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Recognizing objects from images and videos has been a long standing prob-

lem in computer vision. The recent surge in the prevalence of visual cameras has

given rise to two main challenges where, (i) it is important to understand different

sources of object variations in more unconstrained scenarios, and (ii) rather than de-

scribing an object in isolation, efficient learning methods for modeling object-scene

‘contextual’ relations are required to resolve visual ambiguities.

This dissertation addresses some aspects of these challenges, and consists of

two parts. First part of the work focuses on obtaining object descriptors that are

largely preserved across certain sources of variations, by utilizing models for image

formation and local image features. Given a single instance of an object, we in-

vestigate the following three problems. (i) Representing a 2D projection of a 3D

non-planar shape invariant to articulations, when there are no self-occlusions. We

propose an articulation invariant distance that is preserved across piece-wise affine

transformations of a non-rigid object ‘parts’, under a weak perspective imaging

model, and then obtain a shape context-like descriptor to perform recognition; (ii)



Understanding the space of ‘arbitrary’ blurred images of an object, by representing

an unknown blur kernel of a known maximum size using a complete set of orthonor-

mal basis functions spanning that space, and showing that subspaces resulting from

convolving a clean object and its blurred versions with these basis functions are

equal under some assumptions. We then view the invariant subspaces as points on a

Grassmann manifold, and use statistical tools that account for the underlying non-

Euclidean nature of the space of these invariants to perform recognition across blur;

(iii) Analyzing the robustness of local feature descriptors to different illumination

conditions. We perform an empirical study of these descriptors for the problem of

face recognition under lighting change, and show that the direction of image gradient

largely preserves object properties across varying lighting conditions.

The second part of the dissertation utilizes information conveyed by large

quantity of data to learn contextual information shared by an object (or an entity)

with its surroundings. (i) We first consider a supervised two-class problem of detect-

ing lane markings from road video sequences, where we learn relevant feature-level

contextual information through a machine learning algorithm based on boosting.

We then focus on unsupervised object classification scenarios where, (ii) we perform

clustering using maximum margin principles, by deriving some basic properties on

the affinity of ‘a pair of points’ belonging to the same cluster using the informa-

tion conveyed by ‘all’ points in the system, and (iii) then consider correspondence-

free adaptation of statistical classifiers across domain shifting transformations, by

generating meaningful ‘intermediate domains’ that incrementally convey potential

information about the domain change.
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Chapter 1

Introduction

Recognizing objects from images and videos is a fundamental problem in com-

puter vision that has received significant attention over the last five decades. Start-

ing from the early attempts on constrained recognition of object templates using a

computer in 1960’s and 70’s, considerable advances have been made by understand-

ing the projective geometry of objects through the eighties, followed by statistical

learning methods in the nineties that modeled object variations by leveraging the

information conveyed by large quantities of representative data exemplars, and more

recently by analyzing object-scene contextual interactions, and by using local fea-

tures/ attributes to represent objects. However, the increase in the prevalence of

cameras and smart phones witnessed in recent years have accelerated the demand

for systems with ‘unconstrained’ visual capabilities, where it is important to un-

derstand object variations by relaxing some existing model assumptions. Moreover,

the ubiquitousness of these devices translates into the availability of large quantity

of data, where efficient learning algorithms are required to extract ‘relevant’ infor-

mation for recognition. These challenges collectively form the basic thrust of this

dissertation in using models and data to address some problems related to object

recognition.

We address this problem from two standpoints. First, given a single instance
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of an object, how to utilize models for image formation, and local image features

to obtain descriptions that are largely preserved across certain sources of object

variations? Towards this end, in Chapters 2 to 4, we study variations in objects

due to articulation, blur and lighting, and propose robust descriptors to perform

recognition. A main part of this study involves the use of concepts from shape anal-

ysis and differential geometry. Secondly, keeping in pace with the ever-increasing

availability of vision data, we propose algorithms to learn object-scene contextual

interactions to perform recognition. By integrating perceptual observations with

statistical models, in Chapters 5 to 7, we investigate the problems of detecting lane

markings for autonomous vehicle navigation, unsupervised discovery of object cate-

gories using max-margin principles, and correspondence-free domain adaptation for

statistical classifiers. Finally, since most computer vision applications demand real-

time performance, we address the problem of efficiently representing image contours

in Chapter 8. We propose an intermediate representation for piece-wise linear con-

tours called the line integral image, and use it with off-the-shelf contour matching

algorithms to demonstrate substantial reduction in computational requirements.

1.1 Overview of the Dissertation

In Chapter 2 we consider the problem of representing a 2D projection of a

3D non-planar shape invariant to 3D articulations, under no self-occlusion. By

viewing an articulating object as a set of convex parts connected by non-convex

junctions, we approximate articulations of the object as affine transformations of
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its constituent parts. We then propose a distance metric that is largely preserved

across articulations, by assuming a weak perspective camera to describe the imaging

process. Using this distance metric, we design a shape context descriptor to represent

the object, and evaluate it on shape retrieval tasks, and articulation-invariant object

recognition settings.

Chapter 3 deals with representing an object invariant to the effects of arbi-

trary blurring, without imposing any restrictions on the parametric form of the blur

function. Assuming that we know the maximum possible size of blur kernels, we

represent the unknown blur kernel using a complete set of orthonormal basis func-

tions and create a subspace that contains the set of all blurred versions of an object.

We show that, under some assumptions, the subspaces created from a clean version

of an object, and its blurred versions are the same. We then identify the space of

these invariant subspaces with the Grassmann manifold, and use statistical methods

defined on this manifold to perform object recognition across blur.

The focus of Chapter 4 is to empirically analyze the robustness of different local

image features to object variations resulting from changing lighting conditions. We

consider a face recognition setting with single image per person in the gallery. The

variation between the gallery and probe is due to lighting, where the gallery itself

had different lighting conditions across subjects. We analyze the lighting insensitive

features on different facial regions, which have variations in albedo, surface normals

and curvature, and empirically demonstrate that the orientation of image gradient

is a good feature to perform recognition across large variations in illumination.

Although these three studies were primarily designed for cases where only a single
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instance of the object is available, they were extended to utilize the availability of

more data through statistical modeling.

Chapter 5 marks a shift towards increasing the dependence on large quantity

of data to learn contextual information between objects and the surrounding scene.

We first study the problem of detecting lane markings from road video sequences.

We propose a pixel hierarchy context descriptor that analyzes the visual features in

concentric circles around each pixel, for both lane markings and non-lane markings,

and then propose an outlier-robust boosting algorithm to learn relevant contextual

features to perform detection. The detected lane markings are then tracked using

a particle filter, without the knowledge of vehicle speed, by incorporating a static

motion model for lane markings and learning relevant road scene variations from

the statistics of the tracked parameters.

We then address the problem of clustering ‘points’ using maximum margin

principles in Chapter 6. Unlike many existing methods that address this unsuper-

vised problem by executing a supervised classifier with different label combinations

to select the optimal cluster grouping, we perform a more basic study on the rela-

tionship between points belonging to a cluster and the margin regions that separate

different clusters. By analyzing the projections of all points on the set of lines in the

data space, we derive some basic properties that the projections on a line interval

will satisfy, if and only if that line interval lies outside of a cluster. By transforming

this problem from an integer optimization routine to one that detects the group-

ing of a ‘pair of points’ using information conveyed by ‘all other points’ (context),

we demonstrate improved object identification on several machine learning datasets
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and computer vision problems such as face recognition under illumination variations,

and articulation-invariant shape retrieval.

Chapter 7 studies an interesting problem of unsupervised domain adaptation

for object recognition, which hasn’t received much attention in the literature. Here

we look at the case where the underlying data distribution on which a classifier has

been trained is different from that of the test data, while the conditional distribu-

tion of labels remains the same across training and testing. Instead of assuming the

availability of certain discriminative features across domains, or using certain class

of transformations to model the change in the marginal, we propose a framework,

motivated by incremental learning, which generates several intermediate domains to

help explain the unknown domain shift between the training data distribution and

the test data distribution. To model ‘contextual’ information conveyed by interme-

diate domains on the transformation between the training and testing domains, we

project the labeled training data on all domains to learn a discriminative classifier,

and then classify the unlabelled test data by analyzing their projections on these

domains.

In Chapter 8 we address computationally efficient image representations for

contour-based object recognition. We propose a line integral image representation,

which is a pre-processing stage that accumulates the edge strength of an image at

different line orientations. Using this information, we compute the likelihood of

a piece-wise linearly approximated contour in O(1) computatations for each linear

side, in contrast to computations across as many pixels that make up the contour

side. We then perform object recognition by using this representation with off-
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the-shelf contour matching algorithms based on correlation, and Hough voting, and

demonstrate substantial improvement in computational speed of these algorithms.

We finally conclude the dissertation in Chapter 9, by discussing potential di-

rections in which subsequent questions raised by this dissertation can be addressed.
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Chapter 2

Articulation-Invariant Representation of Non-planar Shapes

Understanding objects undergoing articulations is of fundamental importance

in computer vision. For instance, human actions and hand movements are some

common articulations we encounter in daily life, and it is henceforth interesting

to know how different ‘points’ or ‘regions’ of such objects transform under these

conditions. This is also useful for vision applications like, inferring the pose of an

object, effective modeling of activities using the transformation of parts, and for

human computer interaction in general.

Representation and matching of articulating shapes is a well-studied problem,

and the existing approaches can be classified into two main categories namely, those

based on appearance-related cues of the object (eg. [214]), and those using shape

information which can be contours or silhouettes or voxel-sets (eg. [115, 32, 124]).

Our work corresponds to the latter category, wherein we represent an object by

a set of points constituting its silhouette. Although there have been many efforts

([169, 63, 167]) on deformation invariant ‘matching’ of shapes, there is relatively less

work on ‘representing’ a shape invariant to articulations, eg. [115, 61, 160]. Among

the above-mentioned efforts only [115] deals with 2D shapes and their representation

mainly addresses planar articulations. However, most articulating shapes, such as

a human, are non-planar in nature and there has been very little effort focusing on
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Figure 2.1: (a): Comparing distances across 2D projections of non-planar articulat-

ing shapes. (L-R) Shape 1 and 2 belong to the same 3D object, whereas shape 3

is from a different one. For a pair of points with same spatial configuration (yellow

dots), Top: Inner distance [115] yields ‖d11 − d12‖2 > ‖d12 − d13‖2, whereas our

method (bottom) gives ‖d21 − d22‖2 < ‖d22 − d23‖2. (b) Keypoints with similar

shape description obtained from our method. Points were picked in the first frame,

and their ‘nearest neighbors’ are displayed in other two frames. No holistic shape

matching was done, emphasizing the importance of a shape representation. (All

figures are best viewed in color)
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this problem. This leads us to the question we are addressing in this work.

Given a set of points corresponding to a 2D projection of an articulating shape,

how to derive a representation that is invariant/insensitive to articulations, when

there is no self-occlusion? An example where this question is relevant is shown

in Figure 2.1, along with results from our proposed shape representation. Such

situations also arise when multiple cameras are observing a scene containing non-

planar objects, where the projection of a particular ‘region’ of an object will depend

on its relative orientation with the cameras. Accommodating for such variations,

in addition to articulations (for which, each object can have different degrees of

freedom) makes this a very hard problem.

Contributions: Under the assumption that a 3D articulating object can be

expressed as a combination of rigid convex parts connected by non-rigid junctions

that are highly non-convex, and there exists a set of viewpoints producing 2D shapes

with all parts of the object visible; given one such instance of the 2D shape, we are

interested in obtaining an invariant representation across articulations and view

changes. We address this problem by,

1. Finding the parts of a 2D articulating shape through approximate convex

decomposition, by introducing a robust area-based measure of convexity.

2. Performing part-wise affine normalization to compensate for imaging effects,

under a weak perspective camera model, and relating the points using inner

distance to achieve articulation invariance (upto a data-dependent error).

After reviewing the prior work in Section 2.1, we formally define the problem in
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Section 2.2. We then present our proposed method in Section 2.3 by providing

detailed analysis on the model assumptions. We evaluate our shape descriptor in

Section 2.4 through experiments for articulation invariance on a dataset with non-

planar shapes, including both intra-class and inter-class studies, and for standard 2D

shape retrieval using the MPEG-7 [105] dataset. Section 2.5 concludes the chapter.

2.1 Related Work

Representation and matching of shapes described by a set of N-dimensional

points has been extensively studied, and the survey paper by Veltkamp and Hage-

doorn [187] provides a good overview of the early approaches. More recently, there

have been advances in matching two non-rigid shapes across deformations. For

instance, Felzenszwalb and Schwartz [63] used a hierarchical representation of the

shape boundary in an elastic matching framework for comparing a pair of shapes.

Yang et al [209] used a locally constrained diffusion process to relate the influence

of other shapes in measuring similarity between a pair of shapes. Registering non-

rigidly deforming shapes has also been addressed by [167] and [194]. Mateus et al

[124] studied the problem of articulation invariant matching of shapes represented as

voxel-sets, by reducing the problem into a maximal sub-graph isomorphism. There

are also efforts, for instance by Bronstein et al [33], on explaining partial similarity

between the shapes.

Though there has been considerable progress in defining shape similarity metrics

and matching algorithms, finding representations invariant to a class of non-rigid

10



transformations has not been addressed extensively. This is critical for shape anal-

ysis because, rather than spending more efforts in matching, we stand to gain if

the representation by itself has certain desirable properties. Some works towards

this end are as follows. Elad and Kimmel [61] construct a bending invariant sig-

nature for isometric surfaces by forming an embedding of the surface that approx-

imates geodesic distances by Euclidean distances. Rustamov [160] came up with

a deformation invariant representation of surfaces by using eigenfunctions of the

Laplace-Beltrami operator. However in this work, we are specifically interested in

articulation insensitive representation of 3D shapes with the knowledge of its 2D

projection alone. A key paper that addresses this particular problem is that of Ling

and Jacobs [115]. They propose the inner distance, which is the length of the short-

est path between a pair of points interior to the shape boundary, as an invariant

descriptor of articulations when restricted to a set of translations and rotations of

object parts. But such an assumption is applicable only for planar shapes, or when

the shape is viewed using an ideal orthographic camera. Since neither of these two

settings hold true in most real world scenarios, representing a 2D projection of a 3D

non-planar shape invariant to articulations becomes an important problem, which

we formalize in the following section.

2.2 Problem Formulation

An articulating shape X ⊂ R3 containing n parts, {Pi}n
i=1, together with a set

of Q junctions, can be written as X = {⋃n
i=1 Pi}

⋃{⋃i6=j, 1≤i,j≤n Qij}, where

11



1. ∀i, 1 ≤ i ≤ n, Pi ⊂ R3 is connected and closed, and Pi

⋂
Pj = φ, ∀i 6= j, 1 ≤

i, j ≤ n

2. ∀i 6= j, 1 ≤ i, j ≤ n,Qij ⊂ R3, connected and closed, is the junction between

Pi and Pj. If there is no junction between Pi and Pj, then Qij = φ. Otherwise,

Qij

⋂
Pi 6= φ, Qij

⋂
Pj 6= φ. Further, the volume of Qij is assumed to be small

when compared to that of Pi.

Let A(.) be the set of articulations of X, wherein A(Pi) ∈ E(3) belong to the rigid

3D Euclidean group, and A(Qij) belong to any non-rigid deformation. Further,

let V be the set of viewpoints, and M ⊂ (A × V ) denote the set of conditions

such that the 2D projection of X, say S ⊂ R2, has all parts visible; i.e. Sk =

{⋃n
i=1 pik}

⋃{⋃i 6=j, 1≤i,j≤n qijk},∀k = 1 to M , where pik ⊂ R2 and qijk ⊂ R2 are

the corresponding 2D projections of Pi and Qij respectively. The problem we are

interested now is, given an instance of S, say S1, how to obtain a representation

R̃(.) such that,

R̃(S1) = R̃(Sk), ∀k = 1 to M (2.1)

2.3 Proposed Method

In pursuit of (2.1), we make the following assumptions. (i) X has approx-

imate convex parts Pi that are piece-wise planar, and (ii) X is imaged using a

weak-perspective (scaled orthographic) camera to produce {Sk}M
k=1. Let each Sk be

represented by a set of t points {ulk}t
l=1. Given two such points u1k, u2k ∈ Sk, we

12



would now like to obtain a distance D such that

D(u1k, u2k) = c, ∀k = 1 to M (2.2)

where c is a constant, using which a representation R̃(.) satisfying (2.1) can be

obtained. Now to preserve distances D across non-planar articulations, we need to

account for (atleast) two sources of variations. First, we compensate for changes

in the 2D shape S due to changes in viewpoint V and due to the varying effect

of imaging process on different regions of a non-planar X, by performing separate

affine normalization to each part pik ∈ Sk. Let T denote the transformation that

maps each part pik to p′ik. Inherently, every point ulk ∈ Sk gets transformed as

T (ulk) → u′lk, where the transformation parameters depend on the part to which

each point belongs. Next, to account for changes in Sk due to articulations A,

we relate the two points u′1k, u
′
2k ∈ Sk using the inner distance ID [115] which is

unchanged under planar articulations. Essentially, we can write (2.2) as

D(u1k, u2k) = ID(u′1k, u
′
2k),∀k = 1 to M (2.3)

which, ideally, can be used to construct R̃ (2.1). But, in general,

D(u1k, u2k) = c + εk,∀k = 1 to M (2.4)

where,

εk = εPk
+ εDk

+ εSk
,∀k = 1 to M (2.5)

is an error that depends on the data Sk. εPk
arises due to the weak perspective

approximation of a real-world full-perspective camera. εDk
denotes the error in
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the inner distance when the path between two points, u1k and u2k, crosses the

junctions qijk ∈ Sk; this happens because the shape change of qijk, caused by an

arbitrary deformation of the 3D junction Qij, can not be approximated by an affine

normalization. But this error is generally negligible since the junctions qijk are

smaller than the parts pik. εSk
is caused due to changes in the shape of a part pik,

while imaging its original piece-wise planar 3D part Pi that has different shapes

across its planes. An illustration is given in Figure 2.2(a).

Under these assumptions, we propose the following method to solve for (2.1).

By modeling an articulating shape S ⊂ R2 as a combination of approximate convex

parts pi connected by non-convex junctions qij, we

1. Determine the parts of the shape by performing approximate convex decom-

position with a robust measure of convexity.

2. Affine normalize the parts, and relate the points in the shape using inner

distance to build a shape context descriptor.

We provide the details in the following sub-sections.

2.3.1 Approximate Convex Decomposition

Convexity has been used as a natural cue to identify ‘parts’ of an object [88].

An illustration is given in Figure 2.2(b), where the object consists of two approximate

convex parts p1 and p2, connected by a non-convex junction q12. Since exact convex

decomposition is NP-hard for shapes with holes [117], there are many approximate

solutions proposed in the literature (eg. [114]). An important component of this
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Figure 2.2: (a): Error εSk
(2.5) illustrated by 2D projections, pik, with the camera

parallel to planes 1 and 2. (b): Our model of an articulating object with two

approximate convex parts p1 and p2, connected by a non-convex junction q12. (c):

Variation between ID and ED for a pair of points (green dots). ID − ED is

large for non-convex points, with the yellow dots indicating junction regions. (d):

Information conveyed by (2.6) on the potential convex neighbors of ul. The shape

is enclosed by dashed red line. Color of other points um is given by ED(ul,um)
ID(ul,um)

, with

value 1 (white) for convex neighbors and tending towards 0 (black) for non-convex

neighbors.

problem is a well-defined measure of convexity for which there are two broad cate-

gories of approaches namely, contour-based and area-based. Each has its own merits

and limitations, and there are works addressing such issues (eg. [155, 218, 150]).

