45 research outputs found

    Integrating Vehicle Slip and Yaw in Overarching Multi-Tiered Automated Vehicle Steering Control to Balance Path Following Accuracy, Gracefulness, and Safety

    Full text link
    Balancing path following accuracy and error convergence with graceful motion in steering control is challenging due to the competing nature of these requirements, especially across a range of operating speeds and conditions. This paper demonstrates that an integrated multi-tiered steering controller considering the impact of slip on kinematic control, dynamic control, and steering actuator rate commands achieves accurate and graceful path following. This work is founded on multi-tiered sideslip and yaw-based models, which allow derivation of controllers considering error due to sideslip and the mapping between steering commands and graceful lateral motion. Observer based sideslip estimates are combined with heading error in the kinematic controller to provide feedforward slip compensation. Path following error is compensated by a continuous Variable Structure Controller (VSC) using speed-based path manifolds to balance graceful motion and error convergence. Resulting yaw rate commands are used by a backstepping dynamic controller to generate steering rate commands. A High Gain Observer (HGO) estimates sideslip and yaw rate for output feedback control. Stability analysis of the output feedback controller is provided, and peaking is resolved. The work focuses on lateral control alone so that the steering controller can be combined with other speed controllers. Field results provide comparisons to related approaches demonstrating gracefulness and accuracy in different complex scenarios with varied weather conditions and perturbations

    A comprehensive survey of unmanned ground vehicle terrain traversability for unstructured environments and sensor technology insights

    Get PDF
    This article provides a detailed analysis of the assessment of unmanned ground vehicle terrain traversability. The analysis is categorized into terrain classification, terrain mapping, and cost-based traversability, with subcategories of appearance-based, geometry-based, and mixed-based methods. The article also explores the use of machine learning (ML), deep learning (DL) and reinforcement learning (RL) and other based end-to-end methods as crucial components for advanced terrain traversability analysis. The investigation indicates that a mixed approach, incorporating both exteroceptive and proprioceptive sensors, is more effective, optimized, and reliable for traversability analysis. Additionally, the article discusses the vehicle platforms and sensor technologies used in traversability analysis, making it a valuable resource for researchers in the field. Overall, this paper contributes significantly to the current understanding of traversability analysis in unstructured environments and provides insights for future sensor-based research on advanced traversability analysis

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    A Stability-Estimator to Unify Humanoid Locomotion: Walking, Stair-Climbing and Ladder-Climbing

    Get PDF
    The field of Humanoid robotics research has often struggled to find a unique niche that is not better served by other forms of robot. Unlike more traditional industrials robots with a specific purpose, a humanoid robot is not necessarily optimized for any particular task, due to the complexity and balance issues of being bipedal. However, the versatility of a humanoid robot may be ideal for applications such as search and rescue. Disaster sites with chemical, biological, or radiation contamination mean that human rescue workers may face untenable risk. Using a humanoid robot in these dangerous circumstances could make emergency response faster and save human lives. Despite the many successes of existing mobile robots in search and rescue, stair and ladder climbing remains a challenging task due to their form. To execute ladder climbing motions effectively, a humanoid robot requires a reliable estimate of stability. Traditional methods such as Zero Moment Point are not applicable to vertical climbing, and do not account for force limits imposed on end-effectors. This dissertation implements a simple contact wrench space method using a linear combination of contact wrenches. Experiments in simulation showed ZMP equivalence on flat ground. Furthermore, the estimator was able to predict stability with four point contact on a vertical ladder. Finally, an extension of the presented method is proposed based on these findings to address the limitations of the linear combination.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201

    Visual attention and swarm cognition for off-road robots

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2011Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspiração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formigas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, inspeccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspi- ração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formi- gas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, ins- peccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Fundação para a Ciência e a Tecnologia (FCT,SFRH/BD/27305/2006); Laboratory of Agent Modelling (LabMag

