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Abstract We present a fast and precise vision-based
software intended for multiple robot localization. The
core component of the software is a novel and efficient
algorithm for black and white pattern detection. The
method is robust to variable lighting conditions, achieves
sub-pixel precision and its computational complexity is
independent of the processed image size. With off-the-
shelf computational equipment and low-cost cameras,
the core algorithm is able to process hundreds of images
per second while tracking hundreds of objects with mil-
limeter precision. In addition, we present the method’s
mathematical model, which allows to estimate the ex-
pected localization precision, area of coverage, and pro-
cessing speed from the camera’s intrinsic parameters and
hardware’s processing capacity. The correctness of the
presented model and performance of the algorithm in
real-world conditions is verified in several experiments.
Apart from the method description, we also make its
source code public at http://purl.org/robotics/whycon;
S0, it can be used as an enabling technology for various
mobile robotic problems.
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1 Introduction

Precise and reliable position estimation remains one of
the central problems of mobile robotics. While the prob-
lem can be tackled by Simultaneous Localization and
Mapping approaches, external localization systems are
still widely used in the field of mobile robotics both for
closed-loop mobile robot control and for ground truth
position measurements. These external localization sys-
tems can be based on an augmented GPS, radio, ultra-
sound or infrared beacons, or (multi-)camera systems.
Typically, these systems require special equipment, which
might be prohibitively expensive, difficult to set up or
too heavy to be used by small robots. Moreover, most
of these systems are not scalable in terms of the number
of robots, i.e., they do not allow to localize hundreds of
robots in real time. This paper presents a fast vision-
based localization system based on off-the-shelf compo-
nents. The system is precise, computationally efficient,
easy to use, and robust to variable illumination.

The core of the system is a detector of black-and-
white circular planar ring patterns (roundels), similar
to those used for camera calibration. A complete local-
ization system based on this detector is presented. The
system provides estimation of the roundel position with
precision in the order of millimeters for distances in the
order of meters.

The detection with tracking of a single roundel pat-
tern is very quick and the system is able to process sev-
eral thousands of images per second on a common desk-
top PC. This high efficiency enables not only tracking of
several hundreds of targets at a camera frame-rate, but
also implementation of the method on computationally
restricted platforms. The fast update rate of the localiza-
tion system allows to directly employ it in the feedback
loop of mobile robots, which require precise and high-
frequency localization information.

The system is composed of low-cost off-the-shelf com-

ponents only — a low-end computer, standard webcam,
and printable patterns are the only required elements.



The expected coverage, precision, and image processing
speed of the system can be estimated from the camera
resolution, computational power, and pattern diameter.
This allows the user to choose between high-end and
low-end cameras, estimate if a particular hardware plat-
form would be able to achieve the desired localization
frequency, and calculate a suitable pattern size for the
user’s specific application.

Ease of the system setup and use are also driving
factors of the proposed implementation, which does not
require user-set parameters or an intricate set-up pro-
cess. The implementation also contains an easy tool for
camera calibration, which, unlike other calibration tools,
does not require user interaction. At the same time, the
implementation is proposed as a library, which can be
integrated into commonly used computer vision frame-
works, such as OpenCV.

The main intention of this paper is to present the
system principle, its theoretical properties and real per-
formance characteristics with respect to the intended ap-
plication. Therefore, we present a model of the localiza-
tion arising from theoretical analyses of the vision system
and experimental evaluation of the system performance
in real scenarios with regard to its practical deployment.

2 Related work

External localization systems are widely used in the field
of mobile robotics, either for obtaining ground truth pose
data or for inclusion in the control loop of robots. In both
scenarios, it is highly desirable to have good precision
and high-frequency measurements. Here, both of these
aspects are analysed in related works and are specifically
addressed in the proposed system.

