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Abstract

This thesis addresses the problem of modelling visual attention in the context of autonomous
off-road robots. The goal of using visual attention mechanisms is to allow robots to focus
perception on the aspects of the environment that are more relevant to the task at hand. As this
work will show, this capability is a promoter of robustness and computational parsimony in both
obstacle and trail detection. These features are key enablers of fast and energetically efficient
field robots.

One of the major challenges in modelling visual attention emerges from the need to ensure
that the model is able to manage the speed-accuracy trade-off in the face of context and task
changes. This thesis shows that this trade-off is handled if the cognitive process of visual
attention is modelled as a self-organising process, whose operation is modulated by the robot’s
action selection process. By closing the loop from the action selection process to the perceptual
one, the latter is able to perform on a by-need basis, anticipating actual robot moves.

To endow visual attention with self-organising properties, this work gets inspiration from
Nature. Concretely, the mechanisms underlying the ability that army ants have of foraging in a
self-organising way are used as metaphor to solve the task of searching, also in a self-organising
way, for obstacles and trails in the robot’s visual field. The solution proposed in this thesis is to
have multiple covert foci of attention operating as a swarm via pheromone-based interactions.

This work represents the first embodied realisation of swarm cognition, which is a new born
field that aims to uncover the basic principles of cognition by inspecting the self-organising
properties of the collective intelligence exhibited by social insects. Hence, this thesis contributes
to robotics as an engineering discipline, and to robotics as a modelling discipline supporting the

study of adaptive behaviour.

KEY WORDS: Swarm Cognition, Visual Attention, Autonomous Robots, Off-Road Local

Navigation, Stereo-Based Obstacle Detection, Monocular Trail Detection.






Resumo

Esta tese aborda o problema da modelagdo de atencdo visual no contexto de robds auténomos
todo-o-terreno. O objectivo de utilizar mecanismos de atencdo visual € o de focar a percep¢ao
nos aspectos do ambiente mais relevantes a tarefa do rob6. Esta tese mostra que, na detec¢do de
obstaculos e de trilhos, esta capacidade promove robustez e parciménia computacional. Estas
sdo caracteristicas chave para a rapidez e eficiéncia dos robds todo-o-terreno.

Um dos maiores desafios na modelacio de aten¢do visual advém da necessidade de gerir o
compromisso velocidade-precisdo na presenca de variacdes de contexto ou de tarefa. Esta tese
mostra que este compromisso € resolvido se o processo de atencdo visual for modelado como
um processo auto-organizado, cuja operacdo € modulada pelo médulo de selec¢do de acgdo,
responsdvel pelo controlo do robd. Ao fechar a malha entre o processo de seleccdo de ac¢do e
o de percepcao, o ultimo € capaz de operar apenas onde € necessario, antecipando as ac¢des do
robd.

Para fornecer atencao visual com propriedades auto-organizadas, este trabalho obtém inspi-
racdo da Natureza. Concretamente, os mecanismos responsaveis pela capacidade que as formi-
gas guerreiras tém de procurar alimento de forma auto-organizada, sdo usados como metafora
na resolucao da tarefa de procurar, também de forma auto-organizada, obstaculos e trilhos no
campo visual do robd. A solucdo proposta nesta tese é a de colocar varios focos de atencdo
encoberta a operar como um enxame, através de interac¢des baseadas em feromona.

Este trabalho representa a primeira realizacdo corporizada de cogni¢do de enxame. Este é
um novo campo de investigacdo que procura descobrir os principios basicos da cognicao, ins-
peccionando as propriedades auto-organizadas da inteligéncia colectiva exibida pelos insectos
sociais. Logo, esta tese contribui para a robdtica como disciplina de engenharia e para a robdtica

como disciplina de modelagdo, capaz de suportar o estudo do comportamento adaptavel.

PALAVRAS CHAVE: Cogni¢io de Enxame, Atencio Visual, Robds Auténomos, Navega-

¢do Todo-o-Terreno, Detec¢dao de Obstdaculos Binocular, Deteccdo de Trilhos Monocular
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Resumo Alargado

Esta tese aborda o problema geral da navegagao local em robds méveis a operar em ambientes
todo-o-terreno. A resolucdo deste problema é um passo essencial para permitir a utilizacdo de
rob0s auténomos em tarefas perigosas ou fisicamente exigentes para os seres humanos, tais
como monitorizagdo ambiental. Um dos principais obstdculos a concretizacao deste objectivo
¢ a dificuldade inerente a implementacdo de mecanismos percepcionais que sejam simulta-
neamente rapidos e robustos. Este problema é mais notério em robds que se baseiam em visao
como modalidade sensorial principal, cuja riqueza vem a par de uma elevada complexidade de
processamento computacional. Esta tese estuda a possibilidade de se atenuar este problema
através do uso de mecanismos de atencdo visual. Desta forma, os recursos computacionais do

rob0 s@o concentrados na percepgao dos aspectos do ambiente mais relevantes a sua operagao.

Num primeiro estudo, mostramos como a atencdo visual pode ser usada para tornar a de-
teccdo de obstidculos em terrenos irregulares mais rdpida e robusta. Neste trabalho assume-se
que o robo estd equipado com um sistema de visao binocular capaz de fornecer nuvens de pontos
tridimensionais (3-D) do ambiente em seu redor. Estas nuvens, regra geral, sdo muito densas e
ruidosas, o que dificulta o seu processamento. A arquitectura proposta explora o melhor de duas
técnicas de deteccao complementares. Uma das técnicas, que € rapida e portanto ideal para uma
primeira andlise, considera obstdculos aqueles pontos 3-D que se destacam do plano do chdo a
uma dada altura minima (Konolige et al., 2009). Para evitar um grande nimero de falsos posi-
tivos em terrenos irregulares, onde ndo existe um plano do chao dominante, o limiar de detec¢ao
desse detector deve ser elevado de modo a que somente obstaculos de grande dimensao possam
ser detectados. No que respeita a navegacao local, a deteccdo de um obsticulo grande numa
dada regido do ambiente torna irrelevante a detec¢do de obstidculos pequenos nessa mesma
regido. Logo, sé se torna necessdrio a aplicacdo de um detector de obstidculos pequenos nas
regides onde nenhum obstaculo grande tenha sido encontrado. Para relaxar a restri¢cdo de chdo
planar, que € essencial remover com vista a deteccao de obstaculos pequenos, as regides livres

de obstdculos grandes sdo entdo analisadas por um detector que opera com base em restri¢cdes
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geométricas entre pontos 3-D vizinhos (Manduchi et al., 2005). O elevado custo computacional
associado a precisdo deste segundo detector € compensado pelo facto de poder ser focado pelo
primeiro, que sendo mais rapido € menos preciso. Contudo, o seu custo computacional ainda
permanece demasiado elevado para permitir uma navegacao rapida. Ao adaptar um modelo
bio-inspirado, conhecido na 4rea da saliéncia visual computacional (Itti et al., 1998), para o
problema da detecc¢do de obstdculos em ambientes todo-o-terreno e usando-o para focar ainda
mais o detector de obstdculos pequenos, a computacdo total é reduzida em cerca de 20 vezes.
O mapa de saliéncia visual permite o detector de obstdculos focar melhor a sua operacao nas
regides do ambiente que se destacam do fundo e portanto t€m maior propensdo de pertencerem
a um obstaculo. Consequentemente, uma vantagem adicional de focar o detector € que evita,
em grande medida, a deteccdo de falsos positivos. Isto € particularmente importante dada a

sensibilidade da técnica original de deteccao de obstdculos pequenos a este aspecto.

Um dos maiores desafios na modelacdo de aten¢do visual advém da necessidade de gerir
o delicado compromisso entre velocidade e precisdo, inerente as tarefas de pesquisa visual.
Por exemplo, no caso de detec¢do de obsticulos, uma anélise detalhada do campo visual do
rob6 pode dificultar uma cobertura completa, ao passo que uma andlise grosseira pode tornar
a deteccdo de pequenos obsticulos insuficiente. Um desafio adicional resulta do facto de que,
quando o ambiente ou a tarefa mudam, a importancia relativa de um obstidculo também pode
mudar. Portanto, a obtenc@o da solu¢do 6ptima capaz de satisfazer todos estes requisitos € um
problema complexo, que dificilmente pode ser resolvido de forma eficiente. Alternativamente,
num segundo estudo, complementar ao primeiro, mostramos que se o processo de ateng¢do vi-
sual for modelado como um processo auto-organizado, o compromisso velocidade-precisdo é
resolvido de forma parcimoniosa e insensivel a mudancas de contexto. Para além disso, ao
modular a alocagdo de atencao visual com a saida do processo de selecc@o de accao, a primeira
¢é capaz de antecipar as ac¢des do robd e, consequentemente, de induzir a percep¢io a operar

nas regides do espacgo visual mais relevantes.

Para fornecer o mecanismo de atencdo visual com propriedades auto-organizadas, este tra-
balho obtém inspiracdo da Natureza. Concretamente, 0s mecanismos responsaveis pela ca-
pacidade que as formigas guerreiras t€ém de procurar alimento de forma auto-organizada sao
usados como metafora na resolucdo da tarefa de procurar, também de forma auto-organizada,
obstaculos no campo visual do robd. A metafora € usada para modelar vérios focos de atencao
encoberta como agentes virtuais simples que habitam o espago visual do robd e operam como
um enxame através de interaccdes baseadas em "feromona". Os agentes procuram na imagem,

de forma coordenada, obstiaculos relevantes a navegacdo. Basicamente, os agentes realizam
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ciclos locais de atengdo visual encoberta, enquanto que o comportamento auto-organizado do
colectivo mantém coeréncia espago-temporal global. Resultados experimentais demonstram a
capacidade do modelo em controlar de forma robusta um rob6 todo-o-terreno, equipado com
um sensor de visdo binocular, na tarefa de navegacao local, com menos de 1% do seu campo
visual a ser analisado. Um subproduto do sistema € a manutencao de memdrias espaciais para-
lelas, activas e esparsas. Estas memorias sdo constituidas pelos agentes que deixam o campo de

visdo do sensor ao tentarem manter-se junto dos obsticulos.

Num terceiro estudo, o uso de conhecimento a priori sobre os objectos a pesquisar no campo
visual é explorado. Usar este conhecimento € importante quando a saliéncia visual € insuficiente
para focalizar a atenc@o na presenca de outros objectos ou "alucinacdes", que se destacam no
ambiente, pelo menos tanto quanto o objecto que estd a ser procurado. A deteccdo de tri-
lhos em ambientes naturais todo-o-terreno foi escolhida como caso de estudo neste trabalho.
A motivagdo para a aplicacao de modelos de saliéncia visual na deteccdo de trilhos advém da
observacdo de que estes sdo estruturas que frequentemente se apresentam conspicuas no campo
visual do rob6. Normalmente, o conhecimento a priori do objecto a procurar toma a forma
do conjunto de caracteristicas (e.g., cor) que melhor descrevem o objecto. Em vez disso, a
forma aproximada do objecto € utilizada neste trabalho, dado que no caso dos trilhos € uma
caracteristica muito mais estavel e previsivel. Este tipo de conhecimento a priori € especificado
indirectamente no modelo proposto, como regras percep¢ao-ac¢ao que controlam o comporta-
mento dos agentes que habitam o espaco visual do robd. Tal como no caso de navegagao local,
esses agentes representam processos locais de atengdo encoberta. A auto-organizacdo do seu
comportamento colectivo como enxame resulta num mapa de saliéncia visual e, portanto, num
processo de aten¢do encoberta global. Tanto neste como no estudo anterior, a auto-organizagao
dos enxames de agentes assegura a robustez do sistema com parciménia de custo computa-

cional.

O método comeca por inserir um conjunto de agentes em dois mapas de conspicuidade
previamente calculados, um para a cor e outro para a informacao de intensidade. Em modelos
computacionais tipicos de sali€ncia visual (e.g., Itti et al. (1998)), os mapas de conspicuidade
sdo combinados para gerar o mapa de sali€ncia final. Alternativamente, o modelo proposto
constréi o mapa de saliéncia visual a partir da composi¢cdo de dois mapas de feromona, cons-
truidos pelos conjuntos de agentes. Os agentes movem-se por vdrias iteragdes de acordo com:
(1) a fusdo de um conjunto de regras de percep¢ao-ac¢ao, (2) um factor aleatdrio; e (3) um factor
de atraccdo a feromona ja depositada. As regras de percepcdo-ac¢do permitem aos agentes

explorar a informag¢do de conspicuidade local, tendo em conta conhecimento a priori da forma



xii

aproximada do trilho, a fim de aproximarem as suas trajectdrias ao esqueleto do trilho. As
interaccoes baseadas em feromonas permitem que os agentes superem as variagdes locais da
imagem e, implicitamente, facilitam uma ajuda mutua na construcio de um consenso sobre
a melhor aproximacao ao esqueleto do trilho. Este consenso emerge onde o comportamento
semi-exploratério dos agentes é constrangido pela presenca do trilho, o atractor ambiental.
Resultados experimentais num grande conjunto de dados revelam a capacidade do modelo em
produzir uma taxa de sucesso de 91 % a 20Hz.

Todos estes desenvolvimentos contribuem para mostrar que: (1) a robustez, a parciménia e o
desempenho dos robos todo-o-terreno sdo melhorados se mecanismos de atengdo visual forem
empregues nos seus sistemas de controlo e (2) a sintese de comportamento cognitivo auto-
organizado em robos auténomos € facilitada se a metafora do comportamento colectivo exibido
pelos insectos sociais for usada como padrao de desenho. Além disso, esta tese apresenta a
primeira realizacdo de cogni¢do corporizada baseada em enxames. Este novo campo de investi-
gacdo visa a descoberta dos principios basicos da cogni¢do, inspeccionando as propriedades de

auto-organizacao da inteligéncia colectiva exibida pelos insectos sociais.
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Chapter 1

Introduction

1.1 The Motivation: Robust and Parsimonious Field Robots

The valuable scientific data generated by the Mars rovers in their missions (Squyres
et al., 2009), which could not be obtained by any other means, clearly shows the im-
portance autonomous field robots have for the future of humankind. Besides helping
us finding a new extra-terrestrial home, autonomous field robots can help us main-
taining our current one. Examples of ecological-related applications where field robots
are becoming important assets are wildlife monitoring (Tokekar et al., 2010) and water
quality monitoring (Sukhatme et al., 2007). As in the extra-terrestrial case, these activ-
ities also occur in geographically inconvenient regions, which limits their continuous
execution. In this sense, autonomous field robots, as the one depicted in Fig. 1.1, may
become the ideal tool for a successful maintenance of Earth ecosystems.

Field robots are also practical in helping us in the prevention of natural disas-
ters; for instance, robots can be used to detect fires early at their onset (Merino et al.,
2006). Robots can also be handy in the mitigation of the effects of natural disas-
ters, as it already happens in search & rescue missions (Murphy and Stover, 2008).
Human-centred activities can also benefit from including these robots in their opera-
tions, such as agriculture (Johnson et al., 2009), humanitarian demining (Santana et al.,
2007; Habib, 2007), and patrol/reconnaissance operations (Huntsberger et al., 2011).
Common to all these tasks is that they are, to different extents, dangerous or physically
demanding for humans. In sum, field robots are tools that can substantially contribute

to solve many ecological, social, and economic problems.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The off-road robot (Santana et al., 2008a) used in the experiments.

A consequence of performing remote operations is that the repair of a damaged
robot is impractical. Therefore, the whole mission may be compromised by the oc-
currence of a simple malfunction. A straightforward workaround is to avoid single
points of failure by exploiting the redundancy inherent to multi-robot systems. The
use of several robots being more robust is also more expensive, meaning that robots
must be cheap, and consequently, affording only reduced energetic and computational
resources. These two constraints are also present in cases where robot size and weight
are highly constrained by task requirements; for instance, ground vehicles for opera-
tions in confined environments as snake-like robots (Hirose and Fukushima, 2004) or
miniature aerial robots with extremely limited payload capacity (Beyeler et al., 2009).
It must also be taken into account that in most identified tasks robots must operate for
long periods, which poses additional constraints to their efficiency; eventually, these
robots will need to perform energy harvesting (Low et al., 2009). In fact, efficiency is
important to field robots as it is to any other contemporary industrial equipment, in

the sense that ecological sustainability is always an issue.

In the long run, computational parsimony is important for any kind of robot per-
forming interesting tasks in complex environments. Such robots will necessarily en-
gage in demanding multi-faceted cognitive behaviour, and so will require the integra-
tion of modules for sensorimotor coordination, high-level abstract reasoning, team-
work, among others. Mostly due to perceptual requirements, robust local navigation
is known to be computationally intensive. Abstract symbolic reasoning, either for path
planning, object manipulation, or task execution, is also inherently computationally

intensive. Teamwork is demanding in terms of perception, planning, and teammate
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internal state estimation (e.g., for intentions prediction). If making each of these com-
ponents run with an acceptable rate is a daunting task with contemporary consumer
computers, making them work as a whole to build a cognitively rich robot is still an
unfeasible one. As a result, fully autonomous robots currently demand computational
parsimony as a key drive in their design.

1.2 The Solution: Visual Attention

An important sensory modality for field robots is vision. Being passive, vision requires
low power to operate. Moreover, vision provides the robot with (multi-spectral) ap-
pearance, volumetric, and motion data, thus reducing the need for additional sensors.
Also important, the acquisition of all this information is synchronised, thus avoiding
problems of registration. Finally, vision sensors are small and lightweight. These char-
acteristics are possibly the reason why vision is ubiquitous in Nature and so useful for
compact and energetically efficient field robots. However, the richness of vision comes
with the price of complex processing. This is particularly challenging in the case of off-
road environments, where the absence of an easily observable structure complicates
the definition of robust fast to compute heuristics.

The complexity inherent to vision calls for fine and contextualised focus of com-
putational resources on the most relevant aspects of the environment. This process is
called visual attention and it is known to be widespread in the animal kingdom (Land,
1999) and it has been extensively studied in humans (Oliva and Torralba, 2007; Wolfe
et al., In Press). By focussing perception: (1) computation, and consequently, energy
are more efficiently used; (2) the robot becomes less sensitive to noise and erroneous
environmental cues (i.e., false positives); and as a consequence of the previous two, (3)
faster robot motion, lower cost, and reduced robot size are enabled.

Attention ultimately results in the motion of sense organs, e.g., eyes, towards the
relevant stimulus source. This is called overt attention. A faster process is the one
of mentally focussing particular aspects of the sensory stimuli. This is called covert
attention and its importance to off-road robots is the core of the main hypothesis being
addressed in this thesis:

parsimony, robustness, and performance of off-road robots is improved if
covert visual attention mechanisms are employed in their control systems.
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1.3 The Method: Swarm Cognition

Although a multi-robot system helps to avoid single points of failure, the endurance
of the whole system is unavoidably attached to the robustness of each robot. This ro-
bustness is connected to the ability of the robot not to collapse in the face of unforeseen
situations. With optimality in mind, either a large set (virtually all) of optimal situation
specific heuristics would have to be defined, or computationally expensive reasoning
mechanisms would have to be running on-board the robot in real-time. The former
being unfeasible and the latter being in contradiction with the parsimonious design
requirement and with the way Nature has evolved animals, means that the quest for
optimality undermines the compliance with both robustness and parsimony require-
ments. In addition, in dynamic environments, where exceptions rule out regularity,
an optimal solution may rapidly become deprecated. Hence, the high computational
cost spent on improving a near-optimal solution is better applied in the search of good-
enough alternative solutions. These alternative solutions may enable a prompt reaction
of the system in the face of change.

For these reasons, this thesis largely considers the design of a control system as
the process of creating a stochastic parallel system with self-organising properties.
That is, a system capable of dynamically cope with disturbances without explicit con-
text awareness - robust - and capable of generating complexity from the interaction
of simple stochastic entities - parsimonious. Hence, besides enabling robustness and
parsimony in field robots, this thesis contributes to the wider understanding of self-
organising embodied cognition. We think that, while not necessary, the study of em-
bodied cognition gains considerably from the insights obtained from building field
robots, in particular those operating in natural environments. This stems from the
fact that robots inhabiting the environment where Nature’s evolutionary process took
place are supposedly subject to similar constraints. Furthermore, by studying embod-
ied cognition in field robots, short-term practical outcomes from the conceptual work
are ensured, which would not be obtainable if instead only simulation or toy-world

problems would be considered.

Although in line with the dynamical systems approach to human cognition (Beer,
1995; Thelen and Smith, 1996) in what regards its dynamical and self-organising na-
ture, the methods here proposed are not constrained by the existence of supporting

analytical tools. We consider that this constraint, although interesting for many ob-



1.3. THE METHOD: SWARM COGNITION 5

vious reasons, imposes artificial limits on the complexity that is in reach of well de-
signed computational models. Bearing in mind the goal of modelling covert attention
under a self-organising perspective with a tractable granularity, the agent abstraction
is considered. That is, our main computational atom is not a neuron or a well-defined
mathematical construct, it is a spatio-temporal dynamical entity that inhabits the sen-

sorimotor space of the robot and moves on it to guide the robot’s focus of attention.

Rather than static structures, like neurons, these agents are better viewed as active
information particles that flow and change in the system. Hence, using agents, the
design focus is on the process and not so much on its supporting substrate. Being
sensorimotor coordinated units, these information particles can in the limit exploit the
recognised benefits of active perception (Bajcsy, 1988; Aloimonos et al., 1988; Ballard,
1991; Scheier et al., 1998; Nolfi and Marocco, 2002; Beer, 2003; Fend et al., 2003; Balke-
nius et al., 2004; Floreano et al., 2004; Nolfi, 2005; Suzuki and Floreano, 2006; Pfeifer
and Bongard, 2006; Kim and Moeller, 2006; Sporns and Lungarella, 2006; de Croon and
Postma, 2007; Choe et al., 2008; Mirolli et al., 2010; Tuci et al., 2010), such as actively
selecting and shaping their sensory input to increase pose invariance, signal-to-noise
ratio, and discriminative power. Thus, an agent-based design is an interesting alter-
native to a neuron-based design when it comes to manage complex spatio-temporal
problemes, as it is the case of shifting covert attention towards the most relevant aspects
of the environment.

The selection of the agent construct to model covert attention is further motivated
by existing evidence that both covert and overt attention processes share the same neu-
ral mechanisms (de Haan et al., 2008), and being the latter a sensorimotor coordinated
process we hypothesise so it should be the former. In this sense, agents, which are
themselves sensorimotor coordinated entities, become a natural choice to model local
loops of covert attention. Then, provided that it is possible to have several agents op-
erating in a self-organising way, we solve the problem of maintaining multiple covert
attention processes (Pylyshyn and Storm, 1988; Doran et al., 2009) operating in a spatio-
temporal coherent way. To ensure self-organising behaviour, we recur to biological
knowledge obtained from similar processes in Nature, such as the self-organising col-
lective intelligence (Franks, 1989) exhibited by social insects, i.e., natural agents like bees,
ants, and termites. In a sense, these animals embody as a collective a sort of swarm
cognition, whose considerable similarities with brain cognitive function are becoming

widely recognised (Passino et al., 2008; Santana and Correia, 2009; Couzin, 2009; Mar-
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shall and Franks, 2009; Trianni and Tuci, 2010; Santana and Correia, 2010a; Turner,
2011; Trianni et al., 2011). This metaphor is particularly powerful due to the easiness
of tracking the activity of social insects from the collective down to the individual,
at least when compared to the difficulty of inspecting the nervous system activity in
a both detailed and comprehensive way. Hence, this metaphor enables a convenient
way of transferring knowledge from Nature to engineering. In the specific scope of
this thesis, which is visual search, the army ants foraging metaphor is considered.
Following the rationale underlying the power of swarm cognition models for the
synthesis of cognition the following hypothesis is also addressed in this thesis:

the synthesis of self-organising robot cognitive behaviour is facilitated if
the social insects collective behaviour metaphor is used as design pattern.

1.4 The Impact: A Wider Picture

Being self-organised, the overall system’s behaviour emerges from the interaction of
simple units, which is often done indirectly by changing and sensing the environment,
a phenomenon known as stigmergy (Grassé, 1959). High level structures emerge from
the bottom-up system operation, meaning that the system is fully specified by the logic
ruling the simple homogeneous agents. Consequently, the system’s design space is
small and fully grounded through the set of sensorimotor rules controlling the agents,
which can either be designed by hand, actively learned, or even evolved.
Self-organisation referring to synergistic parallelism, and not to simple concur-
rence, goes beyond a naive parallelisation by splitting. This might be interesting to
better explore the capabilities of parallel hardware. A more radical emerging compu-
tational hardware is called amorphous computing (Abelson et al., 2000). It envisions the
application of micro-fabricated particles or engineered cells for the implementation of
massively distributed computation. The distributed, stochastic, and unreliable nature
of these particles or cells demands for new computational paradigms capable of coping
with these characteristics, which are drastically different from the highly reliable and
deterministic computational units currently in use. As self-organising systems exhibit
graceful degradation in the presence of unreliable elements and do actually benefit

from some level of randomness for a robust operation (Bonabeau et al., 1999; Correia,
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2006), swarm cognition is a natural candidate for the task at hand.

Finally, studying the synthesis of cognition under a swarm perspective takes a step
further in the direction of an unified methodology for the development of robot control
systems and multi-robot coordination mechanisms. Basically, it is all about coupling
sensorimotor coordination loops. A critical point of swarm research, and adaptive
behaviour in general, is the potential for cross-breeding between both natural and arti-
ficial sciences. Observations from the Natural world can be used to seed the modelling
process in engineering. Conversely, operational engineering models can be used to
induce hypotheses regarding specific aspects of the Natural world. The unexpected
importance of a given variable in an engineered model may trigger the interest in as-
sessing the relevance of its natural counterpart. Interestingly, new developments, such
as bacterial micro-robots (Martel and Mohammadi, 2010), show that the future may
bring part natural part artificial agents, whose collective cognitive operation will most
probably rely on self-organising principles.

1.5 Proposed Models Overview

The phenomenological support of the two research hypotheses will be assessed, in dif-
ferent extents, against three foundational aspects of off-road mobility: obstacle detec-
tion, trail detection, and local navigation. The particularities of each case-study elicit
different aspects of visual attention, and consequently, enrich the overall argument.
In general, the proposed models exhibit methodological novelty and improved per-
formance over existing methods, and so they are contributions by themselves to both
robotics and visual attention literature.

The following subsections provide an overview of each contribution, whose details
can be found in subsequent independent chapters. First, in Section 1.5.1, a study where
visual attention is shown to speed up and augment the robustness of obstacle detec-
tion in all-terrain environments is described. Then, in Section 1.5.2, a swarm cognition
model capable of integrating visual attention, action selection, and spatial memory to
implement a complete local navigation system is presented. Finally, in Section 1.5.3,
visual attention is demonstrated to be also useful in the task of trail detection. For
this purpose, a swarm-based model for visual saliency computation is shown to en-
able a robust and fast to compute exploitation of a priori knowledge about the trail’s

approximate layout.
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1.5.1 Visual Attention for Off-Road Obstacle Detection

This first work (Santana et al., 2008b, 2009, 2010d, 2011) is focused on showing the
benefits of using visual attention mechanisms to promote robust and fast obstacle de-

tection on uneven terrain.

The proposed architecture exploits the best of two complementary detection tech-
niques. One of the techniques, which is fast and so ideal for a first scan, considers ob-
stacles three-dimensional (3-D) points that stand out from an estimated ground-plane
by a given minimum height (Konolige et al., 2009). To avoid a large number of false
positives in uneven terrain, where no dominant ground-plane is assured to exist, the
detection threshold must be set high so that only large obstacles are detected. In what
regards local navigation, the detection of a large obstacle in a given region of the en-
vironment turns irrelevant the detection of small obstacles therein. Hence, it is only
necessary to search for small obstacles in the regions where no large obstacle has been
found. To relax the planar ground constraint, essential to enable small obstacle de-
tection, these regions are analysed by a detector that operates based on geometrical
constraints between neighbour 3-D points (Manduchi et al., 2005). The high compu-
tational cost associated to the accuracy of this method is compensated by the focus of
attention provided by the other faster yet less accurate detector.

Although the small obstacle detection technique is already focused by the large
detection technique, its computational cost still remains too high. By adapting a well-
known bio-inspired visual saliency model (Itti et al., 1998) to the problem at hand, and
by using it to further focus the small obstacle detector, computation is shown to be
reduced in about 20 times. The computed visual saliency map allows the obstacle de-
tector to better focus its operation on the regions of the environment that detach more
from the background, and consequently are more prone to belong to an obstacle. An-
other key aspect of the model is that the detector updates the saliency map whenever
an obstacle is detected. This closes the loop allowing the saliency map to guide the de-
tector while being opportunistically corrected by it. Besides reducing computational
cost, this approach also helps reducing the false positive rate. This is particularly im-
portant given that the original small obstacle detection technique suffers considerably
from this problem. To further improve the method’s robustness, a voting mechanism

is included in the small obstacle detector without noticeable computational cost.
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1.5.2 Swarm Cognition for Local Navigation

A step further, this section analysis a complementary aspect of visual attention on off-
road robots. In particular, the work presented in this section (Santana and Correia,
2009, 2010a, 2011) is about the modelling of covert visual attention as a parallel process
that unfolds in synergy with the robot’s action selection process. The parallel nature
of the proposed model is in accordance to the multiple covert attention hypothesis
(Pylyshyn and Storm, 1988; Doran et al., 2009) from cognitive science, and thus, suit-
able for the concurrent search for multiple objects in the robot’s visual field. In this
particular study, the action selection process aims at providing the off-road robot with
local navigation capabilities, whereas the perceptual process is responsible for the de-

tection of obstacles.

In order to maintain responsiveness in complex environments, perception must
be able to deal with the delicate speed-accuracy trade-off inherent to visual search
tasks. A detailed analysis of the robot’s visual field may hamper a complete cover-
age, whereas a coarse analysis may render insufficient the detection of small obstacles.
Such trade-off is solved in this work by modulating the allocation of visual attention
with the output of the action selection process, thus allowing the former to anticipate
the robot’s actual actions and, as a consequence, to induce perception to operate on
a by-need basis. In other words, attention gives priority to the regions of the visual
field where the detection of obstacles affects more the action selection process. For
instance, if, due to task constraints or current knowledge about the world state, the ac-
tion selection process outputs a right turn, visual attention increases preference for the
right-hand side of the robot’s visual field. This preference is set under the rational that
an obstacle detected on the left-hand side would have lesser impact on the unfolding
of both action selection process and actual robot motion. Another desirable require-
ment for embodied systems is the ability to produce results on-demand. That is, the
perceptual process should be able to progressively improve its results so that when
requested it has a good enough solution to provide. An additional challenge comes
from the fact that, when either the environment or the task change, the relative impor-
tance of an obstacle may also change. Optimally satisfying all these requirements is a

complex problem, which can hardly be solved in a computationally efficient way.

Based on the well known formalism that describes the self-organisation of collective

foraging strategies in social insects, the joint satisfaction of all these requirements is
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solved by recurring to a set of simple virtual agents inhabiting the robot’s visual input,
called p-ants, which search for obstacles in a collectively coordinated way. Basically, p-
ants perform local covert visual attention loops, whereas the self-organised collective
behaviour maintains global spatio-temporal coherence in order to robustly maintain a
proper speed-accuracy trade-off. The ant foraging metaphor is particularly interesting
because of its similarities with the problem tackled in this work. First, ants need to
efficiently search (forage) their environment in a parallel manner. Second, ants are also
sensorimotor coordinated entities capable of engaging in active perceptual activity.

Experimental results show the ability of the model to robustly control an off-road
robot equipped with a stereoscopic vision sensor in a local navigation task with less
than 1% of the robot’s visual input being analysed. A by-product of the system is the
maintenance of active, parallel, and sparse spatial working memories. These memories
are composed of p-ants that leave the sensor’s field of view when tracking detected ob-
stacles. Tracking in the absence of visual feedback is carried out by compensating the
p-ant’s position with ego-motion information obtained from visual odometry. Given
the fact that p-ants are deployed based on the action selection process” output, the en-
vironment representation is potentially incomplete, yet good enough for navigation
purposes. Discarding the typical requirement of completeness follows from the as-
sumption that different purpose-oriented world representations cohabit in the same
robot. In addition to the navigation-oriented representation proposed in this work, the
robot might accumulate sensor data to generate off-line an accurate and potentially
complete map. This latter map could be useful for instance to support tele-operation.
In short, the model exhibits the self-organisation of a relevant set of features composing
a cognitive system.

Given that the purpose of the work described in this section is to study the inter-
action between attention, action selection, and memory, the specific obstacle detection
technique employed for experimental validation is a simplified one. Concretely, it as-
sumes a mostly planar environment. Nevertheless, with some engineering, this detec-
tor could be substituted by the more complex one described in the previous section.

1.5.3 Visual Attention for Trail Detection

Models of visual attention typically assume the existence of a sensory-driven bottom-

up pre-attentive component (Treisman and Gelade, 1980; Koch and Ullman, 1985; Itti
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et al., 1998; Palmer, 1999; Corbetta and Shulman, 2002; Hou and Zhang, 2007), which
is modulated by top-down context aware pathways (Yarbus, 1967; Wolfe, 1994; Tsot-
sos et al., 1995; Corbetta and Shulman, 2002; Torralba et al., 2003; Frintrop et al., 2005;
Navalpakkam and Itti, 2005; Walther and Koch, 2006; Neider and Zelinsky, 2006; Hwang
et al., 2009). The work described in the two previous sections is consistent with this
view: pre-attentive visual saliency obtained directly from the sensory input and top-
down context knowledge obtained from the action selection process have been used to

guide obstacle detection.

This section describes a third research line (Santana et al., 2010a,b) that comple-
ments this analysis by studying the use of object-related a priori knowledge in visual
search tasks. The use of object-related a priori knowledge is important when visual
saliency is insufficient to focus the attention in the presence of distractors. These dis-
tractors are other objects or perceptual aliasing in the environment that happen to de-
tach from the background at least as much as the object being sought. Trail detection in
natural environments was selected as case-study for this work. The motivation for the
application of visual saliency to trail detection builds from the observation that trails
are quite often conspicuous structures in the robot’s visual field. Furthermore, the lack
of a well defined morphology or appearance of trails limits the application of learning
and model-based approaches.

Typically, object-related a priori knowledge is used by top-down boosting of the
set of features (e.g., colour) known beforehand to be more representative of the object
being sought. Instead, the object’s overall layout, which is a more stable and pre-
dictable feature in the case of natural trails, whose local appearance often blends with
the background, is used in this work. This type of a priori knowledge is specified in-
directly in the proposed model as perception-action rules controlling the behaviour of
simple agents inhabiting the robot’s visual input. Like in the local navigation case,
these agents are called p-ants and represent local covert attention processes. Their self-
organising collective behaviour results in a saliency map of the input image, and thus,
in a global covert attention process.

The method starts by deploying a set of p-ants in two previously computed con-
spicuity maps, one for colour, and another for intensity information. In typical saliency
computational models (e.g., Itti et al. (1998)), conspicuity maps are blended to generate
the final saliency map. Alternatively and motivated by the ant foraging metaphor, in

the proposed model the saliency map is taken as the blend of the pheromone maps
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generated by the set of p-ants. A p-ant starts its motion in the bottom region of a given
conspicuity map and moves on it while deploying pheromone on two pheromone
maps according to: (1) the fusion of a set of perception-action rules; (2) a random fac-
tor; and (3) a pheromone-attraction factor. Perception-action rules allow p-ants to ex-
ploit local conspicuity information in order to approximate their trajectory to the actual
trail’s skeleton. The pheromone-based interactions allow p-ants to overcome the local
image variations and implicitly help each other in building a consensus on the best
trail’s skeleton approximation. This consensus emerges where the semi-exploratory
behaviour of the p-ants is consistently constrained by the perceptual footprint of the
trail. In a sense, the set of p-ants self-organises around a given environmental attractor.

The final saliency map is integrated across time in a dynamical neural field (Amari,
1977; Rougier and Vitay, 2006), which feeds back to the pheromone maps in the sub-
sequent frame. This process endows p-ants with historical influence, which is key for
tracking the trail. A neural field is a two-dimensional (2-D) lattice of neurons with
“Mexican-hat” shaped lateral coupling. With local excitatory connections and long-
range inhibitory connections, this inter-neuron coupling helps in the formation of a
coherent focus of attention (Rougier and Vitay, 2006).

Note that in this trail detection model both neuron-based and agent-based com-
putational paradigms cohabit. Neurons are used in those situations where there is
homogeneous and isotropic spatial connectivity, as are the cases of the neural field and
of the conspicuity maps. Conversely, agents are useful where connectivity is much
more complex and harder to obtain, as it is the case of creating a trail hypothesis over
noisy conspicuity maps. Experimental results on a large data set reveal the ability of
the model to produce a success rate of 91 % at 20Hz, showing it to be robust in situa-
tions where previous trail detectors would fail, such as when the trail does not emerge
from the lower part of the image or when it is considerably interrupted.

