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Outlier detection in high-dimensional datasets is a fundamental and challenging problem

across disciplines that has also practical implications, as removing outliers from the

training set improves the performance of machine learning algorithms. While many outlier

mining algorithms have been proposed in the literature, they tend to be valid or efficient

for specific types of datasets (time series, images, videos, etc.). Here we propose two

methods that can be applied to generic datasets, as long as there is a meaningful

measure of distance between pairs of elements of the dataset. Both methods start

by defining a graph, where the nodes are the elements of the dataset, and the links

have associated weights that are the distances between the nodes. Then, the first

method assigns an outlier score based on the percolation (i.e., the fragmentation) of the

graph. The second method uses the popular IsoMap non-linear dimensionality reduction

algorithm, and assigns an outlier score by comparing the geodesic distances with the

distances in the reduced space. We test these algorithms on real and synthetic datasets

and show that they either outperform, or perform on par with other popular outlier

detection methods. A main advantage of the percolation method is that is parameter free

and therefore, it does not require any training; on the other hand, the IsoMap method has

two integer number parameters, and when they are appropriately selected, the method

performs similar to or better than all the other methods tested.

Keywords: outlier mining, anomaly detection, complex networks, machine learning, unsupervised learning,

supervised learning, percolation

1. INTRODUCTION

When working with large databases, it is common to have entries that may not belong to the
database. Sometimes this is because they were mislabeled, or some automatic process failed and
introduced artifacts. On the other hand, anomalous items that appear not to belong, may actually
be legitimate, just extreme cases of the variability of a large sample. All these elements are usually
referred to as outliers [1, 2]. In general, outliers are observations that appear to have been generated
by a different process than that of the other (normal) observations.

There aremany definitions of what an outlier is, which vary with the system under consideration.
For example, rogue waves (or freak waves), which are extremely high waves that might have
different generating mechanisms than normal waves [3], have been studied in many fields [4–8],
including hydrodynamics and optics. They are usually defined as the extremes in the tail of the
distribution of wave heights, however, their precise definition varies, as in hydrodynamics a wave
whose height is larger than three times the average can be considered extreme, while in optics, much
higher waves compared to the average can be observed [9].

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00194
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00194&domain=pdf&date_stamp=2019-11-26
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pamil@fisica.edu.uy
https://doi.org/10.3389/fphy.2019.00194
https://www.frontiersin.org/articles/10.3389/fphy.2019.00194/full
http://loop.frontiersin.org/people/674914/overview
http://loop.frontiersin.org/people/755623/overview
http://loop.frontiersin.org/people/377436/overview


Amil et al. Graph-Based Outlier Mining Methods

In the field of computer science, a practical definition of
outlier elements is that they are those elements that, when they
are removed from the training data set, the performance of
a machine learning algorithm improves [10]. Outlier mining
allows to identify and eliminate mislabeled data [11, 12]. In other
situations, the outliers are the interesting points, for example to
perform fraud detection [13, 14] or novelty detection [15]. The
terms novelty detection, outlier detection and anomaly detection
are sometimes used as synonyms in the literature [15, 16].

In spatial objects, the identification of anomalous regions
that have distinct features from those of their surrounding
regions can reveal valuable information [17–19]. This is
the case of biomedical images where particular anomalies
characterize the presence of a disease [20, 21]. For example, [22]
recently proposed a generative adversarial network for detecting
anomalies in OCT retinal images. Another relevant problem
consists in anomaly detection in sequences of ordered events,
a comprehensive review was provided in Chandola et al. [23],
where three main types of formulations of the problem were
identified: (i) to determine if a given sequence is anomalous with
respect to a database of sequences; (ii) to determine if a particular
segment is anomalous within a sequence; and (iii) to determine if
the frequency of given event of sequence of events is anomalous
with respect to the expected frequency.

