1,166 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Deep Drone Racing: From Simulation to Reality with Domain Randomization

    Full text link
    Dynamically changing environments, unreliable state estimation, and operation under severe resource constraints are fundamental challenges that limit the deployment of small autonomous drones. We address these challenges in the context of autonomous, vision-based drone racing in dynamic environments. A racing drone must traverse a track with possibly moving gates at high speed. We enable this functionality by combining the performance of a state-of-the-art planning and control system with the perceptual awareness of a convolutional neural network (CNN). The resulting modular system is both platform- and domain-independent: it is trained in simulation and deployed on a physical quadrotor without any fine-tuning. The abundance of simulated data, generated via domain randomization, makes our system robust to changes of illumination and gate appearance. To the best of our knowledge, our approach is the first to demonstrate zero-shot sim-to-real transfer on the task of agile drone flight. We extensively test the precision and robustness of our system, both in simulation and on a physical platform, and show significant improvements over the state of the art.Comment: Accepted as a Regular Paper to the IEEE Transactions on Robotics Journal. arXiv admin note: substantial text overlap with arXiv:1806.0854

    A practical multirobot localization system

    Get PDF
    We present a fast and precise vision-based software intended for multiple robot localization. The core component of the software is a novel and efficient algorithm for black and white pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost cameras, the core algorithm is able to process hundreds of images per second while tracking hundreds of objects with a millimeter precision. In addition, we present the method's mathematical model, which allows to estimate the expected localization precision, area of coverage, and processing speed from the camera's intrinsic parameters and hardware's processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions is verified in several experiments. Apart from the method description, we also make its source code public at \emph{http://purl.org/robotics/whycon}; so, it can be used as an enabling technology for various mobile robotic problems

    Vision-based Learning for Drones: A Survey

    Full text link
    Drones as advanced cyber-physical systems are undergoing a transformative shift with the advent of vision-based learning, a field that is rapidly gaining prominence due to its profound impact on drone autonomy and functionality. Different from existing task-specific surveys, this review offers a comprehensive overview of vision-based learning in drones, emphasizing its pivotal role in enhancing their operational capabilities under various scenarios. We start by elucidating the fundamental principles of vision-based learning, highlighting how it significantly improves drones' visual perception and decision-making processes. We then categorize vision-based control methods into indirect, semi-direct, and end-to-end approaches from the perception-control perspective. We further explore various applications of vision-based drones with learning capabilities, ranging from single-agent systems to more complex multi-agent and heterogeneous system scenarios, and underscore the challenges and innovations characterizing each area. Finally, we explore open questions and potential solutions, paving the way for ongoing research and development in this dynamic and rapidly evolving field. With growing large language models (LLMs) and embodied intelligence, vision-based learning for drones provides a promising but challenging road towards artificial general intelligence (AGI) in 3D physical world

    Vehicle recognition and tracking using a generic multi-sensor and multi-algorithm fusion approach

    Get PDF
    International audienceThis paper tackles the problem of improving the robustness of vehicle detection for Adaptive Cruise Control (ACC) applications. Our approach is based on a multisensor and a multialgorithms data fusion for vehicle detection and recognition. Our architecture combines two sensors: a frontal camera and a laser scanner. The improvement of the robustness stems from two aspects. First, we addressed the vision-based detection by developing an original approach based on fine gradient analysis, enhanced with a genetic AdaBoost-based algorithm for vehicle recognition. Then, we use the theory of evidence as a fusion framework to combine confidence levels delivered by the algorithms in order to improve the classification 'vehicle versus non-vehicle'. The final architecture of the system is very modular, generic and flexible in that it could be used for other detection applications or using other sensors or algorithms providing the same outputs. The system was successfully implemented on a prototype vehicle and was evaluated under real conditions and over various multisensor databases and various test scenarios, illustrating very good performances

    Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives

    Full text link
    Thanks to the augmented convenience, safety advantages, and potential commercial value, Intelligent vehicles (IVs) have attracted wide attention throughout the world. Although a few autonomous driving unicorns assert that IVs will be commercially deployable by 2025, their implementation is still restricted to small-scale validation due to various issues, among which precise computation of control commands or trajectories by planning methods remains a prerequisite for IVs. This paper aims to review state-of-the-art planning methods, including pipeline planning and end-to-end planning methods. In terms of pipeline methods, a survey of selecting algorithms is provided along with a discussion of the expansion and optimization mechanisms, whereas in end-to-end methods, the training approaches and verification scenarios of driving tasks are points of concern. Experimental platforms are reviewed to facilitate readers in selecting suitable training and validation methods. Finally, the current challenges and future directions are discussed. The side-by-side comparison presented in this survey not only helps to gain insights into the strengths and limitations of the reviewed methods but also assists with system-level design choices.Comment: 20 pages, 14 figures and 5 table
    • …
    corecore