force, and the motor po-
sition and joint positions are calculated by the onboard hall‐
effective sensor of the brushless DC motor and in‐house op-
tical sensor, respectively as shown in Figure 4. Additionally,
tactile sensors based on force‐sensitive resistors (FSR) were
utilised to detect contact locations. However, the fingers were
unbalanced due to artificial muscle and poor opposition of the
thumb due to its low placement reduces the manipulation ca-
pabilities. Due to the wear and tear of the tendon‐driven link-
ages, the hand was less reliable, and the surface of the fingers
also proved to be too stiff and slippery to make good contact
with the object.

2.4.2 | Hand II

Based on the DLR Hand I limitations related to the grasping
algorithms and demonstrations [28], this led to the development
of DLR Hand II in 1999. To improve the performance of the
DLR Hand II, a new actuation system was adopted by using a
coupled actuation for both axes to enable the application of
forces in the extension/flexion direction from both motors and
to increase the reliability of the tendon transmission was
replaced by a belt transmission. Unlike the DLR Hand I, the
DLR Hand II had two configurations for fine manipulation and
power grasps. With the help of an optimisation algorithm, a
single actuator was used to find an optimal mapping of the end
positions to the desired configurations. Additionally, reducing
the length of the finger base and that of the proximal phalanx
had to be reduced for fine manipulation respectively, and finger
flexion must be greater than 90 (degrees) to enable power grasp.
The palm uses a 12 mm diameter Maxxon brushed DC motor

running a threaded rod while the other fingers use the off‐the‐
shelf brushless DC motors (24 mm diameter at the joint base,
19 mm at the proximal phalanx). Sensors based on strain gauges
were used to determine the torque of the motors in the initial
version. Six DoF force torque sensors were used to measure
force and magnitude at the fingertip, however, while performing
grasping‐related tests. It was more suitable to have a better
control method and a soft fingertip rather than a rigid one to
achieve a good grasp and thus object‐level impedance control
and soft polyurethane skin to cover the finger pads were used
respectively. However, this impedance control method was not
suitable for handling the transition between no‐contact and
contact‐based tasks. The thickness and softness of the finger
pads can affect the quality of grasping [28], hence, they were
covered by vacuum‐moulded housings with a soft polyurethane
surface with a thickness of 15 mm inspired by the palmar plate of
the human finger [28]. Compared to the Hand I model; the Hand
II model shown in Figure 5 was able to be teleoperated with a
data glove providing force and visual feedback and could play
the piano autonomously.

2.5 | AR10 robot hand

Figure 6 shows the AR10 Robot Hand, a low‐cost, versatile, and
durable humanoid robot hand with 10 degrees of freedom
(DoF) developed by Active8 Robots [29], a UK‐based company.
The core of the Hand is made from anodised aluminium for
lightweight, robustness and durability. Additionally, Firgelli
linear actuators have undergone specific modifications to offer
unmatched dependability and grip power. The goal to develop
the hand was to provide an innovative, affordable humanoid
design for grasping and for research and academic purpose.
However, it either can be mounted on a variety of off‐shelf
robotic arms or act as a stand‐alone platform. The AR10
Hand's fingertips are interchangeable and thus can be used for a
variety of applications. The hand supports various platforms,
such as Windows, Linux, or any other platform. For commu-
nication purposes, the hand relies on a USB or serial interface.
Utilising the given graphical user interface, whether it is the
Pololu Maestro Control Centre or using Rviz, simple move-
ments and sequences can be simply programmed. The AR10 is
compatible with MoveIt and Rviz thanks to the included URDF

F I GURE 4 DLR hand I. F I GURE 5 DLR hand II.
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file, which is completely ROS‐compliant for the hand. Complex
task and motion planning are made possible by these potent
visualisation tools.

2.6 | Dora hand

DoraHand [30] is a modular dexterous hand designed by Dor-
abot Inc., Shenzhen, China. ‘The hand has two variants, three‐
finger and five‐finger’. Figure 7 shows the three‐finger Dora-
Hand. The hand is designed with the hot‐swap function, a