1.6 Organisation

This dissertation is organised as a collection of four journal articles, one per chapter,
describing the work presented in the previous sections. The absence of an introductory
chapter with literature review owes to the fact that the journal articles are themselves

comprehensive on this matter. Moreover, although each journal article has its own
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bibliography list in the published version, a document-wise merged version is taken

here to avoid unnecessary duplication.
In short, the other chapters of this dissertation are:

Chapter 2: Stereo-Based All-Terrain Obstacle Detection Using Visual
Saliency. This chapter is the article published in the Journal of Field Robotics on
the use of visual attention methods to detect obstacles in uneven off-road envi-

ronments, based on stereoscopic vision sensors.

Chapter 3: A Swarm Cognition Realisation of Attention, Action Selection and Spa-
tial Memory. This chapter is the article published in the Adaptive Behavior journal
on swarm cognition for local navigation. This work was only validated in simu-

lation.

Chapter 4: Swarm Cognition on Off-Road Autonomous Robots. This chapter is the
article published in the Swam Intelligence journal, which extends the swarm cog-
nition model for local navigation to robots equipped with stereoscopic vision
sensors operating on mostly planar off-road environments. The focus of this
chapter is on the local navigation framework, and not on the specifically em-
ployed obstacle detection technique, and so its contributions are orthogonal to
the contributions of Chapter 2.

Chapter 5: Finding Natural Trails with Swarm-Based Visual Saliency. This chap-
ter is a work submitted for publication in the Journal of Field Robotics on a novel
swarm-based method for visual saliency computation and on the first application

of visual saliency for the problem of trail detection.

Chapter 6: Conclusions and Future Work. This chapter presents a set of conclusions
extracted from the results obtained in this thesis, points the way to future re-
search, and lists the set of publications produced during the PhD period.






Chapter 2

Stereo-Based All-Terrain Obstacle
Detection Using Visual Saliency

Pedro Santana, Magno Guedes, Luis Correia, José Barata.
Journal of Field Robotics, 28(2):241-263, 2011.

Abstract

This paper proposes a hybridisation of two well-known stereo-based obstacle detec-
tion techniques for all-terrain environments. While one of the techniques is employed
for the detection of large obstacles, the other is used for the detection of small ones.
This combination of techniques opportunistically exploits their complementary prop-
erties to reduce computation and improve detection accuracy. Being particularly com-
putation intensive and prone to generate a high false positive rate in the face of noisy
three-dimensional point clouds, the technique for small obstacle detection is further
extended in two directions. The goal of the first extension is to reduce both problems
by focussing the detection on those regions of the visual field that detach more from the
background and, consequently, are more likely to contain an obstacle. This is attained
by means of spatially varying the data density of the input images according to their
visual saliency. The second extension refers to the use of a novel voting mechanism,
which further improves robustness. Extensive experimental results confirm the ability
of the proposed method to robustly detect obstacles up to a range of 20m on uneven
terrain. Moreover, the model runs at 5Hz on 640 x 480 stereo images.

keywords: all-terrain perception, obstacle detection, stereo-vision, visual saliency, ter-

restrial robotics.
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2.1 Introduction

The unconstrained appearance of obstacles in all-terrain environments results in the
essential use of volumetric information for their detection. Recent developments have
made practical the use of laser scanners and stereoscopic vision sensors for the acqui-
sition of volumetric data, i.e., dense three-dimensional (3-D) point clouds. A 3-D point
cloud is said to be dense when it is not confined to the representation of notable loca-
tions in the environment. In the case of stereoscopic vision, this virtually means that
the 3-D position of every patch of the environment that is imaged by the sensor needs
to be known. With a high resolution vision sensor, one can obtain denser 3-D point
clouds than those produced by typical laser scanners. When compared to laser scan-
ners, stereoscopic vision sensors also tend to be less power consuming and to be lighter,
smaller, and cheaper. In contrast to laser scanners, stereoscopic vision sensors provide
3-D data whose acquisition is exactly registered and synchronised with visual data.
This is an important asset to facilitate both object and place recognition. However,
stereoscopic sensors are usually less accurate than laser scanners, more computation-
ally intensive, more dependent on lighting conditions, and less prepared to reconstruct
the 3-D structure of textureless surfaces.

Motivated by the previously mentioned benefits of stereoscopic vision, this paper
proposes a set of developments to tackle the major challenges associated to its use for
the problem of all-terrain obstacle detection. These challenges are mostly related with
the ability of efficiently and robustly processing the considerable amount of noisy and
inaccurate sensory data that is generated by the sensor. Nonetheless, we believe that
the concepts developed in this paper may also be applied to volumetric data generated
by 3-D laser scanners, provided that the point cloud is associated with visual data. This

can be done by registering a camera to the laser scanner.

Hard assumptions on the environment’s topology are usually exploited to enable
fast stereo-based terrain assessment. The most common assumption states that the
terrain can be reasonably approximated by planar models (Batavia and Singh, 2001;
Labayrade et al., 2002; Dang and Hoffmann, 2005; Soquet et al., 2007; Vernaza et al.,
2008; Konolige et al., 2009; Poppinga et al., 2008; Hadsell et al., 2009), which is often
not the case on all-terrain. A well known alternative defines obstacles according to
geometric relationships among neighbour 3-D points (Bellutta et al., 2000; Talukder
et al., 2002; Manduchi et al., 2005; Dubbelman et al., 2007; van der Mark et al., 2007),
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thus relaxing the planar terrain assumption. However, this alternative technique is
computationally intensive and suffers from a considerable sensitivity to both noise
and sparsity in 3-D point clouds. This paper proposes and validates a hybrid model
for obstacle detection, in which the strengths of both techniques are brought together
to attain higher levels of robustness, accuracy, and computational efficiency. In this
sense, two key aspects of this work are the use of the planar assumption to detect large
obstacles and the use of the geometric relationships among neighbour 3-D points to
detect small ones.

Additionally, variable data density, also known as space-variant resolution (SVR),
is used in the computations to improve the overall efficiency of the algorithms. Visual
saliency is used to determine regions of particular interest where a higher density of
data must be processed. This saliency-based modulation of the SVR allows computa-
tion to be focused on the most promising regions of the environment while reducing
the false positive rate. Finally, a novel voting mechanism is also introduced to augment
the robustness of obstacle detection in the presence of noisy 3-D point clouds. Prelimi-
nary versions of this saliency-based obstacle detection model can be found in previous
publications (Santana et al., 2008b, 2009, 2010d).

This paper is organised as follows. Section 2.2 relates this proposed method to pre-
vious work. Section 2.3 overviews the proposed system architecture. Sections 2.4 and
2.5 describe the novel way visual saliency is computed and the ground-plane is esti-
mated, respectively. Then, in Section 2.6, particular focus is given to the small obstacle
detector. Parameter selection details are subsequently provided in Section 2.7. Finally,
experimental results are described in Section 2.8, followed by conclusions and future

work in Section 2.9.

2.2 Related Work

This section describes related work on terrain classification based on volumetric data
provided by laser scanners or stereoscopic vision sensors, with particular emphasis on
work validated on all-terrain environments.

Only a few assumptions can be made regarding the structure of all-terrain environ-
ments. A typical assumption states that the environment’s ground can be modelled
by planes. In this case, obstacles are considered to be these 3-D points standing out of

the estimated ground-planes (Dang and Hoffmann, 2005; Vernaza et al., 2008; Konolige
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et al., 2009). Some local statistics regarding the distance 3-D points have to the ground-
planes can be used to reduce the method’s sensitivity to false positives (Hadsell et al.,
2009). This plane-based approach can also be applied indirectly, such as through an
estimated homography (Batavia and Singh, 2001) or through a Hough space of planes
(Poppinga et al., 2008). Also under the planar assumption, the v-disparity space ap-
proach (Labayrade et al., 2002; Soquet et al., 2007) is usually employed for on-road
obstacle detection. These plane-based approaches are highly appealing due mostly to
their computational efficiency. However, the unevenness of typical all-terrain environ-
ments breaks down the planar assumption. When that happens, a terrain’s surface
variations can be erroneously characterised as obstacles. Nevertheless, compelled by
its computational parsimony, we propose in this work to make a contextualised use of

the planar assumption, i.e., only for large obstacle detection.

A way of relaxing the planar terrain assumption is through the use of heuristics
applied locally to the disparity/range image (Broggi et al., 2005; Schafer et al., 2005;
Caraffi et al., 2007; Konolige et al., 2009). Heuristics in the form of local point statis-
tics obtained directly from the 3-D point cloud can also be used to produce accurate
results (Wellington and Stentz, 2004; Lalonde et al., 2006). However, this technique is
impracticable for stereoscopic vision due mostly to its noisy nature. Heuristics on the
residual resulting from a line fitting process can also be applied on a scan-by-scan ba-
sis to data generated by two-dimensional (2-D) laser scanners (Moorehead et al., 1999;
Batavia and Singh, 2002; Castano and Matthies, 2003; Urmson et al., 2006, Andersen
et al., 2008).

Alternative heuristics can be applied when a dense 3-D point cloud is available.
One example is traversability estimation in terms of the residuals resulting from sev-
eral local plane-fitting processes applied to the 3-D point cloud (Moorehead et al., 1999;
Gennery, 1999; Singh et al., 2000; Goldberg et al., 2002; Biesiadecki and Maimone, 2006;
Ye, 2007). More recently, octree decomposition has been employed to create grid repre-
sentations of the 3-D point cloud (Rusu et al., 2009). Polygonal models are then fitted
to each cell and heuristically labelled as ground, level, vertical obstacles, stairs, or un-
known. To determine their traversability, plane-fitting processes are then applied to the
models falling in the latter category. In addition to its heuristic definition of obstacle,

this method still lacks experimental validation on all-terrain.

Heuristics can ultimately be learned (Wellington and Stentz, 2004; Bajracharya et al.,

2008). Linguistic heuristic rules can also be applied to blend several cues when com-
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puting traversability indexes (Seraji, 1999, 2006). The major limitation of heuristic-
based solutions is the difficulty in defining obstacles in terms of the robot’s mobility.
A way of circumventing this limitation is through the construction of Digital Eleva-
tion Maps (DEM) of the environment, upon which a detailed kinematic and/or dy-
namic model of the robot can be used for safe motion planning (Kelly and Stentz, 1998;
Lacroix et al., 2002; Plagemann et al., 2008; Kolter et al., 2009). However, these solutions
tend to be too computationally demanding.

To take into account key mobility properties, such as the clearance height under
the robot, obstacles can also be defined in terms of geometrical relationships between
neighbour 3-D points. In the case of 2-D laser scanners these relationships can be
computed in scan-by-scan fashion (Chang et al., 1999). A similar process can also
be applied on a column-by-column way in stereo-based systems (Bellutta et al., 2000;
Dubbelman et al., 2007). Probabilistic models have been successfully applied for im-
proved robustness in the integration of evidence across 2-D laser scans (Thrun et al.,
2006a). Talukder et al. (2002) and Manduchi et al. (2005) proposed and validated on
a stereo-based system a more general geometric approach that can be applied to 3-D
point clouds. However, this method is computationally intensive and sensitive to arte-
facts induced by the 3-D reconstruction process. These limitations have been partially
mitigated with the use of look-up tables and explicit handling of uncertainty (van der
Mark et al., 2007). In this work, a higher level of robustness is attained with a novel
voting filter and an improved posture compensation mechanism. To speed up compu-
tation we propose the synergistic use of visual saliency and SVR.

The robot’s focus of attention and respective resolution can be defined in terms of
the robot’s speed so as to avoid holes/overlaps in the analysis of consecutive frames
(Kelly and Stentz, 1998). This process is in line with the active vision approach (Ba-
jesy, 1988; Aloimonos et al., 1988; Ballard, 1991) and it can also be used to reduce the
risk of not detecting obstacles (Grandjean and Matthies, 1993). Our method dynami-
cally adapts the resolution and focus of attention based on the contents of the visual
input. Hence, despite sharing the same goal of reducing the cost of perception to its
minimum, the two approaches show complementary properties. As will be shown,
our saliency-based SVR mechanism has the additional advantage of reducing the false

positive rate.

Visual saliency has been thoroughly employed for object detection in indoor en-
vironments (Vijayakumar et al., 2001; Orabona et al., 2005; Moren et al., 2008; Meger



20 CHAPTER 2. VISUAL ATTENTION FOR OBSTACLE DETECTION

etal., 2008; Yu et al., 2007). It has also been used to select strong landmarks for visual si-
multaneous localisation and mapping in urban environments (Newman and Ho, 2005;
Frintrop et al., 2007). Laser-based range images have been used to focus the analysis of
registered colour images on the task of searching for information placards along dirt
roads (Hong et al., 2002). In this case one might say that salient regions in the laser
data are used to focus the analysis of a colour-based detector. However, to the best
of our knowledge, our proposed method is the first application of visual saliency to
modulate all-terrain obstacle detection.

2.3 System Overview

The proposed model (see Fig. 2.1) is characterised in part by the novel integration of
two complementary obstacle detection techniques. The two techniques differ mostly
in their definition of an obstacle. The first considers as obstacles those 3-D points that
stand out from an estimated ground-plane (Dang and Hoffmann, 2005; Vernaza et al.,
2008; Konolige et al., 2009). Because most all-terrain environments are not perfectly
planar, this detector can search robustly only for large obstacles. Small variations in
height on uneven terrains would often be confused with small obstacles. Hence, the
obstacle detector is configured in a way that only obstacles above a large distance & off
the ground plane are detected. Smaller obstacles are instead considered by the second
technique, which relaxes the planar assumption by defining obstacles according to geo-
metrical relationships between neighbour 3-D points. Although this second technique
is more robust in uneven terrains, it requires dense 3-D point clouds. The level of noise
and sparseness of the 3-D point cloud in large homogeneous objects, due to failure in
the stereo reconstruction process, makes this technique less capable of detecting large
obstacles. As confirmed by experimental results (see Section 2.8.3), from the strengths
of both techniques emerges a more robust all-terrain obstacle detector.

Another relevant contribution of the model is the small obstacle detector itself (see
Section 2.6), which departs from previous related work (Talukder et al., 2002; Man-
duchi et al., 2005; van der Mark et al., 2007) by improving its robustness and computa-
tional efficiency. The latter is partially due to the innovative use of visual saliency (see
Section 2.4) to modulate all-terrain obstacle detection. The challenges posed by this
new domain required some adaptations to the standard way of computing saliency
(e.g., (Itti et al., 1998; Frintrop et al., 2005)). The model also exploits for the first time



2.3. SYSTEM OVERVIEW 21

LEFT | | RIGHT |
i IMAGE ¢ IMAGE !
SALIENCY STEREO
COMPUTATION PROCESSING
lien 3-D point
sallency cloud
map
GROUND-PLANE ground-plane | ATTITUDE
DETECTION ”"| COMPENSATION
saliency
map
ground @ rotated
plane large extended 3-D point
obstacle saliency cloud
map map
LARGE SMALL
OBSTACLE OBSTACLE
DETECTION DETECTION

obstacle obstacle
map @ map

| OBSTACLE |
MAP

Figure 2.1: Proposed model building blocks.

visual saliency on the task of ground-plane estimation (see Section 2.5). The estimated
ground-plane supports the large obstacle detector while it permits the rotation of the
3-D point cloud to compensate for the robot’s posture in the small obstacle detector
computations (see Section 2.6.5).

To avoid unnecessary and consequently inefficient applications of the small obsta-
cle detector, the output of the large obstacle detector is used to mask the saliency map
with negative values. Using the masked saliency map instead of the original saliency
map, the small obstacles detector will ignore regions with negative saliency that have
already been labelled by the other detector. Finally, the outputs of both detectors are
merged in order to produce the final obstacle map.

We now characterise which types of obstacle can be detected with the proposed
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model. For this purpose we assume that an environment can be generally classified
in terms of its slipperiness, compressibility, permeability, and morphology. With the
exception of the fourth property, which can be assessed with volumetric data, these
properties require an appearance-based analysis. Consequently, the proposed model is
constrained to detect obstacles that can be segmented by the background based solely
on their 3-D morphology. Both positive (e.g., rocks/trees) and negative (e.g., ditches/
holes) obstacles are detected by the proposed model provided that they are associated
to sufficient 3-D information.

From this analysis it follows that the proposed model is not capable of detecting
water bodies nor is it capable of distinguishing between compressible (e.g., wall of tall
grass) and noncompressible obstacles. Nevertheless, due to its fragile morphological
characteristics, spurious tall grass is filtered out by the system. It follows also that
the model is unable to assess the slipperiness of the terrain, as it typically requires the

identification of the materials composing it.

2.4 Saliency Computation

The goal of using visual saliency is to determine which regions of the visual field stand
out more significantly from the background. The basic idea is that the higher its asso-
ciated saliency, the more prone a given region of the visual field is to contain an ob-
ject. Thus, perceptual processes exploiting this input are better fit to handle the speed-
accuracy trade-off. The following describes the proposed saliency model, which is an
adaptation for all-terrain environments of the biologically-inspired model proposed by
Itti et al. (1998).

Let L be the left image of an image pair obtained from a stereoscopic vision sensor.
To reduce computational cost, saliency is computed on a region of interest (ROI) of L.
The ROl is a horizontal strip between the bottom row and row u. Row u corresponds to
the uppermost row containing at least a given percentage ¢ of pixels with an associated
depth within the minimum and maximum considered ranges for obstacle detection,
Ymin and 7,4y, respectively. With this process we guarantee that the definition of the
ROI is not affected by spurious pixels whose associated 3-D points are erroneously
beyond r,4y. To further reduce computational cost, all image operators are performed
over 8-bit pixels whose magnitude is clamped to [0,255]. All experiments use 640 x 480

input images.



2.4. SALIENCY COMPUTATION 23

A dyadic Gaussian pyramid /(o) with six levels ¢ € {0,...,5} is created from the
intensity channel of the ROI. The resolution scale of level ¢ is 1/2° times the ROI res-
olution scale. Intensity is obtained by averaging the three colour channels. Then, four
on-off centre-surround intensity feature maps are created to promote bright objects on
dark backgrounds. Four off-on centre-surround intensity feature maps are also cre-
ated to promote dark objects on bright backgrounds. On-off centre-surround opera-
tions are performed by across-scale, point-by-point subtraction between level ¢, with a
finer scale, and level s, with a coarser scale linearly interpolated to the finer scale, with
(c,s) e Q2={(2,4),(2,5),(3,4),(3,5)}. Off-on maps are computed the other way around,
that is, by subtracting the coarser level from the finer level. On-off, [on—off (c,s), and
off-on, 1°//="(¢,s), centre-surround maps are then combined to generate the intensity

conspicuity map

C = ! I'(c,s 2.1

' ie{on—o};aff—on} 2 (67@29 ( , ) 7 @D
where the across-scale addition & is performed with point-by-point addition of the
maps after being scaled to the resolution of level ¢ = 3. Sixteen orientation feature
maps, 0(c,0), are created by convolving levels ¢ € {1,...,4} with Gabor filters tuned
to orientations 8 € {0°,45°,90°,135°}. Gabor filters are themselves centre-surround op-
erators and therefore require no across-scale subtraction procedure (Frintrop, 2006).
As before, all orientation feature maps are combined at the resolution of level 6 =3 in

order to create the orientation conspicuity map

1
Co= Y 1 P 0(c.9)|. (2.2)
0c{0°,45°,90°,135°} oc{l,.. 4}

The saliency map S (e.g., Fig. 2.2) is then obtained by modulating the intensity con-
spicuity map C; with the orientation conspicuity map Co:

5= (5+20C). - 2(Co) ). 23

where M (A,B) = A - sigm(B), sigm(-) is the sigmoid operator and A(-) scales the pro-
vided image amplitude between [0,255].
This saliency model is essentially the one proposed by Itti et al. (1998) with one
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(c) Input image 6 (d) Saliency map of image 6

Figure 2.2: Examples of typical saliency maps. ROI with r,,, = 10m. The brighter the pixels
in the saliency map, the higher their saliency. From these examples, it is possible to see the
concentration of salient pixels on obstacle regions.

general improvement and two adaptations for all-terrain obstacle detection. The im-
provement was proposed by Frintrop (2006), and it refers to the use of both on-off and
off-on feature channels separately. The first adaptation for all-terrain obstacle detection
is in the normalisation operator A((.), which does not try to promote maps according
to their number of activity peaks, as is typically done. This is because the frequency
at which objects appear in the maps is not necessarily correlated to their proneness of
being obstacles to the robot.

The second adaptation for all-terrain obstacle detection is in the way conspicu-
ity maps are blended. Rather than their typical addition, conspicuity maps are non-
linearly multiplied. This results in making salient only those regions of the environ-
ment that are simultaneously conspicuous in both orientation and intensity channels.
The basic idea is that obstacles on all-terrain environments are normally highly tex-
tured and at the same time conspicuous in the intensity channel. The non-linearity in-
troduced by the sigmoid operator in Equation 2.3 aims at inhibiting the saliency map
in the presence of low orientation conspicuity in order to remove the background noise
inherent in textured outdoor terrains. When orientation conspicuity is strong, the sig-
moid operator amplifies the saliency map and promotes the orientation conspicuity

map over the intensity one.

Although not focused on all-terrain obstacle detection, a parallel and independent
study (Hwang et al., 2009) has also reported the benefits of using a weighted product of
the conspicuity maps as an alternative to their standard summation. Fig. 2.3 compares
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(a) Input image (b) Saliency with proposed model (c) Saliency with Itti’s model

Figure 2.3: Comparison between the saliency map generated by the proposed model (b) and
the saliency map obtained with the model proposed by Itti et al. (1998) (c), for a typical input
image (a). ROI with 7,5, = 10m.

a saliency map computed by the proposed model with a saliency map obtained with
the model proposed by Itti et al. (1998).

2.5 Ground Plane Estimation

Obstacles can be in part characterised as disturbances occurring at the ground surface.
Thus, estimating how the robot relates to the ground-plane based on a dense 3-D point
cloud is of extreme importance to support obstacle detection. However, the roughness
of outdoor terrain renders highly unlikely the existence of a clear-cut ground-plane.
Thus, robust estimation methods, such as random sample consensus (RANSAC) (Fis-
chler and Bolles, 1981), must be employed. In a nutshell, a typical RANSAC procedure
for ground-plane estimation in the ROI is composed of the following seven steps:

Step 1. Pick randomly a set R of three non-collinear 3-D points within range [#uin, 7max]
and generate its corresponding ground plane hypothesis, iz, with some straight-

forward geometry.

Step 2. The score of the plane hypothesis is the cardinality of the set of its inliers,
score(hg) = |Py,|. An inlier p € P,,, where p = (py, py, p;)?, is a 3-D point whose
distance to plane g, d(p,hr), is smaller than a given threshold dpjae. Py is thus
the set of all 3-D points that cope with this condition and that are at the same time
located in the ROL

Step 3. Repeat steps 1 and 2 until n;,,,, hypotheses, composing a set H, have been gen-
erated.
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Step 4. Select from H the hypothesis with highest score for refinement,

b = argmaxcpy score(h).

Step 5. Compute a refined version of b, /, by fitting the inliers set of b, P,. This fitting
is done with weighted least-squares orthogonal regression via the well known
Singular Valued Decomposition (SVD) technique. The weight wq of an inlier q €
Py, where q = (qx,qy,q;)7, is given by wq =1 — %. That is, the farther q is from
b, the less it weights in the fitting process. Compute the inliers set of &', Py, and
substitute the current best ground-plane estimate with the refined one. That is,

make b = b’ and P, = Py. Py is computed with the procedure described in Step 2.

Step 6. Iterate step 5 until |P,| becomes constant across iterations or a maximum num-

ber of iterations, m i, is reached.

Step 7. Take b as the ground-plane estimate.

Points belonging to obstacles will inevitably generate poor ground-plane hypothe-
ses in Step 1. This means that in environments cluttered with obstacles, a larger num-
ber of hypotheses must be generated to guarantee that a good hypothesis is found. This
additional computation can be reduced by rejecting selected points if they are likely to
belong to an obstacle. This likelihood is here defined in terms of visual saliency level
(see Fig. 2.4(b-c)).

Formally, in Step 1, a randomly selected 3-D point p is promptly rejected and so not
considered to build a plane hypothesis, if sy > 57, where x € [0,255] is a number sam-
pled from a uniform distribution each time the inequality is tested; n; € [0, 1] is the ratio
of pixels with saliency below a given threshold /; local saliency sy € [0,255] is the max-
imum saliency within a given sub-sampled chess-like squared neighbourhood of p/,
with size g - n;, ¢ being the empirically defined maximum size; and p is an empirically
defined scaling factor. The goal of using the ratio of pixels with a saliency value under
a given threshold is to allow the system to progressively fall-back to a non-modulated
procedure as saliency reduces its discriminative power. This happens, for instance, in
highly textured terrains, in which the sampling procedure is too constrained as a result
of the saliency map’s cluttering. See Fig. 2.4(d) for an example of the output generated
by the ground-plane estimation process.

Complementary mechanisms could be exploited for improved performance and ro-

bustness. In terms of saliency modulation, the score of each ground-plane hypothesis
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(a) Left input image (b) Without saliency

(c) With saliency (d) Ground points

Figure 2.4: Typical example illustrating the advantages of using visual saliency to modulate the
hypothesis generation step of a RANSAC procedure for ground-plane estimation. (b) Overlaid
pixels (in red) correspond to 5000 3-D points randomly sampled without saliency modulation.
(c) Same as (b) but with saliency modulation. (d) Overlaid pixels (in green) whose correspond-
ing 3-D points lie on the estimated ground-plane.

could be weighted according to the saliency of its supporting inliers. Additionally, the
weight assigned to each 3-D point in the weighted least-squares orthogonal regression
process could also be modulated by its associated saliency. Spatio-temporal prior in-
formation could also be applied to modulate the RANSAC process (Mufti et al., 2008;
Chumerin and Hulle, 2008) with the purpose of increasing the chances of detecting the
actual plane given a fixed number of RANSAC iterations. The 3-D points of obsta-
cles detected in the previous frame could also be directly removed from consideration
in the estimation process (van der Mark et al., 2007). If ground-plane estimation and
detected obstacles removal are done sequentially and in an iterative way per frame,
multiple planes could also be detected (Hadsell et al., 2009).
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2.6 Small Obstacle Detection

Detecting obstacles based uniquely on the distance between 3-D points and the ground-
plane is a brittle procedure on all-terrain. This is mostly because small variations in
height on uneven terrains would often be confused with small obstacles. In those situ-
ations obstacles are better defined in terms of geometrical relationships between their
composing 3-D points. Aligned with this idea, the model proposed by Talukder et al.
(2002) and Manduchi et al. (2005), which is summarised in Section 2.6.1 and from now
on designated Original Obstacle Detector (OOD), is taken as the starting point for our
small obstacle detector. To reduce its computational cost and sensitivity to noise, the
OOQOD is here extended with a SVR mechanism and a voting filter, as described in Sec-

tions 2.6.2 and 2.6.3, respectively.

2.6.1 Obstacle Definition

Let {x,y,z} be the basis that defines three axes relative to the centre of the left camera
and with the z-axis aligned with the sensor’s optical axis (see Fig. 2.5(b)). This basis
is the sensor’s local reference frame, ¥. Let P be the set of 3-D points, defined with
respect to F, computed by the stereo-based 3-D reconstruction process and provided
to the obstacle detector. As proposed by Talukder et al. (2002) and Manduchi et al.
(2005), a 3-D point is considered to belong to an obstacle if it is compatible with any
other 3-D point in the point cloud. Two 3-D points obtained from P, p, = (X4, Yarza)T
and py = (xp,¥5,25)", are said to be compatible if

|yb_ya|
|2b — Pall

where 0 is the maximum slant angle that the vehicle can safely negotiate, H,;, is the

clearance height under the vehicle, and H,,, is the maximum height to be considered
by the detector.

Fig. 2.5 provides an intuitive geometrical interpretation of this definition of com-
patibility. That is, all 3-D points that are compatible with a given 3-D point p = (x,y,z)”
are encompassed by two truncated cones, Up and L,. Although pointing in opposite
directions, both upper and lower truncated cones are normal to the xy plane and have
their vertexes located in p. Additionally, both cones have an aperture angle of (1 —26)

and are limited by the planes y = Hni, and y = Hppqx.
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Figure 2.5: Geometric interpretation of the compatibility test (Talukder et al., 2002; Manduchi
et al., 2005). (a) Filled and unfilled circles represent 3-D points that are compatible and incom-
patible, respectively, with points p; and p;. It is also possible to depict the projections of 3-D
points p; and p; onto the image plane, i.e., pixels pj and p), respectively. Note that the farther
the points are from the sensor, the smaller the projections of their truncated cones are. For read-
ability reasons, Ly, LP'l , Lp, and Lp/2 are not represented. (b) Diagram illustrating a situation in
which the compatibility test allows the detection of an obstacle in front of the robot. The white
circles represent the points falling in the upper truncated cone and consequently considered
compatible, that is, pertaining to the same obstacle.

Checking the compatibility between all possible 3-D points is limited by real-time
requirements. Fortunately, according to Talukder, Manduchi et al., only a reduced
subset of all combinations needs to be assessed if the process is carried out in the image
space. For this purpose, p’ = (p}, p})" is defined as the projection of the 3-D point p € P
onto the left camera’s image plane. This projection is defined with respect to the local
reference frame {x,y’'} and refers basically to the pixel in the left camera that is the
image of the world point p (see Fig. 2.5(a)). Similarly, the two truncated cones of p
project onto two truncated triangles in the image plane, Uy and Ly, whose vertexes
are both located at pixel p’ (see Fig. 2.5(a)). The height of these truncated triangles is
given by Hya.f/p;, and their width can be approximated by — 2Hacf

an By p; cOST” where f 1S
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the camera’s focal length and n = arctan X, In the image space, the set of pixels that

may be compatible with p/, and consequéntly with p, are now constrained to those
encompassed in both truncated triangles. Furthermore, if the image is scanned from
bottom to top and from left to right, it suffices to consider only the upper truncated
triangles to efficiently detect and label all pixels.

Finally, two points that are compatible to each other are said to pertain to the same
obstacle. By transitivity, two points that are linked by a chain of compatible points are
also said to belong to the same obstacle. This property will enable the segmentation of
obstacles according to their 3-D relationships.

2.6.2 Space-Variant Resolution

Despite the advantages of using a truncated triangle in order to focus the application
of the compatibility test, the computation time of the method is still on the order of sec-
onds for 640 x 480 image-pairs. With quantisation and extensive use of look-up tables
it is possible to attain faster processing rates (van der Mark et al., 2007). However, the
loss of accuracy is unavoidable with such approximations. This section proposes the
use of SVR as a complementary way to reduce the computational cost of the method.

For fast detection, pixels are coarsely analysed in a first phase according to the scan-
ning procedure previously described, that is, from bottom to top and from left to right.
However, this time the analysis is done with steps of n pixels, which may be skipped
based on their visual saliency and two additional constraints (see below). Further-
more, compatibility is tested only against a sub-sampled set of the pixels falling inside
the upper truncated triangle of each analysed pixel. This sub-sampling is done in a
chess-like pattern with 1/m of the image resolution.

Whenever an obstacle is detected, it is foveated by performing a finer analysis of
the region. Concretely, the pixels within the upper truncated triangle of the pixel just
labelled obstacle are re-sampled from 1/n of the image full resolution, with n < m. This
aims at improving the representation of any obstacle that has been detected.

As soon as the scanning procedure is completed, the detector enters in a second
phase for full resolution recovery. This final phase is important as most morphological
filters that might be applied afterwards perform better in high resolution. This second
phase is implemented with the following region growing mechanism. Let pj be a pixel

labelled obstacle and p; its corresponding 3-D position. Every other pixel p, whose



2.6. SMALL OBSTACLE DETECTION 31

distance to pj is smaller than the highest number of skipped pixels, ||p] —p5|| <m, is a
candidate also to become labelled as obstacle. The final test to determine whether p)
is labelled as obstacle is done by checking whether its corresponding 3-D point, p3, is
at a distance from pq shorter than an approximation of the maximum allowed distance

between 3-D points to be considered compatible, ||p1 — p2|| < Hpnax-

As mentioned, in order to save computation, the compatibility test is conditionally
applied in the coarse analysis phase. Concretely, the compatibility test is applied only
if the local saliency increases between scanned pixels or at least one of two additional
constraints is applicable. Local saliency is preferred over a pixel-wise one to reduce
the effects of poor lighting conditions, which in some situations make objects” upper
part appear more salient than their lower part. Local saliency is computed by taking
the maximum saliency from the set of pixels that share the column of the pixel being
analysed and that are contained in its truncated triangle. Owing to the fact that the
compatibility test is skipped over non-interesting regions and therefore with low like-
lihood of containing obstacles, certain regions of the environment are more coarsely

analysed and so computational cost is saved.

Let us now describe the two additional constraints that forces the execution of the
compatibility test during the coarse analysis. The first constraint aims at performing a
fine analysis whenever an obstacle is detected and a progressive fine-to-coarse analysis
of the obstacle’s boundaries. The latter effect is particularly useful in handling noisy
data in and around obstacles. For this purpose, the maximum number of pixels that
may be skipped before compulsorily engaging in a new compatibility test is progres-
sively increased as the scanning process moves away from a detected obstacle. This
number is represented by the variable ng;4.. This variable is set to n whenever a com-
patibility test returns positive (i.e., when the scanning process is still on the obstacle)
and doubled whenever its value matches the number of skipped pixels (i.e., when the
compatibility test has been compulsorily engaged as a consequence of the maximum
number of pixels that may be skipped has been reached).

Along the same line of reasoning, instead of analysing every row of the inputimage,
n+w rows are skipped, where w is incremented every time an analysed row does not
contain any pixel with a positive compatibility test. To avoid large jumps w is upper
bounded by w;,... Whenever a compatibility test succeeds, w is zeroed. This procedure
intends to reduce the computational load in environments with few obstacles or when

these are located mostly in the far-field. Because the truncated triangles associated with
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(a) Input image (b) Saliency map (c) Saliency-based SVR

Figure 2.6: Typical example of pixels analysed with saliency-based SVR. (c) Pixels analysed
based on the saliency map depicted in (b). White pixels in (c) correspond to points that have
been skipped by the detector due to lack of saliency or computed range, whereas grey pixels
correspond to points that have been analysed. ROI with 7y, = 10m, H,j, = 0.10m, Hyy =
0.4m, and © = 40°. Space-variant resolution with n = 3, m = 6, n,,,, = 30, and w4, = 20.
Note the focus on obstacle regions.

points in the near-field are quite large, skipping rows from the image’s bottom when
no obstacle is found there greatly reduces the computational load. Fig. 2.6 illustrates
the operation of the SVR on a typical input image.

Finally, every time a pixel is labelled obstacle, the saliency of all pixels encompassed
by its upper truncated triangle is increased by a given percentage, A. This reinforce-
ment of the detected obstacle’s presence raises the chances of selecting other obstacle’s
pixels for compatibility testing. The use of saliency to guide a task-specific detector is
rather typical (Itti et al., 1998; Frintrop, 2006). However, the proposed model exhibits
a novel characteristic to saliency-based systems by allowing the results of the detector
to modulate the saliency map.

By not relying on 3-D features, visual saliency is able to guide the detector without
being misguided by potential 3-D artefacts. Fig. 2.7 shows that this property helps in
the reduction of false positive rate.

2.6.3 Voting Filter

Stereo-based 3-D reconstruction is a rather noisy process. This characteristic is par-
ticularly problematic when small distant obstacles must be detected. In this case, the
challenge is to devise a set of filters to remove the noise without hampering perfor-
mance and accuracy. The direct filtering of the 3-D point cloud is a computationally

expensive task. The cost comes mainly from the fact that it is not possible to know
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(a) Input image (b) Saliency map
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Figure 2.7: Typical results of the SVR with and without saliency modulation. No additional
filters have been turned on. (c)-(d) Black, false positives; dark grey, true positives; bright grey,
false negatives. ROI with ry,,, = 10m, Hy,;;, = 0.10m, H,,4 = 0.4m, and 6 = 40°. SVR with
n=73,m=06, ny, = 30, and wy,,, = 20. Without the use of saliency, a set of false positives
hamper the robot from finding the passage on the right-hand side of the image.

beforehand which regions of the image are important to be handled. An alternative is
to perform post-filtering on the segmented obstacles. This focuses the filtering process
on those 3-D patches that are known to be relevant for the overall system. However,
the higher the noise level the more obstacle segments exist and consequently the more
expensive their treatment is. Here, we propose a complementary mechanism: the use
of a voting mechanism fully embedded in the obstacle detector. Being embedded in the
detection process, the previously mentioned limitations are circumvented. On the one
hand, only 3-D points that are relevant to the detector are analysed. On the other hand,
removing noise during the detection process reduces the number of obstacle points to
be considered by the subsequent segmentation phase.

Let S be the set of 3-D points encompassed by the upper truncated cone emanating
from the 3-D point p. These points are said to be voted by p. Conversely, let Rp, be the
set of 3-D points whose upper truncated cones encompass p. These points are said to
vote on p. See Fig. 2.8 for an illustration of these concepts. A direct voting mechanism
would be to reject p as an obstacle if the cardinality of both sets S, and R, did not reach
a given threshold. However, the effects of projection make the theoretical maximum
size of both sets depend on the distance p is from the camera. In other words, farther
obstacles are represented by fewer pixels than closer obstacles. Hence, this approach
would result in a scale-variant filtering mechanism and so is inaccurate.