With increasing computer power, neural networks are also an
attractive option for detecting outliers [24, 25] and anomalies
[26]. Hodge and Austin [2] have classified outlier detection
methods in three groups: unsupervised (methods that use no
prior knowledge of the data), supervised (methods which model
both normal and outlier points), and semi-supervised (methods
that model only normal points, or only outliers), although the
latter can also include a broader spectrum of algorithms (for
example a combination of fully unsupervised method and a
supervised one). A recent review of outlier definitions and
detection methods is presented in Zimek and Filzmoser [27].

We are interested in outlier detection in data that belong
to a metric space [28–31]. In this type of dataset, a distance
can be defined between items. A relevant example is a wireless
sensor network, where localization is based on the distances
between nodes and the presence of outliers in data results in
localization inaccuracy [32, 33]. Abukhalaf et al. [34] presents
a comprehensive survey of outlier detection techniques for
localization in wireless sensor networks.

Here we propose two methods that use, as input, only the
distances between items in the dataset. Both methods define a
graph, or a network, where the nodes are the items of the dataset,
and the links have associated weights which are the distances.
Then, each method identifies outliers by analyzing the structure
of the graph. The first method assigns to each item an outlier
score based on the percolation (i.e., the fragmentation) of the
graph. The second method uses the IsoMap algorithm [35] (a
non-linear dimensionality reduction algorithm that learns the
manifold in which the data is embedded in a reduced space),
and assigns to each element an outlier score by comparing the
geodesic distances with the distances in the reduced space.

Numerous algorithms have been proposed in the literature
that use manifold embedding, or more in general, graph

embedding, either explicitly or implicitly, to detect anomalies
in data [36–41]. A comprehensive review of the literature is
out of the scope of the present work, but here we discuss a
few relevant examples. Agovic et al. [42, 43] and Wang et al.
[44] used the IsoMap algorithm as a preprocessing step, before
applying the actual outlier finding algorithm. Our approach
differs fundamentally because we take into account how well or
how poorly items fit in the manifold, which is disregarded by
the cited methods, as they only perform outlier detection in the
reduced space.

In Brito et al. [45] the authors use the distance matrix to
build a graph where two nodes are connected if each of them is
between the k’s closest neighbors. For a sufficiently large value
of k, the graph will be connected, while, for small values of k,
disjoint clusters will appear. If the clusters that appear are large
enough, they are considered as classes, while if they are small,
they can be interpreted as outliers. In contrast to traditional
k-NN algorithms, where the number of neighbors has to be
determined a priori, the method proposed by Brito et al. [45]
finds the value of k automatically. Nevertheless, the method is
not truly parameter-free, as there are two parameters that have
to be adjusted which depend on both the dimension and size of
the dataset. We speculate that this graph fragmentation method
identifies similar outliers as our percolation method, which has
the advantage of being parameter free.

We demonstrate the validity of the percolation and IsoMap
methods using several datasets, among them, a database of optical
coherence tomography (OCT) images of the anterior chamber
of the eye. OCT anterior chamber images are routinely used for
the early diagnosis of glaucoma. We show that, when images
with artifacts (outliers) are removed from the training dataset,
the performance of the unsupervised ordering algorithm [46]
improves significantly. We also compare the performance of
these methods with the performance of other popular methods
used in the literature. We show that our results are at worst
comparable to those methods.

The paper is organized as follows, in section 2 we describe the
proposed methods and also, other popular methods that we use
for comparison. In section 3, we describe the datasets analyzed. In
section 4 we present the results and in section 5, we summarize
our conclusions.

2. METHODS

In this section we describe the two proposed methods, which we
refer to as percolation-based method and IsoMap-based method.
Both methods require the definition of a distance measure
between pairs of elements of the dataset. We also describe three
other outlier mining methods, which we used for comparison.

We consider a dataset with N elements and let i and j be
two elements, which have associated vectors with m features,
Vi = {vi1 . . . vim} and Vj = {v

j
1 . . . v

j
m}. The distance between

these elements can be defined as

Dij =

(

∑

k

∣
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)1/p

(1)
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with p an integer number, taken equal to 2 (Euclidian distance)
unless otherwise stated. The selection of an appropriate distance
measure is of the utmost importance, since it must capture the
similarities and differences of the data. Adding a preprocessing
step before calculating the distance matrix may also be necessary
to obtain significant distances.