simple plug‐and‐unplug action for fingers. The mechanism
behind the hot swap is based on the pogo pin and locking
mechanism, alongside, providing the power and signal trans-
mission for each finger, individually. A thin, removable, asym-
metric tip was designed for the hand to work with more
environments and hardware. The fingertip can be utilised in
some confined spaces because of its 5 mm thickness. To provide
a human‐like capability, the hand is equipped with a highly
sensitive 0.3 mm film force sensor to act as a tactile sensor to
sense the force and position simultaneously. Additionally, each
force sensor is composed of two‐to‐four small sensors, which
can identify the approximate position of the contact point on the
force sensor surface. Regarding communication, there are two
boards, the mainboard and the fingerboard, the main board
provides the communication function and power supply to
support up to six fingers and the fingerboard for controlling the
fingers. The Controlled Area Network (CAN) communication
protocol is used to communicate between the mainboards and
fingerboards. Additionally, the hand supports USB (Universal
Serial Bus) and Ethernet communication protocols operating at
60 Hz frequency between the hand and PC. The joint sensor
feedback has a resolution of 0.01° and a precision of 0.1°,
however, the joint motion precision is about 0.5°. The tactile
sensor is highly sensitive with a precision of�3% and can sense
a minimum force of 100 mN while the position sensor has a
precision of �5%.

2.7 | IH2 azzurra

Figure 8 shows IH2 azzurra, a dexterous hand developed by
Prensilia for multiple robotics and bio‐robotics scenarios, close
to human hand size with five degrees of freedom (DoF)
weighing about 640 g [31]. With the help of multiple force and
position sensors, the anthropomorphic hand can grasp and
sense a variety of objects. The degree of activation (DoA) is
different from other hands, one for the flexion/extension of the
thumb, one for the index, one for the middle finger, one for ring‐
little fingers and adduction/abduction of the thumb. Each finger
is actuated through the tendon. This architecture promotes

F I GURE 6 AR10 robot hand.

F I GURE 7 DoraHand. F I GURE 8 IH2 azzurra.
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stability during precision or power grasps. The hand uses five
motor encoders, five motor current sensors, 10 proximity sen-
sors and four tendon‐driven force sensors. IH2 Azzurra receives
commands from a host PC through serial communication.

2.8 | Allegro hand

Allegro Hand shown in Figure 9 is a low‐cost, highly adaptive
robotic hand developed by Wonik Robotics [32], Korea. Due to
its lightweight and portable anthropomorphic design, the hand
has applications in research and industry to perform dexterous
manipulation. However, thanks to the ready‐to‐use algorithms
capable of grasping a variety of objects. Allegro Hand has a total
of four fingers including the thumb and each finger has four
independently torque‐controlled joints leading it to have 16
degrees of freedom (DoF). This feature has made the hand to be
an ideal platform for manipulation and grasping research. The
total mass of the hand is 1.08 kg, and the payload is about 5 kg.
The maximum torque and joint speeds are 0.70 Nm and 0.11 s/
60° respectively. The joint angles are measured through a
potentiometer with a resolution of 0.002 deg. CAN‐based
communication protocol with a frequency of 333 Hz is adop-
ted to establish a connection between the user and Allegro
Hand. To perform hardware testing and simulation‐based al-
gorithm prototyping, the Allegro Hand Console Application can
be used.

2.9 | Inspire Robotics Dexterous hand

Figure 10 [33] shows the Dexterous Hand developed by Beijing
Inspire Robots Technology, China. It has five fingers with six
degrees of freedom (DoF) and flexible grasping capability and

size close to that of a human hand. The thumb finger has two
DoF whereas all the other fingers have only one DoF. Six
Micro linear actuators with tendons attached are used to
actuate the fingers. Additionally, each finger is equipped with a
programmable force sensor to provide haptic feedback that is,
the user can select a threshold for grip force for each finger.
The position range of the fingers is 0–2000 (0—fingers fully
open, 2000—fingers fully closed) while the force sensor range
is 0–1000 (0–1000 g). The little, ring, middle and index fingers
have an angle range of 19°–176.7° whereas the bending angle
and rotating angle of the thumb are in the range of −13°–53.6°
and 90°–165°. The RS232 or RS485 serial port is used to
control the dexterous hand. Users may easily operate their
dexterous hands thanks to the clear and effective interface
control instructions. The dexterous hand is highly efficient and
can be used in prosthetics, service robots, and teaching, among
other things.

3 | MANIPULATION

3.1 | Traditional‐based methods

3.1.1 | Visual servoing

The visual servoing of the articulated/dexterous hands is more
complicated when compared to the traditional grippers. This is
due to the nature of contact and mobility offered by the fingers
in an articulated hand [34]. The traditional approach for
dexterous hand manipulation is through planning and then
controlling, yet a system without a visual feedback control loop
is more susceptible to manipulation failures due to low accu-
racy. Thus, the visual servoing method can be utilised to in-
crease the accuracy while estimating the object's pose. A fuzzy
neural approach was put forth in ref. [35] as a technique to
cope with model uncertainty, however, his approach does not
include all possible manipulations. Without any input from the
object posture, the Salisbury Hand, and the Karlsruhe
Dexterous Hand [36–38] demonstrated a reduction in the
controllers' progress. Thus, Muiioz [34] proposed a system for

F I GURE 9 Allegro hand. F I GURE 1 0 Beijing inspire robots technology dexterous hand.
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robust dexterous manipulation through visual servoing tech-
niques. Below Figure 11 shows the simple workflow of visual
servoing.