But the fundamental problems, that of the intolerance of contour-based measures to

small boundary deformations, and the insensitivity of area-based measures to deep

(but thin) protrusions of the boundary, have not been addressed satisfactorily.
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2.3.1.1 A New Area-based Measure of Convexity

In this work, we focus on the problem with existing area-based measures.

We start from the basic definition of convexity. Given t points constituting an N-

dimensional shape S ′, the shape is said to be convex if the set of lines connecting

all pairs of points lie completely within S ′. This definition, in itself, has been used

for convex decompositions with considerable success (eg. [170, 190]). What we are

interested here is to see if a robust measure of convexity can be built upon it.

We make the following observation. Given two points u1, u2 ∈ S ′, let ID(u1, u2)

denote the inner distance between them, and ED(u1, u2) denote their Euclidean

distance. For a convex S ′, ID = ED for any given pair of points, whereas for a non-

convex S ′ this is not the case, as shown in Figure 2.2(c). We can see that, unlike the

Euclidean distance, the inner distance inherently captures the shape’s boundary and

hence is sensitive to deep protrusions along it. Whereas, the difference between ID

and ED is not much for minor boundary deformations. Using this property, which

significantly alleviates the core issue of the existing area-based convexity measures,

we propose a new measure of convexity as follows

1− 1

(t2 − t)

∑

ul∈S′

∑

um∈S′,m6=l

(
1− ED(ul, um)

ID(ul, um)

)
(2.6)

where t is the number of points in S ′, and 1 ≤ l,m ≤ t. For a perfectly convex object,

this measure will have a value one. We evaluate the robustness of this measure in

Section 2.4.3, and discuss how it conforms to the properties that a convexity measure

should satisfy in the Appendix.
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2.3.1.2 An Algorithm to Obtain Approximate Convex Segments

We now use (2.6) to segment an articulating shape S into approximate convex

regions pi. We first study if ED(u1,u2)
ID(u1,u2)

, in addition to saying whether points u1 and

u2 belong to a convex region, can shed more information on the potential ‘convex

neighbors’ of a particular point u1. We proceed by considering a 2D shape S ′1 having

two convex regions, shown in Figure 2.2(d), and measure how ED(u1,.)
ID(u1,.)

from u1 to

all other t − 1 points in S ′1 vary. We observe that for those points lying in the

same convex region as u1 this term has a value one, whereas its value decreases

for points that lie deeper into the other convex region. Hence (2.6) also gives a

sense of ordering of convex neighbors around any specific point of interest. This is

a very desirable property. Based on this, we formulate the problem of segmenting

an articulating shape S ⊂ R2 as,

min
n,pi

n∑
i=1

∑
ul∈pi

∑

um∈pi,ul 6=um

(
1− ED(ul, um)

ID(ul, um)

)
(2.7)

where 1 ≤ l, m ≤ t, n is the desired number of convex parts, and pi are the cor-

responding convex regions. We then obtain an approximate convex decomposition

of S by posing this problem in a Normalized cuts framework [171] and relating all

points belonging to S using the information conveyed by (2.6). The details are

provided in Algorithm 1, which is applicable for any N-dimensional shape S ′.

Estimate of the Number of Parts: We automatically determine the potential

number of parts n using the information contained in (2.6). We do this by identifying

junctions qij, i 6= j, 1 ≤ i, j ≤ n, which are the regions of high non-convexity. For

those pair of points with ID 6= ED, we analyze the shortest path SP using which

17



Given a set of points t corresponding to an N-dimensional articulating shape

S ′ (which can be a contour or silhouette or voxel-sets, for instance), an

estimate n(> 0) of the number of convex parts, and the desired convexity (a

number between 0 and 1) for the parts,

(i) Connect every pair of points (ul, um) ∈ S ′ with the following edge weight

wulum = exp−(#junctions(ul,um)) ∗ exp

−‖1−ED(ul,um)
ID(ul,um)

‖22
σ2

I ∗




exp
−‖ID(ul,um)‖22

σ2
X if‖ ID(ul, um)− ED(ul, um) ‖2≤ T2

0 otherwise

(2.8)

(ii) Do: Number of segments from n− η to n + η (to account for possible

errors in junction estimates, see Figure 2.3(a) for example)

(iii) Perform segmentation using Normalized cuts [171]

(iv) Until: The resulting segments satisfy the desired convexity (2.6).

Algorithm 1: Algorithm for segmenting an N-dimensional shape into approx-

imate convex parts.
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their inner distance is computed. This SP is a collection of line segments, and its

intermediate vertice(s) represent points, which by the definition of inner distance

[115], bridge two potentially non-convex regions. This is illustrated in Figure 2.2(c)

(see the yellow dots). We then spatially cluster all such points using a sliding window

along the contour, since there can be many points around the same junction. Let

the total number of detected junctions be nj. The initial estimate of the number of

parts n is then obtained by n = nj + 1, since a junction should connect at least two

parts.

With this knowledge, we define the edge weight between a pair of points in

(2.8) where the first two terms collectively convey how possibly can two points lie in

the same convex region, and the third term denotes their spatial proximity. T2, σI

and σX are thresholds chosen experimentally. T2 governs when two nodes need to

be connected, and is picked as the mean of ID(ul, um) − ED(ul, um), 1 ≤ l, m ≤ t.

σI and σX are both set a value of 5. We chose η = 2 and the desired convexity

to be 0.85 in all our experiments. Sample segmentation results of our algorithm on

silhouettes and voxel data are given in Figure 2.3.

2.3.2 Shape Representation Invariant to Non-planar Articulations

We now have an approximate convex decomposition of the articulating shape

S ⊂ R2, i.e. S = {⋃n
i=1 pi}

⋃{⋃i6=j, 1≤i,j≤n qij}. Given a set of M 2D projections

of the 3D articulating shape X, {Sk}M
k=1 with all n parts visible, we want to find a

representation R̃ that satisfies (2.1). As before, let {ulk}t
l=1 be the number of points
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(a) (b)

(c)

Figure 2.3: (a): Result of the segmentation algorithm (Section 2.3.1.2) on a 2D

shape. Junction detection (yellow dots), initial segmentation, followed by the refined

segmentation using the desired convexity (=0.85 here) as the user input. (b) Results

on shapes from Brown [169] (Top row) and MPEG-7 [105] (Bottom row) datasets.

(c): Segmenting a shape represented by voxel-sets using the same algorithm.
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constituting each Sk. Let u1k, u2k ∈ Sk, be two such points. We now compute a

distance D(u1k, u2k) satisfying (2.2) using a two step process,

2.3.2.1 Affine Normalization

To compensate for the change in shape of Sk due to the varying effect of the

imaging process on different parts of the non-planar X and due to the changes

in viewpoint V , we first perform part-wise affine normalization. This essentially

amounts to finding a transformation T such that,

T (pik) → p′ik (2.9)

where T fits a minimal enclosing parallelogram [168] to each pik and transforms it

to a unit square. Hence this accounts for the affine effects that include, shear, scale,

rotation and translation. This is under the assumption that the original 3D object

X has piece-wise planar parts Pi for which, the corresponding 2D part pik ∈ Sk can

be approximated to be produced by a weak perspective camera.

2.3.2.2 Articulation Invariance

Let u′1k, u
′
2k be the transformed point locations after (2.9). As a result of T , we

can approximate the changes in Sk due to 3D articulations A, by representing them

as articulations in a plane. Hence, we relate the points u′1k, u
′
2k using inner distance

(ID) and inner angle (IA) [115] that are preserved under planar articulations. We

then build a shape context descriptor [20] for each point u′lk, which is a histogram
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hlk in log-polar space, relating the point u′lk with all other (t− 1) points as follows

hlk(z) = #{u′mk,m 6= l, 1 ≤ m ≤ t : ID(u′lk, u
′
mk)× IA(u′lk, u

′
mk) ∈ bin(z)} (2.10)

where z is the number of bins. We now construct the representation R̃(Sk) =

[h1k h2k . . htk] that satisfies (2.1) under the model assumptions of Section 2.3.

2.4 Experiments

We performed two categories of experiments to evaluate our shape descriptor

(2.10). The first category measures its insensitivity to articulations of non-planar

shapes on an internally collected dataset, since there is no standard dataset for

this problem. Whereas, the next category evaluates its performance on 2D shape

retrieval tasks on the benchmark MPEG-7 [105] dataset. We then validated the

robustness of our convexity measure (2.6) on the dataset of Rahtu et al [150].

For all these experiments, given a shape S ⊂ R2, we model it as

S = {⋃n
i=1 pi}

⋃{⋃i6=j, 1≤i,j≤n qij}. We then sample 100 points along its contour, by

enforcing equal number of points to be sampled uniformly from each affine normal-

ized part p′i. Then to compute the histogram (2.10), we used 12 distance bins and 5

angular bins, thereby resulting in total number of bins z = 60. The whole process,

for a single shape, takes about 5 seconds on a standard 2GHz processor.

2.4.1 Non-planar Articulations

We did two experiments, one to measure the variations in (2.10) across intra-

class articulations, and the other to recognize five different articulating objects.
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(a) (b)

Figure 2.4: Dataset with non-planar articulations: Intra-class variations of an artic-

ulating human. (a): A set of actions observed from a single camera. (b): The same

action observed by 4 cameras. The regions obtained from segmentation (Section

2.3.1) along with the points having similar shape representation (Section 2.3.2), are

color-coded.

2.4.1.1 Intra-class articulations

We collected data of an articulating human, observed by four cameras, with the

hands undergoing significant out-of-plane motion. The silhouettes, shown in Figure

2.4, were obtained by performing background subtraction, where the parts pi of

the shape (from Section 2.3.1) along with some points having similar representation

(2.10) are identified by color-codes.

We divided the dataset of around 1000 silhouettes, into an unoccluded part

of about 150 silhouettes (where there is no self-occlusion of the human) and an

occluded part, and compared our representation (2.10) with the inner distance shape

context (IDSC) [115] that is insensitive to articulations when the shape is planar.

We chose to compare with this method since, it addresses articulation invariance in

2D shapes from the ‘representation’ aspect rather than matching. We used dynamic

programming to obtain point correspondences between two shapes. Given in Table
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Method Matching cost (mean ± standard deviation)

Without occlusion With occlusion

IDSC [115] 0.48 ± 0.21 3.45 ± 1.63

Ours 0.025 ± 0.0012 0.46 ± 0.11

Table 2.1: Shape matching costs on the dataset with an articulating human. The

cost for our descriptor is around one-tenth of that of [115].

2.1 are the mean and standard deviations of the difference (in L2 sense) of the

descriptions (2.10) of the matched points. We do this for every pair of shapes in our

dataset, with and without occlusion.

It can be seen that the matching cost for our descriptor is significantly less for

the unoccluded pair of shapes, and is noticeably lower than [115] for the occluded

pair too. This, in a way, signifies that our model assumptions (Section 2.3) is a

good approximation to the problem of representing a shape invariant to non-planar

articulations (Section 2.2).

2.4.1.2 Inter-class variations

We now analyze how our representation (2.10) can be used for recognition

across the 2D shapes produced by different 3D non-planar articulating objects. We

collected silhouettes of five different objects, a human and four robots, performing

articulations observed from different viewpoints. There were ten instances per sub-

ject, with significant occlusion, leading to fifty shapes in total as shown in Figure
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Figure 2.5: Dataset of non-planar articulations of different subjects. Four robots

and human, with a total of 50 shapes.

2.5. We compared our algorithm with IDSC in both a leave-one-out recognition

setting by computing the Top-1 recognition rate, and also in a validation setting

using the Bulls-eye test that counts how many of the 10 possible correct matches

are present in the top 20 nearest shapes (for each of the 50 shapes). We report

the results in Table 2.2. It can be seen that our descriptor, in addition to handling

non-planar articulations, can distinguish different shapes. The errors in recognition

are mostly due to occlusions, which our model can not account for. It is an inter-

esting future work to see how to relax our assumptions to address the more general

problem stated in Section 2.2.
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Method Top-1 Recognition rate (in %) BullsEye score (in %)

IDSC [115] 58 39.4

Ours 80 63.8

Table 2.2: Recognition across inter-class non-planar articulations.

2.4.2 Shape Retrieval

We then evaluated our descriptor for the 2D shape retrieval task to study its

ability in handling general shape deformations, in addition to pure articulations.

We used the benchmark MPEG-7 dataset [105], which contains 70 different shape

classes with 20 instances per class. This is a challenging dataset with significant

intra-class shape deformations. Some example shapes are given in Figure 2.3(b).

The recognition rate is calculated using the Bulls-Eye test by finding the top 40

closest matches for each test shape, and computing how many of the twenty possible

correct matches are present in it. The retrieval rates are given in Table 2.3, and we

compare with the most recent and other representative methods.

Almost all shapes in this dataset are planar. So the least we would expect

is to perform as well as [115], since but for handling non-planar articulations our

representation resembles IDSC. The improvement using our representation is mainly

due to cases where the shapes have distinct part structure, and when the variations

in the parts are different. A part-driven, holistic shape descriptor can capture such

variations better. It is interesting to see that we perform better than methods like

[208, 209] that use sophisticated matching methods by seeing how different shapes

in the dataset influence the matching cost of a pair of shapes. Hence through
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Algorithm BullsEye score (in %)

SC+TPS [20] 76.51

Generative models [181] 80.03

IDSC [115] 85.40

Shape-tree [63] 87.70

Label Propagation [208] 91.00

Locally constrained diffusion [209] 93.32

Ours 93.67

Table 2.3: Retrieval results on MPEG-7 dataset [105].

this study, we would like to highlight the importance of a good underlying shape

representation.

2.4.3 Experiment on the Convexity Measure

Finally, we performed an experiment to evaluate our convexity measure (2.6)

by comparing it with the recent work by Rahtu et al [150]. Since there is no stan-

dard dataset for this task, we provide results on their dataset in Figure 2.6. We

make two observations. 1) For similar shapes (text in red and blue), the variation

in our convexity measure is much smaller than that of [150]. This reinforces the

insensitivity of our measure to intra-class variations of the shape, which is very de-

sirable. 2) It can also been seen that our convexity measure is very sensitive to

lengthy disconnected parts (text in green). This is mainly because, we compute

pair-wise variations in ID and ED for all points in the shape, which will be high in

such cases. These results, intuitively, are more meaningful than that of [150].
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Figure 2.6: Performance of our convexity measure on the dataset of [150]. Given

at bottom of each shape are the convexity measures of [150] followed by ours (2.6).

Our measure is insensitive to intra-class shape variations (text in red and blue), and

is more sensitive when a part of the shape is disconnected from other parts (text in

green).

2.5 Discussion

We presented a method to represent a 2D projection of a non-planar shape

invariant to articulations, when there is no occlusion. By assuming a weak per-

spective camera model, we showed that a part-wise affine normalization can help

preserve distances between points, upto a data-dependent error. We then studied its

utility through experiments for recognition across non-planar articulations, and for

general shape retrieval. It is interesting to see how our assumptions can be relaxed

to address this problem in a more general setting.

2.6 Appendix: Properties of the convexity measure

Here we verify the conformity of our convexity measure (2.11),

1− 1

(t2 − t)

∑

ul∈S′

∑

um∈S′,m6=l

(
1− ED(ul, um)

ID(ul, um)

)
(2.11)
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to the set of four properties that such a measure must satisfy [218].

(1) A convexity measure must be a number from (0, 1]

It can be seen that the maximum value of (2.11) can not exceed 1 since ED ≤ ID,

and hence, the minimum value of (2.11) can not be less than 0.

(2) The convexity measure of the given shape is 1 iff the shape is convex

It can be seen that (2.11) will have the value 1 only if ED = ID for all point-pairs,

and this by definition of ED and ID happens only for convex objects.

(3) There are shapes whose convexity measure is arbitrarily close to 0, implying that

there is no gap between 0 and the minimal possible value of the measure

We show this by example. Consider a star with ns thin legs connected together

by a very small junction (like the last shape in Figure 2.6, when the thickness of

the parts approaches zero). For such a shape, ED− ID will be arbitrarily large for

most of the points, except for those small number of points lying within the same

leg. Hence, the overall convexity measure will be close to zero in such cases.

(4) The convexity measure is invariant under similarity transformation of the shape

We will first deal with scaling. The results for translation and rotation follow

from this. Let S̃1 be a shape bounded by closed contour, and let S̃2 denote its

scaled version by a factor s. Let the area of two shapes be f(S̃1) and f(S̃2). Then,

f(S̃2) = s2f(S̃1). Moving into polar co-ordinates, let S̃1(r, θ) be the continuous space

equivalent of the term
∑

ul,um∈S̃1,l 6=m

(1− ED(ul, um)

ID(ul, um)
) in (2.11). We now compute the

ensemble mean (E1) of S̃1(r1, θ1) and compare it with that of S̃2(r2, θ2), E2, to verify

if the convexity measure is invariant to scaling. Assuming points to be sampled
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according to uniform distribution from S̃1 and S̃2,

E1 =
1

f(S̃1)

∫

S̃1

S̃1(r1, θ1)r1dr1dθ1, E2 =
1

f(S̃2)

∫

S̃2

S̃2(r2, θ2)r2dr2dθ2 (2.12)

Since r2 = sr1, and S̃2(sr1, θ2) = S̃1(r1, θ1) we have

E2 =
1

s2f(S̃1)

∫

S̃1

S̃1(r1, θ1)sr1sdr1dθ1 = E1 (2.13)

Since the ensemble means E1 and E2 are the same, given large number of samples,

their empirical means obtained from (2.11) will converge to the same value (from

the Central Limit Theorem). Hence, (2.11) is invariant under scale. Rotation and

translation will not change (2.11) since the distances (ED and ID) are preserved.

Hence proved.
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Chapter 3

A Blur-robust Descriptor with Applications to Face Recognition

Understanding the effects of blur, which normally arises due to out-of-focus

lens, atmospheric turbulence, and relative motion between the sensor and objects

in the scene, is an important problem in image analysis applications such as face

recognition. The image formation equation modeling the blurring process can be

written as,

ỹ(n1, n2) = (y ∗ k)(n1, n2) + η(n1, n2) (3.1)

where (n1, n2) denotes the pixel location at which a 2D convolution ∗ is performed

between a d1 × d2 clean image y(d1×d2) and an unknown blur point-spread function

(PSF) k(b1×b2), to result in a blurred image1 ỹ(d1×d2). The ubiquitous noise present

in the system, which can be due to quantization, or other sensor-induced errors,

is represented by η(d1×d2). Existing approaches to handle the effects of blur can be

classified as: (i) inverse methods based on deblurring, and (ii) direct methods based

on invariants.

The goal of deblurring is to estimate the clean image y from the observed

blurred image ỹ. Even with complete knowledge of the blur kernel k, though this

is an assumption which is hardly true in practice, inverting (3.1) to obtain y is an

1Although convolution of two signals results in a new signal whose size is larger than the other

two signals, we are interested in the effects of convolution only on the region pertaining to spatial

support of the input signal with larger size.
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ill-posed problem due to the unknown nature of noise. Techniques for performing

image restoration have been actively studied by the image processing community

from the early 70’s [9], and some of the prominent methodologies include: blind

deconvolution [111] that does not assume any knowledge of the blur kernel, and

thereby attempts to solve an under-constrained problem of estimating both k and y

from ỹ, non-blind deconvolution which assumes models for blur [212], learning priors

on clean image statistics [64, 110], and using coded-computational photography

techniques [2]. Regularization methods based on total variation [158] and Tikhonov

regularization [179] constitute an integral part of this process. Such ideas have also

been applied for recognizing faces across blur [90, 137, 136, 174].

