
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Integration of Active Systems for a Global Chassis Control Design / Tota, Antonio. - (2017).
Original

Integration of Active Systems for a Global Chassis Control Design

Publisher:

Published
DOI:10.6092/polito/porto/2675382

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2675382 since: 2017-06-30T10:47:37Z

Politecnico di Torino



Doctoral Dissertation

Doctoral Program in Mechanical Engineering (29thcycle)

Integration of Active Systems for a

Global Chassis Control Design

By

Antonio Tota
******

Supervisor(s):

Prof. Mauro Velardocchia, Supervisor

Doctoral Examination Committee:

Prof. Giuseppe Carbone, Referee, Università degli Studi di Cassino

Prof. Alessandro Gasparetto, Referee, Università degli Studi di Udine

Prof. Enrico Ravina, Università degli Studi di Genova

Prof. Giuseppe Quaglia, Politecnico di Torino

Prof. Vladimir Viktorov, Politecnico di Torino

Politecnico di Torino

2017



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my

own original work and does not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Antonio Tota

2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D. degree

in the Graduate School of Politecnico di Torino (ScuDo).



Ai miei nonni,

Antonio e Michele

e alle mie nonne,

Ida e Rosa



Acknowledgements

La presente tesi di dottorato rappresenta il risultato finale di un lungo ed impegnativo

percorso di ricerca durato tre anni, che non sarebbe stato tale senza il supporto, la

collaborazione e l’aiuto di molte persone alle quali vorrei rivolgere i miei più sinceri

ringraziamenti.

Il percorso universitario rappresenta per tutti una prova impegnativa e piena di osta-

coli durante la quale bisogna imparare a conoscere se stessi ed il mondo che ci circonda,

ma le oltre 200 pagine raccolte in questa tesi non basterebbero da sole a descrivere a

pieno il sostegno e l’aiuto che ogni figlio/fratello vorrebbe ricevere dalla propria famiglia

per il raggiungimento di obbiettivi personali e traguardi fondamentali per la propria

vita. Io sono riuscito ad affrontarlo grazie alla presenza delle tre persone più importanti

della mia vita: Benedetto, Loredana e Giuseppe Luca. Loro, che mi sono stati vicini

anche quando ero lontano migliaia di chilometri dalla nostra amata/odiata Taranto, mi

hanno trasmesso la forza per crederci sempre e la volontà di andare avanti senza mai

guardare indietro. Mio padre Benedetto mi ha insegnato il rispetto per se stessi e per

gli altri aiutandomi nelle scelte più difficili: sono estremamente fortunato di ricevere i

suoi consigli. Mia madre Loredana è riuscita a rassicurarmi e a rasserenarmi durante

i momenti più tristi e difficili, senza mai stancarsi di ripetere quanto fosse importante

non sottovalutare i traguardi già raggiunti e cercando di spronarmi per raggiungerne

degli altri. Giuseppe Luca, invece, non è più il fratellino minore da proteggere, ma una

persona responsabile ed autonoma capace di gestirsi la vita ed in grado di trasmettere la

sua sicurezza anche ad un fratello sbadato e disorganizzato come me, concedendomi

talvolta anche le sue note doti culinarie. Spero che i sacrifici fatti e gli obbiettivi raggiunti

durante questi anni vi renderanno orgogliosi e fieri di me.

Il lavoro di ricerca non sarebbe stato possibile e realizzabile senza la guida e la

supervisione del Prof. Velardocchia che, con grande passione e fiduciosa aspettativa,

insieme al Prof. Vigliani e all’Ing. Galvagno, conduce interessanti progetti di ricerca

all’avanguardia nell’innovazione scientifica ed in collaborazione con importanti aziende

legate al mondo automotive, per rimanere sempre al passo con le realtà industriali.



v

Un immenso ed impagabile ringraziamento è riservato per la mia amata Agathe

che, oltre ad aver sopportato le numerose lamentele durante questi 3 anni di dottorato,

ha sempre creduto nelle mie capacità incoraggiando i miei sforzi sia nei momenti di

difficoltà che in quelli di felicità e spensieratezza. Neanche un oceano intero è riuscito a

tenerti lontana da me: mi hai raggiunto in ogni posto sperduto del mondo in cui andavo

a finire, trasformando la distanza in momenti straordinari ed indimenticabili. Merci

beaucoup, ma belle!

Inoltre vorrei ringraziare il Prof. Aldo Sorniotti per avermi ospitato all’interno del

suo team presso l’University of Surrey (Guildford, UK), e per avermi inserito all’interno

di un progetto di ricerca che per me è stato un momento di vero apprendimento nel

verificare concetti teorici attraverso prove sperimentali su pista davvero stimolanti oltre

che divertenti. Un grazie speciale va anche a tutti gli amici del SAVAG ed i frequentatori

di Stoke House che hanno saputo rendere indimenticabile il mio periodo trascorso a

Guildford; un particolare grazie a Fabio, Daniele, Basilio, Stefano, Tommaso, Michele,

Ilhan, Ventura per le serate trascorse insieme al Wetherspoons.

Sentiti e sinceri ringraziamenti sono dovuti anche agli attuali e vecchi membri del

team di meccanica del veicolo (Guido, Pablo, Alberto, Mariangela, Hamid, Sara ed An-

drea), con cui ho condiviso momenti di quotidianità al Politecnico di Torino e divertenti

cene/pranzi/panzerottate in giro per Torino.

Uno speciale ringraziamento è rivolto anche al Prof. Rizzoni e al Prof. Guvenc per

avermi invitato presso il Center for Automotive Research (CAR) dell’Ohio State Univer-

sity (Columbus, OH), concedendomi l’opportunità di passare un’ulteriore esperienza

internazionale ed interculturale che mi ha aiutato molto a perfezionare le mie abilità di

lavoro di squadra grazie alla collaborazione con i componenti del Automated Driving

Lab (ADL) Prof. Bilin Aksun-Guvenc, Santhosh, Nitish, Hongliang e Haoan. Vorrei anche

inviare un saluto ed un ringraziamento a Matilde ed a Martin per tutti i momenti di

divertimento e svago trascorsi insieme per le vie di Columbus.

Infine, last but not least, vorrei ricordare con un saluto tutti gli amici di Taranto e

Torino che mi hanno sempre accompagnato durante i momenti di svago e di totale

felicità, rappresentando sempre un punto di riferimento da cui trarre forza e sostegno

per superare gli ostacoli della vita.

Grazie!

Turin, December 2016 Antonio Tota



Abstract

Vehicle chassis control active systems (braking, suspension, steering and driveline),

from the first ABS/ESC control unit to the current advanced driver assistance systems

(ADAS), are progressively revolutionizing the way of thinking and designing the vehicle,

improving its interaction with the surrounding world (V2V and V2X) and have led to

excellent results in terms of safety and performances (dynamic behavior and drivability).

They are usually referred as intelligent vehicles due to a software/hardware architecture

able to assist the driver for achieving specific safety margin and/or optimal vehicle

dynamic behavior. Moreover, industrial and academic communities agree that these

technologies will progress till the diffusion of the so called autonomous cars which are

able to drive robustly in a wide range of traffic scenarios. Different autonomous vehicles

are already available in Europe, Japan and United States and several solutions have been

proposed for smart cities and/or small public area like university campus.

In this context, the present research activity aims at improving safety, comfort and

performances through the integration of global active chassis control: the purposes are

to study, design and implement control strategies to support the driver for achieving one

or more final target among safety, comfort and performance. Specifically, the vehicle

subsystems that are involved in the present research for active systems development are

the steering system, the propulsion system, the transmission and the braking system.

The thesis is divided into three sections related to different applications of active systems

that, starting from a robust theoretical design procedure, are strongly supported by

objective experimental results obtained from Hardware In the Loop (HIL) test rigs and/or

proving ground testing sessions.

The first chapter is dedicated to one of the most discussed topic about autonomous

driving due to its impact from the social point of view and in terms of human error

mitigation when the driver is not prompt enough. In particular, it is here analyzed the

automated steering control which is already implemented for automatic parking and

that could represent also a key element for conventional passenger car in emergency

situation where a braking intervention is not enough for avoiding an imminent collision.

The activity is focused on different steering controllers design and their implementation
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for an autonomous vehicle; an obstacle collision avoidance adaptation is introduced

for future implementations. Three different controllers, Proportional Derivative (PD),

PD+Feedforward (FF) e PD+Integral Sliding Mode (ISM), are designed for tracking a

reference trajectory that can be modified in real-time for obstacle avoidance purposes.

Furthermore, PD+FF and PD+ISM logic are able to improve the tracking performances of

automated steering during cornering maneuvers, relevant from the collision avoidance

point of view. Path tracking control and its obstacle avoidance enhancement is also

shown during experimental tests executed in a proving ground through its implemen-

tation for an autonomous vehicle demonstrator. Even if the activity is presented for an

autonomous vehicle, the active control can be developed also for a conventional vehicle

equipped with an Electronic Power Steering (EPS) or Steer-by-wire architectures.

The second chapter describes a Torque Vectoring (TV) control strategy, applied to a

Fully Electric Vehicle (FEV) with four independent electric motor (one for each wheel),

that aims to optimize the lateral vehicle behavior by a proper electric motor torque

regulation. A yaw rate controller is presented and designed in order to achieve a desired

steady-state lateral behaviour of the car (handling task). Furthermore, a sideslip angle

controller is also integrated to preserve vehicle stability during emergency situations

(safety task). LQR, LQR+FF and ISM strategies are formulated and explained for yaw

rate and concurrent yaw rate/sideslip angle control techniques also comparing their

advantages and weakness points. The TV strategy is implemented and calibrated on

a FEV demonstrator by executing experimental maneuvers (step steer, skid pad, lane

change and sequence of step steers) thus proving the efficacy of the proposed controller

and the safety contribution guaranteed by the sideslip control. The TV could be also

applied for internal combustion engine driven vehicles by installing specific torque

vectoring differentials, able to distribute the torque generated by the engine to each

wheel independently.

The TV strategy evaluated in the second chapter can be influenced by the presence of

a transmission between the motor (or the engine) and wheels (where the torque control

is supposed to be designed): in addition to the mechanical delay introduced by transmis-

sion components, the presence of gears backlashes can provoke undesired noises and

vibrations in presence of torque sign inversion. The last chapter is thus related to a new

method for noises and vibration attenuation for a Dual Clutch Transmission (DCT). This

is achieved in a new way by integrating the powertrain control with the braking system

control, which are historically and conventionally analyzed and designed separately. It is

showed that a torsional preload effect can be obtained on transmission components by

increasing the wheel torque and concurrently applying a braking wheel torque. For this

reason, a pressure following controller is presented and validated through a Hardware In
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the Loop (HIL) test rig in order to track a reference value of braking torque thus ensuring

the desired preload effect and noises reduction. Experimental results demonstrates the

efficacy of the controller, also opening new scenario for global chassis control design.

Finally, some general conclusions are drawn and possible future activities and rec-

ommendations are proposed for further investigations or improvements with respect to

the results shown in the present work.
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Chapter 1

Autonomous Steering Control

1.1 Introduction on Autonomous Steering Driving

Autonomous or Self-Driving vehicles are nowadays a hot-topic for research and develop-

ment in both industrial and academic fields, also arousing interest among social and

governmental communities, well beyond the automotive engineering. ’Autonomous

driving’ represents a generic term for identifying a non conventional vehicle that is able

to drive in urban and/or highway scenarios without or with a partial human interven-

tion. In order to provide a common terminology, in [5] are considered different levels of

driving automation from no automation in ’level 0’ to full automation in ’level 5’: the

automated driving is distinguished from human driving if specific systems are designed

to monitor the driving environment. Each level deals with the execution of steering and

acceleration/deceleration tasks, the monitoring of driving environment, the fallback of

dynamic driving task and the system capability. An example of self-driving application,

with current technologies available on automotive market, is the Conventional Cruise

Control (CCC) designed for keeping constant a desired vehicle speed set up by the driver;

the ’autonomous’ system takes full control of throttle and brake command in order

to track the reference speed but with no environment monitoring so that the driver is

responsible for control overtaking in emergency situations. This simple technology is

now popular enough to be accepted by drivers and its safety benefits/limits have been

studied by several authors [6, 7]. An advanced version of CCC is the Adaptive Cruise

Control (ACC) [8–11] which elaborates the information coming from specific RADAR

for obstacle detection thus enhancing the communication with external environment

and providing a warning feedback to the driver which is expected to react in collision

risk situations. In the case of Automatic Emergency Braking (AEB) [12, 13], the system is

also requested to provide a braking intervention for obstacle avoidance purposes. For
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autonomous driving applications, three different layers can be identified as indicated by

[14, 15]:

• The Strategic layer, for gathering information from the environment surrounding

the vehicle, i.e. pedestrian or obstacle recognition, lane and road signals identifi-

cation;

• The Tactical layer, for providing the reference signals for the next layer, i.e. refer-

ence path to be followed or reference speed to be reached;

• The Control layer, for evaluating the commands for each autonomous or automatic

vehicle components and tracking the reference behavior imposed by the Tactical

layer;

The present chapter is focused on the analysis and the development of the Control

layer in the specific application of an automatic steering control for path tracking and

obstacle collision avoidance purposes. The path tracking control is a well-known topic

in the robotic control field [16–18] and driver modeling [19–21]. Several experiments

were carried out for automatic driving [22, 23] where the reference path is generally

provided through inductive cables or magnetic markers, but new technologies about

Global Positioning Systems (GPS) have incremented the position accuracy through the

use of external global navigation satellite system (GNSS). Different feedback controllers

have been designed for automated path tracking control (an extended review is described

by [24]) and they can be generally divided into two separate categories.

The first category includes all methods based on simple geometrical relationships

by exploiting the vehicle kinematic models (i.e. by approximating a zero slip angle for

the front and rear tires) described by the well-known Ackerman steering formula. One

example is the Pure Pursuit algorithm whose objective is to calculate the curvature of

the arc from the vehicle position to the desired position placed at a look-ahead distance

on the reference path [25, 26]; a different geometric-based approach is designed by

Stanford’s University during the DARPA Grand Challenge [27], usually referred as Stanley

method, which elaborates the steering angle as a combination of vehicle yaw angle error

and a term based on the lateral deviation of the front axle with respect to the reference

path.

The second category deals with all feedback controllers based on the simplified linear

single-track model, described in section 1.3, that takes into account a different slip angle

for the front and rear axles and provides a second order yaw dynamics with damping and

stiffness coefficients variable with vehicle speed. The Proportional Integral Derivative

(PID) is the most used control logic adopted for steering angle evaluation: a PD structure
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on lateral deviation error added to a P control on heading error is designed by [28] which

proves that yaw angle error contribution further improves the tracking performance, as it

is also confirmed by [29] where only the lateral position error is taken into account with

evident worse results. A more detailed analysis is conducted by [30] based on frequency

responses of lateral acceleration and yaw rate with respect steering angle, calculated

from the linear single-track model: the effect of the vehicle speed and friction coefficient

is studied and consequently a feedforward steering contribution based on reference

path curvature is coupled with a feedback yaw rate and lateral acceleration control.

Moreover, it is suggested to design the look-ahead distance as an increasing function

of vehicle speed. The benefits introduced by a feedforward contribution which avoid

the selection of high feedback control gain is shown by [31] thus also demonstrating

its importance in terms of tradeoff between stability and tracking performances. In

[32] a PIDD2 controller is designed, according to the parameter state approach [33],

for the path tracking problem related to an automated bus in order to be robust with

respect to the variation of vehicle speed and mass in a specific range. The same state

parameter approach is used for autonomous passenger vehicle by [34, 35]. The classical

loop-shaping theory is applied in [36] where two different controllers are proposed for

achieving alternatively a better ride comfort or a good tracking performance. Linear

Quadratic Regulator (LQR) based on optimal control theory is applied by Nissan [29]

which makes a comparison against the PD strategy with the final conclusion that the LQR

logic is ” unable to track the path accurately on curves” due to large model error on the

curvature part of reference path. This issue is solved with an additional feedforward (FF)

contribution to the LQR control in [9]. A non conventional LQR design is presented in

[37–39] for the PATH framework: authors adopt the loop shaping technique for achieving

the robustness on measurement noise at high frequencies and introduce a performance

index that takes into account the ride quality. The centers of percussion concept is shown

by [40] for a four-wheel-steering (4WS) through the design of a first order sliding model

control meanwhile [41] has implemented a super-twisting version for reducing the

chattering problem. More references in the filed of sliding mode theory and application

are [42–45]. Other controller structures has been analyzed and implemented: H∞ in

[46, 47], back-stepping control [48] and fuzzy logics [49]. Recently, the path tracking

control strategies are further improved for being robust at high lateral accelerations

[50–52] even with the implementation of model predictive controls now extensively used

in simulation and preliminary experimental tests [53–55].

Similar to the difference between CCC and ACC, the path tracking problem can

be extended to an Obstacle Collision Avoidance (OCA) algorithm where the reference

path is no more fixed but it is changed in real-time by elaborating further information

coming from other sensors (Radar, Lidar, Camera) thus enabling the communication
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with external environment. The core aspect of OCA control logic is represented by

the path planning algorithm that needs to provide the reference path for the lower

controller layer (i.e. path tracking control). A 3D virtual dangerous potential field is

used for generating the desired trajectory to avoid obstacle in real-time and a Multi-

constrained Model Predictive Control (MMPC) problem is formulated in [56]. In [57] a

novel algorithm for obstacle avoidance path planning, defined as navigation circle, is

developed and optimized to provide feasible trajectories in real-time. A decision-making

algorithm is presented in [58] where a group of path candidates are generated starting

from a global reference path and the local reference trajectory is selected according

to safety, smoothness and consistency criteria in presence of static obstacles. The

path planning has been experimentally tested during the 2010 Autonomous Vehicle

Competition. In 1993 authors from Stanford University [59] proposed for the first time

the Elastic Bands theory for deforming an initial reference path into a collision-free

path which is able to take into account the presence of local obstacles. The same OCA

method is applied by [60] with modifications to road vehicle based systems and realistic

simulation results are presented using high fidelity vehicle models with several different

collision scenarios.

The intent of the present section is to design an automatic steering control for an

autonomous vehicle equipped with Electric Power Assist Steering (EPAS) and drive-

by-wire technologies. Despite the importance of tires lateral force in path tracking

controller, the single-track model is chosen instead of a kinematic/geometric one ([25–

27]) and it is further enhanced by introducing the steering actuation (EPAS) dynamics

if compared with existing literature.The steering action is calculated to let the vehicle

follow a reference path which is stored in a Digital Map properly built to be available

in real-time. Furthermore, the contribution described in the following chapter is the

enhancement of a Proportional + Derivative (PD) control designed with the Parameter

State Approach [33, 35] (PSA) by coupling it with a static Feedforward (FF) or with

an integral sliding mode (ISM) for improving the tracking performance in cornering

maneuvers:the FF term requires the knowledge of the instantaneous reference path

curvature, meanwhile the ISM can be designed to reject external disturbances without

the exact evaluation of the path curvature. Experimental tests are carried out for showing

and comparing the efficacy of the two controllers against PD control and manual driving

behavior. Moreover, an experimental implementation of an obstacle collision avoidance

system based on the elastic band method is briefly described with the main objective to

show that the method can be implemented in real time and used in actual vehicles.

The present chapter is divided into five sections by including the present introduction

and the conclusion: section 2 shows the autonomous vehicle demonstrator with its set-
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up; in section 3 the single-track model with steering dynamics is presented; section 4 is

focused on path tracking control design and its implementation for an OCA application

which are finally experimentally verified with specific tests in a proving ground.

1.2 Experimental Setup of the Autonomous Vehicle

The vehicle demonstrator, shown in Fig. 1.1, used for dynamics model validation and con-

trol calibration is a Ford Fusion hybrid which has been converted into an autonomous

vehicle through the installation of EPAS module, throttle-by-wire and brake-by-wire

Dataspeed interfaces.

Power Distribution

MicroAutobox IIGPS/IMU

LIDAR

RADAR

CAMERA

Drive-by-wire

HMI Control

GPS Antenna

Figure 1.1 Vehicle Demonstrator and Sensors/Actuators Platform

The Dataspeed Inc. [61] EPAS module and Throttle-Brake Combination By-Wire in-

terfaces enable computer control of the steering wheel, the throttle and braking systems

in a safe and effective manner. This plug-in ready kit requires no modification to the

factory harnessing and can be installed in few minutes. Industry standard CAN and USB

networks enable control and monitoring of the steering wheel (angular position), the

throttle and braking systems (pedal positions). The Dataspeed modules are connected

through CAN bus communication to a dSPACE® MicroAutoBox II electronic unit where

controller logic, previously designed in Matlab®/Simulink® environment, is flashed.

A range of several sensors are installed on-board vehicle in order to monitoring the

external environment and to localizing vehicle position:

• Delphi ESR [62] radar combines a wide field of view at mid-range with long-range

coverage to provide two measurement modes simultaneously. Based on Simulta-



6 Autonomous Steering Control

neous Transmit and Receive Pulse Doppler (STAR PD) Waveform technology, the

ESR provides independent measurements of range and range-rate and superior

detection of clustered stationary objects. Mid-range coverage not only allows

vehicles cutting in from adjacent lanes to be detected but also identifies vehicles

and pedestrians across the width of the equipped vehicle. Long-range coverage

provides accurate range and speed data with powerful object discrimination that

can identify up to 64 targets in the vehicle’s path.

• Velodyne VLP-16 Lidar [63] creates 360°3D images by using 16 laser/detector pairs

mounted in a compact housing. The housing rapidly spins to scan the surrounding

environment and the lasers fire thousands of times per second, providing a rich, 3D

point cloud in real time. Advanced digital signal processing and waveform analysis

provide high accuracy, extended distance sensing, and calibrated reflectivity data.

• Mobileye camera 5 [64] uses a smart digital camera located on the front windshield

inside the vehicle. Inside the camera, Mobileye’s powerful EyeQ2® Image Pro-

cessing Chip provides high-performance real-time image processing, by utilizing

the Mobileye vehicle, lane and pedestrian detection technologies to effectively

measure and calculate dynamic distances between the vehicle and road objects.

• OXTS xNAV 550 RTK GPS [65] integrates dual L1/L2 GNSS receivers for 2 cm RTK

position accuracy and an Inertial Measurement Unit (IMU) with three accelerom-

eters and three angular rate sensors used to smooth the jumps in GNSS and fill

in missing data. The improved receivers also mean better heading accuracy. Its

communication with MicroAutoBox II is via UDP protocol.

In the present activity, the differential OXTS GPS is the only sensor used for vehicle

position localization as feedback input to the path tracking controller meanwhile other

sensors are going to be integrated for real-time implementation of obstacle collision

avoidance control logic according to which is generally referred as Sensor-Fusion tech-

nology.

The vehicle demonstrator architecture is also equipped with a power distribution

unit for managing the electric energy between vehicle high voltage battery and sen-

sors/actuators.

Finally, A Human Machine Interface (HMI) with touch screen technology provides

a control panel for basic command selections (power on/off all devices and switch

between manual and autonomous modes).
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1.3 Single-Track Model

The present section describes a linearized single-track model used for designing con-

troller strategies that are introduced in next sections. This linear model (see [66, 67] for

further details) is also able to describe vehicle dynamics for a lateral acceleration up

to 4m/s2. The vehicle is considered symmetric with respect its longitudinal direction

so that the front and the rear axles can be represented by single wheels as indicated in

Fig. 1.2 where an inertial reference system OE , XE ,YE , ZE and a vehicle reference system

O, x, y, z are shown.

Figure 1.2 Single-Track Model (adapted from [1])

When vehicle speed is very small, and slip angles can be neglected (ideal kinematic

steering), all points of vehicle move along a circle with the center of the curvature being

K A which coincides with the instantaneous center of rotation M of the motion. The

steering angle required to execute this motion is given as:

tanδw = l√
R2

M −b2

|δw |≪1,b≪RM→ δw ≈ l

RM
(1.1)
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In a real scenario, slip angles cannot be neglected and the new instantaneous center

of rotation is evaluated from the front and rear wheel speed directions. The following

assumptions are considered for evaluating the single-track model equations:

• the vehicle is assumed as a rigid body in motion on a 2D plane with mass m and

inertia moment Jz

• vehicle speed V is assumed constant and only two degree of freedom (yaw rate

r = ψ̇ and sideslip angle β) are taken into account

• vehicle sisdeslip angle β, tires slip angles αi and yaw rate acceleration ṙ are con-

sidered small enough to consider the linear part of vehicle dynamics

• Front steering action (small wheel steering angles δw )

1.3.1 Dynamics equations

A rigid body in motion on a 2D surface can be described by 3 degrees of freedom: global

reference positions XE , YE of vehicle center of gravity and its yaw angle ψ.
mẌE = FX

mŸE = FY

Jzψ̈ = MZ

(1.2)

where FX , FY and MZ are the total forces applied along XE , YE axes and total yaw mo-

ment around ZE axis. In order to have a linearized vehicle model and avoid trigonometric

expression of ψ, Eq. 1.2 can be expressed in the vehicle reference frame:

dV⃗

d t

∣∣∣∣∣
E

= dV⃗

d t

∣∣∣∣∣
v

+ ω⃗∧ V⃗ =


u̇

v̇

0

+


−r v

r u

0

 (1.3)


m(u̇ − r v) = Fx

m(v̇ + r u) = Fy

Jz ṙ = Mz

(1.4)

where u and v are the vehicle speed components respectively along x and y axis and

Fx , Fy , Mz are the same of Eq. 1.2 but expressed in the vehicle reference frame. Eq. 1.4

are non-linear with respect u, v , and r but, since the sideslip angle β is supposed to be
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small, it is possible to linearize the trigonometric functions:u =V cos(β) ≈V

v =V sin(β) ≈V β
(1.5)

thus leading to: 
m(V̇ − r V β) = Fx

m(V β̇+βV̇ + r V ) = Fy

Jz ṙ = Mz

(1.6)

If the interaction between longitudinal and lateral tire forces is neglected, the first

equation of system 1.6 can be decoupled from the remaining two, thus reducing the

degrees of freedom to the sideslip angle β and yaw rate r . Furthermore, if the speed V is

considered constant the system 1.6 can be reduced to:mV (β̇+ r ) = Fy

Jz ṙ = Mz

(1.7)

Fy and Mz can be related to tires forces:Fy =∑
∀i Fxi sin(δi )+∑

∀i Fyi cos(δi ) ≈∑
∀i Fxiδi +∑

∀i Fyi

Mz =∑
∀i Fxi sin(δi )xi +∑

∀i Fyi cos(δi )xi ≈∑
∀i Fxiδi xi +∑

∀i Fyi xi

(1.8)

where Fxi , Fyi are force components on ith axle and xi , yi are the coordinates of its

center. In Eq. 1.8, drug forces and self-alignment yaw moments are neglected and

trigonometric functions are linearized by considering low values of wheel steering angles

δi . Furthermore, the products Fxiδi can be also neglected since they are negligible with

respect other terms of Eq. 1.8. Tires lateral forces Fyi depends on several variables such

us tires slip angles, tires vertical forces, road contact friction coefficients and tires slip

ratio. In order to have a linearized model, Fyi can be evaluated as:

Fyi =Ciαi (1.9)

where Ci is the cornering stiffness of ith axle and not of an individual wheel: with the

single-track model the vehicle is assumed as a rigid body (roll angle neglected) thus

compensating the camber forces between right and left wheels. Moreover, even the

toe angle influence and lateral load transfer are neglected: this would be correct if a

linear relation occurs between cornering stiffness and load transfer since the increase of

the cornering stiffens of the most heavily loaded wheel is exactly compensated by the
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decreasing of the cornering stiffness of the opposite wheel; This is not generally verified

and the load transfer introduces a reduction of axles cornering stiffness eve though this

effect is negligible for a lateral acceleration lower than 5m/s2. Furthermore, a positive

toe angle increases axle cornering stiffness meanwhile a negative value decreases it.

Tires slip angles can be expressed as a function of their correspondent wheel speeds

as indicated in Fig. 1.3. The speed Vi of the ith wheel center Pi can be referred to the

Figure 1.3 Kinematic diagram of wheel speed (adapted from [1])

speed of vehicle center of gravity V :

V⃗Pi = V⃗G + ψ̇∧ ( ⃗Pi −G) =
{

u − ψ̇yi

v + ψ̇xi

}
(1.10)

The angle βi between the direction of V⃗Pi and vehicle x axis is defined as:

βi = ar ct an(
vi

ui
) = ar ct an(

v + ψ̇xi

u − ψ̇yi
) (1.11)

If the ith tire is rotated by a steering angle of δi , its slip angle is:

αi = δi −βi = δi −ar ct an(
v + ψ̇xi

u − ψ̇yi
) (1.12)
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Eq. 1.12 can be easily linearized by considering that the term ψ̇yi is negligible with

respect vehicle speed V :

αi = δi −βi ≈ δi −ar ct an(
v + r xi

V
) = δi −β− xi

V
r (1.13)

In the linearized expression ofαi , the coordinate yi doesn’t appear with the consequence

that if δi is the same between right and left wheels also their slip angles are equal as

highlighted in Eq. 1.13: this allows to approximate vehicle dynamics with a single track

scheme (1.2) thus writing equations in terms of axle instead of single wheels.

Finally, slip angles of front and rear axles are reported respectively in the following

equations: αF = δF −β− a
V r

αR = δR −β+ b
V r

(1.14)

In most of passenger cars, and even in the vehicle considered in this activity, only the

front axle can be steered so that the assumption δR = 0 can be used without loss of

generality.

The final equation of linearized single-track vehicle model are:mV (β̇+ r ) = (−CF −CR )β+ (−CF a
V + CR b

V )r +CFδF

Jz ṙ = (−CF a +CR b)β+ (−CF a2

V − CR b2

V )r + (CF a)δF

(1.15)

It is a system of two first order differential equations in terms of β and r even though

these two variables are dimensionally an angular speed (r ) and something related to

vehicle speed (β) thus implying that their derivative are accelerations. The steering angle

δF can be considered an input for the system.

1.3.2 Steady-State behavior

In steady-state conditions (β̇= 0 and ṙ = 0), vehicle trajectory is circular with a constant

radius equal to:

R =V r (1.16)

From Eq. 1.15, the evaluation of steady-state values of sideslip angle β and yaw rate r

deals to: β = CF CR bL−mV 2CF a
CF CR L2+mV 2(bCR−aCF )

δF

r = CF CR LV
CF CR L2+mV 2(bCR−aCF )

δF

(1.17)
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where L = a +b is the vehicle wheelbase. The new parameter named as Understeer

gradient can be defined as:

K = m

L
(

b

CF
− a

CR
) (1.18)

so that the following steady-state gains are formulated:

• Sideslip angle steady-state gain

β

δF
= (1− maV 2

bLCR
)

b

L+K V 2
(1.19)

• Yaw rate steady-state gain
r

δF
= V

L+K V 2
(1.20)

• Lateral acceleration steady-state gain

ay

δF
= V 2

L+K V 2
(1.21)

• Curvature steady-state gain
ρ

δF
= 1

L+K V 2
(1.22)

Eq. 1.1 indicates that the curvature steady-state gain in kinematic condition (Eq. 1.1

with assumption of slip angles negligible) can be corrected by a factor of L+K V 2

L to take

into account the important influence of wheel slip angles. If the understeer gradient

is null the value of 1
Rδ is constant and vehicle response to any steering angle is equal

to that one in kinematic condition; This doesn’t mean that the vehicle is operating in

kinematic condition, since wheel slip angles are not negligible so that its behavior is

generally defined as ’neutral condition’.

If K > 0, the value of 1
Rδ decreases with vehicle speed: for keeping constant the

trajectory radius, the steering angle has to be increase when vehicle speed increases.

The vehicle is operating in ’understeer condition’. A direct measure of vehicle understeer

behavior is the ’characteristic velocity’, defined as the speed at which the steering angle

required to follow a desired trajectory is double the Ackerman angle by means the

curvature steady-state gain is equal to 1/2L:

Vcar =
√

1

K
(1.23)
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If K < 0, the value of 1
Rδ increases with vehicle speed until it reaches the values of the

’critical velocity’:

Vcr i =
√

1

−K
(1.24)

where vehicle response tends to infinity and the vehicle becomes unstable. A vehicle

that presents such a behavior is operating in ’oversteer condition’: for this configuration

the critical velocity must be greater than the vehicle max speed.

The value of sideslip angle steady-state gain β/δF decreases when speed increases

until it becomes null for the velocity:

Vβ=0 =
√

bLCR

am
(1.25)

For higher vehicle speeds its value becomes negative and tends to infinity when speed

tends to critical velocity for an oversteer condition; In case of understeer condition its

value tends to:
β

δF
= aCF

aCF −bCR
(1.26)

In case of neutral condition, the slip angles of front and rear axles are equals. For

oversteering vehicles, slip angle of rear axle is higher (in absolute value) than the front

axle one meanwhile the opposite situation occurs for understeering vehicles. Fig. 1.4

shows a graphic description of vehicle behavior during different conditions. The vehicle

presents a front steering axle A and a fixed rear axle B. For low values of vehicle speed, the

kinematic condition is almost verified: the slip angles are null and the trajectory center is

placed in O. In the condition αF =αR the angle BO’A is still equal to δF and the point O’

leads on the same circle identified by points A, B and O: the vehicle is operating in neutral

condition. If |αF | > |αR | the curvature center is moved to point O” and radius R” is higher

than R thus leading to and understeering behavior. If |αF | < |αR | the curvature center is

O”’ and the radius R”’ is lower than R thus leading to an oversteering behavior. These

considerations are verified only if the understeer gradient K is constant and doesn’t

depends on vehicle speed; in a real scenario, the value of K is influenced by vehicle

speed that can modify its understeering behavior.

1.3.3 Experimental Validation

The present section aims to describe the single-track model and to validate it with

experimental test carried out with the prototypal vehicle equipped with drive-by-wire

technology. Most of the single-track model parameters (m,Jz ,a and b) are obtained
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Figure 1.4 Lateral behavior of a vehicle with a single steering axle (adapted from [1])

through specific measurements on the vehicle meanwhile the front and rear cornering

stiffness values are evaluated and proper tuned in order to get the best fit between model

and experimental data. All single-track parameters are reported in Table 1.1. Three

specific experimental test are here presented in order to show the efficacy and limits of a

single-track model:

1. Ramp steer at constant speed

2. Step steer at constant speed

3. Skid pad
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Table 1.1 Model parameters for the single-track model of autonomous vehicle

Symbol Description Value

m Vehicle mass with 4 passengers 1997.6 kg

Jz Inertia moment around vehicle z axle 3728 kg m2

a Front semi-wheelbase 1.3008 m

b Rear semi-wheelbase 1.5453 m

L Wheelbase 2.84607 m

CF Front Cornering Stiffness 1.3e5 N /r ad

CR Rear Cornering Stiffness 15.9e5 N /r ad

Rs Steering ratio 14.6

ls Preview Distance 0.5 m

[n2 n1 n0] Numerator of steering dynamics [74.45 −1001 53760]

[d4 d3 d2 d1 d0] Denominator of steering dynamics [1 36.33 1205 12950 53760]

All these maneuvers are executed on a flat surface (no bank angle) and in high friction

conditions. The single-track model receives as input the experimental steering angle

measured during each test in order to have coherent comparison.

Ramp steer at constant speed

The ramp steer maneuver can be described with the following steps:

• set the cruise control at a specific speed

• when the desired speed is reached, the steering angle is gradually increased from 0

to 400 deg with a slope of 14 deg/s

• the vehicle is stopped when lateral acceleration saturates

These steps can be identified in Fig. 1.5 where input steering angle and speed are shown.

The vehicle speed can be considered constantly equal to 30km/h for the whole applica-

tion of the ramp steering action. The variables analyzed during the maneuvers are the

sideslip angle β, the yaw rate r (output of single-track model) and the lateral acceleration

ay reported in Fig. 1.6. This test is useful to observe the quasi-static lateral behavior

of the vehicle in the whole range of lateral acceleration thus allowing to validate the

single-track model in the linear part of vehicle dynamics and to detect the limit beyond

which the model is not enough accurate to describe tires forces saturation. It is possible



16 Autonomous Steering Control

0 5 10 15 20 25 30 35 40
-200

0

200

400

St
ee

ri
ng

 A
ng

le
 [

de
g]

0 5 10 15 20 25 30 35 40
0

20

40

V
eh

ic
le

 S
pe

ed
 [

km
/h

]

Single-Track model
Experimental

Figure 1.5 Ramp steer maneuver: steering angle and vehicle speed
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Figure 1.6 Ramp steer maneuver: sideslip angle β, yaw rate r = dψ/d t and lateral acceleration ay

to appreciate that the linear single-track model is able to give a good matching with

respect experimental values for lateral acceleration up to 5 m/s2.