2.1. Percolation-Based Method
The method is described in Figure 1 (a video is also included
in the Supplementary Information). We begin by considering
a fully connected graph, where the nodes are the elements of the
set and where the links are weighted by the distance matrix Dij.
Now, we proceed in the following way: we remove the links one
by one, from higher to lower weights (i.e., the link representing
the highest distance between a pair of elements is removed
first). If only a few links are removed, the graph will remain
connected, but if one continues, the graph will start to break
into different components. As it is well-known from percolation
theory [47, 48], it is expected for most of the nodes to remain
connected inside a single giant connected component (GCC), and
for the rest of them to distribute into many small components. If
we remove enough links, even the giant component disappears.
This transition between the existence and non-existence of a giant
component is known as a percolation transition, and is one of
the most studied problems of statistical physics [49, 50]. Here,
we are interested in the percolated state, i.e., when such a giant
component exists. In particular, the nodes that do not belong to
the GCC are candidates for being considered as outliers, as they
are relatively distant to the rest of the graph.

Following this idea, we can label each node with an outlier
score (OS), defined as the weight of the link that, after being
removed, separates the node from the GCC. Thus, the first
elements to leave the GCC are the ones with the highest OS, while
the last ones have the lowest OS.

For this method to correctly identify the outliers, we assume
that normal points occupy more densely populated zones
than outliers, thus having (normal points) local neighborhoods
connected with small distances while outliers are connected to
normal points via longer distances. Such outliers will become
disconnected from the giant connected component sooner than
the normal ones in the described procedure.

It is worth noting that the computation of the GCC
can be performed efficiently using a variation of the union-
find algorithm [51], thus making this method suitable for
large datasets.

2.2. IsoMap-Based Method
The basic idea of this method is to use the well-known algorithm
IsoMap [35] to perform dimensionality reduction on the raw
data, and to analyze the manifold structure in the reduced space,
assigning to each point an outlier score that measures how well it
fits in the manifold.

The method consists of the following steps

- We apply IsoMap to the distance matrix Dij (computed from
the raw features) and obtain two matrices: 1) a new set of
features for each element of the database, V i = {v′i1 . . . v′ir }
with i = 1 . . .N and 2) a matrix of graph distances, DG

ij in the

geodesic space as described in Tenenbaum et al. [35].
- Using the new set of features, we calculate a new distance
matrix D̃ij, using the Euclidean distance (Equation 1
with p = 2).

- The third step is to compare D̃ij with D
G
ij : for each element i we

compute the similarity, ρi, between vectors (DG
i1, . . .D

G
iN) and

(D̃i1, . . . D̃iN), using the Pearson correlation coefficient.
- The final step is to define the outlier score as OSi = 1 − ρi

2.
For “normal” elements, we expect high similarity, while for
abnormal ones, we expect low similarity.

With this method, the assumption is that normal points lie in
a low dimensional manifold embedded in the full-dimensional
space, and outliers lie outside such manifold. If the parameters of
the IsoMap are such that the low dimensional manifold structure
is recovered successfully, the distances between points in the
new set of features (D̃ij), the geodesic distances in the manifold,

and the graph distances (DG
ij an approximation of the geodesic

distance) should all be similar for normal points lying on the
manifold. However, for outliers the geodesic distance is not
defined and thus, the graph distances and the distances in the new
set of features will disagree. When we compute the similarity, ρi,
assessing this disagreement, normal points will have a high value
ρi (near 1) and outliers a low value of ρi, therefore the outlier
score should be high for outliers and low for normal points.

FIGURE 1 | Example of application of the percolation method. Starting with a fully connected graph (A) links are removed according to their distances (longer

distances are removed first). In (B) some of the longest connections have been eliminated, but the graph remains fully connected, in (C) the first outlier is identified as

the first element that becomes disconnected from the giant connected component, and in (D) two elements are disconnected. A video illustrating the procedure is

presented in the Supplementary Information.
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The parameters of this method, are the parameters of the
IsoMap algorithm, namely, the dimensionality of the objective
space (d) and neighborhood size (number of neighbors, k)
to construct the graph. In this work, the parameters of the
IsoMap were optimized (when a training set was available) by
maximizing the average precision doing an extensive search in
the parameter space.