In contrast to this, direct methods based on invariants search for those prop-

erties of the original image that are preserved across blur (under the assumption of

zero noise). This is suited for applications where the goal is not to recover the entire

clean image, but to extract some pertinent features using which further analysis can

be done. Most efforts in this line of research are devoted to the specific class of

centrally symmetric blur PSF’s, which account for blur due to out-of-focus lens and

atmospheric effects. The main observation behind these methods is as follows: Let

ỹF , yF , and kF denote the Fourier transform of ỹ, y, and k respectively. Then,

under no noise, (3.1) can be written as, ỹF (u, v) = yF (u, v)kF (u, v), where (u, v)

denote the co-ordinates in frequency domain. The phase of these signals are related

by, ∠ỹF (u, v) = ∠yF (u, v) + ∠kF (u, v). Since centrally symmetric kernels have a

phase of either 0 or π, the tangent of phase, tan(∠ỹF (u, v)) = tan(∠yF (u, v)), is

invariant to blur. Using this property, moment-based invariants were derived both
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in spatial and Fourier domain, e.g. [69, 68]. Deriving invariants for linear motion

blur has been addressed by [70]. There have been extensions of these works, which

in addition to blur, accommodate invariance to rotation, similarity, and affine trans-

formations [67, 176], and have been used for recognizing objects/ faces in distorted

images [138, 4]. Robustness to noise is generally studied empirically.

Contributions: Our method belongs to the latter category. Unlike other meth-

ods that impose restrictions on the parametric form of the blur kernel, we represent

an arbitrary blur kernel as a linear combination of orthonormal basis functions that

span its space, and propose:

• A new blur invariant that can handle more general class of blurs, by creating a

subspace that results from convolution of an image with each individual basis

function, which thereby contains (but not limited to) the set of all blurred

versions of that image;

• We provide a Riemannian geometric interpretation of the space spanned by

these blur invariants, by studying them as points on the Grassmann manifold;

• We then utilize algorithms derived from this interpretation to perform face

recognition across blur, where we demonstrate superior performance of the

proposed method over various state-of-the-art methods.

Outline of the chapter: We derive the proposed blur invariant in Section 3.1.

In Section 3.2, we study the utility of the invariant for the problem of recognizing

faces under arbitrary blur, by considering degradation due to spatially uniform blur

and spatially varying blur. We discuss the non-Euclidean nature of the space of
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blur-invariants and show that it can be studied as a Grassmann manifold. Section

3.3 presents experiments, where we study the robustness of the invariant under dif-

ferent proportions of quantization noise and other facial variations such as, lighting,

alignment, and expression between the gallery and probe. Section 3.4 concludes the

chapter.

3.1 Space of Blur and Blur-Invariants

The goal of this section is to obtain a representation of an image y that is

invariant to blurring with arbitrary k, under three assumptions: (i) there is no noise

in the system (η = 0), (ii) the maximum size of the blur kernel b1×b2 = N is known,

and (iii) the N ×N BTTB matrix corresponding to the unknown blur PSF, under

zero boundary conditions for convolution, is full rank. More discussions on these

assumptions are provided in the later part of this section.

For the case of 2D signals2, we write any square-integrable, shift-invariant

kernel k of size b1× b2 as, k =
N∑

i=1

αiφi, where φi’s are a complete set of orthonormal

basis functions for Rb1×b2 , and αi’s are their combining co-efficients. Hence, under

no noise, (3.1) becomes,

ỹ = y ∗
N∑

i=1

αiφi (3.2)

where the specific form of k is determined by αi’s. We now create a dictionary

D(y) = [(y ∗ φ1)
v(y ∗ φ2)

v . . (y ∗ φN)v] (3.3)

2Although the following argument holds for convolution in higher dimensions, our primary focus

will be on 2D signals.
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of size d × N , where d = d1 × d2 with d > N , and (.)v denotes the vectorization

operation. The column span of D(y) is a subspace containing the set of convolutions

of y with arbitrary kernels of maximum3 size b1 × b2. (i.e.) span(D(y)) = Y =

{y ∗ k|k ∈ Rb1×b2}, which is an N -dimensional subspace in Rd. It is important to

note here that the set of all blurred images of y (produced by convolving y with

physically realizable blur kernels that have all their co-efficients non-negative, and

summing to one), span only a part of this subspace.

Proposition 3.1.1 span(D(y)) is a blur-invariant of y. In other words, span(D(y)) =

span(D(ỹ)), where ỹ is the blurred version of y.

Proof Let Φ = [(φ1)
v (φ2)

v . . (φN)v] denote the N×N orthonormal matrix created

from the basis functions. By writing convolution as matrix multiplication, (3.3)

becomes D(y) = Y Φ, where Y is a d × N matrix. The rows of Y are created by

arranging the elements of y such that their multiplication with a φi will realize the

effect of convolution (of y with φi) at all d corresponding pixels. Since Φ is full rank,

span(D(y)) = span(Y ).

Now to prove Proposition 3.1.1, let us consider kS to be the unknown blur

kernel of (maximum) size b1× b2 that produced ỹ from a clean image y. From (3.3)

we have,

D(ỹ) = [(ỹ ∗ φ1)
v . . (ỹ ∗ φN)v] = [(y ∗ kS ∗ φ1)

v . . (y ∗ kS ∗ φN)v]

= Y [(kS ∗ φ1)
v(kS ∗ φ2)

v . . (kS ∗ φN)v] = Y KSΦ (3.4)

3The only user-defined parameter is the size of the kernels, b1 × b2 = N , and we discuss more

on it in Sec 3.3.
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GN,dGN,d

span(D(y2))span(D(y2))

span(D(ỹ)) = span(D(y1))span(D(ỹ)) = span(D(y1))

[(y1 ∗ φ1)
v (y1 ∗ φ2)

v . . (y1 ∗ φN )
v][(y1 ∗ φ1)

v (y1 ∗ φ2)
v . . (y1 ∗ φN )

v]

[(ỹ ∗ φ1)
v (ỹ ∗ φ2)

v . . (ỹ ∗ φN )
v][(ỹ ∗ φ1)

v (ỹ ∗ φ2)
v . . (ỹ ∗ φN )

v]

[(y1 ∗ φ1)
v (y1 ∗ φ2)

v . . (y1 ∗ φN )
v] + (η)v[(y1 ∗ φ1)

v (y1 ∗ φ2)
v . . (y1 ∗ φN )

v] + (η)v
span(D(y1) + (η)

v)span(D(y1) + (η)
v)

[(y2 ∗ φ1)
v (y2 ∗ φ2)

v . . (y2 ∗ φN )
v][(y2 ∗ φ1)

v (y2 ∗ φ2)
v . . (y2 ∗ φN )

v]

Figure 3.1: Representing the blur-invariants as points on the Grassmann manifold

GN,d. Given two subjects, y1 and y2, and the blurred test face ỹ belonging to

subject 1, we illustrate how the Yi’s, created from them lie on the Grassmann.

Y1 = span(D(y1)) and Ỹ = span(D(ỹ)) map to the same point, while span(D(y1)+

η), where the noise is due to different lighting, lies closer to span(D(y1)) than

span(D(y2)).

where KS is the BTTB matrix of size N ×N corresponding to the kernel kS. Since

the column span of D(ỹ) and D(y) are same if KS is full rank, span(D(y)) = Y is

a blur-invariant.

Discussion: (i) Intuitively, what we are claiming here is: given a clean image y and

its corresponding blurred image ỹ, we can use the basis functions to either generate

a blur function that converts y to ỹ, or to produce a deblur function that brings ỹ to

y. Further, since the basis functions can span any blur or deblur function of a known

maximum size, we do not have constraints on the parametric form of blur functions

that can be handled (unlike other invariants). (ii) Regarding the assumption on

the rank of KS, we would like to stress that although some blur PSF’s are not

invertible, their BTTB matrices are generally full rank (see [85], and the references

therein). These BTTB matrices, however, can be extremely ill-conditioned at times.
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But since we do not invert these matrices, we do not encounter problems related to

high condition numbers of matrix inversion that are prevalent in deblurring-based

approaches. (iii) Having said that, there always exist practical scenarios such as

the non-zero measurement noise that render some of our assumptions invalid. We

present an analysis on the robustness of the invariant to additive perturbations in

the Appendix.

3.2 Face Recognition Across Blur

We now study the utility of invariant Y for the problem of recognizing faces

across blur, where we empirically evaluate its robustness to sensor-related noise and

the presence of other facial variations between the gallery and probe. Let us consider

an M class problem with {yi}B
i=1 denoting the gallery faces, either clean or blurred,

belonging to all subjects. Let ỹ denote the blurred probe image which belongs to

one of the M classes. The problem we are looking at is, given yi’s and ỹ, find the

identity i? ∈ {1, 2, ..., M} of ỹ. From the gallery and probe images, we first create

their respective dictionaries D(yi)’s and D(ỹ) using (3.3). We now compare Ỹ with

Yi to perform recognition.

3.2.1 Grassmann Manifold: Definition and some methodologies for

recognition

Computing similarity measures between subspaces is a well-studied problem.

Among such similarity measures, those that account for the underlying geometry of
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the problem imposed by some physical constraints, are more meaningful. The space

of blur-invariants can be identified with the Grassmann manifold GN,d, which is the

space of N -dimensional subspaces in Rd containing the origin. The blur-invariant

Y is a point on GN,d. An illustration is provided in Figure 3.1. Understanding the

geometric properties of the Grassmann manifold have been the focus of works like

[199, 60, 1], and these have been utilized in some vision problems with subspace

constraints, e.g. [17, 84, 120]. A compilation of statistical analysis methods on this

manifold can be found in [42]. Since a full-fledged explanation of these methods

is beyond the scope of this chapter, we refer the interested readers to the papers

mentioned above. We now use some of these results to compute the distance between

the blur-invariants. We specifically focus on the following two cases.

3.2.1.1 Finding distance between points on GN,d

The first method is to use the distance between points on the manifold for

classification, which has more relevance when the gallery contains only one image

per person. Formally, the Riemannian distance between two subspaces, say Y1, and

Y2, is the length of the shortest geodesic connecting those points on the Grassmann

manifold. One way of obtaining this length is to compute the direction (velocity)

matrix A such that the geodesic along that direction, while starting at Y1, reaches

Y2 in unit time. A is computed using the inverse exponential map. However, since

the expression for the inverse exponential map is not available analytically for the

Grassmann manifold, we use a numerical method [79] as given in Algorithm 2. The
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length of A gives the distance4 dG between Y1 and Y2, and we use trace(AAT ),

where (.)T is the transpose operator, as the metric to compute the length. More

formally, if AY1,Y2 is the direction matrix between Y1 and Y2,

dG(Y1,Y2) = trace(AY1,Y2A
T
Y1,Y2

) (3.5)

We then perform recognition using dG, in a nearest-neighbor fashion, as given in

(3.7,3.9).

3.2.1.2 Learning from data on GN,d

In cases where there is more data available for each person in the gallery

portraying other facial variations, it paves the way for performing statistics on

the point cloud on GN,d. Since the blur-invariants have a resultant dimension of

(d − N) × N [60], with d significantly higher than N , it would require large num-

ber of samples to learn class-specific distributions. Hence we pursued the method

of Hamm and Lee [84] that performs kernel linear discriminant analysis on the

blur-invariants using the projection kernel kP (D̄(y1), D̄(y2)) = ‖D̄(y1)
T D̄(y2)‖2

F =

trace[(D̄(y1)D̄(y1)
T )(D̄(y2)D̄(y2)

T )], which is a Mercer kernel that implicitly com-

putes the inner product between D̄(yi)
′s in the space obtained using the following

4Note: We also note that the distance between Y ′is can be obtained by studying the differential

geometry of GN,d through a study of geometry of N -planes in the Euclidean space Rd [199]. An

example of such a distance is the arc-length metric d2
arc(Y1,Y2) =

N∑

i=1

θ2
i , a function of principal

angles θi between the two subspaces spanned by the (orthonormalized) columns of d×N matrices

D(y1) and D(y2) respectively, which can be derived from the intrinsic geometry of the Grassmann

manifold [199, 60].
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Given two dictionaries D(y1) and D(y2) whose column space is a point on GN,d, we

determine the velocity matrix A such that travelling in this direction from Y1 leads to Y2

in unit-time. Let D̄(y1) and D̄(y2) denote the d×N matrices obtained by

orthonormalizing the columns of D(y1) and D(y2) respectively.

• Compute the d× d orthogonal completion Q of D̄(y1).

• Compute the thin CS decomposition of QT D̄(y2) given by

QT D̄(y2) =




XC

YC


 =




U1 0

0 Ũ2







Γ(1)

−Σ(1)


V T

1

• Compute {φ̄i} which are given by the arcsine and arccos of the diagonal elements of Γ and

Σ respectively, i.e. γi = cos(φ̄i), σi = sin(φ̄i). Form the diagonal matrix Φ̄ containing φ̄i’s

as diagonal elements.

• Compute A = Ũ2Φ̄U1.

Algorithm 2: Numerical computation of the velocity matrix: The inverse

exponential map [79].
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embedding; ωP : GN,d → Rd×d, span(D̄(yi)) → D̄(yi)D̄(yi)
T . To make the chapter

self-contained, we present the details of this method in Algorithm 3.

3.2.2 Performing Recognition

3.2.2.1 Spatially uniform blur

In the case when k remains unchanged over all pixels (n1, n2) of a d1 × d2

image y (3.1), we perform recognition with the two subspace distances (SD), dG

(3.5) and KLDA (Algorithm 3), using the nearest neighbor classification method.

The identity of probe ỹ is determined by,

i? = arg min
i

SD(D(ỹ), D(yi)) (3.7)

3.2.2.2 Spatially varying blur

We now study the more difficult problem, where the blur kernel k is spatially

varying. This occurs when different parts of the scene are affected differently by

blur, with some common examples being, out-of-focus blur in objects with depth

discontinuities, and motion blur when there is a sudden change in intensity values

of a region due to object movements. The image formation equation for this case

can be written as,

ỹn = yn ∗ kn (3.8)

where the subscript n indicates the pixel location. Since a blur kernel acts on a

local spatial neighborhood, allowing it to change at every pixel location makes the

problem severely under-constrained. A common assumption made to overcome this
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From the gallery faces yi’s constituting M classes, and probe faces ỹi, compute their

respective dictionaries D(yi) and D(ỹi). Orthonormalize their columns to obtain D̄(yi) and

D̄(ỹi).

Training:

• Compute the matrix [Ktrain]ij = kP (D̄(yi), D̄(yj))

for all D̄(yi), D̄(yj) in the training set, where kP is the

projection kernel defined earlier.

• Solve maxγ L(γ) by eigen-decomposition (3.6), with K? = Ktrain.

• Compute the (M -1)-dimensional coefficients, Ftrain = γT Ktrain

Testing:

• Compute the matrix [Ktest]ij = kP (D̄(yi), D̄(ỹj))

for all D̄(yi) in training, and D̄(ỹj) in testing.

• Compute (M -1)-dimensional coefficients, Ftest = γT Ktest,

by solving for (3.6) with K? = Ktest.

• Perform 1-NN classification from the Euclidean distance

between Ftrain and Ftest

The Rayleigh quotient L(γ) is given by,

L(γ) = max
γ

γT K?(V̄ − 1B1T
B/B)K?γ

γT (K?(IB − V̄ )K? + σ2IB)γ
(3.6)

where K? is the kernel (Gram) matrix (Ktrain or Ktest), 1B is a uniform vector [1...1]T of

length B corresponding to the number of gallery images, V̄ is the block-diagonal matrix

whose mth block (m = 1 to M) is the uniform matrix 1Bm1T
Bm

/Bm, and Bm is the number

of gallery images in the mth class, and σ2IB is a regularizer to make computations stable.
Algorithm 3: Kernel Linear Discriminant Analysis (KLDA) [84].
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condition is to assume the blur to be locally uniform [37], which is valid in most

practical cases. Along these lines, if the blur is assumed to be uniform over a region

of size d′1 × d′2 (with d′1 > b1, and d′2 > b2), we can perform recognition by dividing

the image into T overlapping patches of size d′1 × d′2 each, and rewriting (3.7) as,

i? = arg min
i

T∑
t=1

SD(D(ỹ)t, D(yi)t) (3.9)

where the subscript t denotes the patch at which the quantities in (3.9) are com-

puted, and D(.)t’s are points on GN,d′ , d′ = d′1× d′2. The inherent assumption while

matching patches is that the faces are aligned. However, for those patches where

there is a transition between blur kernels, the column space of D(.)t will not be in-

variant to blur. The percentage of such instances depends on the nature of spatially

varying blur, and we perform an empirical study in Section 3.3.

3.3 Experiments

We performed two sets of experiments to study the robustness of the blur

invariant to noise. For the purpose of illustration, we express noise in the system

(3.1) as η = ηq + ηf , where ηq denotes the noise due to quantization (which is

relevant while studying synthetically created blur images) and other sensor-related

issues, and ηf denotes facial variations other than blur such as, lighting, expression,

alignment and occlusion, which are common in an unconstrained face recognition

setting. We now study, (i) the effect of ηq on recognition when blur is the only

source of variation between the gallery and probe (i.e. ηf = 0), and (ii) when there

are other facial variations ηf between the gallery and probe, where we analyze the
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Figure 3.2: Analyzing the effect of noise due to quantization and sensor-related

factors with uniform blur. (a): Comparing the mean error for intra-class faces,

and the difference in errors between inter-class faces and intra-class faces on YaleB

dataset, for dG. The scores are normalized with maximum possible error for the

inter-class faces. Range: minimum, mean, maximum. (b): Recognition rates for

dG on PIE and YaleB datasets. Range: minimum, mean, max. Noise settings (1-6)

with clean gallery: no noise, with ηq, with ηq and AWGN with SNR=50, 20, 10, and

5 dB. (7-12): same as previous six settings, but with a blurred gallery.

role of learning from data representative of such conditions.

A note on constructing D(.): In all these experiments, the only user-controlled

parameter is the maximum size of blur kernel, which determines the number of

columns N of the dictionary D(.). If (b?
1, b

?
2) denote the maximum of b1 and b2 over

all possible blur kernels, then the value of N should be b?
1 × b?

2. At the same time,

N < d since otherwise, the basis will span the entire image space. Hence, in our

experiments (except those on spatially varying blur), we chose N = d1/2 × d2/2.

The columns of the identity matrix IN were used to represent {φv
i }N

i=1, although any
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complete set of orthonormal basis functions can be used.

3.3.1 Effect of Quantization Noise

We first study how the recognition rates vary in the presence of quantization

noise (ηq), and different levels of additive white Gaussian noise (AWGN) that model

sensor-induced errors. We compute the distance between subspaces using dG (3.5)

with one image per person in the gallery, in the presence of synthetically created

uniform blur, spatially varying blur and blurred gallery. We performed experiments

using two datasets, the CMU-PIE [173] and the extended YaleB [108], to verify the

generalizability of these results. We used the illumination subset of PIE dataset

that has 68 subjects5 with 21 different lighting conditions, and the YaleB dataset

that has 38 subjects under 64 illumination settings. In this experiment, both gallery

and probe have the same lighting conditions.

3.3.1.1 Uniform blur

We synthetically created blurred images corresponding to the following four

categories; motion blur, out-of-focus blur, Gaussian blur, and non-parametric blur

(created by generating random non-negative values for a kernel that sum to one).

Experiments were performed across different blur kernel sizes (with the maximum

size being 24 × 20) and lighting condition of images (same for both gallery and

5All the images were resized to 48× 40, resulting in d = 1920. This results in N = 24× 20.
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probe), for the following settings: no noise (η = 0), with quantization noise6 ηq,

with ηq and AWGN resulting in the following four SNR values (in dB), 50, 20,

10 and 5. These settings were first used for clean gallery, and then repeated for

blurred gallery, thereby leading to twelve noise settings. Recognition was performed

in a one-vs-all fashion by comparing each probe with all gallery images using dG

(3.5,3.7). Hence for an experimental trial, independent of the twelve different noise

settings, the gallery and probe contain 68 images each for PIE dataset, and 38 each

for YaleB. The results averaged over several such trials for recognition rates on PIE

and YaleB datasets, and the statistics of error (distance dG) on YaleB dataset are

given in Figure 3.2.