Step steer at constant speed

The step steer maneuver can be described with the following steps:

• set the cruise control at a specific speed

• when the desired speed is reached, an instantaneous step steering action is applied

and kept constant to a desired value
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• the vehicle is stopped when the vehicle trajectory is stabilized

Different step steer amplitudes are selected in order to verified the single-track model in

different operating conditions, as indicated in Fig. 1.7. All the tests are executed by using
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Figure 1.7 Step steer maneuver: reference and current steering angle for different amplitudes

the cruise control to keep the speed equal to 30km/h. Fig. 1.7 also shows the comparison

between the steering angle set for the EPAS system and its response: the dynamics of

the steering reaction must be taken into account and a model will be proposed in next

section. Step steer test are usually adopted for analyzing the transient vehicle behavior

Figure 1.8 Step steer maneuver: sideslip angle β, yaw rate r = dψ/d t and lateral acceleration ay

from experimental test (EXP) and single-track model (STM)

and to have a double check on its steady-state response. In Fig. 1.8 the steady-state
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values of lateral acceleration ay , yaw rate r and sideslip angle β are well described by

the single-track model meanwhile the transient response of ay seems to be different

from experimental data: this aspect is related to the hypothesis of single-track model

according which β̇<< r thus leading to ay =V (r +β̇)cos(β) ≈V r ; Since the final purpose

of the single-track model is for vehicle position control design, a further experimental

validation can be carried out by comparing GPS position. In the single-track model,

vehicle global position is evaluated from yaw rate, sideslip angle and speed:
ψ = ∫

ψ0
r d t

XG = ∫
X0

(V cosβcosψ−V si nβsinψ)d t

YG = ∫
Y0

(V cosβsinψ+V si nβcosψ)d t

(1.27)

where XG and YG are the east and north global vehicle coordinate and ψ the yaw angle

with respect the X axis. Values of ψ0, X0 and Y0 are obtained from experimental data in

order to make the comparison shown in Fig. 1.9.

0 50 100 150
X [m]

-150
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Y
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m
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60 deg 40 deg

80 deg
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Figure 1.9 Step steer maneuver: vehicle position for different steering angles from both experi-
mental test (EXP) and single-track model (STM)

Finally, the single-track model here presented is able to catch the linear part of vehicle

dynamic for a lateral acceleration up to 5 m/s2 and to well predict the vehicle global

position.

Skid Pad

The Skid Pad test is generally used to evaluate the understeer/handling characteristic

of the vehicle by means the vehicle sensitivity to a steering input. The test consists
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of following a reference trajectory with constant radius while the gas pedal is slowly

increased up to the max possible value: increasing the vehicle speed and so the lateral

acceleration, forces the driver to adjust the steering angle to increase lateral forces for

following the desired constant radius path. The reference path here used has a constant

radius of 30 m and the most important variable are plotted in Fig. 1.10, 1.11 and 1.12.
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Figure 1.10 Skid Pad: vehicle steering angle δ, gas pedal and speed V
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Figure 1.11 Skid Pad: vehicle longitudinal ax , lateral acceleration ay and yaw rate r

It is worth noting that the vehicle speed doesn’t overpass 50 km/h even if the gas pedal

is further increased as a consequence of the tire forces saturation (also highlighted by

lateral acceleration and yaw rate). The handling characteristic can be evaluated based on

the driver steering correction with respect the kinematic steering (δF −δK i n) as function

of lateral acceleration as shown in Fig. 1.13. The upper subplot of Fig. 1.13 is usually
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Figure 1.12 Skid Pad: vehicle GPS position
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Figure 1.13 Skid Pad handling characteristics: δF −δK i n and β vs ay

adopted for calculating the understeer gradient K defined in Eq. 1.18: it is geometrically

equal to the slope of its linear part. The value of K calculated from single-track model

by using Eq. 1.18 is 0.006 rad s2/m: it is sufficient close to the slope of the handling

characteristic (0.004 rad s2/m). The sideslip angle decreases with lateral acceleration

until it changes its sign and tends to an asymptotic behavior; the speed value at which

sideslip angle becomes equal to 0 is 51 km/h which is the same calculated by Eq. 1.25

using single-track parameters. It is also evident the saturation in both the subplots: when

lateral acceleration increases, the driver correction increases until any driver correction

is not sufficient to follow the reference path.
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1.3.4 Steering Dynamics Model

Fig. 1.7 has proved that the dynamic behavior of EPAS system needs to be analyzed and

integrated with the single-track model. Due to a lack of knowledge about mechanical

and electrical parameters for building a mathematical model, a system identification

of steering actuation is carried out since the input (desired steering command δIn) and

output (measured steering angular position δOut ) signals are available in real-time. For

a complete and detailed description of it, a sweep frequency test (SFT) is carried out

in order to plot the frequency response function (FRF) of the steering actuation. The

SFT consists of applying a sinusoidal steering command with a constant amplitude and

variable frequency (linear time-variant):δIn = δ0 sin(2π f (t )t )

f (t ) = f0 + fT − f0
T t

(1.28)

where f0 is the frequency at initial time t0 and fT the frequency at time T . One exam-

ple of sweep frequency test with constant amplitude of 90 deg is shown in Fig. 1.14.

Under the assumption of uncorrelated noise on the output signal and negligible noise
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Figure 1.14 Sweep frequency test with constant amplitude of 90

contamination on the input, the so called H2( f ) estimator of FRF can be used:

H2( f ) = Py y ( f )

Py x( f )
(1.29)

where Py y is the auto power spectral density of the output and Py x is the cross power

spectral density between output (δOut ) and input (δIn). To evaluate the quality of the
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estimated FRF the coherence function is also computed:

Cx y ( f ) =
∣∣Py x( f )

∣∣2

Pxx( f )Py y ( f )
(1.30)

where Pxx is the auto power spectral density of the input and Px y is the cross power

spectral density between input and output. The algorithm for finding the transfer

function and coherence function estimates given experimental input and output signal

vectors uses the Welch’s averaged periodogram method. The input parameters for the

transfer function estimation algorithm are: Hamming window type; 8 second window

length; 90% overlap between segment and 1000 Hz sampling frequency.

Five different configurations are selected for evaluating the FRF diagram:

• stationary vehicle and a steering amplitude of 90, 180 and 270 deg

• constant pedal gas (7%) and a steering amplitude of 90, 180 deg

For each configuration, the following parameters are selected:

f0 = 0.001 H z

fT = 5 H z

T = 100 s

The estimated FRF plot are shown in Fig. 1.15 by reporting magnitude and phase delay as

function of frequency. The first important observation is that the cut-off frequency of the
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Figure 1.15 Sweep frequency tests with different steering amplitudes (90 deg, 180 deg and 270
deg) and vehicle operating conditions



1.3 Single-Track Model 23

system depends on the command amplitude thus implying a non-linearity that cannot

be taken into account by a linear model: the higher the sweep frequency amplitude, the

lower the cut-off frequency. This non-linear effect is more evident for the magnitude

than for the phase delay. Furthermore, the operating condition at 7% of gas pedal

doesn’t modify the FRF response obtained with a stationary vehicle test: at low vehicle

speed, the steering dynamic can be approximated with stationary vehicle condition

(worst case scenario). By using the System Identification Toolbox of Matlab®, different

transfer function structures are taken into consideration: the magnitude shape depicts

the dynamics of an over-damped system meanwhile the phase delay becomes extremely

greater for high frequency values thus suggesting the adoption of additional zeros. A

comparison among different transfer function structures in terms of number of poles and

zeros is shown in Fig. 1.16. A first order transfer function is not able to match magnitude

Figure 1.16 System identification: comparison with experimental FRF at 90 deg against different
transfer function structures

neither phase lag of experimental FRF even with the adoption of one zero properly

designed; a second order transfer function can better describe system response up to a

maximum frequency of 2 Hz and the introduction of 2 zeros improves the phase delay

identification but with a negative influence on the magnitude for high frequency values.

A 4th order transfer function with 2 zeros (coefficient values are shown in Table 1.1) is

finally selected as a good linear model for describing the real system up to a maximum

operating frequency condition of 5 Hz:

δOut

δIn
= n2s2 +n1s +n0

n4s4 +n3s3 +n2s2 +n1s +n0
(1.31)
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A comparison with a realistic experimental time history is used as validation test finally

obtaining a verification of the linear model selected as shown in Fig. 1.17.
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Figure 1.17 Experimental validation of system identification: EXP - experimental data, EST -
estimated with a transfer function with 4 poles and 2 zeros

1.3.5 Lateral Deviation Equations

In autonomous driving applications, a key factor is the calculation of wheel steering

angle to follow a desired path selected by the driver or passengers. In order to analyze

this aspect, the steering model must be extended including not only velocities (β and

r ) but also the vehicle heading and its lateral position with respect to the reference

path. Such a reference may be provided by a guiding wire in the center of the lane

or by processing the images from a car-mounted video camera. In this section it is

assumed that reference path is provided offline and that vehicle position is obtained

from an accurate GPS sensor (1 cm accuracy and 100 Hz sampling rate). Fig. 1.18 shows

shows an inertial coordinate frame x0, y0 and a vehicle body fixed coordinate frame

x, y , which is rotated by the yaw angle ψ. The tangent to the path in the closest point

to the vehicle, indicated by vector Vt , is rotated by an angle ψt with respect to x0. The

component of the vehicle speed V perpendicular to Vt is equal to the rate change of

yCG . The perpendicular component is expressed by V si n(β+∆ψ), where β is the vehicle

sideslip angle and ∆ψ=ψ−ψt is the angle between the tangent to the path and the x

axis of the vehicle. With the linearization sin(β+∆ψ) ≈β+∆ψ, the lateral deviation in

the center of gravity yCG changes according to:

ẏCG =V (β+∆ψ) (1.32)
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Figure 1.18 Scheme representation of vehicle lateral deviation with respect reference path

The distance y at the so called preview distance ls is here considered as controller input

instead of yCG since it constitutes a prediction variable thus enhancing the promptness

of path tracking control strategy. The preview lateral deviation can be expressed as:

y = yCG + ls sin(∆ψ) ≈ yCG + ls∆ψ (1.33)

changes both with ẏCG and under the influence of vehicle yaw rate r = ψ̇, and the rate

change of the new displacement y is:

ẏ =V (β+∆ψ)+ ls∆ψ̇=V (β+∆ψ)+ lsr − lsψ̇t (1.34)

where ψ̇t = V /Rr e f = V ρr e f is the yaw rate of the path tangent in stationary circular

cornering. Finally, the extended lateral deviation model can be obtained by combining

Eq. 1.34 with the single-track and steering response equations (Eqs. 1.15 and 1.31). With

the introduction of Eq. 1.34, the reference curvature ρr e f appears as a second input to

the system in addition to the steering angle δIn and from the controller point of view it

can be treated as an external disturbance or as a known information. This observation

will be further discussed in following section.
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1.4 Path Tracking Control

In the previous section a vehicle lateral dynamics model is presented and its lateral

deviation with respect a reference path is introduced. The purpose of the present section

is to describe a methodology to pre-process offline the desired path, how to make it

available online and how to design the steering angle δIn by using the Parameter Space

Approach (PSA) with a static Feedforward (FF) or with the Integral Sliding Mode (ISM)

technique.

1.4.1 Reference Path Generation

In conventional navigation systems already presented in all passenger cars, the driver is

requested to select the destination point and an optimized trajectory (i.e. the fastest or

shorter one) is calculated on demand. In this contest, it is assumed that the reference

trajectory is already available by means as a cloud of points from the initial position to

the final destination. This set of data points can be obtained directly from GPS sensor

by moving the autonomous car along a specific path at low speed (this is the case when

the vehicle needs to repeat always the same paths) or it can be provided by an high-

level control strategy that calculate the vehicle positions from a point A to a point B.

Both situations usually requires a number of data which is directly connected with the

length of the reference path (longer it is more data points are needed) thus eventually

compromising the memory hardware available on-board. In this section a methodology

to create an offline digital map from original data set is presented and it is described how

to elaborate in real time the lateral deviation of the vehicle with respect of it.

The procedure of building the digital map consists of dividing the reference path into

a predetermined number of segments and each of this segments is approximated by a

parametric polynomial of the distance parameter γ. The aforementioned number of

segments can be chosen to contain an equal number of data points or can selected with

the purpose of having more segments where the curvature of reference path becomes

smaller (it requires an higher accuracy with respect a straight line). The third order

polynomials that can fit each segment can be evaluated as follows:Xi (γ) = aX iγ
3 +bX iγ

2 + cX iγ+dX i

Yi (γ) = aY iγ
3 +bY iγ

2 + cY iγ+dY i

(1.35)

where γ is the trajectory parameter and its value changes from 0 to 1 for the I segment,

from 1 to 2 for the II segment and so on until the last segment. aX i ,bX i ,cX i ,dX i and
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aY i ,bY i ,cY i ,dY i are the polynomial coefficients of the X and Y components respectively

of ith segment. The determination of polynomial coefficients is a constrained least

squares problem. Before solving this problem, the unconstrained least square problem

is defined as follow: Xexp = Γpx

Yexp = Γpy

(1.36)

where

Γ=


γ1

3 γ1
2 γ1 1 0 0 0 0 · · ·

0 0 0 0 γ2
3 γ2

2 γ2 1 · · ·
...

...
...

...
...

...
...

...
. . .

 (1.37)

is the parameter matrix where γi represents the entire array of γi ranging from its initial

value γ′i to the final one γ′′i corresponding to the ith segment. px and py contain all the

best fitted polynomial coefficients for all n segments and Xexp , Yexp are X and Y global

coordinates of initial data set points. The unconstrained least square problem solution

does not guarantee a continuous and smooth solution at the segment boundaries. To

improve this aspect, the boundary conditions below are added to the unconstrained

least square problem solution:

Xi (γ′′i ) = Xi+1(γ′i+1)

Yi (γ′′i ) = Yi+1(γ′i+1)
d Xi
dγ (γ′′i ) = d Xi+1

dγ (γ′i+1)
dYi
dγ (γ′′i ) = dYi+1

dγ (γ′i+1)
d 2 Xi
dγ2 (γ′′i ) = d 2 Xi+1

dγ2 (γ′i+1)

d 2Yi
dγ2 (γ′′i ) = d 2Yi+1

dγ2 (γ′i+1)

(1.38)

The conditions shown in Eq. 1.38 can be expressed with the following linear relations

among polynomial coefficients:

aX i (γ′′i )3 +bX i (γ′′i )2 + cX i (γ′′i )+dX i = aX i+1(γ′i+1)3 +bX i+1(γ′i+1)2 + cX i+1(γ′i+1)+dX i+1

aY i (γ′′i )3 +bY i (γ′′i )2 + cY i (γ′′i )+dY i = aY i+1(γ′i+1)3 +bY i+1(γ′i+1)2 + cY i+1(γ′i+1)+dY i+1

3aX i (γ′′i )2 +2bX i (γ′′i )+ cX i = 3aX i+1(γ′i+1)2 +2bX i+1(γ′i+1)+ cX i+1

3aY i (γ′′i )2 +2bY i (γ′′i )+ cY i = 3aY i+1(γ′i+1)2 +2bY i+1(γ′i+1)+ cY i+1

6aX i (γ′′i )+2bX i = 6aX i+1(γ′i+1)+2bX i+1

6aY i (γ′′i )+2bY i = 6aY i+1(γ′i+1)+2bY i+1

(1.39)
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for i = 2 to i = n −1, meanwhile for the first node i = 1 and last node i = n they are given

by: 

dX 1 = Xexp (1)

dY 1 = Yexp (1)

aX n(γ′′n)3 +bX n(γ′′n)2 + cX n(γ′′n)+dX n = Xexp (n)

aY n(γ′′n)3 +bY n(γ′′n)2 + cY n(γ′′n)+dY n = Yexp (n)

(1.40)

The unconstrained problem 1.38 together with constraint equations 1.39 and 1.40 are

solved by using the Matlab® command lsqlin that solves the least-squares with equality

constraints problem:kxopt = mi n(0.5(
∥∥Γp(x)−Xexp

∥∥)2) sub j ect to Aeq p(x) = beq,x

k yopt = mi n(0.5(
∥∥Γp(y)−Yexp

∥∥)2) sub j ect to Aeq p(y) = beq,y

(1.41)

where the matrices Aeq , beq,x and beq,y are defined as:
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beq,x =


zer os(n −1,1)

Xexp (n)

Xexp (1)
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beq,y =


zer os(n −1,1)

Yexp (n)

Yexp (1)


In order to evaluate the accuracy of the methodology presented, Fig. 1.19 shows an

example of the path segmentation and its comparison with respect the original set of

data points. The digital map well describes the real data set with the advantage of using

Figure 1.19 Digital map creation: segmentation of real data (right) and comparison of digital map
with real data (left)

a considerably smaller amount of data whose quantity depends only on the number of

segments chosen and no more linked to the number of original data points.

Lateral deviation real-time calculation

When polynomial coefficients kxopt and k yopt are calculated offline, they are stored to

be used for the online calculation of lateral deviation y that depends on the center of

gravity deviation from reference path and the heading error between the autonomous

vehicle and the desired trajectory (1.33). The matlab® function fminsearch elaborates the

vehicle GPS latitude and longitude to evaluate which is the closest segment i to vehicle

position and to calculate the value of γi (p) (ith segment at point p) for identifying the

point of the digital map in proximity of the car. Segment switching condition is also

taken into account on the hypothesis that the vehicle is always moving forward: when

γi (p) reaches the γ′′i value of ith segment, the strategy detects the switching condition

and provides the upgraded segment number. The number of segment is required to

evaluate the correspondent 8 polynomial coefficients (4 for X coordinate and 4 for Y )
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stored in kxopt and k yopt , meanwhile the γi (p) value is important for evaluating the Xp

and Yp coordinates of reference path:Xp (γi (p)) = kxopt ( j )γi (p)3 +kxopt ( j +1)γi (p)2 +kxopt ( j +2)γi (p)+kxopt ( j +3)

Yp (γi (p)) = k yopt ( j )γi (p)3 +k yopt ( j +1)γi (p)2 +k yopt ( j +2)γi (p)+k yopt ( j +3)
(1.43)

where j = 4(i −1)+1. By calculating the derivative of Xp and Yp with respect γi , the

value of its slope with respect X at the point p (T gΓ(p)) is given by:
X ′

p (γi (p)) = 3kxopt ( j )γi (p)2 +2kxopt ( j +1)γi (p)+kxopt ( j +2)

Y ′
p (γi (p)) = 3k yopt ( j )γi (p)2 +2k yopt ( j +1)γi (p)+k yopt ( j +2)

T gΓ(p) = ar ct an(
Y ′

p (γi (p))

X ′
p (γi (p)) )

(1.44)

and the curvature in that specific point (ρΓ(p)):
X ′′

p (γi (p)) = 6kxopt ( j )γi (p)+2kxopt ( j +1)

Y ′′
p (γi (p)) = 6k yopt ( j )γi (p)+2k yopt ( j +1)

ρΓ(p) = X ′
p Y ′′

p −Y ′
p X ′′

p(
X ′

p X ′
p+Y ′

p Y ′
p
)3/2

(1.45)

All these information are needed for calculating the vehicle CoG (Center of Gravity)

deviation with respect the reference path yCG and its heading error ∆ψ:yCG = si g n(D⃗(k))
√

(Xp (γi (p))−XG )2 + (Yp (γi (p))−YG )2

∆ψ =ψ−T gΓ(p)
(1.46)

where XG , YG and ψ are respectively vehicle global east coordinate, global north coor-

dinate and yaw angle. The sign of yCG is calculated based on the cross product of the

vectors between the vehicle’s position relative to the path and the slope of the digital

map:

D⃗ = ((Xp (γi (p))−XG ), (Yp (γi (p))−YG ),0)× (X ′
p (γi (p)),Y ′

p (γi (p)),0) (1.47)

The third dimension of this product gives the direction of the lateral deviation yCG : if

yCG is positive the vehicle is on the inner side of a closed path and if yCG is negative

the vehicle is moving outside of that path. Finally, the preview lateral deviation y is

calculated in real-time as follow:

y = yCG + ls sin(∆ψ) (1.48)



32 Autonomous Steering Control

and it will be used as feedback for PSA+FF and PSA+ISM control logics as shown in

Fig. 1.20.

PSA + FF

PSA + ISM

PI

EPAS

Drive-by-wire

GPS

y = yCG + ls sin(Δψ ) y = yCG + ls sin(Δψ ) 

XCG, YCG

V

y

yref

Vref

Switch

C(s) G(s)

Digital Map

Figure 1.20 Control scheme for lateral deviation y regulation: G(s) plant; C(s) controller

1.4.2 Parameter Space Approach: Theory and Application

The aim of path tracking control is to keep the preview lateral deviation as small as possi-

ble even in presence of reference curvature changing ρr e f or disturbance yaw moments

MzD and lateral forces FzD . The present section intent is to describe the parameter

space approach (PSA) as one possible solution to design the feedback controller for

preview lateral deviation y with the purpose of satisfying specific requirements. Before

that, some basic concepts related to the PSA theoretical background are presented and

subsequently applied to the specific case of autonomous vehicle path tracking control.

Hurwitz-stability criteria

Hurwitz stability is connected to the close-loop transfer function; consider a generic

single-input single-output (SISO) plant G(s) that can be controlled by a controller C (s)
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G(s)C(s)

H(s)

-
+

er u y
G(s)C(s)

H(s)

-
+

er u y

Figure 1.21 Generic single-input single-output (SISO) plant G(s) controlled by a controller C (s)

as shown in Fig. 1.21. Let’s assume without loss of generality that the denominator of

close-loop transfer function can be expressed as follow:

p(s) = a0 +a1s +a2s2 +·· ·+an sn , an > 0 (1.49)

where s is the Laplace transform. Hurwitz has linked the stability of the n − th order

polynomial to a set of determinants ∆i = detHi . The determinants come from the

following so called Hurwitz matrices:

H1 =
[

an−1

]
H2 =

[
an−1 an−3

an an−2

]

H3 =


an−1 an−3 an−5

an an−2 an−4

0 an−1 an−3


...

(1.50)

This pattern continues until an n ×n matrix is obtained. For n even, the last matric Hn

has the form:

Hn =



an−1 an−3 an−5 · · · a1 0 0 0 · · · 0

an an−2 an−4 · · · a2 a0 0 0 · · · 0

0 an−1 an−3 · · · a3 a1 0 0 · · · 0

0 an an−2 · · · a4 a2 a0 0 · · · 0
...

...
...

...
...

...
...

...
...

...

0 · · · 0 an−1 an−3 an−5 · · · a3 a1 0

0 · · · 0 an an−2 an−4 · · · a4 a2 a0


(1.51)
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while for n odd, it has the form:

Hn =



an−1 an−3 an−5 · · · a0 0 0 · · · 0

an an−2 an−4 · · · a1 0 0 · · · 0

0 an−1 an−3 · · · a2 a0 0 · · · 0

0 an an−2 · · · a3 a1 0 · · · 0
...

... an an−2
...

...
... a1 0

0 · · · 0 an−1 an−3 an−5 · · · a2 a0


(1.52)

The relation of these matrices to stability is given in the following theorem.

Theorem 1.1 (Hurwitz). An n − th order polynomial 1.49 is stable if and only if

detHi > 0 f or al l i = 1,2, · · · ,n (1.53)

It is also important to notice that for both n even and n odd, it follows from expanding

detHn by its last column that

detHn = a0detHn−1 (1.54)

Thus, the stability condition 1.53 is equivalent to detHi > 0 for i = 1,2, · · · ,n −1 and

a0 > 0. If the polynomial coefficients a0, a1 · · · are known, the Hurwitz stability represents

an easy stability criteria to be verified. If the coefficients are not constant but they

contain some uncertainties or are dependent on controller gains, Hurwitz stability

becomes a strong tool for robustness properties evaluation (uncertainties) or for control

design purposes (gains selection). A further necessary condition is the positivity of all

coefficients ai .

Theorem 1.2 (Hurwitz-positive coefficients criteria). A stable polynomial 1.49 of degree

n satisfies

a > 0 f or al l i = 1,2, · · · ,n (1.55)

The positive coefficient criteria is usually used for reducing the number of deter-

minant criteria in Theorem 1.53. This simplification is due to Liénard and Chipart

[68]:

Theorem 1.3 (Hurwitz-Liénard and Chipart). Necessary and sufficient conditions for a

polynomial

p(s) = a0 +a1s +a2s2 +·· ·+an sn , an > 0
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to be stable can be given in one of the four following forms:

LC 1 a0 > 0, a2 > 0, · · · ;∆1 > 0,∆3 > 0, · · · ,

LC 2 a0 > 0, a2 > 0, · · · ;∆2 > 0,∆4 > 0, · · · ,

LC 3 a0 > 0, a1 > 0, a3 > 0, · · · ;∆1 > 0,∆3 > 0, · · · ,

LC 4 a0 > 0, a1 > 0, a3 > 0, · · · ;∆2 > 0,∆4 > 0, · · · ,

(1.56)

where ∆i = detHi .

Critical Stability Conditions

In the previous paragraph it is mentioned that the Hurwitz criteria becomes a useful

tools when the polynomial coefficients of 1.49 are function of unknown parameters z

related to model uncertainties or controller gains:

p(s, Z ) = a0(z)+a1(z)s +a2(z)s2 +·· ·+an(z)sn , an(z) > 0 (1.57)

The Critical Stability Conditions assumes that if real coefficients of p(s, Z ) are continuous

function of z also the roots of p(s, Z ) are continuous with respect the parameter z, since

they cannot jump from the left half plane of Nyquist diagram to the right one without

crossing the imaginary axis. If p(s = z0) represents a stable characteristic polynomial, the

stable neighborhood of z0 is bounded by the values of z where one or more eigenvalues

cross the imaginary axes under a continuous variation of z. Three different conditions

can cause the eigenvalues cross of imaginary axis: at s = 0 real root boundary (RRB), at

s =∞ infinite root boundary (IRB) and at s =± jω imaginary root boundary (CRB). The

IRB is characterized by the condition an(z) = 0, mean while the RRB and CRB conditions

can be detected by Frazer and Duncan [69]:

Theorem 1.4 (Frazer-Duncan). The family of polynomials

P (s, Z ) = a0(z)+a1(z)s +·· ·+an(z)sn |z ∈ Z (1.58)

with continuous real coefficient functions ai (z) is robustly Hurwitz-stable, is and only if:

• There exists a stable polynomial p(s, z) ∈ P (s, Z )

• an(z) ̸= 0 for all z ∈ Z

• detHn(z) ̸= 0 for all z ∈ Z
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Note that detHn = a0detHn−1 the three conditions of previous theorem may be

replaced by the following ones:

1. There exists a stable polynomial p(s, z) ∈ P (s, Z )

2. an(z) ̸= 0 for all z ∈ Z

3. a0(z) ̸= 0 for all z ∈ Z

4. detHn−1(z) ̸= 0 for all z ∈ Z

Fictitious and Non-active Boundaries An n − th order polynomial can be factorized

as:

p(s) = an

n∏
i=1

(s − si ), si =σi + jωi (1.59)

Orlando’s formula represents a straightforward relationship between detHn−1 and the

root of p(s):

detHn−1 = (−1)n(n+1)/2an−1
n

n∏
i ,k=1 i<k

(si + sk ) (1.60)

If the polynomial has a pair of roots on the imaginary axis at σ1 =σ2 = 0,ω1 =−ω2, then

the product term s2 + s2 is zero and hence detHn−1 also equals zero. The condition

detHn−1 = 0 is also verified for a real symmetric pair σ1 = −σ2, ω1 = ω2 = 0 or for

two complex symmetric pairs s1/2 = σ1 ± jω, s3/4 = −σ1 ± jω. Thus, the condition

detHn−1(z) = 0 not only generates the boundary where a root on the imaginary axis

occurs but also so called fictitious boundaries at complex frequencies. They cannot,

however, intersect the stable neighborhood around z0 because one or more eigenvalues

have to cross the imaginary axis first before reaching a symmetric pattern with respect

the imaginary axis with unstable eigenvalues. The condition detHn(z) = 0 is also verified

for a polynomial with unstable roots plus a pair of roots on the imaginary axis thus

bringing to a non-active boundary.

The Parameter Space Approach

Critical stability conditions represents a good approach to be used for simple systems

with a low number of states because the condition ∆n−1(z) = detHn−1(z) = 0 leads

to complicated symbolic expressions for large values of n. Furthermore, the above

condition generates fictitious boundaries since complex values of ω are also included

in the boundary detHn(z) = 0. The parameter space approach has been introduce to

restrict ω to real non-negative values and stability boundaries in a two-dimensional
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z-space are evaluated by a sweep over ω. The polynomial of 1.58 with real coefficients

may be rewritten as:

p(s, z) = pe (s2, z)+ spo(s2, z) (1.61)

where pe (s2, z) = a0(z)+a2(z)s2 +a4(z)s4 +·· ·
po(s2, z) = a1(z)+a3(z)s2 +a5(z)s4 +·· ·

(1.62)

The polynomial p(s, z) has a root at s =± jω if and only if both the real and the imaginary

part of

p(± jω, z) = pe (−ω2, z)± jωpo(−ω2, z) (1.63)

vanish: ℜ[p( jω, z)] = a0(z)−a2(z)ω2 +a4(z)ω4 −·· · = 0

ℑ[p( jω, z)] =ω[a1(z)−a3(z)ω2 +a5(z)ω4 −·· · ] = 0
(1.64)

The boundary crossing concept may now be formulated as:

Theorem 1.5 (boundary crossing). The family of polynomials P (s, Z ) is robustly stable, if

and only if:

• There exists a stable polynomial p(s, z) ∈ P (s, Z )

• jω ∉ Root s[P (s, Z )] for all ω≥ 0

where Root s[P (s, Z )] represents the set of all roots of p(s, z) for all z ∈ Z . The PSA is

usually adopted for a pragmatic controller design of a system with model uncertainties

z:

1. identify an operating domain with specific boundaries in Z space where the pa-

rameters z are supposed to changed

2. by fixing the z at the vertices of the operating domain in Z , use the robust state

approach to find controller gains that simultaneously satisfies eigenvalue specifi-

cations for all the vertices (design step)

3. by fixing the control gains, use the robust state approach to map the eigenvalues

boundaries in the Z space to check if the entire continuum of operating domain

meet the eigenvalue specifications (robust analysis step)

Example Let’s consider a polynomial of a closed loop transfer function with the follow-

ing coefficients as function of controller gains (k1,k2):
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a0 = 10k1

a1 = 10k2

a2 = 90+2k1

a3 = 2k2 −1

a4 = 10

(1.65)

The RRB condition is straightforward obtained for s = 0 thus leading to the first

boundary k1 = 0 in the k2 −k1 plane. The CRB is described by considering the real and

imaginary part of the polynomial for s = jω:ℜ[p( jω,k1,k2)] = 10k1 − (90+2k1)ω2 +10ω4 = 0

ℑ[p( jω,k1,k2)] =ω[10k2 − (2k2 −1)ω2] = 0
(1.66)

thus leading to the CRB boundary:k1(ω2) = 5ω2(ω2−9)
ω2−5

k2(ω2) = ω2

2(ω2−5)

(1.67)

Fig. 1.22 shows the parametric boundary in the k1 −k2 plane. In ω= 0 the CRB branches
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Figure 1.22 RRB nad CRB stability boundary for the characteristic polynomial of 1.65

off from the RRB and then it passes through infinity at ω=p
5 and intersects the RRB a

second time for ω= 3 at k1 = 0 and k2 = 1.125. The boundaries splits the k1 −k2 plane

into five regions from A to E: A is the only stable region, B has an unstable real root, C

has three roots in the right half plane, D has four unstable eigenvalues, and E has two of

them.
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Singular Frequencies

In the previous example, the CRB boundary is generated by a frequency sweep but there

are some special cases where singular frequencies can create an entire branch of the

stability boundary. In order to show this phenomena, a simple case is here considered

where the characteristic polynomial depends on two parameters z1 and z2 (that may be

plant or controller parameters):

p(s, z1, z2) = p0(s)+ z1p1(s)+ z2p2(s) (1.68)

where p0(s), p1(s), p2(s) are known polynomials. For s = jω, they can be formulated as:

p0( jω) = R0(ω)+ j I0(ω)

p1( jω) = R1(ω)+ j I1(ω)

p2( jω) = R2(ω)+ j I2(ω)

(1.69)

meanwhile the real and imaginary part of:

p( jω, z1, z2) = Rp (ω, z1, z2)+ j Ip (ω, z1, z2) (1.70)

vanishes for
Rp (ω, z1, z2) = R0(ω)+ z1R1(ω)+ z2R2(ω) = 0

Ip (ω, z1, z2) = I0(ω)+ z1I1(ω)+ z2I2(ω) = 0
(1.71)

In matrix notation: [
R1(ω) R2(ω)

I1(ω) I2(ω)

][
z1

z2

]
+

[
R0(ω)

I0(ω)

]
=

[
0

0

]
(1.72)

A singularity is present at a frequency ω for which the determinant of the first matrix

vanishes:

R1(ω)I2(ω)−R2(ω)I1(ω) = 0 (1.73)

If this condition is verified, the two lines represented by Eq. 1.72 are parallel in the z1−z2

plane and the only possible solution is that they become identical:

R1(ω)I0(ω)−R0(ω)I1(ω) = 0 (1.74)

The real frequency that both Eq. 1.73 and 1.74 are called singular frequencies where

the solution in the z1 − z2 plane is not just an intersection point (like for non-singular

frequencies) but an entire straight line. Since the real parts R0, R1, R2 are polynomials in

ω2 (R(ω) = R(ω2)) meanwhile the imaginary parts I0, I1, I2 can be expressed as I (ω) =
ωI (ω2). The RRB condition is obtained with ω= 0. For the CRB (ω ̸= 0), Eq. 1.73 and 1.74
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needs to be divided by ω thus obtaining:d(ω2) = R1(ω2)I 2(ω2)−R2(ω2)I 1(ω2) = 0

d1(ω2) = R1(ω2)I 0(ω2)−R0(ω2)I 1(ω2) = 0
(1.75)

A real positive solution ω2
k of d(ω2) = 0 can represent good candidates for singular

frequencies. By substituting ωk in d1(ω2) = 0:

d1(ω2
k ) = R1(ω2

k )I 0(ω2
k )−R0(ω2

k )I 1(ω2
k ) = 0 (1.76)

If this condition is verified, then ωk is a singular frequency.

Hurwitz stability for PID design

The problem presented in this section is related to the design of a conventional PID con-

troller by adopting Hurwitz stability approach. A conventional PID controller, designed

for a specific plant G(s) (refer to Fig. 1.21 with H = 1), can be defined by the following

transfer function:

C (s) = K I +KP s +KD s2

s(1+TR s)
(1.77)

where KP , K I and KD are proportional, integral and derivative gains meanwhile TR is

used for the realizability of the final controller. It is of interest to evaluate the set of all

stabilizing PID-controllers by representing the stable region in a KP −KD plane for a grid

of K I values; in each plane, the intersection of stable regions for N operating conditions

is calculated to find the set of simultaneous stabilizers. The parameter space approach

is applied to the problem and it will be first developed for one operating condition

A(s) = numG(s) = a0 +a1s +·· ·+ak sk , ak ̸= 0

B(s) = s(1+TR s)denG(s) = b0 +b1s +·· ·+bm sm , bm ̸= 0
(1.78)

The characteristics polynomial of the close-loop system is given as:

P (s,K I ,KP ,KD ) = A(s)(K I +KP s +KD s2)+B(s) (1.79)

and it has a root at s = jω if and only if:

RP =ℜ[P ( jω,K I ,KP ,KD )] = 0

IP =ℑ[P ( jω,K I ,KP ,KD )] = 0
(1.80)
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By separating the real part from the imaginary one:

A(s) = RA + j I A

B(s) = RB + j IB

(1.81)

and considering KP as fixed parameter:[
RP

IP

][
RA −RAω

2

I A −I Aω
2

][
K I

KD

]
+

[
−KP I Aω+RB

KP RAω+ IB

]
=

[
0

0

]
(1.82)

Since the matrix multiplying [K I KD ]T is always singular, the Eq. 1.82 represent two

parallel lines. A solution exists, if and only if the two parallel lines are identical:

g (ω) = det

[
RA −KP I Aω+RB

I A KP RAω+ IB

]
=ωKP (R2

A + I 2
A)+RA IB − I ARB = 0

(1.83)

Only a positive real solutionω2
k lead to real frequenciesωk (k = 0,1,2 · · ·K ) that represent

singular frequencies. The meaning of the condition 1.83 is that the root of P (s,K I ,KD ) can

cross the imaginary axis only at the singular frequencies ωk . Three different possibilities

are here identified on how a root of Eq. 1.79 can cross the imaginary axis by a variation

of KD and K I :

1. The RRB can be identified by the condition s = 0:IP (ω) = 0

RP (ω) = a0K I +b0

(1.84)

thus finally leading to:

K I =−b0/a0 (1.85)

2. The IRB can be identified by the condition s =∞ which is obtained by pn = 0 if the

polynomial in Eq. 1.79 is written as P (s) = p0 +p1s +·· ·+pn sn :

pn =


ak KD f or m < k +2

ak KD +bm f or m = k +2

bm f or m > k +2

(1.86)
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thus finally leading to:

KD =


0 f or m < k +2

−bm/ak f or m = k +2

none f or m > k +2

(1.87)

3. The CRB boundary is obtained by substituting ωk calculated from Eq. 1.82 into

one of the equations expressed by Eq. 1.83:

K I −KDω
2
k =−[RB (ωk )− I A(ωK )ωk KP ]/RA(ωk ) i f RA ̸= 0

or

K I −KDω
2
k =−[IB (ωk )−RA(ωK )ωk KP ]/I A(ωk ) i f I A ̸= 0

(1.88)

Equations 1.88 represent straight lines for each ωk with positive slope ω2
k in the

KD −K I plane.