2.3. Other Methods
We compared the performance of both methods with:

- The simplest way to define an outlier score: the distance to
the center-of-mass (d2CM) in the original feature space, Vi =

{vi1 . . . vim}. For “normal” elements, we expect short distance,
while for abnormal ones, we expect high distance.

- A popular distance-based method, which will be referred to
as Ramaswamy et al. [29]. This method is based on the
distance of a point from its kth nearest neighbor, in the raw
(original) high-dimensional feature space. The method assigns
an outlier score to each point equal to its distance to its kth
nearest neighbor.

- And a very popular method, One Class Support Vector
Machine (OCSVM) which uses the inner product between the
elements in the database to estimate a function that is positive
in a subset of the input space where elements are likely to be
found, and negative otherwise [52].

2.4. Implementation
All the methods were implemented and run in MatLab. The
IsoMap method was build modifying the IsoMap algorithm
implementation by Van Der Maaten et al. [53], the percolation
method was implemented using graph objects in MatLab. With

a simple database of 1,000 elements with 30 dimensions, the
percolation method takes around 6 s to run and the IsoMap
method takes around 18 s, while One Class Support Vector
Machine takes around 0.2 s to run, Ramaswamy about 0.04 s
to run, and distance to center of mass 0.01 s to run on an Intel
i7-7700HQ laptop. Both methods could significantly improve
their runtime by optimizing the code and translating it into a
compiled language.

3. DATA

We tested the above described methods in several databases.
In the main text we present three examples: a database of
anterior chamber Optical Coherent Tomography (OCT) images,
a database of face images with added artifacts, and a database
of credit card transactions. Additional synthetic examples are
presented in the Supplementary Information.

3.1. Anterior Chamber OCT Images
This database consists of 1213 OCT images of the anterior
chamber of the eye of healthy and non-healthy patients of the
Instituto de Microcirugia Ocular in Barcelona. The database was
analyzed in Amil et al. [46] where an unsupervised algorithm
for ordering the images was proposed. The images had been
classified in four categories (closed, narrow, open, and wide
open) by two expert ophthalmologists. By using manually
extracted features, and the features returned by the unsupervised
algorithm, a similar separation in the four classes was found.
Here we will demonstrate that the similarity is further improved
when images containing artifacts (outliers) are removed from the
dataset given to the unsupervised algorithm.

Examples taken from the database are shown in Figure 2.

FIGURE 2 | Example images from the OCT database, all except the first one were randomly sampled. Marked images correspond to top 15% outlier score for

OCSVM (Blue), distance to center of mass (Orange), IsoMap (Yellow), Percolation (Purple), and Ramaswamy (Green). The first image corresponds to the marked

improvement in Figure 4.
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The distance matrix Dij was calculated as described in detail
in Amil et al. [46]: by comparing pixel-by-pixel, after pre-
processing the images to adjust the alignment and to enhance
the contrast. For the algorithms that don’t use the distance
matrix (OCSVM and distance to center of mass), the same
pre-processing was used.

3.2. Face Database
This publicly available database [54], kindly provided by
AT&T Laboratories Cambridge, is constituted by face images
(photographs of 40 subjects with 10 different images per subject)
with outliers that were added similarly to Ju et al. [55]: first
we rescaled the images to 64 by 64 pixels, and then, we added
a square of noise to one randomly selected image per subject.
Examples are shown in Figure 3. When using the parameters
proposed in Ju et al. [55] to generate the artifacts, all the
methods have a perfect performance (average precision = 1), so
we generated the artifacts in the following manner: We used only
square artifacts whose size we varied from 0 (no artifact added)
to 64 (the whole image), the square was placed randomly in
the image and its content was gray-scale pixels whose gray-scale
value was randomly sampled such that the distribution was the
same as the gray-scale value distribution of the combination of
all the images in the database. We also generated a database with
outliers whose brightness was modify by simply multiplying all
the image by a constant factor.