Visual servoing is a technique where a robot's position and
orientation are determined based on the image feedback from
a vision sensor/camera concerning the target. The feedback
from the vision can be obtained from two methods: eye‐in‐
hand and eye‐to‐hand. The first one refers to the camera
mounted on the robotic arm end‐effector whereas the latter is
mounted on the base or somewhere nearby as shown in
Figure 12. The eye‐in‐hand technique is used most frequently
by arm robot applications in agriculture because it is more
versatile in target detection [23]. Later, by analysing the kine-
matics and trajectory of the arm‐robot, and target position
from image processing, the object can be grasped precisely.
The vision servoing has a huge advantage while manipulating a
robot arm, especially in agriculture as they could increase the
production yields. Along with the position and orientation of
the object, features such as colour, texture, ripeness, and health
(in the case of fruits/vegetables) can be obtained. However,
the challenge lies in synchronising the camera output used for
object detection with the robot's motion.

The vision servo control can be attained by two methods:
position‐based and image‐based control. In a position‐based
method, the robot controller is fed with the 3D estimated
position and orientation of the target and the robotic/
dexterous hand‐mounted arm, respectively as shown in
Figure 13. This method manipulates the camera trajectory in
Cartesian space, making it simple to integrate robot control

with obstacle avoidance. However, stability is a concern in this
kind of hybrid control system [34]. Whereas the image‐based
approach depicted in Figure 14 identifies a cluster of feature
points on the target item and projection the signal directly on
the image plane to control the hand. This method does not
require any transformations and the finger dynamics, the object
dynamics and the image features can be expressed. The image
features help to merge the object and hand dynamics in the
same entity [34].

Target detection is a huge task in the visual servoing
method and can be achieved by image processing. The position
of the target can be obtained using a variety of techniques,
including edge detection, Euclidean [39, 40], and others, for a
visual servoing control system. Lighting plays an important
role in target detection and thus image segmentation based on
the seeded region growing approach and colour/shape feature
was considered in refs. [41–43]. However, kinematics is a part
of the visual servoing method and was included by ref. [44], in
fact, Wang et al. [45] proposed a more accurate model by
considering a three‐part visual processing system: fruit holding,
stem holding and fruit separation. Furthermore, in the study
[23], kinematical modelling, position‐based visual servoing, and
edge detection for image processing were used to design an
agricultural arm‐robot manipulator.

Nowadays, the visual servoing method can be adopted to
achieve complex manipulation tasks by teaching the dexterous
hands based on human hand movements or in other words,
gesture control. In the past, different methodologies have been
proposed to track hand movements. Human hand tracking
based on a highly articulated hand model was introduced by
refs. [46, 47]. The fingertip positions and local edges are found
by projecting the axes of the truncated cylinders onto an image.

F I GURE 1 1 Visual servoing workflow.

F I GURE 1 2 (a) Eye‐in‐hand and (b) eye‐to‐hand.

F I GURE 1 3 Position‐based visual servo system.

F I GURE 1 4 Image‐based visual servo system.
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To minimise the error produced between the actual and pre-
dicted locations, a non‐linear least squares method was adop-
ted. However, the model suffered due to occlusions and
background clutter. [48] made advantage of a 3D changeable
hand shape model with a surface mesh representing the hand
created using PCA and training examples. The closest poten-
tially deformed model that matches the image was found to
enable real‐time tracking. A stereo hand tracking system
employing a 2D model changeable by affine transformations
was proposed in ref. [49]. Wu and Huang [50] put out a two‐
step method to calculate the pose of the hand, first calculating
the overall position and then determining the joint configu-
ration. Their algorithm is presuming that all fingertips are
visible. Infantino et al. [51] proposed a method in which the
fingertip features are extracted with the assumption that all the
fingers except the thumb are planar manipulators. Then
computing the inverse kinematics to control the DIST‐Hand
based on the extracted features. However, the precision of
the tracking system was lower, and the hand was not imple-
mented fully on a robotic arm.