Localization systems for mobile robots comprise an
area of active research; however, the focus is generally
on internal localization methods. With these methods,
the robot produces one or more estimates of its posi-
tion by means of fusing internal sensors (either extero-
ceptive or proprioceptive). This estimation can also be
generally applied when either a map of the environment
exists a priori or when the map is being built simultane-
ously, which is the case of SLAM approaches [1]. When
these internal localization systems are studied, an exter-
nal positioning reference (i.e., the ground truth) without
any cumulative error is fundamental for a proper result
analysis. Thus, this research area makes use of external
localization systems.

While the most well-known external localization ref-
erence is GPS, it is also known that it cannot be used
indoors due to signal unavailability. This fundamental
limitation has motivated the design of several localiza-
tion principles, which can be broadly divided into two
major groups by means of the type of sensors used: ac-
tive or passive.

In the former group, several different technologies are
used for the purpose of localization. One example [2] of
active sensing is the case of a 6DoF localization system
comprised of target modules, which include four LED
emitters and a monocular camera. Markers are detected
in the image and tracked in 3D, making the system ro-
bust to partial occlusions and increasing performance
by reducing the search area to the vicinity of the ex-
pected projection points. Experiments with this system
were performed using both ground and aerial robots. The
mean error of the position estimation is in the order of
1 cm, while the maximum error is around 10 cm. The au-
thors note that for uncontrolled lighting scenarios passive
localization systems appear to be more suitable.

Another active sensor approach is the NorthStar [3]
localization system, which uses ceiling projections as a
non-permanent ambient marker. By projecting a known
pattern, the camera position can be obtained by repro-
jection. The authors briefly report the precision of the
system to be around 10 cm.

In recent works, the most widely used approach is
the commercial motion capture system from ViCon [4].
This system is comprised of a series of high-resolution
and high-speed cameras, which also have strong infra-
red (IR) emitters. By placing IR reflective markers on
mobile robots, sub-millimeter precision can be achieved
with updates up to 250Hz. Due to these qualities, Vi-
Con has become a solid ground-truth information source
in many recent works and, furthermore, has allowed de-
velopment of closed-loop aggressive maneuvers for UAVs
inside lab environments [5]. However, this system is still
a very costly solution, and therefore, it is not applicable
to every research environment. This issue has motivated
several works proposing alternative low-cost localization
systems.
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Fig. 1: Patterns used in passive vision-based global lo-
calization systems.



Several passive vision-based localization methods were
also proposed in recent literature, using simple planar
printable patterns, which reduce significantly the cost
and difficulty of use and setup. Several of these works
employ augmented-reality oriented markers, which not
only permit obtaining the pose of the target but can
also encode additional information like target ID. In this
area, the software libraries most widely used for this pur-
pose are ARTag [6] and ARToolKit+ [7], both based on
its predecessor ARToolKit [8], see examples of patterns
in Figure 1. These target detectors were used in several
works in order to obtain localization information about
mobile robots, either explicitly as a part of a pose esti-
mation system [9,10] or as ground-truth data [11].

In [9], ARToolKit markers are used for obtaining the
pose of several ground robots. The homography from
3D-t0-2D space (ground floor) is computed by defining
the work area by placing four ad-hoc markers, which are
manually detected in the image. In more recent work, the
authors proposed the ARTag [6] system that was later
extensively analysed in [12]. However, the analysis is fo-
cused on detection and confusion rates, and it does not
report the real accuracy in position estimation. Similar
systems are explored in [13], but details of their precision
are not reported.

One particular system, which is based on AR mark-
ers similar to ARTag and ARToolKit, is ArUco [14]. The
main aspects of this method are: easy integration into
C++ projects, based exclusively on OpenCV and a ro-
bust binary ID system with error correction which can
handle up to 1024 individual codes. The detection pro-
cess of AR markers in ArUco consists of: an adaptive
thresholding step, contour extraction and filtering, pro-
jection removal and code identification. When the intrin-
sic camera parameters are known, the extrinsic parame-
ters of the target can be obtained. Due to the free avail-
ability of the implementation and lack of performance
and precision reports, this system is analyzed in the pre-
sented work, see Section 6.5.

