424 research outputs found

    Outlier Mining Methods Based on Graph Structure Analysis

    Get PDF
    Outlier detection in high-dimensional datasets is a fundamental and challenging problem across disciplines that has also practical implications, as removing outliers from the training set improves the performance of machine learning algorithms. While many outlier mining algorithms have been proposed in the literature, they tend to be valid or efficient for specific types of datasets (time series, images, videos, etc.). Here we propose two methods that can be applied to generic datasets, as long as there is a meaningful measure of distance between pairs of elements of the dataset. Both methods start by defining a graph, where the nodes are the elements of the dataset, and the links have associated weights that are the distances between the nodes. Then, the first method assigns an outlier score based on the percolation (i.e., the fragmentation) of the graph. The second method uses the popular IsoMap non-linear dimensionality reduction algorithm, and assigns an outlier score by comparing the geodesic distances with the distances in the reduced space. We test these algorithms on real and synthetic datasets and show that they either outperform, or perform on par with other popular outlier detection methods. A main advantage of the percolation method is that is parameter free and therefore, it does not require any training; on the other hand, the IsoMap method has two integer number parameters, and when they are appropriately selected, the method performs similar to or better than all the other methods tested.Peer ReviewedPostprint (published version

    Uncovering contributing factors to interruptions in the power grid: An Arctic case

    Get PDF
    Electric failures are a problem for customers and grid operators. Identifying causes and localizing the source of failures in the grid is critical. Here, we focus on a specific power grid in the Arctic region of North Norway. First, we collect data pertaining to the grid topology, the topography of the area, the historical meteorological data, and the historical energy consumption/production data. Then, we exploit statistical and machine-learning techniques to predict the occurrence of failures. We interpret the variables that mostly explain the classification results to be the main driving factors of power interruption. We are able to predict 57% (F1-score 0.53) of all failures reported over a period of 1 year with a weighted support-vector machine model. Wind speed and local industry activity are found to be the main controlling parameters where the location of exposed power lines is a likely trigger. In summary, we discuss causing factors for failures in the power grid and enable the distribution system operators to implement strategies to prevent and mitigate incoming failures.Comment: 25 pages, 8 Figures. A full-length article that is under review in the Applied Energy Journa

    Model-driven and Data-driven Approaches for some Object Recognition Problems

    Get PDF
    Recognizing objects from images and videos has been a long standing problem in computer vision. The recent surge in the prevalence of visual cameras has given rise to two main challenges where, (i) it is important to understand different sources of object variations in more unconstrained scenarios, and (ii) rather than describing an object in isolation, efficient learning methods for modeling object-scene `contextual' relations are required to resolve visual ambiguities. This dissertation addresses some aspects of these challenges, and consists of two parts. First part of the work focuses on obtaining object descriptors that are largely preserved across certain sources of variations, by utilizing models for image formation and local image features. Given a single instance of an object, we investigate the following three problems. (i) Representing a 2D projection of a 3D non-planar shape invariant to articulations, when there are no self-occlusions. We propose an articulation invariant distance that is preserved across piece-wise affine transformations of a non-rigid object `parts', under a weak perspective imaging model, and then obtain a shape context-like descriptor to perform recognition; (ii) Understanding the space of `arbitrary' blurred images of an object, by representing an unknown blur kernel of a known maximum size using a complete set of orthonormal basis functions spanning that space, and showing that subspaces resulting from convolving a clean object and its blurred versions with these basis functions are equal under some assumptions. We then view the invariant subspaces as points on a Grassmann manifold, and use statistical tools that account for the underlying non-Euclidean nature of the space of these invariants to perform recognition across blur; (iii) Analyzing the robustness of local feature descriptors to different illumination conditions. We perform an empirical study of these descriptors for the problem of face recognition under lighting change, and show that the direction of image gradient largely preserves object properties across varying lighting conditions. The second part of the dissertation utilizes information conveyed by large quantity of data to learn contextual information shared by an object (or an entity) with its surroundings. (i) We first consider a supervised two-class problem of detecting lane markings from road video sequences, where we learn relevant feature-level contextual information through a machine learning algorithm based on boosting. We then focus on unsupervised object classification scenarios where, (ii) we perform clustering using maximum margin principles, by deriving some basic properties on the affinity of `a pair of points' belonging to the same cluster using the information conveyed by `all' points in the system, and (iii) then consider correspondence-free adaptation of statistical classifiers across domain shifting transformations, by generating meaningful `intermediate domains' that incrementally convey potential information about the domain change