Observations: From these results, we see that, (i) the difference in error be-

tween inter-class faces and intra-class faces reduce as noise increases. At the same

time, the mean error for intra-class faces increases with noise. This explains the

reason why recognition rate goes down with increasing noise levels. (ii) Even under

no noise, irrespective of a clean or blurred gallery, the mean error for correct matches

is non-zero. Although, theoretically, the span of the dictionary created from blurred

face of a subject is the same as that created from its clean face, the presence of

various system-related noise is the reason for such errors. (iii) For noise settings

under a blurred gallery, the matching error statistics follow similar trends as that

of clean gallery. This is primarily because, the invariant span(D(y)) is a subspace

containing the set of all blurred versions of an image y, and hence does not depend

6Since we synthetically generate blurred images, they are stored explicitly as image files before

processed by the algorithm so that the quantization effect is simulated.

46



0 2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recognition under spatially varying blur on PIE and YaleB datasets w/ and w/o patches

Noise setting

R
ec

og
ni

tio
n 

ra
te

 

 

PIE with patch

YaleB with patch

PIE no patch

YaleB no patch

Figure 3.3: Analyzing the effect of quantization noise with spatially varying blur.

Recognition rates for dG, on both PIE and YaleB datasets, with a patch-based clas-

sification (3.9) and with a uniform blur assumption while performing classification

(3.7). Range: minimum, mean and maximum.

on whether y is clean or blurred (Proposition 3.1.1). (iv) Computational time for

recognition on the PIE dataset: To compute the dictionary D(ỹ) for a probe face

and to evaluate (3.5,3.7), it takes about 0.5 seconds on a 4GHz processor.

3.3.1.2 Spatially varying blur

We then performed the same set of experiments when the nature of blur is

spatially varying (even for the blurred gallery). We selected arbitrary sized patches

from images, on which one of the four above-mentioned kernels were used to create

synthetic blurred images. To perform recognition, T different overlapping patches of
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size d′ = d1/2×d2/2 were extracted from the image, and their respective dictionaries

were created with N = d1/4× d2/4 columns. Also note that, many kernels used to

create blurred images were of size more than d1/4×d2/4. This was done to preserve

generalization with respect to the nature of spatially varying blur. With this setup,

recognition was performed using dG (3.5,3.9), and the results are presented in Figure

3.3. We also compared with recognition that does not use patches to account for

the spatially varying nature of the blur, but perform recognition by approximating

the blur as uniform (as in Section 3.3.1.1).

Observations: We can see that, (i) as in the case of uniform blur, the recogni-

tion rates decrease as noise increases. For the same noise setting, a further reduction

in recognition rates is observed when compared with uniform blur, especially for the

blurred gallery. This is primarily due to two cases where, (a) the size of blur kernel

is more than d1/4× d2/4 for which, the span of the dictionary D(.) will not contain

the blur kernel; and (b) even otherwise, in the regions experiencing a transition be-

tween blur kernels, span(D(.)) is not an invariant. (ii) Assuming the blur function

to be patch-wise uniform is better than approximating the spatially varying blur

to be uniform throughout the image. However, there is no standard solution for

determining the patch size.

3.3.2 With Other Facial Variations

We now study a more practical setup where we allow for other facial variations,

in addition to blur. The main focus, however, is not on explicitly accounting for
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Method Recognition rate (in %) - Type of blur

Gaussian Linear motion Both

Nishiyama et al [136] 88.3 82.3 82.9

Ours (dG) 97.21 97.15 97.12

Table 3.1: Performance comparison on FERET dataset [149] with different synthetic

blurs.

such variations, but rather to study the robustness of the invariant in their presence.

3.3.2.1 Comparison with existing methods

We used synthetically blurred faces from the FERET dataset [149], and real

blurred faces from the FRGC 1.0 dataset [148] for comparison, by following the

experimental setup presented in [137, 136]. We used the ‘fa’-gallery, and ‘fb’-probe

subsets of the FERET dataset, which has faces of 1001 subjects, with one image

per subject. Faces of the same person across ‘fa’ and ‘fb’ have small variations

in expression and alignment. The original image size of 128× 128 was resized to

64× 64. We created nine different synthetically blurred sets of ‘fb’ using Gaussian

kernels of size 5 × 5 with σ ranging from 0 to 8 in steps of 1, and added 30 dB

white Gaussian noise to perform recognition. The recognition rates are presented

in Figure 3.4, where we compare with existing deblurring-based methods. We then

created synthetic Gaussian blur with random values for σ in the range (0, 8], and

synthetic linear motion blur with the length of blur having values 5,10,15,20, at
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Method Recognition on Recognition on

a subset (in %) the full dataset (in %)

Hu and Haan [90] 67.1 -

Nishiyama et al [137] 73.5 -

Ahonen et al [4] - 45.9

Ahonen et al

(with lighting compensation) [4] - 74.5

Ours- dG (3.5,3.7) 87.1 69.6

Ours- dG

(with lighting compensation) - 84.2

Table 3.2: Performance comparison on the FRGC 1.0 dataset [148] with real blurred

images.
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Figure 3.4: Comparison of our method with the existing approaches Nishiyama et

al [136], Hu and Haan [90] on FERET dataset. Variations, in addition to synthetic

Gaussian blur include, expression and alignment.

angles 0, 0.25π, 0.5π, and 0.75π. White Gaussian noise was added to result in a

30dB SNR, and the recognition rates are given in Table 3.1. The main observation

is that the performance of our method is almost the same across different types of

blur in the test image (Proposition 3.1.1).

We then evaluated our method on the FRGC 1.0 dataset that has real blurred

images. We used the Expt. 4 protocol that has 152 subjects, with one clean face

per person in the gallery taken under controlled lighting. The test set contains

608 images, under uncontrolled lighting, of which the 366 affected by blur (mostly

due to out-of-focus camera) were chosen for the experiment. In addition to blur
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Figure 3.5: Examples of images, clean and blurred (both medium and extreme) from

the UMD remote face dataset. Other facial variations include lighting, occlusion,

expression and alignment.

and lighting, the gallery and test images have small variations in expression and

alignment. We resized the images to 64×64, and present the recognition results in

Table 3.2. We also compared with the invariant-based method of Ahonen et al [4]

on the same dataset, but with all 608 probe images. We present recognition rates

with and without lighting compensation (histogram equalization) in Table 3.2. We

observe an improved performance due to explicit accounting for lighting variations.

3.3.2.2 Learning ηf from data

We now consider the availability of data portraying different instances of ηf

to perform recognition. We used the UMD remote face dataset7 comprising of 17

subjects, where in addition to moderate-to-severe blur, there are moderate changes

7The dataset will be publicly available soon.
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Figure 3.6: Analyzing performance under unconstrained face variations in the UMD

remote face dataset. Studying the impact of distance measures with learning (3.6)

and without learning (3.5). (a): Testing on medium blurred images, recognition

rates with and without lighting compensation (histogram equalization). Range:

minimum, mean and maximum. (b): Same analysis, but with test images pertaining

to extreme blur.

in lighting, alignment, expression and occlusions. The experimental setup is as

follows. The gallery has 168 clean face images (i.e. no blur) with different examples

of ηf , with a maximum of 15 images per subject. We have two test sets with real

blur, one with 146 moderately blurred images, and an extremely blurred set of

63 images. Gallery and probe have different variations of ηf . Sample images are

shown in Figure 3.5. Recognition was performed using the nearest neighbor rule, (i)

without learning, using dG (3.5,3.7), and (ii) with learning using kernel discriminant

analysis (3.6,3.7). The results, as a function of maximum number of gallery images

per person, is shown in Figure 3.6. It can be seen that the recognition accuracy

does improve when more data is used, even when ηf is not explicitly accounted for.
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3.4 Discussion

We have made an attempt at understanding the space of blurred versions of

an image. We created a subspace resulting from convolutions of the image with

a complete set of orthonormal basis functions that could represent the blur kernel,

which under some assumptions, was shown to be invariant to blur. We demonstrated

the utility of this representation for face recognition under blur through experiments

on standard datasets, and analyzed its robustness to the presence of noise and

facial variations other than blur. From the point of view of performing robust face

recognition under unconstrained settings, it is interesting to study the integration

of explicit formulations of other facial variations such as lighting and pose, with this

blur-invariant.

3.5 Appendix: Robustness of the blur invariant - An analysis

Given a dictionary D(y), we are primarily interested in how the column span

of D̄(y) (obtained by orthonormalizing the columns of D(y) using an economical

SVD) is affected by perturbations. The following analysis is adapted from [175].

Let A be a m× n matrix, and let Ã = A + E refer to its perturbed version, where

E is the additive noise. Let

(U1 U2 U3)
H A(V1 V2) =




Σ1 0

0 Σ2

0 0




54



denote the singular value decomposition of A, in which the singular values are not

necessarily in the descending order. The singular subspaces we will bound are the

column spaces of U1 and V1. The perturbed subspaces will be the column spaces of

Ũ1 and Ṽ1 in the decomposition

(Ũ1 Ũ2 Ũ3)
H Ã(Ṽ1 Ṽ2) =




Σ̃1 0

0 Σ̃2

0 0




Let Φ be the matrix of canonical (principal) angles between the column space

of U1 and Ũ1, and let Θ be the matrix of canonical angles between the column space

of V1 and Ṽ1. [175] now derives bounds on Φ and Θ.

The bounds will not be cast in terms of E, but in terms of the residuals

R = AṼ1 − Ũ1Σ̃1, and S = AHŨ1 − Ṽ1Σ̃1.

Note that if E is zero, then R and S are zero. More generally,

‖R‖ ≤ ‖(Ã− E)Ṽ1 − Ũ1Σ̃1‖ ≤ ‖EṼ1‖ ≤ ‖E‖

with a similar bound for S. We now state the following theorem due to Wedin.

Theorem 3.5.1 (Wedin) If there is a δ > 0 such that

min |σ(Σ̃1)− σ(Σ2)| ≥ δ (3.10)

and

min σ(Σ̃1) ≥ δ, (3.11)

then
√
‖ sin Φ‖2

F + ‖ sin Θ‖2
F ≤

√
‖R‖2

F + ‖S‖2
F

δ
(3.12)
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where ‖.‖F is the Frobenius norm, and σ refer to singular values. Since δ is unknown,

we empirically evaluated the robustness of the invariant (which is primarily the

column span of the left singular vectors, obtained from an economical singular value

decomposition) to additive noise, as well as other facial variations.
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Chapter 4

Comparing and Combining Lighting Insensitive Approaches for Face

Recognition

There are many algorithms in the literature that address the problem of light-

ing insensitive 2D face recognition. This is a challenging problem because lighting

conditions drastically affects the appearance of a face. In this chapter, we attempt

to address this problem by understanding the relative merits of different lighting

insensitive representations. We make two main contributions. First, we compare a

number of algorithms (both class-based, and class-independent) from the perspec-

tive of how well they capture different properties of the human face such as, changes

in albedo, and changes in surface normal orientations. After analyzing the relative

strengths of these algorithms, we propose effective classifier combination schemes

that encode such information to produce better recognition performance.

Relation to Prior Work. There are quite a few works in the literature that

provide a comparative study of lighting invariant face recognition algorithms. For

instance, Ruiz-del-Solar and Quinteros [159] investigate a set of illumination com-

pensation and normalization approaches in an eigenspace-based face recognition

setup. They compare the algorithms based on the modeling stages required, sim-

plicity, speed and recognition rates. France and Nanni [71] compare the recognition

rates of a set of image based and 3D model based algorithms, and then propose a
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simple fusion algorithm based on the sum rule to highlight the advantage of classifier

fusion.

We differ from existing surveys in two aspects. First, we study how robust

different representations are, in capturing face properties (such as changes in albedo,

and surface normal orientation) under lighting variations. Next, we are specifically

interested in performing recognition when there is only one exemplar for each per-

son in the gallery. On top of this, we consider galleries with both homogenous and

heterogeneous lighting across different subjects. This setting, though restrictive,

applies to many real-life conditions wherein we may have only one sample picture of

a person (with arbitrary lighting condition) for recognition. This makes the problem

much more challenging. We consider two experimental settings. One (in Section

4.2), when there is no prior training information on the effect of typical lighting

changes on faces, where we analyze the performance of five class-independent rep-

resentations. And the other (in Section 4.3), which provides some training data

showing possible lighting conditions, wherein we also include four class-based algo-

rithms in the analysis, since they can use available lighting information to learn to

perform classification.

Contributions of this chapter. Given this experimental setup, we make the

following three observations to enable better understanding of lighting-insensitive

face recognition. First, after reviewing nine algorithms we evaluate in Section 4.1

(spanning both class-based and class-independent approaches), in Section 4.2.1 (and

in Section 4.3.1) we compare their performance on the PIE data set [173]. We find

that two very simple methods perform the best. Overall a very simple comparison
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Figure 4.1: Sample images from the CMU-PIE dataset [173]

method using the direction of the image gradient performs better than a number of

more recent approaches.

Second, we note that a face contains different sources of information, including

albedo changes (e.g., eyebrows), regions of rapid change in surface orientation (e.g.,

nose) and smooth regions (e.g., cheeks). By looking at individual regions, we can

get a better understanding of how well each algorithm makes use of each source of

information. In Section 4.2.2 we show experimentally that the relative performance

of different class-independent algorithms varies between different regions of the face.

To gain some useful intuition, we then consider very simple idealizations of different

face regions, and highlight extreme differences of performance for different surfaces.

Finally, these results suggest that we may be able to achieve better per-

formance by combining different representations, benefiting from their different

strengths. We show that this is indeed true, demonstrating performance gains with

a very simple combination scheme (in Section 4.2.3) that adaptively integrates in-

formation from different class-independent representations on the various facial sub-

regions, and then (in Section 4.3.2) by combining information from both class-based

and class-independent methods using an SVM that automatically learns the relative

importance of these algorithms.
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Figure 4.2: Sample images from the extended Yale-B dataset [80]

It will be an interesting topic of future research to determine how best to inte-

grate these representations into recognition algorithms that allow for small changes

in pose and facial expression, such as those seen in the recent FRGC data set. How-

ever, in this chapter we wish to isolate the effect that lighting change alone has,

and to understand this effect thoroughly. For this reason, we experiment using the

illumination portion of the CMU PIE data set [173] (shown in Fig. 4.1), and the

Extended Yale-B dataset [80] (shown in Fig. 4.2), which controls other sources of

variation. We then evaluate the scalability of these representations on images with

more controlled lighting conditions, but with other image variations, using the ORL

face database [163]. In addition to a standard experimental set-up, in which all

gallery images are created with identical lighting, we also consider the more chal-

lenging case, in which every gallery image is produced by randomly chosen lighting

condition. This simulates some of the challenges of real-world data sets.
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4.1 Description of Algorithms

We compared nine algorithms, including both class based approaches and class

independent approaches, in our experiments. Although this set of algorithms is cer-

tainly not exhaustive, it does give a good sample of different approaches to lighting

insensitive face recognition. A brief description of these approaches is given below.

Eigenfaces [184] is a standard benchmark for face recognition. It projects

face images into a low-dimensional linear subspace found using principal compo-

nent analysis. Although not especially well suited to handling lighting variation, it

provides a useful point of comparison.

The Fisherfaces algorithm [18] (see also [62]) projects images into a direction

that not only separates different classes, but also minimizes the within-class scatter.

This was explicitly proposed as an effective way to capture variations due to lighting.

Bayesian Face Recognition [128] models variations between images from

the same or different individuals using mixtures of Gaussians. The similarity mea-

sure is computed based on the maximum-a-posteriori rule, as opposed to the Eu-

clidean norm. In principle, it can model changes due to lighting.

Correlation filters [102] introduce the use of spatial frequency domain meth-

ods for lighting insensitive face recognition. A separate filter is trained for every sub-

ject (using their 2D Fourier transform representation) such that it produces sharp

correlation peaks for the images belonging to that subject, and low values otherwise.

Instead of modeling the illumination variations using face-specific information

(as in [102]), the Image Preprocessing algorithm [83] estimates the luminance
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map present in the image in order to compensate for it, and thereby produces the

reflectance map that contains the true information about the facial features of the

subjects. This preprocessed image can then be fed into any classifier. We used

Eigenfaces [184] to perform classification, as suggested in [83].

Along similar lines, the Self quotient image [193] estimates the reflectance

of the image by convolving the image with a smoothing kernel and then dividing

the original image by the smoothed image (which mostly contains the low frequency

components that correspond to illumination effects), and has shown very good per-

formance on the PIE data. In this work we used a much simpler isotropic smoothing

instead of anisotropic smoothing (as suggested in [193]). In this form, the algorithm

amounts to smoothing the image with a Gaussian, and then pixel-wise dividing

the original image by the smoothed image. We obtained the same results given by

the authors for the original algorithm, but the results could be different on other

datasets.

Another algorithm that displays insensitivity to illumination is the Eigen-

phases [164] method. This algorithm uses the phase information from the frequency

domain representation of the image for classification. It is known that the phase

information retains most of the intelligibility of the image when compared to the

magnitude information of the spectral components, and the authors demonstrate

this for the task of face recognition.

The Whitening approach described in [139] is specialized for smooth regions

wherein the albedo and the surface normal of the neighboring pixels are highly

correlated. This means that the pixel independence assumption made implicitly in
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computing the sum of squared distances (SSD) is not optimal. This algorithm tries

to increase the dissimilarity between the images of different objects by decorrelating

the image intensities by applying a Whitening operator. We use the simple Laplacian

of Gaussian operator for whitening, as suggested in [139].

Finally, classification based on the Gradient direction of the images has

also been shown to work well on surfaces, including faces, having properties that

change much more rapidly in one direction than in the other (eg., [139], [40] reviews

many papers that use this method, going back to the early 1990s). We implemented

this method by computing the SSD between the gradient directions in two images.

There are other methods that perform well for lighting invariant recognition such

as, Gabor Jets [103] and Normalized correlation [92] using small windows. However

these two methods have been shown to be quite similar to gradient direction in [139]

and hence they are not included in our experiments

4.2 Setting 1: No training set (on the possible lighting conditions)

In this section, we analyze the performance of the algorithms in the absence

of any prior information on the lighting conditions present in the scene. Under

such conditions, since the class-specific algorithms do not have sufficient exemplars

to learn the lighting variations present in the scene, we consider only the class-

independent representations. We then divide the face into several regions to study

the relative performance of these algorithms. We provide intuitive explanations

for the variations in their performance, and then use this information to design an
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effective classifier combination algorithm.

4.2.1 Initial Comparisons

We compare the five class-independent algorithms using a standard experimen-

tal protocol for PIE data. Each image in this dataset contains one of 68 individuals

viewed from the frontal pose and illuminated by a point source of light from one

of 21 different directions, without the ambient lighting conditions as shown in Fig

4.2. For all the experiments we used properly cropped faces (by removing the scene

background present in the dataset images and retaining only the facial region).

In many applications we do not have access to multiple images of a person

with the same pose under different illumination conditions. Hence algorithms that

perform well with a minimum number of images of a person are normally preferred.

Therefore for all the 68 subjects, we use one illumination condition as the gallery

(which contains sample images of the subjects) and the remaining 20 illumination

conditions as the probes (which will be compared with all the images in gallery).

This is a standard set-up, adopted in many previous papers.

The result of this experiment is given in Fig. 4.3, which shows recognition

rates when each lighting condition is used as the gallery. It can be observed that

whitening [139] performs much worse than the other class-independent algorithms.

But we retain [139] for the experiments involving sub-regions of the face because it

is supposed to perform better in smooth regions.