To make it invariant to scale, the voting mechanism applies a threshold to the car-
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Figure 2.8: Diagrams illustrating the voting mechanism associated with a given 3-D point p
and its corresponding projection on the image plane, p’. (a) Illustration depicting voting rela-
tionships between a given 3-D point p and its neighbours, according to the compatibility test.
(b) Projection onto the image plane of the situation depicted in (a). |A,| and |B}| correspond to
the area in pixels of the left and right filled truncated triangles, respectively. If the number of
pixels without computed disparity is subtracted from each of these quantities, one obtains the
theoretical maximum number of times that p is able to vote and being voted, respectively.

dinality of the distance-normalised versions of both R, and Sp,. As before, let p’ be the
projection of p onto the image plane. Let A}, be the area in pixels of the upper trun-
cated triangle emanating from pixel p’ (see Fig. 2.8). Let Aj be the sub-set of A}, with
associated 3-D information. A} is said to be the theoretical maximum number of points
that may be voted by p’ and consequently by p. Similarly, let B}, be the area in pixels
of the lower truncated triangle emanating from pixel p’ (see Fig. 2.8). Let B be the
sub-set of B, with associated 3-D information. By, is said to be an approximation of the
theoretical maximum number of points that may vote on p. This approximation builds
on the assumption that the truncated triangles associated to the projections of all 3-D
points composing the same obstacle have equal area. Because those points are close to

each other, the taken assumption renders a good approximation.

The following test on the number of votes normalised by their theoretical maximum

can now be used to determine whether point p is accepted as an obstacle:

S Ry
V > 2.5
<|A;;|>V By ") 22

where v is an empirically defined threshold. With the voting mechanism, compatibility

between two 3-D points is no longer a sufficient condition to consider them as obsta-
cles. Now, a higher level of robustness is attained by defining obstacles with a many-
to-many relationship. With this method the detector becomes considerably resilient to

the presence of 3-D artefacts (see Fig. 2.9) and even to the type of noise generated by a
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Figure 2.9: Typical results of the small obstacle detector without voting mechanism (b), with
voting mechanism (c), and with voting mechanism plus SVR (d). In (b) and (c) the SVR has
been turned off. (b)-(d) Black, false positives; dark grey, true positives; bright grey, false neg-
atives. ROI with 7y, = 10m, Hj, = 0.10m, H,,qr = 0.4m, and 6 = 40°. Voting mechanisms
with v =0.2 and a = 25. SVR with n = 3, m = 6, n,,,,x = 30, and w,,,, = 20. Note the consid-
erable reduction of false positives when the voting mechanism is turned on. Note also that with
SVR, computation time is saved by one order of magnitude for the same detection rate. The
lack of data (white pixels) within texture-deprived obstacles is due to failure in the stereo-based
3-D reconstruction process.

partial damage of one of the lenses composing the stereoscopic vision sensor (Santana
et al., 2008b).

2.6.4 Area Filter

Although the voting filter is extremely powerful, experimental results will show that
its operation can be better exploited when in conjunction with an area filter (see Sec-
tion 2.8). The area filter comes into play to remove any residual noise left by the vot-
ing filters. For this purpose, the obstacle points are first segmented in the 3-D space
(Manduchi et al., 2005). The area filter then eliminates those segments whose volume
projected onto the image plane is characterised by having a small area. Formally, an
obstacle point p is re-labelled as non-obstacle if
a-10?

|Ap| < p—%, (2.6)
where A, is the set of points composing the segment that encompasses p and a is an
empirically defined scalar. This test verifies whether the projected area of the segment

is below a pre-specified area a - 10?, properly normalised by the squared distance to the



36 CHAPTER 2. VISUAL ATTENTION FOR OBSTACLE DETECTION

obstacle. This normalisation procedure introduces scale-invariance into the filter.

2.6.5 Pitch-Roll Compensation

All the above geometrical considerations assume that the camera is not pitched nor
rolled with respect to the ground-plane. A possible way of removing this constraint
is to compensate for small variations on the camera’s attitude by overestimating the
truncated triangles’” size (Talukder et al., 2002; Manduchi et al., 2005). A lighter and
more exact alternative is proposed next.

Let O be the set of 3-D points obtained for the current scene. Let o and 6 be the pitch
and roll angles of the sensor with respect to the ground-plane, which is estimated as
in Section 2.5. Let Rg o) be a 3-D rotation matrix built upon both pitch and roll angles.
The 3-D points composing the set P provided to the obstacle detector now correspond
to the elements of Q properly rotated by R o):

P=Rpnd, P EPqEO. 2.7)

This rotation aligns the stereoscopic vision sensor’s local frame of reference with
the frame of reference of the ground-plane (van der Mark et al., 2007). This accom-
modates the 3-D point cloud for the application of the canonical compatibility test.
From another perspective, the truncated cone of the compatibility test is implicitly ro-
tated according to the attitude of the vision sensor with respect to the ground-plane.
However, the projection of this transformation must also be accounted for. That is, the
truncated triangle must also be rotated; otherwise some pixels would be erroneously
skipped, whereas others would be unnecessarily analysed in the compatibility test.

A solution to this problem would be to rotate the back-projection of the truncated
triangle’s vertexes using R(_g ), which would then be re-projected onto the image
plane to become the new vertexes used in the compatibility test. However, the result-
ing triangle would most probably no longer be isosceles, which would complicate the
scanning procedure within it. This plus the additional projective transformations make
this solution computationally expensive. For this reason, in practice only the roll angle
is taken into account in this operation. This approximation draws from the empirical
observation that this rotation is essential for a proper operation of the small obstacle
detector, whereas the disregard of the pitch angle only results in missing the top of

some obstacles. Bearing this in mind, the vertexes of the rotated triangle associated to
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(a) (b)

Figure 2.10: Roll compensation in the image plane. (a) Illustrative diagram, where the truncated
triangle is rotated in order to compensate for a roll angle 6. (b) Typical real situation in which the
rotation of the truncated triangle is the result of the roll compensation mechanism. The zoomed
image depicts the results of the compatibility test associated with the pixel in the truncated
cone’s vertex, where red (darker), green (lighter), and black pixels are compatible, incompatible,
and without associated 3-D information, respectively.

p, v and v/, are obtained by rotating the non-rotated triangle’s vertexes, v; and v,, so
as to compensate for the ground-plane’s roll angle:

7

vi =R_g)(vi—p)+1, (2.8)

where i € {/,r} and R(_g) is a 2-D rotation matrix. Note that the ground-plane’s roll
angle is assumed to project directly onto the image plane, which is an approximation
that was found to be sufficient in practice (see Fig. 2.10).

2.7 Parameter Selection

This section provides guidelines regarding the instantiation of every free parameter
included in the model. The ROI definition requires the specification of a minimum
range, mip, and a maximum range, ... Whereas the former is constrained by the
sensor’s field of view, the latter is upper bounded by the point cloud’s noise level. For
instance, the shorter the baseline of the stereoscopic vision sensor, the smaller the 7,,4.
The additional parameter ¢ is an upper bound in the expected proportion of pixels
encompassed in a row that are erroneously beyond 7,,.x. A value of 15% is usually
sufficient.

The number of iterations m,.f; and nyy, in the ground-plane estimation RANSAC
procedure could be theoretically defined, provided that the distribution of the sam-

pling space was known. Because this is not the case on all-terrain environments, these
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parameters must be defined empirically. A large number of iterations is required only
if a large number of obstacles are expected to occur in the scene. The related parameter
dpiane defines an upper bound for the distance between a point and a plane hypothesis
to be accepted as an inlier. On uneven ground, a small value (< 10cm) has the neg-
ative effect of fitting the ground-plane estimate to small planar patches of the terrain.
In practice, larger patches of the terrain can be covered and consequently more robust

estimates attained if a larger value is considered.

The number of non-salient pixels is used in the RANSAC procedure to estimate the
discriminative power that saliency has in the current scene. In the process, a small
threshold / is used to determine which pixels are non-salient. A small value above
zero is usually sufficient for a proper instantiation of this parameter. A measure of
the local saliency is used in the ground-plane estimation process to determine which
points should be taken into account. The larger the width of the window used to
compute local saliency, ¢, is, the more difficult it is to accept points near salient regions.
Practice suggests a value below 25 % of the image’s width to properly handle cluttered
environments. The selection pressure is also controlled by the scaling factor p. Higher
values reduce the chances of selecting non-salient pixels at the cost of a higher number
of required samples. Practice suggests that a scaling factor of around 4 manages the

trade-off well.

The small obstacle detector also requires the specification of a set of parameters.
H,,in and 0 are obtained directly from the robot’s mechanical properties, whereas H,q
equals % in the hybrid framework. That is, Hy, is as high as the smallest obstacle to
be detected by the large obstacle detector. SVR parameters n,u,x and wyqx must also be
instantiated. Parameter n,,,, trade-offs speed with the risk of failing to detect a non-
salient obstacle in the coarse analysis of the image. Because large obstacles are those
that may not be salient in the image, n,,. can be safely instantiated to a large value.
Not being sensitive to saliency information, the parameter controlling the maximum
number of rows that can be skipped in the coarse analysis of the image, w;,.,, must be
at least as small as the expected height in pixels of obstacles detectable at a safe dis-
tance. The same reasoning applies to the variable controlling the coarse analysis, m. In
practice these variables are tuned to achieve the required computational performance
under a given accuracy constraint. An example of such constraint is the expected pro-
jected width onto the image plane, Ax/, of an object with a given width Ax and located

at a given distance z from the sensor. This can be expressed as Ax' = Z%Ax, where f is
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the sensor’s focal length and o is the pixel’s width. For instance, for a camera with focal
length of 4.4mm and pixel size 0.006mm, a 20cm obstacle at 5Sm from the robot will
have a corresponding size in the image plane of roughly 30 pixels. This means that both
Wmax and m must have smaller values to ensure that the obstacle is sampled. Parame-
ter A, used to detect ascending saliency variations, is empirically minimised under the
constraint that the scanning procedure must not get trapped by small local variations
resulting from noise in the input image. A good indicator for its parameterisation is
10% of the saliency’s range.

Both voting and area filters are also dependent on two parameters, namely v and a.
Their values depend mostly on the level of noise needed to be handled. As experimen-
tal results will show, by varying these thresholds it is possible to smoothly move on the
trade-off curve relating false positive rate and true positive rate. This robustness will
also be confirmed by the ability of using the same thresholds in different environments.
In practice, by making v ~ 0.2 and a ~ 25 most of the noise impinging stereo-vision is

filtered without significant signal loss.

2.8 Experimental Results

This section presents the experimental results obtained with two different data sets
composed of 640 x 480 image pairs. The first data set is composed of 36 heterogeneous
stereo image pairs (see Fig. 2.18 in Appendix A) that have been acquired with a 9cm
baseline Videre Design STOC sensor under dynamic conditions and at an approximate
height of 1.5m. This set will be used to quantitatively assess the small obstacle de-
tector and the ground-plane estimation technique. For this purpose all images have
been hand-labelled (obstacle/non-obstacle pixels) for ground truth. To reduce impre-
cision in the hand-labelling process, the ROI of this data set has been limited to 10m
and images were selected so that a dominant ground-plane was actually present and
vegetation as much absent as possible. This allows an accurate quantitative analysis of
the several components of the system.

To test the hybrid detector, a data set with images containing large obstacles and
considerable uneven terrain is required. This data set should also allow the test of
the method against more distant obstacles. Finally, the data set should be extensive
and disparate. All these aspects have been considered in the second data set, which

encompasses three long runs with 798, 998 and 600 frames, obtained at 7.5Hz in off-
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road, urban, and mixed environments, respectively. With the stereo head hand-held at
an approximate height of 1.5m, the acquisition process took place by walking in the
environments at an average speed of approximately 1ms™!. To allow the detection of
obstacles up to 20m a sensor with a baseline of 30cm was used. Every 20 images were
hand-labelled to enable a quantitative analysis. The higher complexity of this data set
when compared to the previous one results in more ambiguous hand-labels. This ex-
plains why the components of the system are first tested individually and thoroughly

with the previous data set.
Small Vision System (SVS) (Konolige, 1997; Konolige and Beymer, 2007) and Open-

CV (Bradski and Kaehler, 2008) were used for stereo computation and other low-level
computer vision routines, respectively. Stereo computation uses an area-based L1
norm (absolute difference) correlation method, operating over Laplacian Of Gaussian
(LOG) transformed images. The result is interpolated to a precision of 1/4 pixel and
the correlation window size is 11 x 11. To increase the amount of information available
in the point cloud, the disparity calculation is carried out at the original resolution,
and also on images reduced by 1/2. With this multi-scale approach, the extra disparity

information is used to fill in dropouts in the original disparity calculation.

SVS also provides a set of standard filters to reject 3-D points that are potentially
erroneous at the cost of reducing too much the density of the 3-D point cloud in poorly
textured environments. Briefly, according to a threshold f., a confidence filter elimi-
nates stereo matches that have a low probability of success due to lack of image texture.
A uniqueness filter performs a consistency check to ensure that the minimum correla-
tion value is lower than all other match values by a threshold f,. Finally, a speckle filter
eliminates small disparity regions that are not correct by imposing a threshold f; on the
minimum region size. The three filters are used in both data sets with f. =12, f, = 10,
and f; = 400. The ability of the model to handle noisier point clouds will be demon-
strated in a final experiment, in which the strength of both confidence and uniqueness
tilters will be reduced, f. =6, f, = 6. With this reduction, the point cloud is denser, but
also noisier, and so the overall results of our model are more significant.

The following summarises the parameterisation of the model used in the experi-
ments, which has been defined according to the guidelines presented in Section 2.7.
Robot related parameters, Hyi, = 0.1m, Hyax = h = 0.4m, 6 = 40°, ground-plane esti-
mation parameters, my.fi;y = 10, npypo =40, dpigne = 0.2m, I =5, g = 150, p = 4, and large

obstacle detection threshold, # = 0.4m, are stable across experiments. To account for
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the different sensors’” baselines, the ROI is parameterised with 7,,;;, = 1m, re = 10m,
¢ = 15% and rpin =2m, 1y = 20m, g = 15 % for the first and second data sets, respec-
tively. Unless otherwise noted, SVR of the small obstacle detector and related filtering
mechanisms are set as n =3, m = 6, nyqx = 30, Wiar =20 and v = 0.2, a = 25, respectively.
The specific values of v and a will be justified according to the results obtained with

the small obstacle detector in the first data set.

2.8.1 Ground-Plane Estimation Results

The first set of experiments intends to demonstrate the usefulness of using saliency
to modulate the ground-plane hypotheses generation step. Ground-truth is given in
terms of obstacle/non-obstacle hand-labels, rather than in terms of ground-plane co-
efficients. This option results from the fact that the hand-labelling of the obstacles is a
much more accurate process than the process of hand-labelling the ground-plane coef-
ficients that better approximate the terrain. This compels us to assess the ground-plane
estimation process by indirect means. Concretely, validation is done by comparing
the obstacles detected using the plane-based detector with the obstacles present in the
ground-truth. The better the estimated ground-plane, the closer the detected obstacles
match the ground-truth. This process is repeated with and without using saliency to
modulate the ground-plane estimation process.

A large set M of 10000 ground-plane hypotheses per image in the first data set was
created with the Saliency-based Ground-Plane Estimation (SalGPE) approach. This
large set results in statistics varying ~ 1% across experiments. A set U with the size
of M was created for each image as well, but this time without saliency modulation
and thus representing the canonical RANSAC-based Ground-Plane Estimation (GPE).
The set of obstacles detected using each ground-plane hypothesis is compared against
the ground-truth to obtain the True Positive Rate (TPR), the False Positive Rate (FPR),
and the two-class Matthews Correlation Coefficient (MCC). The MCC metric is well
known for its ability to handle unbalanced data sets. The closer MCC is to 1 the better
the hypothesis matches the ground-truth. Obstacles are those points whose orthogo-
nal distance to the plane is above 0.2m, which is a reasonable upper bound for most
wheeled robots. A lower value would be inappropriate for a plane-based detection
approach. Then, the mean (u) and standard deviation (o) of the above variables over

all hypotheses in both M and U are computed.
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051039 0.14 | 0.37 | 0.16 | 0.02 | -0.01 16 0.77 | 0.7 | 0.07 5| 043 | 035 0.08

3510321]0.17 | 031 | 0.17 | 0.01 | 0.00 28 023|016 | 0.07| 12| 021 | 0.14 0.07
26 | 036 | 0.11 | 0.35 | 0.11 | 0.01 | 0.00 30 0.6 | 0.54 | 0.06 35| 02 | 0.14 0.06

10 [ 0.58 | 0.15| 0.57 | 0.15 | 0.01 | 0.00 3 05 | 044 | 0.06 321029 | 023  0.06
150.17 | 0.14 | 0.16 | 0.15 | 0.01 | -0.01 35 025 | 0.19 | 0.06 6 | 035 | 029 0.06
03 10.40 | 0.19 | 0.38 | 0.21 | 0.01 | -0.02 32 035 | 029 | 0.06 4 1032|027 0.06
14 [ 0.21 | 0.09 | 0.20 | 0.09 | 0.00 | 0.01 17 | 0.06 | 0.02 | 0.04 11 | 0.16 | 0.11  0.05
13 |1 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 11 | 043 | 039 | 0.03 15| 0.18 | 0.15 | 0.03
09 10.02 | 0.05|0.02|0.05| 0.00 | 0.00 8 1023 | 02 | 0.03 10 | 0.09 | 0.06 | 0.03
18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 10 | 0.14 | 0.11 | 0.03 241027 | 025 | 0.02
28 1 0.20 | 0.32 | 0.20 | 0.31 | 0.00 | 0.00 9 | 0.05 | 0.03 | 0.02 14 | -0.02 | -0.03 | 0.01
301 0.27 1 0.21 | 0.28 | 0.20 | -0.01 | 0.01 241 024 | 0.24 | 0.01 9 ] 003|002 001
12 [ 0.15 ] 0.09 | 0.16 | 0.09 | -0.01 | 0.00 14 | -0.02 | -0.02 | 0.01 8 | 024 | 0.24 0

04 1 0.30 | 0.15| 0.31 | 0.15 | -0.01 | 0.00 15| 0.29 | 0.29 0 13 0 0 0

32 10.50 | 032 0.52 | 0.30 | -0.02 | 0.02 13 0 0 0 18 0 0 0

17 1 0.37 | 0.13 | 0.40 | 0.11 | -0.03 | 0.02 18| 0 0 0 17| 0.04 | 0.07 | -0.03

(a) (b) (c)

Table 2.1: MCC results. (a) Ground-plane estimation with ©, = l’%cc — ,u[[‘]/[CC and S =
G%CC — G[(‘]/[CC. (b) Obstacle detection with ground-plane compensation, where ©,, = MCCIIXI —

MCCg . (c) Obstacle detection without ground-plane compensation, where © = MCCM —
MCCY . M = saliency-based RANSAC; U = canonical RANSAC.

According to the MCC results (see Table 2.1(a)), two main image sub-sets emerge.
One (grey shaded) aggregates images in which the RANSAC saliency-based hypothe-
ses generation step outperforms the canonical one (refer to the two last columns in
Table 2.1(a)). The MCC differences are residual (i.e., < 5%) for the remainder images,

meaning that saliency is essentially neutral there. Images without obstacles (13 and 18)
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have MCC values of 0. Images benefiting from saliency share a characteristic: a consid-
erable presence of objects. In these situations (e.g., Fig. 2.2), saliency easily segments
objects from background. Saliency thus operates better in those situations in which it
is most required. In the absence of obstacles an uninformed solution suffices.

Fig. 2.11(a) depicts the Receiver Operating Characteristic (ROC) results of the ex-
periment. For each image k, an arrow is drawn to connect each without-saliency point,
(U pp, ¥ o )i, to its corresponding point with-saliency, (udpr, tpr)k- The closer a point
is to the upper-left corner of the graph the better the corresponding set of sampled hy-
potheses matches the ground truth. A clear dominance of arrows heading towards the
upper-left corner is observed.

However, the arrow corresponding to image 23 in Fig. 2.11(a) goes in a clearly dif-
ferent direction. The justification for this fact relates to the particular configuration
of the environment, whose effects on the analysis are the following. Without saliency
modulation, the estimated plane is raised slightly off the ground, influenced by the
large obstacle in the image. As a result, by not being fully above the estimated plane,
the obstacle induces a low TPR. Moreover, by being below the estimated plane, some
false positives do not contribute to the FPR. Conversely, because the obstacle does not
affect the fitting process when saliency modulation is employed, the effects are the op-
posite. That is, the better approximation of the estimated plane to the actual ground-
plane results in that surface variations induce a higher FPR, and a bigger portion of the
obstacle contributes to an also higher TPR.

2.8.2 Small Obstacle Detector Results

To isolate the saliency modulation capabilities, a stripped down version of the small
obstacle detector was tested in an initial experiment. For this purpose, the voting fil-
ter was turned off, the maximum number of pixels and rows that can be skipped in
the coarse analysis was fixed to 30 and 1, respectively. This means that the skipping
procedure was not progressive.

Fig. 2.11(b) shows the results obtained from comparing the OOD (Talukder et al.,
2002; Manduchi et al., 2005) with the stripped down, saliency-based detector (5alOD),
i.e., with (n,m,ng4.) = (1,2,30). When compared to the OOD, the SalOD exhibits a
considerably reduced FPR and only a slightly smaller TPR. This combined result shows
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Figure 2.11: Ground-plane estimation and obstacle detection ROC plots. For a given image,
each arrow connects the TPR/FPR trade-off point obtained without saliency modulation to the
TPR/FPR trade-off obtained with saliency modulation. (a) Ground-plane estimation with (Sal-
GPE) vs. without (GPE) saliency modulation. (b) Obstacle detection with (SalOD) vs. without
(OOD) saliency modulation. (c) Same as (b) but skipping ng;q4. pixels for the OOD case. Line
x =y displayed for reference.

the benefits of using saliency to selectively discard non-obstacle points. Moreover, it
should be noted that the still undesirable level of TPR reduction is owed in part to the
absence of progressive skipping in the SalOD. This signal-to-noise ratio improvement
is confirmed by the contrast of the MCC with (MCCff ) and without (MCCIL,]) saliency
modulation (see Table 2.1(b)). Label p means that ground-plane compensation is on.
Saliency contributes in the same amount when the ground-plane compensation is off
(see Table 2.1(c)), highlighting its resilience.

To reinforce the evidence that the reduction in FPR is due to the saliency’s selective
nature instead of the reduced number of pixels being analysed, an additional test was
carried out. The OOD was configured to systematically skip ng;q4. pixels, rather than
n, when displacing the truncated triangle. In this situation, the results (see Fig. 2.11(c))
show that although the OOD now produces a smaller FPR, due to blindly skipping
more pixels, a considerable reduction in the TPR is also observed. As for obstacle
detection, smaller TPR means higher risk of collision, saliency shows itself to be a
useful cue for informed false positive removal.

To test the full-fledged small obstacle detector (ESalOD), all its features were turned
on, including both voting and area filters. Fig. 2.12 plots the ROC curves of this exper-
iment. A first analysis shows that ESalOD with (n x m) = (3 x 6) exhibits a TPR vs.
FPR trade-off at least as good as the trade-off exhibited by the OOD. This stems from
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Figure 2.12: Obstacle detection ROC curves. Each plot is the average of the ROC curves built
over all images in the first data set. A ROC curve is obtained by varying either the voting or the
area filter parameters. Votes, ESalOD with voting filter on, v € {0,0.05,...,1}, and area filter
off, a = 0; Area, ESalOD with voting filter off, v = 0, and area filter on, a € {0,5,...,100};
Both, ESalOD with both filters on, a = 25 and v € {0,0.05,...,1}; A OOD, by not having any
associated filter is limited to a ROC point.

the observation that the ESalOD ROC curve intercepts the OOD ROC point. The ROC
curve also shows that for high values of TPR the EsalOD exhibits a better TPR vs. FPR
trade-off than the OOD. This demonstrates how advantageous it is to embed into the
detector both visual saliency and voting filter. The curve shows, for instance, that it is
possible to reduce the FPR of the OOD by ~ 70 % while diminishing the TPR by only
~ 10 %.

The area under each ROC curve obtained with either the voting or the area filters
alone is smaller than the area obtained with both filters operating in conjunction. This
shows that the latter configuration exhibits a better overall performance. Note that
for low FPR values (i.e., < 0.15) none of the filters alone is capable of approaching the
ROC curve obtained with both filters operating simultaneously. This clearly shows
their complementary role. This is further confirmed by the ROC curve of the area filter
(see Fig. 2.13), where the higher the area under the curve, the more active the area filter

1S.

From the analysis of the area filter ROC curve (see Fig. 2.13) we conclude that the
configuration a = 25 (see Equation 2.6) is the most adequate for the first data set. After

a thorough inspection of the model’s behaviour in the first data set we also conclude
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Figure 2.13: Impact of the area filter. Each plot represents the average of the ROC curves ob-
tained over all images in the first data set, for a given area filter configuration. For a given image
and filter’s parameterisation, a € {0,5,25}, the ROC curve is built by sliding the threshold of
the votes filter over its domain, v € {0,0.05,...,1}. The absence of the area filter, a = 0, results
in the lowest area under the curve, which shows the usefulness of the filter. The relative perfor-
mance of the other two parameterisations, a € {5,25}, swaps at the intersecting point of their
ROC curves. Nevertheless, a = 25 is shown to be the most interesting configuration as it is the
one that performs better for higher TPR values.

that the configuration v = 0.2 (see Equation 2.5) for the voting filter shows the best
performance. With this configuration, false negatives are mostly absent and the false
positives are mostly concentrated around obstacles, resulting only in their enlargement
(see Fig. 2.9).

2.8.3 Hybrid Obstacle Detection Results

Having confirmed the performance of the model’s individual components, this section
tests the hybrid solution as a whole. For this purpose, the more extensive second data
set is used. The terrain in this data set is much more uneven, and large obstacles at
different ranges are much more frequent, which will help highlighting the advantages
of focussing each detection technique on a specific type of obstacle. As will be shown,
this specialisation promotes a better TPR vs. FPR trade-off as well as a reduced compu-
tational cost. The ROl in these experiments has been changed to 7,,;, = 2m, rpe =20m.

Table 2.2 summarises the quantitative results obtained for the three runs compos-

ing the data set. The table’s first row shows the ability of the model to maintain a
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Urban Run Off-Road Run Mixed Run
TPR FPR TPR FPR TPR FPR
Base 095+£0.08 0.11£0.19 0.89+0.16 0.02+£0.03 0.93+0.20 0.05=£0.05
+disp. 0.97+£0.04 0.11£0.06 096+0.08 0.05+0.04 0.98+0.05 0.124+0.08
+ filters 0.91+0.10 0.05£0.03 0.90+0.12 0.02+£0.02 0.904+0.16 0.06=0.06
+ g 0.91£0.09 0.05£0.03 0.90+0.11 0.024+0.03 091+£0.13 0.06£0.06

Table 2.2: Results obtained with the hybrid detector (mean + standard deviation). Each row
corresponds to a given configuration. The small obstacle detector in the “base” configuration is
parameterised as for the first data set. The “+ disp.” configuration takes the same parameteri-
sation but with a much denser/noisier disparity map. The “+ filters” configuration adds to the
previous configuration a stronger filtering mechanism, v = 60, a = 70. The last configuration
adds to the previous configuration a larger upper bound to the saliency-based pixel skipping
procedure, 7,4, = 100.

high TPR with the parameterisation obtained from the first data set. This is an exhi-
bition of the model’s robustness to different sensors and environments. The second
row shows that with a less filtered disparity map, and consequently with a denser and
noisier point cloud, the number of false positives grow for both off-road and mixed
environments. But interestingly the TPR grows as well. This shows the robustness of
the model to changes in the stereo-based 3-D reconstruction process. If the growth in
FPR is nevertheless undesirable, which depends on the model’s client, one can reduce
it by empirically pushing further the voting and area filters to v = 60, a = 70. The third
row of the table shows exactly this. See for instance that the FPR is reduced on average
by 55 % with only a TPR average reduction of 7 %.

To assess the sensibility of the model to the mechanism that most strongly con-
strains the saliency-based SVR, n,,,,x was extended from 30 to 100 pixels. The results in
the last row of the table show that no significant difference can be observed with this
new parameterisation. This means that the saliency map is accurate enough to guide
the detector. This last configuration of the hybrid detector will be used in the remaining
experiments. The videos are available in the online version of this article. The videos
permit the qualitative verification of the model’s ability to detect the vast majority of
the obstacles present in the several tested environments. Moreover, the videos also
show that most of the false positives are not stable across frames, and consequently
they should be easily filtered out under a probabilistic mapping framework.

Table 2.3 summarises the results obtained with both small and large obstacle de-

tectors in isolation. The goal of these experiments is to study the contribution of each
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Urban Run Off-Road Run Mixed Run
TPR FPR TPR FPR TPR FPR
Small 0.634+£0.23 0.044+0.03 0.624+0.24 0.01+£0.01 0.63+£0.28 0.05+£0.05
h=04m 0.81+0.17 0.04+£0.03 0.80+0.21 0.02+£0.02 0.794+0.25 0.04+£0.06
h=0.Im 0934+0.06 0.13£0.13 0.95+0.07 0.19£0.16 0.92+0.13 0.17+£0.14

Table 2.3: Results obtained with isolated detectors (mean + standard deviation). Each row
corresponds to a given configuration. The “small” configuration considers only the output of
the small obstacle detector as considered in configuration “+ n,,,,” (see Table 2.2) . The “h =
0.4m” configuration considers only the large obstacle detector. The last configuration considers
only the large obstacle detector, but this time with 4~ = 0.1 m and also encompassing negative
obstacles.

technique to the overall hybrid model. The first row of the table shows that the small
obstacle detector alone is not able to obtain the TPR level of the hybrid solution (cf. bot-
tom row of Table 2.2). This is mostly because it fails to detect some large obstacles
whose 3-D point cloud is sparser or noisier (e.g., Fig. 2.14(a)). This is a limitation of
methods that identify obstacles based on geometrical relationships between neighbour
3-D points. Sometimes, the small obstacle detector alone also fails to label as obstacle
those gentle slopes that due to their height are not navigable (e.g., Fig. 2.14(b)). The
second row of the table shows that the large obstacle detector, as parameterised for the
hybrid solution, 7 = 0.4m, is also unable to reach the desired TPR (cf. bottom row of
Table 2.2). In this case the detector fails to detect small obstacles and the bottom part
of large ones (e.g., Fig. 2.14(c)).

In conclusion, the two techniques are shown to perform in a complementary way,
thus justifying the benefits of a hybrid solution. By making /# = 0.1 m, the ability of the
plane-based solution to detect both small and large obstacles was tested in a final ex-
periment. As this configuration intends to also substitute the use of the small obstacle
detector, it must also be able to detect negative obstacles. Therefore, in order to allow
that points below the ground-plane would also be considered obstacles in this test, the
distance of 3-D points to the ground-plane is considered in absolute terms. The third
row of Table 2.3 shows that with this configuration the FPR grows approximately 44
times the growth of TPR (e.g., Fig. 2.14(d)). See, for instance, the case of the off-road
run, in which an 850 % increment of FPR is followed by only a 19 % increment of TPR.
Therefore, the hybrid solution exhibits the best TPR vs. FPR trade-off.

Typical outputs of the hybrid obstacle detector in the off-road, urban, and mixed
environments can be depicted in Fig. 2.15, 2.16, and 2.17, respectively.
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Figure 2.14: Comparison between hybrid (middle row) and isolated (bottom row) detectors
over a set of typical input images (top row). Results are organised in a columnwise manner,
each column being associated to a given configuration (see Table 2.3). Detected obstacles are
overlaid in dark grey over the corresponding input images. White pixels are those out of the
ROI or without computed 3-D information and are thus discarded by the detection process.

Figure 2.15: Typical results obtained with the proposed hybrid model in the off-road long run.
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Figure 2.17: Typical results obtained with the proposed hybrid model in the mixed long run.
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Hybrid Detector OOD
Dataset Stereo Saliency Plane Detection Total Total
1 (9cm) 444+1 51+£4 31£7 168£106 294+107 6464 +4074
2(30cm) 5941 53+7 25+£5 46+£25 1834+26 3198 +909

Table 2.4: Timing information, in milliseconds, for both hybrid detector and OOD (mean +
standard deviation). Partial timings for stereo processing, saliency computation, ground-plane
estimation, and actual obstacle detection are also provided.

2.8.4 Computational Performance

Table 2.4 summarises the computation time spent at each step of the proposed model. It
also compares the computation time of the hybrid detector with the computation time
taken by the OOD, proposed by Talukder et al. (2002) and Manduchi et al. (2005). These
results were obtained with a Linux-based 2.8 GHz Intel Core 2 Duo Laptop equipped
with 4 GB of RAM. The model runs on a single core.

The hybrid obstacle detection takes on average 183 ms on the second data set, as op-
posed to the 294 ms obtained with the first data set. The 61 % increment of computation
time relates to the different ROI used in each data set, which is in turn a consequence
of using sensors with different baselines. When covering larger areas of the near-field,
the truncated triangles considered by the detector are quite large and consequently ex-
pensive to analyse. The increment in computation time for the OOD case is higher,
100 %, meaning that its performance decays more drastically for sensors with shorter
baselines. Finally, the hybrid detector performs on average 17 and 22 times faster than
the OOD for the first and second data sets, respectively.

2.9 Conclusions

A model for stereo-based all-terrain obstacle detection was presented. By hybridising
two complementary obstacle detection techniques, the model innovates at the archi-
tectural level. A common characteristic of the two techniques is that they perform in
the image space, rather than in a digital terrain map.

The presented hybrid system is capable of searching for obstacles with more than

10cm height up to a range of 20m on uneven terrain. It performs at 5Hz on 640 x 480
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images. This has been attained by focussing each detection technique on a particular
type of obstacle (i.e., large vs. small) depending on each technique’s characteristics.
Also novel at the architectural level is the extensive use of visual saliency to guide the
detection process. This mechanism was shown to improve robustness, accuracy, and
computational efficiency of obstacle detection.

The technique employed for small obstacle detection is known for its ability to per-
form well on uneven terrain. However, in its classic form, it is also known to be com-
putationally expensive and brittle in the face of noise. These limitations have been
overcome in the proposed model with the novel use of saliency-based space-variant
resolution, with a mechanism for the camera’s pitch-roll compensation, and with a
voting mechanism. The latter was shown to be extremely powerful in enabling the
operation of the detector in the presence of noisy 3-D point clouds. The fact that the
filter is fully embedded in the detector’s operation, almost discards the need for time
consuming post-filters.

The revealed success of visual saliency in all-terrain obstacle detection is in part
due to the novel way conspicuity maps are blended in this work. Another key aspect
is that the detector updates the saliency map whenever an obstacle is detected. This
allows the saliency map to guide the detector while being opportunistically corrected
by it.

With the exception of the compatibility test, all other aspects of the proposed model
are easily parallelisable. This opens the door for future Graphics Processing Unit
(GPU)-based implementations to further reduce processing cycle. As a further im-
provement, the number of independent parameters shall also be reduced. We also ex-
pect in the future to assess the benefits for obstacle detection of modulating the saliency
map with top-down knowledge, such as the expected appearance of most frequent ob-
stacles.
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2.10 Appendix A
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Figure 2.18: Stereo data set (left images only) obtained with a 9 cm baseline configuration.
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2.11 Appendix B: Index to Multimedia Extensions

Extension Media type Description

1 Video Off-road environment
2 Video Urban environment
3 Video Off-road/urban mixed environment

Table 2.5: The videos are available as Supporting Information in the online version of this
article.



Chapter 3

A Swarm Cognition Realisation of
Attention, Action Selection and Spatial
Memory
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Abstract

This paper reports a study on modelling covert visual attention as a parallel process
that unfolds in synergy with the embodied agent’s action selection process. The paral-
lel nature of the proposed model is according to the multiple covert attention hypoth-
esis and thus suitable for the concurrent search for multiple objects in the embodied
agent’s visual field. In line with the active vision approach, the interaction with the ac-
tion selection process is exploited by the model to deploy visual attention in a by-need
way. Additionally, the multiple focuses of attention considered in the proposed model
interact in a way that their collective behaviour robustly self-organises for a proper
handling of the speed-accuracy trade-off inherent to visual search tasks. Besides the
self-organisation of a global spatio-temporal visual attention policy, the model also
produces parallel, sparse, and active spatial working memories, that is, local maps
of the environment. The underlying mechanisms of the model are based on the well
known formalism that describes the self-organisation of collective foraging strategies
in social insects. This metaphor is particularly interesting because of its similarities
with the problem tackled in this paper, that is, the one of parallel visual attention. This
claim is validated by experimental results on a simulated robot performing local navi-

gation, where the ability of the model to generate accurate visual attention and spatial

55
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memories in a parsimonious and robust way is shown.