All these boundaries generates some regions in the KD −K I plane (with also some

vertex placed at infinity) thus separating the unstable set of gains from the stable one.

The final straightforward part of design procedure consists of identifying which region

represents the stable one just simply checking one point in each area.

Gamma Stability

In previous sections, the PSA method is introduced and used for designing a controller

that stabilizes a generic plant system and it constitutes a useful tool for all system with

model uncertainties. In this section, the performance of close loop system dynamics is

taken into account and the PSA method is extended to the so called Gamma Stability

concept: the half-left plane adopted by Hurwitz stability is replaced by the Γ region

that guarantee both stability and controller performances (damping effect,settling time,

rising time, etc...). Controller performances can be evaluated by considering the poles

and the zeros of the close-loop system transfer function that can be placed by a feasible

selection of control gains. Some general tips about time-domain response can be listed

as follow:

• If the transient time response presents oscillations that decay slowly, a complex

pair of eigenvalues with low damping needs to be modified.

• High overshoot values may be due to some poles placed further from zero with

respect to zeros.
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• A slow settling time with respect the stationary value is probably due to real eigen-

values too close to the origin. They requires to be moved toward the half-left

plane.

• Undesired high-frequency content in the actuator signal, may be fixed by increas-

ing the relative degree of the controller and by placing far eigenvalues closer to the

origin. Another solution is the design of an anti-aliasing filter in case of sampled-

data systems.

• The closer poles to the origin (dominant poles) influences steady-state system re-

sponse meanwhile the furthest poles characterized the initial part of time response

and they have a strong impact on initial actuator signal.

• Zeros in the left half plane provokes the same effect of a reduced damping but

they can be canceled by a proper compensator; Zeros in the right half plane can

be moved but not removed.

Definition 1.1 (Γ stability). A generic polynomial p(s) is calledΓ stable if all its roots si ∈ Γ.

The area Γ has a boundary δΓ that is built based on controller design and eigenvalues

specifications.

Theorem 1.6 (boundary crossing for Γ stability). The family of polynomials P (s, Z ) is

robustly Γ stable, if and only if:

• exists a Γ stable polynomial p(s) ∈ P (s, Z )

• σ(α)+ jω(α) ∉ Root s[P (s, Z )]∀α ∈ [α−;α+]

where α is the parameter that describes the boundary δΓ around Γ region. The

difference between Hurwitz stability is that s = si g ma(α)+ jω(α) is taken into account

instead of s = jω. RRB, IRB, and CRB equations can be obtained with less or more

difficulty depending on the complexity of relations σ(α) and ω(α):

• RRB is verified every time the δΓ intersects with real axis (s =σ0):

p(σ0, z) = 0 (1.89)

• IRB is obtained by the following condition:

lim
α→∞p(σ(α)+ jω(α), z) = 0 (1.90)
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• CRB can be mapped by using the following theorem

Theorem 1.7 (CRB mapping). Consider the family of parameter z:

ZC RB (α) := {
z|p(σ(α)+ jω(α), z) = 0, α ∈ [α−;α+]

}
(1.91)

if a polynomial family p(s, z) = [1s · · · sn]a(z) has a real continuous coefficient func-

tion a(z), z ∈ ZC RB (α) if and only if[
d0(α) d1(α) · · · dn(α)

0 d0(α) · · · dn−1(α)

]
a(z) =

[
0

0

]
(1.92)

where

d0(α) = 1

d1(α) = 2σ(α)

di+1(α) = 2σ(α)di (α)− [σ2(α)+ω2(α)]di−1(α), i = 1,2, · · · ,n −1

(1.93)

The ω sweep on the imaginary axis shown for the Hurwitz stability is here replaced by

an α sweep on δΓ. The pole placement technique ([70]) is a conventional logic design

that starts from a nominal value of z0 ∈ Z for controller gains selection based on desired

eigenvalues. This method loses accuracy when the system contains model uncertainties

that could lead to a not desired close-loop performances. The PSA procedure applied

to a Γ stability problem can satisfy the controller requirements in presence of model

with uncertainties since the target is to place eigenvalues in a region Γ instead of a single

point. In this case, this procedure is called pole region assignment. A good Γ region shape

for controller design is the D-stable region shown in Fig. 1.23 where the bandwidth is

bounded by a circular line (radius Rb) and its damping by a hyperbola according to its

asymptotes (α) and its real part is bounded by the apex of hyperbola (σ0). The value of

σ0 imposes a minimum limit on the raising time to reach the steady-state value thus

influencing the speed of controller action; The α value imposes a minimum level of

damping effect on system response thus reducing oscillations in reaching stationary

behavior; The bandwidth limit, identified by Rb , is required in all situations where high

frequency control actions may be affected by actuators dynamics.

Generalized Singular Frequencies

The concept of singular frequencies ωk has been introduced in section 1.4.2 for the

specific case of Hurwitz stability. Here the concept is extended to generalized singular

frequency αk on the Γ stability boundary s = σ(α)+ jω(α), α ∈ [α−;α+]. Consider a
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Figure 1.23 Example of D-stable Region based on eigenvalues specifications

polynomial linearly dependent to z1 and z2:

p(s, z1, z −2) = p0(s)+ z1p1(s)+ z2p2(s) (1.94)

Let’s assume s =σ(α)+ jω(α) and by substituting a(z1, z2) = a0 + z1a1 + z2a2 in Eq. 1.92

two linear equations as function of z1 and z2 are obtained:[
c11(α) c12(α)

c21(α) c22(α)

][
z1

z2

]
+

[
c10(α)

c20(α)

]
=

[
0

0

]
(1.95)

and finally a generalized singular frequency αk is guaranteed by the condition:

r ank

[
c11(α) c12(α) c10(α)

c21(α) c22(α) c20(α)

]
= 1 (1.96)

PSA applied to Lateral Deviation Control

This section intent is to show how to exploit the PSA method with Hurwitz and Gamma

stability concepts for designing a conventional PD logic for controlling the vehicle lateral
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deviation. The Laplace transform of Eq. 1.34, 1.15 and 1.31 are given by:

y(s) = V

s
β(s)+ (

ls

s
+ V

s2
)r (s)− (

lsV

s
+ V 2

s2
)ρr e f (s)

β(s) = CF JzV s +CF CR bl −mV 2CF a

Den(s)
δOut (s)

r (s) = CF amV 2s +CF CR lV

Den(s)
δOut (s)

δOut (s) = n2s2 +n1s +n0

d4s4 +d3s3 +d2s2 +d1s +d0
δIn(s)

(1.97)

where

Den(s) = mV 2 Jz s2+(CF V Jz+CRV Jz+CF a2mV +CR b2mV )s+CF CR l 2+mV 2bCR−mV 2aCF

thus obtaining the transfer function between the preview lateral deviation y and the two

input: the required steering angle δIn and ρr e f .

y(s)

δIn(s)
=G(s)

= [(CF JzV 2 + lsCF amV 2)s2 + (CF CRV bl + lsV CF CR l )s +V 2CF CR l ][n2s2 +n1s +n0]

s2Den(s)(d4s4 +d3s3 +d2s2 +d1s +d0)

y(s)

ρr e f (s)
=−(

lsV

s
+ V 2

s2
)

(1.98)

As controller structure, a conventional proportional derivative (PD) logic is selected:

C (s) = KP +KD s (1.99)

The polynomial of the closed loop transfer function between the reference lateral devia-

tion yr e f and the actual lateral deviation y (see Fig. 1.20) can be expressed as a function

of controller gains KP and KD , by considering the nominal parameters identified in

Table 1.1 and a constant vehicle speed of 15km/h:

p(s,KP ,KD ) = num(1+G(s)C (s)) = a0KP + (a1.1KD +a1.2KP )s+
+ (a2.0 +a2.1KD +a2.2KP )s2 + (a3.0 +a3.1KD +a3.2KP )s3+
+ (a4.0 +a4.1KD +a4.2KP )s4 + (a5.0 +a5.1KD )s5+
+a6s6 +a7s7 +a8s8

(1.100)

The Hurwitz stability boundaries RRB,IRB,CRB are calculated as indicated in the follow-

ing list:
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• RRB condition (s = 0) consists of a0KP = 0 thus leading to the line KP = 0 in the

plane KD −KP .

• IRB condition is not present with this controller structure since a8 ̸= 0 for all KP ,KD

selection.

• the CRB is evaluated by substituting s with jω and by consider its real and imagi-

nary part: ℜ(p( jω,KP ,KD )) = 0;

ℑ(p( jω,KP ,KD )) = 0;
(1.101)

thus leading to a unique solution dependent on ω that can led to an acceptable

solution for real positive values of ω.

A graphical solution is plot in Fig. 1.24 in the plane KD −KP where all boundaries are

shown. The RRB and CRB boundaries according to Hurwitz stability are marked with
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Figure 1.24 Hurwitz and Gamma stability design criteria for lateral deviation control: boundaries
and stability regions

gray line thus separating the stable regions (left-half section of Argand-Gauss plane)

from the unstable one: with this method a conservative selection of controller gains

may be adopted if the task is only the close-loop system stability. In many controller

design, the guarantee of stability is not sufficient for the specific application since more

performances factor must be satisfied. In this sense, the gamma stability concept can

contribute to satisfy eigenvalues specifications in terms of settling time, damping factor

and bandwidth selection; the D-stable region, shown in Fig. 1.24 represents a good

selection for PD gains design. The following parameters are used for the definition of the
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D-stable region in the left-half section of Argand-Gauss plane:

σ0 = 0.3

α= 30 deg

Rb = 1.3

(1.102)

The most critical parameter is the bandwidth constraint since the EPAS system has a

cut-frequency almost equal to 1H z, meanwhile the other two requirements σ0 and α

can be selected with a greater margin. The RRB and CRB boundaries (since no IRB

boundaries are presents), are evaluated for each segment of D-stable region:

• CRB condition of settling time constraint is obtained with the substitution s =
−σ0 + jω in Eq. 1.100, solving the following system:ℜ(p(−σ0 + jω,KP ,KD )) = 0;

ℑ(p(−σ0 + jω,KP ,KD )) = 0;
(1.103)

and expressing the control gains KP and KD as function of ω (0 ≤ω≤σ0t an(π/2−
al pha)).

• CRB condition of damping constraint is obtained with the substitution s = rbe jα

in Eq. 1.100, solving the following system:ℜ(p(rbe jα,KP ,KD )) = 0;

ℑ(p(rbe jα,KP ,KD )) = 0;
(1.104)

and expressing the control gains KP and KD as function of rb (σ/cos(π/2−al pha) ≤
rb ≤ Rb).

• CRB condition of bandwidth constraint is obtained with the substitution s = Rbe jϑ

in Eq. 1.100, solving the following system:ℜ(p(Rbe jϑ,KP ,KD )) = 0;

ℑ(p(Rbe jϑ,KP ,KD )) = 0;
(1.105)

and expressing the control gains KP and KD as function of ϑ (π/2+α≤ϑ≤π).

• RRB condition of settling time constraint is obtained with the substitution s =−σ0

in Eq. 1.100 and expressing the control gains KP as function of KD .
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• RRB condition of damping constraint is not present since this segment doesn’t

intersect the Real axis.

• RRB condition of bandwidth constraint is obtained with the substitution s =−Rb

in Eq. 1.100 and expressing the control gains KP as function of KD .

The resulting Γ region is shown in Fig. 1.24 and compared with the Hurwitz stability

region: Γ region is encapsulated in Hurwitz one since gamma stability adds more con-

straints on desired eigenvalues placement. Each pairs of KP and KD values inside the Γ

region satisfies the lateral deviation control requirements indicated in Eq. 1.102 if and

only if the system parameters assume the nominal values reported in Table 1.1.

Gamma stability robust analysis and design A more strict gain selection in terms of

gamma stability design may be extended by considering the effect of model parameters

uncertainties. The values of the mass m, inertia moment Jz and COG position (a,b)

are measured with a specific test bench by loading the vehicle with four passenger and

full fuel; nominal values of cornering stiffness CF and CR are evaluated by a system

identification procedure against the experimental step steer test. In particular, cornering

stiffness represents a model uncertainty that changes in a wide range of values which

depends mainly on friction coefficients between tires and road, load transfer among

tires and their slip ratio. Four conditions are here listed for considering the cornering

stiffness variation on the selection of KP and KD gains:

1. nominal condition: nominal values of CF and CR

2. worst condition: low values of CF and CR (i.e. 1/10 of nominal value)

3. CF nominal condition: low value of CR and nominal value of CF

4. CR nominal condition: low value of CF and nominal value of CR

The Γ stability procedure is repeated for each condition and the correspondent Γ regions

are overlapped and shown in Fig. 1.25. The worst condition replicate a low-friction

situation where cornering stiffness values collapse at the same time on front and rear

axles, meanwhile the CR nominal and CF nominal conditions represent respectively

an understeer and an oversteer vehicle behaviors. The final selection of gains must be

restricted to the dashed region (for example the red point) thus satisfying all the four

conditions. The placement of the two dominant close-loop poles (i.e. the closest to the

imaginary axis) in the Argand-Gauss plane is shown in the Fig. 1.26, thus providing a

proof of the requirements commitment. It is important to point out that the robust de-
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Figure 1.26 D-stable region and dominant poles placement with KP = 0.1 and KD = 0.15

sign procedure shown in this paragraph guarantees the desired PD control performances

only for the four conditions here considered but it does not ensure the requirements

satisfaction for a continuous variation of cornering stiffness among the these conditions.

In order to reach this task, the polynomial in Eq. 1.100 has to be parametrized as function

of model uncertainties (CF and CR ) meanwhile the gain KP and KD are fixed to a specific

value (i.e. the red point in Fig. 1.25); by applying the gamma stability procedure, the

D-stable region is reported in the CF −CR plane thus proving the continuum robustness

of the PD logic designed for all operating condition. Unfortunately, even if this method

represents a reliable and elegant design requirements, such robustness analysis is not

always trivial in particular in all situations where a non-linear dependence of the poly-
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nomial coefficients with physical plan parameters is present as it happens for CF and

CR .

1.4.3 Static Linear Feedforward

The preview lateral deviation, whose dynamics is expressed by Eq. 1.98, is influenced by

two input: the steering angle δIn and the curvature of the reference path ρr e f . The PD

control logic has been designed by considering only the transfer function G(s) between

δIn and y and it requires a further improvement to take into account the curvature ρr e f .

Two different methodologies are here presented based on vehicle actual configuration:

1. the value of the curvature ρr e f is available in real-time: it can be used as an input

for a Static Linear Feedforward (SLF) which is added to the PD output.

2. the value of the curvature ρr e f is not available in real-time: an integral sliding

mode (ISM) is used as disturbance observer.

In the present section the SLF method is introduced and designed meanwhile the

ISM control is presented in the next section. The starting point for the SLF design is

the online evaluation of ρr e f which can be easily obtained by the digital map, since

segments of reference path are approximated by a third order polynomial and the value

of curvature is expressed by Eq. 1.45:

ρr e f (p) =
X ′

p Y ′′
p −Y ′

p X ′′
p(

X ′
p X ′

p +Y ′
p Y ′

p
)3/2

where X ′
p , Y ′

p are the first derivative and X ′′
p , Y ′′

p the second derivative respectively of Xp

and Yp with respect γi . The SLF is an open-loop control designed in order to provide a

value of δF F based on the current value of ρr e f (p) and this can be obtaining by inverting

the steady-state relation between steering angle and vehicle curvature expressed by

Eq. 1.22:

δF F = (L+K V 2)ρr e f (p) (1.106)

This represents a static design since it takes into account only the steady-state behavior

and it is also affected by model uncertainties because the value K is influenced by corner-

ing stiffness, loading condition and suspension kinematics. Experimental results prove

that even a simple and fast feedforward design is effective if it works in collaboration

with the PD control as it will shown in the experimental results section.
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1.4.4 Integral Sliding Mode: Theory and Application

The Integral Sliding Mode (ISM) represents a sub-case of the sliding mode controllers

since it is mainly used as a disturbance observer to be integrated with a nominal control

strategy. A short introduction about sliding mode concept is here presented followed by

the design procedure for ISM control according to [71, 72].

Conventional Sliding Mode

Consider a general non-linear affine system identified by the following equation:

ẋ = f(x)+Bu +h(x) (1.107)

where x is the nx1 state vector, u the control output, f , B respectively the non-linear

function with respect x and the linear function with respect u and h(x) is an unknown

term or external disturbance that is bounded. Let’s assume that the desired dynamical

behavior of close-loop system can be expressed by the following relation:

n∑
i=1

ci xi = 0, ci > 0 (1.108)

which implies an exponential transient behavior, dependent on ci selection, before

approaching to the stationary state. The problem statement of sliding mode control is

to find the controller action u for converging the system behavior towards the desired

dynamics expressed by Eq. 1.108, even in presence of external disturbances. The first

step is to introduce a new variable, called sliding variable s0, that is a linear function of

system states:

s0 =
n∑

i=1
ci xi , ci > 0 (1.109)

In order to have the desired behavior of Eq. 1.108, the control output u needs to drive

the sliding variable s0 to zero in a finite time and in presence of external disturbances.

The task is achieved by satisfying the Lyapunov Theorem:

Theorem 1.8 (Lyapunov asymptotic and finite-time stability). For the general non-linear

affine system in Eq. 1.107, suppose there exists a differentiable function V (s) : ℜn →ℜ
which is radially unbounded and positive definite such that:

V̇ (s) < 0 f or s ̸= 0
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Then the system is asymptotically stable. If

V̇ (s) ≤−αV (s)1/2 f or s ̸= 0 and α> 0

Then the system is finite-time stable and by integrating the inequality over the time interval

0 ≤ τ≤ t :

V 1/2(t ) ≤−1

2
αt +V 1/2(t0)

thus driving the variable V in a finite time t f :

t f ≤
2V 1/2(t0)

α

the larger α, the shorter is the reaching time.

A candidate Lyapunov function can be selected as a function of sliding variable since

s0 is a linear function of system states:

V = 1

2
s2

0 (1.110)

whose derivative is given by:

V̇ = s0 ṡ0 = s0(Cf(x)+CBu +Ch(x)) (1.111)

where C = [c1,c2, · · · ,cn]. Assuming a control action

u =−(CB)−1Cf(x)−ρ si g n(s0) (1.112)

and substituting in Eq. 1.111:

V̇ = s0(−CBρ si g n(s0)+Ch(x)) =−s0CBρ si g n(s0)+ s0Ch(x) (1.113)

and since h(x) is bounded |Ch(x)| ≤ H :

V̇ ≤ |s0|H −|s0| |CB|ρ =−|s0| (|CB|ρ−H) (1.114)

Finally by choosing ρ > (CB)−1H , the sliding variable s0 is driven to zero and the desired

dynamical behavior of Eq. 1.108 is achieved.

Definition 1.2 (Sliding surface). The following equation:

c1 + c2 +·· ·+cn = 0
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represents a straight line in state space plane of the system in Eq. 1.107 and it is called

sliding surface.

The condition s0 ṡ0 ≤ 0 is often defined as reachability condition and its existence

guarantees that the system is driven towards the sliding surface and keeps staying on

it. The phase when the state trajectory is driven towards the sliding surface is called

reaching phase meanwhile the sliding phase is when states are moving on the sliding

surface. The control logic in Eq. 1.112 that drives the system states x to the sliding

surface and forces them to lay on it even in presence of disturbances h is called as

sliding mode controller. When the states are laying on the sliding surface, they exhibit

an high frequency behavior with small amplitudes called chattering and it is caused by

the switching function introduced by the controller in Eq. 1.112; in ideal sliding mode

the frequency is supposed to approach infinity and the amplitude to zero. Different

solutions to solve the chattering problem are discussed in [71].

Equivalent Control & Sliding Mode Equations

Assume that the sliding surface is reached and the system states are forced by the sliding

mode controller u to stay on it. This means that s0 = ṡ0 = 0 and the condition ṡ0 = 0

gives:

ṡ0 = ∂s0

∂x

∂x

∂t
= C(f(x)+Bu +h(x)) = 0 (1.115)

A direct analytical controller solution of Eq. 1.115 can be expressed by:

ueq =−(CB)−1[Cf(x)−Ch(x)] (1.116)

Definition 1.3 (Equivalent Control). The controller equation calculated by Eq. 1.116 to

ensure that the system trajectory lays on the sliding surface is called equivalent control

The equivalent control is not the sliding mode control expressed by Eq. 1.112 and

it cannot be implemented since it is dependent on the disturbance term h(x) which is

not commonly available in real-time. The equivalent control represents the ”average”

value of the high-frequency switching controller 1.112 whose filtered value ûeq can be

an estimation of ueq :

ûeq =−(CB)−1Cf(x)−ρs f

τṡ f =−s f + si g n(s0)
(1.117)

where τ is the time constant of the filter applied to the signal si g n(s0). The equivalent

control can be also used to estimate the disturbance or unknown term h(x) since the
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comparison between equations refEq2.117 and 1.116 leads to:

(CB)−1Ch(x) = ρs f (1.118)

The close-loop response is given by substituting Eq. 1.116 in Eq. 1.107:

ẋ = (
I−B(CB)−1C

)
f(x)+ (

I−B(CB)−1C
)

h(x) (1.119)

An important property of sliding mode control is its robustness or invariance to

specific class of uncertainty. Suppose that the unknown term h(x) has the following

structure:

h = Bξ (1.120)

where ξ is an unknown signal, thus obtaining:

(
I−B(CB)−1C

)
h = (

I−B(CB)−1C
)

Bξ=
= Bξ−Bξ=
= 0

finally reducing Eq. 1.119 into:

ẋ = (
I−B(CB)−1C

)
f(x) (1.121)

The close-loop is completely independent on the disturbance ξ, which is called matched

disturbance since it represents uncertainties which act on the channel of the controller

input.

when the system reaches the sliding surface, the system dynamics is described by

Eq. 1.108 thus leading to the following conclusions:

• The order of the system dynamics is reduced since the sliding mode control

drives the system from a first order dynamics (Eq. 1.107) to a states linear relation

(Eq. 1.108)

• When the system is moving on sliding surface, its dynamics is not influenced by

the matched disturbances h(x) (Eq. 1.121)

• The equivalent sliding mode control ueq , is not the real control action u applied

to the system and it can be seen as an abstract concept used to evaluate the

reduced-order system expressed by Eq. 1.119
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• The choice of sliding surface affects the dynamics of the reduced order motion,

so that it constitutes a key point for control system design. (in [71] some design

examples are shown in order to reduce the effects of unmatched disturbances)

Example Consider the Multi-Input Multi-Output (MIMO) system:

ẋ1 = x1 +x2 +x3 +u2 +h2

ẋ2 = x2 +3x3 +u1 −u2 +h1 −h2

ẋ3 = x1 +x3 −u1 −h1

thus obtaining that:

B =


0 1

1 −1

−1 0


and the following sliding surfaces are selected:

s0,1 = x1 + c1x3

s0,2 = x2 +x3

thus leading to:

C =
[

1 0 c1

0 1 1

]

The equivalent control can be evaluated by vanishing ṡ0,1 = 0 and ṡ0,2 = 0:

ṡ0,1 = (1+ c1)x1 +x2 + (1+ c1)x3 − c1u1 +u2 − c1h1 +h2 = 0

ṡ0,2 = x1 +x2 +4x3 −u2 −h2 = 0

u1eq = 2+ c1

c1
x1 + 2

c1
x2 + 5+ c1

c1
x3 −h1

u2eq = x1 +x2 +4x3 −h2

and the reduced dynamics of the original system is given by:

x1 =−c1x3

x2 =−x3

ẋ3 = 2c1 −3

c1
x3
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In order to have a stable solution 0 < c1 < 3/2. It is evident that close-loop dynamics has

a reduce-order than original system and it is invariant with respect h1 and h2 that are

matched disturbances.

Finally, the sliding mode controller is selected as stated in Eq. 1.112:

u1 = 2+ c1

c1
x1 + 2

c1
x2 + 5+ c1

c1
x3 −ρ1si g n(s0,1)

u2 = x1 +x2 +4x3 −ρ2si g n(s0,2)

where ρ1 and ρ2 have to be designed by applying the Lyapunov theorem based on

the maximum value of disturbances h1 and h2. The filtered values of ρ1si g n(s0,1) and

ρ2si g n(s0,2) can be also used as estimators of respectively h1 and h2.

Relative degree approach

The sliding surface design can be carried out based on the relative degree definition.

Definition 1.4 (Relative Degree). Consider a Single-Input Single-Output system (SISO)

with output y ∈ℜ, state vector x ∈ℜn and u ∈ℜ. If the ith derivative y (i ) is independent

on u for all i = 1,2, · · · ,k −1 and y (k) is proportional to u, then k is called the relative

degree.

The sliding surface can be defined conventionally as a linear differential equation of

order equal to k −1 with respect the error between the output variable and its reference

value.

Example Consider the following system:
ẋ1 = x2

ẋ2 = u +h(x1, x2, t )

y = x1

The problem statement is to design a sliding mode control u that makes the output

y follow a reference profile yr (t ) thus driving the tracking error e = yr − y to zero even in

presence of the external disturbance h(x1, x2, t ). In this case the relative degree is equal

to 2 and the sliding variable can be chosen as:

s0 = ė + ce, c > 0
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As soon as the sliding variable s0 reaches the zero, the sliding motion starts and the

tracking error e will respect the reduced order differential equation:

ė + ce = 0, c > 0

The sliding variable dynamics is expressed by:

ṡ0 = ÿr + c ẏr −h(x1, x2, t )− c ẏ︸ ︷︷ ︸
φ(y,ẏ ,t )

−u

and it is assumed that φ(y, ẏ , t ) is bounded
∣∣φ(y, ẏ , t )

∣∣≤ M . The sliding mode control u

can be designed by using the Lyapunov theorem:

s0 ṡ0 = s0(φ(y, ẏ , t )−u) ≤ |s0|M − s0u

and choosing the control as:

u = ρsi g n(s0)

thus obtaining that:

s0 ṡ0 ≤ |s0| (M −ρ) ≤ 0

finally selecting the controller gain ρ as:

ρ > M

Integral sliding mode

The invariance property (robustness) of conventional sliding mode with respect external

disturbances can occur only when the system is operating in the sliding phase. During

the reaching phase, the robustness property is not guaranteed. The ISM control aims

to eliminate the reaching phase and let the sliding phase occurs from the beginning of

controller action thus preserving the robustness property throughout the entire system

response. As additional effect of ISM, the order of the motion equation in integral sliding

mode is equal to the order of the original system. Moreover, the integral sliding mode

control can be extended to build a new type of perturbation estimator which solves the

chattering problem characteristic of conventional sliding mode controllers (see [73, 72]

for further information).

Consider a dynamic system represented by the following state space equation:

ẋ = f(x)+B(x)u (1.122)
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where x ∈ℜn is the state vector and u ∈ℜm is the control input vector. Suppose that a

nominal controller u = u0(x) stabilizes the system in Eq. 1.122 in a desired way.

ẋ0 = f(x0)+B(x0)u0 (1.123)

However, in real situations system in Eq. 1.122 is influenced by parameter variation,

unmodelled dynamics and external disturbances and the states trajectory is modified:

ẋ = f(x)+B(x)u+h(x) (1.124)

where the h(x) comprise all the unknown terms that influence the states dynamics.

Assume that the unknown term fulfill the matching condition:

h(x) = B(x)uh (1.125)

which means that the controller u is able to influence all components of h(x) through

the matrix B(x). Finally, the unknown term h(x) is supposed to be bounded:

|hi (x)| ≤ h+
i (x) i = 1, · · · ,n (1.126)

where h+
i (x)is a positive scalar function. The objective of the ISM is to find a control logic

u such that the trajectory of real system in Eq. 1.126 satisfy x(t ) = x0(t ). The first step is

to split the control logic u into two sub-controllers:

u = u0 +u1 (1.127)

where u0 ∈ ℜm is the ideal control defined in Eq. 1.123 and u1 ∈ ℜm will be designed

to reject the perturbation term h(x). The substitution of control logic of Eq. 1.127 into

Eq. 1.124 yields to:

ẋ = f(x)+B(x)u0 +B(x)u1 +h(x) (1.128)

Introduce a new sliding variable s:

s = s0 + z (1.129)

which is composed by two parts: the first sliding variable s0 may be designed as a

linear combination of the system states, as it happens for conventional sliding mode

controllers; the second sliding variables z introduce an integral term that will be designed

below. The control logic u1 = K si g n(s) is designed as conventional sliding mode such

as its equivalent expression to reach the sliding surface s = 0 is:

B(x)u1eq =−h(x) (1.130)
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By imposing the time derivative of s to be equal to zero:

ṡ = ṡ0 + ż = ∂s0

∂x
[f(x)+B(x)u0 +B(x)u1eq +h(x)]+ ż = 0 (1.131)

in order to ensure Eq. 1.130 the second sliding variable z must be selected by integrating

the following expression:

ż =−∂s0

∂x
[f(x)+B(x)u0] z(0) =−s0(x0) (1.132)

The initial condition z(0) =−s0(x0) imposes that the sliding phase occurs starting form

the initial time instance. With this design methodology, the Eq. 1.130 is satisfied and the

system behaves in a similar way to the ideal system trajectory:

ẋ = f(x)+B(x)u0 (1.133)

Perturbation estimation A crucial problem that afflicts the nature of conventional

sliding mode is the control discontinuity. The switching effect of control action results

in high-frequency oscillations which can excite system fast dynamics, like those of

actuators and sensors. This phenomenon is commonly referred as chattering, and

several method are presented in the literature to limit the controller gain or bandwidth.

The paragraph intent is to describe how design the IMS as a disturbance estimator and

rejecting disturbance without causing chattering. Instead of Eq. 1.127, the control output

is selected as:

u = u0 +u1eq (1.134)

but since the equivalent control depends on unknown term h(x) and it cannot practically

implemented. The equivalent control is thus evaluated by applying a first-order linear

filter to the discontinuous control u1. The time constant of the filter should be sufficiently

fast such that the plane and disturbance dynamics are allowed to pass through the filter

without significant phase lag. Even if the discontinuous control u1 is shifted from the

pant input to the input of the filter, the sliding mode can still be generated and the

perturbation is still canceled. Here is the explanation by redesigning the sliding variable

as follow:

s = s0 + z (1.135)

with z defined as

ż =−∂s0

∂x
[f(x)+B(x)u−B(x)u1] z(0) =−s0(x0) (1.136)
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the derivative of sliding variable s can be calculated as:

ṡ =−∂s0

∂x
[f(x)+B(x)u+h(x)]− ∂s0

∂x
[f(x)+B(x)u−B(x)u1] =

= ∂s0

∂x
h(x)+ ∂s0

∂x
B(x)u1

(1.137)

so that when the sliding phase is reached, the equivalent control of u1 is able to estimate

and reject the disturbance h(x). The Eq. 1.136 can be seen as an internal process for

generating the sliding mode; discontinuity appears only in the internal process thus

no chattering is excited in the real control path. Moreover, the redesign control logic

in Eq. 1.134 cancels the matched disturbance h(x) without a precise knowledge of the

system model and its parameters thus ensuring an high degree of robustness. The

unique information needed for designing the ISM control is the upper bound of the

perturbation. In conclusion, the ISM is used for estimating the system perturbation

rather than for the purpose of control since the control action to the real plant will be

continuous and enhanced by the perturbation compensator.

ISM applied to Lateral Deviation Control

The present section intent is to apply the ISM technique as disturbance observer con-

tribution, coupled with the PSA as nominal controller, for lateral deviation regulation.

The starting point for designing the ISM is the state space representation of the lateral

deviation dynamics expressed by Eq. 1.134 in section 1.3.5 and defined by the following

four differential equations:

β̇ = a11β+a12r +b11δF

ṙ = a21β+a22r +b21δF

∆ψ̇ = r −V ρr e f

ẏ =V β+ lsr +V∆ψ−V lsρr e f

(1.138)

where a11 =−(CF +CR )/(mV ), a12 =−1− (CF a −CR b)/(mV 2), a21 =−(CF a −CR b)/(Jz),

a22 =−(CF a2+CR b2)/(V Jz ), b11 =CF /mV , b21 =CF a/Jz . The state space representation

ca be obtained as follows:

ẋ =


a11 a12 0 0

a21 a22 0 0

0 1 0 0

V ls V 0


︸ ︷︷ ︸

A

x+


b11

b21

0

0


︸ ︷︷ ︸

B

δF +


0

0

−V

−V ls


︸ ︷︷ ︸

E

ρr e f +


hβ
hr

h∆ψ
hy


︸ ︷︷ ︸

H(x)

(1.139)
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The sliding variable s for ISM design is selected as:

s = s0 + z (1.140)

Since the relative degree with respect the lateral deviation y is equal to 2, the conventional

sliding variable s0 can be selected as:

s0 = ẏ + c y (1.141)

and by choosing the controller action δF as sum of nominal controller (PSA) δ0 and the

equivalent value δ1eq of sliding mode controller δ1 (δ1eq = δ1
ωF

p+ωF
):

δF = δ0 +δ1eq (1.142)

it is possible to evaluate the time derivative of sliding variable:

ṡ = ∂s0

∂x
[Ax+BδF +Eρr e f +H+Hs]+ ż (1.143)

where ∂s0
∂x = [V ls V c] and Hs = [0 V ρ̇r e f 0 ḣy /c]′. The second sliding variable z is thus

designed as:

ż =−∂s0

∂x
[Ax+BδF −Bδ1] z(0) =−s0(0) =−c y(t = t0) (1.144)

where t0 is the time at which the path tracking control is activated. With the above

selection of z dynamics, the sliding phase starts as soon as the controller is activated and

the dynamics of the sliding variable s is defined by the following equation:

ṡ =−∂s0

∂x
[Ax+BδF +Eρr e f +H+Hs]− ∂s0

∂x
[Ax+BδF −Bδ1] =

= ∂s0

∂x
[Eρr e f +H+Hs︸ ︷︷ ︸

H2

]+ ∂s0

∂x
Bδ1

(1.145)

so that when the sliding phase is reached, the control action δ1 is able to reject the

unknown terms identified by H2 = Eρr e f +H +Hs (the curvature of reference path ρr e f

is supposed to be unknown for ISM formulation). Finally, the discontinuous control

action δ1 =−K si g n(s) must be proper designed according to the Lyapunov Theorem

based on the max value of unknown terms
∣∣∣∂s0
∂x H2

∣∣∣≤ N :

V̇ = sṡ ≤ |s|
∣∣∣∣∂s0

∂x
H2 − ∂s0

∂x
BK si g n(s)

∣∣∣∣≤ |s| [
∣∣∣∣∂s0

∂x
H2

∣∣∣∣−K (V b11 + lsb21)] ≤ 0 (1.146)
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where V = 1/2s2 is the candidate Lyapunov function and K is the controller gain to be

designed for keeping negative the value of V̇ :

K ≥ N (V , ls)

(V b11 + lsb21)
(1.147)

The final gains K depends on the vehicle speed V , preview distance ls and on maximum

value N . In the present case it is supposed to decouple the longitudinal dynamics by

considering a constant speed (15km/h) and for a fixed value of preview distance ls

meanwhile the value of N has been evaluated by considering an high value of reference

curvature (1/ρr e f = 5m) and by neglecting the effect of four coefficients hβ, hr , h∆ψ
and hy since the simulation model is not be able to capture such uncertainties. The

experimental tuning of the gain K will slightly correct the value obtained by simulation

results.

1.4.5 Obstacle Collision Avoidance Path Modification

In section 1.4.1 a method for reference path segmentation and digital map implemen-

tation in real-time application is described with the hypothesis that a high-level path

planning strategy (not designed in the present work) provides a global way-points trajec-

tory, defined by global coordinates Xexp and Yexp , without considering the presence of

external obstacles. The present section aims to show how the elastic band theory [59, 60]

can be applied for autonomous steering control and its effect in terms of reference

path modification when an obstacle is detected (object detection and/or recognition

is not the final purpose of the present thesis). The method consists in comparing the

initial reference path to a series of springs that can be deformed by internal and external

forces applied to the node Ni (see Fig. 1.27). The elastic band is not deformed when no

obstacles are detected and, consequently, the static balance of internal forces acting on

each node Ni can be calculated as:

FI N T
i ,i−1 +FI N T

i ,i+1 = ks(ri−1 − ri )+ks(ri+1 − ri ) = 0 (1.148)

where ks is the spring stiffness, ri is the position vector of i-th node and FI N T
i ,i−1 is the

internal force between Ni and Ni−1.

When an obstacle is detected, an external force FE X T
i is applied thus modifying the

static relation expressed by Eq. 1.148:

FI N T
i ,i−1 +FI N T

i ,i+1 +FE X T
i = ks(r∗i−1 − r∗i )+ks(r∗i+1 − r∗i )+FE X T

i =
= ks(ri−1 +ui−1 − ri −ui )+ks(ri+1 +ui+1 − ri −ui )+FE X T

i = 0
(1.149)
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Ni

Ni-1

Ni+1

Figure 1.27 Reference path modification according to the elastic band theory: external (FE X T
i )

and internal (FI N T
i ,i−1,FI N T

i ,i+1) forces applied to the i-th node Ni provokes a deformation ui

where r∗i is the vector position of node Ni after the application of the external force FE X T
i .