    Outlier Detection for Shape Model Fitting

    Get PDF
    Medical image analysis applications often benefit from having a statistical shape model in the background. Statistical shape models are generative models which can generate shapes from the same family and assign a likelihood to the generated shape. In an Analysis-by-synthesis approach to medical image analysis, the target shape to be segmented, registered or completed must first be reconstructed by the statistical shape model. Shape models accomplish this by either acting as regression models, used to obtain the reconstruction, or as regularizers, used to limit the space of possible reconstructions. However, the accuracy of these models is not guaranteed for targets that lie out of the modeled distribution of the statistical shape model. Targets with pathologies are an example of out-of-distribution data. The target shape to be reconstructed has deformations caused by pathologies that do not exist on the healthy data used to build the model. Added and missing regions may lead to false correspondences, which act as outliers and influence the reconstruction result. Robust fitting is necessary to decrease the influence of outliers on the fitting solution, but often comes at the cost of decreased accuracy in the inlier region. Robust techniques often presuppose knowledge of outlier characteristics to build a robust cost function or knowledge of the correct regressed function to filter the outliers. This thesis proposes strategies to obtain the outliers and reconstruction simultaneously without previous knowledge about either. The assumptions are that a statistical shape model that represents the healthy variations of the target organ is available, and that some landmarks on the model reference that annotate locations with correspondence to the target exist. The first strategy uses an EM-like algorithm to obtain the sampling posterior. This is a global reconstruction approach that requires classical noise assumptions on the outlier distribution. The second strategy uses Bayesian optimization to infer the closed-form predictive posterior distribution and estimate a label map of the outliers. The underlying regression model is a Gaussian Process Morphable Model (GPMM). To make the reconstruction obtained through Bayesian optimization robust, a novel acquisition function is proposed. The acquisition function uses the posterior and predictive posterior distributions to avoid choosing outliers as next query points. The algorithms give as outputs a label map and a a posterior distribution that can be used to choose the most likely reconstruction. To obtain the label map, the first strategy uses Bayesian classification to separate inliers and outliers, while the second strategy annotates all query points as inliers and unused model vertices as outliers. The proposed solutions are compared to the literature, evaluated through their sensitivity and breakdown points, and tested on publicly available datasets and in-house clinical examples. The thesis contributes to shape model fitting to pathological targets by showing that: - performing accurate inlier reconstruction and outlier detection is possible without case-specific manual thresholds or input label maps, through the use of outlier detection. - outlier detection makes the algorithms agnostic to pathology type i.e. the algorithms are suitable for both sparse and grouped outliers which appear as holes and bumps, the severity of which influences the results. - using the GPMM-based sequential Bayesian optimization approach, the closed-form predictive posterior distribution can be obtained despite the presence of outliers, because the Gaussian noise assumption is valid for the query points. - using sequential Bayesian optimization instead of traditional optimization for shape model fitting brings forth several advantages that had not been previously explored. Fitting can be driven by different reconstruction goals such as speed, location-dependent accuracy, or robustness. - defining pathologies as outliers opens the door for general pathology segmentation solutions for medical data. Segmentation algorithms do not need to be dependent on imaging modality, target pathology type, or training datasets for pathology labeling. The thesis highlights the importance of outlier-based definitions of pathologies in medical data that are independent of pathology type and imaging modality. Developing such standards would not only simplify the comparison of different pathology segmentation algorithms on unlabeled datsets, but also push forward standard algorithms that are able to deal with general pathologies instead of data-driven definitions of pathologies. This comes with theoretical as well as clinical advantages. Practical applications are shown on shape reconstruction and labeling tasks. Publicly-available challenge datasets are used, one for cranium implant reconstruction, one for kidney tumor detection, and one for liver shape reconstruction. Further clinical applications are shown on in-house examples of a femur and mandible with artifacts and missing parts. The results focus on shape modeling but can be extended in future work to include intensity information and inner volume pathologies

    Self-Trained Proposal Networks for the Open World

    Full text link
    Current state-of-the-art object proposal networks are trained with a closed-world assumption, meaning they learn to only detect objects of the training classes. These models fail to provide high recall in open-world environments where important novel objects may be encountered. While a handful of recent works attempt to tackle this problem, they fail to consider that the optimal behavior of a proposal network can vary significantly depending on the data and application. Our goal is to provide a flexible proposal solution that can be easily tuned to suit a variety of open-world settings. To this end, we design a Self-Trained Proposal Network (STPN) that leverages an adjustable hybrid architecture, a novel self-training procedure, and dynamic loss components to optimize the tradeoff between known and unknown object detection performance. To thoroughly evaluate our method, we devise several new challenges which invoke varying degrees of label bias by altering known class diversity and label count. We find that in every task, STPN easily outperforms existing baselines (e.g., RPN, OLN). Our method is also highly data efficient, surpassing baseline recall with a fraction of the labeled data.Comment: 19 pages, 9 figures, 10 table

