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This article provides a detailed analysis of the assessment of unmanned ground vehicle terrain
traversability. The analysis is categorized into terrain classification, terrain mapping, and cost-based
traversability, with subcategories of appearance-based, geometry-based, and mixed-based methods.
The article also explores the use of machine learning (ML), deep learning (DL) and reinforcement learning
(RL) and other based end-to-end methods as crucial components for advanced terrain traversability anal-
ysis. The investigation indicates that a mixed approach, incorporating both exteroceptive and propriocep-
tive sensors, is more effective, optimized, and reliable for traversability analysis. Additionally, the article
discusses the vehicle platforms and sensor technologies used in traversability analysis, making it a valu-
able resource for researchers in the field. Overall, this paper contributes significantly to the current
understanding of traversability analysis in unstructured environments and provides insights for future
sensor-based research on advanced traversability analysis.
� 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC
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1. Introduction

1.1. Preamble

Studies in autonomous vehicles gained momentum in the last
couple of decades. This has been further enabled by the advances
of Machine Learning techniques, as well as sensor technology
development facilitating the data for situational awareness and
perception of robotic vehicle platforms. Research within the remit
of autonomous vehicles (AV) covers a variety of topics, e.g. ground
vehicles, aerial vehicles, sensor suites, novel vehicle platform con-
cepts, Positioning Navigation Timing (PNT), advanced navigation
for unmanned ground/aerial vehicles etc.

Autonomous navigation is one of the most common topics
found amongst the studies in the literature and is normally
grouped under two main terrain categories, i.e. navigation in struc-
tured and navigation in unstructured environments. Many publica-
tions exist in the literature on the former category, i.e. structured
environment (on-road). Researchers have presented a variety of
algorithmic solutions that perform several tasks such as path plan-
ning and/or vehicle lateral and longitudinal control. For on-road
autonomous vehicles, navigation includes vehicle ego and environ-
mental maps. Path planning and control problems can be
addressed via an internal map facilitated by the available sensors.
Hence, many well-known algorithms such as SLAM and decision
matrix algorithms can be followed.

Furthermore, navigation in unstructured (or demanding) envi-
ronments, i.e. off-road terrains, poses more challenges and com-
plex tasks to perform compared to on-road scenarios. In fact,
terrain uncertainty and terrain variability levels greatly impact
the driving (or going) ability of the vehicle. Uncertainty in demand-
ing terrains comprises surface friction, a variety of terrain slopes, dif-
ferent obstacles, uneven terrain levels, terrain with various slip
characteristics, and other, that can impact autonomous vehicle nav-
igation considerably. Hence, exploring terrain traversability prior
to creating a navigation map for safe and/or optimized going is
of particular importance.

Moreover, terrain traversability analysis (TTA) is a challenging
task for autonomous vehicles both on Earth and in space applica-
tions (e.g.on the Moon or Mars). Recently, many projects have been
overwhelmed by space vehicle platforms and their landing (used in
space exploration). Namely, six vehicle platforms, Sojourner
(1997), Opportunity (2004), Spirit (2004), Curiosity (2012), and
Perseverance (2021) managed by NASA and Zhurong (2021) man-
aged by the China National Space Administration, performed vari-
ous navigation tasks on Mars as of June 2021. For the safe travel of
these vehicles, it is necessary that the terrain characteristics and
the traversability of the terrain are properly investigated/
evaluated.

1.2. Objectives, contribution and structure of the paper

This rigorous and comprehensive survey paper follows an
extensive review of terrain traversability analysis methods, in a
2

systematic way, and aims to facilitate the pathway to future
research on sensor-based advanced traversability work. The
intended research objectives are:

� to give an overview of existing solutions
� to discuss advantages and disadvantages of methods to date
(state-of-the-art)

� to critically present current terrain traversability challenges and
seeking of solutions.

We rigorously review traversability analysis in unstructured/
demanding environments covering: terrain classification, terrain
mapping and cost-based traversability and hybrid approach. Each
method is split up into three parts that are appearance-based, geo-
metric based and mixed-based for appropriate presentation and
comparison of the works. Also, end-to-end methods is classified
according to the learning algorithms used in the study. End-to-
end methods that cover traversability analysis and control steps
for navigation. Hence, it is not explicitly classified under TTA.
Schematically, this can be seen in Figs. 1 and 2.

We note that some review papers related to traversability anal-
ysis and end-to-end methods already exist, i.e. the authors in [102]
present a brief review regarding steering angle estimation, and the
article [25] provides an extensive survey specifically on deep
learning-based steering angle estimation methods. 3D point cloud
segmentation has been discussed in [47]. Moreover, terrain
traversability analysis methods for planetary robotic platforms
are reviewed in [125] and a rigorous survey for unmanned ground
vehicles (UGV) is given in [104]. One sees that mainly studies up to
2013 are discussed in these review papers. However, various
approaches have emerged since the time the aforementioned
reviews (surveys) were published and newer developments are
not examined. A very recent review on vehicle traversability in
unstructured environments was presented in [45], albeit exposes
only a learning-based method and is different to what is addressed
in this proposed survey paper.

Another recent survey [14] discusses the significance of terrain
traversability analysis in the context of autonomous ground vehi-
cles before providing an overview of the associated methods, sen-
sors, and challenges. The authors discuss cameras, Lidar, and
radar, among other sensors that are commonly used for
traversability analysis. In addition, they describe various
traversability analysis methods, such as feature-based approaches,
machine learning-based approaches, and hybrid methods that
incorporate multiple methods. In addition, the paper discusses
the difficulties associated with traversability analysis, such as cop-
ing with complex terrain, addressing uncertainty, and integrating
multiple sensors. The authors provide a summary of benchmark
datasets that have been created to evaluate traversability analysis
algorithms. The main difference of our paper is that it focuses on
the traversability analysis and scrutinises studies in the domain
from this specific point of view. In addition, we consider different
approaches’ limitations and potential drawbacks, thus adding a
missing part to the puzzle.



Fig. 1. Proposed Architecture for Categorization of Terrain Traversability Analysis.

Fig. 2. Proposed Architecture for Categorization of End-to-End Methods.
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This survey paper covers, in a rigorous manner, both learning-
based and analytic-based approaches (such as creating cost func-
tions from terrain and vehicle information without any learning
3

approaches) in recent years. These investigated studies are classi-
fied under several relevant titles for ease of access by the inter-
ested reader in terms of feature types such as geometric-based,
appearance-based or hybrid based, and in terms of traversability
methods such as classification, mapping or cost-based. In addition,
the reviewed studies are examined and tabulated according to a
variety of characteristics such as: the types of methods used in the
studies, the vehicle platform utilised where applicable, the environ-
ment and the relevant dataset(s).

The main contributions of this research review paper are as
follows:

� Provide an extensive review of terrain traversability analysis
studies (emphasis on recent developments since 2013)

� Provide an analysis of the current studies, their advantages, and
disadvantages, identify gaps and provide fresh conclusions for
improvement of the methods

� Present rigorous comparison of the main traversability-related
methods via comprehensive classification both in discussion
and tabular mode

� Investigate sensor types used in studies of terrain traversability
analysis according to their practical consideration, i.e. technolo-
gies, usability in different weather conditions, size, resolution,
maintenance, cost, effectiveness, etc.
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� Present a comparison of the types of sensors and vehicle plat-
forms utilised in relevant studies.

An important point of this paper, from a practical listing view-
point, is a structured listing of available studies according to points
such as platforms and sensors used in the studies.

The remainder of this review article is structured as follows. A
comprehensive discussion on terrain traversability analysis meth-
ods is presented in Section 2. Section 3 presents the vehicle plat-
forms used in traversability studies and a rigorous discussion on
sensors/datasets. Section 4 discusses and evaluates the
traversability-related methods and approaches in this review
paper with particular emphasis on the pros and cons. The paper
concludes with Section 5 which also exposes the authors’ position
towards the future research epochs in traversability studies.
2. Terrain Traversability Analysis (TTA)

Terrain traversability is the analysis of a terrain whereby a vehi-
cle can move and travel safely [104]. To enable useful categorisa-
tion for the interested reader, in this paper, terrain traversability
methods are classified into four main sections: terrain classification,
terrain mapping and cost-based traversability, hybrid approaches and
end-to-end methods. We also classify traversability analysis meth-
ods (other than end-to-end methods) as follows: appearance-
based, geometric-based and mixed-based methods. In this context,
mixed-based methods involve integrating the visual and geometric
characteristics of terrain or vehicle. In addition, geometric-based
methods process Proprioceptive-based algorithms that seek to pro-
vide information about the terrain’s characteristics and suitability
for a particular vehicle or automaton. In the case of end-to-end
methods, we opt to study these under deep learning-based and re-
inforcement learning-based and others ones as can be seen Fig. 1.
2.1. Terrain classification

Autonomous navigation in unstructured (demanding) terrains,
i.e. typically off-road terrain types including grass areas, sand,
and rocky areas, is more challenging compared to on-road due to
the variability and uncertainty of the terrain characteristics. Per-
ceiving and processing data about such an environment for safe
driving can be a demanding task. Hence, the classification of such
types of terrains is useful to obtain reliable information to enable
safer vehicle-going (traversability) tasks. In this context,
appearance-based and geometric-based classification methods
have been widely used to segment and classify terrain types.
2.1.1. Appearance-based terrain classification
In appearance-based classification, camera (vision) images and/

or Lidar feature maps have been used to classify the terrain for on-
road and off-road environments. A variety of methods/algorithms
have been applied for this task. Below, we present an important
set of these methods.

The researchers in [149] have proposed a classification method
for on-road and off-road environments whereby RGB images are
normalized by using linearization techniques to decrease gamma
(c) correction effects (the latter proposed in [95]). The approach
enables image features such as contrast and colour space to be cal-
culated, hence facilitating better terrain classification due to (the
claimed) easy processing of image information. Supervised learn-
ing and Multi-Layer Perception (MLP) classifier methods have been
used to predict terrain classification, while the model provided
93% accuracy rate overall. It is worth mentioning that the off-
road environment results obtained were better than the on-road
4

ones, according to the authors this was due to denser information
in the on-road environment. .

An off-road detection method based on mechanical traversabil-
ity, human selection, and far-field capability, was proposed in [87].
A monocular camera was used to identify the traversability
together with a road-type inference algorithm classifier. The classi-
fier predicted the road type using the information of road model
estimation from the learning algorithm and the information of
the candidate-predicted region.

The authors in [17] proposed a Virtual Autonomous Navigation
Environment (VANE). In this study, decision tree classification
methods were used for material classification and a labelling tool-
box for the segmentation of images for the creation of datasets.
Both real-environment and simulated data were utilised for
testing.

It was mentioned that traversability in off-road type terrains is
more challenging than on-road ones given the uncertain features of
the former. This is extended by considering obstacle features in off-
road terrains. When it comes to obstacles in the terrain, these have
been classified by learning methods using semantic segmentation.
Still, under appearance-based methods, several studies have
addressed this aspect and we list important ones below.

Cinaroglu and Bastanlar [23] used an image retrieval-based
visual localization strategy in which database pictures are pre-
served with GPS coordinates and the location of the returned data-
base image serves as the position estimate of the query image in a
city-scale driving scenario. They used the weakly supervised CNN
model for localization with triplet ranking loss after picture
semantic label extraction. The suggested hybrid technique
improved the localization performance of the classic RGB image-
based approach by 7.7 percent.

An important study appeared in [154], a significant finding was
the generation of a foothold projection on a 2D map using the foot-
hold position of a legged robot, the camera trajectory, and the
value of labels using the force torque signal from a 6-axis frame-
work. The data was fused to perform labelling of the data. A large
dataset was obtained with this basic labelling progress based on
weakly supervised semantic segmentation (for terrain class) and
a (so-called) ground reaction score. To increase the size of the data-
set, the same data augmentation methods were implemented in
both RGB images and labelled images with a footpath used as input
for the learning algorithm. The method was validated using an
ANYmal quadruped robot [58] in an unstructured environment
including terrain types such as asphalt, dirt, sand, and grass, and
under different weather and light conditions. However, the method
was tested and verified only using a legged robot.

Another study of interest, i.e. [145], proposed a multi-modal
semantic segmentation method using the AdapNet++ architecture
and the dataset of Cityscapes [24], Synthia [122], SUN RGB-D
[136], ScanNet [27], and Freiburg Forest [146] to train their model.
In this study, a number of data augmentation methods such as
cropping, rotation, and scaling were implemented to increase the
size of the dataset. The study outcome was verified using the Forest
dataset including various off-road terrain characteristics and the
authors concluded that improved results have been achieved in
terms of classification accuracy and time compared to alternative
methods existing at the time of publication (seen in Fig. 3) [145].