Keywords: swarm cognition; active vision; visual attention; action selection; artificial

life; autonomous robots

3.1 Introduction

More than an information process, perception is a sensorimotor process on its own
right (Ballard et al., 1997; Pfeifer and Scheier, 1999; O’Regan and Noe, 2001). This ac-
tive nature of perception is essential to enable robustness and efficiency (Bajcsy, 1988;
Aloimonos et al., 1988; Ballard, 1991). This is in line with the idea that modules within
a cognitive system are dynamical systems mutually entrained, as well as they are
entrained with the external world through the agent’s body (Beer, 1995; Thelen and
Smith, 1996). To focus perception in a by-need way, this article addresses the particular
entrainment observed between action selection and visual attention.

Visual attention ultimately results in the motion of sense organs towards the rel-
evant stimulus source. This is called overt attention. A faster process is the one of
mentally focussing particular aspects of the sensory stimuli. This is called covert at-
tention. Studies on human subjects support the hypothesis that multiple covert at-
tention processes co-exist in the brain (Pylyshyn and Storm, 1988; Doran et al., 2009).
Based on this, the model herein proposed considers covert visual attention as a process
composed of a set of parallel focuses of attention, which cohabit and interact among
themselves and with the action selection process for a better and by-need coverage of
the embodied agent’s visual field.

One of the most powerful formalisms capable of providing these properties to
systems composed of many interacting elements is the one that describes the self-
organisation of collective intelligence displayed by social insects (Franks, 1989). In
this line, the proposed model uses the ant foraging metaphor to control the collective
behaviour of a set simple virtual agents that inhabit the embodied agent’s sensorimo-
tor and decision spaces. The behaviour of each of these virtual agents implements a
locally coherent covert attention policy. The self-organisation of these virtual agents
leads in turn to a global spatio-temporal collective pattern of coherent, robust, and effi-
cient covert attention policy. Parallel, sparse, and active spatial working memories are

also maintained by the system, which besides helping the action selection process to
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reach better decisions, also improve the visual attention process by endowing it with
some predictive power.

The experimental apparatus is composed of a simulated robot that must focus its
perceptual resources to enable the detection and retention of memories of the obsta-
cles that are essential to ensure safe local navigation. As argued by Slocum, Downey,
and Beer (Slocum et al., 2000), “if we hope to ... analyse in detail model agents ex-
hibiting genuinely cognitive behaviour, it is essential to focus on the simplest possible
agent-environment systems that exhibit the cognitive behaviour of interest”. It not be-
ing the goal of the model to encompass the complexity of object identification and/or
recognition, means that the only cognitive behaviour of interest is the one of direct-
ing multiple covert visual attention processes in a by-need basis. Hence, the simplest
agent-environment system in this case is the one where the perceptual process needs
to search a sensory space, whatever its dimensions, and the identification/recognition
aspects are reduced to a well defined binary decision process. Bearing this in mind,
the simulated robot is provided with a body-centred two-dimensional image of the lo-
cal environment in which obstacles can be detected by simply checking which image
pixels are occupied.

This article is organised as follows. Section 3.2 surveys related work in both natu-
ral and applied sciences. Then, in Section 3.3, an overview of the proposed model is
presented, as well as a focused inspection on the parallel perceptual system. The ex-
perimental results, obtained with a simulated mobile robot, are reported in Section 3.4.
A discussion about key aspects of the model is given in Section 3.5. Finally, a set of

conclusions is drawn, and pointers to future work are suggested in Section 3.6.

3.2 Related Work

The ability to shift the focus of attention, ubiquitous in animals (Land, 1999), high-
lights the active nature of perception (Bajcsy, 1988; Aloimonos et al., 1988; Ballard,
1991). From this perspective, body, nervous system, and environment must be seen
in an holistic way (Gibson, 1979; Ashby, 1952; Beer, 1995; Thelen and Smith, 1996). An
advantage of active vision is the possibility of the embodied agent to act in order to
shape its sensory information flow (Sporns and Lungarella, 2006), and consequently
make its processing tractable. Sensorimotor coordination (Dewey, 1896) thus plays a
key role for adaptive behaviour (Brooks, 1991; Ballard et al., 1997; Pfeifer and Scheier,
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1999; O’Regan and Noe, 2001; Pfeifer and Bongard, 2006; Mossio and Taraborelli, 2008).

Models of visual attention, a component of active vision, typically assume the exis-
tence of a sensory-driven bottom-up pre-attentive component (Treisman and Gelade,
1980; Koch and Ullman, 1985; Itti et al., 1998; Palmer, 1999; Corbetta and Shulman,
2002; Hou and Zhang, 2007), which is modulated by top-down context aware path-
ways (Yarbus, 1967; Wolfe, 1994; Tsotsos et al., 1995; Corbetta and Shulman, 2002; Tor-
ralba et al., 2003; Frintrop et al., 2005; Navalpakkam and Itti, 2005; Walther and Koch,
2006; Neider and Zelinsky, 2006; Rothkopf et al., 2007, Hwang et al., 2009), as it has
been shown by recent neurophysiological studies (Egner et al., 2008).

The outcome of the interplay between bottom-up and top-down processes is typi-
cally assumed to be some sort of moving “spotlight” from the most to the least relevant
regions of the image. However, it is unlikely that a massively parallel structure, as the
human brain is, only runs a single sequential processing stream. In fact, studies with
human subjects (Pylyshyn and Storm, 1988; Doran et al., 2009) revealed exactly the op-
posite. Moreover, in vision in general, interacting perceptual pathways dedicated to
different purposes are more likely to exist (Milner and Goodale, 1995; Goodale, 2008),

than a global and isomorphic representation of the environment (Marr, 1982).

Overt attention being a sensorimotor process, and supported by the evidence that
both overt and covert share the same neural mechanisms (de Haan et al., 2008), we
speculate that covert attention can also be modelled as a sensorimotor process. Under
this assumption, it is reasonable to consider the focus of attention as a dynamical entity
inhabiting the sensory space of the embodied agent. This entity can then proactively
move, that is, guide the focus of the embodied agent, towards the most relevant regions
of the sensory space in a sensorimotor coordinated way. This entity, which can be mod-
elled as a virtual agent, thus behaves as a locally sequential covert attention process.
The feasibility of such agent-based modelling has considerable support from the fields
of embodied cognition and active vision, where simple virtual agents performing sen-
sorimotor coordination have been successfully synthesised (Beer, 1996; Scheier et al.,
1998; Slocum et al., 2000; Nolfi and Marocco, 2002; Beer, 2003; Balkenius et al., 2004;
Floreano et al., 2004; Nolfi, 2005; Suzuki and Floreano, 2006; Pfeifer and Bongard, 2006;
Kim and Moeller, 2006; Sporns and Lungarella, 2006; de Croon and Postma, 2007; Choe
et al., 2008).

Brain computational modelling with multiple virtual agents is not a new idea (Min-
sky, 1988; Chialvo and Millonas, 1995). Although the first realisations of the idea to
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solve computer vision related problems are also not new (Poli and Valli, 1993; Liu
et al., 1997), only more recently it has received considerable attention (Ramos and
Almeida, 2000; Owechko and Medasani, 2005; Anton-Canalis et al., 2006; Mobahi et al.,
2006; Broggi and Cattani, 2006; Mazouzi et al., 2007; Zhang et al., 2008). These paral-
lel computational models are mostly stand-alone engineered parallel perceptual sys-
tems, lacking the interaction with action selection and mapping processes. This deficit
undermines their explanation power regarding the mechanisms actually building up
adaptive behaviour. Conversely, sensor planning, which is a relatively stable field in
computer vision and robotics communities, is actually trying to bridge the gap be-
tween body motions and information gathering through the sensors (Dickmanns et al.,
1990; Nabbe and Hebert, 2003; Kwok and Fox, 2004; Patel et al., 2005; Hernandez et al.,
2007; Sprague et al., 2007). However, none of these models considers parallel covert

attention operating in an intricate way with the action selection process.

A remarkable metaphor from the natural world encompassing the characteristics of
parallel deployment of attention is the foraging behaviour of army ants. These ants are
able to leave their nests and cover large areas to search for food items in a purely paral-
lel and robust way (Deneubourg et al., 1989), exhibiting a sort of collective intelligence
(Franks, 1989). This mapping between insect-based swarms and neuron-based brains
of vertebrate has been also suggested by parallel and independent work (Passino et al.,
2008; Couzin, 2009; Marshall et al., 2009; Marshall and Franks, 2009). Our work, in-
stead, approaches the problem of studying cognition through social insects behaviour
by building it, following the synthetic approach to embodied cognition (Pfeifer and
Scheier, 1999) and artificial life (Bedau, 2003). The advantages of using artificial life
models for this purpose, though without the support of any practical realisation, have
also been dissected in a parallel study (Trianni and Tuci, 2010). All these accounts
can be framed in the emerging multidisciplinary field of swarm cognition (Trianni and
Tuci, 2009), which attempts to uncover the basic principles of cognition, that is, adap-
tive behaviour, recurring to self-organising principles, mainly those exhibited by social
insects. Furthermore, conceiving cognition as a self-organising process is essential to
understanding how open-ended learning can develop, and consequently, how it can

be synthesised.
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3.3 Proposed Model

This section starts by providing an introduction to the biological inspiration of foraging
strategies in social insects as a model of parallel covert visual attention. This introduc-
tion is followed by the description of the algorithm specifying the way perception,
which includes visual attention, and action selection interact in the proposed model.
Details on both perceptual and action selection processes are provided. The model is
described under the context of local navigation. That is, the action selection process
aims at deciding which motor action should be engaged by the embodied agent to al-
low its safe progression in the environment. This decision is influenced by a desired
heading of motion and constrained by the obstacles present in the environment, whose
detection is responsibility of the perceptual process.

3.3.1 Biological Inspiration

Covert visual attention is mostly related to the parallel search of objects in the em-
bodied agent’s visual field. A remarkable metaphor of this process is the one of army
ants engaging on foraging behaviour. Assuming that the environment that these ants
inhabit corresponds to the embodied agent’s visual field, each ant can be seen as an
individual covert visual attention process. Their collective behaviour can then be seen

as a parallel covert visual attention process.

Following this metaphor from the natural world, the visual process in the proposed
model is composed of a swarm of simple homogeneous virtual agents (hereafter p-
ants) that inhabit the visual field of the embodied agent (hereafter simply agent). These
p-ants are probabilistically created (recruited) to search (forage) the agent’s visual field
along those regions where detected obstacles are likely to affect the action selection
process more strongly. Hence, p-ants operate on a by-need basis being affected by
the action selection process. As in natural ants, p-ants do this search in a stochastic
way. P-ants interact through stigmergy for better coverage and tracking of detected
objects. It allows the coexistence of positive and negative feedback loops that lead
to robust collective behaviour. In conclusion, random fluctuations and both positive
and negative feedback, which are necessary ingredients for self-organisation to occur

(Bonabeau et al., 1999), are integral part of the model.
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Figure 3.1: Building blocks of the proposed model.

3.3.2 Overall Process

Fig. 3.1 illustrates the connectivity between perceptual and action selection processes,
whose control logic is outlined in Algorithm 1. Basically, after receiving a new frame,
I, both perceptual and action selection processes interact (thicker arrows) for several it-
erations before a final motor action decision is reached and eventually engaged. These
interactions occurring between both processes allow them to progressively unfold in
parallel, and consequently, to enable accurate deployment of visual attention, which is
an integral part of the perceptual process. The following describes these interactions

for a given frame.

At each iteration, the action selection process sends a message to the perceptual
one with an action utility vector, u = (u!,u?,...,u*), where u/ € [0, 1] is the utility of per-
forming action j, and k is the cardinality of the agent’s action repertoire. This vector
is computed according to a desired heading of motion, /, and constrained by informa-
tion about free-space connectivity of the local environment, C, which has been sent by
the perceptual process in the previous iteration. In this study, actions u/ are defined as

linear trajectories centred on the agent and directed outwards in a radial pattern.

In turn, the perceptual process uses the just received vector u to iterate its search
for obstacles. The set of obstacles detected in the current iteration, ', is appended
to the set O, which accumulates obstacles previously detected. This set is then used
to compute C, which encompasses range information regarding those radial sectors
of the local environment that contain free-space for agent motion. Finally, C is sent
back as a message to the action selection process so as to affect its next iteration. Since
the perceptual process is affected by the incoming vector u, which states the utility of

performing each possible action and consequently which regions of the environment
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Algorithm 1: Overall system’s execution pseudo-code.

1

Input: desired heading, &, desired speed, s
Data: i, i; are empirically defined constants.

create an empty set of p-ants, A < 0

2 while true do

3

C-TE- RN - L7 B N

10

11

12
13

14
15
16
17

18
19

20
21

22
23
24
25
26
27
28
29
30
31

reset iterations counter, i < 0

reset stable iterations counter, ¢ < 0

clear the set of obstacles, O <+ 0

clear free-space connectivity information, C <— 0
reset perceptual shared mediums, R <— —1,P <— 0
reset best action, v < 0,V + 0

get new frame, I

estimate agent motion, (K\x7 5}, @)

// iterate until best action stabilises for i iterations or a maximum nr. of iterations,
Imax, 1S reached

while (¢ < isAi <ipgy) do

i<—i+1

// iterate the action selection process

compute the action utility vector, u = (u1 , uz, e ,uk), based on C, h, and V"
save previous best action, V' < v

obtain the highest utility action in u, v - argmax u

// iterate the perceptual process
iterate obst. search,

(R,P,A,0') « iterateDetection (I, (Ax, Ay, A0), R, P,A, u,s,i,k) // see Algorithm 2
update the set of obstacles, O «+— OJ O
compute free-space connectivity, C, based on O

// update counter of stable iterations
if v =1 then
\ c+c+1
else
‘ c+0
end

end
generate motor action for v and desired speed s
save motor action sent to the actuators, v/ < v

end
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should be more carefully analysed, it is considered to operate on a by-need fashion.

The mutual influence between action selection and perceptual processes is carried
per frame: (1) for a maximum number of iterations, iy.; or (2) until the action with
highest utility is the same over i iterations. Finally, the highest utility action at the
time interactions cease is passed to the low-level motion controller through a low-pass
filter. In this way, sudden changes at the system’s output are smoothed to avoid jitter
at the actuators level.

Details regarding both perceptual and action selection processes are provided in

the following sections.

3.3.3 Perceptual Process

As mentioned, the iteration of the perceptual process is three fold (see Algorithm 1).
First, a set of obstacles, O, is detected in the current iteration. Second, O’ is appended to
the cumulative set O. Third, O is used to re-compute C, that is, the local environment’s
free-space connectivity.

The set of obstacles O is used to determine the maximum distance, d/, the agent
is able to travel along each possible linear trajectory, j € [1,k], without hitting any ob-
stacle. Refer to (Santana and Correia, 2006) for further details. The set C is then the
aggregate of all free-space, defined in terms of pairs (j,d’). With this information the
action selection process is able to assess the quality of each possible motor action.

At each iteration, the set O’ is created as follows (see Algorithm 2). The perceptual
process starts by extending the set of p-ants, A, with a new one, A’. The rate at which
p-ants are created is a function of the agent’s speed, s € [0,1]. This allocates more
perceptual resources when the agent is moving faster and consequently when an action
must be selected sooner. The creation rate is also a function of the action utility vector.
The higher the utility of a linear trajectory, j, the higher the chances of creating a p-ant,

aj, with the following initial position:

pa; < [£;,0]", (3.1

which is defined in polar coordinates in the image plane and where /| is the direction
of linear trajectory j. This position corresponds to the bottom-centre of the visual field,
so that p-ants can start their search for obstacles in the close vicinity of the agent (see
Fig. 3.2(a)).
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Algorithm 2: iterateDetection

Input: I, (Ax,Ay,A®),R,P,A,u,s,i,k

Output: R,P,A,0'

Data: (p,,24,04,04,ba,74) is the set of properties of a given p-ant a € A (explained in the text).

Data: 1, C, v, P, r'max, and [ are empirically defined constants and F OV is the set of pixels composing the
agent’s visual field (explained in the text).

create an empty set of obstacles, O’ < 0

-

sample a number from an uniform distribution, y € [0, 1]
if y <sAi> 1 then // the faster the agent the higher the chances of creating p-ants
// create a new set of p-ants, A, to be added to A
A0
foreach j € [0,1,... k] do // go over all possible actions
sample a number from an uniform distribution, x; € [0, 1]
if x; < u’ then // the higher the utility of the action the higher the chances of creating a p-ant
create new p-ant a; With (pa;,2a;,Ga;,0a;,ba;,7a;) < ([£7,01",[£;,0]",0,p, SEARCH, rya)
add the new p-ant a; to set A’, A’ <— A'U{qa;}
end
end
add the new set of p-ants, A + A|J A’

e L N T AW N

Il e =
W N =D

end

[
'S

—

5 //iterate all p-ants included in A
6 foreach a € A do

—

17 reduce p-ant’s energy available, o, <— 0, — 1
18 if i = 1 then // new frame received
19 ‘ use (Z\x, Z}, Z\G) in Equation 3.2 to compensate p-ant’s position, p,, for agent motion
20 end
21 if 0o, <0 then // p-ant without energy
22 | remove p-ant, A < A\{a}
23 end
24 // iterate search behaviour
25 if b, = SEARCH then
26 ‘ iterate search behaviour, (R,P,A,0’) «+ iterateSearch(I,R,P,A,O',FOV,a) // see Algorithm 3
27 end
28 // iterate track behaviour
29 if b, = TRACK then
30 ‘ iterate track behaviour, (R, P,A,0") < iterateTrack(I,R,P,A,0' ,FOV,a,( i) // see Algorithm 4
31 end
32 // iterate local search behaviour
33 if b, = LOCAL_SEARCH then
34 iterate local search behaviour,
(R,P,A,0') + iterateLocalSearch(/, (Ax, Ay, A),R,P,A,0',FOV,a,n,v,1,i) // see Algorithm 5
35 end
36 end

37 return R,P,A, 0’
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Figure 3.2: Snapshot of the visual process activity, in a situation where the action utility vector
states that moving to the right is preferred to moving to the left, and both are preferred to moving
forward. (a) P-ants (small grey circles) in search (over non-obstacle regions) and tracking (over
obstacles, in black) behaviour. Note that the input image is a body-centric two-dimensional
Euclidean image of the local environment. The point where p-ants are created is at the bottom-
centre of the input image, indicated by the arrow. (b) Shared medium R representing the pixels
classified as obstacle (white), as non-obstacles (black), and that have not been tested so far
(grey). (c¢) Shared medium P (in grey level) updated by p-ants as obstacles are detected.

A newly created p-ant, a;, is endowed with an initial energy level, o, <P, which is
reduced at each iteration and restored when an obstacle is detected (see below). P-ants
with null energy are removed from the system to maintain memory and computation
within boundaries. A p-ant initiates its operation with the activation of the search be-
haviour (see below), b, ; = SEARCH. With this behaviour, the p-ant will move on the
agent’s visual field with the purpose of detecting an obstacle, which is then tracked by
the activation of other behaviours.

If the current iteration is the first after obtaining the current frame, i = 1, p-ants
are not created and the agent’s motion since the last frame, (Z\x,@,AG), is estimated
recurring to wheel odometry. This estimate is then used to compensate the position of

every p-ant a € A, for the agent motion:

. . Ax
Ay

where p} corresponds to p, in Cartesian coordinates, K(—Z\G) is a two-dimensional
rotation matrix in order to compensate for the angle AB. This procedure helps p-ants
maintaining their positions with respect to the objects in the environment indepen-
dently of agent motion. The motion compensated position of each p-ant can also be
seen as an interesting point upon which covert attention should be deployed when a

new frame arrives. This introduces a prediction component to the covert attention pro-
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cess. During the motion compensation process, some p-ants will eventually leave the
agent’s visual field and so will ultimately implement a sparse local map of the envi-
ronment. Since the motion compensation is performed by all p-ants, these already out
of the visual field will also be affected by the process. This is essential to maintain the
local map updated and also to allow some of those p-ants to re-enter the agent’s visual
tield when an environment is revisited.

After these preparatory procedures, the currently active behaviour of each p-ant
in A is iterated. That is, each p-ant will perform a motion step according to a given
stochastic perception-action rule. The following sections describe the iteration of each
of the three possible behaviours, namely search, track, and local search.

3.3.3.1 Search Behaviour

The iteration of the search behaviour is a simple stochastic motion step on input frame /
along the preferred search direction defined at p-ant creation time (see Equation 3.1). In
the case of a p-ant a € A with current position p, the motion step is defined as follows:

M

o (3.3)

Pa < Da+

NO,1) 0
0 [N, ]

where N(0,1) samples a number from a Gaussian distribution with mean 0 and vari-
ance 1 (see Fig. 3.2(a)), A; and A, are empirically defined scalars. High A; and A, values
facilitate fast detection of large obstacles, at the cost of missing smaller ones. Small
values result on slower, though finer, detection.

After performing a motion step, p-ant a invokes the function (R,d) < detect(I,R, p,),
whose result is d = 1 if an obstacle is found at position p,, and d = 0 otherwise. Param-
eter R is a shared medium that the function uses to check whether any other p-ant has
already tested the position in question (i.e., if R(p,) # —1). If that is the case, then R(p,)
is used as the result. Conversely, if the position is tested for the first time, the func-
tion applies the obstacle detector and updates the shared medium accordingly, that is,
it does R(p,) < 1 if the result is positive and R(p,) < 0 if otherwise. This helps sav-
ing computation when the cost of applying the obstacle detector is high. In sum, the
function detect abstracts the detection process as well as the management of the shared
medium R. With the exception of this function call, the rest of the perceptual process is

about visual attention.



3.3. PROPOSED MODEL 67

After detecting an obstacle, a set of steps is executed by the p-ant a. First, its position
is appended to the set of obstacles O, O’ < 0’| J{p.}, which is also updated by other
p-ants and eventually used to feed the action selection process. Furthermore, the p-
ant’s level of energy is restored, o, < p, and its behaviour changed to track behaviour,
b, <+ TRACK, so that the detected obstacle can be followed across frames. Then, a
shared medium P is updated to reflect the localisation of the detected obstacle. This is
done by adding to P a top-view pyramidal shape of top magnitude 20 and linear decay
(0.9) outwards, centred on p,. This information will then be used by other p-ants to
have an idea of the density of p-ants on the region (see below).

Finally, a p-ant in search behaviour that leaves the agent’s visual field is removed
from the system, A <— A\{a}. See Algorithm 3 for further details.

Algorithm 3: iterateSearch
Input: I,R,PA,0',FOV,a
Output: R, P,A,0’

[y

use Equation 3.3 to update the p-ant’s position, p,, along a preferred search direction

if p, & FOV then // p-ant out of the visual field
| remove p-ant, A < A\{a}

else // p-ant in the visual field

apply detector at p-ant’s position, (R,d) < detect(I,R, p,)

if (d = 1) then // an obstacle has been detected in input image I
report the presence of obstacle at p-ant’s position, O’ < O'U{p.}
raise the obstacles density shared signal at p-ant’s position, P(p,)
restore p-ant’s level of energy, o, <— p
change p-ant to track behaviour, b, <— TRACK

end

o 0 N At AW N

[
<

=Y
—

end
return R, P, A, O’

—
w N

3.3.3.2 Track Behaviour

A p-ant engages in track behaviour when it finds an obstacle on its current position.
Whenever a new frame is acquired, i = 1, that p-ant has its position compensated for
the agent motion (see above), which ultimately results in the construction of a local
map of the environment. However, if the motion estimation is noisy or the obstacle is

dynamic, the updated position of the p-ant may no longer be the same as the one of
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Figure 3.3: Graphical output generated by the perceptual process to illustrate the mapping ca-
pabilities in two sequential situations. (a) The agent faces a set of obstacles, which are detected
and registered in the action selection process. Consequently, the decision to turn to the right is
taken. In turn, the decision modulates the visual process, compelling p-ants to flow more on
that direction. (b) After a displacement with rotation to the right, some obstacles move out of
the agent’s visual field (to the left). However, those obstacles remain represented by means of
their associated p-ants, and thus still influencing the action selection process. Refer to Fig. 3.5
for the meaning of the lines associated to some p-ants. The grey-level colour coding is as in
Fig. 3.2.

the obstacle. Therefore, immediately after obtaining a new frame, every p-ant in track
behaviour invokes the detect function. In the presence of a positive result, the p-ant’s
position is appended to the set of obstacles, 0’, and its energy restored. See Fig. 3.3 for
an illustration of the spatial working memory operation. As in the search behaviour,
the shared medium P is updated to reflect the localisation of obstacles detected in the
agent’s visual field.

With the purpose of rapidly covering detected obstacles, p-ants in track behaviour
that are in the agent’s visual field are allowed to locally replicate themselves. At each
track behaviour iteration, a clone @’ of a given p-ant a may be created and positioned
in a randomly chosen location ¢, py = ¢, provided that this position is not densely
populated with other p-ants, P(¢) < m, and it contains an obstacle. ¢ is selected by
searching for a pixel at a distance (A+B-y,) of p,, where y, € [0, 1] is a number sampled
from an uniform distribution. After appending the clone d to the set of p-ants, A «+
AU{d'}, its position is reported as an obstacle to O" and P is updated accordingly.

A p-ant is only allowed to clone for a limited number of times, ry.. A clone in-
herits the number of replications of its ancestor so as to control the diffusion process.
This means that the number of descendants of a single p-ant can amount up to rpqy!.

In practice the number is much smaller as the cloning process is constrained by the
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Figure 3.4: Graphical representation of p-ants in a diffusion process. (a) A set of p-ants in
search behaviour. (b) Some p-ants find the obstacle, enter in track behaviour, and start cloning
themselves. (c) The diffusion process concludes. Refer to Fig. 3.5 for the meaning of the lines
associated to some p-ants.

obstacle boundaries and by the density of p-ants in the location in question. Therefore,
a single p-ant is generally not capable of cloning up to the point of fully covering a
large obstacle. If the object is in a region of the environment that is really important to
the action selection process, its uncovered region will be seen as free space and conse-
quently attract new p-ants towards itself. These new p-ants will eventually reach the
obstacle, a new diffusion process will be started, and the obstacle will be fully covered.
See Fig. 3.4 for an illustrative example of the diffusion process.

If a given p-ant a in track behaviour happens to be in a region with a high density
of p-ants, P(p,) > C, or detects that it is no longer on an obstacle, then it leaves the
track behaviour to initiate a local search behaviour, b, - LOCAL_SEARCH. By mak-
ing n <, a sort of hysteresis is implemented, and with that, massive fluctuations of
neighbouring p-ants entering and leaving local search behaviour are avoided.

Finally, the energy of p-ants in track behaviour that are out of the agent’s visual field
receive an extra decrement. As a consequence, p-ants not refreshed with immediate
sensory information are maintained in the system for a smaller period of time. See
Algorithm 4 for further details.

3.3.3.3 Local Search Behaviour

Local search is modelled as a random walk around an anchor point, whose initial po-
sition is defined as the p-ant’s position at the time local search was initiated, z, < pa.
Hence, with the goal of re-detecting a lost obstacle or of finding a less cluttered region

of a tracked obstacle, the local search behaviour randomly changes the position of a
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Algorithm 4: iterateTrack

27
28
29

Input: I,R,P,A,0' ,FOV,a,(,i
Output: R, P,A,0

apply detector at p-ant’s position, (R,d),) < detect(I,R, p,)

ifi=1A(ps € FOVV (p, € FOV \Nd, = 1) then // update obstacles only at frame onset
report the presence of obstacle at p-ant’s position, O’ < O'U{p.}

raise the obstacles density shared signal at P(p,)

if p, € FOV ANd, = 1 then

restore p-ant’s level of energy, o, < p

if r, > 0 then // limit the number of replications

randomly generate a neighbour position g € FOV for p-ant replication
apply detector at neighbour position, (R,d,) < detect(I,R,q)

if P(q) <nAd, =1 then // new position at not too crowded obstacle region
decrease the number of p-ant’s available replications, r, <— r, — 1
replicate p-ant, @’ < a, do p, < g, and add new p-ant to the p-ants

set, A« AU{d'}

report the presence of obstacle at new p-ant’s position, O’ < O'(J{q}
raise the obstacles density shared signal at P(q)

end

end
end

end
if p, & FOV then // p-ant out of visual field
‘ extra reduction in p-ant’s energy available, o, <— o, — 1

else // p-ant in the visual field

if P(p,) > CV d, =0 then // p-ant at too crowded or on non-obstacle region
change p-ant to local search behaviour, b, <~ LOCAL_SEARCH
set an anchor point for the p-ant’s local search, z, < p,
set the initial spread of the local search, 6, <0
lower the obstacles density shared signal at P(p,)

end

end
return R, P, A, O’
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p-ant a, around an anchor point, z,:

i+ 25+ 64[N(0,1),N(0,1)]", (3.4)

where 6, < min(c, + 1,/) and N(0,1) samples a number from a Gaussian distribution
with mean 0 and variance 1. By increasing 6, at each iteration, the local search spreads
up to the upper-bound /, which constrains the search to avoid migration of p-ants

between obstacles.

The anchor point changes to the p-ant’s current position, z, < p,, whenever the
density of p-ants there is higher than the one at the current anchor’s location, yet not
too high, n > P(p,) > P(z,). This directs the local search towards regions where other p-
ants, but not too many, reported the existence of an obstacle. Conversely, if any of these
conditions is not met, then the anchor position is not changed and the level of energy of
the p-ant in question is dramatically reduced by an amount of v. This compels p-ants
in local search behaviour to remain in the system only for a reduced number of frames.
Nevertheless, since p-ants may be in local search behaviour across frames, the anchor
points must be compensated for the agent’s motion the same way p-ants positions are,
ati =1 (see above).

If a p-ant in local search happens to detect a not too cluttered obstacle, it is ap-
pended to O', the shared medium P is updated accordingly, the p-ant’s energy is re-
stored, and it changes to track behaviour. Finally, a p-ant a in local search that leaves
the agent’s visual field is removed from the system, A <— A\{a}. See Algorithm 5 for
further details and Fig. 3.5 for an illustrative example of the local search behaviour.

3.3.3.4 Location-Specific P-Ants

The described mechanism for p-ants creation is basically driven by the action selec-
tion process output. With it, the perceptual process is capable of adapting to the dy-
namic nature of the surroundings. However, there are some specific spots in the agent’s
workspace that demand for invariant attention. To take into account these particular
cases, new p-ants are deterministically deployed in each frame at points of interest.
In this work we do it for the region right in front of the agent, where obstacles must
be detected as soon as possible. These p-ants are setup to immediately engage in local
search behaviour.



72

CHAPTER 3. SWARM COGNITION FOR LOCAL NAVIGATION

Algorithm 5: iterateLocalSearch

D-IE- - B Y I

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Input: /,(Ax,Ay,A8),R,P,A,0',FOV,a,n,v,1,i
Output: R, P,A,0

if i = 1 then // new frame received

se (Ax,Ay,A8), as in Equation 3.2, to compensate p-ant’s anchor point, z,, for agent

u
motion
end
use Equation 3.4 to update p-ant’s position around anchor point, z,
if p, & FOV then // p-ant out of visual field
| remove p-ant, A < A\{a}
else
apply detector at p-ant’s position, (R,d) < detect(I,R, p,)
if d = 1 AP(p,) <m then //p-ant on non-crowded region of obstacle
report the presence of obstacle at p-ant’s position, O’ < O'U{p.}
raise the obstacles density shared signal, P(p,)
restore p-ant’s level of energy, o, < p
change p-ant to track behaviour, b, <— TRACK
else // local search must carry on
if P(z,) < P(ps) <M then // anchor point less crowded than p-ant’s position
\ update p-ant’s anchor point, z, < p,
else
\ reduce dramatically p-ant’s energy available, o, <— 0, —
end
end
increment the spread of the local search, 6, +— min(c, + 1,/)
end

return R, P, A, O’

3.3.4 Action Selection Process

The action selection process produces at each iteration the multi-valued output u. As

mentioned, actions in this article are instantiated as linear trajectories centred on the

agent and directed outwards in a radial pattern. For this study, j =0 and j = k cor-

respond to +90° and —90° linear trajectories, respectively, both perpendicular to the

straightforward motion. Hence, the utility of each possible action is defined as the

value of moving the agent along the corresponding linear trajectory. The closer an

obstacle is from the agent, the lower the utility of the linear trajectory affected by the

obstacle.
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(@) n

(b) 1

© 13

(d) 14

Figure 3.5: Graphical output generated by the perceptual process with erroneous motion es-
timate to illustrate the local search behaviour. Although the agent does not move, the motion
estimate, which is noisy, reports a straight ahead motion. By motion compensation, p-ants move
away from the obstacle. As the time unfolds (from #; to #4) they manage to find the way back to
the obstacle. Lines connect anchor’s and p-ant’s current positions. The grey-level colour coding
is as in Fig. 3.2.

The specific fast obstacle avoidance method employed in this study (Santana and
Correia, 2006) determines which linear trajectory the agent should take to produce
faster progress along the direction of the goal heading, /, without hitting any obsta-
cle reported by the visual process. Its geometric nature ensures smooth navigation
in cluttered environments. Accordingly, the non-normalised utility of a given linear
trajectory, j € [0,k], represented by the pair (j,d’) € C, is
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V. ((df/r)-cos(lzj—h’|)+1> n (3.5)

2
Bo- (1—|(d’/r) sin(Z;—H)|) +

|j—v"|
N PR
2 ( k+1 )’

where V" is the action sent to the actuators in the previous frame, /; is the angle be-
tween linear trajectory j and the agent’s main axis of motion, and /' is desired head-
ing h transformed to the agent’s frame of reference. The utility is higher in directions
whose range without obstacles, d/, projected on the desired direction of motion is
larger (first term), whose lateral displacement from that direction is smaller (second
term) and that are closer to the last actually sent to the actuators (third term) in order
to introduce some inertia. P, B2, and B3 are empirically defined importance weights
set up to avoid oscillatory behaviour.

Then, those trajectories whose utility equals the highest one have their utilities am-
plified three times. This empirically defined scaling factor allows the best linear trajec-

tory to become even more interesting. The utility normalisation finally occurs by doing
vi
argmax; v/’

u/ = max( €), where € is an empirically defined minimum residual utility ev-
ery linear trajectory must contain. In this way all linear trajectories have a non-zero

probability of being analysed by p-ants.

3.4 Experimental Results

3.4.1 Experimental Setup

All experiments were carried out on a Centrino Dual Core 2 GHz running Linux/Ubun-
tu. A set of videos representative of the executed experiments can be found in the
authors’” Website (Santana and Correia, 2010b). In this study, a wheeled robot simu-
lated in Player/Stage (Gerkey et al., 2003) with a width of w = 0.3m is used as test-
bed. The robot’s sensory input takes the form of 300 x 150 body-centric Euclidean
two-dimensional images of the robot’s 16m x 8 m frontal environment, constrained by
a 90° field-of-view. Obstacles are represented by black pixels, whereas non-obstacle re-

gions are represented by white pixels. To emulate occlusions, only the closest obstacle
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along each radial direction outwards the robot is imaged.

The following describes the model’s parameterisation. The number of iterations, i
and iy, described in Section 3.3.2, have been set to 10 and 20, respectively. A higher
number of iterations provided no significant added value to the stability of the system.
The stochastic motion control parameters from Equation 3.3, A and A, have been em-
pirically defined as 0.3 and 1.0, respectively. These values produce an adequate speed-
accuracy trade-off, for the environments where the simulated robot has been tested.
The hysteresis control parameters used to determine when an obstacle is too cluttered
with p-ants, 1 and € (Section 3.3.3.2), have been set to 100 and 150, respectively. With
these values, p-ants are allowed to densely populate obstacles without exhibiting too
much overlap. The diffusion process control parameters (see Section 3.3.3.2), A and
B, have been set to 3 and 7, respectively. These values have been chosen in order to
generate a fast diffusion process, and also a relatively dense coverage of the obstacles.
The number of times a p-ant is allowed to clone itself is ¢ = 10. P-ants top energy
is p = 1000 (see Section 3.3.3), which corresponds roughly to a 5s lifespan. This is
sufficient to maintain a useful short-term memory for local navigation. The control pa-
rameter to avoid migration of p-ants between obstacles when performing a local search
(see Section 3.3.3.3), [, has been set to 10. Location-specific p-ants (Section 3.3.3.4) are
deployed with polar coordinates [0,20]” (see Equation 3.1). At this position, the p-ant
will guarantee that obstacles in the close vicinity of the robot are surely found, inde-
pendently of the remaining configuration of the environment. The cardinality of the
robot’s action repertoire, k, is 80. This action granularity is sufficient to ensure naviga-
tion in cluttered environments. The importance weights for the action selection process
(see Section 3.3.4), B1, B2, and B3, have been set to 0.35, 0.55, and 0.1, respectively. The
residual action utility, €, has been set to 0.005.