Since the previous pattern detectors were conceived
for augmented-reality applications, other works propose
alternative target shapes, which are specifically designed
for vision-based localization systems with high precision
and reliability. Due to several positive aspects, circular
shaped patterns appear to be the best suited as fiducial
markers in external localization systems. This type of
pattern can be found (with slight variations) in several
works [15-18].

The SyRoTek e-learning platform [19] uses a ring
shaped pattern with a binary tag (see Figure lc) to
localize up to fourteen robots in a planar arena. The
pattern symmetry is exploited to perform the position
and orientation estimation separately, which allows to
base the pattern localization on a two-dimensional con-
volution. Although this convolution-based approach has
proven to be reliable enough to achieve 24/7 operation,
its computational complexity still remains high, which

lead to its implementation on alternative platforms such
as FPGA [20].

In [16], a planar pattern consisting of a ring surround-
ing the letter “H” is used to obtain the relative 6DoF
robot pose with an on-board camera and IMU (Inertial
Measurement Unit) to resolve angular ambiguity. The
pattern is initially detected by binarization using adap-
tive thresholding and later processing for connected com-
ponent labeling. For classifying each component as be-
longing to the target or not, a neural network (multilayer
perceptron) is used. The input to the neural network is a
resized 14 x 14 pixel image. After testing for certain ge-
ometric properties, false matches are discarded. Positive
matches corresponding to the outer ring are processed
by applying the Canny edge detector and ellipse fitting,
which allows computation of the 5DoF pose. Recognition
of the “H” letter allows to obtain the missing yaw angle.
The precision in 3D position is in the order of 1cm to
7 cm depending on the target viewing angle and distance,
which was at the maximum around 1.5 m.

Probably the most similar approach to the proposed
system in this work is the TRIP localization system [17].
In TRIP, the pattern comprises of a set of several con-
centric rings, broken into several angular regions, each
of which can be either black or white. The encoding
scheme, which includes parity checking, allows the TRIP
method to distinguish between 3% patterns. For detect-
ing the tags, adaptive thresholding is performed and
edges are extracted. TRIP only involves processing edges
corresponding to projections of circular borders of the
ring pattern, which are detected using a simple heuristic.
These edges are used as input to an ellipse fitting method
and then the concentricity of the ellipses is checked. TRIP
achieves a precision similar to [16] in position estima-
tion (the relative error is between 1% and 3%), but only
a moderate performance (around 16 FPS at the resolu-
tion 640 x 480) is achieved using an 1.6 GHz machine.
The authors report that the adaptive thresholding step
is the most demanding portion of the computation. To
the best of our knowledge, there is no publicly available
implementation.

Finally, a widely used, simple and freely available cir-
cular target detector can be found in the OpenCV li-
brary. This “SimpleBlobDetector” class is based on tra-
ditional blob detection methods and includes several op-
tional post-detection filtering steps, based on character-
istics such as area, circularity, inertia ratios, convexity
and center color. While this implementation is originally
aimed for circular target detection, by tuning the pa-
rameters it is possible to find elliptical shapes similar
to the ones proposed in the present work and thus it is
compared to the proposed implementation.

In this work, a vision-based external localization sys-
tem based on a circular ring (roundel) pattern is pro-
posed. An example of the pattern is depicted in Fig-
ure le. The algorithm allows to initiate the pattern search
anywhere in the image without any performance penalty.



Therefore, the search is started from the point of the last
known pattern position. Since the algorithm does not
contain any phase that processes the entire image, suc-
cessful tracking causes the method to process only the
area occupied by the pattern. Therefore, the algorithm’s
computational complexity is independent of the image
size. This provides a significant performance boost, which
allows to track thousands of patterns in real-time using
a standard PC. By performing an initial unattended cal-
ibrating step, where the reference frame is defined, pose
computation of ground robots moving on a plane is per-
formed with millimeter precision using an off-the-shelf
camera.