By substituting Eq. 1.148 in Eq. 1.149 the following relation is obtained:

FE X T
i =−[ks(ui−1 −ui )+ks(ui+1 −ui )] =−ks(ui−1 −2ui +ui+1) (1.150)

The elastic band method is not applied to all n nodes that constitutes the initial path,

but it is limited to q < n nodes that are located within a desired circle with radius Rpr

defined as preview radius. The external force FE X T
i is selected according to the relative

position between the obstacle and the initial path:

FE X T
i =

−ke (∥ri∥− rmax)
ri ,mi n

∥ri ,mi n∥ , ∥ri∥ ≤ rmax

0, ∥ri∥ > rmax

(1.151)

where ri ,mi n is the minimum vector position ri between the obstacle and initial path. If

the obstacle is detected beyond a safety margin expressed by rmax , no external forces

are applied thus locally limiting the path deformation. An example of the external

force distribution is shown in Fig. 1.28 as function of the initial path X and Y global

coordinates. Eq. 1.150 can be reformulated into a matrix equation:
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Figure 1.28 Force distribution applied to initial path according to the elastic band theory

FE X T = ksKu (1.152)

where FE X T , u and K have respectively qx2, qx2 and qxq dimensions:

K =


2 −1 0 0 0 · · · 0

−1 2 −1 0 0 · · · 0
...

...
...

...
... · · · ...

0 0 0 · · · 0 −1 2

 , u =



u1,x u1,y
...

...

ui ,x ui ,y
...

...

uq,x uq,y


, FE X T =



F E X T
1,x F E X T

1,y
...

...

F E X T
i ,x F E X T

i ,y
...

...

F E X T
q,x F E X T

q,y


F E X T

i ,x and F E X T
i ,y are X and Y axis components of FE X T

i meanwhile ui ,x and ui ,y are the

same components of ui . The deformation vector u can be obtained by inverting the

matrix K:

u = 1

ks
i nv(K)FE X T (1.153)

thus generating the modified reference path defined by X ∗
exp and Y ∗

exp coordinates:

[X ∗
exp Y ∗

exp ] = [Xexp Yexp ]+ [0 0;u;0 0] (1.154)

An example of reference path deformation as a consequence of different obstacle posi-

tions is reported in Fig. 1.29 by adopting the following parameters:
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• Rpr = 25 m

• rmax = 7.5 m

• ks = 520000 N /m

• ke = 3 N /m

Figure 1.29 Initial path deformation for four obstacle positions according to the elastic band
theory

When the obstacle is closer to the initial path a larger deformation is requested in order

to overtake the safety region. Moreover, the deformation of the elastic band can change

its sign when the obstacle changes its relative position with respect the reference path.

In the present activity, the safety region bounded by rmax is selected by assuming only

static obstacles. The value of maximum external force amplitude ke and the preview

radius Rpr are properly designed in order to have a smooth curvature change when the

initial path deformation occurs. In particular, Fig. 1.30 shows the effect of different ratios

Tp = Rpr

ke
on the path deformation: a high Tp value provokes a smoother deformation

thus requiring a less aggressive steering action when the vehicle begins and completes

the obstacle avoidance maneuver.

1.5 Experimental Results

1.5.1 Close-Loop Path

The PSA+FF and PSA+ISM strategies explained in previous sections are here imple-

mented on the vehicle prototype platform introduced in section 1.2 and described by
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Figure 1.30 Initial path deformation for different values of Tp = Rpr

ke
ratios

the control scheme shown in Fig. 1.31. The vehicle speed is kept constant at 15 km/h by

PD

ISM

FF

Figure 1.31 Controller scheme implemented on the prototype autonomous vehicle for path
tracking control with PSA+FF and PSA+ISM strategies

using a PI cruise control experimentally tuned. The reference path adopted for experi-

mental test is a close loop path shown in Fig. 1.18 which is composed by two semicircles

with a radius of 30 m and two straight lines of 120 m and it is divided into 51 segments.

For a benchmark comparison, two different modes can be selected for experimental

tests:
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1. Manual mode: the driver is requested to follow the reference path meanwhile the

PI cruise control is responsible for keeping constant the speed (the autonomous

system is disabled)

2. Autonomous mode: the vehicle is responsible for both path tracking and cruise

control (the driver can take over only during emergency situations)

The manual mode is executed with three different drivers who are asked to track the

reference path which has been previously marked on the street meanwhile cruise control

keeps constant the speed at 15km/h; results are shown in Figures 1.32 and 1.33.

Figure 1.32 Lateral deviation y and steering angle δOut during manual path tracking for three
different drivers at constant speed of 15km/h

The vehicle always starts from the same position and all variables are plotted as

function of distance coordinate (with respect starting point) instead of time thus obtain-

ing a comparison not influenced by vehicle speed. When the vehicle approaches the

two semicircles, the driver are forced to increase the steering angle in order to keep the

vehicle trajectory as close as possible to the reference path. The driver 3 is able to keep

the lateral deviation smaller than the other two drivers but it results as an increase in

steering oscillations. The same test is repeated in autonomous mode in order to compare

the results with the manual mode and to show the effects introduced by the PSA+FF and

PSA+ISM strategies. The results are reported in Figures 1.34 and 1.35.

The first noticeable observation is that lateral deviation responses clearly prove

the efficacy of PSA+FF and especially PSA+ISM controllers if compared to the manual

driving test. The root mean square value of lateral deviation is shown by Tab. 1.2 in

order to quantify the comparison among experimental tests. It is quite visible that the
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Figure 1.33 Global coordinates during manual path tracking for three different drivers at constant
speed of 15km/h

Figure 1.34 Lateral deviation y and steering angle δOut during autonomous path tracking with
PSA, PSA+FF and PSA+ISM strategies at constant speed of 15km/h

PSA+FF and PSA+ISM provides better results if compared to the PSA logic and to the best

driver behavior: the PSA logic is designed based on transfer function between the lateral

deviation y and the steering angle δIn without taking into account the influence of ρr e f

as stated by Eq. 1.28; the FF contribution provides a steering additional contribution

based on the calculation of reference curvature ρr e f meanwhile the ISM additional

contribution is able to reject external disturbances (in this case ρr e f ) that can affect the

PSA performances (just requiring the maximum value of the disturbance).
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Figure 1.35 Global coordinates during autonomous path tracking with PSA, PSA+FF and PSA+ISM
strategies at constant speed of 15km/h

Root Mean Square of lateral deviation y

PSA PSA+FF PSA+ISM Driver 4

yRMS[m] 0.4682 0.1870 0.1079 0.4102

Table 1.2 Root Mean Square of lateral deviation y during Close-Loop path tracking control

Figure 1.36 PSA+FF contributions during autonomous path tracking at constant speed of 15km/h

Figures 1.36 and 1.37 show that both contributions FF and ISM are effective during

the two semicircles in order to enhance the PSA robust properties. By considering

that FF contribution is proportional to the ρr e f as highlighted by Eq. 1.106, it is visible
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Figure 1.37 PSA+ISM contributions during autonomous path tracking at constant speed of
15km/h

that the curvature presents some oscillations and it is not a discontinuous function as

intended by original path: this effect is introduced by the digital map approximation and

it could improved by increasing the number of segments or by adopting a greater order

of polynomial function. The PSA+FF and PSA+ISM are two path tracking strategies that

perfectly suit the controller tasks: keep the lateral deviation as small as possible in all

possible conditions. The discrimination between the two strategies can be evaluated

based on the reference curvature availability in real-time since it constitutes the input for

FF term; the PSA+ISM control can be designed also for different external disturbances

just keeping in mind that at least the max value of the disturbances is required.

Moreover, in Eq. 1.33 the preview distance has been introduced by enhancing the

promptness of the path tracking control; in order to analyze the effect of the preview

distance ls , three experimental tests are repeated on the same reference path by adopting

only the PSA logic. Results for three different ls values (ls = 6.5,ls = 0.5andls =−1.5) are

shown in Fig. 1.38. A higher value of preview distance increases the controller action

intervention: the controller with ls = 6.5 is able to detect in advance the change of curva-

ture but with the negative aspect of triggering undesired oscillations. As a counterpart, a

negative value of ls can provoke during straight line maneuvers some issues related to

steering oscillations. By gathering all these aspects, a nominal value of ls = 0.5 represents

a good tradeoff between controller promptness and steering oscillations.
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Figure 1.38 Effect of preview distance ls on path tracking control with PSA logic at constant speed
of 15 km/h

1.5.2 Close-Loop Path for Obstacle Avoidance

In order to verify the elastic-band theory described in section 1.4.5, it is supposed that a

static obstacle is detected by on-board sensors and its position is evaluated for modifying

the reference path thus overtaking it within a specific safety region. The safety limit is

defined by a circular region with a radius of 7.5 m and the initial path would cross it if no

collision avoidance algorithm is applied as shown in Fig. 1.39. The modified reference

Figure 1.39 Global coordinates during obstacle collision avoidance maneuver with PSA, PSA+FF
and PSA+ISM strategies at constant speed of 5 km/h

path is used as input for generating the steering angle according to PSA, PSA+FF and
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PSA+ISM strategies meanwhile the speed is kept constant at 5 km/h by the cruise control.

Results in terms of lateral deviation and steering angle are reported in Fig. 1.40 where it is

also indicated where the two semicircular turning and the obstacle occurs. The obstacle

Figure 1.40 Lateral deviation y and steering angle δOut during obstacle collision avoidance
maneuver with PSA, PSA+FF and PSA+ISM strategies at constant speed of 5 km/h

avoidance maneuver requires a faster steering intervention (which could be a weakness

point for the steering control frequency bandwidth) with respect the remaining part of

the path due to a larger curvature needed for obstacle overtaking. It is evident the benefit

introduced by the Feedforward and further enhanced by the ISM term for keeping the

lateral deviation as close as possible to zero in all conditions. Furthermore, PSA+FF

and PSA+ISM strategies yield to a faster steering intervention, with respect PSA strategy,

during the initial and final part of obstacle avoidance maneuver thus improving the

safety margin.

An important aspect that can be further analyzed is the passenger comfort during the

obstacle overtaking maneuver. In particular the same close-loop path is executed twice

at two different vehicle speed (5 and 15 km/h) by activating the PSA logic for steering

path tracking control. The most important variables are shown in Fig. 1.41 where an

orange point indicates when the starting point is crossing for the second time. From

the point of view of lateral deviation, not a large difference is present when the speed

increases from 5 to 15 km/h: a slight reduction of lateral deviation is perceived at 15

km/h since the PSA control strategy has been design for this specific vehicle speed.

An important evidence is the yaw rate and sideslip angle aggressiveness in terms of

peak values and frequency content: at 5 km/h the steering intervention is perceived by

passengers as a smooth maneuver differently from the second loop at 15 km/h where it
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Figure 1.41 Lateral deviation y , vehicle speed V , yaw rate r and sideslip angle β during obstacle
collision avoidance maneuver with PSA strategy

seems an aggressive intervention. Furthermore, the sideslip angle (and its derivative)

reaches high values during the obstacle avoidance part of the second loop at 15 km/h

thus representing a weak point from the safety point of view. Finally, the primary task

of path tracking controller is to keep the lateral deviation as close as possible to zero

(performance achievement) without any concern to the comfort or safety part of it. The

importance of having a yaw rate or sideslip angle control will be discussed in the next

chapter where the tradeoff between performance and safety is designed and obtained.

1.6 Conclusions

The present chapter describes some solutions about autonomous steering design and

implementations on a prototypical vehicle properly converted into a self-driving car. A

linear single-track model is used for lateral deviation dynamics and it is extended for

introducing the steering actuation influence. The model is experimentally validated

through specific maneuvers on a professional proving ground. The reference path, as-

sumed known, is approximated by a digital map in order to reduce the size of stored

data during steering controller activation. Moreover, a PD logic for path tracking is

designed based on the PSA approach applied to the single-track model and steering

dynamics. The control strategy is enhanced with a FF term and an innovative ISM con-

tribution in order to reduce the reference curvature effect on lateral deviation regulation

during cornering maneuvers. A solution is presented for modifying the reference path
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when an obstacle is detected by adopting the elastic band theory. Finally, the path

tracking and the obstacle collision avoidance controls are implemented on the vehicle

demonstrator and are tested during close-loop maneuvers to verify their efficacy and to

compare PSA, PSA+FF and PSA+ISM strategies. In conclusion, ideas presented in this

chapter represent a perfect integration between known technologies and new innovative

methodologies also providing an easy solution for converting a conventional vehicle

into an autonomous car that can be enhanced by future investigations especially in

the obstacle detection/recognition field. Moreover, the steering control designed for

tracking a reference path could imply to undesirable behavior from the point of view of

comfort and/or safety. A possible solution to this topic will be illustrated in the following

chapter.



Chapter 2

Torque Vectoring Control for

Fully-Electric Vehicles

2.1 Introduction on Torque Vectoring Theory

During last years, there has been an increasing attention to alternative energy sources for

automotive propulsion systems. A particular interest has been headed to fully-electric

vehicles (FEV) due to their zero emissions mobility solution and for their advantages in

energy storage and electric motor with high power density [74]. From the point of view

of vehicle dynamics, the control of longitudinal and lateral behavior is enhanced by the

possibility of controlling directly the torque applied to each wheel thus modifying the

vehicle steady-state and transient attitudes.

In this wide contest, torque vectoring control (TV) has been studied and developed

with the aim of modifying the vehicle lateral dynamics by generating a yaw moment

through the redistribution of individual electric motors torques. Several TV architectures

for FEV have been studied and developed for both industrial and research purposes

(i.e.the adoption of an active or semi-active torque vectoring differentials [75, 76]) but

the most flexible solution is the one with individual wheel electric motors: if a single or

double speed gearbox is placed between the electric motor and the wheel, the configu-

ration is commonly define as on-board motors architecture; if the motors are mounted

directly inside the wheels, it is referred as in-wheel motors configuration which further

increases the driveline packaging effect with respect to conventional one. An example of

Torque Vectoring application for a 4WD FEV with individual on-board electric motors is

shown in Fig. 2.1 where the same torque ∆T is removed from the left side and added to

the right one.
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Figure 2.1 General scheme of Torque Vectoring application for a 4WD FEV with individual on-
board electric motors

The classic electronic stability control (ESC, [9]), which creates a vehicle yaw moment

with individual brake torque distribution, can be seen as a TV logic designed for stability

control system with the drawback of generating only braking actions thus leading to

vehicle speed reduction; an important advantage of TV through individual electric

motors is the generation of a yaw moment without compromising the desired vehicle

speed (in Fig. 2.1 the total wheel torque is not influenced by ∆T ) since it can deal with

both braking and driving torques. In this respect, [77] compares the transient response

of the same direct yaw moment controller actuated through the electric drivetrains and

the friction brakes, and shows that significantly increased yaw damping is achieved by

the continuous, precise and fast modulation of the electric motor torques. This was

experimentally demonstrated in extreme transient conditions on a vehicle demonstrator

with on-board electric drivetrains.

The performance improvement due to the development of a TV methodology can be

split into the steady state and the transient behavior analysis.

Steady-State behavior analysis One important advantage of TV control is the active

modification of the vehicle understeer characteristic without any mechanical chassis

manipulation but just selecting the desired dynamics mode through the software. [78]

defines several driving modes, selectable by the driver, each of them corresponding

to a different set of understeer characteristics, thus providing a systematic approach

to the specification of the objectives of torque-vectoring control (which is essential

according to [79]). The understeer characteristic expresses the relation between the

wheel steering correction with respect the kinematic angle δω,d yn = δω−δω,K i n and the
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lateral acceleration ay as shown in Fig. 2.2; this is conventionally identified by three

parameters: the understeer gradient KU S corresponding to the slope of the characteristic

in the linear region (ay = 0−0.4 g ), the max value of the lateral acceleration in the linear

part ay,l i n and its asymptotic value ay,max . The TV strategy is able to increase the vehicle
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Figure 2.2 Understeer characteristic modification through TV control application

sportive asset by reducing the understeer gradient KU S , by extending the linear region

and increasing the max value ay,max .

Furthermore, the understeer characteristic is also influenced by the longitudinal

acceleration ax as highlighted in [80] where it is shown that a longitudinal acceleration

reduces the linear region by also increasing the understeering behavior meanwhile a

braking action provokes an oversteer asset. The variation of the cornering behavior for

acceleration or braking conditions is drastically reduced through different TV strategies

applied to a four-wheel-drive (4WD) vehicle in [2] where an optimal wheel torque dis-

tribution is developed to minimize several objective functions. One result achieved by

[2] is shown in Fig. 2.3 where an optimal yaw moment calculation is adopted for a TV

strategy applied to a 4WD FEV with two on-board motors (one for each axle) and two

torque vectoring differentials.

Transient behavior analysis The TV strategy entails also important advantages in

terms of transient response. The authors of [81] have developed an analysis procedure

called β-Method which shows the influence of the sideslip angle on the stabilizing yaw

moment Mz,F y (by means the yaw moment generated by tires lateral forces and self-

alignment moments) that is representative for all transient conditions: the yaw moment

Mz can be proportionally regulated by the steering angle only for low values of sideslip
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Figure 2.3 Understeer characteristic for the vehicle with TV at V = 90 km/h and values of ax

ranging from −5 to 5 in step of 2.5 m/s2 (adapted from [2])

angle meanwhile this relation is drastically compromised for high values of β thus re-

ducing the driver ability to control the vehicle in emergency situations. The TV strategy

can be designed to generate an additional yaw moment Mz,F x due to the modification

of longitudinal tire forces through the torque control of individual electric motors. It

is proved in [82] that the overall yaw moment Mz = Mz,F y +Mz,F x , generated at high

values of sideslip angle, is enlarged by a rear-wheel TV control which is also able to

drastically reduce the lateral dynamics modification induced by a longitudinal accelera-

tion or by a braking intervention. In order to better appreciate the TV intervention, an

aggressive step steer of 100 deg at 100 km/h is simulated for a FEV equipped with four

individual on-board electric motors and results are reported in Fig. 2.4 The aggressive

maneuver, which is executed at constant wheel torque, shows that the TV strategy is

able to control the total yaw moment applied to the vehicle by introducing a Mz,F x term

able to increase the vehicle response reaction and to damp the yaw rate and sideslip

angle oscillations thus providing a safer condition with respect to the passive (without

TV) situation. Furthermore, the TV strategy can better exploit tires saturation limits by

a proper distribution of forces for generating a target yaw moment: the Mz,F y for the

passive vehicle reaches suddenly the saturation limit of lateral forces thus triggering

oscillations in yaw rate; the term Mz,F x generated by the TV provides an additional

contribution that enhances and improves lateral dynamics thus letting the term Mz,F y

gradually tend to its steady-state value.
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Figure 2.4 Simulation results for a TV application to a FEV with four on-board electric motors:
r -yaw rate, β-sideslip angle, Mz -yaw moment

In order to achieve the benefits of torque-vectoring, specific control formulations

are required, which are capable of providing continuous and smooth control action in

order to shape vehicle cornering response even at low lateral acceleration levels. [83–

90, 4, 91–106] include a selection of different controllers potentially applicable to the

problem of yaw rate and sideslip control of electric vehicles with multiple motors. The

control structures can be based on Proportional Integral Derivative (PID) controllers

([77], [84, 85] and [105]), linear quadratic regulators ([86–89]), sliding mode controllers

[90, 4, 91–95], H∞ controllers [96, 97], linear parameter varying controllers [98], robust

controllers [99] and model predictive controllers [100, 101], with the possibility of includ-

ing fuzzy components [87] or adaptive schemes [102]. Linear or non-linear feedforward

contributions can also be included in the control structure ([77], [88]) to reduce the

interventions of the feedback component, thus allowing reduced sensitivity with respect

to measurement errors, noise and disturbances, and better drivability. Importantly,

only a few studies [103, 104] assess the performance of controllers with varying levels of

complexity through vehicle simulations.

The objectives of the study presented in following chapters are:
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• formulation of an Integral Sliding Mode Control (ISMC) algorithm, based on the

known ISMC theory [72], for the concurrent control of yaw rate and sideslip angle

on electric vehicles with multiple motors

• demonstration, based on simulations, that a feedback multivariable direct yaw

moment controller based on yaw rate and sideslip angle, with the sideslip contri-

bution activated only for constraining sideslip angle at the cornering limit, allows

safe vehicle operation even in absence of any form of tire-road friction coefficient

estimation

• experimental demonstration of the performance benefit of the ISMC compared to

a controller based on LQR with and without a non-linear feedforward contribution

• experimental testing of a new driving mode, i.e., the Enhanced Sport mode, pur-

posely inducing high values of sideslip angle for increasing the ’fun-to-drive’, and

then constraining sideslip angle at the desired threshold

The chapter consists of 7 sections by including the previous introduction: the second

section deals with the experimental setup of the FEV demonstrator followed by the

description of TV controller design in the third section; simulation results of the proposed

controller are shown in fourth section meanwhile its experimental validation is reported

in the fifth section; furthermore, the sixth section introduces a sideslip angle estimation

analysis for future implementations; finally, some conclucions are drawn in the last

section.

2.2 Experimental Setup of the FEV demonstrator

The TV control strategy designed in this chapter is related to a research activity that

involves a FEV vehicle demonstrator within the framework of the European FP7 project

iCOMPOSE whose main task is the enchantment of systems integration for electric

vehicle. The general scheme of the vehicle demonstrator is shown in Fig. 2.5 where a

four-wheel-drive (4WD) with individual on-board electric motors architecture is adopted

in order to have the best torque control configuration as it is proved in [107]. The on-

board electric drivetrain consists of a single-speed double-stage transmission, half-shafts

and constant velocity joints that connects electric motors Mi with their correspondent

inverterters Ii to the wheels. An electro-hydraulic braking system is added for an individ-

ual control of friction brake pressures independent of the brake pedal force applied by

the driver. The TV control logic is deployed on a dSPACE® Autobox system as indicated

by the vehicle control unit (VCU) which also receives as input the data coming from a
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Figure 2.5 General scheme of the vehicle demonstrator experimental setup with its electric
drivelines (adapted from [3, 4])

sideslip angle and vehicle speed sensor, from an Inertial Measurement Unit (IMU) and

from wheel speed encoders (see Table 2.1). All experimental tests are executed in the

Table 2.1 Main I/O signals for TV controller in the dSPACE® AutoBox system with their discretiza-
tion times and their availability on vehicle CAN network (Yes:present, No:absent)

Symbol Signal Discretization time [ms] CAN bus I/O

δ Steering wheel angle 10 Yes I

r Yaw rate 10 No I

ax Longitudinal acceleration 10 No I

ay Lateral acceleration 10 No I

ωW,i Wheel speed 2 Yes I

TM ,M AX ,i Maximum motor torque 10 Yes I

TM ,dem,i Motor torque demand 2 Yes O

pb,dem,i Brake pressure demand 2 Yes O

u Longitudinal vehicle speed 2 No I

v Lateral vehicle speed 2 No I

β Vehicle sideslip angle 2 No I

professional proving ground of Lommel (BE) within the flat surface of Vehicle Dynamics

Area (VDA) as shown in Fig. 2.6.
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Figure 2.6 Vehicle Dynamics Area (VDA) of Lommel (BE) proving ground with the vehicle demon-
strator

2.3 Control System Design

The steady-state and transient cornering responses with a TV strategy can be designed

based on high-level reference targets, and implemented through the continuous torque

control of individual wheels. This section presents a controller for concurrent yaw

rate and sideslip control to enhance vehicle responsiveness and safety. The controller

permits the selection of different driving modes, each of them corresponding to a set of

reference understeer characteristics. A new driving mode, the Enhanced Sport mode,

is proposed, inducing high values of sideslip angle, which can be safely limited to a

specified threshold set within the controller. For vehicles without active steering or four-

wheel-steering capability, three main control concepts are proposed in the literature: i)

yaw rate control; ii) continuous yaw rate and sideslip angle control; and iii) continuous

yaw rate control with sideslip angle used as a constraint only in emergency conditions.

In this respect, [98] states that ”lateral velocity or sideslip angle are not considered as

controlled outputs because it is not possible to control the yaw rate and the sideslip

angle independently, using only the yaw moment. Trying to control both properties

leads to a functionally uncontrollable system with uncontrollable directions. Controlling

the lateral velocity (or the sideslip angle) and the yaw rate is possible only by including

an additional device like an active steering system.” This analysis is in accordance

with the definition of functional controllability provided in [108], based on the singular

value decomposition of the plant model (see [3] for the details): ”An m-input l-output



84 Torque Vectoring Control for Fully-Electric Vehicles

system G(s) is functionally controllable if the normal rank of G(s), denoted r, is equal

to the number of outputs, l, that is, if G(s) has full row rank. A system is functionally

uncontrollable if r<l”. From a physical viewpoint, the functional uncontrollability of the

specific system of this study is caused by the fact that the number of inputs (i.e., the

yaw moment) is smaller than the number of outputs (i.e., yaw rate and sideslip angle).

Even many of the papers including a sideslip term in their continuous yaw moment

controller formulation are not clear regarding the actual benefit of the corresponding

contribution. These elements would suggest the selection of control concept i). On

the other hand, yaw rate control alone can be a risky option, as it could lead to vehicle

instability in the case of incorrect or delayed tire-road friction coefficient estimation.

Hence, in this paper control concept iii) is chosen. As sideslip estimation is simpler

and faster than tire-road friction estimation [109, 110], a control structure is proposed

for continuous yaw rate control, capable of constraining sideslip angle when specified

threshold values are reached. Integral sliding mode control (ISM) as a perturbation

estimator is selected for its ease of implementation, computational efficiency (e.g., with

respect to model predictive control), tunability (i.e., each control parameter provokes a

predictable effect and can be modified during a vehicle testing session without significant

off-line calculations), robustness (i.e., compensation of matched disturbances), lack of

chattering (in comparison with first order sliding mode), and the fact that it represents a

disturbance observer added to a more conventional and known controller.

2.3.1 Control structure

Fig. 2.7 shows the simplified schematic of the vehicle control structure, consisting of:

• a set of state estimators, mainly providing the values of vehicle speed, V , sideslip

angle, β, and tire-road friction coefficient, µ (more details are provided in [77]).

The friction estimation is based on the computation of the acceleration vector at

the center of gravity. The filtered value of the ratio between the vehicle inertial

force and the vertical load provides the instantaneous estimation of the average

tire-road friction coefficient. This is used as estimated value of the tire-road

friction capability only when the sideslip angle exceeds critical thresholds. For low

sideslip angle values, the system is considered to operate in constant high tire-road

friction conditions. This means that the proposed friction estimator is effective

only at the cornering limit, similarly to the typical friction estimation algorithms

of conventional stability control systems based on the actuation of the friction

brakes. Useful references on the subject of friction estimation are [109, 110]. The

estimation of additional yet important variables, such as the road angles and
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Figure 2.7 Simplified schematic of the vehicle control structure

actual vehicle mass, is not considered in this study, which is focused on the proof

of concept of the multi-variable integral sliding mode control formulation. The

detailed aspects of state estimation will have to be further analyzed during the

industrial implementation of the algorithm, at a higher technology readiness level.

• a high-level controller, generating the reference values of yaw rate and sideslip

angle, respectively rr e f and βr e f , based on steering wheel angle, δ, vehicle speed,

V , vehicle longitudinal acceleration, ax , and µ

• a drivability controller, generating the overall reference wheel torque, T T OT
w , for

traction and braking conditions, mainly based on accelerator and brake pedal

positions (respectively xa and xb) and V

• a yaw moment controller, generating the reference yaw moment, Mz,sat , in order

to continuously track rr e f , and constrain β at the values specified by the high-level

controller. In the case of significant yaw rate or sideslip errors, indicators of safety-

critical conditions, this controller also modifies T T OT
w (for example, for reducing

V ), which becomes T T OT
w,mod

• a control allocation algorithm that defines the motor torque demands, Tm,i , and

friction brake pressure demands, pb,i , for the i-th vehicle corner. Examples of

energy-efficient control allocation are described in [111, 112]
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With respect to Fig. 2.7, the novel contribution of this research activity is focused on

the gain-scheduled Linear Quadratic Regulator (LQR) and Integral Sliding Mode (ISM)

controller design for the yaw moment controller. Details will also be provided regarding

the generation of the reference yaw rate and sideslip angle, with special focus on the

implementation of the Enhanced Sport Mode. Finally, some indications for the state

estimator design will be proposed for future implementations.

2.3.2 Yaw rate and Sideslip references

Continuous TV control enables to reach a desired vehicle behavior through different

software-enabled driving modes that can be selected by the driver. For instance, the

understeer characteristic of a generic vehicle can be modified to improve the ’fun-to-

drive’ asset or to increase the overall efficiency.

Reference Yaw Rate

The steady-state value of rr e f is generated in order to achieve a reference set of understeer

characteristics. The same vehicle includes multiple driving modes selectable by the

driver, each of them corresponding to different understeer characteristics:

• Normal Mode: understeer gradient KU S similar to the passive vehicle, slightly

extended linear region (greater ay,l i n) and the same value of maximum lateral

acceleration ay,max

• Sport Mode: considerably reduced understeer gradient KU S with respect to passive

vehicle, extended linear region (greater ay,l i n) and increased value of maximum

lateral acceleration ay,max consistent with the available tire-road friction coeffi-

cient

• Enhanced Sport Mode: the reference understeer characteristic in the linear region

is the same designed for the sport mode, but the value of ay,max is purposely

increased in order to induce high values of sideslip angle thus increasing the

fun-to-drive vehicle asset

The three understeer characteristics selected for the TV strategy here designed are

shown in Fig. 2.8 where an understeer gradient of 0.5 deg s2/m is chosen for the sport

and enhanced sport modes. In order to mathematically handle the desired understeer
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Figure 2.8 Definition of Normal mode, Sport mode and Enhanced Sport mode understeer charac-
teristics versus passive vehicle experimental data for ax = 0 and high friction condition

characteristics, an analytical expression is required as function of KU S , ay,l i n and ay,max :

ay =


1

KU S
δd yn i f δd yn < ay,l i nKU S

ay,max + (ay,l i n −ay,max)e
ay,l i n KU S−δd yn

(ay,max−ay,l i n )KU S i f δd yn ≥ ay,l i nKU S

(2.1)

whereδd yn is the dynamic steering angle equal to the difference between current steering

angle δ and the kinematic steering angle δki n which is connected, through the steering

column kinematics, to the kinematic steering wheel angle δω,ki n = L/R being L the

vehicle wheel-base and R the trajectory radius of its center of gravity. A part from KU S

that can be chosen based on TV design requirements, the values of ay,l i n and ay,max

have to be selected by taking into account the tires saturation limits since they are heavily

influenced by the longitudinal acceleration ax , vehicle speed V and by the available

tire-road friction coefficient µ. An offline optimization procedure can be carried out to

evaluate the maps ay,l i n(ax ,V ,µ) and ay,max(ax ,V ,µ) by adopting the so called quasi-

static model [113] to purposely reduce the computational cost. The quasi-static principle

is applied to an eight-degree-of-freedom (longitudinal, lateral, yaw, roll motions together

with the four tires rotations) model and it is based on the following hypothesis:
β̇ = 0

ṙ = 0

φ̇ = 0

(2.2)

where β is the sideslip angle, r is the yaw rate and φ the roll angle. Assuming a flat

surface, the body dynamics is described by the longitudinal and lateral forces balance
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equations:
4∑

i=1
Fxi cosδωi +

4∑
i=1

Fyi sinδωi −Fdr ag = m(u̇ − r V β)

4∑
i=1

Fxi sinδωi +
4∑

i=1
Fyi cosδωi = m(V̇ β+ur )

(2.3)

the yaw moment balance equation:

4∑
i=1

Fxi cosδωi yi +
4∑

i=1
Fxi sinδωi xi+

+
4∑

i=1
Fyi cosδωi xi +

4∑
i=1

Fyi sinδωi yi +
4∑

i=1
Mzi = 0

(2.4)

and the roll moment balance equation

m(V̇ β+ur )(hCG −dCG )cosφ+mg (hCG −dCG )sinφ+

−
(

2∑
i=1

Fxi F sinδωi F +
2∑

i=1
Fyi F cosδωi F

)
(dF −dCG )+

−
(

2∑
i=1

Fxi R sinδωi R +
2∑

i=1
Fyi R cosδωi R

)
(dR −dCG ) =

= MφF +MφR

(2.5)

where u is the longitudinal component of vehicle speed V , m its mass, Fxi and Fyi respec-

tively the longitudinal and lateral component of i-th tire force, Fdr ag the aerodynamic

drag force, δωi the steering angle of i-th wheel, Mzi the self-aligning of i-th wheel, xi

and yi respectively the front/rear wheelbase and the front/rear track width, hCG is the

vehicle center of gravity height, dCG , dF and dR are the height of the roll axis measured

respectively at vehicle center of gravity, front and rear axle. The front and rear anti-roll

moments MφF , MφR are implemented as look-up tables by taking into account only

the stiffness contribution since the roll rate is set to zero for the quasi-static approach

(φ̇ = 0). Tire forces Fxi , Fyi and the self-aligning moment Mzi are expressed through

the Pacejka ’96 formulation as a function of slip ratio σi = fσ(V ,ωi ,δωi ,r ), slip angle

αi = fα(β,δωi ,r ), camber angle γi , tire-road friction coefficient µ and vertical forces Fzi :

Fzi = Fz0i +ϵ1[Fdr ag +m(u̇ − r V β)]
hCG

2L

+ϵ2

∑2
j=1 Fx j F /R sinδω j F /R +

∑2
j=1 Fy j F /R cosδω j F /R∑2

j=1

∣∣y j F /R
∣∣ dF /R

+ϵ2
MφF /R∑2

j=1

∣∣y j F /R
∣∣

(2.6)
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where
∑

j refers to the two wheels of the same axle, Fz0i is the static vertical load on i-th

wheel, L the vehicle wheel-base, ϵ1 =±1 depending on the axle, and ϵ2 =±1 depending

on which vehicle side (left or right) is inside the curve. The camber angle γi is expressed

as a non-linear look-up table of roll angle φ. The wheels moment balance equations are

formulated by considering individual wheel drivetrains with on-board electric motor,

two stage single speed transmission and half-shaft with constant-velocity joints:Ti −TBi −Fxi Ri −Fzi Ri

(
f0 + f1ωi Rr ol li + f2ω

2
i R2

r ol li

)
− JWi ω̇i = 0

ω̇i = d
d t

[
Vxi

Rr ol li
(σi +1)

]
= axi

Rr ol li
(σi +1)+ Vxi

Rr ol li
σ̇i

(2.7)

where Ti and TBi are respectively the electric wheel torque and the friction brake torque,

Ri and Rr ol li are the laden and rolling radius respectively of the tire and JWi is the inertia

of the wheel. f0, f1 and f2 represents the rolling resistance coefficients and ωi is the

wheel angular speed. σ̇i can be neglected due to the quasi-static approach.

The quasi-static model is validated against a more detailed vehicle model that is

built in the vehicle dynamics simulation software IPG CarMaker and through specific

experimental tests obtained with the FEV vehicle demonstrator described in section

section 2.2 . Some validation proof of the quasi-static model are reported in [77, 78, 2]

showing a good match with experimental and IPG results thus confirming its adoption

as predictive tool for a FEV handling response.

The maps ay,l i n(ax ,V ,µ) and ay,max (ax ,V ,µ) are obtained by solving an optimization

problem where a suitable objective function has to be maximized in presence of the

equations of quasi-static model (equality constraints) and physical constraints (inequal-

ity constraints) in terms of maximum electric motor torque Tmi ,M AX and speed ωmi ,M AX ,

friction brake torque TBi ,M AX and peak power of the battery pack PB at t ,M AX :

Tmi = Ti
τ1τ2η1η2ηCV 1ηCV 2

+ Jeqω̇mi < Tmi ,M AX (ωmi )

TBi < TBi ,M AX

ωmi =ωiτ1τ2 <ωmi ,M AX∑4
i=1 Tmiωmi < PB at t ,M AX

(2.8)

where Tmi and ωmi are respectively the electric motor torque and angular speed, τ1

and τ2 the gear ratio of each stage of the transmission, η1 and η2 their correspondent

efficiencies, ηCV 1 and ηCV 2 are the efficiencies of the constant-velocity joints and Jeq

the equivalent inertia of electric drivetrain:

Jeq = Jm + J1 + J2

τ2
1η1

+ J3

τ2
1τ

2
2η1η2

+ JHS

τ2
1τ

2
2η1η2ηCV 1ηCV 2

(2.9)
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where Jm is the electric motor inertia, J1, J2 and J3 are the inertia of the primary, the

secondary and the output shafts and JHS is the inertia of the half-shaft.