One difficulty with these results is that the performance of the best algorithms
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Figure 4.3: Performance comparison of all the class-independent algorithms on the

entire face (without training).

is perfect in many cases, making it difficult to distinguish among them. To address

this, we also consider a much more challenging recognition task, in which each

individual’s gallery image is randomly chosen. This makes recognition much more

difficult, since it is likely that faces of different individuals taken under similar

lighting will appear to be more similar than faces of the same individual taken under

very different lighting conditions. However, this difficulty reflects the challenges of

many real-world problems, such as sorting personal photos, in which gallery images

taken under controlled conditions are not available. Results, averaged over twenty

different trials, are given in the Table 4.1.

Overall, the self quotient and gradient direction produce the best performance

with a homogenous gallery, with gradient direction performing much better with a

gallery formed from heterogeneous lighting. This is rather surprising, since gradient

direction is very simple, and is the earliest of these approaches. These results suggest
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Table 4.1: Performance of algorithms on homogenous gallery and heterogeneous

gallery

Algorithm Homogenous gallery Heterogeneous gallery

Self Quotient 97 64

Gradient Direction 95 78

Preprocessing 88 66

Eigenphases 74 60

Whitening 60 40

that gradient direction would be an appropriate benchmark algorithm when new

methods are proposed.

4.2.2 Facial Sub-regions

Next, we explore the performance of these algorithms in more detail. As noted,

the face provides different sorts of information due to variations in albedo and shape.

To get an idea of how different algorithms make use of this information, we coarsely

divided the face into seven regions (Fig. 4.4): eyes, nose, lips, two cheek regions and

two chin regions. We experiment with the algorithms in these regions, and then

provide simple models, to gain a better intuitive understanding of the results.

Some existing works on studying the contributions of different face regions

include Nanni and Maio[132], and Nanni and Lumini[131]. In [132], features are

extracted from different sub-windows of a face using a bank of Gabor filters and
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Figure 4.4: Face Sub-regions

Karhunen-Loeve transform. The features obtained by each pattern are used to train

a Parzen window classifier to perform face recognition. On the other hand, [131]

combines wavelet coefficients from selected sub-bands of several wavelet families and

performs face authentication.

3.2.1 Experiments

For each region, both the gallery and the probe contain the same facial features

cropped from the face. For all 68 subjects, one illumination condition was used as

the gallery and the remaining lighting conditions were used as probes.

The results of recognition experiments on different facial features are provided

in Fig. 4.5. We show results for all 68 individuals using gallery images that contain

the same lighting. This avoids the need to average over random trials, and still

provides sufficient difficulty to evaluate the methods without a ceiling effect, because

recognition using a single face region is quite difficult. We performed recognition as

described in the last section, but using isolated facial regions.

We find that the relative performances of the different algorithms vary in the
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Figure 4.5: Performance comparison of class-independent algorithms on different

regions without training
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different facial sub-regions. Some of the most noticeable effects are: the Self quotient

image algorithm ([193]) performs the best in all regions except for the nose region;

Gradient Direction performs well everywhere except for the cheek region; Whitening

([139]) performs poorly, but relatively better in the cheek region.

3.2.2 Analysis of Simple Models

To analyze these results, we model the effects of lighting variation on three

simple types of scenes. These are related to important facial characteristics. We

make the following observations. First, the face contains albedo variations, especially

in regions surrounding the eyes, eyebrows and lips. Second, we consider regions

of very high curvature or discontinuity in surface normals, especially at the nose.

Finally, the remainder of the face contains regions of smooth variation in shape with

little change in albedo. We model these three types of regions with very simple,

synthetic models, for which it is easier to understand algorithm performance. We

do not expect results with these simple models to perfectly match experiments on

faces, since any one face region contains a mix of all three effects. However, we do

see that our models explain some of the general trends of our experiments.

4.2.2.1 Planar models with albedo variations.

Through this model, we would like to characterize planar objects that exhibit

very large variations in albedo. Towards this end, we create images containing an

outer rectangular box of fixed size and an inner rectangular box of variable size
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Figure 4.6: Rectangle model. Top: Variation in illumination. Bottom: Variation in

albedo

(Fig. 4.6).

This representation has some degree of correlation with the eye region of the

face, which has large variations in albedo, due to the eye and eyebrow, while it has

much smaller variation in shape. Specifically, the inner rectangle can be related

to the human eye while the outer rectangle corresponds to the region surrounding

the eyes. We assume that the rectangular surface is Lambertian and that the point

light source is at a far distance from the object. The illumination conditions of the

two rectangles are varied by changing the position of the point light source. To

capture variations between individuals, the position and size of the inner rectangle

are changed by small amounts for all possible illumination conditions. 90 different

illumination conditions were generated for 400 possible positions and sizes of the

inner rectangle. Based on this synthetic dataset, the following results were obtained

(Table 4.2). A recognition setup, like the one discussed in 4.2.2, was adopted.

As in the case of the human face, self quotient and gradient direction based

methods perform very well in these synthetic conditions. The gradient direction

method works very well due to the presence of rich information of the gradient
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Table 4.2: Performance of algorithms on the rectangle model

Algorithm
Recognition rate Recognition rate

(Rectangle model) (Human eyes)

Self Quotient 100 90.3

Gradient Direction 100 88

Preprocessing 49.4 73

Eigenphases 49.4 71.4

Whitening 17.6 58.2

angle change in the boundary between the two rectangles.

The self quotient image algorithm works well because there is no change in

the surface normal and there is a sizable change in the albedo. In these conditions,

[193] points out that self quotient is invariant to lighting changes. This algorithm is

shown to capture the albedo changes very well. Whitening does badly as the albedo

is not smooth, and is not whitened by the filter we use.

4.2.2.2 Shape variations in smooth objects.

In this model, we attempt to simulate the case wherein the object is pre-

dominantly smooth, with gradual variations in its shape. Such a variation can be

captured by a small piece of a smooth cylinder (Fig. 4.7). We construct this model

by considering cylinders of different radii (accounting for the different subjects) and

varying the position of the point light source for each cylinder. This representation
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Figure 4.7: Cylinder model. Top: Variation in illumination. Bottom: Variation in

curvature (see that as the curvature increases from left image to right image in the

bottom row, the change in the lighting pattern gets slower

correlates with the human cheeks where different human cheeks vary in curvature,

without discontinuities in shape or much variation in albedo. Again we assume that

the cylindrical surface is Lambertian and that the point light source is distant from

the object.

The dataset contains cylinders of 11 different radii with 9 illumination con-

ditions and the results are given in Table 4.3. We see that the gradient direction

based method performs very poorly, matching the fact that it is also the least ef-

fective method on human cheeks. Even though the gradient direction is invariant

to lighting for a cylinder, there is no variation in direction of gradient between

subjects, while the gradient direction does not capture the changes in curvature.

The self quotient algorithm works well because the Gaussian kernel which is used

to filter the image attenuates different frequencies in different ways. The intensity

is basically a sine wave, and when we divide it by the smoothed sine, we get a

constant function whose magnitude encodes the cylinder’s curvature. The inten-
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Table 4.3: Performance of algorithms on the cylinder model

Algorithm
Recognition rate Recognition rate

(Cylinder model) (Human cheek)

Self Quotient 100 56.5

Gradient Direction 9.1 41.5

Preprocessing 100 49.2

Eigenphases 100 44.1

Whitening 100 50.8

sity of the resulting representation therefore captures the dominant frequency of

the initial image. The algorithm uses this criterion to classify these images and is

thereby invariant to changes in illumination. Whitening’s good recognition rates

are in line with the prediction in [139] that it will perform well on smooth surfaces.

Eigenphases performs well because the phase spectrum of the signal will be a func-

tion of the frequency information present in the signal. This frequency information

helps this algorithm to classify the query images properly and thereby give good

recognition rates.

4.2.2.3 Shape variations in objects with discontinuities

Through this model, we capture the variations in the shape of an object that

has some discontinuities. The motivation behind this model is to obtain an approx-

imate representation of the human nose, which can be modeled as a prism. We
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Figure 4.8: Triangle model. Top: Variation in illumination. Bottom: Variation in

shape

consider the two sides visible from the frontal view of a prism to represent the nose

(Fig. 4.8). This model, however, does not exactly represent the nose because, we

don’t consider the effects caused by the nostrils. A human nose may be a combi-

nation of our simple prism model, and a model of albedo variation, such as our eye

model.

The shape of this pyramidal surface is changed to represent different indi-

viduals and the position of the light source is moved to create different lighting

conditions. The experiment consisted of 12 subjects with 10 illumination conditions

each and the results are given in Table 4.4.

The self quotient image does not perform well due to the change in the orien-

tation of the surface normal between the different regions in the triangular model.

Lighting variations can change the ratio of the intensity in two regions of the prism,

and the self quotient cannot undo this. Thus we find the self quotient algorithm

to be not very effective in capturing shape variations, as predicted in [193]. This

matches the fact that the nose is the only region in which the self quotient is not the
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Table 4.4: Performance of algorithms on the triangle model

Algorithm
Recognition rate Recognition rate

(Triangle model) (Human nose)

Self Quotient 42.7 57

Gradient Direction 100 57.6

Preprocessing 57.8 59.1

Eigenphases 46.7 54.3

Whitening 28.7 34.8

best. Gradient direction works well because it captures the variation in the shape

of the triangles. Whitening does not perform well due to the absence of smooth

variations in the surface. The preprocessing algorithm is formulated in such a way

that, it controls the illumination variations both in regions where the luminance

changes smoothly and in regions where there are discontinuities. So, this algorithm

performs relatively well in all the regions.

Our results are related to, but also differ somewhat from the discussion in

[40] and [139]. They point out that representations related to the direction of the

gradient are insensitive to lighting variation for surfaces that change rapidly in

shape or albedo in one direction but not another, while whitening approaches are

better suited for smooth surfaces that vary slowly in both directions. First, we

show that performance of the algorithm can vary depending on whether variations

occur in shape or in albedo. Second, we show with our cylinder example that
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Table 4.5: Performance comparison of combined classifier with the best individual

algorithms

Region
Recognition rate of Recognition rate of

the combined classifier the best individual algorithm

Entire face 99.1 97.1

Eyes 95.7 90.3

Lips 83.3 80.6

Nose 69.3 59.1

Chin 64.9 59.5

Cheek 62.8 56.5

variations within a class must also be considered when determining the effectiveness

of a representation. In some cases, the gradient direction may not discriminate

within a class, while features such as curvature do.

4.2.3 Classifier combination

The fact that different approaches perform well on different parts of the face

suggests that we can improve the overall performance by combining some or all

of the methods. To demonstrate this, we experimented with a simple method for

combining representations.

First, the outputs of the two top performing algorithms for every feature (in-

cluding the entire face) are combined by normalizing the SSD for every gallery-probe
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combination and then adding the normalized results of the top two algorithms. For

example, self quotient image and gradient direction algorithms were combined for

the entire face and eyes, self quotient Image and preprocessing algorithms were com-

bined for the nose region and so on. We show the results of adaptively integrating

different representations on various facial regions in Tab1e 4.5 and Fig. 4.9, for the

task of recognition with a homogenous gallery.

It can be seen that our classifier combination algorithm results in a substantial

improvement in situations, like the nose, where the best individual algorithm doesn’t

perform that well. For regions such as the entire face, the performance improvement

is only moderate since the best individual algorithm by itself has recognition rates

close to the ceiling. These results, in effect, drive home the point that an effective

classifier combination algorithm should take into account the relative strengths of the

individual classifiers in capturing different characteristics of the object of interest.

With this encouraging result in hand, we would like to formulate a combi-

nation algorithm that automatically learns the relative strengths of the individual

algorithms, rather than having a user specifying which algorithms to combine based

on observation. Towards this end, in Section 4.3, we consider the setup of having

some prior information on the different lighting conditions present in the scene such

that one can get a feel of the relative performance of different classifiers and thereby

learn the ideal combination strategy before testing it out on the subjects of interest.

Since we have a representative training set, we now include the four class-based

algorithms (discussed in Section 4.1) into our analysis.
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Figure 4.9: Performance comparison of combined classifier on all facial regions

4.3 Setting 2: With prior training on different lighting conditions

In this section we first analyze the performance of different algorithms in the

presence of training data that contains representative lighting conditions present in

the scene. We then combine the most informative algorithms using a support vector

machine (SVM) framework, which learns the combination parameters automatically.

4.3.1 Initial Comparisons

We compare the five class-independent algorithms, along with the four class-

based algorithms on the PIE dataset. We use all 21 illumination conditions of the

first 34 subjects for training. The algorithms were then tested on the remaining 34

subjects, with one homogenous exemplar lighting condition (for all the subjects) in

the gallery. This test is done mainly to analyze the effect of training on the different

class-based algorithms. The class-independent algorithms, of course, were tested

directly on the second half of the 34 subjects.
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Figure 4.10: Performance comparison of class-based, and class-independent algo-

rithms on entire face. The same gallery lighting condition was used for all subjects

The result of this experiment is given in Figure 4.10, which shows the recog-

nition rates when each lighting condition was used as the gallery. Similar to the ex-

periments conducted without training data (in Section 4.2.1), the algorithms based

on the self quotient image [193], and the direction of image gradients [40] perform

the best. Yet another observation is that the three class-based methods (Fisher-

faces [18], Bayesian face recognition [128], Eigenfaces [184]), and whitening ([139])

perform worse than other algorithms. So, we exclude [18], [128], and [184] from

the experiments for classifier combination. However, we retain [139] since it adds

considerable value in the cheek region (as shown in Section 4.2.2). For the corre-

lation filters algorithm [102] (and for the class-based algorithms in general), we do

not perform the analysis on different facial sub-regions because it is a learning algo-

rithm, and it is difficult to give intuitive explanation of its performance variations

(if any) on different facial regions. Now that we have representative algorithms from

both class-based and class-independent streams, we discuss our proposed combina-
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tion strategy in the next sub-section. Specifically, we consider the recognition setup

wherein the gallery and the probes have heterogeneous lighting conditions, in order

to overcome the ceiling effect in the recognition rates of certain algorithms, and also

because this setup simulates a more representative real-world setting.

4.3.2 Classifier combination

Along similar lines with the discussion in Section 4.2.3, we expect that we

can achieve better performance by using learning to determine the best way of

combining information. We do this by training a support vector machine (SVM)

[39] to perform a verification task, as done previously by [147], for instance. Given a

pair of images, the SVM is trained to determine whether they come from the same

or different individuals. The radial basis function (RBF) kernel was used to map the

inputs to a higher dimensional space. The SVM was trained using intra-personal

pairs and extra-personal pairs from the first 34 subjects of the PIE dataset, and

tested with randomly generated pairs from the remaining subjects. The lighting

conditions used for training and testing were also disjoint. The input to the SVM

is the (absolute) difference between the two images after processing them to create

six different representations based on gradient direction, self quotient, eigenphases,

whitening, image preprocessing and correlation filters. We contrast the performance

of an SVM that uses all six representations with six SVMs that each use just one of

the representations. The authors of [116] have used a similar approach, training an

SVM with just differences in gradient direction.
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Figure 4.11: CAR-CRR curves for PIE heterogeneous gallery experiments

The result of the SVM combination is given in Fig. 4.11 in the form of Correct

Accept Rate (CAR) vs Correct Reject Rate (CRR) curves; It can be seen that the

combination results in a good improvement in verification accuracy. For example,

the combined method has an Equal Error rate of 7 percent, compared to 10 percent

for the best individual algorithm (using the gradient direction). In order to check

the generalizability of these results, we experimented with the extended Yale-B

dataset [80]. This dataset has cropped faces of 38 subjects under 64 different lighting

conditions. All the other variations such as pose, and expressions are fixed. We then

performed a similar verification experiment, by training the SVM using the lighting

conditions corresponding to the first 18 individuals, and tested it using the pair-

wise differences obtained from the remaining 20 subjects. The CAR-CRR curves

for the SVM combination, as well as the individual algorithms are given in figure

4.12. Once again, the representation based on the direction of image gradient is the

best individual algorithm, followed by the correlation filters. The proposed classifier

combination algorithm again results in a substantial improvement in performance
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Figure 4.12: CAR-CRR curves for the extended Yale-B heterogeneous gallery ex-

periments

over the individual algorithms. These results again reinforce our observation that,

combining different representations by learning their relative strengths is crucial to

obtain good performance improvement.

4.3.3 Experiments on faces with more controlled lighting

Our main focus is on understanding the role of different representations when

lighting changes. However, it is also important to determine the relative sensitivity

of these methods to other image variations. If a representation is insensitive to

lighting variation, but highly sensitive to changes in expression, for example, it may

be less useful in a general face recognition system.

To evaluate this we experimented using the ORL dataset [163], which has

large variations in pose and expression, but small variations in lighting. Fisher

discriminant analysis (LDA) [18] has been shown to be efffective on this data ([72]),
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Figure 4.13: Sample images from ORL face database [163]

helping to compensate for the correspondence problem that this data gives rise to.

Therefore we use LDA as the base method, in combination with lighting insensitive

representations. Due to the challenges of this data, we adopt the widely used leave-

one-out testing protocol ([206], [72]).

Fisher discriminant analysis [18] was performed on the training images using

the six different lighting insensitive representations used in Section 4.3.2. An opti-

mal set of parameters was determined for each representation to learn the inter-class

and intra-class variations. For the combined classifier, learning was done by con-

catenating all the six representations. The test images were then projected onto

the learned subspace to perform recognition. This setup was repeated ten times, by

taking one of the possible ten images per person in the test set. The average recog-

nition rate over these ten trials are reported in Table 4.6 below. We also compare

our results with the previously reported results on this dataset, from [206], and [72],

which primarily uses the intensity image of the face to learn the classifier.
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Table 4.6: Recognition rates on the ORL face database [163]

Algorithm Recognition rates

Gradient Direction [40] 95.75

Eigenphases [164] 90.75

Preprocessing [83] 81.75

Self Quotient [193] 80

Whitening [139] 94.25

Correlation filters [102] 96.25

Combination 98.5

Fisherfaces [206] 98.5

ICA [206] 93.8

Eigenfaces [206] 97.5

Kernel Eigenfaces [206] 98

2DPCA [72] 98.3

It can be seen that some of the lighting invariant representations, like gradient

direction [40] perform well under general imaging conditions, and the combined

representation does provide improvements in the recognition rate. At the same

time it seems that the self quotient image [193] is particularly sensitive to non-

lighting variations. But we would like to make a point here regarding the amount

of training data used. All our previous experiments (until Section 4.3.2) were done

with just single image per person in the training set. Our study mainly focuses on

how lighting invariant a representation can be, given it sees just one image of the

person in arbitrary illumination. But when there are other sources of variations

in the dataset, such as expression, registration, scale and pose, we need to have
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multiple images of a person in the training set in order to learn a good classifier.

It is an interesting future work to design classifiers capturing the contributions of

different representations, to perform robust face recognition (with very few training

examples) under multiple sources of variations.

4.4 Discussion

Besides the performance gains obtained through classifier combination, an-

other interesting observation of this work is that a single classifier based on the

direction of image gradient works very well. Throughout the experiments discussed

here, the gradient direction algorithm clearly performs the best with just one ex-

emplar per person in the gallery (with both homogenous and heterogeneous gallery

lighting conditions). In order to emphasize the significance of this observation, we

compare our results with two recently reported algorithms from the literature.

4.4.1 Comparison with the work of Tan and Triggs [177]

First we consider the work by Tan and Triggs [177], which proposes enhanced

local texture feature sets for illumination robust face recognition. They introduce

Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP)

texture descriptor [3], and show it to be more discriminant and less sensitive to

noise. They then couple this descriptor with a preprocessing step that compensates

for lighting, and use a distance transform based similarity metric to obtain good

recognition results. We now compare the results of gradient direction with those
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reported by [177].