In addition, there are several studies for classification problems,
some of which utilised semantic segmentation methods [147,26].

2.1.2. Geometry-based terrain classification
While appearance-based methods in the traversability analysis

gain high interest from the research community given the more
vision-based nature of the information obtained for the environ-
ment, another way of classifying terrains is according to terrain
and/or vehicle geometric information such as slope, slip, vibration,



Fig. 3. Semantic Segmentation Results for the Forest Dataset [145].

Fig. 4. Top View of 3D Point Cloud (a), Traversability Map (b) [84].
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roughness, and terrain friction. An important set of recent papers
that appeared in the literature is analyzed below.

In this context, a recent study by Martinez et al. [85] introduced
the supervised learning method, which uses labelled data for train-
ing quantifying part of terrains such as ground, grass (of height
below 5 cm), and the side-walk portion to label it as traversable
area via the use of Lidar sensing. Later, the parts of terrain with
slope amount greater than 20% have been labelled as untraversa-
ble areas. The labelled dataset was obtained to enable the training
of the various learning algorithms. The study was performed both
in Gazebo simulation and using the real environment with an And-
abata vehicle platform having a 3D Lidar sensor. The terrain was
classified into just two categories, i.e. traversable and untraversa-
ble areas. It is noted that such classification is not sufficient for
off-road navigation tasks and major improvements can be looked
at such as identifying fast-speed, low-speed or semi-traversable,
untraversable areas.

Reina and Galati [114] propose a novel method for estimating
the condition of the terrain using a skid-steer vehicle. The authors
propose using slip-based estimation methods to estimate the vehi-
cle’s slip ratio, which can then be used to compute the terrain con-
ditions, including terrain roughness and traction. The approach is
evaluated using data acquired from a skid-steer vehicle equipped
with a commercial slip sensor. The results indicate that the
proposed approach can accurately estimate slip ratio and terrain
5

conditions across a variety of terrains. Slip-based terrain estima-
tion can provide an effective and low-cost method for terrain
assessment in off-road vehicles and can be used in a variety of
applications, including precision agriculture, forestry, and mining.

Ugenti et al. [143] present a method for increasing the precision
of terrain classification algorithms used by robotics for planetary
exploration. The authors propose a method for selecting informa-
tive features and signals that can enhance the precision and effi-
cacy of terrain classification. They apply this method to data
collected by a Mars rover and demonstrate that it can substantially
enhance the accuracy of terrain classification in comparison to
conventional methods. The significance of feature and signal selec-
tion in enhancing the performance of machine learning algorithms
used for terrain classification, which is crucial for the success of
planetary exploration missions, is emphasised in this paper. The
implications of this study’s findings for the development of auton-
omous navigation systems for future planetary exploration mis-
sions are substantial.

The same, main set of, authors in [84] used a 2D terrain
traversability map created by calculating traversable scores based
on a 3D Lidar, as seen in Fig. 4. The authors presented a study that
offered better terrain scan appreciation and more accurate label-
ling with regarding small objects.

Within the review of recent traversability-related literature,
[124] proposed an automatic labelling method as a part of
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unsupervised learning that learns samples from unlabelled data
using 2D maps obtained from the Gazebo environment and con-
verted to a 3D point cloud. Each point is labelled colour-based
automatically using Matlab software. The method in the paper
classified several objects and terrain types and forms a useful solu-
tion for labelling. The study was verified in the Gazebo simulator,
but its effects on real traversability assignments were not detailed.
Regardless of the simulation-based work, this study is important in
terms of the concept they address.

Radar and camera sensing plays a useful role to support deter-
mining traversable areas. Work in [116] investigated such an
aspect with this set of sensors, in particular, a 3D point cloud
was generated a the stereo camera and employed to obtain geo-
metric features for traversability. The 3D point cloud, in this study,
was subdivided into 0:4m�0:4m parts, and geometric features of
each part were calculated according to a function that integrated
the terrain slope and ‘‘fit goodness”, calculated as the mean-
squared deviation of the points, height difference and main height
of the point data range. Based on the scoring via this approach, the
terrain was labelled as ‘‘ground” and ‘‘not-ground”. Moreover,
obstacles were labelled using radar as well, and this labelled data
has been combined with the sub-cloud generated by the 3D point
cloud to obtain the features of the terrain. Hence, two methods, i.e.
stereo data only, and combined stereo and radar data, were pro-
posed and validated in an off-road environment. Both methods
provided efficient results from the evidence included, however,
the exact results and comparison of the two methods were not
detailed in the work.

Kaleci, Turgut and Dutagaci [68] used 2D laser data to classify
mobile robot positions as rooms, corridors, and doorways. 2DLa-
serNet uses the ordered connection between consecutive points
in the point cloud from 2D laser readings, unlike point-based deep
learning methods, and was able to learn laser scan geometry for
room, corridor, and doorway classes. They tested the suggested
technique using the publicly accessible Freiburg 79 dataset.

A self-learning classification method has been studied to anal-
yse the terrain without manual labelling by [117]. The geometric
properties of the terrain i.e. terrain slope, the goodness of fit, height
difference and mean height of point range data were obtained from
the point clouds generated via Lidar and stereo cameras. According
to these geometric features, a self-learning algorithm was applied
to identify traversable and untraversable areas. The data was
labelled automatically, and the classification method was updated
with the next scanned data. The stereo-based classification and
Lidar-based classification were implemented independently and
then fused. The methods based on the stereo, Lidar, and combined
stereo-Lidar were validated utilising real environment informa-
tion. The authors demonstrated that the mixed method performed
best, i.e. obtaining a 96:5%prediction accuracy compared to the
stereo-only and the Lidar-only approach (their accuracies
amounted to 95:1%;95:5%, respectively).

From an inertial-measurement traversability analysis view-
point, an IMU sensor was utilised to provide vehicle acceleration
data for terrain traversability analysis in the paper [98]. The
authors utilised the Pioneer P3-AT platform for the data collection
on a variety of terrain types. The terrain dataset was labelled
according to vibration information. The fairly simple approach pre-
sented in the work achieved an average of 80% accuracy. In the case
of features such as road curb detection, the authors in [46] used an
approach based on ground segmentation. In the solution, a 3D
Lidar was used to detect the curbs such as road-sidewalk, island,
and parking entry. It is highlighted that this work referred to an
on-road environment rather than an off-road one (however we
believe the information on identifying road curb features is
important for informing the interested reader of the traversability
topic).
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2.1.3. Mixed-based (combined appearance-/geometric-) terrain
classification

Without a doubt fusion of information, approaches have
attracted the interest of many researchers in many different appli-
cation domains, i.e. image processing, computer vision, condition
monitoring, control, etc. [48]. This is true in traversability analysis
as well, fusing both geometric- and appearance-based classifica-
tion methods to improve terrain classification reliability.

In the paper of Kurup et al., [74], pitch angle, roll angle, and
accelerations that present terrain roughness have been calculated
and transferred to the feature vector with the corresponding ter-
rain type. The images from the visual sensor have been labelled
manually using classification score-based algorithms of k-means
clustering. These images and labelling data have been used as
inputs for the traditional machine learning algorithm to predict
terrain types with supervised learning and physical features with
unsupervised learning. Then, new data obtained from the environ-
ment has been used to update the classification method for adapt-
ing to new terrains and enabling online learning. The study has
been performed in various terrain types and weather conditions
using a Clearpath Husky UGV and the authors presented a method
that offered sufficiently high accuracy for the classification of ter-
rains. According to their results, the prediction accuracy of terrain
classification and properties of terrain are 92% and 76%,
respectively.

Another supervised learning-based terrain classification
approach has been studied by the authors in [161]. Here, a Micro-
soft Kinect V2 visual sensor able to supply infrared (IR), colour and
depth stream features was used to predict terrain types cate-
gorised into five groups, i.e. gravel, sand, pavement, grass and lit-
terfall & straw. After manual labelling and pre-processing, IR,
colour and depth features were combined for the terrain recogni-
tion model with a Support Vector Machine (SVM) classifier. Also,
transformation algorithms have been implemented to RGB images
and IR features such as converting RGB images to Lab colour space
features and texture description methodology. The proposed
method has been verified and tested in a real environment. The
authors note that the depth features of the terrain did not improve
the prediction accuracy of terrain classification. The IR and colour
features have been used in the main model, and just this model
was tested using a Pioneer 3-AT vehicle platform. The IR-only-
based model had 92:57% accuracy, while the combination of IR
and colour-based model offered a mere 95:4% accuracy result.

Reina, Milella, and Galati [115] present a new approach for eval-
uating terrain for precision agriculture based on vehicle dynamic
modelling. The authors suggest using a simulation model of a vehi-
cle traversing a field to estimate the vehicle’s vertical acceleration,
which can then be used to compute the terrain roughness index
(TRI) and the root mean square slope (RMSS). These terrain indices
can be utilised to identify regions of a field that may require addi-
tional care or management, such as soil compaction, irrigation, or
fertiliser application. The authors demonstrate that their method
can reliably estimate TRI and RMSS using field data collected from
a commercial tractor equipped with a triaxial accelerometer. The
paper concludes that vehicle dynamic modelling can provide a
cost-effective and efficient method for terrain evaluation in preci-
sion agriculture applications.

The authors in [11] have suggested a method for recognizing
terrain traversability and understanding terrain conditions from a
3D point cloud generated with two 2D cameras. The authors
address a space description-based problem. The authors present
the importance of covariance features, geometric-based features
and appearance-based. RGB intensity and hue that describe dark
and light features of colour have been calculated as appearance-
based features. The authors highlight the importance of using Arti-
ficial Intelligence approaches for the analysis, and in fact, they use



Fig. 5. Onozuka et al. Framework on Weakly Supervised Learning Traversability [101].
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the (SVM) algorithm to detect the traversability of terrain. While
their method provides useful results, it has been proposed for an
on-road environment.

Vulpi et al. [151] investigate the use of deep neural networks,
specifically recurrent and convolutional neural networks, for
autonomous robot terrain classification. Using these neural net-
works, the authors propose a method for classifying terrain based
on features extracted from terrain height maps. They demonstrate
that the proposed approach obtains high classification accuracy by
applying it to a dataset of terrain height maps acquired from a real-
world rover mission. The conclusion of the paper is that recurrent
and convolutional neural networks can provide an effective
method for autonomous robotics to classify deep terrain, thereby
enabling enhanced autonomous navigation and exploration in
challenging environments.

Milella et al. [91] propose a new method for segmenting the
visual ground using radar data in order to enhance the precision
of ground detection. The authors propose using a radar sensor to
measure the distance between the rover and the surface and to dis-
tinguish the surface from other objects based on the radar data.
The proposed method is evaluated using data collected by a Mars
rover, and the results demonstrate that it can accurately partition
the ground from other objects and enhance the accuracy of ground
detection in comparison to conventional methods. Using radar data
for visual ground segmentation can provide an effective method
for terrain assessment by autonomous robotics, which is crucial
for the success of planetary exploration missions, according to
the paper’s conclusion.

More recently, [141] proposed a segmentation method that is
using automatic labelling. Lidar sensing was used for generating
a global map, and a camera for segmentation. The vehicle is used
for multiple operations for collecting data for labelling. The pro-
posed model was tested on a few different datasets. A large num-
ber of labelled datasets can be created via this approach, but
automatic labelling can be difficult in rough terrain.

Also, IMU-obtained vibration data can be utilised for the classi-
fication of terrain. A study in [75], proposed a traversability score
based on translational accelerations of min, norm, autocorrelation,
variance, RMS, mean and max, and R, G, B image channels. SVM
algorithms were used to classify the terrain (SVM being a super-
vised learning method used for classification and regression with
a decision boundary line for class separation). The overall method
has shown an 87% accuracy using just camera data and 90% using
both camera and IMU data. This is an example that geometric fea-
ture information provides partial improvements in traversability
analysis (and can be considered in cases of need for more precise
traversability investigation).
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Weakly supervised learning techniques have been studied by
several researchers. In particular, Onozuka et al. in [101] have pro-
posed a traversability method based on the aforementioned tech-
nique. In this paper, three steps were involved global path
planning, local path planning, and motion planning, the schematic
diagram is seen in Fig. 5. The first step, i.e. global path planning, is
based on a topological map that has provided concise information
about the environment. A driving recommendation degree system
has been used for local path planning as the second step of the sys-
tem. The method has included two-step that is the offline training
step with labelled images and the online semantic segmentation
step. In this way, the path planning has been updated and the accu-
racy of prediction has been increased. The last step of the overall
system is motion planning which has determined the combination
of all systems to predict the navigation parameters such as velocity
and steering angle. In the study, the automatic labelling system has
been proposed using human-driven knowledge. The labelling pro-
gress used two progress that is offline training with trained images
and online process with semantic segmentation. Also, the data
augmentation and the loss weighting method have been used as
a part of the learning step and some pre-processing algorithms
have been implemented such as cropping. After creating global
and local path planning and detecting traversable areas using
semantic segmentation, motion planning has been predicted. The
study has been verified in the real environment with a vehicle in
the structured terrain. The environment has included some roads
with no edges, but the study has not been validated in the off-
road conditions, and various terrain or weather condition.
Although the effectiveness of the method is not demonstrated in
off-road conditions, it looks promising for semi-structured terrains
and can be further modified and tested for unstructured
conditions.