For this database (and also for the databases analyzed in the
Supplementary Information, which also have added outliers),
we generated two independent sets for each square size: one was
used to find, in the case of the IsoMap and Ramaswamymethods,
the optimal parameters, and the second one was used for testing.

For this database, the distance matrix was calculated as the
Euclidean pixel-by-pixel distance.

3.3. Credit Card Transactions
This publicly available database [56–61] contains credit card
transactions made in September 2013 by European cardholders.
It contains 284807 transactions made in 2 days, of which 492
correspond to frauds. In order to preserve confidentiality, for
each transaction the data set only includes the amount of money
in the transaction, a relative time, and 28 features that are
the output of a principal component analysis (PCA) of all the

other metadata related to the transaction. In our analysis we
divided the total dataset into 8 sets of about 4,000 entries (due
to computational constrains) according to the amount of the
transaction and computed the distance as the euclidean distance
using these 28 features.

4. RESULTS

4.1. Anterior Chamber OCT Images
For the OCT database, there is no a priori definition of outliers
(i.e., no ground truth), all the images were drawn from the same
database. However, as a proxy for determining the performance
of the outlier finding methods, we used the performance of
the unsupervised methods proposed in Amil et al. [46] when
ignoring the images identified as outliers.

As removing outliers should improve the performance of
machine learning algorithms, we performed two tests: first, we
recalculated the correlation metrics presented in Amil et al. ([46],
Table 1), removing the first n outliers that were identified by
each method. Second, to test the significance of the improved
performance, we repeated the calculation, now removing random
images. The results presented in Figure 4 confirm that removing
the detected outliers improves the performance, while removing
random images has no significant effect. We also see that
IsoMap is the method that produces the highest improvement,
while d2CM and OCSVM have low-significance performance
improvement. For the IsoMap method we set the parameters to
d = 10 and k = 15, while for the Ramaswamy method we
used k = 6.

4.2. Face Database
For this database, as explained in section 3.2, we generated
artifacts artificially and tried to find the images presenting
artifacts as outliers. We varied the size of the artifact generated
to evaluate the robustness of the methods. For each size, we
generated two different databases with artifacts (with the same
parameters but different random seeds), we used the first one to
optimize the parameters of IsoMap and Ramaswamy algorithms,
and the second one to test the algorithms. We show the results
of evaluating the performance on the second database for each
square size in Figure 5A, we used the average precision based on
the precision-recall curve as performance measure, this measure

FIGURE 3 | Example images from the face database. Eight original images at the top, and eight images with added artifacts at the bottom. Marked images

correspond to top 10% outlier score for OCSVM (Blue), distance to center of mass (Orange), IsoMap (Yellow), Percolation (Purple), and Ramaswamy (Green).
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FIGURE 4 | Performance of the OCT image ordering algorithm as a function of the number of outliers that are removed from the database. As expected, we see that

the performance, which is measured by the correlation coefficient between the feature returned by the ordering (unsupervised) algorithm and the feature provided by

manual expert annotation (mean angle), improves as the outliers detected are removed. The different lines indicate the method of outlier identification and the colored

region indicates results when the images removed are randomly selected, one standard deviation is shown in dark coloring, while three standard deviations is shown

in light coloring. In this case, as expected, no significant change in the performance is seen. For some methods a sharp improvement is observed when eliminating

one specific image (marked with a black circle), this image corresponds to the first one shown in Figure 2.

computed as the area under the precision-recall curve [62] is
more appropriate than other more commonly used metrics for
class imbalance scenarios. In Figure 5A we see that Ramaswamy
tends to slightly outperform all other methods, in particular, the
percolation-based method shifts from being the worst method
(when the squares are small) to the second best (when the squares
are large). In Figure 5D we show the performance of the IsoMap
method as a function of its parameters, we depict two zones with
better performance, one with fairly low dimensionality and a
low number of neighbors (more neighbors translate to a more
linear mapping), and another zone with greater dimensionality
and almost the maximum possible number of neighbors. In
general, performance is very sensitive to parameter variations. In
Figure 5C we show how altering the brightness of some images
can also be perceived as outliers due to the distance measure used
(Euclidean pixel-by-pixel).