Features extraction in a complex environment such as
clusters is a demanding task, which needs a larger sample
size for processing; nevertheless, large sample size processing
is challenging for traditional visual servoing methods. Thus,
Convolution Neural Network (CNN) [52, 53] based visual
servoing system is being adopted by many researchers. In ref.
[54] an error image was obtained by explicitly subtracting the
pixels from the images that represented various robot pos-
tures. They then fed this image into the CNN to predict the
pose information, however, it runs a risk of losing important
features due to overlapping. The study [55] proposed a
neural network fed with the desired and the current image
simultaneously to obtain the pose information. Since optical
flow information may only be used to describe motion in
images with tiny displacement, processing data involving high
image feature errors may not be successful. On the other
hand, [56] effectively computed the features and regress to
the overall coordinate information to develop the control
scheme, which is suited for simple backdrops, by applying
the deep network to the image gathered by the sensor
through visual servoing and processing the foreground image
as the key information. The experiments in ref. [52] show
that CNN can calculate better with image processing with
attention mechanism in visual servoing tasks by extracting
the region of interest (ROI) from the matching points of
feature extraction.

3.1.2 | Tactile servoing

Along with the senses of sight, hearing, taste, and smell, the
sense of touch is one of the most crucial basic sensory abilities
in humans. The study [57] suggests that a tactile feedback
feature for robots would be beneficial to advancing robotic
manipulation as the experiments [58, 59] demonstrated that
even simple manipulation tasks are difficult for people to
accomplish when the tactile‐driven control is compromised.

Humans have always used their hands and palms to perceive
the sense of touch to perform household activities. Similarly, as
the name suggests, the multi‐fingered (dexterous) hand con-
sists of three to five fingers and a palm interlinked with each
other [60]. It is possible to apply the necessary force and
appropriately grasp delicate things if the hand is equipped with
force sensors or tactile sensors. When a dexterous hand is
working with an object, tactile sensing can detect its presence
and measure the force needed to secure it. Tactile servoing can
be broadly classified into two categories: image‐based and
pose‐based. The image‐based approach makes use of the fea-
tures from the tactile image while the pose‐based approach
depends on task‐independent Jacobian and projection matrix.
Figure 15 shows a basic workflow for tactile servoing of
dexterous hands.

In recent years, research has been carried out to attain
human‐like manipulation and interaction with the environment
[61]. The authors in refs. [62, 63] provided an overview of how
mechanical design and tactile sensing capabilities are promi-
nent for dexterous hand manipulation. A RIBA robot system
was proposed by Mukai et al. [64] for lifting and transferring a
patient from a bed to a wheelchair with twin robot arms. The
robot's tactile guidance system and the monitoring of the
pressure distribution between the robot arms and the patient
both made use of the smart rubber sensor which was mounted
on the RIBA for monitoring the pressure distribution in the
arms. However, this mechanism did not regulate the pressure
distribution in and of itself. The study [65, 66] proposed a
robot system for massage therapy based on a unified motion‐
force control on the forearm and an impedance control‐based
tapping system respectively. Also, a system based on the
pressure feedback from the internal soft fluid actuators was
proposed to shave a human's beard via teleoperation [67].

On the other hand, Lepora and Lloyd [68] proposed a
controller based on pose‐based tactile servoing. The tactile
feature‐contact edge in their controller is represented as a
vector in Cartesian space and is learnt from a collection of
images that were gathered and captured by the TacTip camera.
Similarly, a three‐axis tactile sensor was developed by Ohka
et al. [69]. Similarly, Berger and Khosla [70] proposed a real‐
time control of a manipulator based on the tracked edges us-
ing the Hough Transform from the threshold tactile image.
Pavan et al. [71] proposed a system whose control strategy was
based on the features obtained from the tactile images and was
utilised to perform the rolling task of a cylindrical pin on a
planar surface. Later, refs. [72–75], expanded on the strategy in
ref. [71] to create a more comprehensive design for a tactile
servo that can make point and edge interactions with curved

F I GURE 1 5 Basic tactile servoing workflow.

KADALAGERE SAMPATH ET AL. - 9

 25177567, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ccs2.12073 by T

est, W
iley O

nline L
ibrary on [02/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and flat sensing surfaces. For a broad range of tactile servoing
activities with task‐specific tactile interaction patterns, Li et al.
[76] developed a control architecture utilising a task‐dependent
projector matrix. To implement more general tasks, Kappassov
et al. [77] presented an external hybrid tactile position
controller. However, these above tactile servoing methodolo-
gies were specifically designed for either a planar surface [76] or
a spherical surface [78].

To make the tactile servoing more robust, Wen et al. [61]
proposed a control framework that proposed a tactile servoing
control system based on CNN representing the non‐linear
relationships (error) between the current and desired pres-
sure and robot motion [79]. A CNN deep touch model was
combined with the low‐cost tactile sensor on a multi‐DoF soft
robotic gripper for fruit harvesting. The developed tactile‐
enabled gripper could detect and avoid the obstacles such as
leaves or branches while harvesting. The study [57], showed
that tactile servoing can be attained on any surface based on
learning‐based methods which will be discussed in the later
sections.