In particular for the selection of ay,l i n(ax ,V ,µ) and ay,max(ax ,V ,µ) the following

objective function must be maximized:

J =
4∑

i=1
Fxi sinδωi +

4∑
i=1

Fyi cosδωi (2.10)

with the additional equality constraint only for the calculation of ay,l i n(ax ,V ,µ) in order

to consider only the linear region:

ay = 1

KU S
δd yn (2.11)

An example of the maximum values of ay,l i n and ay,max for a high friction coefficient

and for a vehicle speed V = 100 km/h is reported in Fig. 2.9 as a function of longitudinal

acceleration ax . Once the desired understeer characteristic expressed by Eq. 2.1 is
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Figure 2.9 ay,l i n and ay,max maximum values that can be selected for the desired understeer
characteristic for high friction condition and V = 100 km/h

designed, the reference yaw rate rr e f can be calculated by the following procedure:

• for a specific value of ay and V : rr e f = ay /V (steady-state hypothesis of β̇= 0)

• for the same value of ay , the dynamics steering angle can be determined by Eq. 2.1

δd yn = δd yn(ay , ax ,µ)

• the kinematic steering angle δK i n is evaluated through the non-linear relationship

ρ of the steering column kinematics: δK i n = ρ(δω,K i n) = ρ(Lrr e f /V )
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• the final steering angle corresponding to the selected value of ay and V is calcu-

lated as follow:

δ(ay ,V , ax ,µ) = δd yn(ay , ax ,µ)+δK i n = δd yn(rr e f V , ax ,µ)+ρ(Lrr e f /V ) (2.12)

Finally, the reference yaw rate map rLU T = rLU T (δ,V , ax ,µ) is used as input for the yaw

moment controller as indicated in Fig. 2.7. An example of the reference yaw rate map for

a high friction coefficient and ax = 0 is shown in Fig. 2.10 at different vehicle speed V in

sport mode and enhanced sport mode.
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Figure 2.10 reference yaw rate map rLU T (δ,V , ax ,µ) for a high friction coefficient and ax = 0 at
different vehicle speed V in sport mode and enhanced sport mode

Reference Sideslip Angle

The reference sideslip angle, βr e f , is obtained by filtering βr e f ,stead y−st ate defined as

follows: βr e f ,stead y−st ate =β i f
∣∣β∣∣<βth

βr e f ,stead y−st ate =βth i f
∣∣β∣∣≥βth

(2.13)

Based on Eq. 2.13, the sideslip angle contribution is always aimed at reducing
∣∣β∣∣. In

fact, when
∣∣β∣∣ < βth , i.e., in normal driving conditions, the reference sideslip angle is

coincident with the estimated sideslip angle, and only the yaw rate controller is active,

while the sideslip-related yaw moment contribution is zero. In extreme maneuvering,

when
∣∣β∣∣ ≥ βth , βr e f ,stead y−st ate −β becomes non-zero, thus activating the sideslip

controller. The threshold βth needs to be carefully selected, for example by using the

phase-plane-based criteria proposed in [104, 3], which include consideration of the
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estimated sideslip rate. The performance of the sideslip-related contribution depends

on the quality of the available sideslip estimation. Based on the literature and their

experience (for example, see [77, 109, 110]), a better sideslip estimation (in terms of

percentage error with respect to the actual sideslip angle) is achievable in extreme

driving conditions, rather than in normal driving conditions. Extreme driving conditions

are actually the situations requiring the contribution of the sideslip terms of the proposed

controllers.

In general, the sideslip-related yaw moment contribution can interfere with the yaw

rate contribution, for example if the sideslip contribution is stabilizing and |rLU T (t )| ≥
|r (t )|, yielding ineffective control action In fact, the presence of integral control on the

yaw rate error creates a wind-up effect when concurrent yaw rate and sideslip angle

control actions are requested. This implies the need for a correction method of the

reference yaw rate in order to support sideslip angle control. To this purpose, the

reference yaw rate is corrected according to the criteria in Tab. 2.2. In particular, when

Table 2.2 Reference yaw rate correction ∆rr e f

# β control active
∣∣∆rr e f

∣∣>∆rr e f ,l i m ∆rr e f

1 True True Kcor r
∫ Mz,β

Jz
d t +∆rr e f ,i ni t i al

2 True False Kcor r
∫ Mz,β

Jz
d t +∆rr e f ,i ni t i al

3 False True
∫ −kr amp si g n(∆rr e f )d t +∆rr e f ,i ni t i al

4 False False 0

the sideslip controller is active, |rLU T (t )| is varied proportionally to the integral of the

sideslip-related yaw moment contribution, Mz,β. In fact, Mz,β/Jz corresponds to the

yaw acceleration caused by the sideslip controller, and its integral is the respective yaw

rate variation. Overall, rr e f is applied as follows:

rr e f = (rLU T (δ,V , ax ,µ)+∆rr e f )
ωr

p +ωr
(2.14)

where the first order filter with corner frequency ωr (p is the Laplace operator) is used to

tune vehicle responsiveness for the different driving modes. The presence of integral

actions on yaw rate error in both LQR and ISM controller structures creates a windup

effect when a concurrent yaw rate and sideslip angle control is requested. This implies

the necessity of design a correction factor for the reference yaw rate in order to better

support the sideslip angle control thus providing an anti-windup effect. In order to

illustrate the concept, the typical qualitative behavior of the reference yaw rate generator

with the sideslip correction is shown in Fig. 2.11 during a step steer test (i.e., a test with a
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very fast steering wheel angle application). At the beginning of the maneuver
∣∣β(t )

∣∣ is

Figure 2.11 Reference yaw rate correction mechanism

smaller than βth(t ) and the sideslip controller is not active, so no correction is applied

(i.e., ∆rr e f (t) = 0) according to condition 4. When
∣∣β(t )

∣∣ exceeds βth(t), the sideslip

controller is activated and ∆rr e f (t) is applied based on conditions 1 and 2. When the

sideslip controller becomes inactive because
∣∣β(t )

∣∣ returns back within acceptable limits,

rr e f is ramped back to the original value specified by the yaw rate controller, with an

initial condition ∆rr e f ,i ni t i al (see condition 3). This is set not to provoke discontinuities

in the reference yaw rate. Thereafter, when r (t ) converges to rr e f (t ) closely enough, no

correction is applied any more (condition 4). Kcor r and kr amp in Tab. 2.2 are used as

tuning parameters to obtain the desired response. Also, saturation functions are adopted

on in the practical implementation of the algorithm.

2.3.3 Yaw Moment Controller: Linear Quadratic Regulator Design

A linearized single-track vehicle model [67] is used for the design of a linear quadratic

regulator (LQR) as yaw moment controller. The model, that is described in section 1.3,

is usually adopted to represent cornering response for control system design and it is

characterized by the following hypothesis:

1. The vehicle is a rigid body with a single front wheel and a single rear wheel moving

on the road plane
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2. Vehicle sideslip angle β and tires slip angles αi are assumed small enough to

consider the linear part of vehicle dynamics

3. Longitudinal vehicle speed is assumed constant and only 2 degrees of freedom

(yaw rate and sideslip angle) are taken into account

4. Small steering angles are generated exclusively on the front axle

The control problem is formulated into a multivariable control framework, with one

input (i.e., the yaw moment) and two outputs (i.e., yaw rate and sideslip angle) of the

controlled plant. Kalman’s controllability condition is satisfied, i.e., the determinant

of the controllability matrix is different from zero, allowing the application of LQR

control [114]. The model is represented in state-space form to facilitate the design of

the LQR, under the assumption that the states are obtained via measurements (yaw rate

and sideslip angle). The state-space formulation of single-track model equations (see

section 1.3) is:

ẋ = Ax+BMz,LQR +Eδω+d (2.15)

where the state vector is x =
[
β r

]
, and the matrices A, B, C and E are:

A =
[
− 1

mV (C f +Cr ) −1− 1
mV 2 (aC f +bCr )

− 1
Jz

(aC f +bCr ) − 1
V Jz

(a2C f +b2Cr )

]

B =
[

0
1
Jz

]
, C =

[
I2x2

]
, E =

[
1

mV C f
a
Jz

C f

] (2.16)

Mz,LQR is the reference yaw moment contribution of the LQR, and δω is the steering

angle (at the wheel). d represents model uncertainties and exogenous disturbances.

Starting from Eq. 2.15, the error dynamics are expressed by:

ė = Ae+BMz,LQR +Ud (2.17)

where:

e = x−xr e f =
[

eβ
er

]
=

[
β−βr e f

r − rr e f

]
(2.18)

Ud = Axr e f − ẋr e f +Eδω+d (2.19)

xr e f =
[
βr e f rr e f

]T
(2.20)

er and eβ are the yaw rate and sideslip angle errors, respectively, while the references

βr e f and rr e f are continuous differentiable functions. To reduce the steady-state yaw

rate error, an augmented state, η, is introduced such that η̇= er . By grouping η together
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with the two error states describing the plant, the augmented system is obtained:ẋa = Aaxa +Ba Mz,LQR +Ud ,a

e = Caxa

(2.21)

xa =
[

e η
]T

is the augmented state vector, and Aa , Ba and Ca are the state-space

matrices of the augmented system:

Aa =
[

A 0

F 0

]
, Ba =

[
B

0

]
, Ca =

[
C 0

0 0

]
, F =

[
0 1

]
, (2.22)

From Eqns. 2.17 and. 2.19, the disturbance term of the augmented system becomes:

Ud ,a = Ar xr e f ,a − Ia(ẋr e f ,a +d)+Eaδω (2.23)

with xr e f ,a =
[

xr e f 0
]

. Ar , Ia and Ea are defined as follows:

Ar =
[

A 0

0 0

]
, Ia =

[
I2x2 0

0 0

]
, Ea =

[
E

0

]
, (2.24)

The performance index J used in the LQR control system design is:

J = 1

2

∫ ∞

0
[xT

a Qxa +RM 2
z,LQR ]d t (2.25)

with Q and R being the weighting factors related to the control tracking performance

and control effort, respectively. The feedback control gain, L, is obtained from:

L = R−1BT
a P =

[
KP,β KP,r K I ,r

]
=

[
p21
R Jz

p22
R Jz

p23
R Jz

]
(2.26)

where P is the unique positive semi-definite solution of an algebraic Riccati equation

[114] and pi j is the element in the i-th row and j-th column of P . Hence Mz,LQR is:

Mz,LQR =−KP,βeβ−KP,r er −
∫

(K I ,r er −kω∆u)d t (2.27)

KP,r and K I ,r are the proportional and integral yaw rate gains, respectively, and KP,β is

the proportional sideslip gain. kω is the anti-windup gain, which is multiplied by the

difference, ∆u, between the demanded yaw moment and the saturated yaw moment,

Mz,sat , according to the anti-windup approach in [115, 116].
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LQR stability

The vehicle yaw dynamics are described by second order transfer functions, all of them

with the same denominator (e.g., r /δω, β/δω and r /Mz , where Mz is the yaw moment

caused by the torque-vectoring controller). The damping ratio of the transfer functions

significantly decreases with vehicle speed, V , which is a parameter in Eq. 2.21. This effect

justifies a gain scheduling design of the LQR as a function of V (see [89] for a similar

application, without consideration of stability requirements). To ensure the stability

of the gain scheduled controller, an advanced interpolation method, namely stability

preserving interpolation, is applied to the gain scheduling design. This approach can be

used for arbitrary linear time invariant (LTI) controllers, providing a sufficient condition

on their placement on the scheduling space, such that a stability preserving interpolated

controller always exists. The mathematical formulation is given in the following theorem,

adapted from [117].

Theorem 2.1 (Stability preserving interpolation). Consider a set of state-feedback con-

trollers Li (i = 1, · · · ,n) synthesized for the vehicle plant at different fixed vehicle speeds,

i.e., V1 <V2 < ·· · <Vn ∈ Γ, where Γ covers the range of possible vehicle speeds. If there exist

symmetric positive-definite matrices Wi and γ> 1such that:

Wi (An(V )+BnLi )T + (An(V )+BnLi )Wi ≤−γI (2.28)

where V ∈ Ui , and Γ ⊆ ⋃n
i=1Ui (stability covering condition), then there exist intervals

[Vi ,Vi+1] ⊂Ui
⋂

Ui+1, i = 1, · · · ,n −1, and continuous controller gains L(V ) defined as:

L(V ) =
(

Vi+1 −V

Vi+1 −Vi
Li Wi + Vi −V

Vi+1 −Vi
Li+1Wi+1

)
W−1(V ) (2.29)

where V ∈ [Vi ,Vi+1] and

W(V ) = Vi+1 −V

Vi+1 −Vi
Wi + Vi+1 −V

Vi+1 −Vi
Wi+1 (2.30)

is stability preserving. The proof of this theorem is given in [117].

A set of LTI controllers Li (i = 1, · · · ,n) needs to be firstly designed based on the fixed

values of the scheduling parameter (i.e., vehicle speed). The parameter values need to

be carefully selected in order to meet the stability covering condition.

Definition 2.1 (Stability covering condition). i) If there exist open neighborhoods Ui ,

containing Vi and for which Li is designed such that Li stabilizes the system for all

Vi ∈ Ui , i = 1 · · · ,n; and ii) if the scheduling space Γ meets the condition Γ ⊂ ⋃n
i=1Ui ,

then the state feedback gains satisfy the stability covering condition.
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To satisfy the stability covering condition, in this study six vehicle speeds (i.e., 40

km/h, 60 km/h, 80 km/h, 100 km/h, 120 km/h and 140 km/h) are selected for designing

the LTI controllers Li , i = 1, · · · ,6, which guarantees stability for the speed range 0-170

km/h. Symmetric positive definite matrices Wi , i = 1, . . . ,6 are solved for each LTI

controller, satisfying condition 2.28. The interpolations are implemented based on

Eqns. 2.29 and. 2.30 along the LTI controllers for the interval 40-140 km/h. Below 40

km/h, the constant LTI controller L1 is used, while above 140 km/h the constant LTI

controller L6 is adopted. The scheduled gain L(v) is plotted in Fig. 2.12 and compared

Figure 2.12 Gain scheduled controller L(v)

with the gain obtained from the linear interpolation method. The gains obtained from

the two interpolation methods are very close to each other, especially in the high speed

range. However, it cannot be concluded that the linear interpolation is also stability

preserving since the computed matrices Wi , i = 1, · · · ,6 are not all equal. The simulation-

based assessment and practical implementation of the LQR controller has confirmed

the stability of the proposed gain scheduling design.

2.3.4 Yaw Moment Controller: Integral Sliding Mode Design

The Integral Sliding Mode (ISM) control is formulated in terms of perturbation estima-

tion, according to the approach discussed by Utkin in [73, 72]. This was selected after

careful consideration. In fact, to use Utkin’s words, in this special case of ISMC ”the
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equivalent control is generated, guaranteeing chattering alleviation and maintaining

the robustness properties typical of classical sliding mode. . . discontinuity appears only

in the internal process, thus no chatters are excited in the real control path. Another

advantage of this perturbation estimation scheme over the traditional methods is that

the time derivative of the state vector is not necessary; the only information needed

here is the upper bound of the perturbation · · · From the concept point of view Integral

Sliding Mode is utilized here only for the estimation of the system perturbation rather

than for the purpose of control. The control action to the real controlled system will be

continuously enhanced by the perturbation compensator.” The ISM implementation of

this research is based on the controller in [4], presenting an ISM structure for yaw rate

control only (and thus not sufficient for the whole range of vehicle conditions), with a

PID nominal controller. In this section the ISM approach is extended to provide contin-

uous and robust yaw rate control, and sideslip angle control when required. The gain

scheduled LQR controller of Section 2.3.3 is used as nominal controller. For designing

the disturbance rejection part of ISMC, a non-linear model has been selected in order to

have the best estimation of upper bound of the perturbation, meanwhile for the design

of nominal controller (scheduled LQR) the linearized system is considered as shown

in Section 2.3.3. The ISM formulation is based on the non-linear lateral force and yaw

moment balance equations of the vehicle:β̇ =−r −β V̇
V + Fy

mV + Fy,d

mV

ṙ = Mz,F y+Mz,al

Jz
+ Mz,F x

Jz
+ Mz,d

Jz

(2.31)

The model in Eq. 2.31 accounts for the variation of tire cornering stiffness as a function

of the operating condition of the vehicle, which is the main limitation of the model used

for LQR design. [118] analyzes in detail the variation of cornering stiffness in quasi-

static and extreme transient conditions. In a first approximation, the lateral tire force

contribution in the vehicle reference system, Fy , is given by:

Fy = (Fx,1 +Fx,2)sin(δω)+ (Fy,1 +Fy,2)cos(δω)+Fy,3 +Fy,4 (2.32)

The subscripts ’1’, ’2’, ’3’ and ’4’ refer to the front left, front right, rear left and rear right

wheels. The yaw moment contribution caused by the lateral tire forces, Mz,F y , is:

Mz,F y = (Fy,1 +Fy,2)a cos(δω)−Fy,3b −Fy,4b +
(
Fy,1

TF

2
−Fy,2

TF

2

)
sin(δω) (2.33)

Hence the system can be re-written in the following error form:

ė = g(t )+BMz,I SM (t ,e)+h(t ,e) (2.34)
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where g is the known part of the system, Mz,I SM is the control yaw moment, and h is the

unknown part. For simplicity and generality, it is assumed here that no state estimator is

present, and therefore it is:

g(t ) =
[
−β̇r e f (t )

−ṙr e f (t )

]
(2.35)

For the computation of the time derivatives of the reference sideslip angle and yaw rate,

an incremental ratio formulation with a time step of 0.1 s and a sampling time of 0.002

s has been adopted. The time step has been selected such that the relevant system

dynamics are allowed to pass through the derivative calculation without significant

phase lag. The effectiveness of this tuning has been verified during the experimental

tests on the case study vehicle demonstrator. h is defined as:

h =
[

hβ
hr

]
=

[
−r −β V̇

V + Fy

mV + Fy,d

mV
Mz,F y+Mz,al+Mz,d

Jz

]
(2.36)

which includes the lateral force and yaw moment contributions due to the lateral tire

forces and aligning moments. Formulation. 2.34-. 2.36 implies a conservative selection

of the gains (i.e., higher values of the gains) of the switching part of the ISMC. In fact, if

the controller designed for the case of absence of tire force and aligning moment state

estimators is effective, the same controller will be effective also for the case of state

estimation. In this respect, [119] compares the performance of three yaw rate-based

ISM formulations for different levels of state estimation. Mz,I SMC consists of the sum of

the nominal contribution, Mz,LQR , related to the LQR, and the switching contribution,

Mz,sw, f :

Mz,I SMC = Mz,LQR +Mz,sw, f (2.37)

Mz,sw, f is the filtered value of a discontinuous term, Mz,sw , calculated as a function of

the sliding variable s:

s = s0 + z (2.38)

where s0 is the conventional part of the sliding variable, corresponding to a linear combi-

nation (with multiplicative factors dr and dβ) of the yaw rate error and sideslip angle

error:

s0 = dr er +dβeβ (2.39)

The eβ contribution, defined according to the formulation in Section 2.3.2, has the

peculiarity that is starts from an initial condition equal to zero any time the sideslip

contribution switches on. This is a necessary condition for guaranteeing the effectiveness

of the ISM design. According to the ISM formulation in terms of perturbation estimator,
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z is calculated through the integration of ż defined as in [72]:

ż =−∂s0

∂e
[g+B(Mz,I SMC −Mz,sw −∆u)] =

[
−dβ −dr

][
−β̇r e f

−ṙr e f + Mz,I SMC−Mz,sw−∆u
Jz

]
=

= dββ̇r e f +dr ṙr e f −dr
Mz,I SMC −Mz,sw −∆u

Jz
(2.40)

with z(0) = −s0(e(0)) and ∆u = Mz,I SMC −Mz,sat . [72] demonstrates that Eq. 2.40, to-

gether with the indicated initial condition, allows to achieve sliding motion since the

initial instant, without a reaching phase. Through the term ∆u in Eq. 2.40, this ISM

formulation includes the anti-windup contribution according to the approach defined

in [120]. Mz,sw, f in Eq. 2.37 is given by:

Mz,sw, f = Mz,sw
ωF

p +ωF
=−K I SMC si g n(s)

ωF

p +ωF
(2.41)

where ωF is the corner frequency of the first order filter, and K I SMC is the gain of the

switching contribution. In [72] Utkin shows that by considering the switching function

s = s0+z, with z defined as ż =−∂s0
∂x (g(x)+Bu−Bu1), z(0) =−s0(x(0)), the time derivative

of the new sliding variable can be calculated as ṡ = ∂s0
∂x (g(x)+Bu +Buh)− ∂s0

∂x [g(x)+Bu −
Bu1] = ∂s0

∂x Buh + ∂s0
∂x Bu1. If the discontinuous control law is u1 = −K I SM si g n(s) and

the matrix ∂s0
∂x B is non-singular during the entire system response, setting ṡ = 0 reveals

that u1, f i l t = −uh holds as well, implying that u1, f i l t = u1,eq is indeed an estimate of

the perturbation term uh . Moreover, the previous formulas show the computational

efficiency of the ISM control. In fact, the computation of the control action consists of:

• a few algebraic operations for calculating ż through Eq. 2.40

• an integration for calculating z starting from ż

• trivial algebraic calculations for obtaining s = s0 + z

• algebraic calculations and a first order filter for calculating Mz,sw, f

• a summation for calculating Mz,I SMC = Mz,LQR +Mz,sw, f

No computationally demanding iterative procedure is needed for the off-line or on-

line computation of the gains or the control action. No large look-up table requiring

significant memory specifications for the controller hardware is needed.
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ISM stability

The stability of the close-loop system with the ISM controller is guaranteed by the

following theorem about Lyapunov asymptotic stability which is also used to design the

ISM gain K I SMC :

Theorem 2.2 (Lyapunov asymptotic stability). For the general non-linear affine system:

ẋ = f(x)+Bu(x)

With x ∈ℜn being the state vector and u ∈ℜm being the control input vector. Consider a

sliding variable s(x) such that when s(x) = ṡ(x) = 0 the system is on the sliding surface and

it is forced to behave as the desired dynamic system. Suppose there exists a differentiable

function V (s) : ℜn →ℜ which is radially unbounded and positive definite such that:

V̇ (s) < 0 f or s ̸= 0

Then the system is asymptotically stable.

K I SMC must be selected to provide system stability. To this purpose, the Lyapunov

function VI SMC = 1/2s2 is chosen. It can be shown that:

ṡ = ∂s0

∂e
h− ∂s0

∂e
BK I SMC si g n(s)+ ∂s0

∂e
B∆u = dβhβ+dr hr − dr

Jz
K I SMC si g n(s)+ dr

Jz
∆u

(2.42)

Hence, it follows that:

V̇I SMC = sṡ ≤ |s|
(∣∣∣∣dβhβ+dr hr + dr

Jz
∆u

∣∣∣∣− dr

Jz
K I SMC

)
(2.43)

If the uncertainty is constrained, i.e., if h∗ =
∣∣∣dβhβ+dr hr + dr

Jz
∆u

∣∣∣< N , with N > 0, then

in order to have V̇I SMC < 0 for s ̸= 0 it must be:

K I SMC > N
Jz

dr
(2.44)

As in the practical implementation of the controller high values of K I SMC can bring an

uncomfortable vehicle behavior in non-critical conditions, a scheduling of K I SMC is

carried out as a function of |er |; i.e., K I SMC = K I SMC (|er |). In conditions of low |er |, the

value of the uncertain terms can be assumed to be low; therefore a low value of K I SMC is

sufficient to provide system stability. The value of N is calculated from vehicle simulation

results (based on an experimentally validated vehicle model in CarMaker) obtained

during extreme maneuvers. For example, the time histories of the three components of
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h∗ divided by dr are shown in Fig. 2.13, together with Jzh∗/dr , during a sequence of step

steers. Based on similar analyses, the same test is repeated for different values of Jz and
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Figure 2.13 Time history of the disturbance contributions during a sequence of step steers at 90
km/h

m and the maximum value of K I SMC for the worst case scenario is set to 10 kNm/rad.

Note that the non-linear model formulation of Eq. 2.40 has been used to design the

value of K I SMC , through the definition of the upper bound of the possible perturbation.

However, in the specific case the non-linear model does not have any practical effect

on the controller formulation. The only consequence of the model selection is on the

value of the gain, depending on the upper bound of the perturbation, which is better

estimated by using a higher-fidelity model than the linear model for LQR control system

design. Furthermore, condition. 2.44 ensures stability of the ISM control as a whole,

including its LQR contribution.

By imposing ṡ = 0, the equivalent control action can be obtained:

u1,eq =−
(
∂s0

∂e
B

)−1 ∂s0

∂e
h−

(
∂s0

∂e
B

)−1 ∂s0

∂e
B∆u (2.45)

which brings the following system dynamics on the sliding surface:

ė = g+BMz,LQR +h′ (2.46)

with h′ =
[

hβ −hβ
dβ
dr

− ∆u
Jz

]T
. This means that during the sliding motion, hr (matched

disturbance) will be rejected by the ISM control. In the case of concurrent yaw rate and

sideslip control (i.e., for incorrect rr e f or during extreme cornering with the Enhanced

Sport mode), through a specific tuning of dβ/dr the effect of hβ (unmatched distur-

bance) on yaw rate control can be tuned. Methods for the compensation of unmatched
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disturbances through sliding mode control are proposed in [71]. Their application to this

problem will be the topic of future investigations. During the sliding mode the system

dynamics is switched from Eq. 2.34 to Eq. 2.46 where the control stability is ensured by

the LQR design through the theorem of stability preserving interpolation.

2.4 Simulation Results

In order to evaluate and compare the previous yaw moment control logic (LQR and

ISM), specific simulations are carried out by adopting the IPG CarMaker experimentally

validated model. The simulation hypothesis is that both yaw rate r and sideslip angle

β are measured during controller activation and the torque distribution to provide the

reference yaw moment is equally computed for each electric motor:Ti = T T OT
ω,mod

4 ± Mz,sat Ri
TF

Tmi = Ti
τ1 τ2 η1 η2 ηCV 1 ηCV 2

(2.47)

where the sign ± depends on the sign of δω and the position of the i-th wheel.

2.4.1 High friction coefficient step steer

The sport driving mode is analyzed during a step steer maneuver of 100 deg at initial

speed of 100 km/h and high friction coefficient meanwhile T T OT
ω is kept constant to the

value needed for compensating the rolling and aerodynamics resistances at 100 km/h.

The variables monitored are the yaw rate and the sideslip angle shown in Fig. 2.14. It is

possible to appreciate how the active vehicle with LQR and ISM control logic shows a

lower level of oscillations around the steady-state value of yaw rate and a faster response

in terms of rising time. The ISM is also able to reduce considerably the overshoot and

the settling time thus aiming to obtain the desired lateral behavior described by the

Sport mode understeer characteristic. The passive vehicle presents an initial unstable

behavior since the sideslip angle reaches very high values (almost 15 deg) thus leading to

an out-of-control condition for a non professional driver who can better handle a sideslip

angle of 5 deg in presence of the torque vectoring control. Furthermore, yam moment

components for LQR and ISM controllers are reported respectively in Fig. 2.15 where

it is possible to compare how the LQR and ISM apply their torque vectoring strategies.

The LQR total yaw moment is composed by its three components identified by the yaw

rate proportional term Mz,Pr (main contribution), the yaw rate integral term Mz,I r (for

reducing steady-state error) and the sideslip angle proportional term Mz,Pβ (which is
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Figure 2.14 Yaw rate and sideslip angle for a step steer maneuver of 100 deg at 100 km/h for the
passive and active vehicles

Figure 2.15 Yaw moment for a step steer maneuver of 100 deg at 100 km/h for LQR and ISM
control strategies

equal to zero in this scenario since the sport driving mode is designed to avoid wind-up

effect of sideslip angle). The ISM yaw moment is composed by the nominal controller

term Mz,LQR and the switching term Mz,sw, f that is able provide a faster and greater

yaw moment reaction with respect a simple LQR control thus improving the tracking

performance of yaw rate control. Finally, Fig. 2.16 shows how the final sliding variable

s, composed by the conventional s0 and the integral z sliding variables, reaches the

null value in almost 0.2 seconds thus forcing the system to move on the sliding surface

with the positive benefit obtained by robust properties against matched disturbances

described in section 1.4.4.
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Figure 2.16 Conventional s, integral z and final s sliding variables during ISM control activation

2.4.2 Low friction coefficient sequence of step steers

This section shows that the proposed controller formulation is robust even in absence of

tire-road friction coefficient estimation. The adopted electric vehicle simulation model

is implemented in CarMaker, and was experimentally validated in [77] with experimental

results from the same vehicle demonstrator adopted in Section 2.2 . Figs. 2.17 and. 2.18

report the simulation results for a sequence of step steers on a low friction surface

(µ= 0.5), and a constant wheel torque demand of 500 Nm, from an initial speed of 100

km/h. The test consists of a fast steering input (at a rate of 400 deg/s), followed by an

input of equal amplitude and opposite direction, and a final input to bring the steering

wheel angle back to zero. The graphs include the comparison of: i) the passive vehicle;

ii) the active vehicle with the only yaw rate controller; and iii) the active vehicle with

the concurrent control of yaw rate and sideslip angle, with different thresholds for the

intervention of the sideslip contribution. In the legends ’Threshold 1’, ’Threshold 2’ and

’Threshold 3’ are characterized by progressively relaxed interventions of the sideslip-

related terms. For all cases with the controlled vehicle the reference yaw rate profile is

the one calculated for a tire-road friction coefficient of 1, without any friction-related

correction. The passive vehicle (’Baseline’ in the legends) has an unstable behavior,

since after 30 s its sideslip angle profile exhibits a progressive increase towards values

exceeding 30 deg. The active vehicle with the only yaw rate controller is stable, but its

peak values of sideslip angle in Fig. 2.18 are beyond the typical range a normal driver

would be able to govern through the steering wheel. The concurrent control of yaw rate

and sideslip angle generates lower peak values of sideslip angle, consistent with the

respective sideslip-related thresholds, and thus ensures a higher degree of safety. The
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Figure 2.17 r (t ) for the passive and active (ISM control with only yaw rate control and concurrent
yaw rate and sideslip control) vehicles during sequences of step steers in low tire-road friction
conditions with different sideslip thresholds

Figure 2.18 β(t ) for the passive and active (ISM control with only yaw rate control and concurrent
yaw rate and sideslip control) vehicles during sequences of step steers in low tire-road friction
conditions with different sideslip thresholds

valuable conclusion of the analysis is that a properly tuned concurrent controller of yaw

rate and sideslip is sufficient to effectively stabilize the vehicle, even in absence of any

form of tire-road friction coefficient estimation. Given the under-actuated nature of the

system, the safer sideslip response implies worse yaw rate tracking performance, but

this does not actually matter, as the reference yaw rate is not suitable for the specific

tire-road friction conditions.
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2.5 Experimental Results in High Friction Conditions

This section presents a selection of the test results obtained with the electric vehicle

demonstrator of the European Union-funded projects E VECTOORC [121] and iCOM-

POSE [122] (described in section 2.2) at the Lommel proving ground (Belgium). The

vehicle has four electric drivetrains, each comprising a switched reluctance on-board

motor, which is connected to the wheels through a single-speed transmission system,

constant velocity joints and a half-shaft. The controller presented in section 2.3 is im-

plemented on a dSPACE® AutoBox system installed on the vehicle. Four maneuvers are

analyzed in the following sub-sections.

2.5.1 Skid pad

For the skid pad test the driver slowly accelerates the vehicle and adjusts the steering

wheel angle in order to keep the vehicle on a specified circular trajectory; a radius of

60 m is used here. The test is continued until the vehicle reaches its maximum lateral

acceleration-cornering limit. Fig. 2.19 compares the understeer characteristics for the
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Figure 2.19 Examples of experimental understeer characteristics for the passive and active vehi-
cles

passive vehicle (i.e., the vehicle without any controller) and the vehicle with the ISM

control in the Sport mode. The passive vehicle shows a typical non-linear cornering

behavior, with an increase of the understeer gradient (i.e., the slope of the diagram)

starting from lateral acceleration values of approximately 4 m/s2. On the contrary, the

vehicle with the ISM control is in a condition of neutral steering throughout the whole

test, consistently with the reference understeer characteristic for the selected driving
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mode. In the case (not shown here) of the Enhanced Sport mode, the maximum value of

lateral acceleration is further increased with respect to that of the Sport mode.

2.5.2 Step steer

Control system performance comparison

Figs. 2.20 - 2.22 show the results for an extreme step steer test executed with the Sport

driving mode and different controllers. The step steer test is started from a constant

speed of 100 km/h and with the corresponding wheel torque demand fixed (T T OT
ω =

700N m) within the dSPACE® system to avoid driver input on the accelerator pedal

during the maneuver. Then, the driver turns the steering wheel at a rate of ≈ 400 deg/s

up to a final value of 100 deg, which is kept during the rest of the maneuver. Following

the steering wheel input, the car decelerates because of the increase of tire slip power

losses, yielding a reduction of V and, hence, an increase of r .

Fig. 2.20 shows the time histories of vehicle yaw rate for: a) the passive vehicle; b)

the vehicle controlled only with the LQR (with the same gains used in the LQR within

the ISM); c) the vehicle with the same LQR as in b) and the non-linear static feedfor-

ward contribution designed based on the quasi-static model according to the approach

presented in [2] (LQR + FF); and d) the vehicle with the ISM control. As indicated by

Fig. 2.20, all controllers decrease the duration of the yaw rate oscillations following the

steering wheel input. The performance of the ISM control is particularly effective in

reducing the first yaw rate overshoots and undershoots, which are 16.8 deg/s and 24.5

deg/s in a), 10.1 deg/s and 8.4 deg/s in b), 11.1 deg/s and 7.0 deg/s in c), and 3.5 deg/s

and 4.1 deg/s in d). Table 2.3 includes the values of the three performance indicators

adopted to assess the controllers along the maneuver; in particular:

(i) The root mean square value of the yaw rate error, RMSE , calculated during the 3 s

following the application of the steering wheel input. The ISM control is able to

reduce the RMSE by 77%, 49%, and 42%, in comparison with the cases a), b), and

c), respectively

(ii) The integral of the absolute value of the control action, v , normalized with time,

defined as:

I AC A = 1

tman, f i n − tman,i n

∫ tman, f i n

tman,i n

∣∣Mz,sat (t )
∣∣d t (2.48)

and calculated during the relevant part of the maneuver, between the times tman,i n

and tman, f i n (in this case the 3 s following the steering application). The signif-

icantly improved performance of the ISM control corresponds to a marginal in-
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Figure 2.20 r (t ) during a step steer for the passive (a) and active (LQR (b), LQR+FF (c) and ISM
(d)) vehicles

crease of the control effort, 13% and 6% higher than for the LQR and LQR+FF

controllers, respectively

(iii) The delay between the reference yaw rate and the actual yaw rate, td , evaluated

for rr e f = 15 deg/s. This indicator is approximately 30% lower for all controlled

vehicles indicating enhanced vehicle responsiveness during transients. td can be

effectively designed by tuning the filter providing the reference yaw rate

Table 2.3 Performance indicators for the step steer test for the passive and controlled vehicles

RMSE [deg/s] I AC A [Nm] td [s]

Baseline 11.45 - 0.12

LQR 5.175 1578 0.09

LQR + FF 4.545 1675 0.09

ISM 2.634 1780 0.09

Fig. 2.21 shows Mz,sat (t) for the three controllers during the step steer maneuver. For

all tests the maximum yaw moment is limited to 4000 Nm. The results indicate that

the ISM control generates the first negative (stabilizing) peak of yaw moment earlier

and for a longer duration than the other two controllers. In doing so, the ISM control

is able to reduce the first yaw rate overshoot as mentioned above. Fig. 2.22 reports

the time histories of the yaw moment contributions of the ISM control; in particular

the proportional term of the LQR (’LQRPr ’ in the figure), the integral term of the LQR

(’LQRI r ’), the switching contribution, (’Switching ISMC’), and their sum (’Total’). The
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Figure 2.21 Mz,sat (t ) during a step steer for the LQR, LQR + FF and ISM controls

proportional term is the main contributor for the reduction of the time delay in the

initial yaw rate build-up phase, while the switching contribution is primarily responsible

for vehicle stabilization between 0.4 s and 0.8 s. As during this test the sideslip angle

remains consistently low, the sideslip contribution is inactive.

Figure 2.22 ISM yaw moment contributions during a step steer

ISM control tunability

Sliding mode controllers have the significant advantage of providing robustness with

very simple formulations of their control laws. For the specific case of the ISM control,

the control system tuning is mainly based on the physically meaningful values of the gain

K I SMC (or its look-up table) and the corner frequency ωF . With the restricted number of
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parameters, the controller can be tuned using the conventional industrial procedures

of automotive stability control systems based on trial-and-error sessions on proving

grounds, after an initial controller set-up in simulation. For example, Fig. 2.23 reports

the variation of yaw rate response for different values of ωF , while Table 2.4 includes the

respective values of RMSE and I AC A. Higher values of ωF increase the ’aggressiveness’

of the controller, thus originating better tracking performance, increased control effort

and increased sensitivity to measurement noise. In any case, the tuning procedure of

the ISM control is not more complex than for a typical automotive PID or LQR controller,

and can be performed by a vehicle engineer without a specific know-how in robust

control theory.

