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Abstract  Currently, sugar snap peas are harvested manually. In high-cost countries like 
Norway, such a labour-intensive practise implies particularly large costs for the farmer. 
Hence, automated alternatives are highly sought after. This project explored a concept 
for robotic autonomous identification and tracking of sugar snap pea pods. The 
approach was based on a combination of visible (VIS) - near infrared (NIR) reflection 
measurements and image analysis, along with visual servoing. A proof-of-concept 
harvesting platform was implemented by mounting a robotic arm with hand-mounted
  sensors on a mobile unit. The platform was tested under plastic greenhouse 
conditions on potted plants of the sugar snap pea variety Cascadia using LED-lights 
and a partial shade. The results showed that it was feasible to differentiate the pods from 
the surrounding foliage using the light reflection at the spectral range around 970 nm 
combined with elementary image segmentation and shape modelling methods. The 
proof-of-concept harvesting platform was tested on 48 representative agricultural 
environments comprising dense canopy, varying pod sizes, partial occlusions and 
different working distances. A set of 104 images were analysed during the teleoperation 
experiment. The true positive detection rate was 93% and 87% for images acquired at 
long distances and at close distances, respectively. The robot arm achieved a success 
rate of 54% for autonomous visual servoing to a pre-grasp pose around targeted pods on 
22 untouched scenarios. This study shows the potential of developing a prototype robot 
for semi-automated sugar snap pea harvesting. 
 
Keywords low-cost robotics, performance evaluation, semi-automated harvesting, 
spectral reflectance, sugar snap peas 
 
 
Introduction 
 
																																																								
V. F. Tejada 
Department of Systems Engineering and Automation, Universidad Carlos III de Madrid, 28911 Leganés, 
Madrid, Spain 
Centre for Robotics and Neural Systems (CRNS), University of Plymouth, PL4 8AA Plymouth, UK 
e-mail: virginia.fernandezdetejada@plymouth.ac.uk 
 
M. F. Stoelen 
Centre for Robotics and Neural Systems (CRNS), University of Plymouth, PL4 8AA Plymouth, UK 
 
K. Kusnierek × A. Korsaeth 
Department for Agricultural Technologies and System Analysis, Norwegian Institute of Bioeconomy 
Research (NIBIO), PO Box 115, NO-1431 Ås, Norway 
 
N. Heiberg 
Gartnerhallen SA, PO Box 111, NO-1081 Oslo, Norway 



 
 
Precision Agric (2017) 18:952–972 
DOI 10.1007/s11119-017-9538-1 
The	final	publication	is	available	at	link.springer.com	

	

2	

The horticultural sector is characterized by a large number of manual tasks. This applies 
in particular to the harvest operation, where a major concern is to ensure product quality 
during the harvesting process in order to maximise the market value. As a consequence, 
the harvesting of many horticultural crops is highly labour intensive and inefficient in 
terms of both time and economy. At the same time, stakeholders indicate that there is a 
shortage of qualified and competent employees in the sector, since it does not appear to 
be perceived as an attractive career choice (McIntyre, 2014). 

In Norway, like in several other northern European countries, the high costs of 
labour are significantly weakening the competitiveness of the horticultural sector, a 
sector which is considered to have a huge potential, not least in Europe (McIntyre, 
2014). One example is the market for sugar snap peas in Norway, which is growing 
rapidly, but which relies mainly on imports from Kenya, Peru and Guatemala. Today, 
there are only six Norwegian producers of sugar snap peas for the grocery market. The 
import volume has increased from 63 t in year 2000 to 1305 t in 2015, whereas 
Norwegian production has been in the range of 40-404 t (147 t on average) over the last 
six years (Green producers cooperation, Norway 2016). The consumer shelf-price of 
packaged sugar snap peas was in 2016 around 60 NOK (6.5 EUR) per kg.  

One of the largest sugar snap pea growers in Norway is located at Torbjørnrød farm, 
and the production here is a good illustration of the labour demand related to this 
production (Fig. 1). The current harvesting operations at Torbjørnrød include a staff of 
60 pickers, the majority working from mid-July to mid-September. Most of the workers 
are foreign nationals, and the farm has sleeping quarters, a mass kitchen and large 
communal areas for these workers.	A gross estimate of the costs related to the yearly 
manual harvesting on this farm is 3 million NOK (327.000 EUR). 

 
    (a)  

 
 

    (b)  

 
 

Fig. 1.  Sugar snap peas of variety Cascadia at Torbjørnrød farm. (a) Typical field-grown environment. 
(b) A worker during the harvesting season. 

The integration and development of technology in agricultural environments holds 
the potential to make farming operations more efficient. For high-value crops destined 
for fresh consumption, there are, however, few mechanized harvesting solutions on the 
market. For sugar snap peas, the harvesting process requires dexterity and the ability to 
determine quickly the correct size of the pods and, to the authors’ knowledge, this crop 
is so far only being harvested by hand. This implies that the production is highly 
dependent on a large number of skilled workers. Agricultural robots can provide 
technological solutions to address these problems by performing selective farming tasks 
with autonomy, and with a softer touch than mechanical harvesters (Li et al. 2011). 
However, developing and integrating autonomous robotic systems into agricultural 
environments is still a challenge, due to the large variations in weather, light and terrain 
conditions. Moreover, automated agricultural solutions must deal with crops which may 



 
 
Precision Agric (2017) 18:952–972 
DOI 10.1007/s11119-017-9538-1 
The	final	publication	is	available	at	link.springer.com	

	

3	

offer large variability in terms of colour, shape and size, and frequently are partially 
occluded by leaves (Bac et al. 2014). 