The authors in [10] also proposed a weakly supervised segmen-
tation to predict traversable paths for urban roads under various
weather and traffic conditions. The data has been labelled as per
the proposed path, unknown area, and obstacle. Lidar was used
to detect the 3D location of untraversable objects and stereo visual
odometry to predict vehicle motion. This was progressed as part of
weakly-supervised segmentation without manual labelling. Then,
the labelled data was used to classify the terrain in SegNet deep
segmentation learning algorithms [7] as input. A histogram graph
has been used to identify the data distribution and balance the
dataset with various turning angles. Then, the KITTI [36] and
Oxford RobotCar [81] datasets have been used to verify the pro-
posed method. The results show that the method has given accept-
able prediction accuracy of the proposed/traversable path. But, the
method has not been tested in a real environment with a real car,



Fig. 6. The Framework of Automatic Labelling and Generating Cost Map [31].
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and the proposed classes (path, unknown area, and obstacle) are
not sufficient for reliable terrain classification.

Howard and Seraji, [57], have presented a novel terrain classifi-
cation method that utilised visual sensing providing terrain infor-
mation of roughness, slope, discontinuity and hardness and
fusing these into a Fuzzy traversability metric using a fuzzy logic
framework (Artificial Neural Networks). In terms of the process
utilised, firstly the horizon line was identified for the terrain and
then the tasks of edge identification, obstacle recognition and
ground signature extraction were performed to identify target
objects. The terrain roughness was determined according to the
following features: smooth, bumpy, rocky and rough. The terrain
slope was predicted using two cameras, and a learning algorithm,
with inputs being x; y pixel coordinates for each camera image.
Also, terrain types, sand, gravel and compacted soil, were predicted
to determine terrain hardness. Lastly, terrain discontinuity
between different terrain features or undefined areas was also
identified. Hence, their fuzzy-based solution predicted the
traversability of the terrain in terms of four groups, i.e. passable,
moderately passable, impassable and moderately impassable. In addi-
tion, the authors validated the proposed method experimentally.
2.2. Terrain mapping & cost based traversability

Cost function and/or cost map that represents terrain
traversability features can be generated from terrain and vehicle
information using various sensors such as Lidar, Camera, IMU,
GPS and Wheel Odometry. This gave rise to another set of methods
for traversability, i.e. so-called terrain mapping and cost-based
traversability. To maintain the reader-friendly pattern of the meth-
ods, we again present these methods under appearance-based,
geometry-based and mixed-based versions below.
2.2.1. Appearance-based terrain mapping & cost based traversability
Although geometry-based or mixed-based methods have been

used for creating traversability maps or cost functions, there are
some studies solely based on appearance information.

Within this remit, a vision and learning-based model predictive
control (MPC) algorithm was studied for real-time scene under-
standing within a high-speed environment. The camera images
were converted to an image-based cost map via a convolutional
neural network (CNN) algorithm (Fig. 6), and this cost map was
used for MPC to plan vehicle paths directly without any pre-
processing. The method has been validated in a real environment
using an AutoRally platform [40]. The results have shown that
the approach is suitable for high-speed navigation tasks using deep
learning (DL) structure, and different traversability maps were cre-
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ated, such as a bird’s eye view, that gave the most reliable and
accurate results [31].

Older research studies have proved useful in paving the paths to
advancing traversability analysis, such as the work in [37] that pro-
posed a method looking at the slope, roughness, smoothed and
interpolated height as part of a cost function investigation. The
predictions of travelled distance, a slope that is two-dimensional
and roughness from three-dimensional data were used in this cost
function. Also, error propagation was implemented in their pro-
posed algorithms to predict the accuracy of calculated values. Then
a parallel search algorithm was implemented to obtain reliable/
safe path planning. The aerial images, images from vehicles, and
overhead view data, generated in simulating planetary environ-
ments, were used for experimental studies.
2.2.2. Geometry-based terrain mapping & cost based traversability
From a data fusion perspective, the Kalman filter has been a

rather robust and popular estimator to use. The trend followed in
traversability studies using Kalman Filters for the estimation of ter-
rain characteristics. In particular, work in [105] favoured an
extended Kalman filtering method for creating a 2.5-D traversabil-
ity map. In the study, IMU and internal sensors were used to pre-
dict the vehicle state via the Kalman Filter process, and laser
range finders for representing the terrain map. Fusing the two,
the 2.5-D map, updated simultaneously, presented the mean value
and variance of the terrain height (elevation) in each cell. The pro-
posed method which is performed in a real environment shows
that the quality of terrain maps and accuracy of height prediction
is increased when the vehicle traverses at low to medium speed.
Also, the study illustrated using map elevation to enable more
accurate traversability mapping.

Another recent study, by Chen et al. [19], proposed a relative
probabilistic mapping (RPM) algorithm. The authors In their
method divided the environment map into grids, and various fea-
tures such as different types of grid elevations, their variance and
the number of points falling in the grid, were gathered in each grid
to avoid the wrong classification. Kalman filtering was used to
update the measurement of these features (highest and lowest ele-
vation measurements) and also the Gaussian Mixture algorithm
(average elevation measurements). The traversability assessment
was performed via an algorithm that takes into account these
updated measurements, and the terrain has been classified using
three labels: obstacle, traversable patch and unknown patch. The
method was verified in an unstructured real environment using a
Sport Utility Vehicle (SUV) platform and sensors: Lidar (for the per-
ception of the environment), IMU and GPS for state estimation. The



Fig. 7. The Schematic Diagram of the Optimization-based Terrain Modelling and Path Planning in Graf et al.[41].

Fig. 8. The Overall Layout of the Three-Dimensional Mapping Method by Oliveira et al. [97].
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method is shown to provide a reliable and accurate perception of
the environment and effective detection of obstacles.

A further geometric-based method is on vehicle vibration data.
An interesting study has been performed by authors in [156]. In
this study, the vehicle vibration information was employed for
the prediction of vehicle state and a Time-of-Flight (ToF) camera
was used to create a 3D point cloud of the terrain. The terrain input
was generated via this 3-D Point cloud and used together with a
vehicle mathematical model to obtain relevant vehicle parameters,
e.g. acceleration. The proposed solution was tested in a real envi-
ronment which included features of grass, gravel, pavement and
root terrain using a high-speed Loc8 UGV platform. The authors
concluded that the terrain input affects the estimation result sig-
nificantly and a better terrain input estimation method should be
developed. Also, the study was merely based on the use of vertical
acceleration (and not including pitch and roll directions).

Continuing with inertial-based studies (vehicle vibration infor-
mation), researchers in [169], utilised vehicle pose via a mathemat-
ical model of the vehicle suspension system and 3D Point Clouds
created by Lidar sensing. Also, terrain roughness and the height
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(terrain elevation) difference were computed using a point cloud.
The traversability score according to vehicle roll, pitch, roughness
or height difference of terrain, was computed. The trajectory plan-
ning algorithm was implemented based on the aforementioned
traversability score. The authors tested their solution in both real
and simulated environments. The results show that the accuracy
of pose estimation is increased using a vehicle suspension model,
and the proposed traversability model is useful for unstructured
terrain types. However, their method did not refer to any
appearance-based information and hence mixing such information
can improve results further.

There are also some optimization-based methods to calculate
cost maps or create traversability maps. Authors in [41] have pro-
posed a method that analyses terrain traversability via mapping
and optimization pipeline. The terrain model takes environmental
observations as input and populates an underlying data structure.
The optimizer modifies the model’s parameters to discover the
optimal fit given the observations. The local path planner tries to
discover a path on an optimised terrain model (specifically, a graph
representation of the underlying tree) towards a reference path or
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waypoint provided by a global planner. Their proposed method is
summarised in the schematic diagram of Fig. 7. The authors pre-
sented a novel graph-based, multi-resolution terrain model suited
for real-time optimization. The study was verified in a real struc-
tured and unstructured environment.

Another research [155] has proposed a traversability method
for the legged robots. In the study, the 2D elevation map has been
generated with height and variance information of each grid via a
Hokuyo UTM-30LX laser scanner and cameras, and these data have
been updated with the new measurements. The traversability map
has been generated using the features of the local step height,
slope and terrain roughness predictions. Then, the robot footprint
traversability features have been implemented in the methodology
to improve the effectiveness of the algorithm for the path planning
task. Then a path planning algorithm based on the cost functions
has been performed. The proposed method has been tested in both
simulation and the real environment with the quadruped robot
StarlETH. Also, a similar traversability methodology has been used
for navigation tasks, obstacle avoidance and path planning in the
paper of [61].

In [97], Oliveira et al. proposed a 3D map creation to represent
the environment with the C-SLAM approach ([52]) and the C-LOC
techniques ([107]) using data from MicroStrain 3DM-CV5-25 IMU
and Velodyne VLP-16 Lidar sensors. A navigation cost function
was proposed by the authors using roll and pitch orientations
(these have been used to obtain terrain slope) and the roughness
level as inputs. With the cost function (after post-processing) and
Lidar data, the navigation cost was mapped to predict the
traversability of terrain. In this way, a 3D augmented terrain map
was obtained to navigate the platform in a reliable and safe man-
ner. The detailed framework of the method can be seen in Fig. 8.
Also, the method was tested under different real environments
using the Pioneer P3-AT and John Deere Gator platforms.

There are also some further studies on this topic followed in the
literature i.e. [77,118,62,137]. The two former papers concentrate
on LADAR-based terrain classification, while the two latter papers
(very recent works in the literature) target aspects of reliability-
based terrain mission planning and online learning unmanned
tracked vehicle dynamics enabling optimised path planning,
respectively.
2.2.3. Mixed-based terrain mapping and cost-based traversability
Behaviour-based methods can be seen in geometric or

appearance-based methods for traversability analysis. Such an
approach uses cost functions that can include driving behaviour
and different scenery. Hence, the nature of this section in this
review paper is to cover such approaches.
Fig. 9. Overview of the Propos
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Authors in [171] proposed a traversability map created via a
fully convolutional network (FCN) based method whereby a fea-
ture map generated using Lidar has been used as input to the
FCN. Also, trajectory planning has been implemented using Inverse
Reinforcement Learning (IRL), and different methods under various
scenes have been analysed. The results show that the proposed
method is a valid solution to be explored by researchers in the
field, however, the dataset and terrain used in the study for the
testing were limited.

Work in [139] presented an algorithm that utilised height dif-
ference, measurements remission, roughness, and slope values to
create a traversability map. The dataset was gathered by manually
driving two different vehicle platforms and the data was trained a
semi-supervised learning method. Positive Naive Bayes (PNB)
based and Learning Classifiers from Only Positive and Unlabeled
Data (POS) based classifiers were used to predict the traversable
area of the terrain. The study has been verified on both on-road
and off-road environments, the latter including forest and grass
terrain. The results have shown not using slope and roughness val-
ues in the traversability map, precision decreased by about 15%,
and decreased further by 30% when the remission values were
not used. This indicates that a better traversability model can be
created by using a variety of vehicle and terrain features.

In [106], a method that is suitable for extreme environments
such as rough and steep terrain and for a tethered rover has been
investigated taking into account terrain-tether interaction, the
rover stability and reachability. Also, reliable paths have been pre-
dicted with the combination of the values of yaw, roll, and path
length. The traversability method has been developed with some
logic checks such as whether there is a collision or not and after
checking, the sample has been included on the map. Rover settling,
that is the value of the difference between the surface point cloud
and rover, and stability analysis has been determined to set the
traversability analysis method. The study has been tested in both
simulation and planetary analogue environments and the pro-
posed method has achieved success according to these results.

Fig. 9 illustrates the approach proposed by the authors in [103]
for mapping the unstructured environment. The local geometric
map has been generated with local trajectory estimation from a
SLAM algorithm and an environment model from a range sensor.
The environment point model scanned by the range sensor was
converted to global points. Then, a traversability assessment was
performed using terrain slope and roughness for each grid. Also,
a ray tracing algorithm has been performed to detect obstacles.
Furthermore, this map has been transferred to another block for
creating a global dense map, as seen in Fig. 9 that illustrates build-
ing global and local dense maps. The methodology referred to as
ed GEM Algorithm [103].
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GEM has been implemented and tested in a simulation environ-
ment as well real environment for all systems.