Also, to evaluate how robust the methods are when changing
the distance measure, we varied p in the Minkowski distance
family (Equation 1), and evaluated the methods for the
parameters optimized for p = 2 (Euclidean), p = 1 and p = 10,
the average precision as a function of p for the distance-based
methods is shown in Figure 5B. As we can see, for p > 4
Ramaswamy and Percolation-based perform similarly well, also,
the parameters of Ramaswamy are very robust when changing p
in the training set (the Ramaswamy method was also train with
p = 1 and p = 10 obtaining the same parameters as for p = 2),
while IsoMap is very sensitive to such changes.

We generated a different dataset whose outliers were images
that, instead of having added noise, were multiplied by a
constant (brightness) factor.We varied the brightness from 0 (the
image being all black) to 3. The results of this study is shown
in Figure 5C.

4.3. Credit Card Transactions
In this database the ground truth (the fraud credit card
transactions) is known and thus, the performance of the different
methods is, as in the prior example, quantified with the average
precision based on the precision-recall curve.

The database was divided into several subsets according to
the amount of money of each transaction (see Figure 6), each
set (of around 4,000 transactions) was further randomly divided
into two sets in order to use one for training and the other one
for testing. The results are summarized in Figure 6 that displays
the average precision for all testing sets. We can see that the
performance of the methods is very heterogeneous.

To try to understand the origin of the large variability, we
conducted an additional experiment in which we considered
groups of 3,900 normal transactions chosen at random (without
considering the amount of the transaction) and 100 frauds also
chosen at random, which were divided equally in training and test
subsets. We repeat this experiment 8 times with different random
seeds, and the results are presented in Figure 7 in this experiment
the average precision of themethods was increased due to a larger
fraction of frauds in the test sets.
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FIGURE 5 | Analysis of the face database. (A) Average precision as a function of the square size for the different outlier finding methods, One Class Support Vector

Machine (OCSVM) in blue, distance to center of mass (d2CM) in orange, IsoMap in yellow, Percolation-based method in purple, and Ramaswamy in green. The

Average precision was calculated on databases independently generated from those used to set the parameters of the methods. (B) Average precision as a function

of the distance measure for different outlier finding methods with a square size of 36 pixels, IsoMap (trained with p = 1) in blue, IsoMap (trained with p = 2) in orange,

IsoMap (trained with p = 10) in yellow, Percolation-based method in purple, and Ramaswamy in green. The Average precision was calculated on databases

independently generated from those used to set the parameters of the methods. (C) Average precision as a function of the brightness multiplier of the outliers. (D)

Average precision in the training set as a function of the IsoMap parameters with a square size of 30 pixels.

4.4. Discussion
Figure 8 presents the comparison of the results obtained with the
five methods used, for the three databases analyzed. Figure 8A
summarizes the results for the OCT database, with the boxplot
we can see the minimum, first quartile, median, third quartile,
and maximum of the correlation coefficient when varying
the amount of outliers considered (corresponds to Figure 4).
Figure 8B summarizes, in a similar manner, the results for
the face database showing the boxplot of the average precision
values when varying the square size (corresponds to Figure 5A).
Figure 8C summarizes the results for the credit card transactions
showing the boxplot of the average precision values when
changing the amount range (corresponds to Figure 6). As we
can see in Figure 8, the IsoMap and Percolation methods
perform well in the three databases; their performance being
either better than or comparable to the performance of the

other three methods. Additional examples presented in the
Supplementary Information confirm the good performance of
IsoMap and Percolation methods.

Figure 5B shows how the performance of distance-based
methods is affected by the definition of the distance. We can see
that the performance of all themethods depends on the definition
of the distance. The methods are also sensitive to changes in
the preprocessing of the data, therefore, well-prepared data with
a meaningful distance definition is needed for optimizing the
performance of all methods.