Figure 16 depicts a simple illustration of a tactile servoing
control system [80]. The intended contact state, Sd , is specified
by the motion planner. When an inverse sensor model is
provided, extracted tactile sensor characteristics, Fa, are con-
verted to the actual contact state, Sa, and then Sa and Sd are
compared to determine the inaccuracy. If an inverse sensor
model is not available, the Tactile Jacobian must be used to
connect changes in the tactile feature vector to changes in the
contact state. The planner is informed about the modification
of the intended contact state by the tactile servo solver through
the generation of the error dS. To translate changes in the
contact feature state to the location of the robot's end‐effector
dX in the task space, the contact model block is used. To
determine the robot's joint values d from the error of the end‐
effector location in Cartesian space, the Robot Inverse Jaco-
bian is then employed. The following is how the robot joint
angles determined by tactile feedback are expressed [80]:

θðt þ 1Þ ¼ θðtÞ þ dðθÞ ð1Þ

dðθÞ ¼ J−1
θ dX ð2Þ

dX ¼
Xf − XaðtÞ
Tseg − t

�
t < Tseg

�
ð3Þ

XaðtÞ ¼ f −1
s ðFaðtÞÞ ð4Þ

where θðtÞ and θðt þ 1Þ are the actual and calculated joint
angles, dθ is the error in joint angles, f −1

s is the inverse tactile
model, J−1

θ is the robot inverse kinematics, Xa is the actual
Cartesian position of the robot end‐effector, Xf is the desired
final position, Tseg and t are the periods within which the robot
reaches its final position and time.

3.1.3 | Visuo‐tactile servoing

Robots need multisensory inputs to operate in an unstructured
environment capable of grasping an object and making de-
cisions such as humans. In recent years, vision sensors have
shown a prominent result in terms of controlling and artificial
intelligence in the robotics field. The robots can adapt to the
environment by making decisions and taking corresponding
actions for complex manipulation tasks. This is due to the huge
amount of data provided by the global dynamic image sequence.
The received data is fed to the controller running a deep neural
network. However, as a downside, modelling the physical con-
tact and predicting information in the force domain cannot be
relied entirely on the vision sensor and is a challenging task
respectively.

On the other hand, tactile sensors can obtain the physical
interaction data between the objects and the robot end‐effector,
and they are not affected by external environmental changes
[81]. Information such as collision, geometry, and slip detection
can be obtained from tactile sensors. In terms of dexterous
hands, manipulating an object is a crucial task and the relevant
information such as softness, geometry and grasping status of
the object is needed to perform successful manipulation.
However, to reach the object, the tactile sensors lack vision
capabilities. We find that both visual and tactile sensing capa-
bilities are needed for dexterous grasping and manipulation
tasks. Thus, by combining both visual and tactile sensors, in-
formation such as initial estimation and trajectory planning can
be obtained from the visual system, later, the dexterous hand
can use this data to move close to the object and then the tactile
system can refine those estimates and perform in‐hand
dexterous manipulation [82–84].

A study [84], proposed a vision‐guided tactile crack
perception system establishing coordination between tactile
and visual perception. Before applying a high‐resolution opti-
cal tactile sensor, a camera vision is utilised to quickly inves-
tigate the candidate crack regions. The collected tactile pictures
are then used to recreate a refined shape. Cao and Luo [85]
discussed a multimodal perception for dexterous manipulation
through visuo‐tactile cross‐modal learning and attention‐based
spatiotemporal tactile texture recognition. A visuo‐tactile ser-
voing control framework in ref. [86] realise a full set of visuo‐
tactile interaction primitives on unknown objects, ranging from
aligned approach through gripping, optimal object contacts
and in‐hand manipulation, and finally surface exploration.
They used direct visual servoing to guide the robotic manip-
ulation system and perform visual tracking of the object beingF I GURE 1 6 Illustration of tactile servoing control system [80].
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manipulated. Because of this, the suggested approach differs
from prior control schemes for dexterous manipulation [87] in
that it considers the dynamics model of the robot hand's use of
tactile and visual sensory data.

Li et al. [88] focus on study, the modelling of the tool using
the robot as a new manipulator and the use of geometry‐based
parameter estimation will be the main topics. Their approach
used a visuo‐tactile controller to estimate the kinematic char-
acteristics of an articulated tool with a flap. A visuo‐tactile
controller was used to interactively manipulate the tool utilis-
ing a robotic dual arm setup. A robotic hand on one arm is
used to grab the tool's handle while the tactile sensor mounted
on the other delicately flips the flap. The tactile servoing is
used to ensure that the normal direction of the contact point is
orthogonal to the normal direction of the flap, while the visual,
guides the fingertip to follow along the contact point. The
experimental results showed positive results for the proposed
method.