The real-world performance of the proposed method
makes it highly competitive with the aforementioned state-
of-the-art methods. Moreover, its computational com-
plexity is significantly lower, which makes the method
superior for scenarios with embedded computational re-
sources and real-time constraints. These findings are sup-
ported by the experimental results and a comparison
with the selected localization methods presented in Sec-
tion 6.

3 Pattern detection

The core of the proposed computationally efficient local-
ization system is based on pattern detection. Fast and
precise detection is achieved by exploiting properties of
the considered pattern that is a black and white roundel
consisting of two concentric annuli with a white central
disc, see Figure 1.

The low computational requirements are met by the
pattern detection procedure based on on-demand thresh-
olding and flood fill techniques, and gathering statistical
information of the pattern on the fly. The statistical data
are used in consecutive tests with increasing complexity,
which determine if a candidate area represents the de-
sired circular pattern.

The pattern detection starts by searching for a black
segment. Once such a segment is detected and passes the
initial tests, the segment detection for a white inner disc
is initiated at the expected pattern center.

Notice, that at the beginning, there is no prior infor-
mation about the pattern position in the image; hence,
the search for the black segment is started at a ran-
dom position. Later, in the subsequent detections, when
a prior pattern position is available, the algorithm starts
detection over this area. For a successfully re-detected
(tracked) pattern, the detection processes only pixels be-
longing to the pattern itself, which significantly reduces
the computation burden. Since the method is robust (see
following sections for detection limits), tracking is gen-
erally successful and thus the method provides very high
computational performance.

After the roundel is detected, its image dimensions
and coordinates are identified. Then, its three-dimensional

position with respect to the camera is computed from its
known dimensions and camera re-projection techniques,
and its coordinates are transformed to a coordinate frame
defined by the user, see Section 4.

In this section, a detailed description of the pattern
detection based on an efficient thresholding is presented
together with an estimation of the pattern center and di-
mensions and a compensation of the incorrect diameter
estimation, which has a positive influence to the local-
ization precision. Moreover, a multiple pattern detection
capability is described in Section 3.6.

3.1 Segmentation

The pattern detection is based on an image segmenta-
tion complemented with on-demand thresholding that
searches for a contiguous set of black or white pixels us-
ing a flood-fill algorithm depicted in Algorithm 1. First,
a black circular ring is searched for in the input im-
age starting at an initial pixel position pg. The adaptive
thresholding classifies the processed pixel using an adap-
tively set value 7 as either black or white. If a black pixel
is detected, the queue-based flood-fill algorithm proce-
dure is initiated to determine the black segment. The
queue represents the pixels of the segment and is sim-
ply implemented as a buffer with two pointers gs¢qr+ and
Gend-

Once the flood fill is complete, the segment is tested
for a possible match of the outer (or inner) circle of
the pattern. At this point, these tests consist of a min-
imum size (in terms of the number of pixels belonging
to the segment) and a roundness measure within accept-
able bounds. Notice, that during the flood-fill search,
extremal pixel positions can be stored. This allows to
establish the bounding box of the segment (b, and b,)
at any time. Besides, after finding a segment, the queue
contains positions of all the segment’s pixels. Hence, ini-
tial simple constraints can be validated quickly for a fast
rejection of false positives.

In the case where either test fails, the detection for
further segments continues by starting from the next
pixel position (i.e., a pixel at the position py + 1). How-
ever, no redundant computation is performed since the
previous segment is labeled with a unique identifier.