The authors in [157] have investigated a behaviour-based nav-
igation method whereby a 2.5D elevation grid map has been gen-
erated using height information from the terrain. Also, gap and
height filters have been implemented to detect negative obstacles
such as holes, and consider overhanging points, respectively. The
features of contact points of the wheels and Euler spiral have been
considered in the trajectory generation algorithm. Also, some lim-
itations such as roll-over and collision have been taken into
account in the method. The proposed approach has been verified
in the simulation environment with a Finroc robot control frame-
work [113] and V-Rep simulator [35] using Unimog U5023 virtual
vehicle platform and in the real environment with a GatorX855D
robot.

The paper [144] describes a method for learning and predicting
the interaction between a vehicle and terrain using 3D vision data.
Using a neural network, the proposed method discovers the rela-
tionship between the 3D visual features of the terrain and the
resulting vehicle dynamics. Experiments on a dataset of vehicle-
terrain interactions demonstrate the effectiveness of the authors’
approach. Overall, the paper contributes to the development of
intelligent systems for autonomous vehicles that can precisely per-
ceive and react to various terrain types.

Lacaze, Mottern, and Brilhart [76] provide an overview of the
difficulties and opportunities associated with developing autono-
mous mobility systems for off-road environments. The authors
emphasise the unique characteristics of off-road environments,
such as variable terrain, limited infrastructure, and unpredictabil-
ity of obstacles, which present significant obstacles for autono-
mous vehicles. Advanced sensor systems, machine learning
algorithms, and robust control systems are just a few of the
approaches and technologies discussed in the paper that can be
used to surmount these obstacles. In addition, the authors provide
examples of ongoing research efforts and applications of autono-
mous off-road mobility, including agricultural automation, mining
operations, and military logistics. Overall, the paper explores the
potential benefits of off-road autonomous mobility and empha-
sises the need for sustained research and development in this area
to address the unique challenges of off-road environments.
2.3. Hybrid approach

There are several papers and research that combine terrain clas-
sification and terrain mapping and cost-based traversability meth-
ods. These studies are gathered and discussed in this section.
However, there are limited studies presenting an appearance-
based hybrid approach, this seems to be due to these methods
Fig. 10. Overall Layout of Resilient Mu
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not being so reliable and safe to use for creating a cost map and
method of terrain classification (that is, just from appearance infor-
mation). Hence, in this review paper, the hybrid approaches are
mainly discussed in the following sub-sections, i.e. geometry-
based and mixed-based hybrid approaches.
2.3.1. Geometry-based hybrid approach
A classification method with an elevation grid map created with

height features of terrain such as maximum, minimum, mean
heights and height difference (min–max difference) from the
transformed point-cloud data proposed in [88] can be classified
as a geometry-based hybrid method. Then, the terrain has been
classified using features of height, roughness and slope angle.
The classified type of terrain has been determined according to
these terrain features with a comparison approach. The study has
been conducted using a 3D Lidar and concluded that the method
was reliable for classifying the aforementioned terrain type. A
more recent study in [142] demonstrated a navigation method
for developing a point cloud-based traversability model for chal-
lenging environments. The multi-fidelity mapping has been gener-
ated with depth measurement from Lidar and poses estimation
from different sensors. Traversability assessment has been pre-
dicted with this map, and the point cloud was segmented into
two classes, i.e. ground and obstacle. Also, the platform was
included with this point cloud map according to pose estimation.
Then, the traversability matrix was calculated from the settled
pose, the point cloud of the surface and its interaction. Further-
more, the cost maps were generated from this point cloud
traversability map for planning algorithms. The proposed method
has been tested on four different platforms, that is Clearpath Husky
A200 (skid-steer platform), Telemax Pro (tracked vehicle), X-Maxx
(Ackermann suspension) and Spot (Quadruped robot). Although
the model is providing useful outcomes in general, it has not pro-
vided reliable results for detecting small, narrow and negative
(such as holes) obstacles and some unexpected hazards such as
puddle areas or mud. The architecture of the proposed method
can be seen in Fig. 10.

A neural network-based traversability estimation has been pro-
posed by [127]. In the study, roll and pitch features have been gen-
erated by the IMU and depth images by a Kinect camera. Then, the
features have been extracted from the image dataset with the CNN
learning algorithm. These features, roll and pitch angles have been
fused with the dense layers to predict the traversability of the envi-
ronment. The dataset has been obtained via a tracked vehicle in a
60x60 m2 simulation environment that was created in the V-REP
simulator (Virtual Robotics Experimentation Platform). The pro-
posed method was verified using both structured and unstructured
environments. Results provided approximately 92% accuracy rate
lti-Fidelity (RMF) Method [142].
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for estimating traversable area and 72% accuracy rate for untraver-
sable area prediction.

2.3.2. Mixed hybrid approach
Within the mixed-based hybrid approaches, work in [158] pre-

sented a hybrid approach where the terrain has been segmented
into portions such as sky, road, vegetation, grass, and obstacles.
This enabled the classification of the terrain and estimation of
the traversability of the path. In fact, the occupancy map has been
used for the traversability assessment. The study has been imple-
mented in a simulation environment named Unreal Engine 4 [34]
and in the real environment with a real-size heavy vehicle i.e. Uni-
mog U5023. The validation trials have shown the applicability of
the methods. The shortcoming of the study is that the segmented
class is not sufficient for off-road terrains.

In a further study, RGB images have been converted to semantic
segmentation images based on supervised learning and these
images were fused with a point cloud from the Lidar sensor to cre-
ate the semantic mapping. Then, path planning algorithms have
been conducted from this 2.5-D semantic map based on point
cloud and segmented images and from traversability cost scores
that present semantic classes. For semantic segmentation, DeepS-
cene labelled six classes and Yamaha-CMU dataset [86] labelled
eight classes for the training of the segmentation algorithm with
the fully convolutional network (FCN) (used to label all pixels of
data). Also, the researchers proposed a new learning segmentation
algorithm to decrease training speed. It is worth noting that the
dataset was labelled, and the geometric- and appearance-based
traversability model considered both height difference and terrain
class.

Slip prediction is a significant part of terrain traversability and
several researchers have studied this topic. For example, work in
[5] proposed a slip prediction method based on visual sensors
using geometric and appearance information of terrain. The
method was twofold, i.e. performing terrain classification and slip
prediction. Firstly, all-terrain cells were classified into six parts:
soil, asphalt, sand, woodchips, gravel, and grass, with texton-
based methods. According to each terrain type, the slip was calcu-
lated using the information of terrain geometry from IMU and the
2D map created by the camera. Then a slip error was formed by
feeding back the calculated slip and the measured slip from visual
odometry and the encoder to predict the slip value. A learning
algorithm was implemented to predict slip. Also, the research
has shown that the slip value can be calculated just from visual
information. This posed some challenges in achieving small errors
in the outcomes, mainly due to terrain classification errors. The
authors suggested another slip prediction method based on terrain
geometry and terrain type for both fixed terrain and general case.
After the terrain type has been identified, geometry-based slip pre-
diction algorithms have been used to estimate the slip. Rocky8 and
LAGR robots were used to collect datasets and test the proposed
method [3].

The same authors extended their study to a learning slip predic-
tion algorithm extracted from terrain slope and appearance infor-
mation such as texture and colour. The slip value has been
predicted with a combination of measured slip value from wheel
encoders and visual odometry, the terrain slope obtained from
IMU and the 2D cell map. The terrain types were classified into
six classes, i.e. soil, gravel, sand, asphalt, grass and woodchips with
a k-means algorithm. The learning algorithm was developed to
predict slip with just visual information. The study has been tested
with Rocky8 and LAGR rovers [4].

Another traversability analysis based on slip prediction was
demonstrated in [52]. In the study, the goodness value was
calculated with several parameters such as the pitch, roll, terrain
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roughness and step height for each map cell to create the goodness
map. The terrain was classified as definitely traversable, definitely
not traversable, and uncertain labelled from this map. Also, the slip
value was calculated when the terrain is labelled traversable. For
slip estimation, the attitude of the platform and camera image
was used to create an environment elevation map, and the longitu-
dinal and lateral slopes were obtained with this map. After classi-
fying the terrain based on texture and colour features, the slip
prediction algorithm has been implemented according to terrain
class to get a 2D slip cost map. Moreover, this cost map and geo-
metric goodness map have been fused to create a slip-augmented
goodness map a path planning algorithm has been applied to this
map. Another algorithm named High-Fidelity Traversability Analy-
sis (HFTA) was used when the terrain is labelled ‘‘uncertain” from
the terrain goodness map.

From a space-related application, authors in [123] proposed a
method for MARS rover mission, orbital, and ground-based terrain
classification, based on Soil Property and Object Classification
(SPOC) that predicts terrain types and features. The study has
included two significant steps/missions. The first is the landing site
traversability analysis method to categorize the terrain. The
method has been applied to 17 terrain types using the semantic
segmentation method based on supervised learning. Then, a
traversability class has been created with identified terrain classes.
Data labelling progress has been completed via web labelling tools
manually. Also, some pre-processing algorithms such as normaliz-
ing, darkening, and converting images to bird-eye images, crop-
ping, and masking using RANSAC has been used to create a
realistic Mars environment. The study has been verified in Colum-
bia Hills that was deemed suitable by the researchers for the land-
ing study of the rover. The method has predicted the terrain types
such as smooth regolith, dense ridges, rock field, scarp, and deep
sand with 90:2% accuracy overall. But, there was some misclassifi-
cation especially for small rocks due to issues such as data distribu-
tion. The second step is the slip prediction method and the terrain
classes predicted in the previous step have been fused with slope
and wheel slip. Terrain slope has been predicted from the rover tilt
and the slip and rover’s position have been calculated with visual
odometry. The result shows that the prediction of slip for rocks is
acceptable. But, the results are not satisfactory for sand due to
some geometric and appearance features such as terrain geometry
and sand depth. Of course, this paper presented a more bespoke
demanding environment, this of an extraterrestrial planet.

A method of fusing 3D cost maps and terrain classification has
been proposed by [120]. Three main steps were followed, i.e. creat-
ing a 3D traversability cost map, terrain segmentation/classifica-
tion and obtaining a segmented traversability map. The
traversability map has been generated from the 3D point cloud
and the cost score included a combination of terrain slope, cell ele-
vation and obstacle. The cell-based terrain classification is created
by a feature vector that included 14 properties of the image such as
values of RGB channels and skewness, and entropy. Also, inverse
perspective mapping (IPM) and tuned support vector machine
algorisms have been used to eliminate the distribution of image
views for better classification and try to find the best training
parameters, respectively. The accuracy of the method has been cal-
culated according to the combination of traversable and untraver-
sable predictions. The last main step is that the 3D traversability
cost map has been converted to a grey-scale image and then to a
segmented traversability map. In this study, the cost value in every
cell has been associated with the terrain class. Furthermore, the
proposed approach has enabled the terrain to be classified success-
fully, and the method has been updated simultaneously using
online learning. But it has classified the terrain using two classes
i.e. traversable and untraversable (not in a more continuous form).



Fig. 11. Figure info: (a) the main framework, (b) Visualization of Traversability Cost Map (in each image the top-left is the main image, bottom-left is the semantic mask, and
on the right is the terrain traversability cos map. Darker colour shade represents the less traversable area, (c) the Projection Process [79].

Fig. 12. Broatch-et-al: (a) Freiburg Forest Dataset snapshot, (b) Terrain point cloud, (c) Pixel Position and Depth Values [15].
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A method based on images converted to height maps that rep-
resent the terrain of 10 m � 10 m by synthesizing data was pre-
sented in [99]. Then, features such as terrain steepness and
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height of the steps were calculated and CNN-based approaches
were used to predict the traversability of the terrain. The proposed
method was verified using various datasets and tested with a real



Fig. 13. (a) Raw (left) and Smooth (right) Terrain Mesh, (b) Terrain image and mesh examples, from [15].
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platform i.e. Pioneer 3-AT. The test has shown that the CNN-based
method is better than the feature-based and baseline classifier
methods. The main shortcoming of the study is that the method
has been trained with simulation data only.

A semantic map-generating method based on the SLAM algo-
rithm has been proposed by [29]. The semantic segmentation algo-
rithm has been set using Inception-v3 learning architecture and
RGB dataset generated in the RoboCup Rescue-Robot-League envi-
ronment. Then, a SLAM algorithm has been implemented to create
a geometric map using depth and RGB images. Also, labelled
images have been converted to refined semantic images with a
flood-filling algorithm using semantic images and depth informa-
tion from a stereo camera. With these semantic images and geo-
metric maps, semantic and filtered semantic maps have been
generated to reflect the environment. This method has been pro-
vided by using dense information from the environment and more
reliable mapping.

