24 research outputs found

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch

    Get PDF
    International audienceSince the BOSS competition, in 2010, most steganalysis approaches use a learning methodology involving two steps: feature extraction, such as the Rich Models (RM), for the image representation, and use of the Ensemble Classifier (EC) for the learning step. In 2015, Qian et al. have shown that the use of a deep learning approach that jointly learns and computes the features, was very promising for the steganalysis.In this paper, we follow-up the study of Qian et al., and show that in the scenario where the steganograph always uses the same embedding key for embedding with the simulator in the different images, due to intrinsic joint minimization and the preservation of spatial information, the results obtained from a Convolutional Neural Network (CNN) or a Fully Connected Neural Network (FNN), if well parameterized, surpass the conventional use of a RM with an EC.First, numerous experiments were conducted in order to find the best "shape" of the CNN. Second, experiments were carried out in the clairvoyant scenario in order to compare the CNN and FNN to an RM with an EC. The results show more than 16% reduction in the classification error with our CNN or FNN. Third, experiments were also performed in a cover-source mismatch setting. The results show that the CNN and FNN are naturally robust to the mismatch problem.In Addition to the experiments, we provide discussions on the internal mechanisms of a CNN, and weave links with some previously stated ideas, in order to understand the results we obtained. We also have a discussion on the scenario "same embedding key"

    Fire Detection in Video Stream by Using Simple Artificial Neural Network

    Get PDF
    This paper deals with the preliminary research of the fire detection in a video stream. Early fire detection can save lives and properties from huge losses and damages. Therefore the surveillance of the areas is necessary. Early fire discovery with high accuracy, i.e. a low number of false positive or false negative cases, is essential in any environment, especially in places with the high motion of people. The traditional fire detection sensors have some drawbacks: they need separate systems and infrastructure to be implemented, to use sensors in the case of the industrial environment with open fire technologies is often impossible, and others. The fire detection in a video stream is one of the possible and feasible solutions suitable for replacement or supplement of conventional fire detection sensors without a need for installation a huge infrastructure. The paper provides the state of the art in the fire detection. The following part of the paper proposes the new system of feature extraction and describes the feedforward neural network which was used for the training and testing of the proposed idea. The promising results are presented with over 93% accuracy on a selected dataset of movies which consist of more and highly varied instances than published by other researchers involved in the fire detection field. The structure of the neural networks promises higher computational speed than currently implemented deep learning systems

    The dynamics of complex systems. Studies and applications in computer science and biology

    Get PDF
    Our research has focused on the study of complex dynamics and on their use in both information security and bioinformatics. Our first work has been on chaotic discrete dynamical systems, and links have been established between these dynamics on the one hand, and either random or complex behaviors. Applications on information security are on the pseudorandom numbers generation, hash functions, informationhiding, and on security aspects on wireless sensor networks. On the bioinformatics level, we have applied our studies of complex systems to theevolution of genomes and to protein folding

    Steganography-based secret and reliable communications : improving steganographic capacity and imperceptibility

    Get PDF
    Unlike encryption, steganography hides the very existence of secret information rather than hiding its meaning only. Image based steganography is the most common system used since digital images are widely used over the Internet and Web. However, the capacity is mostly limited and restricted by the size of cover images. In addition, there is a tradeoff between both steganographic capacity and stego image quality. Therefore, increasing steganographic capacity and enhancing stego image quality are still challenges, and this is exactly our research main aim. Related to this, we also investigate hiding secret information in communication protocols, namely Simple Object Access Protocol (SOAP) message, rather than in conventional digital files. To get a high steganographic capacity, two novel steganography methods were proposed. The first method was based on using 16x16 non-overlapping blocks and quantisation table for Joint Photographic Experts Group (JPEG) compression instead of 8x8. Then, the quality of JPEG stego images was enhanced by using optimised quantisation tables instead of the default tables. The second method, the hybrid method, was based on using optimised quantisation tables and two hiding techniques: JSteg along with our first proposed method. To increase the steganographic capacity, the impact of hiding data within image chrominance was investigated and explained. Since peak signal-to-noise ratio (PSNR) is extensively used as a quality measure of stego images, the reliability of PSNR for stego images was also evaluated in the work described in this thesis. Finally, to eliminate any detectable traces that traditional steganography may leave in stego files, a novel and undetectable steganography method based on SOAP messages was proposed. All methods proposed have been empirically validated as to indicate their utility and value. The results revealed that our methods and suggestions improved the main aspects of image steganography. Nevertheless, PSNR was found not to be a reliable quality evaluation measure to be used with stego image. On the other hand, information hiding in SOAP messages represented a distinctive way for undetectable and secret communication.EThOS - Electronic Theses Online ServiceMinistry of Higher Education in SyriaUniversity of AleppoGBUnited Kingdo
    corecore