Autonomous harvesting robots have been investigated and tested over recent decades 
to enhance the profitability and productivity of the horticultural sector. In the EU-
funded CROPS project, a robot for harvesting sweet peppers in greenhouses was 
constructed (Hemming et al. 2014). The system was mounted on two carrier modules, 
one with a 9 degrees of freedom (DOF) manipulator and a second with an illumination 
rig. Multiple RGB and time of flight (TOF) cameras were used. Van Henten et al. 
(2002) presented an autonomous robot for harvesting cucumbers in the Netherlands. 
Their robotic system had a 7 DOF industrial manipulator mounted onto an autonomous 
vehicle, and two vision systems were used for detection and 3D location of the fruit. 
The average picking cycle rate was 45 s per cucumber, with a success rate of 80%. In 
New Zealand (Scarfe et al. 2009), a kiwifruit-harvesting robot was developed in the 
form of an autonomous mobile vehicle equipped with four custom-designed picking 
arms achieving, with each of the four robotic arms, a cycle time of 1 s per fruit; the 
fastest picking rate ever reached by a harvesting robot. Hayashi et al. (2010) designed a 
strawberry-harvesting robot in Japan. This was a 3 DOF manipulator with an end-
effector for suction and non-suction picking operations, a machine vision system with 
LED illumination integrated, and a travelling platform, achieving a picking time of 11.5 
s. In general, these harvesting robots have high initial investment costs and thus long 
payback periods. Until now, the typical robotic system for horticulture has not passed 
the proto-type stage and made commercially available, with some exceptions (Agrobot 
SL, Huelva, Spain; F. Poulsen Engineering ApS, Hvalsø, Denmark; Wall-Ye, Mâcon, 
France). 

The overall goal of this project was to design and evaluate a proof-of-concept robot 
for semi-automated harvesting of sugar snap peas. An essential factor in robotic 
harvesting systems is the ability to accurately identify and autonomously harvest mature 
fruit. Therefore, this paper presents a method for autonomous identification and tracking 
of sugar snap pea pods on growing plants during the motion of the robot arm, as a first 
step towards developing a robust prototype for harvesting sugar snaps peas in open field 
conditions. 
 
 
Materials and Methods 
 
Spectral Reflectance Analysis of Sugar Snap Pea Plants 
 

Colour is one of the most common visual cues employed by machine vision 
algorithms in harvesting robots, especially when the fruits have colour features different 
from the rest of the environment. Particularly, the RGB space is exploited in agricultural 
vision systems, e.g. for citrus fruit harvesting (Hannan et al. 2007). A recent approach 
on broccoli heads identification employed colour-based segmentation techniques in 
combination with an all-around enclosure to completely block the sunlight (Kusuman et 
al. 2016). However, under unstructured outdoor field conditions, colour-based 
segmentation is very hard to achieve due to the huge variations in outdoor illumination 
conditions and shadows that the robot may encounter in the field (Bulanon et al. 2002; 
Hannan and Burks 2004). A first approach was attempted to directly separate the pods 
from the leaves (Stoelen et al. 2015), by using the Hue Saturation Value (HSV) colour 
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model to explore segmentation by colour in open field. Given the geometry of sugar pea 
plants, an all-around shade covering both the robot arm and the plant canopy was not 
feasible to use to significantly block the ambient illumination. Hence, a more robust 
method for a visual segmentation of the sugar snap pea pods was searched, and possible 
differences in the spectral signature between pods and leaves and stems (Kondo and 
Endo 1988) were therefore explored. To do so, measurements of sugar snap pea pods 
were performed using a spectroradiometer (ASD FieldSpec 3, ASD Inc., Boulder, 
USA), with a spectral range between 350 and 2500 nm. The reflectance spectra were 
obtained by calibrating the radiance reflected from the object with a white reference 
panel (Spectralon, Labsphere, North Sutton, USA). In order to compare the objects with 
different intensities, a min-max normalization was applied to the reflectance spectra. 
The reflectance maxima occurred at a wavelength of 850 nm and the minimum values 
were sampled at 400 and 670 nm for leaves and pods, respectively. The results showed 
clear differences in the spectral signatures of pods and leaves around 970 nm, a finding 
which was exploited in the proof-of-concept robot platform presented here. Spectral 
imaging has also been used in other studies for recognition of fruits and foliage with 
similar apparent colours, in fruits such as cucumbers (Kondo et al. 1996; Van Henten et 
al. 2002; Noble and Li 2012), green citrus (Lee 2007; Okamoto and Lee 2009, 2010) 
and grapes (Kondo et al. 1996). 
 
Proof-Of-Concept Harvesting Robot  
 
The overall idea in this project is that a fleet of semi-autonomous robot systems, 
supervised by human operators, should be available when needed by the farmer. In this 
way, the number of robotic platforms can be adapted to the size of the harvesting job, 
even for smaller farms. The study presented here aimed at developing a proof-of-
concept harvesting robot, maintaining a simple robotic technology. This was considered 
to be crucial for keeping the unit cost low, and thereby reducing the need for farmers to 
commit to investments in large and expensive hardware up front. An early proof-of-
concept harvesting robot was therefore designed and implemented for testing the 
identification and tracking of sugar pea pods, keeping the previous requirements in 
mind. The overall design consisted of a 4-wheel drive base that formed the mobile 
platform for the robotic manipulator, and a robot arm placed on the top of a static mount 
for testing purposes (Fig. 2). The cutting device was not investigated in this early 
prototype. The aim here was instead to be able to place the end-effector in the correct 
position for the cutting action, i.e. by positioning the fingers of the gripper around the 
stem of the sugar pea pod. Initial tests showed that a partial shade combined with an 
active light source had to be integrated in order to maintain similar illumination 
conditions under highly variable ambient lighting conditions, as encountered both in a 
field and in a greenhouse. 
 