Figure 2.23 r (t ) during a step steer with the ISM control for different values of ωF

Table 2.4 Performance indicators for the step steers for different values of ωF

RMSE [deg/s] I AC A [Nm]

ISM 0.3 Hz 3.803 1654

ISM 0.5 Hz 3.307 1617

ISM 1 Hz 2.634 1780

Enhanced Sport mode

Fig. 2.24 shows the results for a step steer test executed in the Enhanced Sport mode

with the ISM controlling only the yaw rate, or both yaw rate and sideslip angle. The high

value of yaw rate reference at the completion of the steering wheel input (in excess of the
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friction limits between the tires and the road surface) provokes a sideslip angle build-up.

β reaches values beyond -30 deg when only the yaw rate controller is used. The sideslip

contribution limits sideslip to predefined thresholds (i.e, ’Threshold 1’,’Threshold 2’,

’Threshold 3’ in Fig. 2.24). Fig. 2.25 presents r (t ) and rr e f (t ) for the yaw rate controller

Figure 2.24 β(t) during step steers with the ISM control in Enhanced Sport mode, with and
without the sideslip angle controller (for different sideslip thresholds, -7 deg, -14 deg, and -21
deg)

only and the ’Threshold 2’ case of the yaw rate and sideslip controller. The intervention

of the sideslip contribution is associated with a reduced yaw rate (noticeable from ≈ 4 s

onwards) compared to the vehicle with the yaw rate controller only. The reduction is

caused by the concurrent effect of the yaw moment required for the actuation of sideslip

angle control, the higher value of V due to lower tire slip angles, and the reference

yaw rate reduction corresponding to Eq. 2.14. These results demonstrate the benefit

of sideslip control for ’fun-to-drive’ enhancement or, conversely, for enhancing active

safety by allowing controlled vehicle operation at the cornering limit. For example,

by constraining β at the values specified by the high-level controller the vehicle could

be more easily controlled by an unskilled driver during emergency maneuvers in low

friction conditions, especially if these are not identified for the generation of rr e f (t ). The

experiments also show that a relatively simple control structure can be used to constrain

sideslip angle, without having to use computationally expensive controllers, such as

model predictive controllers.
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Figure 2.25 r (t) during step steers with the ISM control in Enhanced Sport mode, with and
without the sideslip angle controller (for different sideslip thresholds, -7 deg, -14 deg, and -21
deg)

2.5.3 Sequence of step steers

A sequence of step steers was carried out to assess the transient yaw response of the

vehicle in extreme conditions (Fig. 2.26). The maneuver was executed for increasing

values of steering wheel angle amplitude (with increments of 10 deg), from an initial V of

100 km/h and constant wheel torque demand. The test was considered successful when

the sideslip angle peak remained below 10 deg during the whole maneuver. In particular,

the passive vehicle reaches this condition for a steering wheel angle amplitude of 70 deg,

while the active vehicle is still within the specified sideslip boundary with an amplitude

of 150 deg.

2.5.4 Obstacle avoidance test

To assess the ISM control effectiveness on a variety of test cases, the obstacle avoidance

test is carried out according to the standard ISO 3888 − 2 (see Fig. 2.27 and [123])

to (subjectively) investigate the road-holding ability of the vehicle. After the initial

stabilization of the vehicle at the speed set for the specific test, a constant total wheel

torque demand is imposed by the software running on the dSPACE® unit, independently

from the driver accelerator pedal position ( 200 Nm for the test in Fig. 2.28). This

procedure allowed high repeatability of the test results, with increased focus of the

driver on the steering action. Fig. 2.28 shows that the controlled vehicle requires a

significantly reduced steering correction after the first lane change maneuver, when the

driver has to stabilize the vehicle to keep it within the second lane without hitting the
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Figure 2.26 r (t ) and β(t ) for the passive and active (ISM control, Normal mode) vehicles during
sequences of step steers with a sideslip threshold of 15 deg

Figure 2.27 path description according to standard ISO 3888 − 2

cones. Correspondingly the yaw rate and sideslip angle oscillations are reduced, and

thereby the vehicle exhibits a better performance and driving experience. Also, owing

to the lower values of
∣∣β(t )

∣∣, the controlled vehicle maintains a higher speed during the

maneuver. Fig. 2.29 reports a sample of the tests, executed on dry tarmac with zero

road gradient and bank angle. The figure indicates the corresponding initial speed,

i.e, the speed at the entrance of the first lane, and whether the test was successful or

unsuccessful. The test is considered successful when the vehicle performs the maneuver

without hitting any cone placed along the boundaries of the obstacle avoidance track.

The results show a 7% increase of the maximum initial speed of the successful tests

with the controlled vehicle with respect to the passive vehicle. Again, the higher speed

demonstrates the controller benefits in terms of enhanced vehicle handling qualities

and active safety.
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Figure 2.28 δ(t), r (t) and β(t) for the passive and active (in Normal mode) vehicles during an
obstacle avoidance maneuver from an initial V = 51.5 km/h

Figure 2.29 Distribution of the successful (indicated by the blank symbols) and unsuccessful
indicated by ’x’) tests for the passive and active vehicles (in Normal mode), during obstacle
avoidance maneuvers

2.6 Sideslip Angle Estimation Analysis

The TV control designed in section 2.3 and implemented in section 2.5 requires as input

driver commands (steering angle δ, accelerator xa and brake xb pedal position) and

variables characteristic of vehicle dynamics (ax , ay , r , V , µ and β) that can be measured

if specific sensors are available as it happens for the FEV demonstrator in Fig. 2.6. In

common FEV and conventional vehicles it is usually not present a sensor for the sideslip

angle β and especially for friction coefficient µ so that they require a feasible and robust

real-time estimation. In the present section a theoretical state estimator is explained
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and analyzed for a future and practical implementation of the TV control strategy here

proposed. A brief introduction on the extended Kalman filter (EKF) is presented followed

by its application to the estimation of β for sideslip angle control.

One note to be kept in mind is that an accurate estimation of the friction coefficient

µ is not needed since it could lead to a wrong evaluation of rr e f in extreme conditions

(tires saturation limits) thus causing high values of sideslip angle that can be recovered

by the sideslip angle control as seen in section 2.4.2.

2.6.1 Extended Kalman Filter Theory

The Kalman filter [124–126] general objective is to find the estimation of a linear stochas-

tic discrete-time controlled system’s states x ∈ℜn . Furthermore, the extended Kalman

Filter (EKF) can be also applied to non-linear systems through an idea similar to Taylor

series approximation: the estimation procedure is linearized around current estimate

through the partial derivatives calculation thus computing the estimation even in pres-

ence of non-linearities.

Let’s assume that the system can be described by the non-linear stochastic difference

equation:

xk = f(xk−1,uk−1,wk−1) (2.49)

with the measurement vector yk ∈ℜm

yk = h(xk ,vk ) (2.50)

where wk and vk are respectively the process and the measurement zero-mean white

noises with normal probability distribution p(w) ~ N (0,Q) and p(v) ~ N (0,R). One

approximation of the system can be expressed as:x̃k = f(x̂k−1,uk−1,0)

ỹk = h(x̃k ,0)
(2.51)

where x̂k is some a posteriori estimation of state xk at step k. The first step of EKF is the

linearitation of system Eqs. 2.49 and 2.50 around the approximation states x̃k and ỹk :xk ≈ x̃k +A(xk−1 − x̂k−1)+Wwk−1

yk ≈ ỹk +H(xk − x̃k )+Vvk

(2.52)
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where A, W are the Jacobian matrix of partial derivatives of f with respect to x and w

meanwhile H, V are the Jacobian matrix of partial derivatives of h with respect to x and v:

A(i , j ) = ∂f(i )

∂x( j )
(x̂k−1,uk−1,0)

W(i , j ) = ∂f(i )

∂w( j )
(x̂k−1,uk−1,0)

H(i , j ) = ∂h(i )

∂x( j )
(x̃k ,0)

V(i , j ) = ∂h(i )

∂v( j )
(x̃k ,0)

(2.53)

Note that matrices A, W, H and V changes for each time step k, even it is not indicated

for simplicity. The prediction error is defined as:

ẽxk ≡ xk − x̃k (2.54)

meanwhile the measurement residual:

ẽyk
≡ yk − ỹk (2.55)

thus obtaining equations related to the error process:

ẽxk ≈ A(xk−1 − x̂k−1)+ϵk (2.56)

ẽyk
≈ Hẽxk +ηk (2.57)

where ϵk and ηk are two independent variables with zero mean and covariance matrices

WQWT and VRVT . Equations 2.56 and 2.57 are linear approximation of original non-

linear process expressed by Eqs. 2.49 and 2.50 thus allowing the application of discrete

linear Kalman filter theory according to which an a posteriori estimation of ẽxk , defined

as êk = x̂k − x̃k , is calculated as a linear combination of of an a priori estimate ê−k (which

is here supposed to be zero) and measurement residual ẽyk
:

êk = ê−k +Kk ẽyk
= Kk ẽyk

(2.58)

where the matrix Kk is the Kalman gain that minimizes the a posteriori error covariance

Pk = E[(xk − x̂k )(xk − x̂k )T ]. A possible solution to the minimization problem is provided



118 Torque Vectoring Control for Fully-Electric Vehicles

by [124, 127, 128] where the following result is obtained:

Kk = P−
k HT

k

Hk P−
k HT

k +Vk Rk VT
k

(2.59)

where P−
k = E[(xk −x−

k )(xk −x−
k )T ] is the a priori error covariance matrix which is calcu-

lated as:

P−
k = Ak Pk−1AT

k +Wk Qk−1WT
k (2.60)

The a posteriori error estimation êk is finally adopted for evaluating the a posteriori state

estimation x̂k :

x̂k = x̃k + êk = x̃k +Kk ẽyk
= x̃k +Kk (yk − ỹk ) (2.61)

When the measurement error covariance R approaches zero, the gain Kk approaches H−1

thus considering the actual measurement yk more reliable than predicted estimation x̃k .

Viceversa, when the a priori estimate error covariance P−
k approaches zero, the gain Kk

approaches zero thus assuming that the predicted estimation x̃k is trusted more than

the actual measurement yk . The Kalman filter estimates a system by using a form of

feedback control: the filter estimates the system states at some time and then obtains

feedback in the form of (noisy) measurements. Equations for the Kalman filter fall into

two groups: Prediction phase equations and the Measurement phase equations. The

complete set of equations for EKF is reported in Fig. 2.30 where the Prediction phase

and the Measurement phase are shown. During the Prediction phase, all states and

Prediction Phase

1) Project the state ahead

2) Project the error covariance ahead

 𝐱k = 𝐟( 𝐱k−1, 𝐮k−1, 𝟎)

𝐏k
− = 𝐀k𝐏k−1𝐀k

T + 𝐖k𝐐k−1𝐖k
T

Measurement Phase

1) Calculate the Kalman gain

2) Update estimate with measurement

3) Update the error covariance

𝐊k = 𝐏k
−𝐇k

T(𝐇k𝐏k
−𝐇k

T + 𝐕k𝐑k𝐕k
T)−1

 𝐱k =  𝐱k + 𝐊k(𝐲k −  𝐲k)

𝐏k = (I − 𝐊k𝐇k)𝐏k
−

Initial values for  𝐱k−1 and 𝐏k−1

Figure 2.30 Extended Kalman Filter iterative scheme
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covariance error estimates are projected forward from the previous time step k −1 to

the current one k to obtain the a priori estimates. The Measurement phase corrects the

states and covariance error estimates with the measurements yk to obtain an improved

a posteriori estimate.

2.6.2 Sideslip angle estimation using EKF and Integral solution

The EKF equations are here adapted for the specific case of sideslip angle estimation.

Lateral dynamics equations from single-track model are expressed by:
Fy,F +Fy,R = mV (r + β̇)

Fy,F a −Fy,R b +Mz,T V = Jz ṙ

µ̇= 0

(2.62)

where Fy,F /R are respectively total front and total rear lateral forces, Mz,T V the external

yaw moment generated by torque vectoring, V the vehicle speed, r the vehicle yaw rate,

β the vehicle sideslip angle, m and Jz its mass and inertia moment and a and b the

front and rear semi-wheelbase. Lateral forces Fy,F /R are analytical evaluated through the

non-linear brush model formulation:

Fy,F /R =
−µFz,F /R 3ϑy,F /R tanαF /R (1− ∣∣ϑy,F /R tanαF /R

∣∣+ 1
3ϑ2

y,F /R tan2αF /R
) if αF /R ≤αsl ,F /R

−µFz,F /R si g n(αF /R ) if αF /R >αsl ,F /R

(2.63)

where Fz,F /R are the front/rear normal forces, αF /R the front/rear axle slip angles and:

ϑy,F /R =
2cp l 2

p

3µFz,F /R
, αsl ,F /R = tan−1 1

ϑy,F /R
(2.64)

where cp and lp the nominal values of respectively wheel cornering stiffens and half-

length of tire contact patch. Front/rear axle equivalent slip angles αF /R are given by:αF =−δw +β+ r a/V

αF =β− r b/V
(2.65)

where δw is the steering angle at wheel. In order to apply the EKF equations, lateral

forces have to be linearized as function of the tire slip angle, vertical load and friction
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coefficient:

Fy,F /R = Fy (α0,Fz,0,µ0)+ ∂Fy

∂α
(α−α0)+ ∂Fy

∂Fz
(Fz −Fz,0)+ ∂Fy

∂µ
(µ−µ0) (2.66)

By considering the discretized representation of Eq. 2.62 (ẋ ≈ x(k+1)−x(k)
∆t ), the system

dynamics can be described by:xk+1 = Ak xk +Bk uk +Ex,k +W wk

yk = Hk xk +Dk uk +V vk

(2.67)

with x = [β,r,µ]T , u = [δw ,Fz,F ,Fz,R ]T and y = [r, ay ]T .

Matrices Ak , Bk , Ex,k , Hk and Dk have the following expression:

Ak =
1

mV

(
∂Fy,F

∂α + ∂Fy,R

∂α

)
∆t +1 1

mV

(
a
V
∂Fy,F

∂α − b
V
∂Fy,R

∂α

)
∆t 1

mV

(
∂Fy,F

∂µ + ∂Fy,R

∂µ

)
∆t

1
Jz

(
a
∂Fy,F

∂α
−b

∂Fy,R

∂α

)
∆t 1

Jz

(
a2

V
∂Fy,F

∂α
+ b2

V
∂Fy,R

∂α

)
∆t +1 1

Jz

(
a
∂Fy,F

∂µ
−b

∂Fy,R

∂µ

)
∆t

0 0 1

 (2.68)

Bk =


− 1

mV
∂Fy,F

∂α ∆t 1
mV

∂Fy,F

∂Fz
∆t 1

mV
∂Fy,R

∂Fz
∆t

− a
Jz

∂Fy,F

∂α ∆t a
Jz

∂Fy,F

∂Fz
∆t − b

Jz

∂Fy,R

∂Fz
∆t

0 0 0

 (2.69)

Ex,k =


∆te1

∆te2

0

 (2.70)

where

e1 = 1

mV

(
Fy (α0,Fz,0,µ0)− ∂Fy,F

∂α
α0 −

∂Fy,R

∂α
α0 −

∂Fy,F

∂Fz
Fz,0 −

∂Fy,R

∂Fz
Fz,0+

−∂Fy,F

∂µ
µ0 −

∂Fy,R

∂µ
µ0

)

e2 = 1

Jz

(
aFy,F (α0,Fz,0,µ0)−bFy,R (α0,Fz,0,µ0)−a

∂Fy,F

∂α
α0 +b

∂Fy,R

∂α
α0+

−a
∂Fy,F

∂Fz
Fz,0 +b

∂Fy,R

∂Fz
Fz,0 −a

∂Fy,F

∂µ
µ0 +b

∂Fy,R

∂µ
µ0 +Mz,T V

)
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Hk =[
0 1 0

1
m

(
∂Fy,F

∂α + ∂Fy,R

∂α

)
1
m

(
a
V
∂Fy,F

∂α − b
V
∂Fy,R

∂α

)
+V 1

m

(
∂Fy,F

∂µ + ∂Fy,R

∂µ

)] (2.71)

Dk =
[

0 0 0

− 1
m
∂Fy,F

∂α
1
m
∂Fy,F

∂Fz

1
m
∂Fy,R

∂Fz

]
(2.72)

Finally, EKF prediction equation can be evaluated:

x̃k = xk−1 +∆t


1

mV (Fy,F
∣∣
k−1 + Fy,R

∣∣
k−1)− rk−1

1
Jz

(a Fy,F
∣∣
k−1 −b Fy,R

∣∣
k−1 + Mz,T V

∣∣
k−1)

0

 (2.73)

with a priori estimate error covariance:

P−
k = Ak Pk−1AT

k +Wk Qk−1WT
k (2.74)

Meanwhile the EKF measurement equation is defined as:

x̂k = x̃k +Kk (yk −Hk x̃k −Dk uk ) (2.75)

with Kalman gain:

Kk = P−
k HT

k

Hk P−
k HT

k +Vk Rk VT
k

(2.76)

and a posteriori estimate error covariance:

Pk = (I−Kk Hk )P−
k (2.77)

The estimate value of sideslip angle β̂k is finally obtained by:

β̂k = [1 0 0]∗ x̂k (2.78)

EKF equations provides a satisfactory states estimation when the vehicle lateral

behavior is well described by the single-track model that is for low values of sideslip

angle β. A second strategy for β estimation, called Integral Solution, is thus combined

with the EKF when the absolute value of sideslip angle overpasses a specific threshold

(i.e. βT H = 8 deg):

β̂k =βT H +
∫ +∞

βT H

(
ay

V
− r )d t (2.79)
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In order to experimentally validate the sideslip angle estimation, EKF algorithm has

been run in post-processing by receiving as input experimental values of V , ay , ax , r ,

Mz,T V , δw and comparing its output with the sideslip angle sensor installed on-board by

selecting a diagonal configurations for Q and R matrices and by considering ay and r

measurements more reliable than the system model (more weight on R matrix elements

with respect Q matrix ones). Longitudinal acceleration ax is used for evaluating the

vertical load on front and rear axle:Fz,F = mg b
a+b − max HCG

a+b

Fz,R = mg a
a+b + max HCG

a+b

(2.80)

where HCG is the center of gravity height. The following results are obtained by post

processing experimental data recorded during a step steer maneuver of 100 deg steering

angle at 100 km/h executed in sport mode and reported in Figs. 2.31 and 2.32. The

Figure 2.31 Vehicle speed V , torque vectoring yaw moment Mz,T V and steering wheel angle δ
during a step steer maneuver of 100 deg steering angle at 100 km/h executed in sport mode

sideslip angle estimation is obtained by choosing different weights on R diagonal el-

ements thus analyzing the importance of r (weight on first diagonal element) and ay

(weight on second diagonal element) measurements when compared to experimental

value recorded by sideslip angle sensor. Fig. 2.33 shows that the ay measurements must

be trusted more than r one in estimating the sideslip angle though EKF formulation.

Finally, the effect of Integral solution when absolute value of sidelip angle is greater

than the threshold βT H = 8 deg is reported in Fig. 2.34 during a step steer maneuver of

100 deg steering angle at 100 km/h executed in enhanced sport mode (thus triggering
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Figure 2.32 Vehicle yaw rate r , lateral acceleration ay and longitudinal acceleration ax during a
step steer maneuver of 100 deg steering angle at 100 km/h executed in sport mode

Figure 2.33 Experimental and estimate of sideslip angle β for different selection of matrix R
elements

high values of sideslip angle): the figure also highlights the benefit introduced by integral

solution when EKF is no more reliable for estimating the sideslip angle.

2.7 Conclusions

The research activity discussed an integral sliding mode control formulation for the

concurrent control of yaw rate and sideslip angle on a four-wheel-drive electric vehicle.
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Figure 2.34 Experimental and estimate of sideslip angle β during a step steer maneuver of 100
deg steering angle at 100 km/h executed in enhanced sport mode

The comprehensive set of experimental results in steady-state and transient conditions

yields the following conclusions:

• the continuous actuation of yaw rate control allows very different understeer

characteristics for the same vehicle, depending on the selected driving mode

• the ISM control formulation as a perturbation compensator significantly enhances

the controller tracking performance in transient conditions compared to a linear

quadratic regulator with augmented states

• the Enhanced Sport mode allows to purposely induce high values of sideslip angle

through the yaw rate controller, and to effectively limit them through the sideslip

contribution

• the sideslip yaw moment contribution is introduced to control vehicle response

in extreme conditions, such as those induced by the Enhanced Sport mode or by

an overestimation of the tire-road friction coefficient. For all these conditions,

the proposed sideslip controller is effective in limiting the sideslip angle to a

pre-specified threshold. Despite from the theoretical viewpoint the system with

simultaneous yaw rate and sideslip control is functionally uncontrollable, desirable

performance of the sideslip controller can be achieved via appropriate setting of

the respective weights in the LQR and ISM control designs.

• experimental tests show the real efficacy of the torque vectoring controller pro-

posed and its reliability with low tire-road friction coefficients is proved through

simulation results with an experimentally validated model
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• the simple formulation and tunability of the control structure, without the need

for a feedforward contribution, facilitates its industrial implementation on real

vehicles

• an Extende Kalman Filter (EKF) formulation is described for future implementation

where no sideslip angle sensors are available on-board and an integral solution is

presented when sideslip angle reaches high values (i.e. enhanced sport mode). EKF

and Integral solution are verified in post processing by considering experimental

data as input for estimation process.



Chapter 3

Integration of Powertrain & Brake

System Controls

3.1 Introduction

Transmission systems represent a key component in the driveline of conventional pas-

senger vehicles since they are the mechanical link that drives energy from the source

(engine) to the road through wheel contacts. They are usually classified in manual and

non-manual transmissions whether gear shifting is performed respectively by the driver

or by an actuation system controlled by a strategy designed for specific targets (perfor-

mances, comfort or efficiency) [66, 129]. In Manual Transmissions, the gear shifting

dynamics is managed by the clutch for disengaging the engine from gearbox and by the

syncronizer for synchronizing the relative speed between the shafts [130, 131]. Non-

manual transmissions can be further classified in Continuously Variable Transmissions

(CVT), Automatic Transmissions (AT), Automated Manual Transmissions (AMT) and

Dual Clutch Transmissions (DCT). CVT are designed for making available an infinite

number of gear ratios by adopting a steel belt or chain thus achieving benefits from

the point of view of performance and fuel economy [66, 132–134]. In AT the gear shift-

ing is regulated by the presence of a torque converter and the gear selection is carried

out by band brakes and multi-disk clutches [135, 136]. An important contribute in

non-manual transmissions field is represented by Automated Manual Transmissions

and Dual Clutch Transmissions: AMT have the same transmission architecture of MT

with the difference that the gear shifting is executed by hydraulic or electromechanical

actuator systems [137–142]; DCT have introduced a new architectures that generally

consists of two clutches and two different primary shafts [143–147] (for further infor-

mation see section 3.2). DCTs have been conceived for reducing the so called torque
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gap ([137, 140, 148]) that usually arises in MT as a consequence of disengagement of

the engine from the gearbox during gear shifting. The ATs mechanical architecture

allows avoiding the torque interruption during a gearshifts but with the disadvantage of

reducing the transmission efficiency (when the converter is slipping) whit respect to MT,

AMT and DCT where dry clutches are used to this aim. A counterpart effect of adopting

high efficiency components in MT, AMT and DCT is that they suffer from NVH issues

especially during low speed and torques maneuvers: the presence of gear backlashes

together with extremely low mechanical losses can provoke undesirable noises and

vibrations when the torque applied to the transmission changes its sign due to external

or internal disturbances [149–152](for further information see section 3.3).

The intent of the research presented in this chapter is to explore the potentiality

of reducing noise and vibration of a vehicle transmission thanks to powertrain control

integration with active braking system. Even in literature, the two systems are normally

studied separately, each with its own objectives, without considering the potential ben-

efits deriving from their integration. Only recently, carmakers are taking advantage of

these systems cooperation when developing new active system concerning vehicle speed

control. Let consider as an example the Adaptive Cruise Control system: last versions of

this active system use automatic braking feature to adjust the car speed with the aim of

maintaining a preset distance from the vehicle ahead. On the contrary, the possibility to

reduce transmission noise and vibration thanks to powertrain control integration with

active braking system has not been explored yet by the scientific community. In [153]

a method and a device for determining and dampening juddering vibrations caused

by a clutch in a drivetrain of a conventional motor vehicle is introduced. The strategy

comprises the following tasks: vibration detection through a torque sensor (not included

in conventional powertrain systems) placed inside the clutch, vibration amplitude deter-

mination and clutch position control for compensating torque fluctuations of drivetrain.

A similar concept is proposed in [154], where the engagement pressure of a clutch in

an automatic transmission is controlled with the aim of reducing stationary vibration

of the vehicle and engagement and disengagement shock. According to the proposed

control method, the clutch begins to slip when the strain between the drive system and

the vehicle body reaches a selected value. The strain can be evaluated using one of the

following sensors: a displacement sensor, a torque sensor at the output shaft of the

transmission, or a sensor to measure the stress at the engine mountings. A methodology

for reducing the vibration amplitude caused by clutch grabbing phenomena is shown

in patent [155]. A control and regulation system can actuate different motor vehicle

active devices (such as the clutch, the service brake, the electromagnetic retarder, the

synchronizer and the internal combustion engine) with the aim of generating a com-

pensatory vibration with the same or a similar frequency and a phase offset in relation
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to the vibration acting in a disturbing manner. This active vibration control method

requires accurate tracking performance at least up to the maximum frequency of the

disturbance. A driveline preloading effect, produced by an electric motor, is considered

in [156] aiming at minimizing jerks and vibrations caused by backlashes in the driveline.

The control system is able to detect an imminent change in load and to react before this

new loading condition is applied to the driveline. More specifically, the control system

selects the shape, height and duration of a torque pulse that the electric motor must

generate to take up the backlash in the driveline before the load from the drive engine

is actually changed. If the pulse is properly selected, the driveline will be preloaded

thus avoiding jerks and oscillations in the system. The electric motor can be coupled

to the engine (directly or with a transmission) or can be positioned elsewhere in the

driveline after the engine, e.g. close to the gearbox. The invention in [157] deals with

a rattling noise avoidance control for a hybrid vehicle: it can be applied if the engine

operating point and the driver reference torque fall within a rattling noise producing

range. The control device is supposed to be mounted on a vehicle including an internal

combustion engine, a first rotating electric machine for generating electric power and a

second rotating electric machine that transmits a driving force to the wheel.

A new methodology is introduced in the following chapter based on a coordinate

usage of powertrain and active braking system controls with the aim of improving

NVH transmission performance when the vehicle undergoes critical low speed/torque

maneuvers. The invention idea, described also in [158, 159], is to preload transmission

components through the application of an additional engine torque and proportionally

a braking torque (independently from driver intervention on brake pedal) when NVH

excitations are detected in advance. It must be noted that the proposed strategy is

based on an open loop torque controller which is, differently from [155], enough to

guarantee the immunity to the disturbances regardless of their point of application. It is

also proved that a normal production braking system with Electronic Stability Control

(ESC) can be used to generate the required braking torque since they are able to generate

brake pressure build-up through a motor pump regardless of the driver action on the

brake pedal. There are many versions of active braking systems, providing different

degrees of braking support. Different control strategies have been proposed in the past

for achieving improved braking performance of vehicles during emergency scenarios

[160–165]: in case an emergency is detected, the control system applies additional

brake pressure in order to enhance the promptness of the braking system. In the last

years, active braking systems have been re-evaluated to be integrated into the design

of global chassis control strategies thus not limiting their task to emergency braking

maneuvers (i.e. ABS, ESC as mentioned before). In this new scenario, the braking system

is exploited for following a reference pressure in order to accomplish high level control
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targets (i.e. collision avoidance) thus moving the control effort from slip ratio to brake

caliper pressures. Another important application of braking pressure control is also

found in Electro-Hydraulic Braking (EHB) design, which is the key feature of stability

control and regenerative braking system for hybrid and electric vehicles [166, 167]. This

pressure control is usually related with the application of linear solenoid valves, which are

suitable for the task but also quite expensive and not available in conventional internal

combustion engine driven cars. A conventional ABS/ESP unit includes a hydraulic

pressure modulator with on/off digital valves normally used for slip control and not

for the continuous control of the braking pressure inside the calipers. In [168, 169] a

detailed electro-mechanical model of an on/off solenoid valve used to regulate brake

pressure is presented; due to the valves discontinuous characteristic, PWM is often

used to drive both hydraulic [170–172] and high-speed pneumatic [173] valves. The

second part of the chapter proposes a new control strategy of a normal-production

ABS unit in order to continuously track a reference pressure required for preloading the

transmission components. In the literature review, some papers about a continuous

pressure following control can be found:

• [174] presents a continuous pressure control based on sliding mode where the

on/off valves are modeled as a second order dynamic system;

• in [169] an open-loop controller is designed and the output of the control is the

current of the On/Off digital valves;

• in [172] a PI control has been developed using standard feedback linearization

techniques on a nonlinear validated model;

• in EHB applications [166, 167], proportional solenoid valves are used for the pres-

sure following control;

Differently from other literature works, the pressure following controller here presented

is designed from an experiments-based description of brake pressure dynamics. Since

ABS valves dynamics is highly nonlinear and characterized by uncertainties, experiments

on a Hardware-In-the Loop (HIL) Brake System Test bench have been carried out to

build an experimental model of ABS on/off valves specifically used for the design of a

Feed-Forward (FF) and Proportional Integral (PI) control logic based on PWM regulation

of conventional on/off digital valves (described also by the author in [175, 176]).

The chapter is structured as follows: in section 3.2 a brief overview of Dual Clutch Trans-

missions architectures and operating description is presented; section 3.3 is focused on

NVH sources that can trigger vibrations or noises in a DCT; in section 3.4 the high level

part of control strategy for enhancing NVH performance is explained with simulation
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results meanwhile the low level logic about braking system actuation and control is

described in section 3.5; finally section 3.6 shows some experimental results from HIL

test bench to validate the efficacy of control logic and section 3.7 reports some final

conclusions and future recommendations.

3.2 Overview of Dual Clutch Transmissions

In recent years, vehicle fuel economy and passenger comfort has becoming a key factor

in transmission design and development. In this contest, Dual Clutch Transmissions

(DCT) started to take root in automotive industry due to their feature of keeping the

power flow between engine and wheels during the gear shift and avoiding the so called

’torque gap’: this usually occurs in MT transmissions when the driver disengages the

clutch to allow the gear shifting thus interrupting the vehicle traction.

DCT architecture appears for the first time as a concept idea for heavy commercial

vehicles, but a first real implementation arises for racing cars developments: the control

quality of the systems was not sufficiently suitable for serial production until 2003. The

key idea is to develop a transmission system which is able to achieve high efficiency

values typical of AMT/MT and shift-ability/comfort features characteristic of AT.

The solution proposed by DCT lies in its architecture which is characterized by the

presence of two clutches, two primary shafts (one with odd gears and one with even

gears) and eventually two secondary shafts (where synchronizers are mounted) which

engage on the same differential ring (dotted gray line in Fig. 3.1): two parallel power

flows are thus generated between the engine and driven wheels.

As an example, assume that the clutch K 1 is fully close so that the engine torque

is transferred to the wheel through the first gear engagement between primary shaft

P1 and secondary shaft SI , as indicated by the blue path in Fig. 3.1. If the second gear

is preselected (with clutch K 2 fully open) on secondary shaft SS, a certain amount of

power (red path) is absorbed from the differential to sustain the dragged path (primary

shaft P2 and secondary shaft SS) rotations. This strategy allows a proactive engagements

of the second gear before the driver or the controller logic requests an up-shift from the

first to the second gear. In this configuration, the second gear is already engaged and

the synchronization process is obtained through a suitable and precise slip control of

both clutches K 1 and K 2 ([177]). It is of interest noting that the synchronisers are not

mounted between two consecutive gears, as in traditional MT, since the pre-selection of

the next gear occurs when the present gear is still engaged and transmitting torque to

the wheels. From a kinematic point of view, gear shifting of a dual clutch transmission
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Main power flow

Secondary power 

flow

K1 Engaged Clutch

K2 Preselected Clutch

P1 Engaged Primary 

Shaft

P2 Preselected Primary 

Shaft

SI Engaged Secondary 

Shaft

SS Preselected 

Secondary Shaft

RM Reverse Gear 
To the wheels 

From 

Engine

Figure 3.1 General scheme of a DCT with two secondary shafts architecture and power flow
representation

is similar to that of a clutch-to-clutch shift in a conventional automatic transmission

(AT). However, the two types of transmissions show different dynamic characteristics

since AT are equipped with torque converters that dampen shift transients. Dynamic

performance of DCT and the relating driver perceptions strongly depend on the control

system whose main task is to generate the reference signals both for synchronisers and

clutches. DCT architecture is able to provide a better dynamics behavior with respect MT

one by ensuring a better performance in acceleration and a more comfortable drivability

as a consequence of the continuous torque transmission during gear shifting. In contrast

to these positive aspects, DCT systems are more complicated, both in mechanical com-

ponents and in the control effort for clutches control. Furthermore, the presence of two

clutches and of a greater number of bearings leads to a reduced efficiency with respect to

MT or AMT gearboxes; however, their efficiency is still better if compared to automatic

transmissions with torque converters and continuously variable transmissions (CVT). An

important characteristic of DCT is that two different gear ratios are engaged at the same

time: the TCU must avoid the concurrent lock of the two clutches in order to prevent

damages to the gearbox.
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3.3 NVH Issues

Dual Clutch Transmissions show high efficiency properties (for example with respect to

automatic transmissions) and avoid the interruption of the power flow from the engine

to the wheels during shifting maneuvers (powershift). These advantages are achieved

with the expenses of increased complexity, due to the introduction of a second clutch

and two primary-secondary shafts, with the consequent increment of gears.

All mechanical transmissions based on ordinary gear trains and adopting synchroniz-

ers to perform gear engagement (MT, AMT and DCT), have the highest levels of energy

efficiency but suffer from NVH (Noise, Vibration and Harshness) issues especially during

low speed maneuvers, when a very low level of torque is transferred from the prime

mover to the wheels: gear backlashes can cause some undesired noises when the trans-

mission is not enough preloaded. This usually happens when the torque transmitted by

the engine is sufficient to move the vehicle at constant low speed leaving the transmis-

sion particularly sensitive to disturbances. During these scenarios typical of everyday

urban driving situations, external disturbances coming from the road (i.e. speed-bump

or bumpy road) or internal disturbances coming from the engine (i.e. tip out maneuvers)

can provoke a sudden contact force inversion between gears thus causing teeth impacts

and noise generation (clonk and rattle). A greater torque transmitted from the engine

to the wheels led to a bigger preload effect inside the transmission which becomes less

sensitive to disturbances.

Figure 3.2 Gear Impact

It is noteworthy that this problem is particularly evident in all transmissions designed

for high efficiency which are characterized by extremely low mechanical losses: the pres-

ence of internal non-negligible friction torques provide a contact-condition between

rotating parts even in absence (or with a low level) of mechanical power transmitted

through the gearbox. This means that the cost for having a high efficient transmissions
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is the reduction of damping, and so the friction losses between rotating parts, thus

increasing disturbances sensitivity.

Among transmissions typologies, the automatic ones are definitely less influenced by

noise issues during maneuvers at low speed due to the presence of a torque converter

providing a filtering effect of noises sources. However, they present lower efficiencies

and a dynamic behavior that doesn’t match desired driver performances, especially

for European market. From this point of view, manual transmissions with one or two

clutches are preferred for their dynamical and shifting performances with the coun-

terpart of being more influenced by noises and vibrations. In particular, Dual Clutch

Transmissions present an active branch where the power flows from the engine to the

wheels (first clutch close) and a passive branch not engaged (second clutch open) which

also represents a weak point in terms of NVH.

3.3.1 NVH Excitations

NVH excitations can be categorized between internal and external triggers depending on

the origin of the disturbance: if it comes from the road then it is considered an external

trigger, otherwise, e.g. if due to the driver’s action, it is classified as an internal one. In

order to better visualize the problem, two different maneuvers are here presented to be

representative of the NVH issues for a classic DCT transmission by considering internal

and external excitations:

1. tip-out maneuver: instantaneous release of the gas pedal

2. speed-bump maneuver: speed bump crossing at low speed (lower than 10 km/h)

Internal Trigger - Tip-out maneuver

This is a classic urban scenario where the driver is forced to push and release the gas

pedal as a consequence to a traffic queue. When the gas pedal is released (tip-out),

the driver requested engine torque fall down instantaneously to zero thus drastically

reducing the load on the transmission. The following plots are obtained by using an

experimentally validated vehicle model whose main features are:

• front wheel drive medium car data;

• only longitudinal vehicle dynamics is modeled (no lateral dynamics);
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• 6-speed DCT lumped parameter model including rotational backlashes, gears

contact stiffness, inertia of components and an accurate description of power

losses inside the gearbox (bearings, seals, oil drags), see [151] for more details;

• infinitely stiff powertrain mounting system, see e.g. [178] for the effect of power-

train mounts compliance on torsional transmission dynamics;

• transient nonlinear Pacejka tire model [179].