Two 16 m x 16 m environments have been devised to carry out the experiments. The
tirst (see Fig. 3.6), denominated lines environment, contains large (easily detectable)
obstacles in the far-field. A proper behaviour in this case requires good look-ahead
capabilities. Conversely, the second environment (see Fig. 3.7), denominated dots, is
cluttered with small (hard to detect) obstacles. In this case the robot should be able
to perform thorough near-field obstacle detection. In a given sense, the lines environ-
ment affords speed whereas the dots environment demands accuracy. Using the same
parameterisation for both environments, that is, without explicit context awareness,

we show the system self-organising in order to handle the different speed-accuracy
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Figure 3.6: Behavioural results in the /ines environment. Since all runs with active perception
produced very similar trajectories, only one is plotted. The robot starts from the bottom-left
aligned with the desired heading in the world frame. Filled trails left by the robot correspond
to the ground-truth behaviour. Unfilled trails correspond to runs using the proposed active
perception model. They are barely visible in this figure as a consequence of being covered by
the filled trails. This means that the trajectory executed with the proposed model is near optimal,
in the sense that it follows closely the ground-truth.

trade-offs.

The ability of p-ants located outside the robot’s field-of-view to report their associ-
ated obstacles will be activated only in the last experiment, when explicitly mentioned.
In this way, in the remaining experiments, we avoid any influence this feature may
have in the results.

3.4.2 Results

During five runs per environment, the robot is asked to travel at a speed of 1.0ms™ !,
along the heading coincident with the one of the robot when in its start position. Posi-
tion (in meters) and heading (in radians) estimates are polluted with additive Gaussian
noise, (Z\x +0.1-N(0, 1),@ +0.1-N(0, 1),1\9 +0.001-N(0,1)), where N(0,1) represents
samples from a Gaussian distribution with mean 0 and variance 1. With this error pro-
tile, the re-detection of tracked obstacles is required nearly in almost every frame. This
is a reasonable situation for robots performing, for instance, in outdoor (unstructured)
off-road environments. For comparison purposes, a ground-truth behaviour is gener-
ated by providing the action selection process with all sensory information contained
in the robot’s field-of-view, that is, with a fully-informed passive perception set-up.
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Figure 3.7: Behavioural results in the dots environment. The variability exhibited across the
five runs (labelled with corresponding numbers) is a result of the environment’s complexity.
Small variations in the decision at key points cause considerable differences in the path taken.
Nevertheless, in qualitative terms, the behaviour of the robot with the active perception set-up

follows closely the ground-truth. Same colour code and process of obtaining ground-truth as in
Fig. 3.6.

The proposed model generates smooth robot paths that follow closely the ground-
truth (see Fig. 3.6 and Fig. 3.7), which is itself near optimal. This is further confirmed by
Fig. 3.8(a), in which the steering angle error per frame is plotted. This plot was obtained
by frame-wise averaging the error over the five independent runs, in the lines environ-
ment. The error metric is computed as the absolute difference between the steering
angle cast by the action selection process to the actuators and the one associated with
the ground-truth behaviour. The small error magnitude confirms the behavioural anal-
ysis, revealing the ability of the proposed model to accurately reproduce the activity of
a fully-informed (near-optimal) system.

Following the ground-truth is not a big achievement if the percentage of analysed
sensor data is high, thus approaching the fully-informed situation. Fig. 3.8(b) illus-
trates exactly the opposite situation for the proposed model on the five runs in the lines
environment. Namely, the mean percentage of pixels analysed per frame, that is, in
which the obstacle detector is actually applied, is only 5% of the robot’s field-of-view.
This shows that the method maintains an adequate speed-accuracy trade-off with par-

simonious allocation of resources.

Because of the chaotic nature of the dots environment, independent runs on it lead
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Figure 3.8: A set of performance metrics per frame. Values are the mean computed over five
independent runs in the /ines environment. Standard deviation represented by the error bars.
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inevitably to different paths. Being considerably different, their correlation along time
is poor. The quantisation of the performance metrics followed by their frequency anal-
yses, i.e., through histograms, is much more informative in this case. These histograms
are built by bin-wise averaging the individual histograms obtained for each of the five
independent runs. This frequency analysis highlights the ability of the system to match
ground-truth (see Fig. 3.9(a)) and accurately focus attention (see Fig. 3.9(b)) in the dots
environment. These results are comparable to those obtained in the lines environment.
The frequency analysis for the lines environment are coherent with the time-based anal-
ysis (cf. Fig. 3.8).

Fig. 3.8(c) and Fig. 3.9(c) demonstrate the ability of the system to maintain a low
computational cost, per frame, in what refers both action selection and visual pro-
cesses. The mean per frame of 2.9ms for the lines environment, and similarly to the
dots environment, is residual when compared to typical cost of vision-based obstacle
detectors, ~ 100ms (Santana et al., 2008b). Thus, the overhead caused by the active
vision infrastructure will not be noticed when applied to real-life obstacle detectors.
Note that the additional cost of image acquisition and motor actuation, which together
take ~ 100ms in the Player/Stage simulator, has not been considered. The fast com-
putation obtained is in part due to the small convergence time of the action selection
process. This can be observed by the small number of iterations required by the action
selection process to stabilise its output (see Fig. 3.10).

As seen above, the system performs near-optimally and parsimoniously in both en-
vironments, with the same parameterisation. Although this shows the model’s robust-
ness, it is interesting to dissect the underlying causes of such adaptability. Fig. 3.11(a)
shows a shift to higher values on the number of agents in local search behavioural
mode for the dots environment, when compared to the ones in the lines environment.
Fig. 3.11(b) shows that the same trend is observed for the number of agents in search
mode. Refer to Fig. 3.12 for a detailed view on the number of p-ants in each behaviour
during the five runs engaged in the lines environment. The complexity of the dots en-
vironment presents a larger number of potential directions of motion, which in turn
results in a higher number of p-ants being created. This explains the higher number of
p-ants searching in the dots environment. The more p-ants are created the higher their
concentration around obstacles, thus explaining the higher number of p-ants engag-
ing in local search due to saturation of shared medium P. While trying to find a less

saturated spot, p-ants local search increasingly spreads over wider areas around the
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Figure 3.9: Histograms of a set of performance metrics. Values are the mean computed over five
independent runs. Histograms normalised by the total number of frames. Standard deviation
represented by the error bars.
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Figure 3.10: Number of iterations per frame, required for action selection to stabilise. Mean
computed over five independent runs in the /ines environment. Standard deviation represented
by the error bars.

objects, thus resulting in a qualitatively different behaviour from the observed in the
lines environment. Additionally, in cluttered environments p-ants tend to be locked
on obstacles closer to the robot, raising the density of p-ants where it is most needed.
In sum, the qualitatively different behaviour raises the chances of detecting relevant
obstacles. Hence, the more complex the environment the more p-ants are actively ex-
ploring it, and the more focused they are on the vicinities of the robot. This can be
observed also in Fig. 3.9(b), where a higher number of analysed pixels in the dots envi-
ronment than in the lines one is reported.

As previously argued, the use of parallelism is essential to promote load balancing
by enabling some predictive power. To verify this argument the system was tested with
and “without” parallelism. To avoid interferences of memory in this test, p-ants were
not allowed to survive across cycles. Absence of parallelism occurs when: (1) noise
in the stochastic search is not employed, that is, (A;,A2) = (0.0,0.0); (2) p-ants replica-
tion is inhibited; and (3) p-ants are deployed only in the direction corresponding to
the action with highest utility, that is, v. In these conditions p-ants operate mostly on
a greedy manner without massively engaging in self-organising collective behaviour,
and consequently without fully exploiting the advantages of parallelism. As expected,
Fig. 3.13(a) and Fig. 3.13(b) confirm that in these conditions both ground-truth match-
ing error and time to action selection convergence are higher.

Memory is important because it is what enables p-ants to move across frames and
consequently to propagate evidence along time. This is confirmed by the reduced num-

ber of iterations required for action selection to stabilise when memory is activated, as
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Figure 3.13: Results on the influence of parallelism and memory. The histograms were built
for the lines environment by the same method as in Fig. 3.9. The benefit of using memory and
parallelism is reflected in the consistent shift of the corresponding histograms towards the left,
in respect to the ones corresponding to the system without these features. (a) Histograms of
the ground-truth matching error with and without parallelism. (b) Histograms of the number of
iterations required for action selection to stabilise, with and without parallelism. (c) Histograms
of the number of iterations required for action selection to stabilise, with and without memory.
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Figure 3.14: Short-term memory results. The robot starts from the bottom-left aligned with the
desired heading. The grey robot’s path corresponds to a typical situation where only information
contained in the sensor’s field-of-view (90°) is used. In this situation the action selection is only
provided with perceptual information concerning a small region of the dead-end. As a result the
action selection process, performing in a greedy way, repetitively switches its output between
hard-left and hard-right turns, leading ultimately to a deadlock. With an extended field-of-view
(180°), enabled by the short-term memory, the action selection process is already able to better
assess the utility of each action (lighter robot’s path).

depicted in Fig. 3.13(c). In a last experiment, the ability of p-ants located outside the
robot’s field-of-view to report their associated obstacles and consequently to affect the
action selection process, was activated. Fig. 3.14 shows that this capability is essential
for the robot to be able to avoid dead-ends.

3.5 Discussion

3.5.1 Role of Parallelism

Focussing all perceptual resources on the analysis of the environment’s region asso-
ciated to highest utility action is inefficient. Objects detected in other regions may
also affect the utility of the most relevant region. The need for perceiving more than
one region at a time demands a visual attention policy capable of handling the speed-
accuracy trade-off. A detailed accurate analysis of the highest utility region may render
impossible the analysis of the other regions. A too coarse analysis will hamper the de-
tection of small obstacles. Defining a optimal visual search policy with this trade-off

can only be done for well defined sets of agent-environment configurations. Instead, a
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self-organising visual parallel search policy is capable of covering a wider envelope at
the cost of doing it sub-optimally. Robustness being more relevant than optimality for
embodied agents, self-organisation is paramount.

When either the environment or the task change, the importance of an obstacle for
the action selection process may also change. Had the sub-optimal parallel search not
been performed while the context was static, the system would be overloaded while
trying to stabilise both perceptual and action selection processes to the new context.
Hence, parallelism is important to maintain a robust balance of processing load in

dynamic environments.

3.5.2 Implicit Context Awareness

In the proposed model there is no explicit control of the maximum number of p-ants
that can be deployed. It is fully defined by the utility vector, and consequently it is an
emergent property resulting from the immersion of the system in a specific environ-
ment. Formally, the average number of p-ants being created per iteration is ¥ jejo 4 (u/s).
Practically, this means that for a speed of 0.5ms™!, in an environment where the k = 81
possible motor actions exhibit an average utility 0.5, an average of 405 p-ants is cre-
ated per frame, assuming an execution of iy, = 20 iterations. In a situation where only
three possible motor actions are possible, and with highest utility, the average number
of created p-ants drops to 30. That is, the number of p-ants being created varies with

the environment. Hence, the system adapts to the context without explicit awareness.

3.5.3 Comparison With Other Population-Based Methods

The fact that p-ants inspect the input frame according to the agent’s action selection
process, in contrast to previous swarm-based related work for image analysis (Ramos
and Almeida, 2000; Owechko and Medasani, 2005; Anton-Canalis et al., 2006; Mobahi
et al., 2006; Broggi and Cattani, 2006; Mazouzi et al., 2007; Zhang et al., 2008), is a
significant difference from an embodied cognition standpoint. The same applies to
the ability of p-ants to implement spatial working memories and to be affected by the
agent’s proprioception for motion compensation.

Another possible alternative to p-ants for obstacle search and tracking are Particle
Filters. Although supported by a Bayesian framework, these filters exhibit two unde-
sirable properties for them to be included in a self-organising embodied cognition frame-
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work. First, particles are sampled by a centralised process. This limits their explanation
power with respect to the emergence of cognition in animals and their implementation
onto parallel hardware, which is essential to enable robot miniaturisation and energetic
sustainability. Second, particles do not communicate with each other, thus neglecting
the recognised role of lateral connectivity for sustainable self-organisation in neural
structures. In fact, the recently reported out-performance of swarm-based methods
over particle filters in visual tracking tasks (Zhang et al., 2008; John et al., 2010) is most
often attributed to these two aspects.

Particle filters are recognisably powerful in providing autonomous agents with Si-
multaneous Localisation and Mapping (SLAM) capabilities (Thrun et al., 2005). The
link between particles and p-ants in this case is not straightforward. In general, a
particle in SLAM is a sample of the joint distribution robot/map, where a map is com-
posed by a set of Extended Kalman Filters (EKF), each associated to a given landmark
of the environment. Conversely, a p-ant is associated to a single landmark of the en-
vironment. Hence, a p-ant is more related to the role played by each EKF than with
the particles themselves. In contrast to EKFs in SLAM, p-ants perform visual search
in addition to tracking, and do it guided by the action selection process. Moreover,
while p-ants interact to improve their individual performance, EKFs in particles are
independent.

P-ants do not contribute to the estimation of the localisation of the agent, as particles
do. Local navigation being the focus of the proposed model, the localisation problem is
handled solely with dead-reckoning. While SLAM methods could deliver both locali-
sation and mapping, their high computational and memory cost makes them unsuited
for parsimonious local navigation. To reduce computation, usually particle filters are
considerably simplified and consequently lose their most important property, that is,
their theoretical completeness. From this and the previous paragraph one can con-
clude that the problem of local mapping in self-organising embodied cognition is more
convincingly solved by the proposed model than by SLAM models.

3.6 Conclusions

A parallel model of covert visual attention was proposed and validated in a simulated
robot performing local navigation. The covert visual attention process has been mod-

elled with swarms of simple virtual agents, named p-ants, based on the social insects
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foraging metaphor, motivated by the multiple covert attention hypothesis (Pylyshyn
and Storm, 1988; Doran et al., 2009) and in line with the new born swarm cognition
framework (Passino et al., 2008). Basically, p-ants perform local covert visual atten-
tion loops, whereas the self-organised collective behaviour maintains global spatio-
temporal coherence.

The main goal of the model was to focus attention and consequently to reduce the
processed image area. Experimental results confirm that this goal was attained, which
suggests that the proposed model is able to run in real-time in vision-based robots with
modest computational resources. The underlying rationale of the proposal is that the
swarm-based fragmentation of the whole behaviour into simple local rules provides a

robust system. Results also confirmed this.

Although the use of multiple virtual agents in image analysis is not new, this is
the first report on its interaction with action selection. That is, p-ants opportunistically
report their results to the action selection process, being at the same time guided by it.
In other words, both action and perceptual processes are loosely coupled and unfold
in parallel through cross-modulatory signals. This is fundamentally different from
previous work in visual attention. For instance, in connectionist models, as typically
considered in embodied cognition, both perceptual and action components share, to a
large extent, the same computational units, that is, neurons. Being so tightly coupled,
those approaches are difficult to modularise and consequently to scale. Conversely,
another typical approach is to decouple both processes to the point they only share
information in a master-slave way, such as in typical sensor planning strategies. This
forces visual attention to operate at longer time-scales, which has little utility for the

covert case.

The instantiation of the model onto a vision-based physical robot, to be pursued in
future work, will be straightforward. It requires mostly: (1) the conversion between
three-dimensional world and two-dimensional image space; and (2) changing the sim-
ple black/white discriminator that operates as obstacle detector by an appearance-
based template matcher. In the future, we will also extend the model to enable the
emergence of hierarchies among p-ants. This would allow hierarchical decomposi-
tion of visual attention and sparse spatial working memory. The parallel nature of the
model can be further exploited, due to the emergence of new parallel computational

platforms.
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Chapter 4

Swarm Cognition on Off-Road
Autonomous Robots

Pedro Santana, Luis Correia.
Swarm Intelligence, 5(1):45-72, 2011.

Abstract

This paper contributes with the first validation of swarm cognition as a useful frame-
work for the design of autonomous robots controllers. The proposed model is built
upon the authors’ previous work validated on a simulated robot performing local nav-
igation on a two-dimensional deterministic world. Based on the ant foraging metaphor
and motivated by the multiple covert attention hypothesis, the model consists of a set
of simple virtual agents inhabiting the robot’s visual input, searching in a collectively
coordinated way for obstacles. Parsimonious and accurate visual attention, operating
on a by-need basis, is attained by making the activity of these agents modulated by
the robot’s action selection process. A by-product of the system is the maintenance of
active, parallel and sparse spatial working memories. In short, the model exhibits the
self-organisation of a relevant set of features composing a cognitive system. To show
its robustness, the model is extended in this paper to handle the challenges of physi-
cal off-road robots equipped with noisy stereoscopic vision sensors. Furthermore, an
extensive aggregate of biological arguments sustaining the model is provided. Exper-
imental results show the ability of the model to robustly control the robot on a local
navigation task, with less than 1% of the robot’s visual input being analysed. Hence,
with this system the computational cost of perception is considerably reduced, thus
fostering robot miniaturisation and energetic efficiency. This confirms the advantages

of using a swarm-based system, operating in an intricate way with action selection, to
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judiciously control visual attention and maintain sparse spatial memories, constituting

a basic form of swarm cognition.

keywords: Swarm Cognition, Visual Attention, Spatial Memory, Action Selection, Au-

tonomous Robots, Biological Inspiration.

4.1 Introduction

Almost all embodied agents, either natural or artificial, deeply rely on perception for
a proper interaction with their surrounding environment. Thus, understanding how
perception self-organises is essential not only to deepen our understanding about the
natural world, but also because it facilitates the synthesis of robust robotic systems.
Although the function of perception is well understood, its self-organisation is not.
That is, we understand what the perceptual system does, but not so much how it builds
up from the interaction of distributed simple processing units. This is more striking if
the interaction between perception, action selection, and memorisation is also taken
into account in perception models. Uncovering these phenomena is key to enable,
for instance, the synthesis of developmental mechanisms capable of allowing robotic
systems to learn from their interaction with the environment. This is a daunting task,
which could profit from a new modelling paradigm.

The most elementary unit model of robot control systems is the artificial neuron.
In nature, neurons are the lower level units building up cognition. Being the physical
substrate of cognition, neural activity and topological organisation have been the fo-
cus of several models (refer to (Gerstner and Kistler, 2002) for a thorough review on
the field). With these models it is possible to emulate how neurons affect each other
and how they behave collectively. This granularity is, however, often too fine when it
comes to handle highly complex spatio-temporal problems, where several brain areas
are involved. An example is perception which, as previously mentioned, must interact
deeply with action selection and memory processes.

Therefore, a new modelling paradigm would be useful, in particular for the synthe-
sis of embodied cognition systems, such as autonomous robots. A possibility that has
been gaining momentum in the last few years is to model cognition in terms of the be-
haviour exhibited by social animals, with particular emphasis on insects. The swarm

intelligence paradigm (Bonabeau et al., 1999) is particularly interesting to model per-
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ception. This is because insects are simple entities that need to move and interact so
as to actively perceive their environment. Being simple, their abstraction is well suited
as the atom of the self-organising cognitive system. The abstraction of their collective
behaviour, in turn, is useful to model the interactions occurring between the atoms of
the cognitive system. As will be shown, the active nature of the swarm elements can
be easily exploited to model the active nature of embodied vision systems.

In previous work (Santana and Correia, 2010a), we have exploited this swarm-
based paradigm to synthesise self-organising visual attention, operating in an intricate
way with spatial memory and action selection. The result was an accurate and parsi-
monious perceptual system, performing on a by-need basis and capable of handling
the speed-accuracy trade-off in a context-dependent way. However, the model was
only validated on a simulated robot performing local navigation on a noise free planar
environment.

To assess whether the model is able to exhibit the same interesting properties on a
demanding embodied setup, this paper adapts the model to handle its realisation on
an all-terrain physical robot equipped with stereoscopic vision. These adaptations are
mostly related to the fact that the model must cope with a robot moving on a non-
planar terrain, whose sensory input is a noisy three-dimensional (3-D) point cloud.
These requirements demand the model to handle the projective nature of the vision
sensor and to use evidence accumulation for noise sensitivity reduction. Furthermore,
this work deepens the model’s biological supporting arguments.

This paper is organised as follows. In Section 4.2, the rationale behind modelling
visual attention under the swarm cognition framework is presented. Then, the prob-
lem definition is specified in Section 4.3. The proposed model is finally presented in
Section 4.4. Next, the results of the validation of the method by a set of experiments
in a physical robot is presented in Section 4.5. A discussion on the model’s biologi-
cal plausibility is given in Section 4.6. Finally, a set of conclusions and future work
pointers are highlighted in Section 4.7.

4.2 Introducing Swarm Cognition for Attention Modelling

This section describes how this paper builds upon previous work on perception in both

natural and applied sciences, as well as how it departs from it.



92 CHAPTER 4. SWARM COGNITION FOR OFF-ROAD LOCAL NAVIGATION

4.2.1 Active Vision

The act of deploying attention, by means of eyes, head or body motion, is known to be
an ubiquitous feature of animals endowed with rich vision (Land, 1999). The ability
to shift the focus of attention highlights the active nature of perception, rather than a
passive one. This means that perception can only be properly studied when the agent
is freely acting on its environment, as proposed by Gibson’s ecological (ethological)
approach to visual perception (Gibson, 1979). In fact, body, nervous system and en-
vironment must be seen in a holistic way (Ashby, 1952; Beer, 1995; Thelen and Smith,
1996).

In the face of the limitations of passive set-ups (Fermuller and Aloimonos, 1995),
active vision (Bajcsy, 1988; Aloimonos et al., 1988; Ballard, 1991) has also emerged in
the realm of artificial vision systems. Among the advantages of an active vision per-
spective there is the possibility for the agent to: (1) act in order to shape its sensory
information flow (Sporns and Lungarella, 2006) so as to make its processing tractable;
(2) increase the sensory input signal-to-noise ratio; and (3) reduce ambiguities and
consequently perceptual aliasing. These properties are a product of sensorimotor co-
ordination, a concept that can be traced back to Dewey (1896), related to the enactive
approach (Varela et al., 1991), and widely recognised as central to the sustainability
of embodied adaptive behaviour (Brooks, 1991; Ballard et al., 1997; Pfeifer and Scheier,
1999; O’'Regan and Noe, 2001; Pfeifer and Bongard, 2006; Mossio and Taraborelli, 2008).

Sensorimotor coordination requires a tight coupling between the agent and the en-
vironment. Given that the involved timescales of this coupling require fast perceptual
processing, the classical view that a global isomorphic representation of the environ-
ment is continuously maintained by the agent (Marr, 1982) lacks support. Interacting
perceptual pathways, dedicated to different purposes, are more likely to exist (Milner
and Goodale, 1995; Goodale, 2008). For instance, pathways associated to motor ac-
tion control, supposedly the dorsal visual stream, are prone to map directly to motor
actions. This is congruent with the idea of the “world as its own best model” champi-
oned by Brooks (1991). Being perception so intricately linked to action, it is reasonable

to assume that both unfold in parallel.
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4.2.2 Parallel Covert Attention

Focussing perception on the most relevant aspects/regions of the environment, taking
into account the current context, is advantageous to increase both performance and
robustness (Itti and Koch, 2001; Hayhoe and Ballard, 2005; Rothkopf et al., 2007). Fur-
thermore, the intricate relationship between visual attention and other structures, such
as bottom-up sensory pathways, categorical reasoning, and action selection, highlights
its centrality and consequently its relevance to the understanding of the dynamics in-
volved in an embodied cognitive system. Attention ultimately results in the motion
of sense organs, e.g., eyes, towards the relevant stimulus source. This is called overt
attention. A faster process is the one of mentally focussing on particular aspects of
the sensory stimuli. This is called covert attention and it will be the main focus of the

following discussion.

Computational models of visual attention typically assume the existence of a sensor-
driven bottom-up pre-attentive component (Treisman and Gelade, 1980; Koch and UlI-
man, 1985; Itti et al., 1998; Palmer, 1999; Corbetta and Shulman, 2002; Hou and Zhang,
2007), which drives attention to salient regions of the visual input. The more a re-
gion of the visual input detaches from the background, the higher its level of saliency.
Top-down contextual knowledge on the visual search task, i.e., on the object being
sought, is also known to play an important role on the modulation of attention (Yarbus,
1967; Wolfe, 1994; Tsotsos et al., 1995; Corbetta and Shulman, 2002; Torralba et al., 2003;
Frintrop et al., 2005; Navalpakkam and Itti, 2005; Walther and Koch, 2006; Neider and
Zelinsky, 2006; Rothkopf et al., 2007, Hwang et al., 2009), as has been shown by recent
neurophysiological studies (Egner et al., 2008). The outcome of these two processes’
interplay is a saliency map whose activity level is higher in the regions of the visual
input that are more likely to contain the object being sought. The saliency level is typi-
cally assumed to guide the motion of a “spotlight” from the most to the least relevant
regions of the visual input. In the case of overt attention, this spotlight guides the mo-
tion of the sense organs to centre the visual input on the region of interest. In the covert
case, a task-specific object recogniser is applied at each region where the spotlight falls,
e.g., (Navalpakkam and Itti, 2005). This approach highlights a dichotomy between the
parallel nature of saliency map computation and the sequential nature of the processes
operating on its basis. Due to the involvement of mechanical components, this se-

quencing is unavoidable in overt attention. Conversely, although constrained to pro-
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cess sensory input that is sequentially determined by the overt attention, the covert
attention process is more likely to operate in a parallel fashion. Two main arguments
can be put forth to support this hypothesis.

First, the human brain is a massively parallel structure, which renders unlikely that
it would be instantaneously dedicated to a single covert attentional sequential process.
That is, the effort of maintaining a unique purely sequential analysis is costly by itself,
as it requires complex arbitration mechanisms. Second, studies with human subjects
revealed the existence of a unitary spotlight of covert attention to be unlikely (Pylyshyn
and Storm, 1988; Doran et al., 2009). The tests involved having subjects paying covert
attention to objects that were moving so fast that the chances of effective attention
switching were considerably low. The observed successful tracking of these objects
supports the multiple spotlights hypothesis, which is also coherent with evidence on
the existence of independent tracking mechanisms in the two cerebral hemispheres
(Alvarez and Cavanagh, 2005).

There is a considerable bulk of knowledge suggesting that both overt and covert
shifts of attention share the same neural mechanisms (de Haan et al., 2008), support-
ing the pre-motor theory of attention (Rizzolatti et al., 1987). Impressively, this link
between response preparation and spatial attention is not limited to the oculomotor
system (Eimer et al., 2005). Thus, this theory predicts that common sensorimotor coor-
dination mechanisms are involved in the control of attention and action. We argue that
this opens the door for the application of sensorimotor coordination principles, stud-
ied mostly on overt control, to better understand and explore the dynamics of covert

attention.

4.2.3 Agent Abstraction of Covert Attention

In a more classical view, the control of the attention spotlight would be considered
exogenous, in the sense that it is only function of sensory saliency and top-down mod-
ulation signals. However, under the assumption that covert attention is a process of
sensorimotor coordination, it is more reasonable to consider the spotlight as a dynam-
ical entity inhabiting the sensorimotor space of the embodied agent. This entity can
then pro-actively move in this space to guide the focus of the embodied agent in a sen-
sorimotor coordinated way, and thus exploiting all the aforementioned advantages of

sensorimotor coordination to shape the sensory input. This entity, from now on called
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an agent, thus behaves as a locally sequential covert attentional process.

The feasibility of agent-based modelling for sensorimotor coordination has been
extensively validated in the fields of embodied cognition and active vision (Scheier
et al., 1998; Nolfi and Marocco, 2002; Beer, 2003; Fend et al., 2003; Balkenius et al.,
2004; Floreano et al., 2004; Nolfi, 2005; Suzuki and Floreano, 2006; Pfeifer and Bongard,
2006; Kim and Moeller, 2006; Sporns and Lungarella, 2006; de Croon and Postma, 2007;
Choe et al., 2008). A population of agents can generate coherent collective (parallel) be-
haviour. In perception, the agents” motion corresponds to an attention shift, whereas
the collective spatio-temporal self-organised pattern implements a multi-focus atten-
tion process. Brain computational modelling with multiple agents is not a new idea
(Minsky, 1988; Chialvo and Millonas, 1995). Although the first realisations for com-
puter vision related problems are also not new (Poli and Valli, 1993; Liu et al., 1997),
only more recently it has received considerable attention (Ramos and Almeida, 2000;
Owechko and Medasani, 2005; Antén-Canalis et al., 2006; Mobahi et al., 2006; Broggi
and Cattani, 2006; Mazouzi et al., 2007; Zhang et al., 2008). In general, these models
exploit the metaphor of swarming behaviour on social insects.

These computational models are mostly stand-alone engineered parallel percep-
tual systems, lacking a body capable of purposive behaviour. This deficit undermines
their explanation power regarding the mechanisms actually building up adaptive be-
haviour. Conversely, sensor planning, which is a relatively stable field in computer
vision and robotics communities, is actually trying to bridge the gap between body
motions and information gathering through the sensors (Dickmanns et al., 1990; Suk-
thankar et al., 1993; Kelly and Stentz, 1998; Behringer and Muller, 1998; Nabbe and
Hebert, 2003; Kwok and Fox, 2004; Patel et al., 2005; Bagdanov et al., 2006; Urmson
et al., 2006; Tessier et al., 2007; Hernandez et al., 2007; Sprague et al., 2007). However,
none of these works models parallel covert attention operating in an intricate way with
the action selection process.

4.2.4 Swarm Cognition for Attention Modelling

The previous sections showed the relevance of a parallel model for covert attention, as
well as the importance of its tight coupling with motor action preparation. It was also
suggested that the multi-agent paradigm is appropriate for this modelling task.

A remarkable metaphor from the natural world encompassing these characteristics,
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and consequently exploited in this paper, is the foraging behaviour of army ants. By
exploiting pheromone-based local interactions, these ants are able to forage in large
areas around their nest in a parallel and robust way (Deneubourg et al., 1989). These
foraging ants exhibit a sort of collective intelligence (Franks, 1989), allowing the group

to be seen as an individual decision making process.

Rather than static structures, like neurons, these agents are better viewed as active
information particles that flow through the system. Hence, using agents, the design fo-
cus is on the process and not so much on its supporting substrate. Being sensorimotor
coordinated units, these information particles can actively shape their sensory input,
use their sensorimotor history to induce long-range influences on other information
particles, and in the limit improve their own behaviour. When together, these modular
units can exploit the synergy of self-organisation and emergent properties. We argue
that reaching the complexity of such a system with a connectionist model is possible
but not likely tractable. Although not covered in this article, we foresee the useful-
ness of connectionist models to implement the agents themselves, as it would enable
tractable neuro-evolution (Floreano et al., 2008) to build complex systems. Hence, we
suggest that using an agent-based design the system modeller is able to reach higher
levels of tractable complexity than when using connectionist models. Although the
results reported in this paper show the benefits of an agent-based design, further phe-
nomenological support is still required for a definitive comparison with connectionist
models.

The use of the insect swarm metaphor to model vertebrate brain function has been
also suggested by parallel and independent work (Passino et al., 2008; Couzin, 2009;
Marshall et al., 2009; Marshall and Franks, 2009). Nest site selection in honey bees, for
instance, exhibits some of the characteristics of decision making in brain, such as the
statistical speed-accuracy trade-off predicted by diffusion models (Ratcliff and Smith,
2004). Our work, instead, approaches the problem of studying cognition through so-
cial insects behaviour by building it on an embodied setup, following the synthetic
approach to embodied cognition (Pfeifer and Scheier, 1999) and Artificial Life (Bedau,
2003). The advantages of using Artificial Life models for this purpose, though without
the support of any practical realisation, were reviewed also in a parallel study (Trianni
and Tuci, 2010).

All these accounts can be framed in the emerging multidisciplinary field of Swarm

Cognition, which attempts to uncover the basic principles of cognition exploiting self-
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organising principles, mainly those exhibited by social insects. However, as we only
conceive cognition under the embodiment framework, we consider that a swarm-
based model not involved in the embodied agent’s sensorimotor coordination loop
can hardly be considered as an instance of Swarm Cognition. Note that all these con-
siderations are under the assumption that Swarm Cognition can model and help to

understand the behaviour of a multi-cellular individual.

4.3 Problem Definition

This section specifies the objective, hypotheses, and assumptions related to the pro-
posed model. The problem to solve is primarily the one of minimising the perceptual
resources required to support the proper execution of the action selection process con-
trolling the embodied agent, hereafter simply called robot. Saving time in perception
enables faster robot motion. The ultimate goal is to show that this complex cognitive
problem can be easily managed by recurring to the swarm metaphor.

A perceptual resource is said to be expended when a given object detector is ap-
plied to a given region of the robot’s visual input. Minimising perceptual resources
expenditure is achieved by reducing the number of detector applications to the point
from which the action selection process would no longer be sufficiently informed for a
proper decision making.

Supported by the previous section, the following describes the three main hypoth-
esis we tested in this work. The first hypothesis is that the considered problem can
be solved by allowing both perceptual and action selection processes to evolve in syn-
ergy, as it should promote the application of the detector, i.e. focus attention, on pixels
whose positive detection most impacts the action selection process, and consequently
helps it in rapidly stabilising its output. If the robot’s goal is to move forwards, detect-
ing an obstacle in its frontal region will compel a sudden change from forward motion
to a turn. Conversely, an obstacle detected on the robot’s side would effect no change in
action selection. Hence, finding first the frontal obstacle has the highest impact on the
action selection process and consequently helps the robot reaching the correct decision
faster. The second hypothesis is that to ensure that the attentional process is robust,
it should be parallel and provided with self-organising properties. Given the unpre-
dictability of the environment, the complexity of taking into account the interaction

with the action selection process, and the difficulty of defining a fixed speed-accuracy
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trade-off, turns the alternative of using an optimal covert visual attention policy into
an infeasible solution. Finally, the third hypothesis is that an adequate formalism to
model this parallel covert visual attention process is the one describing the collective
behaviour exhibited by social insects.

In previous work (Santana and Correia, 2010a), we have already tested and con-
firmed these three hypotheses in the context of simulated robots performing local nav-
igation in two-dimensional (2-D) noise free environments. This article tests the three
hypotheses on a more generalised setup, namely, on a physical robot performing local
navigation in 3-D noisy environments. In turn, the added complexity of such an ex-
perimental apparatus demands some adaptations to our previous work (Santana and
Correia, 2010a). Concretely, the model has been extended with an evidence accumu-
lation mechanism (see Section 4.4.3.3) to better handle the noisy nature of the sensory
input. This is a fundamental mechanism since, without it, noise impinging the robot’s
sensors would propagate through the system, hampering the maintenance of a coher-
ent cognitive representation. We also needed to handle the projective nature of the
employed vision sensor in a rough terrain.

Without loss of generalisation, the robot used to validate the hypotheses is a wheeled
robot equipped with a stereoscopic vision sensor that must be able to perform local
navigation in rough terrain. Hence, the object detector in this case is a 3-D obstacle
detector, whereas the action selection process is a fast obstacle avoidance algorithm.

The following sections detail these assumptions.

4.3.1 The Ares Robot

The robot employed in this study, i.e., the Ares robot (Santana et al., 2008a), is a vehicle
with four independently steered wheels (see Fig. 4.1). Although it enables the use of
several locomotion modes, here only the Double Ackerman mode is considered. In this
mode, the robot moves in a car-like way, but with both front and rear wheels steering
symmetrically. This gives the robot a considerable manoeuvrability.

Off-road terrains are uneven and densely populated with protuberances, such as
small rocks (see Fig. 4.1). In these situations the robot exhibits considerable tilt levels,
which makes the relative position and pose of the sensor with respect to the ground
plane to vary as the robot moves.

The robot is equipped with two cameras calibrated to perform stereoscopy. This
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(a) Physical robot (b) Front view (c) Side view

Figure 4.1: The Ares robot. In the depicted situation the Ares robot is stepping an obstacle with
its frontal left wheel, which results in non-zero pitch and roll angles, with respect to the ground
plane.

(a) Left input image (b) 3-D reconstruction

Figure 4.2: 3-D reconstruction process. (a) Left input image obtained with stereoscopic vision,
L. (b) Reconstructed 3-D model limited to a depth of 10m. The 3-D point p is projected onto L
in pixel p’. The red line corresponds to the optical axis of the left camera. Note the absence of
computed depth in many pixels, in particular along the homogeneous vertical structure on the
left and frontal walls.

means that each pixel from each camera is associated to a 3-D coordinate in the cam-
era’s frame of reference, provided that stereoscopy could be computed for the pixels
in question (see below). The left input image, L, is taken as reference and hereafter
simply called visual input or frame.

Given that stereoscopy can be computed for the pixel p’ in L, this pixel can be back-
projected so as to obtain the corresponding 3-D point p. With a projection matrix P
obtained from calibration, it is possible to do the inverse operation, i.e., to determine
which pixel p’ in L is the projection of the environment’s 3-D point p (see Fig. 4.2).

The distance between both cameras is 30cm. This enables sufficiently accurate

depth computation between 2.5m and 20m. This means that obstacles close to the
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robot are not perceivable, making mapping an essential asset for this configuration.
Two additional aspects render stereoscopic vision a challenging sensory modality. First,
absence of 3-D information in low texture and under illuminated surfaces is rather
common (see Fig. 4.2). This owes mostly to the difficulty of stereo processing to match
both left and right camera images in those regions. Second, high levels of noise are
common with poor lighting condition and depth computation error grows quadrati-
cally with range. Hence, in order to operate with a stereoscopic vision setup, a percep-
tual system must be highly robust.

4.3.2 Mapping Between World and Sensor Coordinate Frames

In this study, robot actions are considered to be linear trajectories radially overlaid on
the ground in front of the robot, i.e., parallel to plane z,x, and with y, = 0 (see Fig. 4.1).
To allow obstacle search to be affected by action selection, these linear trajectories must
be projected onto L.