Robot Arm 
 
For the robot manipulator arm, a small 5 DOF robot from Trossen Robotics (Downers 
Grove, USA) was selected, the WidowX Mark II. This low-cost and lightweight (1.5 
kg) robot arm is based on the Dynamixel daisy-chained servos, providing high-accuracy 
(≥ 0.088º) and flexible control through adjustable Proportional Integral Derivative (PID) 
parameters. The onboard microcontroller (ArbotiX Robocontroller, Vanadium Labs 
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LLC., NY, USA) is operated through the Robot Operating System (ROS) stack 
available, which greatly simplifies the integration of the whole system. The robot has a 
vertical working range of 410 mm, while carrying a maximum payload of 300 g at half-
extended configuration. The overall weight of the vision system equipment was 250 g 
including the supporting structure. 
 

(a)   

 
 

 (b) 
 

 
 

Fig. 2  Proof-of-concept of sugar snap pea harvesting robot facing sugar pea plants. (a) View of the 
complete system: mobile platform, static mount and robot arm. (b) Close-up view of the robotic arm 
without a partial cover. See Figure 5b for the partial cover used during the experiments. 
 

For the current proof-of-concept, it was decided to attempt to pre-grasp the sugar 
snap pea pods during the picking process. Thus, an infrared proximity breakout sensor 
(Vishay VCNL4000, SparkFun Electronics, Niwot, USA) was attached below the 
fingers of the 1DOF parallel gripper to measure the distance from the cutting point to 
the nearest part detected of the targeted pod within a range of 20-50 mm. This infrared 
sensor has a detection region that can be modelled as a cone-shaped zone with an 
effective angle of ±20º, and a peak intensity wavelength centred at around 890 nm.  
 
Vision System 
 
A grey-scale, USB3 vision CCD camera with enhanced sensitivity in the NIR 
(MQ013RG-E2, Ximea GmbH., Münster, Germany) was mounted below the robot wrist 
enabling an optimal perspective of the sugar snap pea pods in the scene. This 
lightweight camera (27 g) enabled the carrying capabilities of the robot arm and 
provided high-resolution images (up to 1.3 megapixel) at a maximum frequency of 60 
frames per second, which was sufficient to maintain real-time performance. 

The camera was equipped with a lens (Theia SY110M, Theia Technologies LLC., 
Wilsonville, USA) allowing objects in the scene like pods, stems and leaves to remain 
in sharp focus without any lens adjustment, while the robot approached to the targeted 
pods from a distance of about 100-120 mm. The selected lens also offered a wide field 
of view without distortion (up to 130º diagonally), thus covering large regions of 
interest. Its infrared (IR) corrected optics for use with LED illumination up to 950 nm 
ensured high transmission of the NIR light around 940 nm. A long-pass filter (Knight 
Optical Ltd., Harrietsham, UK) was attached to the front part of the lens. This filter, 
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with a cut-on wavelength placed at 715 nm, removes the radiation in the ultraviolet and 
visible parts of the spectrum, transmitting the IR radiation only. The filter enabled the 
targeted wavebands centred at 850 nm and 940 nm to fall into the maximum 
transmission region. This region ensured that approximately 90% of the NIR light 
incident was transmitted to the imaging sensor. 

To illuminate the scenes, four narrow-band IR LED modules (Intelligent LED 
Solutions Ltd., Berkshire, UK) were placed in pairs on each side of the optical filter. 
Each pair consisted of one LED module with a centroid wavelength at 850 nm (ILH-
IO01-85SL-SC201-WIR200) and one with a centroid wavelength at 940 nm (ILH-
IO01-94SL-SC201-WIR200). Both types of LEDs provide a radiance angle of ±45º, and 
about 1 W of optical power at the operating current of 1 A. 

In order to minimize the effect of changing ambient light conditions, a partial shade 
of cardboard was used during the experiments to cover the robot arm and its workspace 
(Fig. 5b). Thus, the plant canopy remained out of the limits of the shade. An equivalent 
shade would be required for a working in-field prototype. A similar technique has also 
been employed with success for robotic apple harvesting (Baeten et al. 2008). 
 
Mobile Platform 
 
As a mobile base for the robot, a custom-designed platform (Superdroid Inc., Fuquay-
Varina, USA) was used. The weight of the aluminium mobile platform was 
approximately 30 kg, including four 24V DC motors and two 12V-18Ah sealed lead-
acid batteries. The maximum allowed payload was about 30 kg, and it could reach a 
maximum forward speed of 6 km/h (with the selected transmission). The mobile base 
was driven by all four motors, with two left and two right motors coupled together in 
pairs. Turning occurred by differential steering, i.e. by giving different speed to the left 
and right motor pairs. 
 