To manipulate a soft deformable object using a dexterous
hand, visual data such as position, orientation, and texture, as
tactile data such as stiffness and actual contact forces acting on
the object are essential. Thus, a visual‐tactile‐based control
strategy was proposed in ref. [89] for in‐hand soft object
recognition and manipulation. The proposed method utilises a
vision system for locating the object in the environment, and
the tactile data with a Shadow Hand on a robotic arm kine-
matic information for manipulation and recognition. Once the
object is recognised, the object's softness is estimated and then
the tactile‐servo controller is used to achieve a secure grasp
and object deformation control. Initially, when the grasping
points are analysed through a ‘grasp planner’ based on the
visual data, a tactile position‐based adjustment algorithm is
executed to perform a secure grasp and if it fails to do so then
a tactile‐based force readjustment algorithm is executed on
each finger for in‐hand manipulation.

Similarly, Li et al. [86], proposed a visuo‐tactile control
framework to achieve robust grasping, in‐hand manipulation,
and exploration of objects without prior knowledge [90]. Two
KUKA LWR robots fitted with a 16 x 16 tactile sensor array are
used to demonstrate the approach. Initially, tactile sensors are
deployed to align and approach based on the visual feedback on
the object's pose. Later, the grasp is adjusted and maintained
based on tactile feedback, performs in‐hand manipulation, and
then explores the surface object by acquiring a tactile point
cloud. Furthermore, an action‐conditional deep‐learning‐based
CNN model was proposed [11]. The model constantly received
the data from the visual and tactile sensors to re‐plan actions to
achieve the best grasp. The model was trained on over 6000
trials from 65 training objects and could grasp a wide range of
unknown objects with a high success rate. However, the
approach had some limitations:

� The action‐conditional model could make only single‐step
predictions,

� Relatively coarse actions were considered rather than fine‐
grained actions, and

� The experiments were not conducted in cluttered
environments.

3.2 | Learning‐based methods

From the above section, we can conclude that the traditional
based methods include visual, tactile, and visuo‐tactile methods
that rely on position, orientation, and physical properties of an
object such as stiffness and texture to attain dexterity,
robustness, and dynamic behaviours [91], however, it lacks the
ability to adapt to the dynamic environment close to that of a
human. Learning‐based methods, on the other hand, not only
have good adaptability but also have less reliance on accurate
information and may take advantage of human experience to
adapt to the dynamic and challenging environment. The
manipulation of autonomous vehicles has been successful by
adopting learning‐based methods [92] and thus can be used for
dexterous manipulation. Yet there exists a series of challenges
for directly adopting the learning‐based methods for dexterous
or multi‐fingered hands: first, due to high action spaces and
state dimensions, second, variety of complex tasks and envi-
ronments and finally, differences in kinematic modelling (in-
cludes actuators, structures and DoF).

In this section, current studies on dexterous hand manip-
ulation based on learning‐based methods are discussed such as
Learning from Observation (LfO), Imitation Learning (IL) –
focussed more on Learning from Demonstration (LfD), and
Reinforcement Learning (RL) and no in‐depth information
about the implementation is provided.

3.2.1 | Learning from observation (LfO)

Learning from Observation (LfO) is a technique where the
dexterous hand learns the task based on the observation made
from the vision system as depicted in Figure 17. LfO is likely to
be a direct approach for dexterous manipulation due to the
high dimensionality of states and action spaces. However, the
challenge lies in object pose detection, extraction of human‐
hand skeletal data, hand pose and grasping techniques, object
and hand interactions, and manipulation learning. In ref. [93], a
multi‐stage pipeline was proposed comprising PointNet++‐
based human pose detection and refinement, hand skeletal and
pose from the glove and MLP‐based joint angle mapping. The
proposed model was able to obtain 20 joint angles for the
Allegro hand (four‐fingered).

A novel human‐inspired architecture for autonomous
grasping of various objects using a soft hand was proposed in
ref. [94]. The architecture comprised of a deep neural network
algorithm to predict the human performable grasps on target
objects based on the visuals obtained from the RGB sensor.
These predicted values are then used to select suitable reactive
primitives to produce human grasp operations. Finally, these
primitives were executed and validated using a seven DoF
KUKA arm and soft hand. The proposed approach had an
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81.1% success rate for 111 autonomous grasps. Similarly, hu-
man hand skeletal was extracted by applying the hand pose
estimator (HPE) to the depth images of the human hand. The
hand skeletal data was then combined with inverse kinematics
algorithms to teleoperate a robotic arm to do basic household
tasks proposed in ref. [95].