This projection requires the estimation of transformation Q, between the ground’s
frame of reference, {xg,y¢,2¢}, and the camera’s frame of reference, {x.,y¢,z.}. Due to
terrain’s roughness, the 4 x 4 homogeneous transformation matrix Q is computed at
each frame by recurring to a robust ground-plane fitting process (Santana et al., 2009).
After transforming with Q the linear trajectories to the camera’s frame of reference,
these can finally be projected onto L with projection matrix P (see Fig. 4.3).

In order to reduce the chances that obstacles in the environment may be confounded
with the terrain itself during the ground-plane estimation process, the pixels of the ob-
stacles that have been detected in the previous frame are discarded from the process
(van der Mark et al., 2007).

4.3.3 Obstacle Detection

In this study, obstacles are detected in a pixel-wise way over the visual input L. Con-
cretely, a pixel is said to be an obstacle point whenever the pixel’s associated 3-D point
is at a height from the estimated ground plane that cannot be climbed by the robot
(Santana et al., 2009). Formally, the detection result at pixel p}, = (x4,y,), with the cor-
responding 3-D point p; = (X,,Y,,Z,), is given by
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Figure 4.3: Action set parallel to the ground-plane in (a), and respective projection on L in
(b). In this situation, the robot is stepping an obstacle with its frontal left wheel (as depicted in
Fig. 4.1). Note that the projected action set (black lines) is compensated for the robot’s non-
zero roll and pitch angles. The central line in all projected images correspond to the straight
ahead motion. Note that even with considerably different pitch angles, as in (¢) and (d), the
projected lines terminate roughly in the same image regions. That is, they are clearly relative to
the ground-plane coordinate system defined by {x,,y,,%¢}, and so invariant to the robot’s pose.

D) — {1 ifd (pa, (a.b:¢.:d)) > hin+BZs @

0 otherwise

where, d (pa, (a,b,¢,d)) is the orthogonal distance between point p, and the estimated
ground plane ax. + by, +cz. +d = 0, as computed in section 4.3.2. Note that p, is given
relative to {x.,y¢,z.}. The term fZ, makes the detection threshold grow with the range,
Z,, of the point in question. This mechanism compensates for the range-dependent
error growth in the 3-D reconstruction process. Thus, it reduces the potential for false
positives in the far field. The lack of 3-D information in some pixels results in the
impossibility of applying the detector in these cases.

Note that the simplicity of this detection method comes at the cost of only being
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applicable to moderately rough terrain. More complex detectors (see, e.g., Santana
et al. (2010d)), which are required for more demanding environments, could be used
in the model without any specific customisation. In fact, the more complex the detector,
the more expensive is its computation, and consequently the more important is to focus

the robot’s attention.

4.3.3.1 Motion Estimation

A key component of any complex robotic system is motion estimation. With it, the
system will be able for instance to produce local maps of the environment.
Frame-to-frame robot motion, i.e., translation and rotation, is computed with a par-
ticular model (Santana and Correia, 2008) of visual odometry (Matthies, 1989; Agrawal
and Konolige, 2006). Visual odometry basically estimates the rigid body transforma-
tion matrix M that explains the change in position of notorious 3-D points in the en-
vironment across frames. The major advantage of this method over others, like dead-
reckoning, is that it is fully synchronised with the sensor data feeding the perceptual

process. This results in very accurate registration of information across frames.

4.4 Model Description

This section starts by mapping the biological metaphor of foraging strategies in so-
cial insects to the concepts of parallel covert visual attention to be employed in the
proposed model. In short, the metaphor is exploited to provide the model with the
self-organising properties essential to maintain a robust parallel focus of attention. Af-
ter presenting the biological inspiration, the proposed model is described. Since it is
built upon authors’ previous work, it is not described with full detail. For additional
information the reader is referred to the previous publication (Santana and Correia,
2010a).

4.4.1 Biological Inspiration

Covert visual attention is mostly about parallel search of objects in the robot’s visual
input. A remarkable metaphor for this process is the one of army ants engaging in for-

aging behaviour (see Section 4.2.4). Assuming that the environment where these ants
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inhabit corresponds to the robot’s visual input, each ant can be seen as an individual
covert visual attention process. As a consequence, their collective behaviour can be
considered as a parallel covert visual attention process.

Following this metaphor from the natural world, the visual process in our model
is composed of a swarm of simple homogeneous virtual agents that inhabit the visual
input of the robot. These agents are probabilistically created (recruited) and therefore
they receive hereafter the designation of p-ants. They search (forage) the robot’s visual
input along those regions where detected obstacles are more likely to stronger affect the
action selection process. Hence, p-ants operate on a by-need basis being driven by the
action selection process. In the case of local navigation, the utility of perceiving a given
region of the visual input is related to the utility of navigating on its corresponding
region of the environment. In the proposed model, these regions are associated to the
projected linear trajectories, as described in Section 4.3.2.

As in natural ants, p-ants do this search in a stochastic and coordinated way. By
not behaving greedily, the system is more robust to unforeseen situations and faster
in adapting to contextual changes. P-ants interact through stigmergy, i.e., they interact
through perceptual shared mediums, for better coverage and tracking of detected ob-
stacles. This allows the coexistence of positive and negative feedback loops that lead
to robust collective behaviour. In conclusion, random fluctuations and both positive
and negative feedback, which are necessary ingredients for self-organisation to occur

(Bonabeau et al., 1999), are included in the model.

4.4.2 Proposed Model

The proposed model is decomposed into two interacting processes, one for perception
and another for action selection. The perceptual process includes the parallel covert
visual attention aspects. Fig. 4.4 illustrates the connectivity between both processes.
Basically, after receiving a new frame, L, both perceptual and action selection pro-
cesses interact (thicker arrows) for i, iterations before a final motor action decision is
reached and eventually engaged. These interactions occurring between both processes
allow them to progressively unfold in parallel, and consequently, to enable accurate
deployment of visual attention.

At each iteration, the action selection process sends a message to the perceptual

process with an action utility vector, u = (u!,u?, ... ,u*), where u/ € [0, 1] is the utility of
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detected free-space

PERCEPTUAL | — > ACTION
PROCESS -— SELECTION
action utilities

sensory motor
input action

Figure 4.4: Building blocks of the proposed model, adapted from (Santana and Correia, 2010a).

performing action j, and k is the cardinality of the robot’s action repertoire. The action
utility vector is computed according to a desired heading of motion, /, and constrained
by information about free-space connectivity of the local environment, C, which has
been sent by the perceptual process in the previous iteration. This set encompasses
range information regarding those radial sectors of the local environment that contain
free-space for robot motion. In this study, actions u/ are defined as linear trajecto-
ries centred on the robot and directed outwards in a radial pattern (see Section 4.3.2).
Hence, the utility of each possible action is defined as the value of moving the robot
along the corresponding linear trajectory given a goal location, pgeal, and obstacles dis-
position in the environment. The more directed a given linear trajectory is to the goal
location, the higher its utility. The closer an obstacle is to the robot along a given linear
trajectory, the lower the trajectory’s utility. The final utility is a combination of both
factors.

At each iteration, the perceptual process uses the just received vector u to iterate its
search for obstacles on a by-need basis (see Section 4.4.3). The positions of obstacles
detected since the arrival of the current frame are accumulated in set O. This set is then
used to compute C. Finally, C is sent back as a message to the action selection process
so as to induce its next move. The action with highest utility at the time the maximum
number of iterations is reached is passed to the low-level motion controller through
a low-pass filter. This way, sudden changes at the system’s output are smoothed to

avoid jitter at the actuators level.

4.4.3 Perceptual Process

The perceptual process is composed of a set of p-ants, A, whose elements individually

implement a covert attention process. The size of this set is zero at the first frame and
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varies along iterations.

At each iteration, the perceptual process starts by appending new p-ants to the set
A (see Section 4.4.3.1). Then, each p-ant moves, according to its set of behaviours (see
Section 4.4.3.2), updating its 2-D position in the visual input. Possibly, some of the p-
ants will find an obstacle to track across iterations and even frames. In between frames,
the position of every p-ant is updated to compensate for any robot motion that has oc-
curred (see Section 4.4.3.4). This way, its position is kept relative to the environment
and consequently invariant to robot motion. This update is done by applying to p-
ant’s 3-D position, obtained with stereoscopy from its 2-D position in the visual input,
a transformation matrix representing the robot motion (see Section 4.3.3.1). The trans-
formed 3-D point is then projected back onto the visual input with a projection matrix.
In the process, due to robot motion, this projection may fall out of the visual input,
which means that the p-ant has been moved out of the robot’s visual field of view. If
at that moment the p-ant was tracking an obstacle it is now said to constitute part of a
body-centric local map. To maintain the local map updated (i.e., body centred), p-ants
in that situation are also motion compensated in between frames. If a given part of the
environment is revisited, the projected positions of some of these p-ants will be again
within the visual field of view. These p-ants are then reactivated in order to track their
associated obstacles in the visual input. At the end of each iteration, the 3-D positions
of all p-ants that are tracking an obstacle, either in or out of the robot’s visual field
of view, may be used to extend the obstacles set O. Evidence accumulation (see Sec-
tion 4.4.3.3) on the presence of an obstacle is used by each p-ant to determine whether

or not to append its position to set O.

For this process to operate, every p-ant a € A needs to maintain state information
across iterations and frames. This information includes p-ant’s body-centred 3-D posi-
tion, pa, and its 2-D projection onto a plane parallel to and centred on visual image L,
p,. With projection matrix P, p, can be computed given p,. Hence, p) is a 2-D vector
defined in the reference frame of L. With stereoscopy, pa can be computed given p;,
provided that p, € FOV, where FOV is the set of possible positions in L. If p}, ¢ FOV
or stereoscopy failed to back-project p), then p, can only be estimated, such as through
compensating its previous state with the transformation matrix representing the robot
motion estimate, M. Since with P it is possible to obtain p from p,, one can then assess

when the p-ant re-enters the visual input, i.e., when p), € FOV.

The following sections details how the perceptual process works in each iteration.
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4.4.3.1 P-ants Creation and Removal

With the exception of the first iteration in each frame, the set of p-ants, 4, is extended
by creating new p-ants as a function of the incoming action utility vector, u. This set
is empty in the first frame. P-ants are not created in the first iteration of each frame
because, at that time, vector u is not yet updated (set C not yet computed).

The higher the robot’s speed, s € [0, 1], and the utility of a linear trajectory, j, the
higher the chances of creating a corresponding p-ant, a;, in L. The initial 2-D position
of this p-ant, pj, is the point where the linear trajectory j projected onto L intersects the
bottom row of L (see Section 4.3.2). This way p-ants start their search for obstacles in
the close vicinity of the robot.

The newly created p-ant a; is endowed with an initial energy level, p, which is
reduced by one unit in each iteration and restored whenever the p-ant considers to be
on an obstacle. With zero energy, the p-ant is removed from the system, A <— A\{q;}, to
avoid memory and computation to grow unbounded.

4.4.3.2 P-ants Behaviours

Fig. 4.5 illustrates the finite state machine responsible for the switching of the be-
haviours ruling each p-ant’s activity. The following describes these behaviours as well
as their transitions.

After appending new p-ants to A, every p-ant a € A looks for obstacles at its posi-
tion pj,. To reduce computation, it first looks at a perceptual shared medium S, which
represents obstacles detected previously in the current frame by any p-ant. If pj, is not
represented in S and there is 3-D information associated to that point, the obstacle de-
tector D(p}) (see Equation 4.1) is called and the result is stored in S. In the absence of
3-D information the point is considered without obstacle.

At creation time, every p-ant a starts in search behaviour. As depicted in Fig. 4.6(a),
each iteration of this behaviour performs a simple stochastic motion step on L along
the associated projected linear trajectory:

P, < Po+ Vi, (4.2)

where Vv, is a velocity vector with angular direction A; - N(0,1) and magnitude 2, -

N(0,1), with N(0, 1) sampling a number from a Gaussian distribution with mean 0 and
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Figure 4.5: Finite state machine each p-ant’s activity. Ovals and links represent behavioural
states and their transitions, respectively. The labels associated to each transition specify the
conditions for the transitions to occur.

variance 1, and A; and A, are empirically defined scalars. High A; and A, values facil-
itate fast detection of large obstacles, at the cost of missing smaller ones. Small values
result in slower, though finer, detection. If while in this behaviour the p-ant moves out
of the visual input boundaries, pj, ¢ FOV, the p-ant is removed from the system, i.e.,
A < A\{a}. This may happen due to p-ant’s motion or due to the influence of the robot
motion compensation process.

If an obstacle is found by a p-ant while in search behaviour, it switches to track be-
haviour. As illustrated in Fig. 4.6(b), in this new behaviour, p-ants are allowed to clone
themselves for r,,,, times. A single cloning is attempted per iteration by randomly se-
lecting a position in the neighbourhood (radius between 10 and 30 pixels) of the p-ant’s
current position. If the randomly selected position contains an obstacle and it is not too
cluttered with other p-ants, then a clone is created and initiated on it. A clone inherits
the number of replications of its ancestor so as to control the diffusion process, whose
goal is to rapidly cover the detected obstacle.

A p-ant assesses the level of cluttering by inspecting the level of activity at its posi-
tion on a perceptual shared medium, R. This 8-bit structure has the size of L. Therefore,
p-ant’s position there corresponds to p-ant’s position on L. The activity level is a clutter
measure because all p-ants in track behaviour increase the local activity of the percep-

tual shared medium R at the corresponding locations. Hence, R represents pheromone
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directly emitted by p-ants, and not a chemical they lay in the environment. For a p-ant
a, this is done by adding to R a top-view pyramidal shape of top magnitude 20 and
linear decay (0.9) outwards, centred on pj. If the activity at p;, in R is higher than an
empirically defined scalar, R(pa) > 7, it is said that the p-ant’s position is too cluttered.
Fig. 4.6(f+j) traces the evolution of shared medium R for a given situation.

@
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Figure 4.6: Detection, diffusion and evidence accumulation example. The images correspond
to a small region of the current frame. Red dots are p-ants in search behaviour. Green p-
ants refer to those that are in track behaviour. The lighter the green the greater the evidence
on the presence of the obstacle. The vertical lines correspond to a sub-set of projected linear
trajectories with positive utility. Note that only at frame n + 3 these lines disappear, showing the
progressive accumulation of evidence on the presence of the obstacle before reporting it, i.e.,
appending it to O. It is also possible to depict the diffusion process in b), triggered by a single
p-ant (red dot off the obstacle), where p-ants are cloned to better cover the obstacle. Red p-ants
on the obstacle are in local search behaviour around a given anchor point, represented by the
connected yellow dots. This occurs when the region is already too cluttered with other p-ants.
The activity level in the perceptual shared medium, R,which is used by p-ants to assess the level
of clutter and to help each other on finding the obstacle when in local search, is depicted in the
bottom row. Videos with situations as the one depicted in this figure are available as online
supplementary material.

Besides cloning, p-ants in track behaviour have no additional activity. Nevertheless,
robot motion compensation (see Section 4.4.3.4) will maintain their positions relative to
the associated obstacles, independently of robot motion. As the robot moves, these p-

ants will eventually leave the robot’s visual input and contribute to the robot’s spatial
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working memory with probability y. That is, not all p-ants leaving the visual input
become part of the spatial memory. This helps on the regulation of the computational
load by reducing the sampling of the peripheral environment.

Being inaccurate, the estimated robot motion is usually insufficient to completely
cancel the effects of robot motion on the relative position of p-ants. The outcome is
that p-ants eventually loose track of the obstacles. To cope with this, any p-ant in track
behaviour that considers to have sufficiently accumulated evidence of being no longer
on an obstacle switches to local search behaviour. As will be shown in Section 4.4.3.3,
evidence grows and decays as the obstacle detector returns positive and negative, re-
spectively. As a result, if evidence in obstacle presence is high, transient obstacle de-
tection negatives may not be sufficient to engage behaviour switching. This is key to
deal with noisy sensory data.

The switch to local search behaviour also occurs if the p-ant in position p} determines
that it is on an obstacle too cluttered with other p-ants, R(p}) > {. By making n <,
a sort of hysteresis is implemented, and thus massive fluctuations of neighbouring

p-ants entering and leaving local search behaviour are avoided.

As depicted in Fig. 4.6(c-e), when in local search behaviour, a given p-ant a performs
a random walk around an anchor point, z,, whose initial position is defined as the
p-ant’s position at the time local search behaviour was initiated, z} < p,. Hence, with
the goal of re-detecting a lost obstacle or of finding a less cluttered region, R(p}) <,
this behaviour randomly changes the position of the p-ant around the anchor point as
follows:

P, <z +64[N(0,1),N(0,1)]", (4.3)

where 6, < min(c, + 1,/) and N(0,1) samples a number from a Gaussian distribution
with mean 0 and variance 1. By increasing o, at each iteration, the local search spreads
up to the upper-bound /, which constrains the search to avoid migration of p-ants

between obstacles.

The anchor point changes to the p-ant’s current position, z, < p,, whenever the
clutter level there is higher than the clutter level at the current anchor’s location, yet not
too high, n > R(p}) > R(z}). This directs the local search towards uncluttered regions
where other p-ants reported the existence of an obstacle. If it is not possible to move the

anchor point, p-ant’s energy level is dramatically reduced by an amount v. Since p-ants
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may be in local search behaviour across frames, the anchor points must be compensated
for the robot’s motion the same way p-ants positions are. If a p-ant in local search
behaviour happens to detect a not too cluttered obstacle, R(p}) < 1, it switches to track
behaviour. Finally, p-ants in local search behaviour that leave the robot’s visual input
are removed from the system. This may happen due to p-ant’s motion or due to the

influence of the robot motion compensation process.

4.4.3.3 Evidence Accumulation

In the previous section nothing was said related to the update of the obstacles set O.
This is done by having every p-ant a in track behaviour, whose evidence on the presence
of an obstacle on its position is sufficiently high, appending its 3-D position, p,, to
0. This accumulation of evidence before reporting an obstacle is important to reduce
sensitivity to noise in the 3-D point cloud. Otherwise, noise in the sensory input would
propagate to the action selection process. The following describes how evidence is
integrated by each p-ant.

At the first iteration of each frame, every p-ant a that (1) is in track behaviour, (2)
is within visual input boundaries, p}, € FOV, and (3) its position has associated 3-D
information, updates its evidence on obstacle presence, y,, according to the following

equation:

Wa = —Ya +’YD(pgl)R(p£l)7 4.4)

where T and 7y are empirically defined scalars, R(p}) € [0, 1] is the activity level of the
perceptual shared medium R at p-ant’s position, p;,, and D(p),) returns the result of the
pixel-wise obstacle detector (see above).

With this system, evidence decays to zero when an obstacle is not found for several
frames, provided that 3-D information is available. This condition ensures that de-
tected obstacles are not forgotten just because stereoscopy is no longer able to compute
the obstacle’s 3-D position. This allows for instance tracking an obstacle even when it
is too close to the robot to be sensed by both left and right cameras.

If the obstacle is found for several frames, then the system converges towards the
fixed point yly, .o = YR(p,). This means that evidence grows faster when the level of
activity in the perceptual shared medium R is higher, i.e., when other p-ants also detect

the presence of the obstacle. Finally, if y, > o, where « is a confidence threshold, then



4.4. MODEL DESCRIPTION 111

the p-ant is confident enough on the existence of an obstacle in its position, and so it
can be reported to the action selection process, i.e., appended to O.

To append an obstacle to O, it is necessary to project the corresponding 3-D point,
which is in the camera frame of reference, {x.,y.,z.}, to the ground-plane frame of
reference, {xg,y,,2¢} (see Section 4.3.2). This way the obstacle is represented in the
ground coordinate system, and so it affects the action selection process in a robot’s
pose invariant way.

Fig. 4.6 illustrates a situation where: (a) p-ants are guided by the action selection
process; (b) they find an obstacle and a diffusion process is initiated; (c), (d) evidence
is accumulated for some frames; (e) and finally the obstacle is reported to the action
selection process.

A probabilistic framework could also be considered for evidence accumulation,
provided that a better noise description would be available. Nevertheless, the pre-
sented dynamical system implements a leaky-integrator and consequently a sound
mechanism in terms of neural support. Moreover, allowing the collective to influ-
ence the individual decision is also sound as it implements a sort of lateral influence
between neural structures. In fact, the use of stigmergy allows this to happen without

the explicit modelling of a large set of connections.

4.4.3.4 Motion Compensation

Motion compensation is performed in the first iteration of each frame by first trans-
forming the 3-D position of every p-ant according to the robot motion estimate matrix
M (see Section 4.3.3.1). Then, this transformed 3-D position is projected onto visual
input L according to projection matrix P. The result is the p-ant’s motion compensated
position in L. See Fig. 4.7 and Fig. 4.8 for an illustration of the motion compensation
used to update the spatial memory.

Allowing p-ants to be updated when out of the visual field of view to maintain
spatial memories is important so as to avoid that the action selection process operates
with a myopic view of the environment. Moreover, it allows the system to reduce
perceptual requirements when revisiting a given environment (refer to our previous
work on simulation (Santana and Correia, 2010a) for experimental results showing this
benefit). The fact that not all p-ants leaving the robot’s visual field of view are kept in

the system and that p-ants have a limited life span permits execution time to be kept
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Figure 4.7: Motion compensation example. (a) The robot moves towards the target. (b) A set
of p-ants detect a large obstacle. (c) Some frames latter the robot is tilted and these p-ants
are obligated to track the obstacle outside the sensor’s field of view. (d) When the tilt angle is
zeroed these p-ants are once again in the sensor’s field of view and consequently projected onto
L. At that time, p-ants update their 3-D position and confirm the presence of the obstacle. The
smaller number of p-ants, when compared to (b), is a consequence of the probabilistic removal
of p-ants when they leave the field of view. The figure at the bottom-right of each image is
a body-centred representation of the detected obstacles and linear trajectories. The darker the
linear trajectory the higher its utility, as casted by the action selection process. It is possible
to see the stability of the representation independently of the robot’s current pose. Videos with
situations as the one depicted in this figure are available as online supplementary material.

low (see Section 4.5.2). In conclusion, the ability of p-ants to operate as elements of the

spatial working memory does not conflict with the idea of minimal perception.

4.5 Experimental Results

4.5.1 Experimental Setup

Small Vision System (SVS) (Konolige, 1997; Konolige and Beymer, 2007) and OpenCV
(Bradski and Kaehler, 2008) were used for stereo computation and other low-level com-
puter vision routines on the 320 x 240 input images, respectively. Stereo computation
uses an area-based L1 norm (absolute difference) correlation method, operating over
Laplacian Of Gaussian (LOG) transformed images. The result is interpolated to a pre-

cision of 1/4 pixel and the correlation window size is 11 x 11. To increase the amount of
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Figure 4.8: Spatial memory operation example (same colour code as in Fig. 4.7). The example
given refers to a situation where the robot has to move towards a goal location 30m ahead of
its start position. To reach its goal, the robot circumnavigates the large obstacle area visible in
(a) and (b), which as a consequence of the robot’s motion leaves the sensor’s field of view in
(c) and (d). Without the spatial memory, the action selection process would not be able to take
into account the obstacles outside the sensor’s field of view, and consequently it could lead the
robot towards a collision. Videos with situations as the one depicted in this figure are available
as online supplementary material.

information available in the point cloud, the disparity calculation is carried out at the
original resolution, and also on images reduced by 1/2. With this multi-scale approach,
the extra disparity information is used to fill in dropouts in the original disparity cal-
culation.

SVS also provides a set of standard filters to reject 3-D points that are potentially
erroneous at the cost of reducing too much the density of the 3-D point cloud in poorly
textured environments. Briefly, according to a threshold f. a confidence filter elimi-
nates stereo matches that have a low probability of success due to lack of image tex-
ture. A uniqueness filter performs a consistency check to ensure that the minimum
correlation value must be lower than all other match values by a threshold f,,. Finally,
a speckle filter eliminates small disparity regions that are not correct by imposing a
threshold f; on the minimum region size. The three filters are used with f. =12, f,, = 10,
and f; = 400.

The following describes the model’s parameterisation used in the experiments.
Withy=1,1=0.8, and o = 0.6, the dynamics of the confidence level in Equation 4.4 is
such that spurious noise could be effectively filtered out, without imposing a compro-
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mising latency to obstacles registration. Assuming a 10Hz frame rate, with a maximum
number of iterations per frame iy, = 10, and a p-ant’s top energy p = 5000, obstacles
are maintained in the robot’s spatial memory for about 50s. This timing is sufficient
for local obstacle avoidance. The strong energy decay occurring when local search is
engaged, i.e., v = 100, guarantees that p-ants in that situation are removed from the
system before a new frame is acquired. To produce an adequate speed-accuracy trade-
of, the stochastic motion control parameters from Equation 4.2, A; and A, have been
empirically defined as 0.3 and 24, respectively. The number of times a p-ant is allowed
to clone itself is r,,,x = 5. The cardinality of the robot’s action repertoire, k, is 80, which
is sufficient to ensure navigation in cluttered environments. The control parameters to
determine when an obstacle is too cluttered with p-ants, n and {, have been set to 40
and 250, respectively. This ensures a good coverage of the obstacle with p-ants with-
out too much overlap. The control parameter to avoid migration of p-ants between
obstacles when performing a local search, /, has been set to 20. Finally, the probability
of removing a p-ant when it leaves the visual input is y = 0.4. This value establishes
an adequate trade-off between computational efficiency and the density of the robot’s

spatial memory.

4.5.2 Experiments

To validate the proposed model the robot was asked to perform at a speed of s =
0.5ms™! a set of five runs on the off-road environment depicted in Fig. 4.9. In each
run, the robot started from a different initial position and its goal was to reach a loca-
tion 30m ahead. Although mostly planar, the environment includes regions of variable
slope. This, in addition to the considerable amount of tall vegetation, results in a con-
siderable proneness for false positives occurrence.

Table 4.1 summarises the quantitative results obtained from the experiments. The
robot reached the goal location in every run by negotiating all obstacles between itself
and the goal. The executed paths were smooth and short, i.e., the robot avoided ob-
stacles soon enough and smoothly followed their contour whenever necessary. This
means that the system was capable of rapidly detecting obstacles at distance and kept
tracking them in memory. Notice that whenever the robot followed the contour of
obstacles outside its field of view we know that it is tracking them in memory.

Visual attention refers to the ability of accurately focussing perceptual resources
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(b)

Figure 4.9: Experimental site. (a) The test site overlaid with approximate paths executed by
the robot in two runs. In each run, the robot started from a different position and moved au-
tonomously to reach the specified final position, represented by a circle. (b) Situation where
the difficult conditions faced by the robot are evidenced: dense and tall vegetation, which often
promotes the occurrence of false positives.

Percentage of analysed pixels 0.9% +0.6%
Control system computation time 112.1ms45.4ms
Swarm computation time, f, 1.7ms £0.6ms
ts / full analysis computation time 0.37+£0.17

Table 4.1: Results summary (mean =+ standard deviation).

where these are the most needed, according to the action selection process. The fact
that the robot exhibits a near-optimal behaviour, i.e., it produces a highly directed mo-
tion towards the goal (see Fig. 4.9), with only 0.9 % of analysed pixels on average per
frame, is a clear demonstration that the model produces accurate visual attention. Note
that accuracy here stands for being able to focus precisely on the regions of the current
frame that are the most important for the action selection process.

For the following analysis we split the time spent by the swarm infrastructure from
the one spent by p-ants when applying the obstacle detector to the image in their cur-
rent position. Were the swarm’s computation time larger than the one taken by a full
image analysis, the benefits of the proposed model would be marginal. This is not the
case as it only requires 37 %, on average, of the time spent by the brute force approach.

As the complexity of the obstacle detector grows, the less significant is the com-
putation time of the swarm infrastructure to the overall cost. Note that the obstacle
detector used by p-ants is actually the simplest one for a stereoscopic setup, as it only
requires the computation of a distance to the ground plane. Hence, the reported results
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Figure 4.10: Context-dependent load balancing results. Plots refer to the total number of p-ants
during each run.

can be understood as the baseline performance of the proposed model. A final remark
to say that the whole control system operates almost at 10Hz, which showed to be suf-
ficient to maintain a stable control of the robot at a speed of 0.5ms~!. This cost includes
swarm update, visual odometry, ground-plane estimation and 3-D reconstruction.

One recognised characteristic of self-organised systems is their robustness to vary-
ing contexts. In this work, p-ants self-organise to build visual attention and spatial
memories as the environment unfolds in the sensor’s field of view. A by-product of
this process is the adaptation to the context, which can be observed by the number of p-
ants along time (see Figure 4.10). A raise in the number of p-ants corresponds typically
to situations where new obstacles are detected. When these are actually noise, their
associated p-ants are eventually removed, resulting in a corresponding drop in their
cardinality. A smoother decay in the quantity of p-ants usually refers to the removal
of p-ants that have reached zero energy. Thus, the variability of the number of p-ants
is a sign of system’s adaptation to the environmental context and robot-environment
interaction history.

Fig. 4.11 shows the results of a comparison between the proposed model for visual
attention and a random sampling of the visual input. From the comparison stands out
that in 7 % of the tested frames the random policy outperforms the swarm-based policy.
However, this percentage corresponds to situations where no obstacles are present in

sensor’s field of view, meaning that the comparison is made solely on the basis of false
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Figure 4.11: Comparison between the proposed model and a random policy. The bins of the
histogram refer to the ratio between the detection rate of the proposed method and the detection
rate of a random policy, over the set of five runs. Detection rate is defined as the ratio of analysed
pixels that are reported as obstacles. The higher the detection rate the more focused and effective
is the attentive process. As each frame, the random policy operates by randomly sampling as
much pixels as those that have been analysed by the swarm-based one in the same frame. That
is, this test compares the effectiveness of each method for the same computational cost. The
first bin (light grey) corresponds to the situations where the random policy outperforms the
swarm-based one, 7 % overall.

positives and consequently is of little value.

One can then conclude that the results clearly show the benefits of the swarm-based
solution guided by the action selection process over a baseline random one. With a
larger field of view and a higher resolution, i.e., in a situation where the chances of
randomly selecting an obstacle pixel are smaller, it is reasonable to assume that the
comparison would further highlight the advantages of the proposed model.

Fig. 4.12 shows that without the evidence accumulation mechanism, all false pos-
itives caused by the noisy nature of the sensory input are propagated to the action
selection process and consequently to the actuators. Conversely, with evidence accu-
mulation the actuators are barely affected by sensor noise. The inertia introduced by
the mechanism to remove noise could cause latency in the sensory information pro-
cessing. However, the proper behaviour exhibited in the previous experiments allows
us to conclude that this is not the case. Note that the evidence accumulation process is
affected by the activity of the shared medium R, thus implementing a sort of implicit
multi-agent consensus protocol. This is essential to help discriminating actual obsta-
cles from spurious isolated noise, without imposing a slow evidence accumulation
dynamics to every situation. Moreover, the use of this form of implicit communication

(stigmergy) to reach a sort of collective decision is a feed-forward mechanism without
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Figure 4.12: Comparison between model with (a0 = 0.6) and without (o0 = 0.0) evidence accu-
mulation. The comparison is based on statistics obtained from running each configuration five
times on a pre-recorded video sequence. The video sequence was acquired by tele-operating the
robot along the straight ahead ~ 25 m motion overlaid in (a), whose final point is represented by
a circle. To magnify the differences between both configurations, the obstacle detector’s thresh-
old is not set to grow with range, i.e., § = 0 in Equation 4.1. The action selection’s goal in both
configurations is to move forwards. No obstacles along the path inhibited the forward motion
from being the one with highest utility. Therefore, in the absence of false positives influencing
the action selection process, the latter would output a zero steering. The bars and error bars in
(b) correspond to the mean and standard deviation of the steering angle for each configuration.

computational overhead.

A set of representative videos with the proposed model’s output is available as
online supplementary material. For complementary experimental evidence on simu-
lation regarding the key role of some aspects of the model, such as stochastic vs. de-
terministic behaviour, memory-based vs. pure reflexive operation, parallel vs. a pure
greedy deployment of p-ants, please refer to our previous work (Santana and Correia,
2010a).

4.6 Discussion

A p-ant represents a covert focus of attention to a given portion of the visual input,
upon which a task-specific detector can be applied. Analogously, a natural ant can be
seen as a mobile sensor that locally senses the environment for the presence of food
items. Natural ants reinforce pheromone trails leading to fruitful locations so as to

promote the rate at which food items are returned to the nest. P-ants also use a form
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of pheromone (activity in shared medium R) to recruit other p-ants to the location of
detected obstacles. A negative feedback mechanism is included under the form of a too
high pheromone concentration repelling p-ants. This guarantees an adequate number
of p-ants to aggregate around a given obstacle.

Patterns in human brain may break when the visual input changes, but rapidly re-
emerge in order to track the dynamics of the environment. Ant colonies are also known
to be endowed with similar resilience in what regards tracking environmental changes.
Thus, this ability of ant colonies can be used as metaphor to model tracking behaviour
in parallel visual processes. Tracking is the action of updating the estimate of a given
obstacle’s position in the visual input, which can change, for instance, due to motion.
In general this requires the tracking entity to perform a local search with the goal of
re-detecting the obstacle. Accordingly, if a p-ant determines that it has lost the obstacle
it has been focused on, it initiates a local search. As their natural counterparts, p-ants
also exploit other p-ants pheromones to boost this search. In addition, p-ants are also
sensitive to the robot’s motion, allowing them to perform the respective compensation.

This ability of tracking and motion compensation endows the visual system with an
intrinsically parallel and active spatial map of the environment. That is, each obstacle

is represented by a set of p-ants that actively seek to maintain contact with it.

It is largely recognised that the amplification of random fluctuations is essential
to allow the emergence of novel situations in foraging tasks, and in self-organised sys-
tems in general (Bonabeau et al., 1999). In this line, p-ants” behaviour also encompasses
a probabilistic component. We add the following advantages of using randomness in
search tasks. The goal of explicitly using random fluctuations allows p-ants to actively
search the surroundings with complex search patterns, without their explicit coding.
Moreover, the use of stochastic behaviour has the additional advantage of naturally
handling noisy data. A deterministic program would require an extensive exception
handling facility, which tends to be error-prone. In short, random fluctuations are es-
sential to foster both cheap and robust design. In fact, the variability in neural response
to identical stimulus has supporting evidence to be key in explaining the nearly opti-
mal human brain performance, in a Bayesian sense (Ma et al., 2006). Refer to our
previous work on simulation (Santana and Correia, 2010a) for experimental evidence
supporting the importance of random fluctuations in the proposed model.

Neurophysiological studies reveal that when human subjects are requested to pro-

duce fast response times, in detriment of accuracy, an increase in the baseline activ-
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ity is observed in a network of brain areas related to decision, response preparation,
and execution, in opposition to sensory related ones (van Veen et al., 2008). The raise
in baseline activity allows reaching a decision threshold faster. In our model this is
implemented by constraining the time available, i.e., maximum number of iterations
per frame, for the action selection process to reach a conclusion. Until the time limit
is reached, both action and perceptual processes act the same way for each possible
speed-accuracy context. We speculate that this is only possible because the act of per-
ceiving has the goal of pushing action selection forward, while being led by it. By
using a parallel approach, our model allows perception to robustly track a good so-
lution right from its onset and without the need of explicit context awareness. This
allows both perceptual and action processes to progressively unfold by analysing best
possible actions in decreasing order. The result is a good solution whatever the speed-
accuracy trade-off. Thus, context modulation is emergent through the decision pro-
cess, rather than from an explicit context-dependent modulatory signal operating on
the perceptual process.

As for the perception-action coupling aspect, the parallel visual process herein pro-
posed also maps seamlessly on the current understanding about the way covert atten-
tion operates. First, the use of a parallel system follows the idea of multiple loci of
attention (Pylyshyn and Storm, 1988; Doran et al., 2009). Second, being parallel, the
approach robustly handles the speed-accuracy trade-off (van Veen et al., 2008). Finally,
the proposed model includes a natural way of integrating noise, which is known to be
very important to achieve near-optimal brain operation (Ma et al., 2006).

From an engineering standpoint, it is useful to compare the proposed model with
particle filters as employed for the problem of simultaneous localisation and mapping
(SLAM) (Thrun et al., 2005). In general, a particle in SLAM is a sample of the joint
distribution robot/map, where a map is composed by a set of Extended Kalman Fil-
ters (EKF), each associated to a given landmark of the environment. Conversely, a
p-ant is associated to a single landmark, and so it is more related to the role played by
each EKF than with the particles themselves. Differently from EKFs in SLAM, p-ants
perform an active search in addition to tracking, and do it guided by the action selec-
tion process. Moreover, while p-ants interact to improve their individual performance,
EKFs in particles are independent.

P-ants do not contribute to the estimation of the localisation of the robot, as particles

do. Local navigation being the focus of the proposed model, the localisation problem is
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handled solely with dead-reckoning. While SLAM methods could deliver both locali-
sation and mapping, their high computational and memory cost makes them unsuited
for parsimonious local navigation. For a more comprehensive discussion refer to our

previous work (Santana and Correia, 2010a).