The first roundness test is based on the pattern’s
bounding box dimensions and number of pixels. Theo-
retically, the number of pixels s of an elliptic ring with
outer and inner diameters d,,d; and dimensions b, b,
should be

@ d

0
s = Zbubv dg (1)
Therefore, the tested segment dimensions and area should

satisfy the inequality

T Pexp
4

Ptol > bubv -1 )

(2)



Algorithm 1: Flood-fill segmentation

Algorithm 2: Pattern detection

Input: (p, pesp, class): p — starting pixel position; pezp
— expected area to bounding box dimensions
ratio; class — searched segment type (white or
black)

Output: (u,v, by, by, u, valid): (u,v) — segment center;
(bu, by) — bounding box; u — average
brightness; valid — validity

Sid < Sia + 1

qold — Gend

pixel,class[p] < Sid // mark pixel as processed and
queue[qend + +] —p // push its position to the queue

// #1 perform the flood fill search

while Gend > Qqstart do

q < queue[qsm,«t + —|—] // pull pixel from the queue

// and check its neighbours

foreach offset € {+1,—1,4w, —w} do

r<q +offset

if pixel_class[r] = unknown then

| pixel_class[r] + classify(Image[r], 7)

// increment segment ID
// store previous queue end

if pixel_class|r] = class then
queue[geng + +] <7
pixel_class(r] < S;q
update Umin, Umaz, Umin, Umaz {TOM Ty, Ty

valid < false
// # 2 test for the pattern size and roundness

S <= Qend — Gold

if s> min_size then

U <— (umaz + umzn)/2

(U ('Umaz + vmin)/Q

by < (Umaz — Umin) + 1 // estimate segment width

by (’Umaz — Umin) + 1 // estimate segment height

p pezpﬂ'bubv/(lls) —1

if —prot < p < ptor then
ot gent ! Inagelj]

valid + true

// segment center x-axis
// segment center y-axis
// calculate roundness

// mean brightness
// mark segment as valid

where pesp equals 1 for white and 1 — d?/d2 for black
segments. The value of p;,; represents a tolerance range,
which depends on the camera radial distortion and pos-
sible pattern deformation and spatial orientation.

If a black segment passes the roundness test, the sec-
ond flood-fill search for the inner white segment is initi-
ated from the position corresponding to the segment cen-
troid. If the inner segment passes the minimum size and
roundness tests, further validation tests are performed.
These involve the concentricity of both segments, their
area ratio, and a more sensitive circularity measure (dis-
cussed in the following sections). If the segments pass
all these complex tests, the pattern is considered to be
found and its centroid position will be used as a starting
point pg for the next detection run. The overall pattern
detection algorithm is depicted in Algorithm 2.

3.2 Efficient thresholding

Since the segmentation looks only for black or white seg-
ments, the success rate of the roundel detection depends

Input: (po, 7, Image): po — position to start search; 7 —
threshold; Image being processed

Output: (¢, po,7): ¢ — the pattern data; po — position
to start the next search; 7 — an updated
threshold

Sia < 051 < po

// #1 search throughout the image

repeat

if pixel_class[i]| = unknown then

if classify(Image[i], 7) = black then

| pixel_class[i] « black

// initialize

// initiate pattern search

if pixel_class[i] = black then

// search for outer ring

Jend < Qstart < 0

Couter — flood-fill _seg (%, pouter, black)

if valid(couter) then

// search for inner ellipse

j + center(Couter)

Cinner — flood-fill_seg(j, pinner, white)
if valid(Cinner) then

// test area ratio (no. of pixels):

Souter = |Couter|s Sinner = |Couter|
. d2—d?
if Souter oy Zo_"i then

Sinner d

check segmlents for concentricity
compute ellipse semiaxes e, €1
if gend & mlege1| then
assign segment ID or
compensate illumination
mark segment as valid
break

i+ (i+ 1) mod sizeof(Image)
until i # po;

// #2 set the thresholding value
if valid(cinner) then

L T (Nouter + Minner)/Q

// go to next pixel

// hide pattern in multiple pattern detection
paint over all inner ellipse pixels as black;

else
| 7 < binary search sequence

// #3 perform the cleanup
if only two segments examined then
L reset pixel_class]] inside bounding box of couter

else
reset entire pixel_class
P

on the threshold parameter 7, especially under various
lighting conditions. Therefore, we proposed to adaptively
update 7 whenever the detection fails according to a bi-
nary search scheme over the range of possible values.
This technique sets the threshold 7 consecutively to val-
ues {1/2,1/4,3/4,1/8,3/8,5/8 ...} up to a pre-defined
granularity level, when 7 is reset to the initial value.