Authors in [51] proposed a path-planning method for Mars sur-
face missions. In the study, the terrain traversability model has
been obtained from the digital elevation model (DEM), cumulative
fractional area (CFA) map and terrain classes. CFA map has been
labelled into low, medium and high classes and the slope com-
puted from DEM has been divided into five classes. The traversabil-
ity map has been created based on these terrain and vehicle
features and the velocity map has been labelled with five different
velocity ranges and an untraversable label. The terrain has been
segmented into benign, rough, sandy and untraversable areas.
Then, the traversability map was updated with new measurement
information. After creating the expected velocity category map,
Yen’s k-shortest paths algorithm [164] has been implemented to
find the most reliable path planning options. By this proposed
Fig. 14. Kester-et-al: (a) Labelled Images snapsh
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method, the terrain can be learned by the platforms
simultaneously.

In another recent study, [79], RGB images, point cloud from
Lidar and robot motion data have been used to generate the
traversability cost map. The method has three main stages i.e. con-
verting RGB images to the semantic mask with a supervised
semantic segmentation algorithm, generating a 2.5-D robot-
centric elevation map and obtaining the traversability cost map.
The Gated-SCNN [140], ERFNet [119] architectures and RELLIS-3D
[63], ImageNet [28] datasets, which have 18 different terrain types,
was used to train semantic segmentation algorithms. The 2.5-D
elevation map that includes the height information on the terrain
in each grid cell was generated using 3D point cloud and robot
motion data. After that, the robot-centric cost map has been cre-
ated with several transformations such as converting coordinates
from map to camera and from camera to pixel (Fig. 11 (c)). Also,
the slope, roughness and step height of the terrain has been calcu-
lated from height information on the elevation map. Combining
maps based on terrain types and geometric information, the
traversability cost map was thus generated. The main framework
and visualization of the traversability map can be seen in Figs. 11
(a) and 11 (b), respectively. In this way, a reliable traversability
map is obtained based on both appearance and geometric informa-
tion for the terrain. A path-planning algorithm can be followed for
navigation tasks with this method. The proposed method is not yet
tested on a real terrain setup for traversability mapping and path
planning.

Continuing with traversability application, Broatch in his work
[15] proposed a method using the DeepScene Freiburg dataset
[146] (Fig. 12 (a)) to create an environment model in Gazebo sim-
ulation. The terrain point cloud has been generated from depth
ot, (b) Path Planning Algorithm results [15].



Table 1
Deep Neural Network Architectures training results from [12].

Learning Architectures Parameter Type Model 1 Model 2

Inception-v4 Steering Angle 44% 61%
Speed 68% 73%

Resnet-152 Steering Angle 50% 65%
Speed 66% 78%

NVIDIA Steering Angle 68% 81%
Speed 77% 88%

Densenet-169 Steering Angle 36% 55%
Speed 54% 65%
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images according to their pixel position and depth values (Figs. 12
(c) and 12 (b)), and it has been meshed and smoothed with Mesh-
Lab 3D software to use in the simulation environment (Figs. 13 (a)
and 13 (b)). In this way, the simulation environment based on the
provided real terrain data has been generated. The vehicle’s longi-
tudinal and lateral slip and the terrain slope have been calculated,
and the friction coefficients have been appointed according to ter-
rain types such as 0 for the sky, 0:1 for the grass and 0:72 for the
road. Noting that zero means ‘‘untraversable” one refers to fully
traversable. Then, a terrain traversability algorithm has been
implemented based on this information/properties. It is noted that
if the terrain type is marked as ‘‘sky” or ‘‘tree”, it is labelled as
untraversable, if the vehicle slip is more than 10, the slope is more
than 20 also the terrain type is not untraversable, then it is labelled
‘‘slow”. In the case of the slip and slope being less than 10 and 20,
respectively, and the terrain is traversable (low friction), it was
labelled a ‘‘fast” area. After this labelling progress (Fig. 14 (a), 2D
terrain images were formed. Also, artificial labels have been added
for sky and trees to decrease the probability of wrong classifica-
tions. A CNN-based learning algorithm was implemented, and a
path planning algorithm has been performed to investigate the
reliability of the method, as seen in Fig. 14 (b). The method proved
successful but was tested only in a simulation environment. In
addition, using more extensive terrain types can improve the
approach further (i.e. considering terrain types such as short, med-
ium and large height grass area, stone, wood and sand area).

A 2014 study by Rasmussen et al. [110] worked on a wheeled
robotic system which navigates along outdoor ‘‘trails” intended
for hikers and bikers. The researchers used a traversability solution
combining the appearance and structural cues derived from stereo
omnidirectional colour cameras and a tiltable laser range-finder.
Tests were run in a real environment and some interesting insights
were listed esp. on considering nocturnal traversability
opportunities.

2.4. End-to-end methods

End-to-end methods are learning-based approaches that com-
bine all system steps from perception to control. This is different
from the other methods mentioned above. For example, while
other methods try to recognize, map or understand the environ-
ment and need another step for navigation and control, end-to-
end methods include both these and the navigation & control
steps. That is, end-to-end methods can be seen as a combination
of perception and control blocks.

In this section, we discuss these methods as a part of terrain
traversability enablers, since the methods are incorporated in sev-
eral traversability assessments. The sub-sections for the end-to-
end methods are deep learning and reinforcement learning-based
approaches.

2.4.1. Deep learning based end-to-end methods
Deep learning approaches receive increasing interest from the

research community widely. In this context, a recent study by
[16] proposed a road detection method using a camera and Lidar.
Point clouds from Lidar were converted to different feature maps
and, the neural network was used as input for the feature maps
and camera images. Also, different fusion algorithms, early, late,
and cross-fusion have been presented to compare information
fusion effects. According to the results, the best accurate model
with 96:03% was found in the case of cross fusion using the KITTI
dataset[36]. The model shows good performance, but this algo-
rithm is suitable just for on-road environments.

The training architectures of the Segnet [7], Fully Convolutional
Network (FCN) [80] and U-Net [121] have been used to segment
the dataset, and the self-supervised learning approach to label
15
the dataset using visual odometry. Also, the NVIDIA learning model
[13] has been implemented to predict steering angle. It is noted
that the input shape was scaled to 256x136 size from 200x66 to
gain more information from the image. For validation of the study
outcomes, a dataset consisting of 1000 RGB images and vehicle
parameters was gathered with two different cameras from a real
environment. Approximately 95% accuracy rate has been obtained
for segmentation and path planning tasks in the three deep learn-
ing algorithms and 3:5 � error for steering angle. The main contri-
bution of this study is that the method can estimate the vehicle
path as well as the vehicle control parameter.

Within the same methodology framework, author [134] pro-
posed a modified ResNet-18 [49] model named TrailNet used to
predict six navigation parameters, i.e. facing left, facing centre, fac-
ing right, shifted left, centred and shifted right. Also, YOLO [112]
object detection network and direct sparse odometry-based
monocular SLAM algorithm was implemented to study safety
[33]. The study has been tested with a micro aerial vehicle and
the dataset has been collected using three cameras in the Pacific
Northwest region.

A weakly-supervised learning-based drivable path prediction
method has been developed by [10]. The huge amount of data
has been segmented with a self-supervised labelling method, and
this data enabled the use of a deep learning-based semantic seg-
mentation algorithm to find a reliable path. The approach has been
performed using KITTI[36] and Oxford RobotCar datasets under
different weather, traffic and lighting conditions. Other research-
ers, in [166], published the Baidu Driving Dataset(BDD) that has
been gathered with sensors of three monocular cameras, Lidar,
IMU and GPS. With this dataset, the navigation parameters for lat-
eral and longitudinal control have been predicted by a deep learn-
ing model that includes LSTM. In the learning algorithm, just the
camera image has been used as an input to predict vehicle curva-
ture and speed.

Moreover, drive torques and steering angles have been esti-
mated from a supervised learning method where a point cloud
has been used as input. Also, a safety system has been imple-
mented to increase the reliability of the method such as the detec-
tion of a collision. Adding such a safety system to the system has
made the method more reliable. This work was presented by the
authors in [42].

In the study of [69], the RGB image from the camera and a point
cloud from Lidar have been used as inputs to the learning algo-
rithms to predict the throttle and angle data. The image and dis-
tance information has been processed with different learning
networks, MobileNetV2 [126] has been used as an encoder and
the Dense Atrous Spatial Pyramid Pooling-based (DASPP) [162] as
a decoder. Then, these have been combined via a concatenate layer.
The method has been verified with a dataset that has been col-
lected with a 1=16 scale platform and it has been tested in a real
environment after the training step. A method for the navigation
of agricultural robots was presented [8]. In their study, the steering
angle has been predicted from the orientation of the robot using an
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RGB image. The method has been trained with the IDSIA Swiss Alps
trail dataset [39] and their own dataset.

Also, researchers have proposed a regression algorithm to pre-
dict exact navigation parameters. These two methods have been
used together in various studies for improved prediction. The
authors in [92] looked at twelve driver actions such as left turn,
straight and right turn predicted from a Driver Behavior Classifica-
tion (DBC) algorithm, and steering angle from a Steering Angle
Regression (SAR) algorithm. The image, Lidar and odometry data
have been used in the SAR algorithm as inputs, just the image
was used in DBC. Also, the Gated Recurrent Fusion Unit (GRFU)
learning algorithm similar to LSTM has been implemented for
improving prediction accuracy. The study has been verified with
the Open Racing Car Simulator (TORCS)[160] and Honda Driving
datasets[109] that have been gathered in the simulation and also
using the real environment, respectively. The proposed method
was shown to have improved the Mean Squared Error (MSE) and
mean Average Precision (mAP) score.

In addition to data from cameras on board the vehicle, GPS data
has been used to predict control parameters as part of the end-to-
end learning method. This is the case in the work presented in [2].
After extracting terrain features from the left, right, and front cam-
era sensors and unrouted maps, these were fused to predict prob-
abilistic control navigation parameters. Also, the fused data has
been combined with a routed map obtained via GPS sensor to esti-
mate the deterministic control parameters such as left turn and
right turn. The method was evaluated using a real environment.

The authors in [50] proposed an end-to-end architecture to pre-
dict both steering angle and speed. GPS data, driving map by route
planner, and images from left, front-view, rear-view and right cam-
eras have been collected for the learning network. With such data
available, the prediction model has been created using CNN and
LSTM learning architectures. Also, a large dataset named the
Drive360 dataset has been gathered to implement the proposed
methodology. Moreover, authors in [130] demonstrated an end-
to-end method for vehicle navigation (using deep learning as well),
and installed a simulator named TORCS [160] and all necessary
packages. After gathering the dataset in the simulator, they applied
the steering angle prediction architecture and tested the method
with the autonomous mode capability.

Lidar and camera sensors were used in the research work in
[21]. In their study, the authors first removed from the images
any unnecessary parts or objects and the images were resized to
use as inputs in the learning network. Also, the 3D point cloud
has been converted to a feature map using a Python-based algo-
rithm. The point cloud was also down-sampled to 16384 points
to decrease training time with a toolbox named CloudCompare
[38]. Three deep learning networks, NVIDIA, Resnet-152 and
Inception-v4 have been used to train with these data. Also, the
training results for different input combinations such as image,
image-point cloud, and image-feature map have been presented
and compared. The biases values of steering angle and speed pre-
diction have been chosen as 6� and 5 km/h, respectively. These
are not reliable and safe tolerance values for real driving. Also, a
Fig. 15. The proposed learning-based setup of Mande
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large and comprehensive dataset named DBNet which represented
a complicated environment that included pedestrians, houses, and
vehicles has been published.

The authors in [12] propose an algorithm that provides an esti-
mate of steering angle and speed using a deep learning-based end-
to-end approach with the same dataset. In this work, camera and
Lidar sensor data were pre-processed for eliminating noise from
Lidar data and transforming pixel-based images into segmented
images using the semantic segmentation technique. The navigation
parameters were predicted from image information, and from the
fusion of the image and 3-D point cloud. The following NN models
were used for training: Inception-v4, Resnet-152, NVIDIA and
Densenet-169. The best prediction results were obtained with the
NVIDIA NN model that provided 81% accuracy for steering angle
and 88% accuracy for vehicle speed. The relevant results can be
seen in Table 1.

The literature includes a large part of end-to-end methods. The
interested reader is referred to further resources in the literature
that study this topic. Various image quality levels have been
employed in the study of [131]. Steering angle has been predicted
a deep-learning-based method by [72,32,132,60,22,89,71].