    Integration of Active Systems for a Global Chassis Control Design

    Get PDF
    Vehicle chassis control active systems (braking, suspension, steering and driveline), from the first ABS/ESC control unit to the current advanced driver assistance systems (ADAS), are progressively revolutionizing the way of thinking and designing the vehicle, improving its interaction with the surrounding world (V2V and V2X) and have led to excellent results in terms of safety and performances (dynamic behavior and drivability). They are usually referred as intelligent vehicles due to a software/hardware architecture able to assist the driver for achieving specific safety margin and/or optimal vehicle dynamic behavior. Moreover, industrial and academic communities agree that these technologies will progress till the diffusion of the so called autonomous cars which are able to drive robustly in a wide range of traffic scenarios. Different autonomous vehicles are already available in Europe, Japan and United States and several solutions have been proposed for smart cities and/or small public area like university campus. In this context, the present research activity aims at improving safety, comfort and performances through the integration of global active chassis control: the purposes are to study, design and implement control strategies to support the driver for achieving one or more final target among safety, comfort and performance. Specifically, the vehicle subsystems that are involved in the present research for active systems development are the steering system, the propulsion system, the transmission and the braking system. The thesis is divided into three sections related to different applications of active systems that, starting from a robust theoretical design procedure, are strongly supported by objective experimental results obtained fromHardware In the Loop (HIL) test rigs and/or proving ground testing sessions. The first chapter is dedicated to one of the most discussed topic about autonomous driving due to its impact from the social point of view and in terms of human error mitigation when the driver is not prompt enough. In particular, it is here analyzed the automated steering control which is already implemented for automatic parking and that could represent also a key element for conventional passenger car in emergency situation where a braking intervention is not enough for avoiding an imminent collision. The activity is focused on different steering controllers design and their implementation for an autonomous vehicle; an obstacle collision avoidance adaptation is introduced for future implementations. Three different controllers, Proportional Derivative (PD), PD+Feedforward (FF) e PD+Integral Sliding Mode (ISM), are designed for tracking a reference trajectory that can be modified in real-time for obstacle avoidance purposes. Furthermore, PD+FF and PD+ISM logic are able to improve the tracking performances of automated steering during cornering maneuvers, relevant fromthe collision avoidance point of view. Path tracking control and its obstacle avoidance enhancement is also shown during experimental tests executed in a proving ground through its implementation for an autonomous vehicle demonstrator. Even if the activity is presented for an autonomous vehicle, the active control can be developed also for a conventional vehicle equipped with an Electronic Power Steering (EPS) or Steer-by-wire architectures. The second chapter describes a Torque Vectoring (TV) control strategy, applied to a Fully Electric Vehicle (FEV) with four independent electric motor (one for each wheel), that aims to optimize the lateral vehicle behavior by a proper electric motor torque regulation. A yaw rate controller is presented and designed in order to achieve a desired steady-state lateral behaviour of the car (handling task). Furthermore, a sideslip angle controller is also integrated to preserve vehicle stability during emergency situations (safety task). LQR, LQR+FF and ISM strategies are formulated and explained for yaw rate and concurrent yaw rate/sideslip angle control techniques also comparing their advantages and weakness points. The TV strategy is implemented and calibrated on a FEV demonstrator by executing experimental maneuvers (step steer, skid pad, lane change and sequence of step steers) thus proving the efficacy of the proposed controller and the safety contribution guaranteed by the sideslip control. The TV could be also applied for internal combustion engine driven vehicles by installing specific torque vectoring differentials, able to distribute the torque generated by the engine to each wheel independently. The TV strategy evaluated in the second chapter can be influenced by the presence of a transmission between themotor (or the engine) and wheels (where the torque control is supposed to be designed): in addition to the mechanical delay introduced by transmission components, the presence of gears backlashes can provoke undesired noises and vibrations in presence of torque sign inversion. The last chapter is thus related to a new method for noises and vibration attenuation for a Dual Clutch Transmission (DCT). This is achieved in a new way by integrating the powertrain control with the braking system control, which are historically and conventionally analyzed and designed separately. It is showed that a torsional preload effect can be obtained on transmission components by increasing the wheel torque and concurrently applying a braking wheel torque. For this reason, a pressure following controller is presented and validated through a Hardware In the Loop (HIL) test rig in order to track a reference value of braking torque thus ensuring the desired preload effect and noises reduction. Experimental results demonstrates the efficacy of the controller, also opening new scenario for global chassis control design. Finally, some general conclusions are drawn and possible future activities and recommendations are proposed for further investigations or improvements with respect to the results shown in the present work

    Adaptive Locomotion: The Cylindabot Robot

    Get PDF
    Adaptive locomotion is an emerging field of robotics due to the complex interaction between the robot and its environment. Hybrid locomotion is where a robot has more than one mode of locomotion and potentially delivers the benefits of both, however, these advantages are often not quantified or applied to new scenarios. The classic approach is to design robots with a high number of degrees of freedom and a complex control system, whereas an intelligent morphology can simplify the problem and maintain capabilities. Cylindabot is designed to be a minimally actuated hybrid robot with strong terrain crossing capabilities. By limiting the number of motors, this reduces the robot's weight and means less reinforcement is needed for the physical frame or drive system. Cylindabot uses different drive directions to transform between using wheels or legs. Cylindabot is able to climb a slope of 32 degrees and a step ratio of 1.43 while only being driven by two motors. A physical prototype and simulation models show that adaptation is optimal for a range of terrain (slopes, steps, ridges and gaps). Cylindabot successfully adapts to a map environment where there are several routes to the target location. These results show that a hybrid robot can increase its terrain capabilities when changing how it moves and that this adaptation can be applied to wider environments. This is an important step to have hybrid robots being deployed to real situations

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications
    corecore