Sugar Snap Pea Pod Identification and Tracking 
 
The automated harvesting process should be designed to handle open field conditions. 
In the field, the light conditions are highly varying, and the pods may be moving 
slightly when exposed to wind. Additionally, the effect of uneven soils in outdoor 
agricultural scenarios commonly generate vibrations in the robotic system, making quite 
difficult to achieve accurate grasping in the order of millimetres over the life-time of the 
robot without recalibrating sensors periodically. To address these challenges, a visual 
servoing method was therefore explored by employing an imaging sensor mounted 
below the robot end-effector. Such a method implies that the pixel position in the output 
image can directly be related to Cartesian movements of the gripper, and thereby 
updating the target location while the robot arm approaches the fruit. This approach has 
been also applied for robotic orange harvesting (Mehta and Burks 2014) and sweet-
pepper harvesting (Barth et al. 2016). An architecture for visual servoing based on the 
open source robot middleware ROS (version Indigo, C++ and Python) and the image 
processing library OpenCV (version 2.4.9, Python) running on Linux UBUNTU 
(version 14.04) was utilized here. The visual servoing ROS nodes were operated 
through the ArbotiX micro-controller ROS stack, with active light control and a custom 
inverse kinematics module (Fig. 3). 
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The methodology employed for identifying sugar snap pea pods was mainly based on 
elementary segmentation methods such as global thresholding, as well as edge detection 
algorithms and shape modelling (Fig. 4). The identification of the pods was achieved by 
illuminating the scene with alternating LED light with 850 nm and 940 nm in 
consecutive cycles of 150 ms, and acquiring one image for each separate light period. 
The frames grabbed using the filtered imaging camera were then combined to construct 
an index image, by dividing the image taken at 940 nm by the image taken at 850 nm, 
pixel by pixel. 

 
 

Fig. 3  Overview of the architecture used for the visual servoing of the robot arm. 𝑥 is the Cartesian 
velocities of the hand, 𝑞 the joint angles 
 

Given the index image, a clear separation between pods and the other parts of the 
plant was possible, but this required an optimal threshold value. The LED lighting 
system caused local illumination differences in the targeted scene when the robot was 
commanded towards the target. Therefore, the key concept in the segmentation 
approach considered here was to maintain a similar brightness (level of grey) over the 
robot trajectory in the acquired index images. For this purpose, a simple proportional 
controller was implemented to modify the exposure setting on the fly, using the 
brightest spot of the 850 nm image as reference. Since the exposure setting was 
automatically adjusted over time, an empirically determined global threshold value was 
predefined (100) for all the experiments. 

The result obtained by the reflection-based method was further refined by analysing 
the texture in the images using fast algorithms for edge detection, available in OpenCV 
(Bradski and Kaehler 2008). One of the main features of the sugar pea pods is their 
relatively smooth texture compared with the leaves of the plant. This characteristic 
seems especially true in the horizontal direction, normal to gravity, and may thus be 
used as an additional filter, by removing regions with large amounts of horizontal lines 
(vertical gradients). For the edge detection, a Sobel algorithm was used, blending 
vertical and horizontal directions with equal weights (0.5). It is important to note that 
the parameters required for this algorithm can be difficult to determine so they were 
selected to be suitable for a range of different local illumination situations (depending 
on the active light configuration). 

Considering the shape of the sugar snap pea pods, their image projection in 2D could 
be reasonably well modelled as elongated ellipses in the vertical direction. Such ellipses 
were then modelled by fitting them to the contour of the blobs obtained in the previous 
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imaging processing step. To distinguish whether an ellipse could be considered suitable 
to represent a sugar snap pea pod, multiple geometrical parameters had to be satisfied 
for positive identification (empirically determined parameter values in parenthesis): a) 
the minimum and the maximum aspect ratio of the major and minor axes of the ellipse 
(0.05 and 0.5, respectively), b) the minimum overlapping area of the contoured region 
and the ellipse area (0.60), c) the maximum angle of the major axis with the vertical 
(65º), and d) the minimum area of the ellipse (800 pixels). 

After the ellipse discrimination steps, the tracking process required that only a 
suitable ellipse within the field of view of the camera was selected. If several suitable 
ellipses were detected, the largest ellipse was selected as target. The robot arm 
approached the targeted ellipse making the difference in pixels between the actual 
position of the centre of the ellipse in each frame and the selected aim position in the 
image. In the case where no suitable ellipse was detected, the robot would stop 
performing visual servoing until an appropriate ellipse was detected in the scene. In the 
final step, the infrared proximity sensor measured the distance from the end-effector to 
the targeted ellipse. The tracking process stopped when the difference between the 
cutting point of the end-effector and the selected pod was lower than a predefined 
threshold (3mm). 
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Fig. 4  Flowchart of the methodology employed for identifying sugar snap pea pods. The main 
OpenCV functions (cv2 prefix) are included. All parameter values were empirically adjusted. 

Testing and Evaluation 
 
Testing the actual proof-of-concept on sugar snap pea plants took place over a period of 
several weeks, in the spring of 2015 at NIBIO Apelsvoll research station, located in SE 
Norway. Test plants were produced by putting 2 seeds of variety Cascadia into pots, 
being about 210 mm in diameter, and containing 5 l of fertilized soil. The pots were also 
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fertilized and watered regularly according to demand, and the plants were tied up in 
supporting strings when they reached a height of about 150 mm. About 10 pots were 
planted each week from beginning of March onwards, to ensure the presence of plants 
in the right development stage for testing.  

The robotic system was tested under plastic greenhouse conditions to reduce the 
exposure of sugar snap pea plants to low temperatures that might adversely affect their 
normal growth and development. Testing conditions involved wide variations in 
outdoor illumination, from sunny to overcast, which heavily influenced indoor 
illumination. While performing the tests, the minimum temperature recorded in the 
greenhouse was 8.5ºC and the maximum temperature reached 34.5ºC. The relative 
humidity ranged from 24.5% to 80.5%. 
 
Experimental Setup 
 
A modular carrier was constructed to mimic a row of sugar snap pea plants as normally 
found in the field. The sugar snap pea testbed included a movable bench mounted on the 
carrier with a triangular housing attached that could be effectively adapted for eight pots 
(Fig. 5a). This testbed allowed both pods hanging individually or in clusters, and leaves 
and stems merging together to produce the typical fruit distribution, dense foliage and 
occlusions encountered in real growing environments. 
 