The authors of [54] proposed a stereo vision odometry-based
technique for the automatic production of training data. They uti-
lised FCN, VGG16, and UNet network architectures to predict a
driveable path from a single image containing visible tracks or
roadways. The output of a trained CNN is segmented images
including the detected path trajectory. Islam et al. [59] developed
a vision-based autonomous driving system that relied on a deep
neural network to navigate the AVS safely in a region with unex-
pected road hazards. Yang et al. [163] suggested a multi-modal
multi-task vehicle control network that predicts both steering
angle and vehicle speed using images from the camera and prior
vehicle speed as inputs. Similar to this study, Jugade et al. [65] pro-
posed a supervised machine learning to predict steering wheel
angle and vehicle speed by discerning human intentions from pre-
vious driving decisions and representing projected human driving
decisions. The authors of [129] proposed a method for predicting
environment traversability using annotated images generated
without human intervention. A state-space search algorithm has
been suggested by [70] to handle common local movements like
sharp turns, overtaking, parking, avoiding obstacles, and navigat-
ing in narrow passages. A self-tuning system based on probabilistic
methods and machine learning techniques was presented by [108]
to improve the path-tracking capability of autonomous vehicles
moving through changing terrain.

2.4.2. Reinforcement-based end-to-end methods
Manderson et al., [82], have proposed a visual and learning-

based method to predict difficult terrain types and their overall
setup can be seen in Fig. 15 that the aerial images and images from
the on-vehicle camera have been fused for improved performance.
Labelling the training dataset was performed on aerial images,
vehicle camera images, the terrain class, and steering data to esti-
mate the terrain type via self-supervised learning. The authors
rson et al. model to categorize terrain types [83].



Fig. 16. Husky A200 Vehicle Platform snapshot with VLP 16 Lidar, Stereo Camera,
Duro RTK GPS sensors payload (Centre for Autonomous & Cyber-Physical Systems,
Ground autonomy Lab, Cranfield University).
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implemented a Long Short-Term Memory (LSTM) learning
approach to predict terrain types (discussion on LSTM can be seen
in [53]). It was shown that the accuracy increased by about 10%
and operating in the demanding terrain improved considerably
when aerial images were used.

In the study performed by the authors in [168], the depth
images, the orientation of the robot and the elevation map which
represent the obstacle around the robot have been used as inputs
in deep reinforcement learning. In the work image resizing was
implemented. Depth images ð84� 84� 1Þ and elevation map
ð200� 200� 1Þ fused with 3D robot orientation have been
reshaped to the size of 576x1. After this, both have been fused to
predict the navigation action (actor) that is front, back, right, and
left commands and value function (critic). The proposed method
was deemed successful in simulation, albeit not verified in a real
case scenario. It is also noted that the terrain area utilised in the
simulation had limited features.

Deep Reinforcement Learning (DRL) has been used to predict
the navigation parameters in the work by the authors in [64]. In
this study, four models were used, i.e. DRL zero-range, immediate
range, and two local ranges sensing (different locations). The pro-
posed model has been verified using the ROS/Gazebo simulation
environment and a 200� 200 m2 off-road terrain was generated
to validate the methods in the simulator. Although the methods
showed good performance, the study has not been verified in a real
environment or an extensive simulation environment that
included an extensive set of terrain types.

Furthermore, research [167] proposed a path-planning algo-
rithm based on deep-reinforcement learning, using a reward func-
tion relating to terrain slope. The angle and distance of height, the
angular and linear velocities, images from visual sensors, and a 3-D
point cloud from Lidar were used as inputs and linear and angular
velocities as outputs for the neural network. For testing the
method, the lunar terrain model and vehicle model have been
established in a Gazebo simulator and the method was verified
in this simulation-based environment.

Authors in [66] looked into an approach using three event
labels, i.e. collision detected by Lidar (like a drop), bumpiness case
determined by IMU sensing, and the position measured by fusion
of IMU and odometry. These labels have been added to the data
for generating a large-labelled dataset with self-supervised learn-
ing. A training model based on deep reinforcement learning was
presented with inputs being labelled camera images and intended
behaviour, and outputs being navigation actions. This study, which
considers not only the geometry properties but also the appear-
ance properties, is successful to learn navigation operations. Also,
researchers tested their method in real environments, and with
the automatic labelling process, these were the main contributions.
The shortcomings of the approach though are: the number of labels
is not sufficient, and the performance in various unstructured envi-
ronment scenarios has drawbacks.

Wulfmeier et al. in their paper [159] proposed a path planning
algorithm based on end-to-end methods. In their study, the point
clouds have been generated with 3D Lidar and the grid-based ele-
vation map has been provided using the features of height infor-
mation and cell visibility obtained from the point cloud. From
this feature map, the terrain has been divided into classes such
as traversable area, obstacle (untraversable) and unknown area
(the latter being cases when Lidar has not managed to capture
information). A cost-based path planning algorithm was imple-
mented according to the obtained traversability map using a
maximum-entropy-based, non-linear inverse reinforcement learn-
ing (IRL) method. Also, different neural network methods that are
standard, pooling and multi-scale fully convolutional neural net-
works(FNC) have been used in the proposed algorithms. For vali-
dating the study, two Velodyne HDL-32E Lidar and Bumblebee
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XB3 stereo-camera have been placed on a modified electric golf
car. The dataset has been collected with this platform driven
120 km by different operators in the Milton Keynes, UK, area. It
is demonstrated that the method is suitable and provided good
results in urban scenarios.

Another recent study, i.e. in [55], proposed a deep reinforce-
ment learning-based navigation method that predicted the naviga-
tion actions: forward, tiny left, tiny right, hard left and hard right
using images as inputs. Firstly a 2D semantic distance map was
obtained from the Lidar, next the map was converted to the size
of the 80x80 grey-scale image to train the learning algorithm.
The study was performed both using real terrain and a Gazebo sim-
ulation environment.

Prediction of vehicle navigation using deep reinforcement
learning was also proposed by [168]. Their algorithm used the
depth image, elevation map and 3D orientation of the platform
as inputs. After the elevation map and 3D orientation were com-
bined, the map and depth image were fused via a concatenate layer
after some pre-processing algorithm to extract the useful features.
The study has been performed in the Gazebo simulator. In this lim-
ited simulation-based scenario, the method provided useful
results.

The literature contains additional papers on navigation, path
planning, road segmentation and recognition, and obstacle avoid-
ance (these are popular topics for both in-ground and aerial vehi-
cles). The research by authors of [148] investigated the subject of
mobile robot navigation by combining reinforcement learning
and neural networks. The hybrid technique has been evaluated in
the Gazebo simulator, and the results demonstrate its stability
and viability. A deep-reinforcement-based end-to-end approach
using depth and RGB pictures to forecast navigation parameters
has been suggested by [96].



Table 2
Listing of popular robotic (vehicle) platforms for traversability studies.

Model Dimension
(mm)

Weight
(kg)

Max
Payload
(kg)

Max
Speed
(m/s)

Battery
Runtime
(Hours)

Battery
Charging
(Hours)

Ground
Clearance
(mm)

Wehicle
Type

Operating
Temperature

Husky A200 990 � 670 � 390 50 75 1 3 4 13 Wheeled �10 to 40 �C
Rr100 864 � 658 � 800 90 50 2.5 4.5 4 120 Wheeled 0�C to 45�C
Jackal 508 � 430 � 250 17 20 2 2 4 65 Wheeled �20 to 45 �C
Moose 2960 � 1500 �

1140
1077 513 8 6 24 240 Wheeled �10 to 50 �C

Warthog 1520 � 1380 � 830 280 272 5 2.5 4 254 Wheeled 2–20 to 40 �C
Scout Mini 1.0 612 � 580 � 245 23 ** – 2.7 2 2 115 Wheeled ”-10 to 45 �C
Scout UGV 2.0 930 � 699 � 348 62 50 1.5 3 2.5–3 135 Wheeled 0�C to 40�C
Hunter UGV 2.0 980 � 745 � 380 65 150 1.5 4 3.5 105 Wheeled ”-10 to 65 �C
Bunker UGV 2.0 1020 � 760 � 360 130 80 1.5 2 2 100 Tracked ”-20 to 60 �C

Leo Rover 447 � 433 � 249 5 6.5 0.4 4 2 – Wheeled –
The Super Mega Bot 838 � 838 � 406 99.7 113.3 6 4 – 139 Wheeled –

Mana 800 � 1150 � 1000 130 90 8.3 8 – 100 Wheeled –
Telemax Eva Pro 775 � 400 � 750 77 35 2.6 10 – – Tracked –

Macrousa Scorpion S 386 � 522 � 170 22 20 2.6 2 – 45 Wheeled –
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3. Sensors and platforms used in the studies of terrain
traversability analysis

Practical considerations in traversability analysis and related
studies are normally not looked at in detail. This is a particular fea-
ture of this review paper as part of the traversability analysis
research review. We present information and insights on the vehi-
cle platforms and sensors’ consideration in this topic.

A variety of vehicle platforms are utilised in traversability anal-
ysis. A typical research and development platform, namely, a
Husky platform from Cranfield University, is shown in Fig. 16. It
is strongly believed that these need to be featured in a rigorous
review paper, and in this contact Table 2 lists the most used vehicle
platforms in the wider research and industrial sector. This review
paper is not meant to promote any particular vehicle platform,
hence details on each individual platform are not included. We
leave it to the interested reader to refer to the relevant vehicle plat-
form brand’s website.

Integrated with the vehicle platforms, are several sensors to
visualize, perceive and map the environment and/ or calculate
vehicle-related and environmental/surrounding information.
These form vital subsystems for traversability and can be catego-
rized in twomain categories, i.e. exteroceptive sensors that measure
the environment’s features directly from contact-less sensors like
Lidar and Camera, and proprioceptive sensors that measure robotic
interaction and require some form of contact with the environ-
ment such as measuring the position of the wheel mechanically
Table 3
General Information and Features of Sensor Types that Used in the TTA.

Sensor Type Sensor
Tecgnology

Information
Type

Sensor
Type

Ultrasonic sensor Sound
Wave

Distance Active

Radar Radio
Wave

Angle, distance,
size, and velocity

Active

Lidar Laser
Beam

Angle, distance
and size

Active

Monocular Camera Light Visual Passsive

RGB-D Camera Light Depth, visual Active

Stereo Camera Light Depth, visual Passsive

Event Camera Light Visual Passsive
Omnidirectional

Camera
Light Visual Passsive Ve

Infared camera Infrared
Energy

Temperature Passsive
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contacting the terrain, joint angle or friction using wheels as tactile
sensors.

Regarding the sensor technology (nature), cameras, Lidar, ultra-
sonic sensors (for proximity) and Radars tend to be the most com-
monly used exteroceptive sensors for traversability
assessment/analysis.

Lidar is well known for using laser beams to provide angle,
range, and size information. Lidar is seen as offering several advan-
tages such as a wide field of view (FoV), high accuracy and resolu-
tion, providing 3D information and being capable to monitor long
distances. However, Lidar tends to be expensive sensors, can be
power-hungry, affected by weather conditions (i.e. poor perfor-
mance under rainy conditions, fog, and snow), and require
mechanical-part maintenance.

Radars are alternative sensors that use electromagnetic waves
to identify the angle, range, size, and velocity information. The
advantages of using radars are as follows. They are less expensive
and more robust, less sensitive to weather conditions, small and
light, can work long distances, offer good distance detection and
speed information, etc. However, Radars do not provide dense
information and high accuracy, and resolution, as well as no 360-
degree coverage.

Ultrasonic sensors (proximity sensors), devices using sound
waves to provide range information are cheap, small, light, very
good in detecting near objects and non-metal objects, have good
short-range resolution and are less affected by weather conditions
and surface factors. They do come with limitations such as near-
Size Resolution Maintenance Sensor
Life

Overall
Cost

Very
Compact

Sparse Easy Long Low

Compact Higly Sparse Difficult Long Medium

Bulky Sparse Difficult Medium High

Very
Compact

Dense Easy Long Low

Compact Dense Easy Long Low &
Medium

Compact Dense Easy Long Low &
Medium

Compact Dense Easy Long Medium
ry Compact Dense Easy Long Low &

Medium
Compact Dense Easy Medium Medium

& High



Table 4
Listing Mostly Used Camera Types.