For the experiments on the extended YaleB dataset [80], the frontal face images

with most neutral lighting sources (’A+000E+00’) were used as the gallery. The

probe was divided into five subsets, according to the angle between the light source

direction and the central camera axis (12◦, 25◦, 50◦, 77◦, 90◦), containing frontal

images of all 38 subjects. The results obtained by the Tan and Triggs algorithm

[177], and by using gradient direction based classifier (with l1-Norm as the distance

measure) [40] are given in Table 4.7.

Table 4.7: Comparing the overall recognition rates of Tan and Triggs algorithm [177]

with that of Gradient direction algorithm [40] on the Extended YaleB dataset [80]

Algorithm

Subset # (Number of probes)

1 2 3 4 5

(263) (456) (455) (526) (714)

Tan and Triggs [177] 100% 100% 100% 99.2% 97.2%

Gradient direction [40] 100% 100% 100% 100% 99.73%

It can be seen that we obtain slightly better results using the gradient direction

algorithm [40]. We then compare our results on the PIE dataset [173], wherein

again, images of all 68 subjects with neutral lighting sources were used as gallery,

and the remaining images were used as the probe. In this setup, we obtain the

maximum possible recognition rates like [177], as shown in Table 4.8. Through

these experiments, we observe that a simple classifier based on the image gradient
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orientation offers similar (and in some cases, better) recognition performance.

Table 4.8: Comparing the overall recognition rates of Tan and Triggs algorithm [177]

with that of Gradient direction algorithm [40] on PIE dataset [173]

Algorithm Recognition rates

Tan and Triggs [177] 100

Gradient direction [40] 100

4.4.2 Comparison with the algorithm for face recognition using Sparse

representations [200]

Next, we consider a more recent work by Wright et al [200], using the the-

ory of sparse representations for face recognition. The main motivation behind this

work is to represent a test face image as a sparse combination of the ’most identical’

images present in the training set, so that the occlusions present in the test data

can be effectively factored out. The authors also illustrate the potential applications

of such an approach for handling variations in illumination. They provide results

for lighting invariant face recognition on the extended Yale-B dataset [80] by using

sparse representation-based classification (SRC) on different sets of features includ-

ing, Eigenfaces [184], Fisherfaces [18], Laplacianfaces [87], Randomfaces (obtained

by performing random projections on the input faces), and downsampled faces. The

gallery for their experiments contained half of the available lighting conditions (i.e.

32 per subject), with the lighting chosen randomly for different subjects. The re-

sults obtained using their best image representation (E-random faces), with different
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dimensions for the face image, is reproduced in Table 4.9 given below.

Table 4.9: Performance of SRC based face recognition algorithm [200] on the extended

Yale-B dataset

Dimension of Recognition rate of

the face image E-random faces [200]

30 90.72

56 94.12

120 96.35

504 98.26

We now compare these results with those obtained using the direction of image

gradient [40]. We used the l1-Norm to compute the distance (since it gave better

performance than the l2-Norm, of about 5% improvement in the recognition rate).

We varied the number of (random) lighting conditions for every subject in the gallery,

and the results averaged over multiple trials are given in Table 4.10. The input image

dimensions used for our experiment is 1920 (i.e. 48*40).

Table 4.10: Performance of gradient direction algorithm [40] on the extended Yale-B

dataset

# heterogeneous gallery lighting Recognition rate of

per subject gradient direction algorithm [40]

1 59.1

2 75.8

4 93.5

6 98.6
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The important result, as we see, from the tables 4.9 and 4.10 is, although the

input image dimensions of our experiment is higher than that of [200], the simple

classifier based on the direction of image gradients [40] performs better than [200]

with just six lighting conditions in the gallery (when compared with 32 in the case

of [200]). Overall, the message we would like to convey from the comparisons given

in Section 4.4.1, and Section 4.4.2 is that the gradient orientations [40] retain most

of the person-specific information even under very challenging lighting conditions,

and it is interesting to see how this information can be better utilized in dealing

with more challenging face recognition settings.

To conclude, we have compared a number of approaches to illumination in-

sensitive face recognition, both experimentally and using an analysis of simple ide-

alizations of face features. Based on all the results obtained, we make the following

observations. 1) Gradient direction works very well under both homogenous gallery

and heterogeneous gallery settings. We suggest that it should be a baseline algo-

rithm for future methods, especially since it is so simple to implement. 2) The self

quotient image and gradient direction-based algorithms work extremely well under

homogenous gallery lighting conditions. 3) Not all the methods that use training

data perform better than simpler methods that use general image processing. This

suggests that these methods do not get as much out of training as might be pos-

sible. An exception to this is the correlation filters algorithm, which offers better

recognition rates than most of the class-independent algorithms, but still is not as

good as the direction of gradient (even when the training data has a very good rep-

resentation of different lighting conditions). 4) Different representations work well
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in different parts of the face. For example, the self quotient image is less effective

in the nose region, while the gradient direction performs poorly in the cheek region.

We are able to explain these results using a simple idealization of facial features. 5)

Consequently, it is possible to improve performance by combining different repre-

sentations. We demonstrated this using two classifier combination algorithms. The

first algorithm adaptively integrates information from individual classifiers on var-

ious facial regions, whereas the other learns the best combination strategy using a

SVM framework. It remains an interesting topic for future work to characterize the

strengths and weaknesses of these approaches when both lighting and pose or facial

expression vary.
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Chapter 5

A Learning Approach Towards Detection and Tracking of Lane

Markings

Autonomous navigation of road vehicles is a challenging problem that has

wide-spread applications in intelligent systems, and robotics. Detection of lane

markings assumes importance in this framework since it gives the driver a sense of

the road ahead, such as if it is straight or curved, how many lanes are present, and

so on. It is a hard problem due to the variations present in: (i) the appearance

of lane markings - solid lines, dotted lines, circular reflectors and their color

(yellow or white); (ii) the type of road on which the vehicle is traveling, such

as highways and city streets, and objects that can occlude the lane markings, like

vehicles and pedestrians; (iii) the time of day in which the scene needs to be

analyzed; for instance at night the most visible regions are those that are just ahead

of the vehicle, whereas during the day all regions in the field of view of the camera

need to be analyzed by the detector; and (iv) the presence of shadows in the

scene due to objects such as trees that might affect the appearance of lane markings.

Some examples illustrating these challenges are given in Figure 5.1.

To deal with the above-mentioned conditions, many approaches have been pro-

posed in the literature. These can be broadly classified based on the type of sensors

which could be (visual) cameras, internal vehicle state sensors, GPS sensors, laser
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Figure 5.1: Sample road scenes; day and night-time images illustrating the effect of

lighting variations and occluding vehicles as observed by the visual sensor.

scanners or radar sensors. Each sensor has its own advantages and limitations. For

instance, foggy conditions on the road affect the reliability of cameras, whereas a

GPS sensor might be more robust. Although using multiple sensors will certainly

help the detection process [43], in this work we are primarily interested in analyzing

visual inputs from a single camera mounted in front of a moving vehicle. We now

review some related work pertaining to this category.

Detection Tracking

•Pixel-hierarchy based 

spatial context descriptor

•Outlier-robust boosting 

(trained offline)

Video 

Input

•Particle Filtering with static 

motion model

•Learning variations in the 

road scene

Tracked lane 

markings

First frame

Detection 

result

Subsequent frames

Figure 5.2: Pipeline of the proposed approach: detection with boosting on contex-

tual features, and particle-filter based tracking to learn some road scene variations.

Prior Work: Detecting road lane markings using image analysis has been an

area of active research for the last two decades. The recent survey paper by McCall

and Trivedi [125] provides a comprehensive summary of existing approaches. Most

of the methods propose a three-step process, (i) extracting features to initialize
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lane markings such as edges [141], texture [152], color [178], and frequency domain

features [101]; (ii) post-processing the extracted features to remove outliers using

techniques like Hough transform [113] and dynamic programming [96], along with

computational models explaining the structure of the road using deformable contours

[195], and regions with piecewise constant curvatures [133]; and then (iii) tracking

the detected lane markings in subsequent frames using a Kalman filter [54] or particle

filters [10, 99] by assuming motion models (constant velocity or acceleration) for the

vehicle. There are also methods that use stereo cameras (e.g. [25, 48]) to enforce

similarity of points observed from both cameras. More recently, there has been

increased focus on building real-time systems [8] on challenging urban scenarios

[31, 41], including night-time driving conditions [30]. Machine learning methods

with a single classification boundary such as, neural networks and support vector

machines [99] have also been used for detection. However, two main aspects of this

problem have not yet been satisfactorily addressed; (i) Since the visual properties of

lane markings undergo arbitrarily large variations, using local features to describe

their appearance, and learning the decision boundary from a single classifier may

not be robust and scalable; (ii) The assumption of a pre-specified motion model

for the vehicle breaks down when the vehicle displays a random motion pattern.

This is especially critical in the scenario we are interested in where the inputs are

obtained only from the visual sensor, without having any inertial information from

the vehicle.

Motivated by these challenges, we propose a learning-based approach1 to de-

1An initial version of this work appeared in [81], where we discuss the detection algorithm using
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tect lane markings without requiring a pre-defined road model, and track them

without the knowledge of vehicle speed. For the two-class object detection prob-

lem, corresponding to lane markings and non-lane markings, we collect a set of

representative training data with which, (i) instead of using local features to de-

scribe the object in isolation, we learn the relationship shared by the object with its

surrounding scene. To model this source of information, often referred to as spatial

context [56], we propose a pixel-hierarchy descriptor in which different visual fea-

tures such as intensity patterns, texture, and edges are analyzed in an hierarchy of

regions surrounding each pixel corresponding to the object; (ii) given a bag of con-

textual features for exemplar pixels corresponding to the two classes, we learn their

relevance for decision-making using a machine learning algorithm based on boost-

ing [76] that determines a final strong classifier by combining several weak learners.

In this process, we address the outlier-sensitivity problem of boosting algorithms

through methods that jointly optimize the detection error rate and the balance in

weight distribution of training exemplars. (iii) Then, we represent the detected lane

markings using polynomials, and track them in a particle filtering framework [91].

However, since we do not have information about vehicle motion to predict the new

position of lane markings, we look at a slightly different problem by assuming the

lane markings to be static over the video sequence and then characterize deviations

in the tracked model parameters to infer their causes. Assuming the road to be flat,

we illustrate this by learning three sources of variations in the road scene, namely;

a boosting variant that learns the weights of training samples before selecting the weak learners

(first part of Sec 5.1.3.3).
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the change in road geometry (straight or curved), changes in the lateral motion of

the vehicle, and the presence of occluding objects in the road ahead.

Contributions: We propose,

• A pixel-hierarchy feature descriptor to model the spatial context information

shared by the lane markings and the surrounding scene;

• An outlier-robust boosting algorithm to learn relevant contextual features for

detecting lane markings, without assuming any prior road model;

• Learning possible variations in the road scene, by assuming the lane mark-

ings remain static through the video, and characterizing the tracked model

parameters.

Organization of the chapter: We discuss the detection (localization) of lane

markings by extracting contextual features and modeling them with boosting in

Section 5.1. Section 5.2 deals with tracking and learning the variations in road

scene without any prior knowledge of the vehicle’s motion pattern. We then present

experimental validation of detection and tracking algorithms in Section 5.3, using

data from both daylight and night-time road sequences. Section 5.4 concludes the

chapter. A block diagram explaining the flow of the proposed approach is given in

Figure 5.2.
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Figure 5.3: L-R: An illustration of computing the pixel hierarchy descriptor hx for

a pixel x on hierarchical circles Ri, with the underlying Fi corresponding to the

intensity image, edge map, and texture response (magnitude patterns of texture

response are shown in this figure. 4 wavelet scales with 6 Gabor filter orientations

were used). The weak learners hj correspond to Haar filters, which when applied

on R × F result in hx = {hx
j }M2

j=1 = fx(Io, Is). hx is the pixel-hierarchy descriptor

of a pixel x. hx computed for x ∈ O, O′ are used to train the boosting algorithm

to compute the strong classifier g?(x). This is then used to classify pixels in a test

image corresponding to lane markings and others.

5.1 Detection of Lane Markings

5.1.1 Problem Definition

We are studying a two-class object detection problem, where the goal is to

classify lane markings O from non-lane markings O′. In Bayesian terms, the pos-

terior P (O|I) modeling the probability of presence of an object (class) O given an
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observation (or measurement) I is given by

P (O|I) ∝ P (I|O)P (O) (5.1)

where P (I|O) denotes the likelihood, and P (O) is the prior for the class O. P (O′|I) =

1 − P (O|I). We take a data-driven discriminative approach where the posterior is

modeled directly, instead of separately modeling the likelihood and prior (genera-

tive). Further, we consider the observations I = f(Io, Is), where Io is the information

about the object in isolation, and Is is the information conveyed by the surrounding

scene. Given a set of M training exemplars (pixels) for O, and O′ pertaining to

different road conditions, the goal of this work is to find functions f and g such

that,

P (O|I) = g(f i
j(Io, Is)) (5.2)

∀i = 1 to M, ∀j = 1 to M1, where hi
j = f i

j(Io, Is) is one of the M1 different realiza-

tions of spatial context between the object (O or O′) and their surrounding regions

portrayed for an ith training sample, and g is a feature selection method that op-

timally computes the relevance of hj in classifying pixels belonging to O from O′.

The details of f and g form the focus of the next two sub-sections.

5.1.2 Modeling the spatial context of lane markings

Context, a loosely defined term in itself, refers to all pertinent information

conveyed by the visual scene about the existence of an object [56]. Although the

complementary information provided by context has been acknowledged since the

early 70’s [142], only in recent years have we seen its explicit modeling in the main-
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stream object detection literature [180]. Since, (i) the lane markings share a rich

neighborhood portrayed by the road regions, and (ii) existing methods, at large,

characterize the appearance of lane markings in isolation, understanding the role of

context for this problem attains prominence.

Classification of low-level contextual sources, which do not use any higher-level

semantic information on the structured grouping of pixels representing different ob-

jects, belongs to one of the following categories; (i) top-down methods that compute

the gist of the scene by computing some global image statistics, e.g. [180], and (ii)

bottom-up methods that correlate the properties of a pixel with its immediate ad-

joining region, e.g. [47]. Both have relative advantages/disadvantages depending on

the application of interest. In this work, we propose a hierarchical descriptor that

encodes information of both types.

5.1.2.1 A pixel-hierarchy feature descriptor

Given a pixel x corresponding to O or O′, we consider a hierarchy of regions

represented by concentric circles centered at that pixel. Let R = {Ri}M2
i=1 repre-

sent the regions enclosed by circles of increasing radius. We now model the visual

information present in R. The exact definition of ‘information’ depends on the ap-

plication, and for this problem, motivated by the existing work, we use the intensity

image, an edge map output from the Canny operator [36], and texture patterns (ob-

tained from Gabor filters [109] that compute the magnitude and dominant direction

of textures at different scales). Let us refer to them as F = {Fi}M3
i=1. From this, we
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compute our basic contextual features

hx
j = fx

j (Io, Is) : R× F → R (5.3)

by analyzing the pattern of F on different regions R. We used a set of rectangular

Haar-like filters [145] for this purpose. These filters have different positive and

negative regions, where the positive regions replicate the values of the underlying

region R × F , and the negative regions correspond to a value of zero. The values

underneath the positive regions (for each Haar filter) are then accumulated to result

in hx
j , and the set of all such features, hx = {hx

j }M1
j=1, denotes the pixel-hierarchy

feature descriptor of a pixel x. By this way, hx jointly models Io by extracting F in

the immediate neighborhood of a pixel x, and Is by describing F in regions belonging

to larger concentric circles around x. Typically, the number of features M1 is in the

order of 1000’s depending on the precision with which the pattern of positive and

negative rectangular regions are varied. An illustration is given in Figure 5.3.

5.1.3 Learning the relevant contextual features through Boosting -

Training the classifier

We now require a principled way of selecting relevant features among h (or

f(Io, Is)) that are most discriminative is classifying pixels x corresponding to O

from O′. This requirement paves the way to adapt the principles of boosting [76],

a machine learning method that determines the optimal set of features to classify

objects with provable detection error bounds. Boosting algorithms have been used

previously for two-class problems by Viola and Jones [189] for detecting faces, and
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Wu and Nevatia [202] for human detection, where the weak learners h modeled the

appearance information of objects in isolation.

5.1.3.1 The Problem of Outliers in Training Set

Before getting into the details of detecting lane markings using boosting, we

address an important problem in the learning stage of boosting algorithms: that

of the presence of outliers in the training set. To make the chapter self-contained,

we present the basic version of the Adaboost algorithm [76], referred as Discrete

Adaboost, below.

Given: (x1, y1), ...., (xM , yM) where xi ∈ RN denote the feature representation of an

object xi, and yi ∈ {−1, +1} denoting its class label, and classifier pool H consisting

of weak learners hi, i = 1, ..., M1.

Initialize the training samples with uniform weights D1(i) = 1/M, ∀{xi}M
i=1.

For iterations t=1,....,T :

• Train the base learners using the weight distribution Dt.

• Get the base classifier ht : RN → R, which minimizes the error

ε?
t = Pi∼Dt [h

xi
t 6= yi] =

M∑
i=1

Dt(i)I(yi 6= hxi
t ) (5.4)

where I(.) is an indicator function.

• Choose αt ∈ R, which is a function of the classification accuracy.

• Update:

Dt+1(i) =
Dt(i)exp(−αtyih

xi
t )

Zt

(5.5)
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where Zt is a normalization factor (chosen such that Dt+1 will be a distribu-

tion).

Output the final classifier:

g?(x) = sign
( T∑

t=1

αth
x
t

)
(5.6)

In summary, given a set of labeled training samples belonging to two classes

with the same initial weights, and a pool of weak learners, the goal of boosting is

to find a sequence of best weak classifiers by adaptively increasing (and decreasing)

the weights of wrongly (and correctly) classified samples in each stage. However,

when there are outliers present in the training set, say due to mislabeled samples

or due to samples that are very different from other neighbors of their class, this

process will result in a substantial increase in their weights and thereby force the

weak learners to concentrate much more on these samples. This might end up being

detrimental to the performance of Adaboost, as demonstrated convincingly by [55].

5.1.3.2 Related work

There is a considerable amount of work addressing this issue. For instance, [77]

suggested a variant called ‘Gentle Adaboost’ by interpreting boosting as an approx-

imation to additive modeling on the logistical scale. [153] showed how to regularize

Adaboost to handle noisy data: instead of achieving a hard margin distribution (by

concentrating on a few hard to be classified samples, like that of Support Vectors),

they propose several regularization methods to achieve a soft margin that reduces

the effect of outliers. [74] suggested an algorithm called ‘BrownBoost’ that takes
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a more radical approach by de-emphasizing outliers when it seems clear that they

are ‘too hard’ to be classified correctly. Other approaches include LPBoost [53],

WeightBoost [118], SoftBoost [196], and several other references in [127].

5.1.3.3 Proposed method

We make two observations. (i) A common theme among the previous ap-

proaches is that they start with equal initial weights for all the training samples

before learning the boosting classifier, and (ii) the error ε?
t , which is minimized to

select weak learners ht, does not account for the (undesired) unbalanced weight

distribution of the samples. We now address these two issues in more detail.

Learning prior information about training sample weights2: We use

statistics to prioritize the training data, rather than assuming uniform initial weights

for all samples. This has two advantages: (i) The most representative samples will

be preferred for classification in the early stages of boosting since they start with

higher initial weights. (ii) At the same time, the rate of increase in weights of hard-

to-be classified samples (which can be outliers) will be slow, since these samples

start with lower initial weights.