   (a)  

 

    (b) 
 

 
 

Fig. 5  Experimental setup at NIBIO Apelsvoll. (a) Sugar snap pea modular carrier inside the plastic 
greenhouse. (b). Moving desk carrying the partial shade and equipment (laptop, spacenavigator and 
power supply). The partial shade is covering the robot arm and its working environment  
 
While the carrier was used to facilitate the transportation of the pots in the greenhouse, 

a moving desk was employed to drive the robot arm with its shade and the necessary 
equipment (laptop, joystick and power supply) along a row of test plants to perform the 
experiments. Considering these practical reasons, the 4-wheel platform was not 
included as part of the experimental setup. The input device used for manual control of 
the robot was a SpaceNavigator 6 DOF joystick (3Dconnexion GmbH., Munich, 
Germany). 
 
Teleoperation Experiment 
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A first experiment was performed to quantify the detection rate of the pod identification 
method proposed (true positive, false positive and false negative rate summarized in 
Table 1), while simulating sugar snap pea pod picking tasks under teleoperation. The 
experimental procedure consisted of manually moving the robot arm using the 
SpaceNavigator joystick from an initial resting position in front of the plant canopy to 
the grasping position of the selected pod. The simulated picking tasks were performed 
on 26 untouched agricultural scenarios comprising 104 pod discrimination images. The 
testing scenarios were distributed over the sugar snap pea testbed, involving 
configurations of pods, leaves and stems that typically occur in field-grown 
environments such as clusters and partial occlusions. Four pod discrimination images 
(640x480) were acquired at different working distances per each scenario (see 
Trajectory range in Table 1) for post-processing analysis. The working distances were 
manually measured from the selected pod location in the canopy while the robot arm 
was tele-operated towards the targeted pods. 
 
Visual Servoing Experiment  
 
A second experiment was conducted to evaluate the performance of the visual servoing 
architecture described in Figure 4. The visual servoing approach implied that the 
location of the centre of a tracked pod in the visual field of the camera was used to 
autonomously command the robot arm towards the pod position. The relative position 
of the robot arm with respect to the targeted pod was measured using the proximity 
sensor attached to gripper. The simplified picking tasks performed consisted of 
automatically moving the end-effector of the robot from an initial resting position, 
located at the maximum detection distance measured from the pod’s location on the 
plant canopy (see MDD metrics in Table 2), to a pre-grasping position with the fingers 
around the stem of a targeted pod. The overall execution cycle of the visual servoing 
algorithm presented in Figure 4 was running at approx. 5 Hz. VGA resolution images 
(640x480) were taken at each frame rate during the trajectory performed by the robot 
arm. The testing environment involved 22 untouched agricultural scenarios distributed 
over the sugar pea testbed, with varying pod sizes and surrounding foliage normally 
encountered in real growing scenarios. An attempt was judged as successful when the 
fingers of the gripper were positioned around the stem of a targeted sugar pea pod 
within a range of 20% of the total length of the pod, measured from the junction of the 
peduncle and the pod. In addition, the cycle time chosen to consider a trial successfully 
accomplished could not exceed 15 s. This choice was based on the low sample rate of 
the execution cycle selected for performing these trials. 
 
 
Results 
 
Spectral Reflectance Analysis of Sugar Snap Pea Plants 
 
Comparing the reflectance spectra of pods and leaves, the most significant differences 
in the reflectance spectra were found centred at around 970 nm (Fig. 6). This waveband 
is correlated with water content of the target. Since pods contain more water than leaves 
and stems, an empirically determined threshold value could be used to discriminate the 
pods from the other plant parts. 
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(a)  

 
 

    (b)  
 
 
 

 

Fig. 6.  Spectral reflectance analysis of sugar peas. (a) Normalized spectral reflectance of a pod (dashed 
line) and a leaf (solid line). The largest difference occurs in the 970 nm water absorption feature. (b) 
Experimental setup involving a spectro-radiometer point, a white reference panel and a sugar pea pod. 

 
Effects of Global Threshold and Exposure Settings 
 
The influence of the highly variable ambient illumination in the greenhouse was 
successfully mitigated by introducing a partial shade to cover the working environment 
of the robot arm during both experiments. However, setting a predefined global 
threshold value to separate pods from leaves typically failed in most preliminary testing 
scenarios (Fig. 7). 
 

 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

(a) (b) (c) 

Fig. 7 Example of output images taken at different distances where pods are unsuccessfully 
discriminated from leaves and stems. Global threshold value was predefined (80) and the exposure 
setting was fixed (55) while the robot was approaching the targeted pod. (a) Index image (upper) and 
thresholding image (bottom) at 90 mm, (b) index image (upper) and thresholding image (bottom) at 45 
mm and (c) index image (upper) and thresholding image (bottom) at 30 mm 
 

This was particularly due to the influence of the LED lighting intensity on pods and 
leaves inside the partial shade. That is, the closer the robot was to the plant canopy, the 
more illuminated the detected pods and leaves around them were, providing over-
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exposed output images. Hence, a global threshold value set by default in combination 
with fixed exposure times caused poor discrimination between pods and other plant 
parts at close ranges. Overcoming this critical factor was essential to assure a successful 
harvesting operation. 

This promoted the use of a more appropriate approach that automatically adjusted the 
exposure setting to handle local illumination variations inside the partial shade. As can 
be observed in Figure 8, modifying exposure times in real-time offered slight variations 
of the intensity of the greyscale index images taken at different distances. Therefore, 
employing a predefined global threshold was feasible now. Note that, in this case, only 
pods were highlighted from the background, whereas leaves and stems remained 
undetected over the whole trajectory of the robotic arm. 
 