Figure 3.3 Tip-out maneuver: engine & clutches torques

Figure 3.4 Tip-out maneuver: vehicle and transmission speeds

The maneuver simulated in Figs. 3.3 and 3.4 describes a vehicle initially accelerating

with first gear engaged and second gear preselected; then the driver instantaneously
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releases the gas pedal after 3.5 seconds: the engine torque is abruptly cut-off thus leading

to an inversion of gear teeth contact surface with consequent noises and vibration inside

the transmission. The kinematic variable ∆ϑ has been introduced for evaluating the

contact flank of gear teeth; these variables are usually adopted for the angular positions

difference between driving and driven gears and between gears and their correspondent

synchronizer teeth.

In the first case, the angular positions difference is relative to the driving shaft through

the specific gear ratio:

∆ϑi =ϑi ,P −τiϑi ,S

whereϑi ,P is the angular position of ith primary shaft gear, ϑi ,S is the angular position

of ith secondary shaft gear and τi their correspondent gear ratio.

In the second case, the angular positions difference is between the gear engaged or

preselected and its correspondent pinion shaft:

∆ϑs yn,i =ϑi ,n −ϑpi n,n

where ϑi ,n is the angular position of ith gear placed on nth shaft and ϑpi n,n is the

angular position of correspondent nth shaft.

A positive value of ∆ϑ means a gears contact on the the ”active” teeth surface (when

the power flows from the engine to the wheels) and, viceversa, a negative value of it

means a gears contact on the ”passive” teeth surface (when the power flows from the

wheels to the engine). A null value of ∆ϑ represents a condition where gear teeth is

placed between the ”active” and ”passive” surfaces, with no contact occurring.

Fig. 3.5 shows that a change of teeth contact surfaces happens when the engine

torque is reduced to zero thus provoking teeth oscillations and consequently noises. The

first evident aspect is that ∆ϑ is positive for the engaged shaft since the power flows

through it from the engine to the wheels and part of that is absorbed by the preselected

shaft (negative value of ∆ϑ) through the differentials which represents a mechanical

node. Moreover, higher frequency vibrations characterize the preselected shaft since the

second clutch is not engaged to the engine: oscillations generated on the engaged shaft

are amplified on the preselected one.

In the last plot of Fig. 3.5, similar conclusions can be drawn for the final gear engagement

of both shafts with the differential ring and for gear backlashes inside the differential

gearbox. In particular, the angular displacement inside the differential box is indicated

with:
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Figure 3.5 Tip-out maneuver: Angular Position Differences ∆ϑ; I: First gears - II: Second gears -
FD: Final Drive gears - Diff: Differential gears

∆ϑDi f f =ϑDC −ϑsun

where ϑDC is the differential ring angular position and ϑsun is the sun gear angular

position.

External Trigger - Speed-bump maneuver

An alternative source of disturbance that triggers transmission vibrations can come from

a variation of the resistance torque induced by road irregularities like the speed bump

analyzed in this section. If the vehicle is moving at low constant speed while crossing the

speed bump, it will undergo a longitudinal acceleration variation as indicated in Fig. 3.6.

During the hill-up side of the bumper the vehicle speed is reduced (if the engine

torque imposed by the driver is constant) while speed is recovered during the hill-down

side of the bumper. Due to the low vehicle speed, the torque required by the engine is

extremely small (less than 10 Nm) thus allowing the wheel torque load to invert trans-

mission gears contact flank especially on the preselected shaft.

The following plots, obtained by using the same simulation model adopted in the previ-

ous section, show the results during speed-bump crossing maneuver when the vehicle

is traveling at a constant speed of 7 km/h (engine torque constant during the whole

maneuver).
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Figure 3.6 Speed-bump maneuver: disturbance longitudinal acceleration and speed

The disturbance coming from the bumper modifies the vehicle speed of less than 1

km/h but it is sufficient to trigger gears teeth hitting as indicated in Fig. 3.8.

Before the speed-bump crossing, an engine torque of about 3 Nm is required for

keeping constant the vehicle speed but it is not high enough to guarantee a sufficient

preload to the transmission shafts. It is noticeable that also in this case, gear teeth

change their contact surfaces thus triggering oscillations as particularly evident on the

preselected shaft.

3.4 Braking System Integration: High Level Logic

Previous sections have shown two examples of possible NVH excitations inside a DCT

transmission with the conclusion that whether the disturbance comes from engine or

wheel transmission side, a common solution can be proposed: primary and secondary

transmission shafts have a non negligible stiffness so that a torque transmitted from the

engine to the wheels provoke a deformation which can better tighten the rotational parts

to each other. This has the same effect of a spring preload in order to compress always

the spring even in presence of an external force/disturbance. The ”preload effect” on the

transmission can prevent the gears to change the contact flank during torque transients.

Based on this principle, a preload on transmission shafts can be obtained by controlling

the braking wheel torque together with the engine torque. The control intervention must

be as smooth as possible and such that the driver doesn’t feel the control action: the

desired braking torque needs to be compensated by increasing engine torque in order to
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Figure 3.7 Speed-bump maneuver: vehicle and transmission speeds

keep the longitudinal speed unchanged.

The controller strategy, represented by the general scheme of Fig. 3.9 can be described

with two phases:

1. proactive detection of NVH sources trough the use of sensors or estimation tech-

niques (Higl level control).

2. activation of braking system, together with engine control, for generating a tor-

sional preload (Low level control)

3.4.1 Detection of NVH Sources

The first phase must be always promptly actuated in order to allow brake and engine

control enough time to preload the transmission and avoid noise generation.

In the case of disturbances coming from the road, the detection of irregularities (i.e.

speed-bump) must be evaluated before the driven axle cross it by adopting optical sen-

sors or 3D laser scan systems able to map the field and recognize the disturbance with

enough resolution. A noteworthy case is the rear-wheel drive powertrain configura-

tion since the disturbance can be detected by specific sensors mounted on the front

non-driven axle: a front suspension position transducer, an accelerometer and a good

estimation of vehicle speed could provide enough information to the powertrain and

brake control unit to promptly react on the rear axle (this concept will be verified through

future investigations).

As regard noises internal excitations (i.e. sudden reduction of engine torque during Tip-

Out maneuvers), their prediction is easier since it can exploit DCT gear shift algorithms
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Figure 3.8 Speed-bump maneuver: angular position differences ∆ϑ; I: First gears - II: Second
gears - FD: Final Drive gears - Diff: Differential gears

already implemented in the control unit; gears preselection on the non-engaged shaft

is already based on driver behavior prediction. Signals measured by other on-board

sensors related to the vehicle dynamics, such as longitudinal acceleration or wheel speed

sensors used by ABS logic, can be further adopted in combination with the transmission

control unit.

For other NVH excitations not described here but which can trigger gear oscillations

because of a low engine torque value, the controller activation can depend on a threshold

torque value TDi f f ,mi n applied to the differential ring that must be calibrated based

on the desired noise immunity level: if the torque applied to the differential is lower

than TDi f f ,mi n , for example due to a reduction of the torque transmitted by the engaged

clutch, the braking system is activated. To avoid the addition of a sensor for measur-

ing the torque applied to the differential ring, the brake intervention condition can be

evaluated as follow:

TK 1τK 1 +TK 2τK 2 < TDi f f ,mi n (3.1)

where TK 1 is the torque transmitted by the engaged clutch, TK 2 is the torque trans-

mitted by the other clutch and τK 1, τK 2 are the correspondent total gear ratio from the

clutch to the differential ring. When Eq. 3.1 is satisfied, a desired brake torque is required:

TB ,r eq = M AX (0,TDi f f ,mi n − (TK 1τK 1 +TK 2τK 2)) (3.2)
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Figure 3.9 Controller Strategy for Noises Reduction

where TB ,r eq represents the desired braking torque to preload the transmission. As

mentioned before, the control action shouldn’t modify the vehicle speed in order to

avoid the driver perception of it: for this reason the torque TK 1 must be incremented

through the engine control or the clutch actuation:

∆TK 1 = TB /(ηTτK 1)− (TK 2τK 2)/τK 1 (3.3)

where TB is the current wheel brake torque and ηT is the transmission efficiency.

3.4.2 Simulation concept proof

In order to demonstrate the efficacy of the methodology described in the previous

section, the Tip-Out and Speed-Bump maneuvers are simulated by applying to the front

axle a brake torque.

Fig. 3.10 shows that a constant braking torque of 200 Nm is applied three seconds

before the release of gas pedal which is compensated by and increment of engine torque

calculated by Eq. 3.3: when the gas pedal is released, there is still a residual engine torque
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Figure 3.10 Tip-out maneuver: Torques applied to the Transmission

for compensating the braking torque and keep unchanged the vehicle speed with respect

the passive configuration.

Figure 3.11 Tip-out maneuver: Vehicle Speed for Passive and Active configuration

As highlighted in Fig. 3.11, the speed of the vehicle (active) is kept as close as possible

to the passive (without a noise reduction controller) vehicle since the driver should only

appreciate the noise reduction without any changes to the conventional longitudinal

dynamic behavior. The only drawback of the controller is the fuel consumption used

for keeping unaltered the passive vehicle speed: a feasible calibration of braking action

is required for a better tradeoff between noises rejection performance and energy con-

sumption.
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In order to appreciate the effect of braking intervention in terms of noises reduction,the

angular position differences between rotational parts are proposed in the following plots

by distinguishing between the engaged and the preselected shafts.

Figure 3.12 Tip-out maneuver: ∆ϑ on the engaged shaft for active and passive configurations; I:
First gears - II: Second gears - FD: Final Drive gears - Diff: Differential gears

Fig. 3.12 clearly proves the efficacy of the braking integration for transmission noises

rejections on the engaged shaft: the combination of the brake action together with

engine torque compensation guarantees a sufficient preload effect between rotational

parts thus avoiding oscillations inside their backlashes. Moreover, the effect of braking

action on the preselected shaft is described by the Fig. 3.13.

It is evident that the braking intervention is effective for mitigating oscillations

between rotational parts even if some changes of teeth flank are still present on the

preselected shaft (Fig. 3.13). Furthermore, ∆ϑ on the preselected shaft is negative which

means that the power flows in opposite direction with respect the engaged shaft. The

main reason is because part of the power from the engine to the wheel (through the

engaged shaft) is used to drive also the preselected shaft which is disengaged from the

engine. A further solution is to couple the brake intervention with the second clutch

(here indicated with K2) slip control in order to guarantee a sufficient preload effect on

both transmission shafts. As an example, the K2 clutch slip is controlled in order to have

a torque of 2 Nm transmitted on the preselected shaft and a torque calculated by Eq. 3.3

transmitted on the engaged shaft.

Fig. 3.14 proves what was stated before: based on Eq. 3.3, part of engine torque is

removed from the engaged shaft and applied to the preselected one thus increasing

its preload effect. This is also quite evident from the modification of the gear teeth
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Figure 3.13 Tip-out maneuver: ∆ϑ on the preselected shaft for active and passive configurations;
I: First gears - II: Second gears - FD: Final Drive gears
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Figure 3.14 Tip-out maneuver: ∆ϑ for Brake Intervention with and without K2 clutch slip control;
I: First gears - II: Second gears - FD: Final Drive gears

contact surfaces: the ∆ϑ becomes positive in the case of clutches position control thus

implying that even the preselected shaft is driven by the engine. This second solution

(brake and K2 slip controls) changes the torque distribution between the engaged and

preselected shaft, and in particular it reduces the torque transmitted from the engaged

shaft, as indicated in Eq. 3.3, thus reducing the preload effect on it. For this reason, the

selection of torque transmitted by the K2 clutch requires a further calibration in order

to have the desired noise reduction level on both transmission drivelines. Finally, the

conclusion about the Tip-Out maneuver is that a brake intervention, without clutch

control, is enough to guarantee a total oscillations rejection effect on the engaged shaft
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and a partial benefit on the preselected shaft; a further degree of control can be provided

by K2 clutch regulation with the aim at obtaining the same noise rejection level on the

whole transmission but it requires a more advanced calibration of torques transmitted

by not-engaged clutch.

A similar description is shown for the Speed-Bump maneuver and simulation results are

here summarized:

• brake intervention when the bumper is detected, with no longitudinal dynamic

perturbation and same constant speed (Fig. 3.15)

0 1 2 3 4 5 6 7 8
Time [s]

5

5.5

6

6.5

7

7.5

8

8.5

9

V
eh
ic
le

S
p
ee
d
[k
m
/h

]

Passive
Active Braking Intervention

Figure 3.15 Speed-Bump maneuver: vehicle speed for passive and active configurations

• brake torque control is able to provide a total oscillations rejection on the engaged

shaft (Fig. 3.16)

• brake torque control is able to provide a partial oscillations rejection on the prese-

lected shaft (Fig. 3.17)

• brake torque and not-engaged K2 clutch slip control is able to provide a global

oscillations rejection inside the whole transmission (Fig. 3.18)

Finally, the simulation results obtained with the Tip-Out and Speed-Bump maneu-

vers have shown the efficacy of a combined engine and brake torque control on the

oscillations reduction between rotational components of engaged shaft, preselected

shaft and differential gears. Furthermore, a feasible control of K2 clutch slip coupled

with the brake intervention can improve the noises rejection level on the preselected

shaft. The following section will discuss the low level control logic to obtain the desired

noise reduction level inside the powertrain.
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Figure 3.16 Speed-Bump maneuver: ∆ϑ on the engaged shaft for active and passive configura-
tions; I: First gears - II: Second gears - FD: Final Drive gears - Diff: Differential gears
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Figure 3.17 Speed-Bump maneuver: ∆ϑ on the preselected shaft for active and passive configura-
tions; I: First gears - II: Second gears - FD: Final Drive gears

3.5 Braking System Intervention: Low Level Logic

When the NVH excitation is detected and brake torque TB ,r eq with engine compensation

are calculated, the brake and powertrain systems must be actuated to provide the desired

torsional preload effect. Three different actuation interventions can be used for the noise

reduction control strategy:
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Figure 3.18 Speed-Bump maneuver: ∆ϑ for brake intervention with and without K2 clutch slip
control; I: First gears - II: Second gears - FD: Final Drive gears

• ABS/ESC actuation for brake caliper pressure control in order to obtain a brake

torque on the driven wheel axle: brake torque intervention must be the same

between right and left wheels for avoiding an undesired turning effect.

• actuation of the clutch related to the preselected shaft in order to constraint it from

engine side and let be the brake intervention as effective as on the engaged shaft.

• intervention of engine control unit to modify the engine torque in order to com-

pensate the speed reduction due to the previous two interventions.

The second intervention aims to generate a torsional preload on the preselected

shaft since it introduces an alternative power flow from the engine to the wheels. The

first two interventions represent dissipative contributions which require an increment

of input power from the engine side (third intervention) thus restoring the longitudinal

dynamic equilibrium reached before the control action.

The low level controller needs the intervention of three independent actuators by means

the engine, the transmission (for clutch axial position) and the braking systems. Among

these systems, the last one is the most critical from the point of view of a continuous

control logic design; the hardware already mounted on conventional passenger cars

allows an easy and fast implementation of clutch position and engine torque controls

but the regulation of the wheel braking torque is not so automatic even because the

ABS/ESC systems are designed to be active only during emergency situations. Moreover,

ABS/ESC controls is not intended to have a desired brake torque but to achieve the max

wheel slip ratio to reduce the braking distance: this task doesn’t require a continuous
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control of brake caliper pressure (and so brake torque), thus limiting the hydraulic hard-

ware to on-off digital valves for regulating oil flow rate inside calipers. The following

sections propose a method to characterize the dynamic behavior of a normal production

hydraulic brake system through experiments on a hardware-in-the-loop (HIL) test bench

for both modeling and control tasks. The activity is relative to analyze, model and control

ABS/ESC digital valves, aiming at obtaining reference tracking and disturbance-rejection

performance similar to that achievable when using pressure proportional valves.

The first section is focused on the development of a mathematical model which emulates

the pressure dynamics inside brake caliper when ABS/ESC inlet valves, outlet valves and

motor-pump are controlled by a digital or PWM signal. The model takes into account

some inherent non-linearities of these systems, e.g. the variation of fluid bulk modulus

with pressure while inlet and outlet valves together with the relay box are modeled as

second order systems with variable gains. The HIL test rig is used for both parameters

identification and model validation, which will be used for control strategy development.

The last section deals with the design of a non-linear brake caliper pressure controller for

a conventional ABS/ESC system and the experimental validation of its tracking perfor-

mances. The control strategy is based on a Feedforward (FF) and a Proportional Integral

(PI) controller through a Pulse Width Modulation (PWM) with constant frequency and

variable Duty Cycle (DC).

3.5.1 Braking Test Rig

The HIL test rig shown in Fig. 3.19 includes a hydraulic braking system composed of a

tandem master cylinder (TMC), a customized ABS/ESC hydraulic unit and four brake

calipers located on non-rotating disks. A hydraulic power unit using a double effect

cylinder with flow proportional valve emulates the brake pedal action. The ECU of

ABS/ESC system is customized to get a direct command to the motor-pump and to each

single valve by means of digital control signals. Valves and motor-pump solenoids are

powered by a 12 V DC line through solid state relays, one for each of the twelve valves

and one for the motor-pump. Relays control signals can be equal to 5 V (relay ’On’) or 0

V (relay ’Off’) according to TTL logic levels.

The bench is equipped with a set of sensors necessary for monitoring and control:

• 8 pressure sensors: one for each brake caliper (4), one for each TMC chamber (2)

and one for each brake pedal cylinder chamber (2)

• 1 potentiometer for double-effect hydraulic cylinder rod position.
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Figure 3.19 HIL Test Rig 1-TMC 2-customized ESC 3-Brake caliper 4-Brake disk 5-oil tank 6-Data
Acquisition System 7-Relay Box

A model of the hydraulic system was developed in Matlab®/Simulink® while a real

time system manages the data acquisition process and the deployment of the system

model together with its control logic. In particular, experiments are handled by using:

• NI Labview® Real-Time for data acquisition and system identification processes

• NI Veristand® NI for control and hardware-in-the-loop tasks

The real time system enables to send control signals to each valve and motor-pump

by using a digital board together with the relays-box.

In this configuration, a model of the system based on experimental data has been realized

in order to evaluate its accuracy with respect to the real system and/or to design suitable

control logic.

3.5.2 Hydraulic system model

The simplified scheme of hydraulic circuit composed by the TMC, inlet and outlet valves

and front/rear brake calipers is represented in Fig. 3.20. The hydraulic connections
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between the two TMC chambers with the four calipers is typical of a ’X’ scheme, where

the first chamber delivers oil to Front Left (FL) and Rear Right (RR) calipers meanwhile

the second chamber delivers oil to Front Right (FR) and Rear Left (RL) calipers. Since the

paper is concentrated on the pressure dynamics inside one brake caliper (i.e. RR brake

caliper), the FR-RL hydraulic behavior is represented by an equivalent hydraulic circuit.
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Figure 3.20 Representation of ABS/ESC hydraulic circuit with input (red) and output (green)

The TMC axial dynamics can be described as a 2 d.o.f (displacements x1 and x2)

system but since x1 represents an input, a unique equation is sufficient to describe the

motion of the system:

m2ẍ2 +F f 2sg nẋ2 −b1(ẋ1 − ẋ2)+b2ẋ2 −k1(x1 −x2)+k2x2 = (p1 −p2)S (3.4)

where ki is the stiffness of the ith spring, mi the mass of ith element, bi the oil viscous

damping coefficient of the ith chamber, F f 2 the Coulomb friction coefficient, S the

hydraulic cylinder surface and pi the pressure inside the ith chamber of TMC.

The spring hydraulic accumulator is modeled as a 1 d.o.f (piston displacement xa)

dynamic system:

ma ẍa +ba ẋa +F f a si g nẋa +ka xa = paSa (3.5)

where ka ,ma ,ba ,F f a ,Sa and pa are respectively the stiffness, mass,viscous damping

coefficient, Coulomb friction coefficient, cylinder surface and oil pressure in the spring

accumulator.
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The two ports of the TMC and each valve orifice can be considered as hydraulic

resistances, so flow rates Q can be calculated respectively as :



QIn = cq,In AIn

√
2|p1−pb |

ρ sg n(p1 −pb)

QOut = cq,Out AOut

√
2|pb−pa |

ρ sg n(pb −pa)

QF L = cq,F L AF L

√
2|p1−pF L |

ρ sg n(p1 −pF L)

Qeq =Q2 = cq,eq Aeq

√
2|p2−peq |

ρ
sg n(p2 −peq )

Q1 = QIn +QF L −Qp

(3.6)

where Qi is the flow rate through the ith element and Ai the flow area of the ith

component (see Fig. 3.20). The flow coefficient cq,i depends on the pressure drop ∆p

across the hydraulic resistance:

cq,i = cq,max tanh(2
λ

λcr
) (3.7)

λ= hd

ν

√
2|∆p|
ρ

(3.8)

where hd is the hydraulic diameter, ν the kinematic viscosity, ρ the oil density, cq,max

the maximum value of the flow coefficient at which it asymptotically approaches for

λ>>λcr ; λcr is the critical flow number at which transition from laminar to turbulent

flows occurs.

The 2 TMC chambers are modeled as variable volume hydraulic capacities, while

brake calipers as fixed volume capacities by means of the following equation:

d pi

d t
= βi

Vi
(±Qi − V̇i ) (3.9)

where i = 1,2,F L,eq and flow rate is positive when it flows inside the volume Vi . β is

the bulk modulus of hydraulic fluid and it is considered a function of pressure pi :

βi =βn

1+α( patm
patm+pi

)1/n

1+α (patm )1/n

n(patm+pi )
n+1

n
βn

(3.10)

whereα is the relative gas content at atmospheric pressure patm , βn is the pure liquid

bulk modulus and n is the gas-specific heat ratio.
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Similarly, the dynamics of brake caliper pressure pb and spring accumulator pressure

pa are respectively evaluated by :

d pb

d t
= βb

Vb
(QIn −QOut − V̇b) (3.11)

d pa

d t
= βa

Va
(QOut −Qp − V̇a) (3.12)

The TMC chambers may change their volumes due to the displacements of the two

pistons:

V2 =V20 −Sx2 (3.13)

V1 =V10 +S(x2 −x1) (3.14)

with V10 and V20 respectively the initial value of the first and second chamber of the TMC

when no forces are applied.

The variation of volumes VF L,Veq and Vb , are neglected, i.e.: V̇F L ≈ 0,V̇eq ≈ 0,V̇b ≈ 0

(fixed volume hydraulic chambers).

Volumes Veq , VF L and flow areas Aeq , AF L are related to Vb and AIn by the following

equations:


VF L = qF LVb

Veq = VF L +Vb

AF L = AIn

Aeq = 2AIn

(3.15)

where coefficient qF L represents the proportional relation between front hydraulic

cylinders volume and rear one.

The flow rate generated by the pump Qp is influenced by the spring accumulator

pressure pa since when the intake pressure is too low the motor-pump is unable to

deliver any flow rate:

Qp =Qss[1−e−3pa /pth ] (3.16)

where Qss is the steady-state value of flow rate delivered by motor-pump and pth

represents the pressure threshold at which the flow rate drops to zero.

Finally, inlet and outlet valves dynamics are modeled with a cascade series of time

delays and a second-order transfer functions with non constant static gain which is a

function of PWM DC of input signal:
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Ai (s)

U (s)
= Gs

s2

σ2
n
+ 2ζs

σn
+1

(3.17)

where s is the Laplace variable, Ai the effective inlet/outlet flow area, U is the input

solenoids valve (Voltage), Gs is the static gain, σn is the system natural frequency and ζ

is its damping ratio.

The model inputs for the model are the position of TMC rod x1 (which represents the

brake pedal position in a common passenger car) together with the command signal for

inlet, outlet valves and motor-pump while the outputs are the pressures of each brake

calipers, the pressures of the two TMC chambers and x2.

Model Parameters identification

All the parameters introduced by equations 3.3- 3.17 and reported in table 3.1 have been

either measured, extracted from technical specifications or experimentally estimated.

Masses m2, ma spring stiffness k2,ka and cylinder surfaces S, Sa have been measured

from the technical drawings. Oil density ρ and kinematic viscosity ν have been derived

from DOT 4 brake fluid properties; The parameters characterizing the oil flow through an

orifice like maximum flow coefficient cq,max , and critical flow number λcr are reported

in table 3.1. These coefficients are supposed constant and not subjected to parameter

identification.

The Bulk modulus variations are modeled with the non-linear relation described

by Eq. 3.10. βn and α are identified in order to describe the non-linear dependence by

oil pressure of bulk modulus which heavily influences pressure dynamics: in Fig. 3.21

the effect of a step change of the inlet control signal, from fully closed to fully open,

considering a null initial brake pressure is shown. In the meanwhile TMC rods moves

from the initial position to a final steady state position. Different values of βn and α are

tested in simulation in order to find optimal values to match the experimental trend

(reported in table 3.1). All experimental pressure trends measured by sensors have been

filtered with a digital zero-phase filter characterized by a cut-off frequency of 50 Hz in

order to better highlight the comparison with simulation results where high frequency

contents are not modeled.

Eq. 3.9 states that pressure derivative depends on volume Vi , and on total flow rate Qi

entering or exiting the volume Vi . Effective values of valves flow area Ai and chambers

volume Vi 0, Vi together with unknown damping coefficients b2,ba and friction forces

F f 2,F f a have been experimentally identified through the following tests: the starting
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Table 3.1 Model parameters for break pressure dynamic non-linear model

Symbol Description Value

AIn Inlet valve flow Area 0.29 mm2

AOut Outlet valve flow Area 0.59 mm2

b1,b2 TMC viscous damping coefficient 100 N ms/r ad

ba Accumulator damping coefficient 85 N ms/r ad

cq,max Max Flow Coefficient 0.7

F f 2 TMC Friction Force 14 N

F f a Accumulator Friction Force 0 N

k1 First Spring Stiffness 2222.2 N /m

k2 Second Spring Stiffness 4000 N /m

ka Accumulator Spring Stiffness 35 N /m

m2 Second TMC Mass 40 g

ma Accumulator Mass 10 g

n Gas specific heat ratio 1.4

pth Pressure threshold for Pump Flow Rate 0.6 bar

Qss Pump Flow Rate 0.26 l/mi n

S TMC Thrust Surface 5.07 cm2

Sa Accumulator Thrust Surface 2.54 cm2

V10 First TMC Volume Chamber 18.8 cm3

V20 Second TMC Volume Chamber 12.5 cm3

Vb Brake Volume 338.9 cm3

α Relative gas content at atmospheric pressure 0.02

βn Pure Liquid Bulk Modulus 27000 bar

ζ Damping ratio of electro-mechanics valve 35 %

λcr critical flow number 100

ρ Oil Density 1070 kg /m3

σn Natural frequency of electro-mechanics valve 251 r ad/s

ν Kinematic viscosity 100e−6 kg /(ms)

steady-state condition is when the TMC rod is pushed until TMC pressures p1, p2 reach

a desired initial values (i.e. 130 bar) with inlet valves completely open and outlet valves

completely closed (which represents their normal configuration). From this initial

condition, the RR inlet valve is closed and the RR outlet valve is opened together with the
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Figure 3.21 Influence of Bulk modulus on brake pressure trend: experimental (solid black line) vs
simulation with constant β (dotted gray line) and with non-linear β (dashed gray line)

activation of the motor-pump, thus emptying the RR brake caliper (falling phase). Once

all pressures have stabilized, the outlet valve is closed with the motor-pump switched off

and the inlet valve is opened, thus filling the RR brake caliper (raising phase).

The ’raising phase’ is used to identified volumes Vb , VF L, Veq of each brake caliper,

initial TMC volumes V01, V02 and flow areas AIn , AF L , Aeq . By a curve-fitting procedure

between the time history of simulated pressures p1, p2, peq , pF L and pb and their

experimental values, it has been possible to identify the parameters Vb , qF L, AIn , V01

and V02. Fig. 3.22 shows the comparison between experimental data and simulation

results considering the best combination of unknown parameters. Volumes Vb and V0i

influence the steady-state values at which all pressures tend after an initial transient

phase which is mainly characterized by AIn .

Effective values of unknown damping coefficient b2 and friction force F f 2 cannot be

easily identified from experimental data since position x2 is not measured. Reasonable

values are chosen for simulations and a post-processing analysis of their influence on

pressure dynamics is reported in Fig. 3.23 where it is possible to understand how b2

influences the transient behavior while F f 2 affects the steady-state value of TMC and

brake pressures. More specifically, an increase of b2 causes a larger transient pressure

difference between the two TMC chambers and a slower response of inlet valve without

affecting steady-state behavior. An increase of F f 2 provokes a steady-state pressure

difference between the two TMC chambers without modifying considerably the valve

transient phase.
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Figure 3.23 Sensitivity analysis on b2 and F f 2: 1= 1stTMC chamber, 2= 2nd TMC chamber, b=
Rear Right caliper, n = nominal condition

The ’falling phase’ is used to identify remaining parameters characterizing the pres-

sure dynamics inside the discharge hydraulic branch composed by the outlet valve,

the spring accumulator and the motor-pump. Qss , pth and AOut have been identified

through a curve fitting procedure between experimental and simulated pressures as

shown in Fig. 3.24:

Qss is strictly related to the TMC pressure gradients while the flow area AOut influ-

ences both brake and accumulator pressure gradients. After 0.3 seconds, the flow rate

delivered by the motor-pump decrease from Qss to 0 because accumulator pressure is
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Figure 3.24 ’Falling phase’: 1= 1st TMC chamber, 2= 2nd TMC chamber, b= Rear Right caliper, a=
accumulator, exp=experimental, sim= simulation

too low: it is important to underline the effect of one way valve inside the discharge

branch which prevents oil to flow-back to the brake caliper.

Inlet and outlet valves can be controlled by applying a digital ON/OFF voltage com-

mand to their solenoids through the relay box. An overall analysis about valves dynamical

behavior has been carried out by applying a PWM signal to their solenoids in order to

identify transient and steady state characteristics.

Fig. 3.25 refers to the non-linear behavior of inlet valve when a PWM voltage com-

mand with frequency of 900 Hz and different Duty Cycle (DC) is applied to its solenoid.
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Figure 3.25 Effect of PWM Duty Cycle on pressure trend in the brake caliper: the inlet valve is
controlled via a constant frequency and variable Duty Cycle
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It is possible to observe a clear dependence of the pressure gradient on the Duty

Cycle. This behavior represents the transformation from the PWM digital command

to the effective flow area Ai through the relay box and electro-valves. This electro-

mechanical system is characterized by saturation in both directions: for a DC lower

than 30% the valve behaves as a fully open one and for DC greater than 55% the valve

works as a fully closed one. Based on this consideration, inlet and outlet valves can

be modeled with second-order transfer functions with a non constant static gain as

indicated in Eq. 3.17. The dynamic parameters σn and ζ are roughly derived through

a curve-fitting procedure between the simulated pressure trend and the experimental

results for a specific DC, as indicated in Fig. 3.26. The figure also makes clear the effect

of the PWM frequency on the pressure ripple: while the outlet valve PWM frequency of

50 Hz is close to its natural frequency amplifying pressure oscillations, the high value of

inlet valve modulation frequency of 900 Hz is very well attenuated due to the mechanical

low pass filtering effect involved by the valve dynamics.
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Figure 3.26 Raising and falling phases by applying a PWM signal of 40% DC and modulation
frequency of 900 Hz to the inlet valve and a PWM signal of 25% DC on 50 Hz to the outlet valve

The varibale static gain Gs , which takes into accounts all the unmodeled non-

linearities, e.g. introduced by the relay box and electro-mechanics behavior of valves,

is identified from experimental curve-fitting all over the effective DC range (e.g. from

30% to 55% for the inlet valve) finally getting the non-linear static behavior between DC

and effective flow area Ai shown in Fig. 3.27. The inlet valve gain shows a monotonically

decreasing trend which has a clear physical meaning since it states that when Duty Cycle

increases the inlet valve behaves as closed valve. On the other hand, the outlet vale gain

is characterized by a increasing trend followed, after the maximum, by a decreasing trend

and thus showing a different behavior from inlet valve, also because of the motor-pump

presence.
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Figure 3.27 Static Gain Gs for both inlet (left) and outlet (right) valve

Model Validation

This last section presents the experimental validation of the non-linear model by apply-

ing the same time-histories used during specific experimental test in order to compare

simulated brake pressure behavior with the pressure measured by sensors. Two different

time-histories are chosen to be as close as possible to real operating conditions of vehicle

braking system:

• Normal production ABS emergency wheel anti-lock control strategy

• PWM signal with variable Duty Cycle for both inlet and outlet valves

In the first case, both test rig and non-linear model receive the same input coming

from a real emergency braking maneuver where the system is activated in order to avoid

wheel locking. An example of valves activation is reported in Fig. 3.28 (activation of

outlet valve always comes together with motor-pump to empty brake calipers) together

with the comparison of brake caliper pressures obtained during simulation and from test

rig sensors. A proper tuning of the inlet valve static gain, focused on low pressures, has

led to a good estimation in that range: the RMS value of the error between simulation

and experimental data in the time range shown in Fig. 3.28 is 1.5 bar.

A more specific test is elaborated for evaluating valves dynamic response to a PWM

signal with a constant frequency and variable Duty Cycle. The time history is chosen in

order to cover the whole range where Duty Cycle is effective on the pressure gradient as

described in the previous section. The simulation has been carried out by adding to both

valves input commands a time delay equal to the sampling period (0.02 s) used during
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Figure 3.28 Experimental validation of non-linear model during ABS emergency braking under
extremely low road friction conditions: b= Rear Right caliper, exp=experimental, sim= simulation

experimental test. Contrary to the other tests, where the sampling frequency is 10 kHz,

in this case (frequency of 50 Hz) the time delay due to the sampling period cannot be

neglected. Fig. 3.29 reports the experimental validation showing a good match between

experimental and simulated brake pressure (RMS error is 3.5 bar), especially during the

activation of inlet valve.

The RMS value of the error between experimental and simulation data is lower in the

case of ABS emergency test than the PWM signal test due to a lower mean value (10 bar

and 35 bar respectively).
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Rear Right caliper, exp=experimental, sim= simulation
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3.5.3 Pressure control design

This section deals with the design of a brake caliper pressure controller for a conven-

tional ABS/ESC system and the experimental validation of its tracking performances.

The analysis of the hydraulic plant, carried out in previous section, is here utilized to

develop the control algorithm for ABS digital electro-hydraulic valves.

The control strategy is based on a Feedforward (FF) and a Proportional Integral (PI) con-

troller through a Pulse Width Modulation (PWM) with constant frequency and variable

Duty Cycle (DC). FF contribution requires modeling the nonlinear open-loop system

behavior which has been experimentally identified and described through 2-D maps: the

inputs are the DC applied to the electro-valves and the pressure drop across their orifice,

while the output is the pressure gradient in the brake caliper. These maps, obtained for

inlet and outlet valves, are used to set the FF term. Finally a PI controller is designed to

reject external disturbances and compensate for model uncertainties.

The same brake system test rig, previously described, is used for building inverse maps

and validating the proposed control logic. Different reference pressure profiles are used

to experimentally verify the control tracking performances.

Valves Dynamics Behavior

Brake pressure inside calipers can be modulated through the activation of Inlet and

Outlet valves. A generic scheme for the ’raising’ phase (when brake pressure pb increases)

controlled by the Inlet valve and the ’falling phase’ (when brake pressure pb decreases)

managed by the presence of Outlet valve and motor-pump is shown in Fig. 3.30.

From Eq. 3.6 and 3.12 brake pressure gradient ṗb is described by the following generic

equation:

ṗb = β

Vb
(QIn −QOut ) (3.18)

where Vb is the volume of brake caliper, β is the oil bulk modulus and QIn ,QOut are

the flow rates respectively through Inlet and Outlet valves that are expressed by:

 QIn = cq,In AIn

√
2|pT −pb |

ρ
sg n(pT −pb)

QOut = cq,Out AOut

√
2|pb−pa |

ρ
sg n(pb −pa)

(3.19)

where cq is the flow coefficient, ρ the oil density, pT the pressure inside one of the

TMC chambers, pa the spring accumulator pressure and AIn , AOut Inlet and Outlet
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Figure 3.30 Hydraulic scheme for the raising and falling phase in a brake caliper including
Inlet/Outlet valves, Motor-pump and Spring accumulator.

nominal flow areas. Under the hypothesis that the two valves cannot be simultaneously

open, when Inlet valve is activated (raising phase) QOut is null while when Outlet valve is

open (falling phase) QIn is equal to zero.

From eqs. (3.18) and (3.19), it is evident that the brake pressure depends on flow

areas and on pressure drop across the two valves.

Inlet valve behavior is described considering as inputs:

• Inlet pressure drop ∆p In = pT −pb

• flow area AIn

and as output:

• brake calipers pressure gradient ṗb

Also Outlet valve can be represented considering as inputs:

• Outlet pressure drop ∆pOut = pb −pa

• flow area AOut

and as output:
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• brake calipers pressure gradient ṗb

In this last case, the spring accumulator guarantees a reference pressure for the suction

port of the motor-pump. Accumulator pressure pa is not measured by a sensor but, as

highlighted in the model simulation results, it is reasonable to approximate the pressure

drop across the Outlet valve with the brake pressure pb alone.