4.7 Conclusions

The first embodied realisation of swarm cognition was proposed and validated on the
local navigation problem for vision-based off-road robots. Although simulations are
recognised as important tools to validate minimalist cognition models (Slocum et al.,
2000), we believe that only when facing the burdens of the real world, i.e., uncertainty,
a model is capable of truly exhibiting its scalability. In this sense, this report is an im-
portant contribution to the demonstration of swarm cognition as a promising approach
to the synthesis of cognitive systems.

The model considers that perceptual and action selection processes operate in an
intricate way to focus attention and consequently reduce the processed image area.
The underlying idea of the model is that perception should focus on the regions of
the visual input where detected objects most impact the action selection process. This
helps action selection to rapidly stabilise its output. Motivated by the multiple covert
attention hypothesis (Pylyshyn and Storm, 1988; Doran et al., 2009), covert visual at-
tention is modelled with swarms of simple virtual agents, named p-ants, based on the
social insects foraging metaphor. Basically, p-ants perform local covert visual atten-
tion loops, whereas the self-organised collective behaviour maintains a robust global
spatio-temporal coherence.

The benefits of these properties are confirmed by experimental results obtained
with a physical all-terrain robot performing local navigation and equipped with a
stereoscopic vision sensor. Concretely, the perceptual process is showed to be capa-
ble of providing the action selection process with sufficient information for a proper
decision making with only 0.9 % of visual input being analysed. This accuracy of the
focus of attention is credited to: (1) the ability of action selection to guide perception
on a by-need basis, as verified against a random policy; and (2) the self-organising
principles exhibited by the parallel covert visual attention process, which provides the
system with robustness and consequently the ability of maintaining an adequate focus

of attention across environments. Spatial memory, another relevant asset of a cognitive
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system, was also shown to self-organise in the proposed model. The evidence accumu-
lation mechanism added to the model revealed to be essential on the reduction of the
sensitivity to false positives, which due to their high quantity would impair cognitive
behaviour.

On the one hand, these results show the feasibility and advantages of relying on
self-organisation to synthesise robust embodied cognitive systems, by recurring to the
social insects metaphor. On the other hand, they show that with such a model, au-
tonomous robots can considerably reduce the cost of perception, which in turn fos-
ters real-time performance, computational parsimony, and energetic efficiency. This is
an important asset to enable miniaturisation, long-lasting operation, and higher robot
speed. The proposed model is a systematic method to exploit action selection informa-
tion to maintain an accurate focus of perceptual attention. It allows the robot designer
to exploit the most adequate detector for the task at hand without having to customise
the method to cope with the computational requirements, and consequently to lose
some of its detection capabilities.

As future work, we plan to devise a parallel implementation of the model in ded-
icated hardware, such as Graphics Processing Units (GPU), thus fully exploiting the
advantages of a multi-agent design. In addition, we intend to generalise the model so

that it can be applied to other perception tasks.
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Finding Natural Trails With Swarm-Based
Visual Saliency
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Abstract

This paper proposes a model for trail detection that builds upon the observation that
trails are salient structures in the robot’s visual field. Due to the complexity of natural
environments, the straightforward application of bottom-up visual saliency models is
not sufficiently robust to predict the location of trails. As for other detection tasks, ro-
bustness can be increased by modulating the saliency computation based on a priori
knowledge about which pixel-wise visual features (e.g., colour) are the most represen-
tative of the object being sought. This paper proposes the use of the object’s overall
layout instead, as it is a more stable and predictable feature in the case of natural trails.
Bearing in mind both computational parsimony and detection robustness, this knowl-
edge is specified in terms of perception-action rules, which control the behaviour of
simple agents performing as a swarm to compute the saliency map of the input image.
For the purpose of multi-frame evidence accumulation about the trail location, a mo-
tion compensated dynamic neural field is used. Experimental results on a large data
set reveal the ability of the model to produce a success rate of 91 % at 20Hz. The model
shows to be robust in situations where previous trail detectors would fail, such as when
the trail does not emerge from the lower part of the image or when it is considerably

interrupted.
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keywords: terrain perception, trail detection, visual saliency, bio-inspired methods,
terrestrial robotics.

5.1 Introduction

Autonomous navigation in off-road environments demands for robust perceptual ca-
pabilities. An outstanding one is the ability to perform free-space visual assessment,
which can be done via the explicit analysis of the volumetric properties of the terrain’s
surface (Batavia and Singh, 2001; Lacroix et al., 2002; Manduchi et al., 2005; Broggi
et al., 2005; Seraji, 2006; Konolige et al., 2009; Kolter et al., 2009; Rusu et al., 2009; San-
tana et al., 2011). In addition to this direct inference of terrain’s state, one can also use
indirect cues regarding free-space connectivity, such as the presence of trails.

Trails, such as the ones created for hikers and bikers, are usually safe pathways, free
of dead-lock situations. A robot following a trail should thus be able to traverse large
distances in off-road environments in an effortless way. On the one hand, computation
for obstacle detection and path planning is saved. On the other hand, fewer are the
chances of getting lost or of incurring into ground traps. A practical application of
robots with the ability of trail following could be natural parks patrolling, in which
robots would be engaged in actively maintaining and cataloguing the environment,
and possibly providing support to human hikers.

Without disregarding the benefits of using range information for the task of trail
detection, provided for instance by stereo-vision or laser scanners, this paper addresses
the problem from a complementary two-dimensional (2-D) vision perspective. This
complementarity is important because trails not always have a recognisable volumetric
signature and because accurate three-dimensional (3-D) point clouds are difficult to
obtain off-road. That is, while stereo-vision sensors strongly rely on good lighting
conditions to triangulate features in both cameras, laser scanners rely on good ego-
motion estimates for the registration of consecutive 2-D scans, which may be hard to
achieve when moving fast in bumpy terrains. An alternative would be to use 3-D laser
scanners, such as Velodyne. However, trail following being a task more suitable for
small/medium robots can hardly be solved with such a bulky and expensive sensor.

Most of the challenges of trail detection relate to their lack of a well defined mor-
phology or appearance. This hampers a straightforward specification or learning of

trail models. In addition, trails exist in environments that are unstructured themselves,
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which complicates the learning of background models. Moreover, the fact that trails
change over time renders data hand-labelling for the learning supervision unsuited.
Hence, model-free (meaning as free as possible) solutions are essential for their robust
detection.

This paper exploits the observation that trails are typically conspicuous in the visual
tield of the robot to propose the use of visual saliency for the purpose of their detection.
In other words, this work exploits the overall scene’s context to guide the localisation
of the trail. This approach does not impose any hard constraints on the appearance
or shape of both trail and background, nor it requires learning. Moreover, since it is
rather common the use of saliency for other tasks in cognitively rich robots (Ruesch
et al., 2008; Moren et al., 2008; Santana et al., 2011), the overhead of its computation is
diluted over all modules using it.

Besides confirming the hypothesis that visual saliency and trail location are indeed
positively correlated, it will also be shown that the conspicuity maps of a given input
image correspond themselves to efficiently computed segmentations of the latter. That
is, the segmentation of the input image, which can be a computationally intensive task,
can be obtained as a by-product of determining which regions of the visual field de-
tach more from the background at various scales. Furthermore, the obtained segments
are already prioritised by their conspicuity level. Given that this saliency-based image
segmentation is done “labelling” each region according to its detachment level with re-
spect to the overall scene, it does not require hard edges separating the regions, which
is known to be a problem when over-segmenting an image (Cour and Shi, 2007).

From these findings, it should follow that the segment in the saliency map with
highest priority matches the location of the trail in the input image. However, in prac-
tise, this is a brittle assumption in the presence of not so well behaved conspicuity
maps, which may occur in the presence of distractors or when the trail is consider-
ably heterogeneous. This difficulty can be diminished by top-down boosting of the set
of features (e.g., colour) known beforehand to better describe the object being sought
(Frintrop et al., 2005; Navalpakkam and Itti, 2005). However, these visual features are
considerably unpredictable in the case of trails in natural environments. In contrast,
trails” overall layout is a much more predictable feature. For example, the projection of
trails onto the input image typically converges towards a vanishing point.

This type of a priori knowledge is embedded in the model herein proposed in the
form of behaviour rules for the motion of simple agents inhabiting the conspicuity
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Figure 5.1: Typical trail detection results (red overlay) obtained with the proposed model. These
results show the model’s ability to localise the trail even when it is highly interrupted (b)(d),
blends itself with the background (c), or does not start from the bottom of the image (a).

maps associated to specific visual features, namely, colour and intensity. The paths
executed by these agents are used as skeletons of trail hypotheses. However, a system
based solely on the individual behaviour of these simple agents is brittle when pre-
sented with less structured (e.g., interrupted) trails. To overcome these limitations, the
proposed model exploits: (1) the metaphor of the collective intelligence (Franks, 1989)
exhibited by social insects to ensure that agents cooperatively build up a robust ap-
proximation of the actual trail’s skeleton; and (2) dynamical neural fields (Amari, 1977;
Rougier and Vitay, 2006) to accumulate evidence about the most likely trail location

across frames, extended with a mechanism to compensate for robot motion.

Extensive experimental results show that the proposed model attains a success rate
of 91 % at 20Hz in demanding scenarios, as depicted in Fig. 5.1. This fast computation
owes greatly to the extensive use of bottom-up mechanisms, which besides fostering
future implementations in parallel hardware, also avoid expensive computations re-
quired by model-based solutions.

This paper extends two previous conference papers (Santana et al., 2010a,b) and is
organised as follows. Section 5.2 overviews related work. Then, Section 5.3 introduces
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the proposed model, which is followed by experimental results in Section 5.4. Finally,

some conclusions are drawn and future work is proposed in Section 5.5.

5.2 Related Work

Current trail detection methods rely considerably on work developed for the road de-
tection domain, which for this reason is first surveyed.

While the detection and tracking of paved roads is facilitated by their rather pre-
dictable appearance and presence of well delimited limits, this is not the case of ill-
structured unpaved rural roads. The typical solution in the latter case is to segment
the road region from its surroundings by considering the aggregate of pixels whose
likelihood of belonging to the road surface is above a given threshold. The likelihood
of a given pixel to belong to the road surface can either be learnt off-line from labelled
images (Chaturvedi and Malcolm, 2005; Alon et al., 2006) or, for more robust opera-
tion, learnt on-line given a set of reference regions in the input image automatically
labelled as road/non-road. In the latter case, the labelling process is done assuming
that the robot is on the road, and so the region right in front of it can be surely la-
belled as road (Thorpe et al., 1988; Fernandez and Casals, 1997; Fernandez and Price,
2005; Song et al., 2007), or exploiting short range volumetric information obtained from
other sensors (e.g., stereo or laser) to discriminate the road plane from others (Thrun
et al., 2006b; Tue-Cuong et al., 2008). To attain depth invariance, locally labelled visual
elements can be traced back until the moment they entered the camera’s field of view,
i.e., when they still were in the far field (Lookingpbill et al., 2007).

In general, once the segmentation is concluded, a simplified model of the road (e.g.,
trapezoidal) is fit to the segmented image. Region growing is an interesting alternative
to the model fitting process when it regards handling hard to model roads (Ghurchian
et al., 2004; Fernandez and Price, 2005; Chaturvedi and Malcolm, 2005). However, by
enforcing a global shape constraint, the model-based approach enables the substitu-
tion of the road/non-road pixel classification process by an unsupervised clustering
mechanism (Crisman and Thorpe, 1991). This reduces the burden of maintaining road
appearance models at the cost of raising the number of possible ambiguities between
regions of the input image with similar shape. A known alternative to these region-
based approaches is to estimate the road’s vanishing point (Rasmussen, 2004, 2008;

Kong et al., 2010). This is usually done by extracting the dominant texture orienta-
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tions, which are usually aligned with ruts, tire tracks, and road borders. This approach
is interesting in particular when the road and background share the same appearance.
The orientations-based and regions-based approaches can also be integrated into hy-
brid architectures (Alon et al., 2006; Song et al., 2007).

As mentioned, these models are the basis of most work on trail detection. An ex-
ample is the use of a priori knowledge about the colour distributions of both trail and
surroundings for their segmentation (Bartel et al., 2007). Robustness can be increased
if these a priori models are substituted by models learnt on-line in a self-supervising
manner (Grudic and Mulligan, 2006; Rasmussen and Scott, 2008b). In contrast to the
road domain, the definition of the reference regions from which it is possible to super-
vise the learning process is not easy. With varying width and orientation, it is difficult
to assure that the robot is on the trail, and from that, which regions of the input im-
age can be used as references. Second, the trail and its surroundings often exhibit the
same height, which hampers a straightforward use of depth information to determine
a trail reference patch. The use of a global shape constraint (e.g., triangular) to avoid
the learning process has also been tested in the trail detection domain (Rasmussen and
Scott, 2008a; Blas et al., 2008). This is done by first over-segmenting the image and
then scoring a set of trail hypotheses, built by aggregating sets of generated segments,
against the global shape constraint. Accurate image over-segmentation being a com-
putationally demanding task reduces the system’s ability to perform in real-time and
usually requires clear edges segmenting the object from the background, which is not
often the case in natural trails. This is aggravated by the considerable level of inter-
ruptions natural trails exhibit. Moreover, a global shape constraint limits the type of
trails that can be detected. Finally, due to the fact that dominant orientations in natural
trails seldom indicate the global orientation of the trail, the vanishing point concept, a
powerful concept in the road domain, hardly applies.

Instead of adapting a road detection method to the trail detection problem, this
paper proposes the exploitation of a distinguishing characteristic of trails present in
natural environments: they are rather conspicuous structures. This induces us to pro-
pose the use of visual saliency models to detect them. This approach does not impose
any hard constraints on the appearance or shape of both trail and background, nor it
requires learning. In a parallel study, Rasmussen et al. (2009) proposed the use of local
appearance contrast for trail detection, which only superficially resembles the concept

of visual saliency. Visual saliency includes contrast information between trail and local
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surroundings, plus contrast information between trail and overall scene. This is im-
portant because it is not guaranteed that the appearance of trails and their immediate
surroundings always exhibit sufficient contrast to be robustly exploited. In addition
and in opposition to our model, Rasmussen et al. (2009) make the assumption that
trails exhibit a perfect triangular shape when seen from perspective. They also assume
that both left and right sides share the same appearance. Although these assumptions
comply with a large set of situations, they lack support in more demanding ones.
Seeking robustness and parsimony, we follow the long line of research on the use
of the social insects metaphor for the design of computer vision systems (Poli and
Valli, 1993; Liu et al., 1997; Ramos and Almeida, 2000; Owechko and Medasani, 2005;
Antén-Canalis et al., 2006; Mobahi et al., 2006; Broggi and Cattani, 2006; Mazouzi et al.,
2007; Zhang et al., 2008). The most related to ours is the work of Broggi and Cat-
tani (2006), which detects the edges of ill-structured desert roads with a swarm-based
system. However, trails in natural environments seldom are delimited from the back-
ground by strong edges, which is the reason why a region-based approach is preferred.
Furthermore, operating on the appearance space directly, and not on the conspicuity
space, the work of Broggi and Cattani (2006) does not exploit the observation that trails
are conspicuous structures in the environment. By following a region-based approach
and by operating on the conspicuity space, our approach is better suited for the prob-
lem of trail detection in natural environments. We can also conclude that our model is

the first swarm-based computation of visual saliency.

5.3 Proposed Model

As a large extent of other robotics and computer vision work, the one herein pro-
posed also benefits from biological inspiration. This inspiration is summarised in Sec-
tion 5.3.1, which is followed by an overview of the proposed model in Section 5.3.2.
The subsequent sections detail its key elements.

5.3.1 Biological Inspiration

The fundamental aspects considered in this work are the use of visual attention for
trail detection and the use of multiple agents for its computation. Visual attention is

known to be widespread in the animal kingdom (Land, 1999) and it has been exten-
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sively studied in humans (Oliva and Torralba, 2007; Wolfe et al., In Press). By focussing
perception, computation is saved and robustness enhanced. As a consequence, faster
robot motion, lower cost, and reduced robot size are enabled. Studies on human sub-
jects support the hypothesis that multiple covert, i.e., mental, attention processes co-
exist in the brain (Pylyshyn and Storm, 1988; Doran et al., 2009). This evidence is the
motivation for this work to use a multi-agent approach.

Agents perform local covert visual attention loops, whereas the self-organising
collective behaviour maintains global spatio-temporal coherence. Additionally, these
agents being sensorimotor coordinated units can exploit the benefits of active vision
(Bajcsy, 1988; Aloimonos et al., 1988; Ballard, 1991) at the information processing level.
These include the ability of agents to actively select and shape their sensory input.
As a result, noise-to-signal ratio can be increased, rotation and scale invariance aug-
mented, and sensorimotor history used to induce long-range influences and improve
agent behaviour (Scheier et al., 1998; Nolfi and Marocco, 2002; Beer, 2003; Fend et al.,
2003; Balkenius et al., 2004; Floreano et al., 2004; Nolfi, 2005; Suzuki and Floreano,
2006; Pfeifer and Bongard, 2006; Kim and Moeller, 2006; Sporns and Lungarella, 2006;
de Croon and Postma, 2007; Choe et al., 2008; Mirolli et al., 2010; Tuci et al., 2010).

The use of multiple agents allows the modeller to exploit biological knowledge
obtained from similar processes that can be found in Nature, such as the collective intel-
ligence (Franks, 1989) exhibited by social insects, a sort of swarm cognition with similar-
ities with neuronal processes (Passino et al., 2008; Couzin, 2009; Marshall and Franks,
2009; Santana and Correia, 2010a; Trianni and Tuci, 2010; Turner, 2011; Trianni et al.,
2011). The specific metaphor exploited in this work is the one of ant foraging. Accord-
ing to this metaphor, local agents self-organise in order to find a global solution. This is
attained by having these agents interacting indirectly through pheromone-like fields,
a phenomenon known as stigmergy (Grassé, 1959). Being loosely coupled, simple, and
sensorimotor coordinated, these agents build up a robust and fast to compute system.

The option of using dynamical neural fields (Amari, 1977; Rougier and Vitay, 2006)
for evidence accumulation across frames and improved focus of attention is also bio-
inspired, in the sense that neural fields have a long history in the modelling of human
cognition (Beer, 1995; Thelen and Smith, 1996).
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5.3.2 System Overview

Fig. 5.2 illustrates the different phases involved in the proposed model’s operation.
At each new frame I, two conspicuity maps, CC € [0,1] for colour and C’ € [0,1] for
intensity information, are computed (see Section 5.3.3). The intensity of a pixel in a
given conspicuity map signals how much the pixel detaches from the background at

several scales, in the scope of a given visual feature.

A set of n virtual ants (hereafter called p-ants) is deployed on each conspicuity
map (see Section 5.3.4.1). These p-ants interact based on the ant-foraging metaphor
for several iterations in order to build two pheromone maps, P¢ € [0,1] and P € [0, 1]
(see Section 5.3.4.2). The behaviour of p-ants is designed to exploit a priori knowl-
edge about typical trails approximate layout. Therefore, the activation of pheromone
maps is expected to match the trail’s location better than the activation of conspicuity
maps, which are only sensory-driven. Thus, rather than combining both conspicu-
ity maps to generate the final saliency map, as typically done (Itti et al., 1998; Frin-
trop et al., 2005), in this work S is obtained by combining both pheromone fields,
S < 3P/ + IPC. Additionally, by allowing p-ants on a given pheromone map to also
affect the other pheromone map, cross-modality influences are implicitly, i.e., through
stigmergy, maintained in the system. This increases robustness by allowing p-ants to

exploit multiple cues indirectly, with a residual computational overhead.

The final saliency map S feeds a dynamic neural field, F € [0, 1], which integrates
pheromone (i.e., evidence) across frames and also implements both lateral excitation
and long-range inhibition (see Section 5.3.5). Excitatory connections promote percep-
tual grouping, whereas inhibitory connections facilitate the maintenance of a coherent
focus of attention across time (Rougier and Vitay, 2006). Motion compensation, be-
tween current frame I and previous frame I is also implemented so that the dynamics
of the neural field can be decoupled from the dynamics of the robot. The output of
the system is given by the current state of the neural field, in which the higher the

activation of a given neuron the higher its chances of being associated to a trail’s pixel.

In order to allow p-ants’ creation and activity to be affected by history, at the onset
of each frame, both pheromone maps are initialised with a small ratio A of the neu-
ral field after being motion compensated, P! «— AF,PC +— AF. This induces stability
and robustness to noise and temporarily mis-behaved conspicuity maps (i.e., unable

to properly discern between trail and background in the presence of distractors), as
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Figure 5.2: System’s operation overview. The red overlays in both pheromone fields, P¢ and
P/, are two illustrative p-ant paths. Motion compensation aspects are not represented.

well as it enables across-frames progressive improvement.

As aforementioned, the neural field and cross-modality influences are useful to
modulate the creation and behaviour of the p-ants. However, if allowed to propa-
gate across frames, these influences may induce an undesirable neural field’s activity
build-up. To avoid this, two auxiliary pheromone maps, PL and P¢, are created free
of influences. For instance, the auxiliary map P. only encompasses the pheromone
deposited by the p-ants associated to visual feature /. These maps are used to replace
the pheromone maps, P! < PL,P¢ «+— P¢, just before blending them for the purpose of
creating S. In this way, the self-influence of the neural field through the pheromone

maps still exists, but it is mediated by the p-ants behaviour.

Conspicuity maps, pheromone maps, saliency map, and neural field, all share the
same width w and height 2. These two values are selected bearing in mind real-time
performance. For a better understanding of the proposed model, Algorithm 6 outlines

its pseudo-code. Details are given in the following sections.
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Algorithm 6: Frame-wise model’s execution pseudo-code.

Input: current frame (I), previous frame (I'), neural field (F), At
Output: updated neural field (F)
Data: A and n are empirically defined constants.

use Equation 5.14 to estimate homography matrix, H, from I and I’
compensate neural field for robot motion, F < HF

compute conspicuity maps from I, C! and C€ [see Section 5.3.3]
initialise pheromone maps, P! < AF,PC < AF

s PL—0,PC 0

o L N

10
11

12
13
14

15

16
17

18

// update pheromone maps

for ncycles do [create and execute 2n p-ants]

create p-ant p; based on C! and P/ [see Section 5.3.4.1]
create p-ant pc based on C¢ and P€ [see Section 5.3.4.1]

(P!, PC,PL) « execute(p;,C!,P!,PC P.) [see Algorithm 7]
(P, P! PC) < execute(pc, CE,PC, P! PC) [see Algorithm 7]

remove p-ant p;y
remove p-ant pc

end

discard cross-modality and neural field influences, P! <— PL P « P¢
compute saliency map, S < %P’ + %PC
use Equation 5.16 to update neural field F with S

return F

5.3.3

Conspicuity Maps Computation

As mentioned, conspicuousness computation is about determining which regions of

the input image detach more from the background at several scales in a given feature

channel. Although in this paper only intensity and colour channels are used, addi-

tional channels (e.g., orientations, texture) could be used for improved background-

trail discrimination. The following describes the biologically inspired model proposed

by Itti et al. (1998) for conspicuity computation, herein properly adapted to the task at

hand.

One dyadic Gaussian pyramid (Burt and Adelson, 1983), with eight levels, is com-

puted from the intensity channel. Two additional pyramids, also with eight levels, are

computed to account for the Red-Green and Blue-Yellow double-opponency colour
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feature sub-channels. Each level corresponds to a given scale. Various scales are then
used to create a set of on-off and off-on centre-surround maps per pyramid (Itti et al.,
1998). These have higher intensity on those pixels whose corresponding feature differs
the most from their surroundings. On-off centre-surround maps are built by across-
scale point-by-point subtraction, between a level with a fine scale and a level with a
coarser one. Off-on maps are computed the other way around, i.e., subtracting the
coarser level from the finer one. Rather than considering the modulo of the difference,
as in the original model (Itti et al., 1998), we consider both on-off and off-on centre-
surround maps separately, as it has been shown to yield better results (Frintrop et al.,
2005; Frintrop, 2006). Then, all centre-surround maps built from the intensity pyra-
mid are resized to a common size and independently scaled in magnitude according
to a method described in the next sections, and finally averaged together to produce
the intensity conspicuity map. The same process applies to create Red-Green and Blue-
Yellow conspicuity maps, each one subsequently weighted and then averaged together
to produce a single colour conspicuity map. Note that all maps are 8-bit grey level im-

ages.

5.3.3.1 Typical Magnitude Scaling Functions

Magnitude scaling functions return a version of each map, obtained by a pixel-wise
product of a scalar. The goal is to promote maps that have fewer conspicuous locations.
As pointed out by Itti et al. (1998), this avoids that, when combining maps, salient
objects appearing strongly in only a few maps are masked by noise or by less-salient
objects present in a larger number of maps.

In the original model (Itti et al., 1998), the scaling factor to be applied to a given
map X is defined by the square of the difference between map’s global maximum,
M(X), and the average of all its other local maxima, 7(X). The corresponding scaling
function multiplies the magnitude of each pixel by the computed factor:

N(X) =X (M(X) —m(X)). (5.1)

A similar approach has been proposed by Frintrop et al. (2005); Frintrop (2006). In
this case, the scaling function is defined by

W(X) = X//m(|X)], (5.2)
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where |m(X)| is the number of the map’s local maxima above a given threshold. The
threshold is by default 50% of the map’s global maximum (Frintrop, 2006).

Common to both methods is the use of local maxima information, which appeal-
ing it might be does not always embody the information intended to capture. Large
homogeneous structures for instance, such as the sky, generally encompass only a few
local maxima. In this situation, the sky would be undesirably considered highly con-
spicuous, despite its large foot-print in the whole image. A second aspect is that the
two analysed saliency models consider that all pixels contribute equally to the saliency
computation. However, excepting for extreme tilt/roll angles, the upper region of the
image has little relevant information for trail detection. As a consequence, without a
space-variant contribution to the final saliency map, feature maps that are only dis-
criminative in the lower part of the image, and consequently interesting for trail detec-
tion, would not be adequately promoted.

5.3.3.2 Novel Scaling Function

In the face of the aforementioned limitations of previous scaling functions for the task
of trail detection, a new one is herein proposed. Rather than considering only the
map’s local maxima when averaging, as it is done in A(-) (Equation 5.1), we propose
to use all pixels. Furthermore, the contribution of each pixel to the average is weighted
according to its distance from the top row.

Formally, let X(c,r) return the grey level of the pixel in column ¢ and row r of a
given map X. Let w(c,r) = \/r/h be the weight of pixel at position (c,r). The map’s
weighted average, m,, is thus given by

Z(C,V)GXX(Ca r) ’ W(C,l”)

mW(X) N Z(c,r)EXW(C7r>

(5.3)

and, similarly to function A((-) (Equation 5.1), the proposed scaling function, X(-),
takes the form

K(X) =X - (M(X) —m, (X)) (5.4)

Prior to scaling, maps are normalised to [0,1] amplitude interval, meaning that
M(X) =1 for all cases. To reduce computational cost, the proposed system uses im-

age operators over 8-bit images. An example of two conspicuity maps obtained with
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Figure 5.3: Scaling functions comparison. Each plot corresponds to the ROC curve obtained
with a given scaling function.

the proposed model is depicted in Fig. 5.2.

To quantitatively assess the proposed scaling function, we generated conspicuity
maps for the input images present in a test data set (Santana et al., 2010b). The two
conspicuity maps produced in each image are combined to produce a saliency map,
which is in turn thresholded to produce a pixel-wise trail /non-trail classification. The
resulting classification is subsequently compared against hand-labelled ground-truth.
This process is repeated for all images in order to obtain an average True Positive Rate
(TPR) and an average False Positive Rate (FPR). Varying the threshold between mini-
mum and maximum pixel magnitude we plot for each case a point in a TPR vs. FPR
graph. The interpolation between those points produces a Receiver Operating Charac-
teristic (ROC) curve.

Fig. 5.3 depicts the ROC curve for the proposed scaling function, X (-) (Equation 5.4),
as well as for its predecessors, A[(-) (Equation 5.1) and 7/(-) (Equation 5.2). These
curves show that the proposed scaling function consistently produces a better trade-
off between TPR and FPR. The small difference between the ROC curves could suggest
that only a small quantitative improvement was obtained with the proposed model.
However, the averaging procedure used to build the curves hides the fact that none of
the other two methods was able to consistently allocate higher levels of saliency to trail

regions than to the background, as often as the proposed one.

Fig. 5.3 also shows that all ROC curves are considerably above the line of no-
discrimination (y = x), meaning that saliency is correlated with trail location, an impor-
tant contribution by itself. However, the correlation is still lower that the one required

for high accuracy trail detection. That is, there is no single threshold on the saliency



5.3. PROPOSED MODEL 137

map that clearly segments the trail for all images in the data set. Thus, a higher level
analysis of the conspicuity maps is required. As will be shown, the swarm-based sys-
tem described in the following section is capable of providing it.

5.3.4 Pheromone Maps Computation

This section describes how the two pheromone maps, P! and P¢, are built from the
two conspicuity maps, C! and C€. For this purpose, a given p-ant, p,, is created and
associated to a given visual feature m € {I,C}. The other visual feature is represented by
m'. While being iterated for n times, p,, will move on C”, influenced by the pheromone
present in P”". While moving, this p-ant deploys pheromone in each position visited in
P” with a magnitude &, and a small portion of €, v, in P, After the iterations for this p-
ant, a p-ant associated to the other visual feature, p,,, is created and iterated following
the same procedure. Afterwards, the two p-ants are removed from the system and
the process is repeated n times, meaning that 2n p-ants are created and iterated (see
Algorithm 6).

Allowing p-ants to affect both pheromone maps enables loosely coupled cross-
modality influence, thus allowing each p-ant to exploit multiple cues indirectly, while
maintaining their simplicity. As it will be shown, the deployed pheromone is a func-
tion of p-ants’ sensations across their trajectories on their associated conspicuity maps.
Hence, it is influenced by the activity occurring in distant regions of the map. This
long-range spatial connectivity allows handling the potentially large size of trails in a
robust and parsimonious way.

The following Section 5.3.4.1 describes the p-ant’s creation process, whereas the

iteration process is described in Section 5.3.4.2.

5.3.4.1 P-Ant’s Creation

The chances of creating a p-ant p,, on a given location o,, of the conspicuity map C"
depends on the level of conspicuity at that location and on the level of pheromone
at the same location in the corresponding pheromone map, P". Hence, p-ants are pro-
gressively and probabilistically deployed where there are more chances of being a trail,
under the assumptions that: (1) trails tend to be conspicuous; (2) the trail has been

successfully detected in the previous frame (represented by the feedback provided by
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the delayed neural field state); and (3) that the pheromone accumulated by p-ants de-
ployed in the current frame builds-up mostly around the actual trail’s location.

By assuming that trails often start from the bottom of the image, p-ants are de-
ployed with a small randomly selected offset z € [0,0.1 - i] of the bottom of the con-
spicuity map in question, i.e., at row r € [h— z], where h is the height of the map!. This
random small offset reduces sensitivity to any noise potentially present at the map’s
boundaries.

In order to determine the column where p,, is deployed, a uni-dimensional vector

Vm

= (v§,...,vly) is first computed. The element v}’ of v"" refers to the average conspicu-
ity level of the pixels in a small window centred on column k and with a randomly

selected offset from the bottom row of the map, r:

v C(LJ)

Vk
7 OO

with 1€ [k—8,/2,k+8,/2],j € [r,r—8), (5.5)

where C™"(l, j) returns the conspicuity level in position (/,j), and §,, and 9§, are the
width and the height of the window, respectively. The same windowing process is
applied to build a vector for the pheromone field in question, u” = (ug, ..., u};). How-
ever, this time, element u}" corresponds to the maximum pheromone level found in the

window:

W' =max{P"(I,/)}; with [€[k—8,/2.k+8,/2,j€rnr—8] (5.6

where P"(l, j) returns the pheromone level in position (/, j). The max operator is em-
ployed to benefit those regions where the paths of p-ants overlap more often and con-
sequently where there is a higher consensus on the trail’s skeleton position. Using
these two vectors in the following test, which is repeated until it succeeds, the chances
of deploying a p-ant in a randomly selected column z; - w is as high as the conspicuity

and pheromone levels at the deployment region:

2 < (p-ug.w+(1 —p)-vg,w), (5.7)

where z; € [0,1] and z; € [0, 1] are numbers sampled from a uniform distribution each
time the test is performed and p is a weight factor used to trade-off the influence of both

pheromone and conspicuity information. By starting with a small value, pg, and by

'Rows are indexed in increasing order from the top to the bottom of the map.



5.3. PROPOSED MODEL 139

Rl 71 2|3 | 4| 9 |R,

Ri111] 6 15 10 | 12 | R;

Figure 5.4: P-ants’ sensory and action spaces. Regions surrounding current p-ant’s position,
0,,,, are segmented into a set of receptive fields, Ry = {1,6,11},Ry = {2,7},R3 = {3,8},R4 =
{4,9},Rs ={5,10, 12}, whose composing pixels are numbered as in the figure. If a given action
a € A is selected, then the next p-ant’s position will be the closest pixel to the p-ant, represented
by the pixels in bold.

linearly growing at each iteration by an amount Ap, p operates as an adaptive process,
compelling the system to move from a conspicuity-driven operation (exploration) to a

pheromone-driven operation (refinement/exploitation).

5.3.4.2 P-Ant’s Execution

Before specifying p-ants behaviours, it is necessary to specify their sensory and action
spaces. To reduce both sensitivity to noise and computational cost, the sensory input
is defined by five coarse receptive fields disposed around the p-ant’s current position,
R; ...Rs (see Fig. 5.4). For a given visual feature m and p-ant’s position 0, C" (R, 0,,,)
and P"(Ry,0,,,) return the average conspicuity and pheromone levels of the pixels con-
stituting receptive field Ry, respectively. Parameter 0,,, is used to transform the p-ant’s
centred receptive field onto the map’s frame of reference. To refer directly to the pixel-
wise conspicuity and pheromone levels at the p-ant’s position, C"(0,, ) and P"(o,,)
are used, respectively. An action a € A moves the p-ant to one of the five neighbour
pixels not behind the current p-ant’s position. The action space is thus defined by the
setA=1{1,2,3,4,5} (see Fig. 5.4).

At each iteration, of a maximum 1, p-ant p, executes a set of behaviours B =
{greedy, track, centre,ahead,commit }, which independently vote on each possible action
in A. Pollowing a typical approach of behaviour coordination (Rosenblatt, 1995), the
most voted action is the one taken by the p-ant. Table 5.1 summarises, for each be-
haviour, which regions in the neighbourhood of the p-ant are associated to the most
preferred action.
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In order to allow the system to operate with unstructured trails, these behaviours
are simple and make little assumptions regarding the trail’s structure. Each behaviour
exploits a specific trail’s shape or appearance a priori knowledge in order to partially
contribute to the goal of producing a p-ant’s trajectory representative of the trail skele-
ton. For instance, under the assumption that trails are somewhat monotonous struc-
tures, p-ants should move under the influence of some inertia. This is implemented by
having the commit behaviour voting more strongly on the action that is most similar to

the one selected in the previous iteration.

| Behaviour | Voting Preferences |

greedy Regions of higher levels of conspicuity, under the assumption that trails
are salient in the input image.
track Regions whose average level of conspicuity is more similar to the aver-

age level of conspicuity of all the pixels visited by the p-ant, under the
assumption that trails’ appearance is homogeneous.

centre Regions that maintain the p-ant equidistant to the boundaries of the trail
hypothesis being pursued. That is, the p-ant will prefer regions that are
closer to the centroid x,,, of the horizontal segment in the conspicuity
map where the current p-ant is. The segment is obtained by considering
all pixels, represented by the set S, , that are connected to the p-ant’s
current position, 0,,,, through a set of pixels sharing the same row and
similar, within a given margin {, conspicuity level of the former. See
Fig. 5.5 for an illustration.

ahead Upwards regions under the assumption that trails are often vertically
elongated.
commit Region targeted by the motor action at the previous iteration, under the

assumption that trails’ orientation tend to be monotonous.

Table 5.1: P-Ant behaviours for trail detection.

Formally, for a given p-ant p,,, behaviours are described as functions that return a
vote in the interval [0, 1] for each possible action a € A:

fgreedy(pm7a) = Cm(RmOpm), (5.8)

\%
ftrack(pmaa) =1- Cm(Raaopm) - Z |V— , (5.9)
veVp,

m |
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fcentre(pnba) = dpm : (6 . }[(_dpm) _a) s (5.10)
fahead(pmya) = 1_’3—;(1’, (5.11)

/ J—
fcommit(pmaa) =1- M (5.12)

4 ’

/
p

iteration (see Algorithm 6), V), is a list whose elements are scalars representing the

where #(-) is the Heaviside function, a, is the p-ant’s action selected in the previous

conspicuity level at each p-ant’s previously visited position, and d,,, is the normalised

m
o . __ col(0p,,)—col(Xp,,)
deviation of 0, to centroid x,,,, d),,, = 1S

coordinate of a given map position (see third row of Table 5.1 and Fig. 5.5).