Towards this end, we perform kernel discriminant analysis [18, 62, 5, 130] on

2The idea of different initial weights has been used in Asymmetric boosting [188] in a different

context where the missed detections are penalized more heavily than false accepts. Hence the

positive examples are weighted more than the negative samples to start with. But, unlike our

proposed method, all positive samples are given the same weight, as are the negative samples. In

some sense this is like uniform weighting, with the weights different for the two classes.
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the training data, and analyze the distance of projection of samples with respect to

their projected class means to determine the initial weights. Essentially, given the

set of labeled training data {(xi, yi)}M
i=1, we first determine the projection directions

α that maximize the following criterion,

J(α) =
αT SBα

αT SW α
(5.7)

SB and SW are the between-class scatter and within-class scatter matrices com-

puted using the kernel trick [5], which instead of using a non-linear mapping Φ to

explicitly transform xi from their original space RN to a high dimensional feature

space F (allowing linear separability of xi’s), performs an implicit transformation

using Mercer kernels [162] of the form k(xi, xj) = Φ(xi).Φ(xj) by reformulating the

problem in terms of dot products. The Fisher directions α are then used to project

xi to obtain zi.

We now analyze these zi’s to learn prior information on the training sample

weights. Let µyi
, yi ∈ {−1, 1} denote the class mean of the projected samples. Then

for each sample, zi, we compute a parameter

εi =
|zi − µyi

|∑

∀k:yk=yi

|zk − µyk
|

(5.8)

which is a function of the distance between a sample and its class mean in the

projected space. Then, if wi = 1/M denote the uniform initial weights of all training

samples xi, the new initial weights (w̃i) are obtained by,

w̃i = wi exp(−δεi) (5.9)

where δ is the factor controlling the importance of weights learned from (5.8). δ
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is the total classification accuracy of kernel discriminant analysis on the training

samples, which gives an idea of the reliability of the learned weights. For instance,

if the classification accuracy is very low (i.e δ ≈ 0), then w̃i reduces to wi=1/M

which is the same as the standard boosting setup. This new set of weights is then

normalized to make it a distribution, and the classification function is learned using

boosting as described in Algorithm 4.

A new cost function for ε?
t : The error ε?

t which is minimized to select

the weak learners ht is, in its basic form (5.4), a function of the classification rate.

But, as mentioned before, the problem of outliers leads to a situation where the

weights of certain samples become significantly higher than others. Hence to avoid

this situation, there have been efforts on modifying the cost function (5.4). The

recent work by [196] addresses this issue by defining ε?
t as the relative entropy of

the distribution of weights at the tth iteration, Dt, with that of the uniform initial

distribution D1. But the problem with this cost is that, D1 need not be the best

reference distribution since not all samples may be of the same quality to compare

their current weights Dt with.

Since the undesirable condition caused by outliers is an uneven distribution of

the sample weights, we propose to minimize the following cost function, instead of

(5.4),

ε̃?
t =

(M −
M∑
i=1

Dt(i)yih
xi
t )

M
+ λRfP (Dt+1) (5.10)

where the first term measures the error in classification, and the second term fP (.)

measures how sparse the distribution Dt+1 (5.5) produced by the weak learner ht
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will be. λR is a regularization parameter. From the study of the problem of outliers

[55], we deduce that fP (.) should not be sparse. In other words, the weights should

not be concentrated on only a few training samples. Hence we define

fP (Dt+1) =

M∑
i=1

I(Dt+1(i) < λcost)

M
(5.11)

where I(.) is an indicator function, and λcost is a threshold. Values of λR and

λcost are learned using cross-validation, as explained in the Appendix. With these

two modifications, we present our outlier-robust boosting algorithm in Algorithm

4. We empirically evaluated its efficacy on different UCI datasets [11] and present

the results in the Appendix. At that point, we also discuss about the convergence

bounds of the algorithm.

5.1.4 Test phase: Detection (Localization)

Having computed the desired functions f from (5.3) and g? from (5.18), we

localize lane markings in a test image by computing the pixel-hierarchy descriptor

(5.3) for all pixels, and then classifying them using (5.18). g?(x) = 1 if the test

pixel x ∈ O (lane markings), and g?(x) = −1 otherwise. The computations needed

to obtain f are performed efficiently using the concept of integral images and at-

tentional cascade [189]. We provide the implementation details, and validation on

images corresponding to daylight and nighttime road scenes in Section 5.3.1. The

subsets of pixels in a test image classified as lane markings are then grouped and

parameterized by a second order polynomial using the generalized Hough transform
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Given: {(xi, yi)}M
i=1, where xi ∈ RN is the training data, and yi ∈ {−1,+1} its class label,

and a pool of weak learners H,

Initialize the weight distribution of training samples D1 from the weights learned from

(5.9), i.e.

D1(i) =
1
M

exp(−δεi),∀i = 1 to M (5.12)

For iterations t=1,...,T :

(i) ∀h ∈ H, compute the classification error,

Eh =

M −
M∑

i=1

Dt(i)yih
xi

M
(5.13)

(ii) Compute an intermediate weight distribution, D̃h
t+1, which the weak classifiers h ∈ H

will produce,

D̃h
t+1(i) =

Dt(i) exp(−αtyih
xi)

Zt
(5.14)

where αt ∈ R, and Zt is a normalization term to make D̃h
t+1 a distribution.

(iii) Select the weak learner ht with the minimum error ε̃?
t , using the cost proposed in

(5.10) as follows,

ε̃?
t = min

h∈H
Eh + λRfP (D̃h

t+1) (5.15)

ht = arg min
h∈H

Eh + λRfP (D̃h
t+1) (5.16)

(iv) Compute the new weight distribution,

Dt+1(i) =
Dt(i) exp(−αtyih

xi
t )

Zt
(5.17)

Output the final classifier:

g?(x) = sign
( T∑

t=1

αth
x
t

)
(5.18)

which is a binary value corresponding to the thresholded posterior probability g(.) in (5.2).
Algorithm 4: Proposed boosting algorithm that reduces overfitting and the

effect of outliers in the training set.
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[13] as follows,

Li = p2x̄
2 + p1x̄ + p0 (5.19)

where Li denote the ith lane marking, and x̄ its horizontal coordinates in the image

plane. Such a parameterization provides a coarse description of the structure of lane

markings, and can differentiate between curved roads and straight roads. Having

said that, it is interesting to see if a non-parametric representation using splines or

a piece-wise model would provide more discriminative information about different

types of lane markings. This set of Li denote the final detection (localization) result.

An illustration is provided in Figure 5.4.

5.2 Tracking and Learning some variations in road scene

We use the particle filtering framework [91] to track the localized lane markings

in a video sequence. One challenging aspect of this problem comes from the non-

availability of knowledge about motion patterns of lane markings. This is because

the positions of lane markings in the image plane will depend on how the viewer (the

camera/ vehicle) is moving, and we do not have this information since we use only

the visual input from a camera mounted on the vehicle. This is the main difference

between our tracking formulation and existing lane tracking algorithms like [54, 10,

99], which either assume a motion model for the vehicle, or use information from

inertial vehicle sensors to update the state transition model.
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Figure 5.4: Localized lane markings Li obtained by performing outlier-robust boost-

ing on the pixel-hierarchy contextual features. The number of hierarchy levels M2

for Ri was determined by the least circle enclosing the entire image, for each pixel.

All images were of size 240×320, and those regions Ri that did not contribute across

all pixels were excluded from the feature set h. The pixels detected as lane marking

by the boosting algorithm are grouped using the generalized Hough transform [13].

The parameterized result correspond to the polynomials enclosing the detected lane

marking pixels.

5.2.1 Formulation of Particle Filters to Track Lane Markings

To handle this situation, we propose a static motion model to represent the

state of the particles. In other words, we always expect to see the lane markings at

their initial position, and if there are any deviations from this hypothesis, we learn

the causes for it. More formally,

State transition model : xt = xt−1 + ut (5.20)

Observation model : yt = Gt(xt, vt) (5.21)
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where xt is the state of the system, a 7 dimensional vector [p2 p1 p0 x̄bl ȳbl x̄tr ȳtr]
T ,

where pi are the coefficients of the polynomial characterizing a lane marking Li

(5.19), and {x̄∗, ȳ∗} corresponds to the location of the bottom left and top right

corners of the window enclosing the lane marking. ut corresponds to the system noise

that has a fixed variance of the form ut = R0 ∗ U0, with R0 being a fixed constant

measuring the extent of noise, and U0 a standardized random variable/vector. For

instance, a larger value of R0 makes the tracker search for the object in a bigger

area around the location predicted by the particles. The particles are generated

through sequential importance sampling, and we propose around 200 particles to

approximate the system dynamics. The observation model (5.21) is characterized

by vt which corresponds to the observation noise, and G(.) is a function that defines

the similarity of the object at the region predicted by the particles, with that of its

true (initial) appearance. Let H1 and H2 denote all Hc points sampled uniformly

along the reference particle state, and the proposed particle state respectively. Let

H̄i =
∑
x∈Hi

I(g?(x) = 1); i = 1, 2, where I(.) is an indicator function. We then

compute the similarity G as,

G(H1, H2) =
H̄1

Hc

(1− 1

Hc

‖H̄1 − H̄2‖1) (5.22)

5.2.2 Learning the Road Scene using Tracked Parameters

We will now discuss what this tracking model conveys. As before, let the

parameterized lane markings detected from the initial frame of the video sequence
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be denoted by {Li}k
i=1 (5.19), where k denotes the number of lane marking groups

present in that frame. For instance, in a two lane road there will be three lane

markings denoting the left and right edges, and the central median. We define

separate particle filters to track each of the k lane markings, and then analyze the

variations in its state parameters [p2 p1 p0 x̄bl ȳbl x̄tr ȳtr]
T to understand the causes

behind it.

From now on, let us consider one such lane marking and analyze how to

interpret its tracked parameters, though this discussion is valid for all lane markings.

We also assume that the road is (piecewise) flat, since otherwise the presence of

slopes can lead to sudden appearance/disappearance of lane markings that are hard

to track. Let the number of frames in the video sequence where the lane marking is

successfully tracked3 be denoted by N̂ , and the tracked parameters over all the N̂

frames be represented by [pi
2 pi

1 pi
0 x̄i

bl ȳi
bl x̄i

tr ȳi
tr]

T , i = 1, 2, ...N̂ . Let var(.) denote

the variance of a set of normalized observations of a state variable, computed at

k′ equal intervals {N̂j}k′
j=1. We now analyze the variance of each of the seven state

parameters to infer the changes in the road scene. We do this in each of the k′

intervals. After every such interval, the reference particle state is updated with

that of H2 in that interval with the largest G (5.22). Let us now consider the first

interval, for instance.

3The detector is run again if the tracking error, G(H1,H2) < ξg, where ξg is a threshold learned

using cross-validation. ξg = 0.55 in these experiments.
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5.2.2.1 Static world

If the lane markings are present in almost the same location in the tracked

frame as their initial position, then there will not be a substantial variation in any

of the seven tracked parameters. Formally, let pi = [p1
i p2

i .... pN̂1
i ] and if

var(pi) < ξt,∀i = 0, 1, 2 (5.23)

it implies that, irrespective of speed, the vehicle is maintaining its relative distance

with respect to the lane markings (i.e. negligible lateral motion), and the road

structure is also remaining constant (i.e. a straight road remains straight, and a

curved road remain curved). ξt is a threshold learned from cross-validation, and

ξt = 20 in these experiments.

5.2.2.2 Change in lateral motion of vehicle

If there are variations only in the first (p1) and zeroth (p0) order coefficients

of the parameterized lane marking, i.e.

[var(p1) > ξt] ∨ [var(p0) > ξt] (5.24)

then this is due to the lateral motion of the vehicle with respect to the lane marking,

while the road structure remains the same. Specifically, increase in the value of p0

will be caused by the lateral motion of vehicle rightwards of the lane markings, and

a decrease in p0 is due to a leftwards lateral movement.
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5.2.2.3 Change in road geometry

The second order coefficient (p2) provides some information about the road

geometry. For instance, if the road is straight, so will be the lane markings, and

hence p2 will be close to zero. If the road begins to curve, the change in the second

order coefficient will get significant. Similar variations occur when a curved road

becomes straight. Hence, if

var(p2) > ξt (5.25)

then it might be due to changes in the road geometry. This, when coupled with

variations in p1 and p0 (5.24), can be used to infer simultaneous changes in lateral

motion of the vehicle.

5.2.2.4 Change in traffic pattern ahead of vehicle

If there is a significant variation only in (any of) the four boundary points

of the area enclosing the lane markings, {x̄bl, ȳbl, x̄tr, ȳtr}, we analyze the pixels x

belonging to the missing area (say, Rm) for (5.18). If

∑
x∈Rm

I(g?(x) = 1) < M4/2 (5.26)

then we classify Rm to belong to non-lane marking. I(.) is an indicator function,

and M4 is the number of pixels uniformly sampled in Rm. This can be used to alert

the driver about the traffic pattern ahead of the vehicle. On the other hand, if there

are variations in any of the pi also, the change in the area of bounding box might

be due to the change in road geometry as well. Hence, the analysis of (5.18) in the

missing region Rm provides some information on occluding objects. It is interesting
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to study the scope of learning applications when the state information of all lane

markings are used jointly.

We tested our hypotheses by collecting video sequences pertaining to the above

four scenarios. Sample results from the tracked sequences illustrating our learning

approach are given in Figure 5.5. We present the results of our experiments in

Section 5.3.2.

5.3 Experiments

We first evaluate the proposed detection algorithm on day and night time

images in Section 5.3.1, and then discuss the learning applications using our tracking

model in Section 5.3.2.

5.3.1 Detection of Lane Markings

We tested our outlier-robust boosting classifier (5.18) on road images collected

during both day and night, over a period of twelve months. Separate classifiers were

used for grayscale and color images (since it changes the information contained

in F = {Fi}M3
i=1). We collected a set of 400 images4, for both daytime and night

time scenarios, and divided them into 5 equal sets. The overlap between these

sets, in terms of the nature of road scene, was kept to a minimum (of around

25%) to study the generalization ability. For each of the five trials, one set of

images was used for training, and the other four for testing. The detector processes

4We will release our datasets for detection and tracking to the community.
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Position error in detected pixels Mean correct detection rate of Algorithm 4 with context

(neighborhood around

the true pixel location)

False positive rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1× 1 0.85 0.88 0.915 0.94 0.956 0.968 0.979 0.983 0.995 1

2× 2 0.872 0.895 0.92 0.948 0.967 0.975 0.982 0.993 1 1

3× 3 0.91 0.925 0.942 0.957 0.976 0.98 0.99 1 1 1

4× 4 0.932 0.94 0.951 0.964 0.985 1 1 1 1 1

5× 5 0.935 0.947 0.958 0.965 0.985 1 1 1 1 1

Table 5.1: Detection accuracy of Algorithm 4 with context in terms of the position

error in the location of detected lane markings. The results show the position error

in terms of neighborhood windows around the true lane marking locations in which

the detection results occur. Performance across different false positive rates are

given.

240× 320 images at 15 frames per second, on a 4 GHz processor. We then counted

the fraction of lane marking pixels in the regions corresponding to boosting results

(which intersects with those hand-marked by the user) to determine correct detection

rate, and counted the points that are not marked by the user which have been

classified as the lane marking class by the algorithm to compute the false positive

rate.

Based on this criterion, we present the performance curves in Figure 5.6 and

study the role of spatial context and outlier robust boosting. Accuracy in terms
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of the position error of detected lane markings is given in Table 5.1. Since there

are no standard datasets for this problem, we implemented another machine learn-

ing approach based on [99] which learns a single classifier using support vector

machines and artificial neural networks trained on both intensity images and con-

textual features f (5.3). Best performing kernel parameters were used, and the

same experimental setup was followed. From these results, we make the following

observations,

1. Spatial context information helps the detection process. This can be seen from

the performance curves with the contextual features (5.3) and those with only

the intensity image;

2. The proposed method for outlier robustness (Algorithm 4) improves detection

accuracy of Adaboost. Boosting methods perform better than methods which

learn single classifiers, like SVM and neural networks.

These results, overall, support the intuition behind using boosting to learn contex-

tual information for lane marking detection.

5.3.1.1 Computations involved in determining f

Given the required image representations F = {Fi}M3
i=1 pertaining to the orig-

inal intensity image, edge map (from Canny operator [36]), and texture responses

[109], we use the integral images concept [189] to compute the contextual features
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f . We perform an one-time operation to obtain the integral image I?,

I?(a, b) =
∑

a′≤a,b′≤b

Fi(a
′, b′) (5.27)

where (a, b) denote the pixel location, using which all computations of a rectangular

region in Haar-filter can be obtained using the knowledge of I? belonging to the

four corners of rectangle. An illustration is provided in Figure 5.7. Detection across

scale is performed by using different sized Haar-filters, rather than analyzing the

image across multiple resolutions. Hence, we obtain real-time performance, in line

with the first boosting application to object detection [189]. Further increase in

computational speed is possible reducing the image resolution.

5.3.2 Learning the Road Scene Variations

We now evaluate our hypotheses about learning variations in the road scene

from the tracked model parameters. We collected video sequences pertaining to lat-

eral motion of the vehicle, road curves, and static world models discussed in Sections

5.2.2.1 to 5.2.2.3. The lane markings are detected (localized) and parameterized

(5.19) in the first frame of the videos using the approach presented in Section 5.1,

and then tracked using the particle filtering framework by assuming a static motion

model for the lane markings (Section 5.2). The tracker processes 240× 320 images

at 25 frames per second, on a 4 GHz processor. Given in Table 5.2 are the statistics

of the variance of polynomial coefficients [p2 p1 p0] under different scenarios. Five

video segments were used for each of the three scenarios listed below. The numbers

indicate how the variance of each parameter computed using all frames in a video
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varies, indicated by its mean and standard deviation across different videos.

Scenario Mean±standard deviation

of the variance on different videos

p2 p1 p0

Static world 1.15±0.11 0.95±0.08 1.12±0.17

Lateral motion 1.85±0.25 33.12±5.66 25.93±6.01

Road geometry 45.22±12.4 2.77±0.55 3.91±1.2

Table 5.2: Statistics of the variance of polynomial coefficients for the scenarios

discussed in Sections 5.2.2.1 to 5.2.2.3.

It can be seen that the variance in p2 is high when the road geometry changes,

and p1, p0 show a higher variance for lateral motion of the vehicle, whereas for the

static world model all the three coefficients have very little variance. We also col-

lected video sequences to test the occlusion model (Section 5.2.2.4). One such video

contained three lane markings, and the middle lane marking was occluded by a vehi-

cle (as shown in Figure 5.5). We provide the variation in the bounding box locations

of the three lane markings [xbl ybl xtr ytr] in Table 5.3. In this particular video, there

is no change in lateral motion of the vehicle or the road geometry. An occluding

vehicle shortens the length of the middle lane, and the missing area Rm is then an-

alyzed for (5.18). It can be seen from these tables that the variance of lane marking

parameters convey different road scene variations under our tracking framework.

We then compared our tracking model with the commonly used constant velocity
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Occlusion model: Variance of the bounding box parameters

Position of the and the polynomial coefficients

lane marking

xbl ybl xtr ytr p2 p1 p0

Left 1.45 1.62 1.77 1.95 1.12 0.98 1.12

Center 1.43 1.52 1.67 21.95 1.08 0.92 1.22

Right 1.22 1.52 1.83 1.65 1.22 1.98 1.43

Table 5.3: Statistics of the variance of bounding box locations and polynomial

coefficients for the occlusion model discussed in Section 5.2.2.4.

model for vehicles in a particle filter framework [10, 99] and with Kalman filtering

[54]. Only the visual inputs were used. We tested the tracking accuracy over 2000

hand-marked frames on both day and night images. We present the detection rate

and the false positive rate in Table 5.4. The criteria used for correct detection was to

check if at least TrD% of tracked points overlap with the ground truth. If the detec-

tion is less than TrD%, we consider it a mis-detection. Whereas the false positive is

computed if at least TrF% of the tracked result is not included in the ground truth.

We used the following values for (TrD, TrF ) = {(80, 20), (90, 10), (80, 10), (90, 20)}.