 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

(a) (b) (c) 

Fig. 8  Example of output images taken at different distances with automatic exposure control. A global 
threshold value was set by default (100). The exposure setting was automatically adjusted when the 
robot approached to targeted pods. (a) Index image with exposure setting of 55.6 (upper) and 
thresholding image (bottom) at 50 mm. (b) Index image with exposure setting of 39.5 (upper) and 
thresholding image (bottom) at 30 mm. (c) Index image with exposure setting of 25.2 (upper), and 
thresholding image (bottom) at nearby cutting point. 
 

Edge Detection and Ellipse Modelling 
 
The smooth texture of the pods, in comparison to the leaves, was exploited to further 
improve the pod detection. This was done through the use of an edge detection 
algorithm. Individual sugar pea pods could quite robustly be identified by fitting 
ellipses to the contours retrieved after applying a threshold on the index image, 
removing areas with a large amount of texture, and filtering based on geometrical 
characteristics following the steps described in Figure 4. Figure 9 provides various 
examples of sugar snap pea pod identification for different testing scenarios. If an 
ellipse was discriminated as suitable for the tracking process, it was represented in 
green in the output image, otherwise in red. When more than one suitable ellipse existed 
in the scene, the largest ellipse appeared in green, while the remaining ellipses 
representing potential targets were shown in orange.  
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(a) (b) (c) 

Fig. 9  Pod identification stage. Ellipses were fitted to contours (dark red line) and filtered based on 
multiple parameters: aspect ratio, minimum overlapping area, maximum orientation angle and 
minimum area. (a) Suitable ellipse: edge detection image (upper) and pod discriminated in green 
(bottom). (b) Suitable ellipses: edge detection image (upper) and pods discriminated in green (larger) 
and orange (smaller). (c) No suitable ellipse: edge detection image (upper) and overall shape of a 
cluster discriminated in red due to overlapping area criteria mismatched (bottom) 
 

Performance Evaluation during Teleoperation Experiment 
 
The results of the teleoperation experiment showed the potential for using the approach 
proposed to successfully identify sugar snap pea pods from the background. Figure 10 
shows two typical scenes at different distances involving sugar snap pea plants, where 
pods are hanging vertically in a cluster and surrounded by leaves and stems. 
 
(a) 

 

 
 

 

 
 

 

 
 

(b)  

 
 

 

 
 

 

 
 

Fig. 10  Example of images taken from 2 testing scenes (true positive). (a) First scenario at 70 mm: 
index image with exposure setting of 85.9 (left), thresholding image (centre) and pod detection image 
(right). (b) Second scenario at 50 mm: index image with exposure setting of 39.3 (left), thresholding 
image (centre) and pod detection image (right) 
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Since the influence of ambient illumination was effectively controlled with a partial 
cover, predefined values were empirically determined and applied to all the testing 
scenes. Moreover, the adjustment of the exposure setting in real-time meant that index 
images taken from different scenarios at different distances had similar brightness (Figs. 
10a and 10b, left plots). Hence, a predefined global threshold was used to successfully 
distinguish pods from their surrounding foliage independently of the working distance 
(Figs. 10a and 10b, centre plots). The shape of the pods was then modelled as elongated 
ellipses and correctly classified into suitable fruits by the discrimination method, where 
larger pods were identified in green, while smaller ones were represented in orange 
(Figs. 10a and 10b, right plots). 

However, some limitations were encountered while conducting these trials. One 
major drawback of the robot design was related to the LED illumination rig. The 
lighting system could easily be occluded by the outer leaves of the plants, providing 
over-exposed areas in the output images where leaves happened to block the LED 
sources (Fig. 11a). When this occurred, the global thresholding step could not 
discriminate over-exposed leaves (and/or stems) from pods (Fig. 11a, centre plot).  
 
(a) 

 

 
 

 

 
 

 

 
 

(b)  

 
 

 

 
 

 

 
 

Fig. 11  Sample images of limited performance encountered in testing scenarios. (a) Occlusion by 
leaves at 30 mm: index image (left), thresholding image (centre) and pod detection image (right). (b) 
Overlapping criteria mismatched (false negative) at 25 mm: index image (left), thresholding image 
(centre) and pod detection image (right) 
 

Nevertheless, the ellipses discrimination steps based on geometrical characteristics 
(see Fig. 4) typically identified and modelled the shape of the surrounding leaves and 
stems as no suitable ellipses in red, consequently rejecting them from the further 
tracking process (Fig. 11a, right plot). Another important shortcoming regarding the 
methodology employed for the pod identification can be observed in Figure 11b. In this 
example, the ellipses discrimination steps in the algorithm were not capable of 
discriminating each individual pod when they appear close together in a cluster, i.e. 
with overlay. That is, only the overall shape of the cluster could be retrieved and thus 
the overlapping area criterion on the region of the pods and the fitted ellipse was not 
satisfied (Fig. 11b centre and right plots). This implies that multiple pods close together 
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in a cluster are susceptible to be classified as not suitable for the picking process (false 
negative) with the current method (see Overlapping clusters metrics in Table 1). 

The performance evaluation of the teleoperation experiment on a total of 104 
acquired images is summarized in Table 1. To assess the contribution of the working 
distance while the robot was approaching to the targeted pods, the dataset images were 
divided into 2 different trajectory ranges comprising 52 images for each distance range. 
Long-range images correspond with measures taken between 80 mm and 45 mm, and 
close-range images include results obtained between 45 mm and 10 mm, measured from 
the pod location. The total number of pods detected for each trajectory range is 
presented. True positive represent the number of pods successfully discriminated (Fig. 
9) while false negative indicates the quantity of suitable pods for picking misclassified, 
involving single pods and overlapped pods in clusters (Fig. 10b). False positives 
implied false detections of pods when certain areas of the foliage were recognised as 
suitable ellipses. 
 