When the pattern is successfully detected, the thresh-
old is updated using the information obtained during
detection in order to iteratively improve the precision of



segmentation:

_ Houter ; Hinner : (3)

where fiouters finner correspond to the mean brightness
value of the outer and inner segments, respectively.

The computationally intensive full image threshold-
ing is addressed by on-demand processing over each pixel
analyzed during the detection. At the very first access,
the RGB values of the image are read and a pixel is
classified as either black or white and the classification
result is stored for further re-use in the subsequent steps.
Moreover, whenever the tracking is successful, only the
relevant pixels are thresholded and processed by the two-
step flood fill segmentation. Clearing the per-pixel classi-
fication memory area is also efficiently performed by only
resetting the values inside the pattern’s bounding box.
As a result, the detection step is not directly dependent
on the input image resolution, which provides a signifi-
cant performance gain. If the tracking is not successful,
extra memory accesses resulting from this on-demand
strategy are negligible compared to a full-image thresh-
olding approach.

3.3 Pattern center and dimensions

After the black and white segments pass all the initial
tests, a more sophisticated roundel validation is per-
formed. The validation is based on a more precise round-
ness test using estimation of the ellipse (pattern) semi-
axes. All the information to calculate the ellipse cen-
ter u,v and the semiaxes eg, ey is at the hand, because
all the pattern pixels are stored in the flood-fill queue.
Hence, the center is calculated as the mean of the pixel
positions. After that, the covariance matrix C, eigenval-
ues Ao, A1, and eigenvectors vg,vy are established. Since
the matrix C is two-dimensional, its eigen decomposition
is a matter of solving a quadratic equation. The ellipse
semiaxes eg, e; are calculated simply by

e; = 2 \//\Tvi. (4)

The final test verifying the pattern roundness is per-
formed by checking if the inequality

€p||€e
Pprec > ’7T| 0|| 1|

-1 )

holds, where s is the pattern size in the number of pixels.
Unlike in the previous roundness test (2), the tolerance
value of pprec can be much lower because (4) establishes
the ellipse dimensions with subpixel precision.

Here, it is worth mentioning that if the system runs
on embedded hardware, it might be desirable to calcu-
late C using integer arithmetic only. However, the integer

2 JONO

Fig. 2: Undesired effects affecting the pattern edge.

arithmetic might result in a loss of precision, therefore
C should be calculated as

-1
1% Uiy UiV; UU UV
C= ;z; <uivi viv; )] \wwov )’ (6)
i=
where u; and v; are the pattern’s pixel coordinates stored

in the queue and u, v denote the determined pattern
center.

3.4 Pattern identification

The ratio of the patterns’ inner and outer diameters does
not have to be a fixed value, but can vary between the
individual patterns. Therefore, the variable diameter ra-
tio can be used to distinguish between individual circular
patterns. If this functionality is required, the system user
can print patterns with various diameter ratios and use
these ratios as ID’s.

However, this functionality requires to relax the toler-
ance ranges for the tests of inner/outer segment area ra-
tio, which might (in an extreme case) cause false positive
detections. Variable inner circle dimensions also might
mean a smaller inner circle or a thinner outer ring, which
might decrease the maximal distance at which the pat-
tern is detected reliably. Moreover, missing a priori knowl-
edge of the pattern’s diameter ratio means that compen-
sation for incorrect diameter estimation is not possible,
which might slightly decrease the method’s precision.