Camera
Type

Model Weight
(g)

RGB and Depth
FoV
HxV

Power
Consumption

(W)

Max
Frame

Rate (fbs)

Depth
Resolution

Colour
Resolotuin

Max Depth
Measuring

(m)

RGB-D Kinect v1 1140 R:62� � 48.6�
D:57� � 43�

12.96 30 320x240 640x480 0.4–3.5

RGB-D Kinect V2 1400 R:84.1� � 53.8�
D:70� � 60�

115 30 512x424 1920x1080 0.5–4.5

RGB-D Azure Kinect 440 R:90� � 74.3�
D:120� �120�

6 30 1024 � 1024 4096 � 3072 0.25–5.46

RGB-D Xtion Pro Live 540 R:83�
D:58� � 45�

2.5 30 640 � 480 1280 � 1024 0.8–3.5

RGB-D RealSense 515 95 R:69.4� � 42.5�
D:70� � 55�

3 30 1024x768 1920x1080 0.25–9

RGB-D RealSense
D435

72 R:69.4� � 42.5�
D:87� � 58�

2.5 W 90 1280x720 1920x1080 0.3–3

RGB-D RealSense
D455

– R:90� � 65�
D:87� � 58�

2.5 W 90 1280X720 1280X800 0.6–6

Stereo ZED 135 D:90� � 60� 5 W 100 fbs 2208 � 621 4416x1242 0.3–25
Stereo ZED 2 124 D:110� � 70� 5 W 100 fbs 2208 � 1242 2208x1242 0.3–20
Stereo Bumblebee

XB3
505 R:50� and 70� 4 W 16 fbs – 1280x960 –

Monacular Hero-4 (4 K) 569.8 Wide 0.03–5 W – – 3840x2160 –
Event DVS128 – – 150mW- 1 W – – 128 � 128 –
Omni-
directional

Gear 360 130 D:270� � 60� – – – 5472 � 2736 –
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range working distance, being affected by heat, wind and noise,
mutual interference problems, low resolution, and can be unsuit-
able for high-speed operation.

Cameras utilise colour information, there are many camera ver-
sions with high resolution, capable to provide dense and 3D infor-
mation, typically easy to deploy and having wide FoV. Camera
technologies have progressed significantly and now offer small
sizes and weights, and long-range capabilities that can provide
depth information (i.e. stereo or RGB-D cameras). However, they
tend to require feature extractions progress, they can be affected
by weather and light conditions, and don’t provide direct velocity
and distance information. In general, the immense popularity of
computer vision applications resulted in the extensive use of cam-
era sensors in-vehicle applications.

Features of different types of sensors are listed in Table 3, and
camera examples used in the TTA studies are shown in Table 4
as a comprehensive summary of practical considerations in
traversability. To set up these tables, a number of manufacturer
data sheets and technical articles [170,90,111,93,138,94,170]
including review articles [1,9,152,150,165] are referred to.

4. Discussion on traversability methods presented

This section evaluates and discusses the methods and
approaches presented in this review paper to highlight the pros
and cons of the relevant studies.

4.1. Terrain traversability related insights

Terrain classification, in particular in demanding off-road ter-
rains, plays a major role in determining which area (or pathway)
portion is safe (reliable) or faster for the vehicle to traverse in a
more optimised way.

Appearance-based terrain classification methods have many
contributions to literature and off-road navigation studies or pro-
jects. With the appearance information of the environment, the
terrain can be classified into various types such as asphalt, lawn,
stony, rocky area, smooth, rough, semi-smooth, or very rough
and the path planning can be performed according to these terrain
types. Nowadays, the biggest advantage of vision-based terrain
classification is that it can be applied with high accuracy using
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machine learning algorithms, especially with advances in com-
puter processing and data storage. It is worth noting that classifica-
tion or driving based solely on colour information tends to be not
realistic. For example, in cases of high-grass terrain environment
(although this can vary depending on the characteristics of the
vehicle platform) is not traversable in many cases, although grassy
terrain types, based on colour detection, tend to be considered tra-
versable by many researchers. Conversely, low grass areas were
classified as untraversable areas in several studies. Further, it is dif-
ficult that the complicated part of terrains such as holes, water
areas, and transition parts between terrain types to be detected
efficiently by just appearance-based methods. Hence, this method
alone may not be sufficient for reliable terrain analysis.

Geometric-based terrain classification has been studied by sev-
eral researchers [85,124,116,117,98]. Geometric-based terrain
classification methods refer to using geometric features such as
height, terrain anatomy, slope, slip characteristics etc. Detection
of the difficult part of terrains like holes or measuring objects’
heights can be achieved with this method. But the terrain classifi-
cation methods based on just geometric features may yield unreli-
able results due to incorrect measurement and sensor noise/
distortion. In addition, the fact that the sensors used in these meth-
ods such as Lidar, Radar or rarely GPS are expensive and require
some data processing. These shortcomings tend to make this kind
of method costly, complex and not more reliable than appearance-
based methods.

Various studies considered the fusion of geometric and
appearance-based information, examples can be seen in
[74,161,11,135,141,75,101,10,57]. In these fusion-based
approaches, the terrain is classified in general by appearance-
based techniques, while demanding parts of terrains e.g. transmis-
sion parts, holes and grass height are detected by the geometric-
based methods. The aim is to enable more reliable and safe driving
by combining both feature types for the classification problem,
albeit with increased complexity. In this context, cost and the
required data processing capabilities are rather significant short-
comings of such methods.

Conventional planning for driving is normally performed under
an ideal scenario, i.e. deterministic terrain, terrain with smooth
features, and no hindering objects for traversability. In practice,
one faces a more complex and challenging environment scenario
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(off-road-wise). In such environments, mapping the environment
and creating terrain traversability cost function utilizing geometric
or appearance-based information on terrain and vehicle is of para-
mount importance. It is also multiple objective problems as seen in
a variety of studies on mapping the terrain and processing various
characteristics such as vibration, vehicle speed and acceleration,
slip, slope and anatomy of terrain, size and the shape of (if any)
objects, that are important to perceive the environment and enable
safe traversability mission. An alternative, yet not as consistent
Also, it is possible to make a terrain traversability analysis only
from the cost function (without a map) that includes various infor-
mation such as vibration, size, slip, and slope. Although, it is not a
better approach.

For exact traversability analysis, the terrain should be observed
and areas that are safe for going and including the speed by which
to traverse it is identified. Further, it should be determined not
only whether the terrain is passable or impassable, but also which
part of the terrain is full-, semi-, or non-passable, or which part is
the fast-speed, medium-speed, and low-speed passable (in some
cases, also which terrain part can be utilised as or urgency passable
region). For such a comprehensive analysis, both terrain classifica-
tion and terrain mapping and cost function-based methods (hybrid
methods) should be explored. The current literature offers a wealth
of papers on the hybrid methods that provide terrain classification
and traversability mapping using both appearance- and geometry-
based information. What is noted from the studies is that hybrid
methods tend to provide more efficient terrain analysis with dense
information for terrain classification and mapping, and some fur-
ther examples can be seen in these papers
[158,86,5,123,120,99,29,51] for the interested reader.

The end-to-end methods have several advantages especially
direct control and lesser requirements. In particular, deep
learning-based methods provide good results in specific scenarios,
but when the method is tested in a different environment (scenar-
io), reliability reduces substantially. Comprehensive datasets are
paramount for use in this set of methods, including various fea-
tures such as various weather conditions and lighting conditions.
This is not a cost-effective solution due to the challenge of collect-
ing a large number of datasets and requiring demanding comput-
ing power. In addition, end-to-end methods results depend on
vehicle characteristics (such as speed) and terrain characteristics
(features that cannot be simply generalised and fixed) and such
uncertainty impact their performance. Reinforcement learning-
based methods attempt to provide more comprehensive solutions
and consider various terrain and vehicle parameters such as slip,
slope, velocity, and distance between line sections. However, they
require extensive training.

The cons of the traversability analysis methods are summarized
below.

� APPEARANCE-BASED METHODS:
-Classification of transition parts, i.e. between vegetation
and low vegetation areas (high grass, long grass) or smooth
terrain/semi-smooth terrain
-Predicting hole, mud and water areas
-Real-time response time of the prediction algorithm

� GEOMETRIC-BASED METHODS:
-Requiring various pre-processing algorithms, i.e. converting
Lidar points to point cloud or to feature maps.
-Increase cost due to sensors price that provides geometric
features of terrains (it is more expensive than sensors used
in appearance-based methods)
-Predicting water areas, thin objects such as twigs, thin
sticks and sparse areas
-Timing (simultaneous working) and calibration of sensors

� TERRAIN CLASSIFICATION:
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-Unreliable terrain analysis with just classification algo-
rithms (geometric information of terrains such as the height
of objects, terrain slip or slope are also very important
parameters for traversing unstructured environments)

� TERRAIN MAPPING AND COST-BASED ANALYSIS:
-Determining the weighting of algorithm parameters (the
effect of parameters such as slope, terrain slip or object
height) on the traversability cost function
-Challenging task of creating a real-time map with several
information characteristics
-Increased cost of traversability solution due to sensor pric-
ing these tend to be expensive in situations where intensive
information from the terrain environment is required)

� END-TO-END METHODS:
-These methods require comprehensive datasets (ideally
gathered under different weather and light conditions trials)
-Requiring long training time and high-spec computers for
real-time implementation
-Highly depends on prediction tolerance

Another significant parameter when it comes to terrain
traversability studies is the dataset availability (which in many
cases is taken for granted or different datasets, more on-road tend
to be used). Most of the off-road or demanding terrain existing
datasets are not comprehensive and contain only a few thousand
data. Many datasets may not have sufficient vehicle and terrain
parameters or information provided (which can hinder the valida-
tion of new research solutions). For end-to-end studies, while there
are various (as mentioned) datasets for on-road environments,
there are a few small datasets for off-road environments. Also,
from a vehicle control viewpoint, only the steering angle is shared
as part of many of these datasets. However, speed is also an impor-
tant parameter for navigation.

Hence, using a hybrid approach based on geometry and appear-
ance information can enable providing more optimised driving
solutions in an off-road environment with a comprehensive and
multi-scenario dataset. The authors propose the following impor-
tant recommendations for future research according to the analysis
of existing literature.

� Enabling a comprehensive dataset availability that includes var-
ious terrain features such as grass, tall grass, gravel, stone, rock,
wood, and stone terrain and includes geometric information
from vehicle and terrain such as pose, slip, slope and object
height after some pre-processing or raw data from sensors such
as Lidar, IMU, Odometry, GPS. Sensor configuration (and infor-
mation fusion) on the vehicle platform is of paramount
importance.

� Enabling a variety of datasets (including labelling semantic,
instance or pixel-based) collected under various weather (in-
cluding adverse weather conditions) and light conditions.

� Developing terrain classification approaches with various
classes (not just smooth and rough labels) and learning algo-
rithms with an increased level of prediction accuracy.

� Using appearance and geometric-based methods including
mechanical properties of terrains such as friction or deformabil-
ity via proprioceptive (contacted) sensors with hybrid methods
for reliable and sustainable traversability analysis.

� End-to-end methods may be used for an emergency case to pre-
dict navigation parameters such as steering angle and vehicle
speed.

� Using aerial images may increase the prediction accuracy of ter-
rain classification and detect the difficult part of terrains such as
holes, waters and transmission parts, dramatically.

� Validating terrain traversability under extensive simulation
study and tested in a realistic environment condition where
possible.
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4.2. Sensor related insights

As discussed earlier, several sensor technologies have been used
for traversability assessment. From the study is concluded that
mixing exteroceptive and proprioceptive sensors can enable reli-
able sensing and better perception of the environment.

Lidar, radar, camera, GPS (where available), wheel odometry
and IMU have been used to detect geometric features of the envi-
ronment. Lidar is seen as the more useful sensor for calculating
slip, slope, road shape or obtaining 3D environment maps com-
pared to other sensors. This is due to its features of working in a
long and wide range, using full 360 degrees environment maps
and typically dense information. Other sensors such as IMU or
wheel odometers are necessary for a more reliable perception of
slip value which is quite important to identify safe driving. It is
worth noting that Lidar is an expensive and weather-sensitive sen-
sor (i.e. poor performance in rainy weather). Multi-radar systems
can be a good option for obtaining data in challenging weather
conditions, although, they provide sparser and not full 360-
degree information of the surroundings. The use of Lidar and radar
sensing can be beneficial in traversability analysis.

For appearance features of the environment, cameras are the
natural option to use. There is a variety of types, some low cost,
some higher costs with extra features of object detection. More-
over, RGB-D cameras provide both appearance and geometric fea-
tures of environments. Of course, Lidar and Radar can be used for
appearance information by converting images of feature maps.

Data processing-wise such as converting point cloud to the fea-
ture map (Lidar), resizing images, noise removal or filtering in data,
and sensor fusion (either from the same type of sensors, i.e. left/
right camera, or heterogeneous sensors i.e. incl. Lidar and radars)
is another important area to highlight for terrain traversability
analysis. Appropriate processing provides more efficient and
usable data obtained from sensors, especially where sensor fusion
is followed.
5. Conclusion

We have presented a comprehensive survey of ground vehicle
terrain traversability emphasizing demanding environments and
including sensor technology insights (the latter being a unique fea-
ture of this paper). Terrain traversability analysis has been exten-
sively studied referring to a large number of recent research
paper materials (especially covering the period 2014–2022). The
relevant research studies were classified into three main sections,
i.e. terrain classification, terrain mapping, and the combined
cost-based traversability and hybrid approaches. Each section has
been sub-categorised by three different methodology viewpoints,
i.e. appearance-based, geometry-based and mixed-based. This
offers an informative and rigorous review for the research commu-
nity and the interested reader in terrain traversability analysis.
Moreover, we studied end-to-end methods extensively looking at
deep learning and reinforcement learning approaches.