Hence a possible strategy to control the brake pressure gradient is to modulate the valve

command thus regulating their flow areas. Since electrovalves are designed to receive a

digital command, the generation of a PWM signal as input voltage is a solution to modify

in a continuous way their flow area. Meanwhile, pressure drops across valves can be

considered as an external disturbances from the control point of view, that are measured

on the test bench through sensors placed in the TMC and inside each brake calipers.

A PWM signal is described by a frequency and a Duty Cycle that is the percentage of

a modulation period during which the signal is active. By fixing the PWM frequency,

the DC is used to change the effective flow area and so to regulate the flow rate going

inside/outside the brake caliper thus controlling brake pressure.

Valves characterization

The test rig used for valves characterization is shown in Fig. 3.19, where a normal pro-

duction hydraulic brake system is controlled by a customized ABS/ESC electronic unit

to command directly Inlet and Outlet electrovalves together with the motor-pump. A

PWM signal is chosen to command Inlet and Outlet valves meanwhile the motor-pump

is activated with an On-Off logic. Calipers brake pressure and TMC pressures are here

considered measurable and available feedback for the proposed pressure controller.

A more refined analysis of the valves can be achieved through a semi-empirical model by

involving experimental maps to describe their dynamics. An experimental test is carried

out to analyze valves response to a PWM signal: starting from a steady-state condition

where all valves are in their normal configuration (normally open for Inlet and normally

close for Outlet) and brake pressure pb is equal to TMC pressures, the brake caliper it is

emptied by applying a PWM signal with a certain frequency and DC to the Outlet valve

(together with the activation of the motor-pump) while the Inlet valve is kept closed;

when brake pressure pb falls below a specific software selectable threshold, i.e. 5 bar,

the Inlet valve is excited with a PWM signal in order to increase brake pressure while

Outlet valve is closed and motor-pump is switched off. This cycle of ’falling’ and ’raising’

phases is repeated when the brake pressure has reached again the TMC pressure.

An example of a data acquisition is presented in Fig. 3.31 where different duty cycles are
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Figure 3.31 Data Acquisition with a sample time of 0.1 ms of TMC (pT ) and Brake (pb) pressures

imposed for Inlet (30%) and Outlet (55%) valves with the same PWM frequency of 900

Hz.

The figure also shows how valves activation influences the brake and TMC pressures

since their variation has a direct effect on the flow rate (and so on the gradient of

brake pressure). The correlation between PWM command and valves behavior will be

fully described by experimental maps obtained by choosing a suitable value of PWM

frequency and a DC range within which brake pressure gradient is controllable.

PWM Frequency selection

Starting from a preliminary test, a PWM command with a constant duty cycle and

different frequencies (range between 50 and 900 Hz) is applied to both valves in order

to choose a suitable frequency for the control strategy. By exciting the Inlet valve with

a PWM command characterized by a DC of 30% and a frequency of 100 Hz, lower with

respect to Fig. 3.31, a different behavior can be observed as shown in Fig. 3.32: a PWM

frequency smaller than 900 Hz leads to significant pressure oscillations.

PWM frequency directly influences brake pressure ripples so it can be selected in

order to reduce oscillations and to improve pressure controllability. The Root Mean

Square (RMS) of the difference between raw and filtered signal (zero-phase digital filter

with a cut-off frequency of 15 Hz) is used to correlate the ripple pressure to the PWM

frequency:

PRMS =
√∑n

i=1(pbi −pb f i )2

n
(3.20)
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Figure 3.32 PWM signal with different frequencies for both Inlet (DC=30%) and Outlet Valves
(DC=70%), pb = Brake Pressure

where Pbi is the raw pressure and Pb f i its value filtered at time ti . Fig. 3.33 shows that

the pressure ripple for Inlet valve decreases with the PWM frequency and after 500 Hz

this trend is settled. This means that a high frequency could lead to a better solution in

terms of controllability by cutting off the PWM frequency content which is a disturbance

for pressure control.

Outlet valve shows a decreasing trend similar to the Inlet one, with a noticeable difference

in terms of RMS amplitude range: it is less influenced by PWM modulation frequency

than Inlet valve, as visible in Fig. 3.33. This behavior can be explained considering that

the pressure oscillations in the outlet branch are influenced both by PWM frequency

content and by the motor-pump which is not present in the inlet branch. Consequently

the motor-pump can be considered as a flow-rate regulator which modifies the pressure

oscillations caused by the PWM command.

Finally PWM frequencies of 900 Hz and 50 Hz are chosen for Inlet and Outlet valves

respectively, aiming at obtaining the minimum pressure ripple according to Fig. 3.33.

Since the brake pressure dynamics is minimally affected by the outlet valve PWM fre-

quency, the selection of this parameter for the outlet valve is aimed at obtaining the max

DC range which is effective during pressure control as it will be seen in next section.

DC range: Open-loop Maps

The relation between DC and pressure gradient is not linear and it is limited within

a certain range beyond which the duty cycle no longer affects the pressure dynamics.

A first step refers to the search for a duty cycle range to achieve a good sensitivity in

terms of controllability within minimum and maximum DC. A gradual variation of

the duty cycle is applied to each valve (by keeping PWM frequency as indicated in the



3.5 Braking System Intervention: Low Level Logic 165

0 50 100 200 300 400 500 600 700 800 900 1.000
0

2

4

6

8

PWM Frequency [Hz]

P R
M

S [
ba

r]

Frequency Influence

 

 

P
RMS

 Inlet

P
RMS

 Outlet

Figure 3.33 PWM frequency influence on brake pressure ripple for both Inlet (blue) and Outlet
(green) valves

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

Time [s]

p
b
[b
ar
]

 

 

30%
44%
46%
50%
55%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

200

400

600

Time [s]

ṗ
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Figure 3.34 Brake pressure (up) and its gradient (down) vs time for different values of DC (Inlet
valve)

previous section) in order to build up the open-loop maps describing the experimental

relationship between input (DC) and output (ṗb).

By considering the Inlet valve (normally open), the pressure gradient decreases with

increasing DC until the valve is not able to further increase pressure because the opening

time is too short, as it happens when a DC of 55% is imposed with a nominal frequency

of 900 Hz (Fig. 3.34). If DC is larger than 55%, pressure cannot be increased up to TMC

pressure thus representing maximum limit for Inlet valve. DC minimum limit can be

evaluated from the same experimental data when the valve behaves as a fully open one

(a lower DC is ineffective), thus getting a complete information about valves open-loop

behavior.

Fig. 3.34 indicates that for a fixed DC, pressure gradient is not constant since it

depends also on the pressure drop across the valve ∆p In = pT −pb , which is measurable
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ṗ
b
[b
a
r/
s]

 

 

15%
25%
30%
42%
44%
46%
50%
55%

Figure 3.35 Inlet Open-Loop map: pressure gradient vs pressure drop across Inlet valve for
different value of DC

on the test rig. Therefore, an experimental relationship between pressure gradient ṗb ,

pressure drop ∆p In and DC is obtained, which constitutes the open-loop map of Inlet

valve (Fig. 3.35).

The ’bell’ shape in Fig. 3.35 can be divided into three sections: the increasing section,

the peak point and decreasing section. The increasing section and peak point show an

almost inversely proportional trend with respect the DC: the pressure gradient in brake

caliper decreases consequently to a reduction of the inlet valve effective flow area due to

an increase of DC.

The behavior of the system corresponding to the decreasing section cannot be explained

in the same way, due to the saturation limit imposed by the TMC pressure (without this

limit, the decreasing section would not be present): it is not intuitive to figure out how

the DC influences the pressure gradient. It is of interest noting that in the DC operative

range there exists a progressive modulation of pressure gradient with respect to DC, thus

becoming a feasible controllable variable.

Figures 3.34 and 3.35 clearly show the upper and lower limits of duty cycle range for the

Inlet valve; under the lower limit, a packing effect of the curves occurs: pressure gradient

is no more influenced by DC (the same behavior of a fully open valve) and a transition

occurs between the active (where a variation of DC provokes a variation of pressure

gradient) and the passive region (where pressure gradient is not influenced anymore by

the DC): this transition modifies the ’bell’ shape, causing an intersection of the curves in

the decreasing section. In Fig. 3.35 can be seen that DC of 15%, 25% and 30% have the

same bell shape meanwhile a DC of 42% has a shape which is a sort of composition of

30% and 44% DC curves.

Similarly, the Outlet open-loop map is built selecting the appropriate duty cycle range

between upper and lower limits, considering that the outlet valve is normally closed
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Figure 3.36 Outlet Open-Loop map: pressure gradient vs pressure drop across Outlet valve for
different value of DC

(when DC is too low the valve behaves as a fully close one) and that the pressure drop

across the valve,∆pOut = pb−pa , is approximated with the brake pressure pb (neglecting

the influence of spring accumulator). The open-loop map obtained for the Outlet valve

is reported in Fig. 3.36.

Control logic design

A non-linear FeedForward (FF) plus a Proportional Integral (PI) controller is designed

for continuously tracking a reference pressure which can be generated, for example, by

the high-level control logic aiming at a transmission noise reduction. In order to design

the controller structure and to figure out its performance enhancement, a linearization

around a nominal equilibrium point is required. Equilibrium points can be found just

starting from dynamic equations that describe brake pressure behavior for both inlet

and outlet valves in Eq. 3.18, 3.19:

ṗb,In(pb , AIn , pT ) = β

Vb
cq AIn(DC In ,∆p In)

√
2∆p In

ρ
(3.21)

ṗb,Out (pb , AOut ) =− β

Vb
cq AOut (DCOut , pb)

√
2pb

ρ
(3.22)

where AIn and AOut depends on DC and pressure drop across each valve. Steady-state

occurs when ṗb = 0: a trivial solution is obtained when pT,n = pb,n for Inlet hydraulic

branch and pb,n = 0 for Outlet hydraulic branch.

A more interesting steady-state condition is reached when AIn,n = 0 (DCn = 100%)
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∀∆p In,n = (pT −pb)n for Inlet valve and AOutlet ,n = 0 (DCn = 0%) ∀pb,n for Outlet valve.

This means that any value of brake pressure pb represents a stable configuration when

AOut ,n = 0 and AIn,n = 0.

Since pressure gradient in equations Eq. 3.21 and Eq. 3.22 is a function of two variables

(DC and ∆p ), the following linear relations are obtained respectively for Inlet and Outlet

hydraulic branches, by linearizing around nominal equilibrium points:

ṗb,In = ∂ṗb,In

∂DC In

∣∣∣∣
n

(DC In −DC In,n)+ ∂ṗb,In

∂∆p In

∣∣∣∣
n

(∆p In −∆p In,n) =

= kDC ,In(DC In −DC In,n)+k∆,In(∆p In −∆p In,n)

(3.23)

ṗb,Out =− ∂ṗb,Out

∂DCOut

∣∣∣∣
n

(DCOut −DCOut ,n)+ ∂ṗb,Out

∂pb

∣∣∣∣
n

(pb −pb,n) =

= kDC ,Out (DCOut −DCOut ,n)+k∆,Out (pb −pb,n)

(3.24)

Eq. 3.23 and 3.24 state that brake pressure gradient is influenced by DC of valve input

signal and pressure drop across valves through four coefficients kDC ,In , kDC ,Out , k∆,In

and k∆,Out . These two relations, neglecting the constant terms, can be grouped in a

unique general formulation for both inlet and outlet valves:

ṗb = kDC DC +k∆∆p = kDC DC +k∆pT −k∆pb (3.25)

where DC = DC In for inlet valve, DC =−DCOut , k∆pT = 0 for outlet valve and kDC ,k∆
are linearization coefficients related to nominal equilibrium points.

By applying Laplace transform to Eq. 3.25, it is possible to derive the transfer function

between output pb and input (DC ,pT ):

pb(s) = kDC

s +k∆
DC (s)+ k∆

s +k∆
pT (s) (3.26)

where s is the Laplace variable and DC is the controlled input pT represents a measurable

disturbance. The poles of transfer function (3.26) depend on coefficient k∆ which states

the relation between ṗb and the pressure drop across each valve and it is expressed by

the gradient of open-loop maps when DC is fixed to a constant value. For both inlet and

outlet valves k∆ changes from positive (stability region) to negative (instability region)

values: by looking the Inlet open-loop map (Fig. 3.35), for high pressure drops (right side

of the map with a negative k∆), an increase in pressure causes an increase of pressure

gradient, making the linearized system unstable. On the other hand, for low pressure



3.5 Braking System Intervention: Low Level Logic 169

drops (left side of the map with a positive k∆), the system shows a stable behavior.

The Control logic used to stabilize the system and to track the reference brake pressure

is composed of two different contributions:

• a non-linear FeedForward (FF) part which is based on dynamics system inversion

of the open-loop behavior;

• a Proportional-Integrative (PI) part which aims to reject noise and to compensate

for model parameters uncertainties not considered in the FF contribution.

Feed Forward Controller A FF contribution is built by considering the dynamics of

brake pressure gradient: it works to track the gradient of the reference pressure. Theoret-

ically speaking, this is obtained inverting Eq. 3.25:

DCF F = ṗr −k∆(pT −pb)

kDC
(3.27)

where ṗr is the gradient of the reference brake pressure. Since gains k∆ and kDC are

not constant in the real system, dynamics inversion can be easily achieved by inverting

experimental open loop maps ṗ = f (DC ,∆p) to inverse maps DC = f (ṗ,∆p) through a

post-processing procedure consisting of two phases:

1. Original maps discretization & interpolation: each pressure gradient trend in

Fig. 3.34 and Fig. 3.36 has a different x-axis (pressure drop across valves) dis-

cretization, thus requiring a suitable standardization which is obtained by fixing

a common abscissa distribution. Consequently, a linear interpolation is carried

out to create a common x-axis discretization and to fill original open-loop maps

where experimental values are not available, providing more data for the following

inversion step.

2. Maps inversion: for each pressure drop∆p there exists an experimental correlation

between pressure gradient and duty cycle: hence a simple vector inversion is

performed as shown in Fig. 3.37

Finally, Fig. 3.38 and 3.39 illustrate the inverse maps for Inlet and Outlet valves,

respectively.

It is important to highlight that DCF F is not a traditional open-loop feedforward

since inverse maps use as input feedback from the plant, the actual pressure drop across

valves measured by sensors whose effect will be clarified in the next subsection.
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Proportional Integrative Controller Open-loop maps are obtained from experimental

data, so they are obviously affected by uncertainties. In order to reduce their impact on

the control strategy and to better track the reference brake pressure, a PI controller on

the error between pb and pb,r is designed.

In order to understand the PI effects on the closed loop system shown in Fig. 3.40, a not

measurable disturbance d is added to the control output uc = DCF F +DCPI and sensor

noises nb , nT are considered respectively for both TMC and brake pressures.

Pressure gradient equation express in Eq. 3.25 is modified as:

ṗb = kDC DC +k∆pT −k∆pb +Gd (s)d (3.28)

By considering the Laplace transform of Eq. 3.28, a new transfer function of the disturbed

plant is obtained:

pb(s) = kDC

s +k∆
DC (s)+ k∆

s +k∆
pT (s)+ Gd (s)

s +k∆
d(s) (3.29)

The closed loop transfer function from pb,r to pb can be derived considering the con-

troller equations DC (s)

DC (s) = DCPI (s)+DCF F (s) = (KPr + K In

s
)e(s)+DCF F (s) (3.30)
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where e(s) = pb,r − pb −nb , KPr is the proportional gain, K In is the integral gain and

DCF F is the DC from inverse maps. Finally, the relation between the output pb(s) and

the input pb,r (s), pT (s),d(s),nb(s) is calculated by substituting Eq. 3.30 in Eq. 3.29:

pb(s)

(
1+KPr

kDC

s +k∆
+ K In

s

kDC

s +k∆

)
=

(
KPr

kDC

s +k∆
+ K In

s

kDC

s +k∆

)
pb,r (s)+

+
(

kDC

s +k∆
DCF F (s)

)
+

(
k∆

s +k∆

)
pT (s)+

(
Gd (s)

s +k∆

)
d(s)+

−
(
KPr

kDC

s +k∆
+ K In

s

kDC

s +k∆

)
nb(s)

(3.31)

Without considering the effect of DCF F (s), this equation shows how PI gains can modify

the closed loop transfer function between pb(s) and pb,r (s). On the other hand, DCF F

derives from inversion of the nominal open-loop dynamic behavior, see Eq. 3.27 hence

Laplace transform is:

DCF F (s) = s

kDC
pb,r (s)− k∆

kDC
pT (s)− k∆

kDC
nT (s)+ k∆

kDC
pb(s)+ k∆

kDC
nb(s) (3.32)

by substituting Eq. 3.32 in Eq. 3.31 it yields:

pb(s) = pb,r (s)−
(

(kDC KPr +k∆)s +kDC K In

s2 +kDC KPr s +kDC K In

)
nb(s)+

−
(

k∆s

s2 +kDC KPr s +kDC K In

)
nT (s)+

(
Gd (s)s

s2 +kDC KPr s +kDC K In

)
d(s)

(3.33)

and in terms of tracking error e(s):

e(s) =
(

k∆s − s2

s2 +2ζωn s +ω2
n

)
nb(s)+

(
k∆s

s2 +2ζωn s +ω2
n

)
nT (s)+

−
(

Gd (s)s

s2 +2ζωn s +ω2
n

)
d(s)

(3.34)

where
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ωn =
√

kDC K In

ζ= KPr

2

√
kDC

K In

(3.35)

Non-linear FF is able to improve control tracking performance ( pb (s)
pb,r (s) = 1) and reject

the measurable disturbance pT , but it is not able to reject unmeasurable disturbances

like d and sensor noises like nT ,nb . The intervention of the PI control is able to modify

the poles of transfer functions e(s)
nb (s) , e(s)

nT (s) and e(s)
d(s) thus enhancing robustness against

uncertainties and external disturbances. Considering firstly the transfer function e(s)
nT (s) ,

without a PI controller (KPr = 0 and K In = 0) only one pole in zero is present: in the

low frequency range, TMC pressure sensor noises can negatively affect error between

brake pressure and its reference value. The presence of proportional and integral gains

can change the position of close-loop poles: by considering a fixed value of k∆ and kDC ,

bode plots of e(s)
nT (s) and e(s)

nb (s) for different values of KPr and K In are compared in Fig. 3.41.

Integral gain modify the Bode plot magnitude on the low frequency region and implies

a resonance amplitude peak which can be reduced by the proportional gain. Eq. 3.34:

proportional gain influences damping factor (ζ) since integral gain is selected to modify

natural frequency (ωn).
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Figure 3.42 System response to a sequence of step changes of the reference pressure (dashed
gray)

Experimental Results

This last section shows the experimental results obtained applying the proposed con-

troller to the physical system on the braking test rig. The update rate of the controller set

during the experiments is 50 Hz. This limitation is due to the PWM frequency selected for

the outlet valve (50 Hz): the electronic instrumentation used for controlling/monitoring

the braking system is not able to generate a PWM signal with a frequency lower than the

sampling rate of the controller. System responses to three different stimulus profiles are

proposed, in order to show the accuracy and efficacy of the proposed controller.

Step response Starting from KPr = 1, K In = 10 as optimal values in Fig. 3.41, a sequence

of constant steps is imposed to the reference pressure signal in order to validate PI gains.

Fig. 3.42 shows the closed-loop system response, where reference pressure is tracked

quite precisely. In this first experiment, FF term intervenes only in the time interval

between one step and the following (ṗb,r ̸= 0), since the required pressure gradient is

null when the reference pressure is constant.

It is of interest observing that when brake pressure reaches the reference value, both

valves stay closed keeping the pressure equal to its reference value. The lower subplot of

Fig. 3.42 shows valves DC in their control operative range: the Inlet DC saturates at 60%,

since it behaves as a fully closed valve for larger DC.

Triangle wave excitation A second experiment is performed by imposing a triangle

wave signal to the reference pressure. This experiment allows evaluating the FF contri-

bution, i.e. how inverse maps work in response to a constant reference pressure gradient
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Figure 3.43 System response to a triangle wave reference pressure (dashed gray)
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Figure 3.44 System response to a trapezoidal wave reference pressure (dashed gray)

(the PI control is disabled during this test). The response is plotted in Fig. 3.43: even

though the measured pressure does not closely match the reference, due to the absence

of the linear feedback controller, its gradient closely resemble the 300 bar/s imposed by

the wave. The lower chart highlights the activation of both valves in their respective DC

operative range: DC values are obtained by entering the inverse maps with ṗ = ±300

bar/s.

Trapezoidal excitation Finally, a trapezoidal excitation allows appreciating the inter-

vention of both FF and PI terms.

Fig. 3.44 proves that the use of inverse maps integrated with a PI controller leads to

noticeable improvement in following the reference pressure. PI contribution has the

double effect of controlling brake pressure when ṗ = 0 without adopting FF inverse maps

(switching between Inlet and Outlet valve in order to keep constant the brake pressure)

and to rejects external disturbances when FF is activated (ṗ ̸= 0). The overshoot visible in
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Figure 3.45 Transmission Test Rig at Politecnico di Torino

figure could be limited by adopting a faster control loop rate; unfortunately, as previously

stated, the experimental system does not allow to further increase this parameter (the

limit is 50 Hz).

3.6 Experimental Analysis of NVH Reduction Control Strat-

egy

In previous two sections the braking intervention logic is studied and designed in order

to achieve a desired noise rejection level inside the transmission. Moreover, the braking

test rig has been introduced and used for pressure following control strategy by using

conventional ABS/ESC hydraulic components. The object of the present section is to

describe the transmission test rig and to show the efficacy of braking intervention logic

by applying a brake pressure to a caliper mounted on the output of the DCT.

3.6.1 Transmission Test Rig

The transmission test rig located at Politecnico di Torino is shown in Fig. 3.45.

Main components of the test rig are:

• Three-phase induction electric motor M1 with 37 KW
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• Three-phase induction electric motor M2 with 11 KW

• Electric Cabinet (EC) with 3 AC drives

• 6-speed Manual Transmission with max torque of 400Nm

• 6-speed Dual Clutch Transmission with max torque of 350Nm

Electric motor M1 is used to simulate the Internal Combustion Engine static behavior

meanwhile M2 emulates the vehicle load (aerodynamic and rolling resistance, the road

slope, and the vehicle inertial effects). The EC unit is composed by three different drivers

for electric power management and regeneration among electric motors and building

electric grid. The EC unit software is also able to set up and tune speed or torque control

for each electric motor. The 6-speed MT is introduced just for torque/speed range

extension between two electric motors, i.e. to amplify the torque delivered by M1. The

6-speed DCT is the mechanical system observed for the NVH analysis whose kinematic

and dynamic behavior is described in [143]. The DCT differential is locked since the test

rig is used only for longitudinal dynamics.

The test bench is equipped with many sensors for monitoring the dynamic state of

the transmission system. For torsional vibration analysis, the most relevant sensors are

(see Fig. 3.46):

• three incremental encoders for measuring M1 (1024 pulses per revolution), M2

(3600 pulses per revolution) and DCT differential (9000 pulses per revolution)

angular speeds (respectively EM1, EM2 and ED)

• three torque-meter sensor for measuring M1 and M2 output shaft (T1 with ± 500

Nm and T2 with ± 230 Nm) torques and half-shaft torque (THS with ± 2500 Nm)

• ten inductive pick-ups for measuring DCT gears angular speeds: first mass of DMF

(Dual Mass Flywheel), two primary shafts, two secondary shafts, differential ring

and I, II, III, IV gears

• two sensors for measuring oil temperature inside DCT

Fig. 3.46 also shows the data acquisition layout for both monitoring and controlling

the test bench. Four workstations are installed, each one with a specific task:

1. PC1 is used for communicating with electric motor drives through Control Techniques®

(CT) softwares, e.g. setting the speed or torque control mode, tuning PID controller

gains, monitoring the voltage/current within cabinets and fault diagnosis
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Figure 3.46 Transmission test bench layout. M1, M2: electric motors; EM1, EM2, ED: speed
sensors (encoders); T1, T2, THS : torque sensors; B: disk (D) brake; SA1, SA2: half shafts.

2. PC2 is connected to the DCT control unit (TCU) through ETK communication:

gear selection and clutches engagements are managed by INCA® software

3. all sensors are connected to a National Instruments (NI) Compact DAQ (cDAQ)

and the data is collected only for analysis purposes through NI Labview® software

installed on PC3

4. the HIL configuration is set up through a NI PXI by interfacing with NI Veristand®

software installed on PC4

The HIL test rig is conceived with the purpose of reproducing typical maneuvers

representative of the real usage of the DCT on a passenger car. This target is achieved

through the implementation of a simulation model running and communicating in real

time with the sensors and actuators installed on the test rig. One HIL configuration is

shown in Fig. 3.47 where the motor M1 is controlled in torque to simulate the static

behavior of an internal combustion engine and the motor M2 is controlled in speed for

emulating the load applied to the driven axle.

Some further examples of test benches sharing a similar HIL technology are also

reported in [180–182]. However, HIL configurations are not the only purpose of the test

rig. The good controllability in terms of torque and angular speed of both motors M1

and M2 together with high resolution speed sensors allow the generation of standard
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Figure 3.47 Example of HIL configuration for longitudinal dynamics analysis.

(e.g. step, sine wave or chirp) or custom stimulus profiles for the torsional excitation of

the system thus accurately monitoring the dynamical system response. The next section

is focused on torsional vibration analysis when a brake pressure or torque controller is

applied.

3.6.2 Experimental Validation

The test bench previously introduced has been adopted in order to replicate realistic

scenarios during which the transmission is supposed to be subjected to NVH issues.

The motor with higher power (37 kW) has been used to emulate the static behavior of

a conventional internal combustion engine meanwhile the second motor (11 kW) has

been controlled in order to replace vehicle external road disturbances (i.e. speed-bump).

Two different experimental scenarios are here considered in order to validate the

noise reduction control strategy presented in previous sections:

• Speed-Bump crossing at constant speed

• Tip-Out maneuver

The transmission test rig has been set up in the following configuration:
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Figure 3.48 DCT Test Rig: zoom on the brake caliper mounting

• the 37 kW motor is controlled in torque in order to guarantee an engine torque

sufficient for keeping the vehicle speed at 7 km/h

• the 11 kW motor is controlled in speed in order to have an acceleration profile

identified by Fig. 3.6 which emulates the presence of a speed-bump disturbance

• the manual transmission is engaged in second gear

• the DCT is set up with the first gear engaged and the second gear preselected

Moreover, the braking test rig has been configured as follow:

• the front right brake caliper has been placed on the output output shaft of the

transmission test rig in order to apply the desired braking torque (Fig. 3.48)

• the remaining three brake calipers are kept in their original position on the brake

test rig

• the pressure following control logic previously described is used for controlling

ABS digital valves related to the front right caliper

• the remaining ABS digital valves have been kept on their nominal position (Inlet

valves open and Outlet valves close)
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Figure 3.49 Speed-Bump crossing: M1 - torque applied by 37 kW motor; M2 - torque applied by
11 kW motor; HS - Half shaft torque

Speed-Bump crossing

The first experimental test emulates the crossing of speed-bump when the vehicle is

supposed to travel at constant speed (7 km/h). The torque applied by the two electric

motors and the measured half-shaft torque are shown in Fig. 3.49. The speed-bump

disturbance is triggered 6 s after the beginning of the test. The half shaft torque represents

a good indication for detecting the presence of noise since the inversion of its sign causes

the inversion of the working flank of the teeth, thus originating impacts.

Fig. 3.50 also reports the angular speed of the transmission components: the motor

M2 controller is able to follow the speed profile (black line) which accounts for the

disturbance imposed by the speed bumper; after twelve seconds the disturbance is

distinguished but some oscillations are still evident in all speed profiles. By adopting the

same notations used for simulation results of section 3.4.2, the rotational components∆ϑ

are plotted in the following Fig. 3.51 and Fig. 3.52 The sign inversion of both M1 and half-

shaft torques provokes the sign inversion of ∆ϑ thus triggering the generation of internal

noises. All ∆ϑ values starts from null values since the pick-up sensors measure a relative

position, but from Fig. 3.51 it is possible to notice that gears teeth change their contact

surface due to the presence of internal backlashes; in particular, the ∆ϑs yn,i between the

gear and secondary shaft angular position is more marked and protracted, probably due

to larger backlashes values. Moreover, the oscillations of ∆ϑ on the preselected shaft are

slightly reduced if compared with the engaged shaft one; this behavior may be due to

a reduced level of oscillations inside the differentials which represents the mechanical

node between the two shafts.

The controller strategy presented in section 3.5.3 is adopted for the front right caliper
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Figure 3.50 Speed-Bump crossing: transmission and motor speeds
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Figure 3.51 Speed-Bump crossing: ∆ϑ on the engaged and preselected shafts

in order to control its braking pressure; two different pressure levels (8 bar and 16

bar) are selected and set up as reference values for the controller. In order to recover

the dissipative effect imposed by the wheel braking effect and to supply the desired

torsional preload, the M1 reference torque is properly increased as indicated in Eq. 3.3

and shown in Fig. 3.53. The half-shaft torque is measured before the application of the

braking torque so it increases proportionally with the engine torque. From the other

side, M2 torque is almost constant since it is measured downstream the brake caliper so

that the brake torque is stationary compensated by the increased M1 (engine) torque:

this ensures that if the pressure control logic would be applied to a real scenario, the

longitudinal vehicle dynamic will be kept equal to the configuration without control

action. Fig. 3.54 shows the ∆ϑ values for the engaged and preselected shafts when a
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Figure 3.52 Speed-Bump crossing: ∆ϑ inside the differential
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Figure 3.53 Speed-Bump crossing with different braking pressures: M1 - torque applied by 37 kW
motor; M2 - torque applied by 11 kW motor; HS - Half shaft torque

breaking pressure is applied to the output of the transmission: an important oscillations

reduction is measured for the engaged shaft especially with the application of a braking

pressure of 16 bar (which corresponds to almost 300 Nm of front axle braking torque).

The same positive effect is not obtained for the noise reduction on the preselected

shaft which seems not sensitive to the brake pressure variations. As mentioned for the

simulation results, the preselected shaft is characterized by a low value of preload effect

imposed by only friction/damping losses since it is decoupled from the engine.
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Figure 3.54 Speed-Bump crossing with different braking pressures: ∆ϑ on the engaged and
preselected shafts

Tip-Out Maneuver

As final validation test, a Tip-Out maneuver is experimented with an initial constant

vehicle speed of 7 km/h: the reference torque imposed on the M1 electric motor falls

down instantaneously to a null value. In this way, the torque applied to the transmission

changes dynamically its sign thus triggering gears teeth impacts. The brake torque appli-

cation on the transmission output shaft is counterbalanced by an increasing of engine

torque in order to keep the same static wheel torque and so to avoid any longitudinal

dynamic modification and to give the desired torsional preload. Fig. 3.55 shows that M2

torque is stationary kept unaltered with the application of a brake torque thus avoiding

the driver perception of any controller intervention. For a complete test description,

internal transmission speeds are reported in Fig. 3.56 for both passive and controlled

vehicles. The angular speed of the differential ring and the electric motor M2 are kept

at the same values with and without the controller action. The brake application has a

damping effect on all transmission speeds thus reducing internal vibrations level.

A similar analysis can be carried out by plotting ∆ϑ for both engaged and preselected

shafts, as indicated in Fig. 3.57. The preload effect introduced by the brake wheel torque

and engine torque has a positive influence in terms of gears oscillations as evident from

∆ϑ on the engaged shaft where there is a visible noise rejection, meanwhile the same

positive effect is less marked but still present on the preselected shaft.
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Figure 3.55 Tip-Out Maneuver with and without the control action (brake pressure of 8 bar): M1 -
torque applied by 37 kW motor; M2 - torque applied by 11 kW motor; HS - Half shaft torque
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Figure 3.56 Tip-Out Maneuver without (a) and with (b) the control action (brake pressure of 8
bar): transmission speeds

3.7 Conclusions

Recent research activities discussed in the present chapter demonstrate the wide po-

tential of powertrain and active braking control integration from transmission NVH

perspective: a brake pressure control strategy, integrated with a powertrain control

to compensate its longitudinal dynamic modification, is able to reduce the noise level

inside the transmission. The larger the brake pressure, the greater is the noise level reduc-
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Figure 3.57 Tip-Out Maneuver without (a) and with (b) the control action (brake pressure of 8
bar): ∆ϑ on the engaged and preselected shafts

tion inside the transmission, with the drawback of higher fuel consumption with respect

to the configuration without control strategy. In particular, this strategy is more effective

for the engaged than the preselected shaft due to a different preload: the engaged shaft

is directly affected by the preload effect imposed by the brake control strategy, while

the preselected shaft cannot be preloaded as much as on the other one thus showing a

lower benefit. For this reason, a further calibration on driver noises perception must be

carried out in order to optimize the energy consumption for getting the desired NVH

performances. Moreover, a control logic that activates the clutch of the unloaded trans-

mission path in combination with the brakes has also the potentiality to reduce noise

and vibrations from the gearbox. The research activity also proves that even a simple

pressure following control logic can be designed by using conventional braking systems

and its efficacy is demonstrated through specific experimental test on HIL test rig.

Future studies will be concentrated on the high level control logic improvement for

proactive detection of a critical event through on-board sensors or estimators in order

to allow brake and powertrain control enough time to preload the transmission and

prevent noise generation.



Conclusions and Recommendation for

Future Works

In the present doctoral dissertation several solutions for passenger vehicle active sys-

tems design and integration are discussed and implemented for practical case scenarios.

Automation, handling, safety and comfort are the objectives achieved by controller

strategies presented in each chapter by activating or combining conventional and in-

novative vehicle actuators. The first chapter introduces the autonomous driving topic

by converting a conventional passenger car into an autonomous vehicle through the

installation of drive-by-wire technology. In particular, an automated driving system is

studied and implemented for path tracking and collision avoidance purposes. Differ-

ent control logic are designed and compared during specific experimental maneuvers,

demonstrating their efficacy in following a reference path even in presence of static

obstacles. The activity shows how a simple design methodology is successfully applica-

ble for autonomous driving or automated steering adopted for conventional vehicles.

A possible drawback of the proposed solution comes from the safety-comfort point

of view, since the performance task (i.e. following a specific trajectory and keeping

as low as possible the lateral deviation) may led to undesirable yaw rate and sideslip

angle oscillations. Consequently, the effect of a concurrent yaw rate and sideslip angle

controller is presented in the second chapter where a torque vectoring strategy for fully

electric vehicles is analyzed. The steering angle imposed by the driver (or eventually

from an automated steering control) is considered as a ’disturbance’ from the point of

view of TV strategy, and the handling task (here identified by the desired understeer

characteristic achievement) is pursued by taking into account the safety margin (sideslip

angle control) in the design process. The TV strategy is finally experimentally validated

and tuned by flashing it on a FEV demonstrator through the execution of aggressive

and realistic maneuvers positively judged by a professional driver. It is also proved

that a concurrent yaw rate and sideslip angle control can be implemented in real case

scenario thus demonstrating the importance of introducing a proper designed sideslip

angle control for safety purposes. Further analysis may consist in evaluating the TV
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strategy by introducing in the controller loop a sideslip angle estimator (instead of a

sensor usually not available in a passenger vehicle); a possible solution is presented

at the end of the chapter. Future investigations are necessary for improving the low

level TV strategy where the torque of each electric motor must be properly controlled to

achieve the desired yaw moment (calculated from the reference understeer characteris-

tic): some related activities have been discussed by some authors by coupling a wheel

slip controller when tires reach their saturation limits or by integrating an optimization

algorithm from the efficiency viewpoint. The TV strategy is designed and implemented

for a fully electric vehicle since it represents one of the most flexible solution, but it can

be applied also for conventional or hybrid vehicles by introducing specific devices in

the driveline (e.g., torque vectoring differentials). The presence of the driveline may

negatively affect the TV strategy since it introduces a mechanical delay not present in a

FEV architecture; a second important drawback is related to the torque inversion that

may be requested by the logic, thus leading to undesirable effects from the comfort point

of view, causing noises and vibrations. This aspect is analyzed and studied in the last

part of the dissertation, where noise and vibration generation is observed for a dual

clutch transmission when a wheel torque sign change occurs. NVH issues are specifically

evident for high efficiency transmissions where gears or synchronizer backlashes can

be recovered in presence of wheel torque inversion due to external (from road side) or

internal disturbances (from engine control side or TV torque requests). An innovative

methodology for reducing noise inside the transmission, without modifying the desired

longitudinal dynamics, is introduced by integrating the intervention of a conventional

braking system not usually adopted for transmission NVH purposes. Brake calipers

pressure following strategy is designed and implemented by exploiting the hardware

conventionally available on-board (digital on-off electro-valves originally thought for

ABS/ESC control logic). Controller strategy efficacy is proved on a HIL test rig where a

real brake and DCT hardware is installed and the effect of a brake pressure control on

transmission NVH is shown. This represents only the first step for an innovative idea

which has not been explored by other authors; successful results encourage for further

improvements especially for the high level part of the strategy where the NVH sources

have to be identified in order to guarantee a proactive activation of the braking system

and of the engine torque.

In conclusions, the present dissertation has introduced novelty and innovative con-

cepts by integrating different vehicle systems also providing new ideas and methodolo-

gies for further development in the field of vehicle dynamics control.
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