It is important to consider how the two methods proposed
here scale with the dimension of the data, d (i.e., the number of
features of each sample), and the number of samples, N, in the
database. Since both methods begin by calculating the distance
matrix, the processing time is at least of the order dN2 because
the calculation of the distance between pairs of elements linearly

Frontiers in Physics | www.frontiersin.org 7 November 2019 | Volume 7 | Article 194

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Amil et al. Graph-Based Outlier Mining Methods

FIGURE 6 | Performance of all the outlier finding methods for the credit card transactions on the test subsets for each amount range.

FIGURE 7 | Performance of all the outlier finding methods for the credit card transactions on the test subsets of the random groups. The random groups were

generated by randomly choosing 3,900 normal transactions and 100 frauds, and it was further randomly divided into two subsets, a training and a testing subsets.

increases with d and quadratically with N. Both methods need to
store in memory the distance matrix and analize it, this imposes
memory requirements that can limit their applicability for large
datasets. In the case of IsoMap, this analysis is of order N2.

In the case of the percolation method, a threshold needs to be
gradually varied in order to precisely identify the order in which
the elements became disconnected from the giant component.
This results in a runtime of the order of N2 using the algorithm
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FIGURE 8 | Box-plot summarizing the results of all the outlier finding methods

in all the databases. (A) Anterior Chamber OCT images, (B) Face database

(only testing groups), (C) Credit Card transactions (only testing groups).

proposed in Newman and Ziff [51]. Regarding the dimensionality
of the data, because both methods only need to hold in memory
theN2 distancematrix (and not the dN features of theN samples)
they are suitable for very high dimensional data (where d ≫ N)
because once the distances of an element to all other elements
have been computed, the d features of that element will not be
needed again.

5. CONCLUSIONS

We have proposed two methods for outlier mining that rely on
the definition of a meaningful measure of distance between pairs
of elements in the dataset, one being fully unsupervised without
the need of setting any parameters, and other which has 2 integer
number parameters that can be set using a labeled training set.
Both methods define a graph (whose nodes are the elements of
the dataset, connected by links whose weights are the distances
between the nodes) and analyze the structure of the graph. The
first method is based on the percolation of the graph, while
the second method uses the IsoMap non-linear dimensionality

reduction algorithm. We have tested the methods on several real
and synthetic datasets (additional examples are presented in the
Supplementary Information), and compared the performance
of the proposed algorithms with the performance of a “naive”
method (that calculates the distance to the center of mass) and
two popular outlier finding methods, Ramaswamy and One Class
Support Vector Machine (OCSVM).

Although the percolation algorithm performs comparably to
(or slightly lower than) other methods, it has the great advantage
of being parameter-free. In contrast, the IsoMap method has
two parameters (natural numbers) that have to be selected
appropriately. The performance of the methods varies with the
dataset analyzed because the underlying assumption of what an
outlier is, is different for the different methods. The percolation
method assumes that the normal elements will be in one large
cluster, with outliers being far from that cluster; IsoMap assumes
that the normal elements lie on a manifold, and that outliers lie
outside such manifold; the Ramaswamy and OCSVM methods
assume that the outliers lie in a less densely populated sector
of the space, while the “naive” method simply assumes that
outliers are the furthest elements from the center of mass.
These assumptions do not always hold, which results in the
identification of normal elements as outliers. For example, in the
OCT database there were some duplicated entries which were
assigned by the Ramaswamy method the least outlier score, in
spite of having a minor artifact.

The percolation algorithm is immune to duplicate entries,
as it assigns the same outlier score as if there was only one
element. On the other hand, the effect of duplicate entries on the
IsoMap and “naive” methods is more difficult to asses, but is to be
expected that if the duplicated elements are only few, they won’t
have a large effect in the manifold learned, or in the center of
mass calculated.

The execution time of both methods scales at least as dN2

where d is the number of features of each item and N is the
number of items in the database (as dN2 is the time needed
to compute the distance matrix). Therefore, the methods are
suitable for the analysis of small to medium-size databases
composed of high-dimensional items.
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