Table 1  Metrics for performance evaluation during teleoperation experiment 
 

Trajectory 
range 

Pods 
detected 

True 
positive 

False negative 
False 

positive Individual 
pods 

Overlapping 
clusters 

80-45 mm 137 128 5 4 4 
Proportion 

(%) 100% 93% 4% 3% 3% 

45-10 mm 164 143 6 15 7 
Proportion 

(%) 100% 87% 4% 9% 4% 

 
The true positive rate was 93% over the total number of pods detected within the long-
distance range whereas, for close-range distances, the methodology proposed achieved a 
success rate of 87%. To ensure that the LED lighting rig was not completely occluded 
by the outer leaves of the canopy, the closest images were taken at a minimum distance 
of 10 mm measured from the position of the selected pod in the canopy. 
 
Performance Evaluation during Visual Servoing Experiment 
 
The results of the performance evaluation of the visual servoing experiment can be seen 
in Table 2. An attempt to pre-grasp a targeted pod from an initial robot pose was made 
for each agricultural scenario. Length represents the dimension of the targeted pod 
along the vertical direction whereas Cutting Range (CR) represents the 20% of the total 
length of the targeted pod, measured from the junction of the peduncle and the pod. To 
consider an attempt successful, the fingers of the gripper should be positioned around 
the stem of the targeted pod within this range. Additionally, the execution time was 
limited to 15s to judge an attempt as successfully accomplished. Maximum Detection 
Distance (MDD) indicates the maximum detection distance of the targeted pod 
measured from its location on the plant canopy. This metric also corresponds with the 
initial resting position of the robot arm for each trial. 
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Table 2  Metrics for performance evaluation of visual servoing trials (lengths in mm, and time in s). CR - 
Cutting Range (20% of Length), MDD - Maximum Detection Distance 
 

Scenario Length CR MDD Execution time Attempt 

1 80.3 16.0 50 4.8 success 

2 77.2 14.4 50 >15 fail 
(false negative) 

3 64.1 12.8 70 8.3 success 

4 55.6 11.1 50 9.1 success 

5 66.1 13.2 60 >15 success 

6 76.2 15.2 65 10.6 success 

7 77.3 15.5 50 7.4 success 

8 82.8 16.6 60 >15 fail 
(blocked illumination system) 

9 75.1 15.0 60 >15 fail 
(blocked illumination system) 

10 56.2 11.2 30 2.9 success 

11 70.4 14.1 75 7.8 success 

12 62.6 12.5 65 >15 fail 
(blocked illumination system) 

13 62.4 12.5 65 >15 fail 
(blocked illumination system) 

14 65.0 13.0 60 >15 fail 
(blocked illumination system) 

15 68.2 13.6 50 3.6 success 

16 55.5 11.1 55 10.5 success 

17 62.3 12.5 65 6.6 success 

18 57.5 11.5 60 >15 fail 
(blocked illumination system) 

19 66.3 13.3 60 14.9 success 

20 81.3 16.3 40 >15 fail 
(false negative) 

21 62.3 12.4 70 8.3 success 

22 70.0 13.4 50 >15 fail 
(blocked illumination system) 

 
The success rate of pre-grasping was 54%, as 12 out of 22 trials were successfully 

accomplished (Table 2). Of the 10 unsuccessful approaches, the illumination system 
was totally blocked by the outer leaves of the plant canopy in 8 of them. In the 
remaining 2 cases, multiple pods occurred in a cluster, leading to mismatched 
overlapping areas (false negative). For all failed attempts, the tracking process stopped 
before reaching the targeted pod, exceeding thereby the execution time limit. No false 
positives were detected during these trials. 
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Discussion 
 
Sugar Pea Pod Identification 
 

In this study, colour segmentation analysis could not be utilized as a reliable 
discriminatory factor, since sugar pea pods, leaves and stems did not show any 
practically useful chromatic differences. Thus, the presence of the water absorption 
band at 970 nm in green fruits was investigated here. The results revealed that the 
infrared spectral reflectance constitutes an alternative and robust method to improve the 
identification of sugar pea pods to an acceptable level. The teleoperation experiment 
showed that the true positive detection rate of sugar snap pea pods was 93% for images 
acquired at long distances and 87% for images taken at close distances. 

A predefined global threshold on an infrared index image for segmentation of the 
spectral reflectance data was chosen for the experiments. Using global thresholding is a 
common approach for segmentation of visual cues, such as spectral reflectance 
(Okamoto and Lee, 2009) and colour (Tanigaki et al. 2008; Bulanon et al. 2009; Li et al. 
2010). It has been stated that predefined global thresholding is likely to fail in most 
scenarios (Nalwa 1993). In the methodology proposed, however, the use of adjusted 
exposure times, combined with a predefined global threshold value, could be employed 
to effectively mitigate the changing local lighting conditions inside the partial shade. 
Moreover, the methodology tested here based on the spectral response is very sensitive 
to ambient illumination conditions (Yuan et al. 2010). Considering the variable lighting 
conditions normally encountered in the plastic greenhouse, it should be noted that the 
success of this approach strongly relied on the use of a partial shade to cover the 
operating environment of the robotic system during the experiments. 

Complementary to the spectrally based segmentation, texture appearance (i.e. edge 
detection) was utilized to improve the separation between pods and surrounding leaves. 
An observation made on many horticultural crops was thereby utilized. That is, on the 
smooth skin of the fruit few edges can be detected, whereas high edge density 
represents the leaf area (Zhao et al. 2005; Okamoto and Lee 2010; Rakun et al. 2011). 
Given the 2D projection of sugar pea pods, modelling the shape as elongated ellipses 
seemed to be an appropriate choice to represent the targets in a robust way. Approaches 
using shape properties are increasingly utilized in robotic horticultural operations 
(Jimenez et al. 2000; Hayashi et al. 2002; Ling et al. 2004; Kong et al. 2010). 