Furthermore, Li et al. [96] create a dataset with 400 K
paired depth pictures of the human hand, the Shadow Hand,
and its joint angles first using a BioIK solver. Later, the
Shadow Hand was manipulated through a network based on
teacher‐student with joint angle, consistency, and physical loss
solely relying on human hand depth input. To accomplish real‐
time control of an under‐actuated bionic hand in accordance
with the bending angles of human fingers, Su et al. [97] pro-
pose multi‐leap motion controllers and a Kalman filter‐based
adaptive fusion architecture.

3.2.2 | Imitation learning (IL)

Imitation learning is a promising strategy for achieving effec-
tive learning in complex, sequential multi‐fingered manipula-
tion tasks with high‐dimensional and limited state‐action
spaces. Imitation learning techniques aim to mimic human
behaviour in each task. An agent (a learning machine) is trained
to perform a task from demonstrations by learning a mapping
between observations and actions [98]. By using a single RGB
image input, a model with a genuine human grab method for
each object in a congested environment was provided by
Corona et al. [99]. The method included the predictions for
each of the 3D models and possible hand grasp types for 51
DoF hand models.

Learning from Demonstration (LfD) also known as Pro-
gramming by Demonstration (PbD) replaces the time‐
consuming process of hard programming with automatic pro-
gramming based on human demonstrations without any prior
knowledge of the object [100]. LfD can be achieved either from
kinaesthetic teaching or by immersive teleoperation. In kin-
aesthetic teaching, the human operates with the dexterous hand
or robot's body to teach certain tasks while the immersive tel-
eoperation approach uses external control devices, such as a
joystick or any wearable trackers or sensors. A detailed survey on
teleoperation‐based LfD can be found in refs. [101, 102]. Li and

Fritz [103] proposed an LfD method to teach the robotic arm
with two fingers non‐dexterous gripper to use the human tools.

A novel architecture and framework to teach the Shadow
hand the manipulation tasks demonstrated by humans wearing
a data glove was proposed in ref. [104]. The data received is fed
to the artificial neural network with trajectory optimisation to
perform various manipulation tasks. Various tasks such as
picking and placing, turning the lid, and opening a bottle using
UR10e and LBR4+ arms with Shadow Hand C5 were con-
ducted. The model could learn the control policies with min-
imal demonstration data provided. Kumar et al. [102] proposed
an approach for dexterous manipulation using object‐centric
demonstrations. This method does not rely on any wearable
devices but is purely based on the human desired demonstra-
tions using their hand. The model uses Reinforcement
Learning (RL) to optimise the control strategy for corre-
sponding grasping tasks.

Relative Entropy Q‐Learning (REQ), a universal policy
iteration approach, is developed to make use of the hetero-
geneous data distribution of the suboptimal experts and
existing policies and generates suboptimal experts via waypoint
tracking controllers for 7‐DoF bimanual robotic arms and
learn primitives for 20‐DoF robotic hands [105]. As part of
their development of a hierarchical RL method for dexterous
grasp using point cloud inputs, Osa et al. [106] adopted ini-
tialised policies, created a dataset with contact information by
human demonstration in simulation and adopted initialised
policies. The upper‐level policies select the grasp types and
locations, and based on these, the lower‐level policies generate
the final grasp motions. A state‐only imitation learning tech-
nique that does policy gradient analysis and interactively learns
an inverse dynamics model is proposed by Radosavovic
et al. [107].

3.2.3 | Reinforcement learning (RL)

Reinforcement Learning (RL) is a type of machine learning
algorithm that learns how to translate environment state to
action while maximising cumulative rewards throughout in-
teractions with the environment. RL can be divided into two
methods: model‐based and model‐free RL. The model‐based
methods require a model to train the system based on the
data while the model‐free‐based method does not rely on any
model but performs numerous trials to learn the task from
scratch. To monitor the location of a hand's fingertip and es-
timate an object's pose using Multiview CNN, Andrychowicz
et al. [108] proposed a model‐free hardware setup with 16
tracking cameras and three RGB cameras. Proximal Policy
Optimisation (PPO) and Long Short‐Term Memory (LSTM)
were the foundations of the proposed distributed RL system.
The learnt discrete rules could be applied to the Shadow Hand
for in‐hand manipulation tasks by varying physical parameters
in numerous simulated scenarios.

Model‐Predictive Control (MPC), an offline learning
approach, and online planning, which may be thought of as a
model‐based RL method, are combined to create MPC‐SAC

F I GURE 1 7 Learning from observation.