, with col(-) returning the column

As will be shown, all these behaviours contribute for p-ants trajectories that closely
represent the trail’s skeleton. The absence of an explicit scoring function, which would
require a model-based imposition of constraints on the trail’s shape, hampers a post-
ranking of all deployed p-ants to determine the “best trajectory”. Moreover, not all
p-ants will be deployed on the trail and so not all are able to follow the actual trail. To

overcome these challenges two ingredients of the system are determinant.

The first ingredient comes in the form of positive feedback raising from the ampli-
fication of random fluctuations. With additive random fluctuations at p-ants actuation
level, those that are deployed off the trail will diverge, whereas p-ants deployed on the
trail will converge towards its vanishing point, thanks to the centre behaviour. Hence,
there will be higher concentrations of pheromone on trail regions. This happens be-
cause the presence of the trail tends to be a global constraint which is only felt by the
p-ants deployed onit. In a sense, the trail operates as an attractor for the self-organising
system.

The second ingredient is the use of stigmergy in the form of pheromone-based in-
teractions. By making p-ants attracted by high pheromone concentration regions, we
positively reinforce the difference between diverging and converging p-ants (symme-
try breaking). Hence, this second ingredient ensures that, along time, the structure
imposed by the presence of the trail on the centre behaviour is stronger than the effects

of random fluctuations. This effect is magnified by the fact that p-ants are deployed
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Figure 5.5: Illustrating example of key aspects of the centre behaviour. The dotted line repre-
sents the p-ant’s motion since the first iteration until the current one. The pixels composing the
thicker horizontal line define the set S. The p-ant will try to approach this line’s centroid x,,,,
represented by the white filled circle, which is deviated from the current agent’s position, 0,,,,
by |d,,, | pixels.

according to the level of pheromone already present in the pheromone maps. More-
over, the fact that robot forward motion tends to make the neural field skew towards
the bottom of the image allows regions of highest activity in further regions of the vi-
sual field more likely to invoke p-ants. The use of pheromone-based interactions has
the additional advantage of overcoming the brittleness of controlling p-ants based on
myopic behaviours. The local interruption of a trail, that could inhibit the centre be-
haviour from properly leading the p-ant along the trail, is overcome by having p-ants
progressively building a pheromone “bridge” over the interruption thanks to commit
and ahead behaviours.

In order to take these considerations into account, in each iteration a p-ant p,, se-
lects its action a,, by maximising the following utility function, which incorporates

behaviours’ votes, pheromone-based interactions, and random fluctuations:

ap,, = argmax(Z O fp(Pm,a) +P"(Rq,0p,) +Yq> , (5.13)
acA beB

where 0y, is a user defined weight accounting for the contribution of behaviour b € B
and v is the weight accounting for stochastic behaviour, being ¢ € [0, 1] a number sam-
pled from a uniform distribution each time the action is evaluated. To match the ran-
domness magnitude with the scale of the image, which is typically smaller for pixels
in upper regions of the image, the weight y starts with an initial value Yy and exponen-

tially decays by a constant factor 7y, at each iteration.
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In case an immediate loop is detected, namely, the p-ant moving recurrently from
one pixel to another, then the action for the current iteration is randomly selected. Fi-
nally, the p-ant’s position o,,, is updated according to the selected action. Algorithm 7
outlines the overall iteration process.

Algorithm 7: execute(-), p-ant’s execution pseudo-code.

Input: p-ant (p), conspicuity map (C™), pheromone map (P"), pheromone map of
other visual feature (P™), pheromone map without cross-modality and neural
field influences (P")
Output: updated pheromone maps, P, P", and P
Data: m,€,v are empirically defined constants.
/

a,, < 3 // default previously selected action is forward motion

2 initialise list whose elements will be scalars representing the conspicuity level at each
p-ant’s visited position, V), <0

ot

3 for m iterations do [execute p-ant p for 1 times]

4 use Equation 5.13 to obtain p-ant’s action, a,,,, based on C", P, V), , and a;,m
5 append conspicuity of the new p-ant’s position, V,, -V, U{C"(Rq,, ,0p,)}
6 use obtained p-ant’s action, a,,,, to update p-ant’s position, 0,,,

7 update P at pixel 0,,,, P"(0,,,) < P"(0,,,) +¢€
8 update P" at pixel o, P (0, ) < P (0,,) +€
9 update P™ at pixel 0,5 p" (0p,,) Pm/(opm) +v-€

/
Pm

10 store selected action, a
11 end

12 return (P P" P

5.3.5 Evidence Accumulation

Once p-ants” activity has ceased, the instantaneous saliency map, S, feeds a 2-D dy-
namic neural field F (Amari, 1977; Rougier and Vitay, 2006), which is a lattice of lat-
erally connected neurons. Its goal is to integrate evidence across time, to consider
competition between multiple focus of attention, and to promote perceptual grouping.
The dynamical characteristic of the neural fields, displayed in the form of inertia, is
the key element that enables information to be integrated across time. However, if not
properly handled, this property causes the field to smear when the robot moves.
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A way of avoiding this undesirable effect is to shift the neural field’s activity accord-
ing to the robot motion estimate by using asymmetrical kernels in the neurons (Zhang,
1996). However, the neural field being a representation of the environment through a
projection process and considering that the robot may incur in both rotation and trans-
lation, it is more straightforward and consequently effective to affect the neural field’s
activity directly, i.e., to consider the neural field’s state as an image to be transformed
with a warping operator. In this line, the following three steps explicitly compen-
sate the neural field for the camera motion engaged between the previous and current
frames (see Algorithm 6):

1. Estimate the homography matrix H that describes the projective transformation
between the current frame, I, and the previous one, I'. This step is detailed in
Section 5.3.5.1.

2. Obtain a motion compensated version of the previous neural field’s state by using
the estimated homography matrix, F < HF.

3. Update F with the pheromone map S. This step is detailed in Section 5.3.5.2.

5.3.5.1 Homography Matrix Estimation

To estimate the projective transformation H, a set of corner points (Tomasi and Shi,
1994) is first detected in the previous frame, I'. These points are then tracked in the
current frame, I, with a pyramidal implementation of the Lucas-Kanade feature tracker
(Bouguet, 1999). The resulting sparse optical flow is then used to estimate the projec-
tive transformation relating both frames, i.e., the 3 x 3 homography matrix H, such
that:

v, = Hu;, (5.14)

where u; is a corner point found in I and u/ its correspondence in I'. Due to noise in
the tracking process, the homography matrix is calculated as the least-squares solution
that minimises the back-projection error (Bradski and Kaehler, 2008). This process as-
sumes that distortion introduced by the camera lens into the input images has been
corrected. It also assumes that either: (1) the terrain in front of the robot is planar or (2)

the camera was only rotated, and not displaced, between frames. None of these two
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constraints can be strictly ensured in off-road environments. Still, in most situations
the terrain is somewhat planar and the attitude of the camera changes more signifi-
cantly than its position. Experiments have shown that the co-satisfaction of these two
relaxed constraints is sufficient to maintain a robust operation. If a minimum of four
correspondences between corner points is not found, the homography matrix is set to
the identity matrix, H = diag(1,1,1).

5.3.5.2 Neural Field Update

The neural field F is a 2-D lattice of w X h neurons, each one corresponding to one pixel
of the saliency map. The neurons have “Mexican-hat”-shaped lateral coupling, im-
plemented by Difference of Gaussians (DoG). This inter-neuron coupling helps in the
formation of a coherent focus of attention (Rougier and Vitay, 2006). On the one hand,
activated neurons excite their neighbours, thus promoting perceptual grouping. On
the other hand, activated neurons tend to inhibit distant ones, thus reducing ambigui-
ties in the focus of attention.

Formally, the connection’s weight w(x,x’) between a neuron in position x and a
neuron in position x’ is given by a DoG function of the Euclidean distance between
both. In addition to lateral connectivity, the neural field also has afferent interactions
with pheromone field S. The weight d(x,y) of a connection between an element of S
in position y and a neuron of F in position x is given by a Gaussian function of the
Euclidean distance between both. This operation enlarges neurons’ receptive field to
reduce sensitivity to noise.

In continuous time, the average membrane potential of a given neuron at position

x can now be expressed by the nonlinear integro-differential equation

raF(a’t"t ) ¥+
/w(x,x')f (F(x',1)) dx'+
/d(x,y)S(y,t)derw, (5.15)

where f(x) = x in this paper, T is a time constant and y = 0 is the neuron threshold. For
numerical integration, and assuming a delay between consecutive frames, the Euler
forward method is used to obtain an approximation of the neural field, which in matrix
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form results in the rearranged expression

F F+t(-a-F+b- (DoGe%, «F) +c-(G& «8)), (5.16)

where: * is the convolution operator; a, b, and c are empirically defined weights spec-
ifying the contribution of each term; and DonQ{%2 = Gléll — G](%, with GK as a Gaussian
kernel of size k x k and width o.

This matrix-based formulation of the neural field results in a synchronous update
policy. That is, all neurons are updated based on the previous frame’s network state.
The problem with this update policy is its potential to induce undesirable activity os-
cillations in face of symmetries at the sensory input. However, due to robot motion,
these singular configurations are unlikely to occur during a relevant amount of time.

The dynamical characteristic of the model in conjunction with the long-range lateral
inhibition results in the following property: the higher the number of frames with the
same spot with high activity the more difficult it is, due to lateral connectivity, for
other regions to become activated. Hence, transient distractors are actively inhibited
once a large evidence on the trail location is accumulated (see Fig. 5.6). That is, focus

of attention’s spatio-temporal competition is an implicit property of the system.

5.4 Experimental Results

5.4.1 Experimental Setup

An extensive data set of 25 colour videos, encompassing a total of 12023 frames with a
resolution of 640 x 480, has been obtained with a hand-handled camera (see Fig. 5.7).
Experimental results were obtained running the model off-line. The camera was car-
ried at an approximate height of 1.5m, at an approximate speed of 1 ms~!. To validate
the ability of the model to bring the robot back on trail, the camera was sporadically
moved off trail. The considerable level of induced camera oscillations, typical in off-
road robots, generated blurred and consequently noisy images?.

The trail detector was implemented without code optimisation, and tested in a
Core2 Duo 2.8 GHz, running Linux, and using OpenCV (Bradski and Kaehler, 2008)
for low-level routines.

2Videos with the proposed model’s output are available in the authors’ website (Santana et al., 2010c)
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(b) S(190) (c) F(190)

(e) S(220) (f) F(220)

(h) S(250) (i) F(250)

() +=280 (k) S(280) (1) F(280)

Figure 5.6: Example of neural field competition in a situation represented by four ordered
frames obtained from video 11 of the tested data set (see Fig. 5.7). Each row includes the
saliency map (centre), S, and the neural field (right), F, for a given input image (left). The
redness of the blobs overlaid in the input images corresponds to the activity level of the neural
field above 0.85, representing the model’s estimate of the trail’s location. The trail is visible for
several frames prior to frame 220, thus eliciting high level of activity in the neural field at frame
190. Although the transient appearance of a trail-like grass segment in the bottom-left region
of the input image is felt in the pheromone field between frames 220 and 250, this distractor
is actively inhibited in the neural field. The outcome is that the system’s output, i.e., the red
overlay on the input image, steadily segments the trail from the background.
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Figure 5.7: Data set representative frames. Each image corresponds to one video whose ID is
given by increasing order from left to right and top to bottom. The redness of the blobs overlaid
in the images correspond to the activity level of the neural field above 0.85, representing the
model’s estimate of the trail’s location.

The following describes the model’s parameterisation used in the experiments. The
number of p-ants per map, n, has been empirically defined to 20. A smaller number
may not ensure convergence, whereas a larger one did not exhibit considerable im-
provement in the tested data set. The same reasoning applies to the number of iter-
ations applied to each p-ant, 1, which has been set to 50. The amount of pheromone
deployed by a given p-ant on its associated pheromone map (see Section 5.3.4), €, has
been set to 0.008.

The small portion of € deployed in the other pheromone map (see Section 5.3.4),
v, has been set to 0.3. These values should not be set too high to avoid pheromone

saturation, which would inhibit the emergence of collective behaviour. The ratio of the
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robot motion compensated neural field used to initialise the pheromone maps at the
onset of each frame (see Section 5.3.2) has been set to A = 0.1.

The contribution of each behaviour is Ogeeqy = 0.45, Oyrger = 0.35, Ocenrre = 0.10,
Oahead = 0.05, and Oleopmir = 0.05. By making Olgreedy > Ocentre + Olahead + Ocommir, We €n-
sure that p-ants exploit more strongly the conspicuity cue than the a priori knowl-
edge on the expected trail’s shape. This follows from the observation that trails in
natural environments are highly unstructured, still, some a priori knowledge helps
p-ants from being stuck or deviated by distractors in the environment. With a rela-
tively high o4k, the collective influences considerably the individual to further re-
duce the problems associated with noise and distractors. Note however that making
Otrack < Olgreedy + Ocentre + Qahead + Ocommir is important to ensure that self-organisation
occurs under exogenous influence; otherwise, a non-situated consensus among p-ants
could be reached.

The margin { used to centre the p-ant on the segment it is currently on has been
set to 0.06. The width, §,,, and the height, §,, of the window used to create p-ants in
Section 5.3.4.1 have been set to 10 and 20, respectively. The initial values of the random
factor p (see Equation 5.7), po, and its increment at each iteration, Ap, have been set to
0.3 and 0.02, respectively. The initial values of the random factor v (see Equation 5.13),
Yo, and the rate of its exponential decay at each iteration, y;, have been set to 0.4 and
0.02, respectively.

The neural field free parameters (see Section 5.3.5.2) have been empirically defined,
61 =4.25,060=14.15,063=2.15,k; =25,k =91, k3=11,a=2,b=2.5,c=8,and T1=0.03.
The system showed robustness to small variations around these values as long as the

proportions are roughly maintained.

5.4.2 Results

This section presents quantitative results obtained with the proposed model in the pre-
sented data set. The trail is considered correctly detected if the biggest blob of neural
tield activity above 0.85 is fully localised within the trail’s boundaries. In case of am-
biguity, i.e., the co-occurrence of two similar blobs, the neural field, F, is used to as-
sess which blob is being reinforced, and consequently should be taken as the output.
Fig. 5.7 shows key frames in each tested video, where it is possible o see that besides

localising the trail, the red blob is also clearly oriented with the trail. Note however
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Classical model Proposed model
S« 3(Ch+1(CcY) S« 1(P)+1(PO)
Aggregate detection rate [%] 23.97+27.73 91.32+11.39

Table 5.2: Aggregate trail detection results in the 25 videos data set. Aggregate detection rate
(mean = standard deviation) computed as the average of the detection rates obtained per video.
Refer to Table 5.4 in Appendix A for details.

that, for an automatic system it may be more useful to use directly the neural field
activity level. A typical use would be to consider that the higher the activity in the
neural field the higher the traversability of the terrain. The obtained results support
this possibility - see the high correlation between neural field activity and trail location
in Fig. 5.2, Fig. 5.6, and Fig. 5.10.

Fig. 5.8 shows a set of input images obtained from Rasmussen et al. (2009) as well as
their corresponding conspicuity maps, computed with the scaling function proposed
in Section 5.3.3.2. It is observable that at least one of the conspicuity maps tends to seg-
ment the trail from the background. However, the trail is not always represented by
the most conspicuous segment. In these cases, the typical blend of conspicuity maps
used to produce the final saliency map, from which the object of interest is directly
captured (Itti et al., 1998; Frintrop et al., 2005), is prone to fail. The first hypothesis
being tested in this work is that the intermediate pheromone maps are able to intro-
duce the required added value to ensure robust operation in these situations. Table 5.2
confirms this hypothesis. That is, in the tested data set, the proposed swarm-based
saliency model, S < %(P’ )+ %(PC), predicts the trail location 3.8 times more than a clas-
sical saliency model based only on the conspicuity maps, S + £(C!) + 3(CC). For the
sake of fair comparison, the neural field F, which is fed by S, is used to generate the
output in both cases. To handle the probabilistic nature of the p-ants behaviours, the
results refer to the average of 5 runs performed in each video.

The second hypothesis being assessed is whether the proposed model exhibits ac-
curacy and computational efficiency enough to ensure robust trail following in off-road
environments, which is confirmed by the average success rate of 91.32 % (see Table 5.2)
and by the 20Hz operation (see Table 5.3). Remarkably, the swarm-based pheromone
maps computation, which is the only trail-specific operation, takes only 2ms on aver-
age per frame. The timing reported for the neural field update also includes optical

flow computation, homography estimation and neural field wrapping.
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- > £y i

Figure 5.8: Intensity, C! (middle row), and colour, C¢ (bottom row), conspicuity maps com-
puted with the scaling function proposed in Section 5.3.3.2, for a set of images (top row) ob-
tained from Rasmussen et al. (2009). These figures show that the trail is usually conspicuous
and segmented in at least one of the conspicuity maps.

Conspicuity maps Pheromone maps
computation computation

Time [ms] 12 36 2 50

Neural field Total

Table 5.3: Computation time.

These results are more stringent if the difficulty of the tested data set is taken into
account. To the best of our knowledge no previous work has been tested against a data
set with trails simultaneously as narrow, unstructured, and discontinuous as the ones
herein considered. Moreover, differently from previous work, the model succeeds in
situations where the trail is not starting from the bottom of the image (e.g., Fig. 5.1(a)).

It is also worth noting that in 7 of the 25 videos, the proposed model shows 100 %
success rate, for all the 5 five runs. Video 5 is accounted as a long run, with almost
5 minutes length, composed by more than 2800 frames. Along this video, besides be-
ing often interrupted and highly unstructured, the trail also exhibits a variable width.
Moreover, the terrain surrounding the trail is also heterogeneous and highly popu-
lated with potential distractors, such as trees and bushes. The 85 % success rate of the

model in this video clearly shows its robustness in demanding situations. Failure in
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5% of the experiments refer to situations where the trail is noticeable in the neural
tield, but with similar activation of non-trail spots. In these cases, as in other lower
performance videos, ambiguity between trail and surroundings could be reduced by
considering additional perceptual modalities, such as texture and depth. Nevertheless,
it should be noticed that many of the observed failures are in part caused by extreme
camera rotations, which hampers a proper neural field’s motion compensation. With-
out a proper motion compensation in these transient situations, the neural field pro-
vides p-ants with misguiding information on the most likely trail location. The result
is a strong competition between p-ants on and off the trail, i.e., between evidence and

conspicuity information, which lasts for a few frames until symmetry is broken.

When the trail is highly conspicuous in the environment, as most often occurs,
ambiguity is rarely present in the system’s output. When this assumption fails, and
distractors are scattered, the model is still be able to frequently perform correctly, as
demonstrated by the quantitative results. This robustness owes to the synergistic op-
eration between neural field inertia and p-ants’ sensorimotor coordination capabilities,
which allow an opportunistic exploitation of the trail-background prioritised segmen-

tation present in the conspicuity maps.

In a second experiment, the proposed model was tested on an additional set of 15
images (see Fig. 5.9), employed by Rasmussen et al. (2009) to assess the ability of their
model to perform without the support of 3-D data. In this second data set, our model
only fails to determine the trail location in the image depicted in the bottom-right of
Fig. 5.9. The cause for this failure is that without a symmetry constraint it is impossible
to define as non-trail the region signalled by the system. This could be easily overcome
by explicitly adding a symmetry behaviour to the p-ants. However, the more specialised
the system gets, the less robust it is in the face of unforeseen trails. Fig. 5.10 depicts
the successful output of the proposed model in a situation where the ability to operate
without hard assumptions on the trail’s shape or appearance is key.

The paths present in these images being well structured, uninterrupted, and large,
are aligned with the assumptions made by Rasmussen et al.. That is, these paths have
a triangular shape and good contrast symmetric borders. As a result, the model-based
work of Rasmussen et al. successfully determines the location of the path in all images.
However, being model-free and able to exploit both local and global contrast, as is the
case of our model, is important to properly handle less structured paths, such as the

ones considered in the first data set (see Fig. 5.7) or in situations as the one in Fig. 5.10.
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Figure 5.9: Results of the proposed model on the 15 images data set obtained from (Rasmussen
et al., 2009). The red blob corresponds to the proposed model’s output after 50 frames running
on the same image. This high number of frames aims at demonstrating that the system actually
converges towards a good solution. The redness of the blobs overlaid in the images correspond
to the activity level of the neural field above 0.85, representing the model’s estimate of the trail
location.

g

[ <

(a) Input image, 1 (b) Colour conspicuity map, cc (c) Neural field, F

Figure 5.10: Proposed model operating on an image of trail with non-monotonous shape and
not starting from the bottom, taken from a high vantage point. The state of the neural field after
50 frames running on the same image clearly shows the ability of the model to stably determine
the location of the trail.

5.5 Conclusions

This paper proposed a swarm-based visual saliency model capable of embedding a
priori knowledge on the on the overall layout of the object being sought. The model
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was shown to perform well and fast on the difficult task of localising unstructured
trails in natural environments. In particular, the model exhibited 91 % of success rate
at 20Hz against a highly demanding and heterogeneous data set.

These results owe to large extent to the multi-agent design, which enables a robust
self-organisation of visual search, perceptual grouping, and multiple hypotheses track-
ing. In other words, the resulting system solves a complex problem in a bottom-up
way. The first outcome is a low computational footprint, which in turn promotes faster
robot motion. The second outcome is that, being purely bottom-up, the system does
not rely on explicit internal representations, i.e., a priori models, such as the “triangle”
concept. Besides fostering robustness in unstructured environments, this is also an
important asset if trail detection is expected to emerge as a product of incremental self-
supervised learning. In this line, an additional advantage of being purely bottom-up
is that the system’s design space is restricted to the simple perception-action rules, i.e.,
behaviours, encapsulated in the set of homogeneous agents. Given their simplicity, it
should be possible to substitute these rules by simple recurrent neural networks, thus
confining the design space to a small set of weights. Hence, the proposed approach
paves the way to feasible learning of complex skills.

Another key and novel aspect of the model is that by using visual saliency both
local and global cues on the trail location are naturally exploited. That is, saliency
maps provide contrast information not only between the trail and its surroundings,
but also between the trail and the overall scene. Typically, this is the case because
the appearance of the materials composing trails (e.g., soil) differ from the appearance
of the materials composing its surroundings (e.g., grass) and the remainder elements
present in overall scene (e.g., trees, sky). The complementarity of both local and global
contrast information results in a robust handling of less structured trails.

The high success rate across the heterogeneous data set shows that the selected
parameterisation is not overfit to a specific environment, highlighting its robustness.
Nonetheless, an automatic p-ant’s behaviour generation and parameterisation is de-
sirable, and will be exploited in future work. Furthermore, on-line specialisation and
generalisation of p-ants’ behaviour can also be addressed for improved performance
and robustness, respectively.

Other perceptual modalities, such as texture and depth, and even alternative con-
spicuity computation methods can also be considered. Additionally, we plan to test

the swarm-based saliency model on other visual search tasks. Related to this, the hy-
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pothesis partially analysed in this article regarding the usefulness of visual saliency as
a general purpose prioritised image segmentation process should be further validated.

A limitation of the proposed model is its ability to handle bifurcations in the trail.
To handle this limitation we expect to explicitly track multiple blobs of activity in the
neural field. The selection of which blob to track can be hinted by feedback of the
robot’s action selection process. This approach has been explored by us in the context
of swarm-based obstacle detection (Santana and Correia, 2010a). The parallel nature of
conspicuity maps, neural field, and swarm-based saliency will be exploited in future
implementations on parallel hardware, such as Graphics Processing Units (GPU).

Finally, the obtained results add to previous evidence on the usefulness of visual
attention for the control of off-road robots (Santana and Correia, 2010a, 2011; Santana
et al., 2011). The proposed method also contributes to the emerging swarm cogni-
tion field, which attempts to uncover the basic principles of cognition, i.e., adaptive
behaviour, recurring to self-organising principles, mainly those exhibited by social in-
sects (Santana and Correia, 2010a, 2011; Trianni and Tuci, 2010).
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5.6 Appendix A: Results Detailed

Video ID Nr. of Classical model Proposed model
frames detection rate [%] detection rate [%]
1 278 44.60 100.004+0.00
2 204 61.76 100.00 £ 0.00
3 422 4.74 85.88 +2.24
4 135 0.00 100.00 £ 0.00
5 2854 32.48 86.10£0.87
6 186 27.96 99.894+0.24
7 121 0.00 100.00£0.00
8 124 0.00 100.00 £ 0.00
9 309 18.77 890.77+1.46
10 147 49.66 94.154+0.78
11 386 0.00 100.004+0.00
12 158 0.00 68.48 +-9.94
13 134 40.30 98.96 +1.25
14 676 44.23 99.054+0.08
15 683 26.50 81.93+1.23
16 770 4.55 76.96 +1.55
17 403 34.99 94.394+0.92
18 335 97.01 99.04 £+0.13
19 230 84.78 97.914+0.99
20 439 6.38 55.634+0.37
21 490 3.67 97.88 +0.47
22 230 10.87 100.00 £ 0.00
23 600 6.00 93.374+0.76
24 802 0.00 85.26 £0.88
25 907 0.00 78.324+1.01

Table 5.4: Detailed trail detection results obtained with a classical model, S « 1(C!) + 1(CC),
and with the proposed model, S +— %(P/) + 3 (PC), in the 25 videos data set. To handle the probabilistic
nature of the p-ants behaviours, the results for the proposed model (mean + standard deviation ) refer to

the average of 5 runs performed in each video.
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Conclusions and Future Work

6.1 Conclusions

This thesis is a pioneering work on the use of visual attention and swarm cognition for
the problems of robotic terrain perception and local navigation on off-road environ-
ments. The experimental validation of the proposed models bears phenomenological
support to the two main hypotheses raised in this thesis: (1) parsimony, robustness,
and performance of off-road robots is improved if visual attention mechanisms are
employed in their control systems and (2) the synthesis of self-organising robot cogni-
tive behaviour is facilitated if the social insects collective behaviour metaphor is used

as design pattern.

The positive results obtained with visual attention for obstacle and trail detection,
as well as for local navigation, confirm the first hypothesis. The positive results ob-
tained from the extensive use of swarm models for trail detection and local naviga-
tion also bear support for the second hypothesis. These models rely heavily on self-
organising properties, which endow the system with robustness in the face of unfore-
seen situations and allow complex solutions to emerge from the interaction of simple,

and thus fast to compute, elements.

Different from typical swarm and adaptive behaviour related research, the pro-
posed models were validated on “dirty” real life problems and assessed from an en-
gineering performance-oriented perspective, as is typically done in robotics and com-
puter vision related research. Although this approach is a limited theoretical effort,

it permits a better analysis in context. This methodological option had the additional

157
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benefit of generating the following by-products of the main research questions, which

are important contributions themselves:

¢ A method for the detection of obstacles with more than 10cm height up to a range
of 20m on uneven terrain at 5Hz. Owing greatly to the extensive use of visual at-
tention mechanisms, a considerable performance improvement over well-known

alternative obstacle detection techniques was attained.

* A method for local navigation of stereo-based off-road robots, which owing to its
self-organising visual attention mechanism only requires an average of 0.9% of
the visual input to be analysed. The system, which includes perception, visual
odometry, mapping, and action selection, performs at 10Hz, which is sufficient
for typical off-road robots.

¢ A method for detection of trails in natural environments with the ability of ex-
hibiting 91 % success rate at 20Hz. Relying on self-organising visual saliency
computation, the method was shown to perform in situations where previous
trail detectors fail, such as when the trail does not emerge from the lower part of
the image or when it is considerably interrupted. This means that the model is
well fit to find trails and not only to follow them.

Finally, from all these results it is possible to conclude that this thesis contributed
to: (1) make field robots more parsimonious and more robust, and thus, closer to being
truly useful in economically and socially important tasks; (2) boost swarm cognition as
a tool for the synthesis of embodied cognitive agents.

Part of the work described in this thesis was one of the contributions to the first
workshop in swarm cognition (Santana and Correia, 2009) and to a journal special issue
dedicated to the topic (Santana and Correia, 2011). Moreover, this thesis describes one
of the first developments on a practical application of swarm cognition and, to our best

knowledge, the first in use on an embodied autonomous system.

6.2 Future Work

Motivated by the good results obtained with the proposed pioneer work on the syn-
thesis of embodied swarm cognition, we plan to further explore the theme in both
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theoretical and experimental domains. This is a recent paradigm whose potential to
substitute processing previously done by others, such as neural networks, is substan-
tial but still demanding further validation. An important research avenue refers to the
evaluation of which situations the swarm cognition paradigm is advantageous over
others. This is a broad question that may elicit different answers depending on the
application, i.e, as an adaptive behaviour synthesis or modelling tool.

It is also important to further understand which metaphors from the social insects
collective behaviour domain, in addition to ant foraging, are useful in addressing the
different facets of cognition. Moreover, a design methodology still needs to be de-
veloped. This methodology should include a systematic way of: (1) decomposing an
arbitrary cognitive behaviour onto a set of homogeneous agents; (2) integrating ade-
quate sensorimotor coordination mechanisms on them; (3) selecting the social insects
metaphor that best fits the problem at hand and migrating its self-organising proper-
ties to the population of agents; (4) quantifying and qualifying the resulting cognitive
behaviour.

An advantage of considering swarm-based solutions is the potential to exploit com-
putational parallel technologies. That is, the computational models being already par-
allel by design, match directly with a parallel architecture. As a consequence, a poten-
tial future work is the integration of all contributions into a single framework capable
of running on a parallel machine, such as a GPU.

The system’s overall behaviour being bottom-up emerges from the interaction of
simple, homogeneous, elements. Hence, this approach may enable learning to occur
in a well specified low dimensional space. In this line, the way the behaviour of each
p-ant can be learned from experience will be pursued. A fitness function to be studied
in the case of the local navigation problem is the inverse of the action selection’s time to
convergence. This would drive the learning process to generate attention policies capa-
ble of operating on a by-need basis. In the face of slower action selection mechanisms,
the perceptual process cannot benefit from a feedback as frequent as the one consid-
ered in this thesis. In this case, p-ants should be able to infer, from learning, the action
selection’s feedback between updates. Conversely, when the time available for p-ants
to operate is highly constrained, these could cast estimates of obstacles locations, also

from learning, given what they have found meanwhile.

In the trail detection model p-ants should also be able to learn objects co-occurrence

contextual information to guide their operation. For instance, the presence of some-
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thing similar to a “tree” might suggest that trails are lower on the image. de Croon
and Postma (2007) uses this type of a priori knowledge to guide an individual agent in
the task of object detection, but such an approach has not been used in a swarm-based
model.

In an integrated swarm solution, obstacle detection can guide trail detection p-ants
towards feasible regions of the image space and vice-versa. A rough 3-D structure
of the scene can also be obtained from monocular cues (Michels et al., 2005; Saxena
et al., 2008), and from that, one can infer the trail’s most likely location. The other way
around should also be possible: the trail detector’s output is another monocular cue
that can be used to infer the 3-D structure of the scene.

The 3-D structure inferred from monocular cues can be used to overcome the lim-
itations of stereo-vision in texture-less surfaces and poor lighting conditions (Saxena
et al., 2008). Such an improvement is important for the stereo-based developments of
this thesis, such as the saliency-based hybrid obstacle detector presented in Chapter 2.
The developments carried out in this detector will be migrated to the swarm-based
local navigation model presented in Chapter 4. A possibility is to move from a single
to a couple of coordinated swarms, one composed of p-ants applying the small ob-
stacle detector and another composed of p-ants applying the large obstacle detector.
The computational cost of each detector must be reflected in the cardinality of the cor-
responding swarm. To verify whether the swarm-based approach for trail detection
generalises to other perceptual tasks, a third swarm capable of determining which de-
tected obstacles are false positives (e.g., tall and dense vegetation) can be introduced.

6.3 Dissemination

This section lists the set of publications related to the work described in this disser-
tation (see Section 6.3.1) and additional work carried out by the author during the
PhD period (see Section 6.3.2), mostly in the context of the project AMI-02 for the Por-
tuguese Ministry of Defence. This project aimed at the development of an autonomous
robot to support humanitarian demining operations. The author was responsible for
the design and development of the autonomous robot (see Fig. 1.1), which was also
used for the PhD experimental work.

The work developed by the author will be continued in three different projects. One
is an accepted UE-FP7-ECHORD project, whose goal is to develop an aerial-aquatic
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robotic team for monitoring fluvial environments. Another is a national funded QREN
ongoing project for the development of off-road surveillance robots. In a third national
funded QREN project we expect to exploit swarm cognition models in the context of

surveillance sensor networks.

6.3.1 Publications
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e P Santana, M. Guedes, L. Correia, and J. Barata. Stereo-based all-terrain obstacle
detection using visual saliency. Journal of Field Robotics, 28(2):241-263, 2011.

¢ P. Santana and L. Correia. Swarm cognition on off-road autonomous robots.
Swarm Intelligence, 5(1):45-72, 2011.

¢ P Santana and L. Correia. A swarm cognition realization of attention, action
selection and spatial memory. Adaptive Behavior, 18(5):428-447, 2010.

Submitted Journals

¢ P Santana, N. Alves, L. Correia, and J. Barata. Finding natural trails with swarm-based

visual saliency. Submitted to Journal of Field Robotics.

Conference Proceedings

e P. Santana, L. Correia, M. Guedes, and J. Barata. Visual attention and swarm
cognition towards fast and robust off-road robots. To appear in Proceedings of the
IEEE International Symposium on Industrial Electronics (ISIE). IEEE Press, 2011.

¢ P. Santana, N. Alves, L. Correia, and ]. Barata. Swarm-based visual saliency for
trail detection. In Proceedings of the IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS), pages 759-765. IEEE Press, Piscataway, 2010.

¢ P Santana, M. Guedes, L. Correia, and J. Barata. A saliency-based solution for
robust off-road obstacle detection. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3096-3101. IEEE Press, Piscataway;,
2010.
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P.Santana, N. Alves, L. Correia, and J. Barata. A saliency-based approach to boost
trail detection. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 1426-1431. IEEE Press, Piscataway, 2010.

¢ P. Santana, M. Guedes, L. Correia, and J. Barata. Saliency-based obstacle detec-
tion and ground-plane estimation for off-road vehicles. In Proceedings of the In-
ternational Conference on Computer Vision Systems (ICVS), pages 275-284. Springer-
Verlag, Berlin, 2009.

e P. Santana and L. Correia. Swarm-based active vision. In V. Trianni and E. Tudi,
editors, In Proceedings of the Swarm Cognition Workshop, held at the 31st Annual
Meeting of the Cognitive Science Society, 2009.

¢ P. Santana, P. Santos, L. Correia, and J. Barata. Cross-country obstacle detection:
Space-variant resolution and outliers removal. In Proceedings of the IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 1836-1841. IEEE
Press, Piscataway, 2008.

e P. Santana, C. Candido, P. Santos, L. Almeida, L. Correia, and J. Barata. The Ares
robot: case study of an affordable service robot. In Proceedings of the European
Robotics Symposium (EUROS), pages 33-42. Springer-Verlag, Berlin, 2008.

¢ P Santana and L. Correia. Improving Visual Odometry by Removing Outliers
in Optic Flow. In Proceedings of the Conference on Autonomous Robot Systems and
Competitions (Robotica), pages 117-122. 2008.

Submitted Conference Proceedings

e P Santana, R. Mendonga, L. Correia, and J. Barata. Swarms for robot vision: the case
of adaptive visual trail detection and tracking. Submitted to European Conference on
Artificial Life (ECAL). MIT Press, 2011.

6.3.2 Additional Publications

Journals

e P Santana, J. Barata, and L. Correia. Sustainable robots for humanitarian demi-
ning. International Journal of Advanced Robotics Systems, 4(2):207-218, 2007.
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Book Chapters

P. Santana, L. Correia, and J. Barata. Locomotion and localisation of humanitarian
demining robots. In M. Habib and Y. Baudoin (Eds.), Using Robots in Hazardous
Environments: Landmine Detection, de-Mining and Other Applications. Woodhead
Publishing Ltd., 2010.

P. Santana, L. Correia, and J. Barata. Developments on an affordable robotic sys-
tem for humanitarian demining. In M. Habib (Ed.), Humanitarian Demining, Inno-
vative Solutions and the Challenges of Technology, pages 263-288. I-Tech Education
and Publishing, Vienna, Austria, 2008.

Conference Proceedings

P. Santana, C. Santos, D. Chainho, L. Correia, and J. Barata. Predicting Affor-
dances from Gist. In Proceedings of the International Conference on Simulation of
Adaptive Behavior (SAB), pages 325-334. Springer-Verlag, Berlin, 2010.

C. Candido, P. Santana, L. Correia, and ]. Barata. Shared control of a pan-tilt cam-
era on an all-terrain mobile robot. In Proceedings of the IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), pages 177-183. IEEE
Press, Piscataway, 2008.

V. Santos, P. Santana, L. Correia, and ]J. Barata. Teleoperation mechanisms in a
multi-agent system. In Proceedings of the IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 170-176. IEEE Press, Piscat-
away, 2008.

P. Santana, M. Salgueiro, V. Santos, and ]J. Barata. A Knowledge-Based Compo-
nent for Human-Robot Teamwork. In Proceedings of the International Conference on
Informatics in Control, Automation and Robotics (ICINCO), pages 228-233. INSTICC
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