This rigorous survey review paper includes the important point
of practical consideration in traversability studies, i.e. lists vehicle
platforms used for traversability analysis and examines sensor
technology enabling this. We present multiple perspectives in
traversability research, aiming to avoid being biased towards a par-
ticular approach or a particular platform setup for a fairer
representation.

Traversability studies have received increased attention in
recent years, however, there are still various research gaps to be
addressed in the terrain traversability analysis esp. in an unstruc-
tured environment. The following points are highlighted by the
authors:
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� The development of a novel terrain traversability analysis/map-
ping method based on both appearance and geometric
approaches applicable in various environments for safe motion
is required.

� The need for developing robust and safe algorithmic solutions
for the classification of various terrain characteristics such as
asphalt, soil, sand, gravel, rocky surface, and grass.

� The effort of aiming to improve the accuracy of the vehicle
learning of the classified terrain types.

� Developing methods to determine multiple options for vehicle
navigation such as fast (traversable) route, slow (traversable)
route, medium (traversable) route, untraversable route, and
emergency route (semi-traversable).

� The topic forms a clear example of an integrated system solu-
tion, with the requirement of developing an integrated solution
for the above.

The authors’ view is towards a more effective method by fusing
appearance and geometry-based information for improved terrain
environment analysis. Using both exteroceptive and propriocep-
tive sensors combined, although increasing the system architec-
ture complexity, enables richer datasets. Pre-processing/
processing sensor information such as feature extraction, convert-
ing point cloud to feature map, data augmentation, converting
images to grey-scale, down-sampling Lidar-obtained number of
points, removing noise information from data, improving the qual-
ity of data will further provide a pathway for more useful data or
dataset for these methods. An important element yet time-
consuming, especially during training of the ML/AI techniques for
traversability, is that of data labelling. While many studies refer
to the training of algorithms with different datasets, data labelling
lacks detailed investigation for the relative impact on the methods
training for traversability.
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Appendix A. Complementary tables list

The appendix, in the next pages, lists a set of complementary
tables that are referred to accordingly in the main body of the
paper.

We categorized the studies according to the use of general
methods. Some researchers used completely or more analytic-
based methods such as cost or optimization-based classification,
which means they didn’t use any learning-based method. And
some of them used learning-based methods such as semantic
segmentation-based classification. This classification has been
added so readers to can choose articles directly from the listings.

Tables 5, 6, 7, 8.



Table 5
Important Literature Relating to TERRAIN CLASSIFICATION.

Article
Ref.

Category Road Type General
Method

Sensors Environment Speed Vehicle
Type

Simulator Vehicle
Model

[88] Geometric Unstructured Analytic Lidar Real – – – –
[158] Mixed Unstructured Learning Camera Real and

Simulation
– Wheeled Unreal

Engine
The U5023

[142] Geometric Unstructured Analytic Camera.
Radar
Lidar, GPS

Real Low Wheeled,
Legged

Tracked – Husky,
Telemax,
X-Maxx, Spot

[2] Mixed Unstructured Learning
Analytic

Camera, IMU Real Low Wheeled – Rocky8
LAGR

[99] Mixed Unstructured Learning
Analytic

Camera Real and
Simulation

Low Wheeled Gazebo Pioneer P3

[6] Mixed Unstructured Learning
Analytic

Camera, IMU Real Low Wheeled – Rocky8
LAGR

[100] Mixed Unstructured Learning Camera Real Low Wheeled – Athena Rover
[86] Mixed Unstructured Learning Camera, Lidar Real – Wheeled – –
[30] Mixed Semi-

Structured
Learning Camera Real – Wheeled – RoboCup

[5] Mixed Unstructured Learning – Real Low Wheeled – LAGR
[52] Mixed Unstructured Analytic Camera, IMU Real Low Wheeled – Pluto

Research
Rover

[51] Mixed Unstructured Analytic – Real Low – – –
[120] Mixed Structured

Unstructured
Learning Camera Real – Wheeled – –

Table 6
Important Literature Relating to TERRAIN MAPPING

Article
Ref.

Sub
Categorization

Road Type General
Method

Sensors Environment Speed Vehicle
Type

Simulator Vehicle
Model

[124] Geometric Based Unstructured Analytic Camera, Lidar Simulation – Wheeled Gazebo
Matlab

–

[147] Apperance
Based

Unstructured Learning Camera Real Low Wheeled – Viona

[141] Geometric Based Structured
Unstructured

Learning Camera, Lidar Real – Wheeled – –

[11] Mixed Unstructured Learning Camera Real High Wheeled – QUAD-AV
[117] Geometric Based Unstructured Learning Camera, Lidar Real High Wheeled – –
[84] Geometric Based Unstructured Learning Lidar Real and

Simulation
Low Wheeled Gazebo Andabata

[128] Apperance
Based

Structured
Unstructured

Learning Camera Real – Wheeled – –

[87] Apperance
Based

Unstructured Learning
Analytic

Camera Real – Wheeled – POSS-V

[145] Apperance
Based

Structured
Unstructured

Learning Camera Real – Wheeled – –

[18] Mixed Unstructured Learning Camera Real and
Simulation

– Wheeled ANVEL –

[98] Geometric Based Semi-
Structured

Analytic IMU Real Low Wheeled – Pioneer P3

[123] Mixed Unstructured Learning Camera Real Low Wheeled – –
[85] Geometric Based Unstructured Learning Lidar Real and

Simulation
Low Wheeled Gazebo Andabata

[74] Mixed Unstructured Learning Camera, Lidar,
and IMU

Real Low Wheeled – Husky

[73] Mixed Unstructured Learning Camera, IMU Real Low Wheeled – Husky
[135] Mixed Unstructured Learning Lidar Real High Aerial – –
[161] Mixed Unstructured Learning Camera Real Low Wheeled – Pioneer P3
[116] Geometric Based Unstructured Learning Camera, Lidar Real High Wheeled – –
[57] Mixed Unstructured Learning

Analytic
Camera Real – Wheeled – –

[101] Mixed Structured Learning Camera, Lidar
and Odometry

Real High Wheeled – –

[153] Apperance
Based

Unstructured Learning Camera,
Force-
Torque Sensor

Real Low Legged – ANYmal
Quadruped

[78] Geometric Based Unstructured Analytic Lidar Real – Wheeled – An UGV
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Table 7
Important Literature Relating to HYBRID Approaches.

Article
Ref.

Sub
Categorization

Road Type General
Method

Sensors Environment Speed Vehicle
Type

Simulator Vehicle
Model

Dataset

[44] Mixed Struct. Learning Camera, Lidar Real High Wheeled – – KITTI
Benchmark

[105] Geometric Based Unstr. Analytic Lidar Real Low
Medium

Wheeled – – –

[19] Geometric Based Unstr. Analytic Lidar, IMU
and GPS

Real High Wheeled – SUV –

[31] Apperance Based Unstr. Learning Camera Real High Wheeled – AutoRally –
[61] Geometric Based Unstr. Analytic Lidar Simulation Low Legged Gazebo ANYmal –
[103] Mixed Unstr. Analytic Lidar, IMU, GPS Real and

Simulation
– Wheeled V-REP – KITTI

[157] Mixed Unstr. Analytic – Real and
Simulation

High Wheeled – GatorX855D,
Unimog U5023

–

[106] Mixed Unstr. Analytic Camera Real and
Simulation

Low Tethered – JPL’s Axel –

[155] Geometric Based Unstr. Analytic Lidar Real and
Simulation

Low Legged Gazebo Quadruped
StarlETH

–

[127] Geometric Based Struct.
Unstr.

Learning – Simulation Low Tracked V-REP – –

[171] Mixed Unstr. Learning Camera, Lidar,
IMU, GPS

– – Wheeled – – –

[41] Geometric Based Struct.
Unstr.

Analytic Camera Real – Wheeled – – –

[97] Geometric Based Unstr. Learning – Real – Wheeled – Pioneer P3 –
[37] Apperance Based Unstr. Analytic Camera Simulation – Wheeled – – –
[139] Mixed Struct.

Unstr.
Learning Camera, Lidar Real – Wheeled – – –

[169] Geometric Based Unstr. Analytic Lidar, IMU,
and GPS

Real and
Simulation

– Wheeled Gazebo – –

[156] Geometric Based Unstr. Analytic Lidar, IMU
and GPS

Real High Wheeled Simulink Loc8 –

[71] Apperance Based Struct. Learning Camera Real – Wheeled – – Commaai,
Udacity, HCE

Table 8
Important Literature Relating to END-TO-END Approaches.

Article
Ref.

Sub
Categorization

Road Type General
Method

Sensors Environment Speed Vehicle
Type

Simulator Vehicle
Model

Dataset

[39] Deep Learning Unstr. Learning Camera Real Low Human
Quadrotor

– – –

[43] Deep Learning Unstr. Learning Lidar Real – Wheeled – – –
[66] Deep Learning Struct.

Unstr.
Learning Camera, Lidar,

and IMU
– Low Wheeled – Jackal BADGR

[166] Deep Learning Struct. Learning Camera Real High Wheeled – – Baidu
[130] Deep Learning Struct. Learning Camera Simulation High Wheeled TORCS – –
[64] Reinforcement Unstr. Learning Camera Simulation – Wheeled Gazebo – –
[56] Reinforcement Unstr. Learning Lidar Real and

Simulation
Low Wheeled Gazebo – –

[8] Deep Learning Unstr. Learning Camera Real Low Wheeled – – IDSIA Swiss
Alps Trail

[50] Deep Learning Struct. Learning Camera, GPS Real High Wheeled – – Drive360
[163] Deep Learning Struct. Learning Camera Real High Wheeled – – Udacity

SAIC
[60] Deep Learning Struct. Learning Camera Simulation – Wheeled PreScan – –
[10] Deep Learning Struct. Learning Camera Real High Wheeled – – KITTI,

RobotCar
[69] Deep Learning Indoor Learning Camera, Lidar Real Low Wheeled – – –
[92] Deep Learning Struct. Learning Camera, Lidar

and Odometry
Real and
Simulation

– Wheeled – – Honda,
TORCS

[159] Reinforcement Unstr. Learning Camera, Lidar Real Medium Wheeled – GEM Car –
[82] Reinforcement Unstr. Learning Camera, Lidar,

IMU, GPS
Real and
Simulation

Low
Medium

Wheeled Unreal
Engine

– –

[54] Deep Learning Unstr. Learning Camera,
Odometry

Real – Wheeled – – –

[167] Reinforcement Unstr. Learning Camera, Lidar
and IMU

Simulation Low Wheeled Gazebo Jackal –

[16] Deep Learning Struct. Learning Camera, Lidar Real – Wheeled – – KITTI
[21] Deep Learning Struct. Learning Camera, Lidar Real High Wheeled – – DBNet
[168] Reinforcement Unstr. Learning Camera, Lidar Simulation – Wheeled Gazebo – –
[32] Deep Learning Struct. Learning Camera Real – Wheeled – – UDACITY

(continued on next page)
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Table 8 (continued)

Article
Ref.

Sub
Categorization

Road Type General
Method

Sensors Environment Speed Vehicle
Type

Simulator Vehicle
Model

Dataset

[65] Deep Learning Struct. Learning Lidar Real High Wheeled SCANeR – –
[132] Deep Learning Struct. Learning Camera Simulation – Wheeled Udacity – –
[134] Deep Learning Unstr. Learning Camera Real Low Aerial – MAV –
[2] Deep Learning Struct. Learning Camera, GPS Real High Wheeled – – –
[60] Deep Learning Struct. Learning Camera Simulation – Wheeled Webots – –
[22] Deep Learning Struct. Learning Camera Real – Wheeled – – UDACITY
[133] Reinforcement Struct.

Unstr.
Learning Camera Simulation – Aerial NYU2 – –

[96] Reinforcement Indoor Learning Camera Real and
Simulation

– Robot Gazebo Turlebot2 –

[168] Reinforcement Unstr. Learning Camera, Lidar Simulation – Wheeled Gazebo 4x4 Jaguar
Mobile

–

[67] Reinforcement Indoor Learning Camera Real and
Simulation

– Wheeled Bullet An RC Car –

[20] Reinforcement Unstr. Learning Camera, Lidar Simulation – Wheeled Gazebo Ranger XP900 –
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