    Class distribution-aware adaptive margins and cluster embedding for classification of fruit and vegetables at supermarket self-checkouts

    Get PDF
    The complex task of vision based fruit and vegetables classification at a supermarket self-checkout poses significant challenges. These challenges include the highly variable physical features of fruit and vegetables i.e. colour, texture shape and size which are dependent upon ripeness and storage conditions in a supermarket as well as general product variation. Supermarket environments are also significantly variable with respect to lighting conditions. Attempting to build an exhaustive dataset to capture all these variations, for example a dataset of a fruit consisting of all possible colour variations, is nearly impossible. Moreover, some fruit and vegetable classes have significant similar physical features e.g. the colour and texture of cabbage and lettuce. Current state-of-the-art classification techniques such as those based on Deep Convolutional Neural Networks (DCNNs) are highly prone to errors resulting from the inter-class similarities and intra-class variations of fruit and vegetable images. The deep features of highly variable classes can invade the features of neighbouring similar classes in a learned feature space of the DCNN, resulting in confused classification hyper-planes. To overcome these limitations of current classification techniques we have proposed a class distribution-aware adaptive margins approach with cluster embedding for classification of fruit and vegetables. We have tested the proposed technique for cluster-based feature embedding and classification effectiveness. It is observed that introduction of adaptive classification margins proportional to the class distribution can achieve significant improvements in clustering and classification effectiveness. The proposed technique is tested for both clustering and classification, and promising results have been obtained

    Machine learning methods for the characterization and classification of complex data

    Get PDF
    This thesis work presents novel methods for the analysis and classification of medical images and, more generally, complex data. First, an unsupervised machine learning method is proposed to order anterior chamber OCT (Optical Coherence Tomography) images according to a patient's risk of developing angle-closure glaucoma. In a second study, two outlier finding techniques are proposed to improve the results of above mentioned machine learning algorithm, we also show that they are applicable to a wide variety of data, including fraud detection in credit card transactions. In a third study, the topology of the vascular network of the retina, considering it a complex tree-like network is analyzed and we show that structural differences reveal the presence of glaucoma and diabetic retinopathy. In a fourth study we use a model of a laser with optical injection that presents extreme events in its intensity time-series to evaluate machine learning methods to forecast such extreme events.El presente trabajo de tesis desarrolla nuevos métodos para el análisis y clasificación de imágenes médicas y datos complejos en general. Primero, proponemos un método de aprendizaje automático sin supervisión que ordena imágenes OCT (tomografía de coherencia óptica) de la cámara anterior del ojo en función del grado de riesgo del paciente de padecer glaucoma de ángulo cerrado. Luego, desarrollamos dos métodos de detección automática de anomalías que utilizamos para mejorar los resultados del algoritmo anterior, pero que su aplicabilidad va mucho más allá, siendo útil, incluso, para la detección automática de fraudes en transacciones de tarjetas de crédito. Mostramos también, cómo al analizar la topología de la red vascular de la retina considerándola una red compleja, podemos detectar la presencia de glaucoma y de retinopatía diabética a través de diferencias estructurales. Estudiamos también un modelo de un láser con inyección óptica que presenta eventos extremos en la serie temporal de intensidad para evaluar diferentes métodos de aprendizaje automático para predecir dichos eventos extremos.Aquesta tesi desenvolupa nous mètodes per a l’anàlisi i la classificació d’imatges mèdiques i dades complexes. Hem proposat, primer, un mètode d’aprenentatge automàtic sense supervisió que ordena imatges OCT (tomografia de coherència òptica) de la cambra anterior de l’ull en funció del grau de risc del pacient de patir glaucoma d’angle tancat. Després, hem desenvolupat dos mètodes de detecció automàtica d’anomalies que hem utilitzat per millorar els resultats de l’algoritme anterior, però que la seva aplicabilitat va molt més enllà, sent útil, fins i tot, per a la detecció automàtica de fraus en transaccions de targetes de crèdit. Mostrem també, com en analitzar la topologia de la xarxa vascular de la retina considerant-la una xarxa complexa, podem detectar la presència de glaucoma i de retinopatia diabètica a través de diferències estructurals. Finalment, hem estudiat un làser amb injecció òptica, el qual presenta esdeveniments extrems en la sèrie temporal d’intensitat. Hem avaluat diferents mètodes per tal de predir-los.Postprint (published version
    • …
    corecore