12 - KADALAGERE SAMPATH ET AL.

 25177567, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ccs2.12073 by T

est, W
iley O

nline L
ibrary on [02/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



[109]. Similarly, model‐based methods such as time‐varying
linear‐Gaussian [102] and deep neural networks [110]. Q‐
learning, a traditional solution for RL, however, Srinivasan
et al. [111] proposed a safety Q function for RL (SQRL) where
the policies are learnt in the pre‐training phase while fine‐
tuning. On the other hand, Nagabandi et al. [110] proposed
a model‐based method of iteratively training the dynamic
model with MPC. Lowrey et al. [112] offered a plan online and
learn offline technique (POLO), which uses local MPC to help
speed and stabilise global value function learning and accom-
plish direct and effective exploration based on the assumption
that the dynamics model is known to be valid.

Furthermore, the above‐mentioned architectures for
dexterous manipulation rely on RL from scratch, whereas
some researchers have combined RL with LfD which is also
known as imitation learning (IL). However, the architecture
does rely on a huge amount of data. The study [113], segre-
gated the LfD approach into two types: prior and online
knowledge. Figure 18 shows the workflow of these approaches.
As the name suggests, in the prior knowledge method, the
model had the demonstration data stored previously and acted
as a source of knowledge before applying RL. In the case of
online knowledge, the knowledge is provided when it is
required, such as during trajectory.

4 | CHALLENGES AND DISCUSSIONS

Though advancements have been made in terms of dexterous
hand development as mentioned in the dexterous hand section,
the challenge still exists in developing a cost‐effective, relatively
small size with multimodal sensory fusions, such as vision,
haptic, force etc. and the adaptability of the hand to perform
various tasks. Artificial muscles with coiling‐and‐pulling capa-
bilities and soft fingers with specialised actuators, such as shape
memory alloys (SMA's) should be further researched from the
structural perspective for compliant and safe handling. Sense
of touch is one of the main aspects of dexterous hand
manipulation and thus a thin layer of soft material with tactile
ad force feedback capabilities strategically placed on the fingers
and palm regions could increase the interactions between the
object and the hand. In terms of simulation, platforms such as
Gazebo, Mujoco, and Webots provide a safe, low‐cost, and

effective platform for data collection and testing out the the-
ories. However, modelling a new system and maintaining the
gap between the simulation and the real‐time environment is a
challenging task.

As discussed, due to the high dimensional state and action
spaces, the manipulation control and learning of a dexterous
hand is a challenge. Perceiving data from the multi‐modal
sensory inputs such as vision, force, haptic, position, velocity,
acceleration etc. from the arm‐hand system has been studied
before but lacks a general framework to acquire data. When
applying learning‐based methods, the generation of data is a
crucial task because the more data the better the system's ef-
ficiency and performance. The joints of each finger of the hand
are considered an independent component, in that case,
learning those policies is difficult. On the other hand,
considering the grasping taxonomy and muscle synergies could
help to achieve fast, robust, and efficient manipulation.

With imitation learning (IL) and learning from demon-
stration (LfD), the collection of demonstrated data is a key
challenge. A suitable retargeting method needs to be developed
to transfer the skills either from the human hand or through
wearable haptic devices to the dexterous hand and the robotic
arm to carry out specific tasks. While transferring, mapping
and pose recognition from the human hand with occlusions is
a demanding task as slight variation can cause maximum
damage given the dynamic and sensitivity of the environment.
Therefore, the design and development of a robust and
retargeting methodology and the ability to make use of dis-
torted or noisy data to effectively perform the manipulation
tasks are required.

5 | CONCLUSION

In this paper, a brief overview of human‐like robot manipu-
lation using dexterous hands is provided. The development
and technical details of various actuated and underactuated
dexterous hands with three‐to‐five fingers are reviewed. Under
the manipulation section, various manipulation strategies
broadly classified into traditional and learning‐based methods
were studied. The traditional methods using visual, tactile, and
visuo‐tactile servoing architectures were reviewed with their
pros and cons. Later, under learning‐based methods, learning
from observation (LfO), imitation learning (IL), learning from
demonstration (LfD), and reinforcement learning (RL) were
discussed. Despite the effectiveness of LfD in transferring
human skills to the robotic arm‐hand system, RL turns out to
be a better solution for dexterous hand manipulation. How-
ever, RL needs more data to train the model, this issue could
be resolved by adopting multiple (fusion) learning‐based
methods such as LfD to teach the robot arm‐hand the spe-
cific task and then introduce RL for robust adaptiveness and
efficient human‐like dexterous manipulation.
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