A major constraint of the current method was its limited ability to handle situations 
when pods are represented with overlapped features in 2D images such as clusters. 
Furthermore, the closer the gripper was to the clusters, the lower the performance was 
due to the increased size of the overall fitted ellipse that led to overlapping criteria 
mismatching (false negatives, see Table 1). A typical situation encountered in a sugar 
snap pea field is fruits with ill-defined positions, free form canopies and non-rigid plant 
structures that can accurately be approximated by simple geometrical models. In 
particular, sugar snap pea pods are widely distributed over the plant canopy causing 
overlapping leaves, stems and pods. Such partial occlusions typically encountered in 
this crop are challenging to predict given the stochastic nature of the agricultural setting. 
To address this problem, recent approaches have focused on 3D analysis of shape 
involving depth data to obtain optimal discrimination and location of fruits when an 
overlapping situation occurs. Thanh Nguyen et al. (2016) investigated the potential of 
combining colour imaging (RGB) and dimensional shape information (3D) using a 
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RGB-D camera for accurate detection of apples on trees, whereas Barnea et al. (2016) 
provided a shape-based detection of significantly occluded fruits in 3D space regardless 
of their colour. 

 
Robot Design and Sensing 
 
The robotic system developed enabled a first proof-of-concept, as intended, but the 
testing also highlighted factors which need to be addressed to achieve an improved 
overall performance. One of the main limitations when conducting the experiments was 
the limited reachability of the robotic arm, along with the short and broad fingers of its 
gripper. The picking range covered only a small area of the sugar snap pea plants, so 
that many pods were beyond the reach of the gripper. Hence, there is likely a need to 
extend the size of the manipulator arm, and to integrate the arm with a lift mechanism to 
handle the full range of the bushes. A custom-designed gripper more suitable for 
grasping task should also be developed in conjunction with the pod identification and 
tracking processes. 

A first implementation of the visual servoing architecture was employed for tracking 
harvest-ready sugar snap pea pods, using the results obtained during the discrimination 
process. Additionally, the robotic system will need to be completed by including a 3D 
imaging sensor (e.g. TOF cameras) mounted on the base of the robot platform to 
automatically drive the guidance of the manipulator to the initial position for the visual 
servoing. In Kazmi et al. (2014), the suitability of using TOF cameras for depth imaging 
under different illumination conditions was analysed. One way forward could consist of 
implementing motion planning tasks to ensure a collision-free path to rapidly approach 
the gripper at regions of interest where there is a high probability of target pods, and to 
safely transfer and release the picked sugar pea snap pods into a collection mechanism. 

The findings revealed that the active illumination system implemented represented a 
major limitation while conducting teleoperation and visual servoing tracking trials. Both 
the number of pods detected and the overall performance of the tracking process were 
adversely affected by inhomogeneous illumination of the lighting system, as seen in 
Table 2. Also, the LED lighting system was insufficient to mitigate the ambient 
illumination coming from the other side of the plant, which was not covered by the 
partial shade, especially under sunlight conditions. Thus, considerable variations in the 
cycle time and MDD metrics throughout the testing scenarios can be observed in Table 
2. This also explained the decreased number of pods detected for long-range distances 
as shown in Table 1. Moreover, the adjustment of the parameter values in the algorithm 
was influenced by the illumination variations presented in the testing scenarios. 
Therefore, a high brightness LED lighting system that provides 360º uniformity and 
larger coverage in the field of view of the camera is required. It should be pointed out 
that both the robot arm and the visual servoing algorithm can be run at a much higher 
frequency rate than what was used here (5 Hz), likely leading to shorter execution 
times. This can be achieved through, for example, optimized C code, replacing the 
prototype Python code used here, and by taking advantage of Graphical Processor Units 
(GPU). 
 
 
Conclusions 
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A proof-of-concept harvesting platform was developed to evaluate the performance of 
autonomous identification and tracking of sugar snap pea pods under representative 
agricultural environments. The combination of VIS-NIR reflection analysis, global 
thresholding, image-based texture analysis and shape modelling appears to be a suitable 
method for discriminating between sugar snap pea pods and the surrounding foliage, 
such as leaves and stems. This method, however, relies on a partial shade and an active 
light source system that minimize the effect of changes in ambient light conditions. In 
the current study, a global threshold combined with exposure times adjusted in real-time 
were used to successfully distinguish pods from leaves independently of the working 
distance of the robotic arm. Additionally, shape modelling analysis revealed that fitting 
ellipses to pod contours using geometrical parameters can be effectively applied for pod 
identification in different plant canopy scenarios. However, discrimination of individual 
pods using this approach was limited by the presence of partial occlusions in such 
agricultural scenes. Given the dense foliage environment, a more robust image 
processing method that incorporates spatial location is crucial for optimal pod 
identification and location. A set of 104 images were analysed during teleoperation 
experiments achieving a true positive rate of 93% and 87% for long distance images 
(80-45 mm) and close distance images (45-10 mm), respectively. The success rate of the 
visual servoing trials on 22 untouched environments was 54%. Findings from the 
teleoperation and visual servo control experiments represent an opportunity to improve 
the pod detection and tracking methodology and the LED illumination system to 
enhance the automated harvesting operation. The overall performance achieved in this 
study showed promising results in developing a harvesting prototype for field-grown 
conditions. 
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