3.5 Compensation of incorrect diameter estimation

The threshold separating black and white pixels has a
significant impact on the estimation of the pattern di-
mensions. Moreover, the pixels on the black/white bor-
der are affected by chromatic aberration, nonlinear cam-
era sensitivity, quantization noise, and image compres-
sion, see Figure 2. As a result, the borderline between
the black ring and its white background contains a sig-
nificant number of misclassified pixels.

The effect of pixel misclassification is observed as an
increase of the ratio of white to black pixels with increas-
ing pattern distance. The effect causes the black ring to
appear thinner (and smaller), which has a negative im-
pact on the distance estimation. However, the inner and
outer diameters of the pattern are known, and there-
fore, the knowledge of the true d, and d; can be used



to compensate for the aforementioned effect. First, we
can establish the dimensions of the inner white ellipse
ep; and ey; in the same way as in Section 3.3. We assume
the pixel misclassification enlarges the inner ellipse semi-
axes €gj, €1; and shrinks the outer semiaxes ego, €10 by
a value of ¢. Since the real inner d; and outer d, pattern
diameters are known, the true ratio of the areas can be
expressed as

d? _ (eoi —t)(er — 1)
A PR @

where ¢ can be calculated as a solution of the quadratic
equation

(1 — T‘)t2 — t(eOieli + 7"600610) +egie1i — rego€io = 0. (8)

The ambiguity of the solution can be resolved simply by
taking into account that the corrected semiaxes lengths
ep; —t, e1; —t must be positive. The compensation of the
pattern diameter reduces the average localization error
by approximately 15 %.

3.6 Multiple target detection

The described roundel detection method can also be used
to detect and track several targets in the scene. How-
ever, a single threshold 7 is not well suited to detecting
more patterns because of illumination variances. Besides,
other differences presented across the working area may
affect the reflectance of the pattern and thus result in
different gray levels for different patterns, which in turn
requires a different 7 value for each pattern. Individual
thresholding values not only provide detection robust-
ness but also increase precision by optimizing pixel clas-
sification for each target individually.

Multiple targets can be simply detected in a sequence
one by one, and the only requirement is to avoid detec-
tion of the already detected pattern. This can be easily
avoided by modifying the input image after a success-
ful detection by painting over the corresponding pixels,
i.e., effectively masking out the pattern for subsequent
detection runs.

Detection of multiple targets can also be considered
in parallel, e.g., for obtaining additional performance
gain, using multi core processor. In this case, it is neces-
sary to avoid a possible race condition and mutual exclu-
sion has to be used for accessing the classification result
storage.

An initial implementation of the parallel approach us-
ing OpenMP and multi-processor system did not yield a
significant speedup. Furthermore, due to the high perfor-
mance of detection of a single pattern, the serial imple-
mentation provides better performance than the parallel
approach. Therefore, all the presented computational re-
sults in this paper are for the serial implementation.

4 Pattern localization

The relative pattern position to the camera module is
calculated from the parameters established in the pre-
vious step. We assume that the radial distortion of the
camera is not extreme and the camera intrinsic param-
eters can be established by the method [21] or similar.
With this assumption, the pattern’s position is computed
as follows:

1. The ellipse center and semiaxes are calculated from
the covariance matrix eigenvectors and transformed
to a canonical camera coordinate system.

2. The transformed parameters are then used to estab-
lish coefficients of the ellipse characteristic equation,
which is a bilinear form matrix (also called a cubic).

3. The pattern’s spatial orientation and position within
the camera coordinate frame is then obtained by means
of eigen analysis of the cubic.

4. The relative coordinates are transformed to a two-
or three-dimensional coordinate frame defined by the
user.

A detailed description of the pattern position estimation
is presented in the following sections.

4.1 Ellipse vertices in the canonical camera system

The ellipse center u’, v/, and semiaxes eg, €] are estab-
lished in a canonical camera form. The used canonical
form is a pinhole camera model with unit focal lengths
and no radial distortion. The transformation to a canon-
ical camera system is basically a transform inverse to the
model of the actual camera.

First, we calculate th