Although there are many different ways to validate tracking algorithms [203], we

chose this method mainly to understand the performance of our proposed tracking

model (Section 5.2). It can be seen that at these operating points, the performance

of our model is comparable with other models, with a significant reduction in the
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false positive rate.

Tracking model Performance criteria (in %)

Mean±standard deviation of

Correct tracking rate False positive rate

Particle filtering [10] 82.1 ± 3.5 22.3 ± 3.2

Kalman filtering [54] 76.5 ± 3.7 32 ± 4.8

Ours 83.2 ± 3.1 15.8 ± 2.5

Table 5.4: Comparison of different tracking models on a set of 2000 frames

5.4 Discussion

Through this work, we have studied the utility of learning approaches for

the detection and tracking of lane markings using visual inputs from a camera

mounted in front of a vehicle. We illustrated the advantages of modeling spatial

context information through an outlier-robust boosting formulation, and inferring

some variations in the road scene from the statistics of tracked model parameters

under a static motion model for the lane markings. Without any assumptions on the

road structure, or the motion pattern of the vehicle, we demonstrated some results

on challenging daylight and night-time road scenes.

At the core of our approach is the importance placed on the quality of data.

Although our data for training and testing had several non-common exemplars, there

can be instances such as foggy or rainy road conditions where the visual inputs alone
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are insufficient to detect lane markings. An illustration is provided in Figure 5.8.

Hence, in order to obtain robust performance under varied road conditions, one

could use complementary information from different sensing modalities such as the

vehicle’s inertial sensors, GPS information and models for road geometry. Towards

that end, we hope that the results from this study will provide some insights into

the capabilities of learning contextual information from visual data.

5.5 Appendix: Outlier-robust boosting algorithm

5.5.1 Outlier Robustness of Adaboost - Discussion

We now analyze the iteration bounds of the proposed outlier robust boosting

algorithm (Algorithm 4) in converging to the output hypothesis with optimal clas-

sification margin for the training data. For the class of boosting algorithms that

study outlier robustness by modifying the cost function to achieve balanced weight

distribution, results pertaining to the maximum achievable margin, and the number

of iterations required for it were established by [197, 196]. Specifically, these re-

sults apply to methods where the cost function pertaining to weight distribution of

samples is generally expressed as the relative entropy between the predicted weight

distribution Dt+1 and the desired weight distribution, say D?.

We now adapt the results of [197] by rewriting our proposed cost function fP

(5.11) in terms of relative entropy follows,

f̄P (Dt+1) =
1

λnorm

M∑
i=1

D̄t+1(i) log
D̄t+1(i)

D̄?(i)
(5.28)
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where D̄t+1 and D̄? are obtained by transforming the predicted weight distribution

Dt+1 and desired weight distribution D? (that penalizes sparse non-zero weights

using the parameter λcost) as follows: D̄?(i) = 1/M, ∀i = 1 to M , D̄t+1(i) ≈

0,∀i s.t. Dt+1(i) ≥ λcost, and D̄t+1(i) ≈ 1/M ′, ∀i s.t. Dt+1(i) < λcost. M ′ < M

is the number of samples for which Dt+1(i) < λcost, and λnorm is a normalization

constant whose value equals M
M ′ log 1/M ′

1/M
. When f̄P is used in (5.15) instead of fP ,

the optimization problem obtains the form for which the convergence results of

[197] apply (since, the main difference between our method and [197, 196] is in the

definition of the two distributions whose relative entropy is being computed).

Hence, the proposed boosting algorithm terminates after at most O(d 2
∆2 log(M/ν)e)

iterations with a convex combination g? (5.18) that is at most ∆ below the opti-

mum classification accuracy ∆1 (available to the system). ν is a capping parameter

that handles hard-to-be classified samples using soft margins. The effect of parame-

ters ∆1 and ν on the classification accuracy are studied empirically in the following

section.

5.5.2 Empirical evaluation

We used ten UCI benchmark datasets [11] to evaluate the proposed boosting

algorithm. The data comes in 100 predefined splits, categorized into training and

testing sets. For each split, we used 5-fold cross-validation to select the best kernel

and its parameters, and the regularization parameters λR and λcost (5.15). This

leads to 100 estimates of the generalization error for each dataset. The means
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and the standard deviations are given in Table 5.5. We experimented with three

types of Mercer Kernels, namely - Gaussian RBF k(xi, xj) = exp(−||xi − xj||22/ce),

polynomial k(xi, xj) = (xi.xj)
d and sigmoid k(xi, xj) = tanh(κ(xi.xj) − δe), where

xi and xj are a pair of data points. For each dataset, without the loss of generality,

the best performing kernel (5.9) was used since this step needs to be done separately

for every experiment.

It can be seen from Table 5.5 that our algorithm gives better performance

when compared with the existing approaches on most datasets, and is close to the

best algorithm on the others. Based on this study, we have three observations,

1. The weight learning process depends on the classification accuracy obtained

from kernel discriminant analysis (the parameter δ in (5.9)). It would be

interesting to see how the results vary when the bag of kernels is increased,

and when a classifier better than kernel discriminant analysis is used;

2. The individual effect of the two components of our algorithm is studied in

Table 5.6. It can be seen that the cost function argument performs slightly

better than weight learning, while when used jointly, they produce the least

generalization error;

3. Finally, the modifications suggested in our algorithm can be used in tandem

with existing methods that focus on other aspects of boosting in handling

outliers.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.5: Results of lane tracking on day and night time video sequences. Im-

ages (a) through (d) illustrate lateral motion of the vehicle w.r.t the lane marking

(Section 5.2.2.2). The parameters of polynomial fit [p2 p1 p0] for these images are

as follows: [-0.0009565 5.204 -411.4], [-0.009422 3.218 -92.47], [-0.0009464 1.8893

-2.416], [-0.0009211 0.4853 140.7] indicating substantial changes in p1 and p0. Image

(e) has the following parameters: [-0.3199 0.5179 363.8], where the large variation in

p2 is due to the change in road geometry from straight to curved (Section 5.2.2.3).

Images (f) and (g) are used to illustrate the effect of an occluding vehicle (Section

5.2.2.4). The polynomial coefficients of the middle lane markings in both images are

[-0.0002544 0.94 -86.4], [-0.0002133 0.96 -90.4]. But the bounding box parameters

[xbl ybl xtr ytr] are given by [100 1 225 268] [100 1 225 208]; The missing area Rm

does not satisfy (5.18) due to the presence of the vehicle.

123



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

False postive rate

C
or

re
ct

 d
et

ec
tio

n 
ra

te
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Outlier−robust boosting (Algorithm 1) with context
Algorithm 1 with intensity images (no context)
Adaboost ([22],[30]): With context, and no outlier removal
Adaboost ([22],[30]): Intensity image, and no outlier removal
SVM [13]: with context
Neural networks [13]: with context
SVM [13]: on intensity images
Neural networks [13]: on intensity images

Figure 5.6: ROC curves for lane marking detection: comparing different learning

methods on an internally collected dataset of 400 day/ night-time road images using

a 5 fold cross-validation. The detection results correspond to pixel error of detected

lane markings within a 3× 3 neighborhood around the true pixel location.
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Figure 5.7: Computing the contextual features f using Integral images [189]. Given

an image representation Fi, to compute the cumulative information within the re-

gion D, we only need the value of I? for the four corner points 1,2,3 and 4. The

information can be computed according to the pattern of Haar-filters.
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� �
Figure 5.8: Road scenarios under inclement weather conditions. (a): Sample road

images under rainy, snowy and foggy conditions collected from internet. We col-

lected around 150 such images. Let us call them Iweb. We retained other training

images that we collected before (explained in Section 5.3.1). (b): (L-R) input test

image; output of our algorithm without including Iweb for training; output of our

algorithm after including Iweb in training (the test images shown in (b) were not

used in training). We can see that under these conditions, the visual sensors are not

adequate to detect lane markings completely, however learning does produce some

improvement.
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Datasets Adaboost LPBoost SoftBoost BrownBoost Adaboost reg Ours

[76] [53] [196] [74] [153] (Algorithm

4)

Banana 13.3 ± 0.7 11.1 ± 0.6 11.1 ± 0.5 12.9 ± 0.7 11.3 ± 0.6 10.1 ± 0.3

B.Cancer 32.1 ± 3.8 27.8 ± 4.3 28.0 ± 4.5 30.2 ± 3.9 27.3 ± 4.3 26.2 ± 3.2

Diabetes 27.9 ± 1.5 24.4 ± 1.7 24.4 ± 1.7 27.2 ± 1.6 24.5 ± 1.7 24.5 ± 1.2

German 26.9 ± 1.9 24.6 ± 2.1 24.7 ± 2.1 24.8 ± 1.9 25.0 ± 2.2 23.4 ± 1.1

Heart 20.1 ± 2.7 18.4 ± 3.0 18.2 ± 2.7 20.0 ± 2.8 17.6 ± 3.0 16.9 ± 2.2

Ringnorm 1.9 ± 0.3 1.9 ± 0.2 1.8 ± 0.2 1.9 ± 0.2 1.7 ± 0.2 1.65 ± 0.2

F.Solar 36.1 ± 1.5 35.7 ± 1.6 35.5 ± 1.4 36.1 ± 1.4 34.4 ± 1.7 33.7 ± 1.2

Thyroid 4.4 ± 1.9 4.9 ± 1.9 4.9 ± 1.9 4.6 ± 2.1 4.9 ± 2.0 4.6 ± 2.1

Titanic 22.8 ± 1.0 22.8 ± 1.0 23.0 ± 0.8 22.8 ± 0.8 22.7 ± 1.0 21.5 ± 1.0

Waveform 10.5 ± 0.4 10.1 ± 0.5 9.8 ± 0.5 10.4 ± 0.4 10.4 ± 0.7 9.12 ± 0.5

Table 5.5: Boosting methods on UCI Dataset [11]: comparing the proposed algo-

rithm with other methods for outlier robustness of Adaboost. Results correspond

to the mean and standard deviation of the generalization error.

Datasets Ours - weight learning only Ours - cost function only Ours - Algorithm 4

(5.12) (5.15) (both (5.12) and (5.15))

Banana 10.6 ± 0.3 10.4 ± 0.5 10.1 ± 0.3

B.Cancer 26.5 ± 3.2 26.45 ± 3.0 26.2 ± 3.2

Diabetes 24.5 ± 1.2 24.5 ± 1.2 24.5 ± 1.2

German 23.9 ± 1.1 23.6 ± 0.9 23.4 ± 1.1

Heart 17.2 ± 2.2 17.15 ± 2.2 16.9 ± 2.2

Ringnorm 1.8 ± 0.2 1.8 ± 0.2 1.65 ± 0.2

F.Solar 34.1 ± 1.2 33.75 ± 1.2 33.7 ± 1.2

Thyroid 4.7 ± 1.6 4.7 ± 1.6 4.6 ± 2.1

Titanic 21.5 ± 1.0 21.5 ± 1.0 21.5 ± 1.0

Waveform 9.5 ± 0.5 9.5 ± 0.1 9.12 ± 0.5

Table 5.6: UCI Dataset [11]: comparing the individual components our proposed

algorithm. Results correspond to the mean and standard deviation of the general-

ization error.
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Chapter 6

Max-margin Clustering: Detecting Margins from Projections of

Points on Lines

Unsupervised identification of patterns in data, broadly referred to as clus-

tering, is an important problem that has been extensively studied [78, 59] over the

last several decades. Existing approaches can be characterized based on pattern

representation, criteria for similarity between patterns, and cost functions that de-

termine the grouping mechanism [94, 93]. The goal of this work is to find maximally

separable clusters, given the knowledge of number of clusters, and an appropriate

representation of data that depends on the specific application of interest.

There are two broad approaches to this problem, both of which draw inspira-

tion from supervised classification. The first class of methods performs clustering

by reducing the original dimensionality of data. Subspace selection is performed

using discriminative methods such as linear discriminant analysis (LDA) [78], which

starts with random assignments of class labels, or using generative methods such as

principal component analysis (PCA) [78], locally linear embedding (LLE) [156] and

Laplacian Eigenmaps [19]. Standard clustering algorithms like K-means [121] and

spectral methods [135, 171] are then applied in the resulting subspace to determine

the cluster assignments. However, the absence of ‘true’ data labels makes this a

chicken-and-egg problem, and there are methods addressing this issue by studying
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the feedback between subspace selection and clustering (e.g. [51, 211, 210]). The

second class of approaches is based on obtaining clusters with maximum separating

margins [205, 24, 146], and are primarily motivated by the paradigm of max-margin

supervised classifiers, such as support vector machines (SVM) [35]. Most of these

methods can be visualized as implicitly running an SVM with different possible

label combinations to obtain a final cluster assignment having maximum margin.

However, as this process results in a non-convex integer optimization problem, sub-

sequent efforts [217, 215, 185, 192, 216] have proposed approximation strategies that

obtain a solution in polynomial time.

Contributions: Our approach belongs to the latter category. However, unlike

most existing solutions that optimize over all possible cluster assignments, we seek

a more basic understanding of the relationship between data points and margins.

Since regions corresponding to the separating margins have (ideally) no data points,

our goal is to identify these sparse regions by analyzing the projections of unlabelled

points X ∈ RN on the set of all possible lines L in RN . In this process,

• We first derive certain properties which the projections of X on a line in-

terval will satisfy, if and only if that interval lies outside of a cluster, under

assumptions of linear separability of clusters and absence of outliers;

• We extend these results to define a similarity measure, which computes the

probability of finding a margin in the line interval between a pair of points,

and use it to perform global clustering. We relax the assumption of linear sep-

arability of clusters using kernel methods, and address the problem of outliers
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through methods that emphasize a balance between cluster sizes.

Outline of the chapter: Section 6.1 studies the properties of projections of

data on line intervals for two cluster and multi-cluster cases. Section 6.2 proposes

a method to determine cluster assignments. Section 6.3 validates the proposed

method through experiments on standard UCI datasets [73], and on computer vision

applications, such as face recognition under illumination variations [173, 80], and

2D shape matching [105, 82]. Section 6.4 concludes the chapter. Figure 6.1 provides

an illustration of our approach.

6.1 Properties of projection of X on L

Let the input X contain a set of M unlabelled data points, {xi}M
i=1 ∈ RN , be-

longing to k clusters. For the ease of discussion, we make the following assumptions

that will be relaxed later; (i) Points in X belong to clusters that are (pair-wise)

linearly separable in their input space, and (ii) No outliers are present in the data

(specific details regarding this assumption will be provided in the following sections).

In what follows, we try to detect the presence of margins by studying the patterns

in projections of X on the set of lines L. We will motivate our method by drawing

parallels to the supervised max-margin classification scenario.

6.1.1 Case A: Two clusters

We first study a two-cluster problem, i.e. when k = 2. For now, let us assume

that the true labels of xi, yi ∈ {−1, +1}, are available. A max-margin classifier,
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Figure 6.1: Left: A four class, linearly separable problem with X ∈ R2. With known

class labels, a max-margin classifier produces margins (shaded regions) with the

separating hyperplanes indicated by the dashed lines. Right: In an unsupervised

setting, how to identify these margin regions? Consider two lines L1 and L2, and

project X on them (small yellow dots). Interval a1 of L1 has no projected points

since it lies in margin region ⊥ to the hyperplane that separates a cluster from all

other clusters ; whereas interval a2 of L2 (whose margin separates only a pair of

clusters) has projected points from other clusters, with their minimum distance of

projection d1 more than that of d2 for points projected elsewhere on L2. In this

work, we study the statistics of location and distance of projections of X on all lines

L, to identify margins and perform clustering.
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such as a linear support vector machine (LSVM), produces a decision boundary that

optimizes the following objective function,

min
w,b

1

2
‖w‖2

2, s.t. yi(w
txi + b) ≥ 1, ∀i = 1 to M (6.1)

where (.)t is the transpose operator. Essentially, the separating hyperplane S :

wtx + b = 0, where w is the normal to S, is chosen such that it has a maximum

separation of 1/‖w‖2 from the tangent of support vectors from either classes given by

H1 : wtx + b = 1, and H2 : wtx + b = −1, respectively. The margin region bounded

by parallel hyperplanes H1 and H2 is denoted by MS, which is characterized by no

data points X, and therefore provides a separating margin of γ = 2/‖w‖2 between

the two classes. An illustration is provided in Figure 6.2.

To identify MS from an unlabelled set of points X, we now consider the pro-

jections1 of X onto the set of all lines L in RN . Let xip denote the location of

projection of xi ∈ X on a line. It is not hard to visualize that the projection of X

creates patterns on the line, which is shown using black dots in Figure 6.2 for lines

A, and B. Notice that for line A, the projection of X on them creates two dark

patterns with a sparse region in between, which clearly captures the margin between

the left and right clusters. On the other hand, line B due to its orientation fails

to capture the margin, which makes it unsuitable for our purposes. The intuition

behind our algorithm is that if we draw sufficient number of lines between points

in X, we may be able to capture the margins that separate the clusters, which in

1We are interested in the shortest (perpendicular) projection. Let x1 and x2 be any two points through which

w passes. To project a new point xi onto w, we first compute the line passing through x1 and xi, say wx1 , and then

obtain the location of its projection, xip = x1 +
wx1 .w

w.w
. The distance of projection, dip , is given by ‖wx1 −xipw‖2.
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Figure 6.2: An illustration of projection of points on different line segments. The

two clusters are represented by ellipses. Assume that points X are present every-

where inside the ellipses. When labels of X are available, S will be the separating

hyperplane, and H1 and H2 are tangents to support vectors of either classes. MS

denotes the margin region (bounded by H1, and H2). SI? = γ is the margin, and w

is the normal to S. In a clustering scenario, where labels of X are unknown, consider

two lines (A,B ∈ L in R2). Lp refers to the segment of L enclosing all projections

xip (dots in black). It can be seen that on intervals in Ap ⊥ S, there is no xip in

the region corresponding to margin MS; hence, there exist SI?. For any other line

segment not perpendicular to S, say Bp, maximum possible SI < γ.
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turn would aid in clustering of X. Furthermore, we can now discard A and B, in

favor of line segments Ap and Bp, which are obtained by walking on those lines and

truncating their bounds to lie between the first and last projected points of X that

we encountered. Let the set of these truncated line segments across all L be referred

as Lp.

Before analyzing Lp in pursuit of MS, under the assumption of no outliers in

the data, we constrain the maximum margin γ to exist only between points belonging

to different clusters, and not otherwise. We now define the following.

Definition Sparsity index of a line segment z ∈ Lp, SI(z) ∈ R, is the maximum

distance2 travelled along z where there are no projected points xip . Let SI? =

max
z∈Lp

SI(z).

Proposition 6.1.1 SI? = γ is realized only by those set of line segments C ⊂ Lp

that are normals to the separating hyperplane S, and the intervals in C where SI?

occurs are those that correspond to the margin region MS. Furthermore, ∀C̄ = Lp\C,

SI(C̄) < γ.

Proof Follows directly from (6.1), provided there exist a unique max-margin sepa-

rating hyperplane S.

Hence in an unsupervised setting, we directly obtain cluster assignments of

X by identifying a line segment (in C) with maximum SI, where the minimum

distance between a pair of points belonging to different clusters is SI?.

2By distance, we refer to the standard Euclidean norm ‖.‖2 between the end points of the interval of z containing

no xip . Further, we might occasionally drop the argument for SI(.) for sake of simplicity.

133



6.1.2 Case B: Multiple clusters

We now consider the general case where the number of clusters k ≥ 2. We

again draw motivation from the supervised max-margin classification problem, for

which there are two popular strategies; (i) directly solve for the multi-class problem

by optimizing a single objective function (e.g. [45]), and (ii) decompose the problem

into one that combines several binary classifiers (e.g. [7]). We will motivate our

study using the latter strategy, where we are primarily interested in understanding

the information conveyed by a margin, its effect on the distribution of xip on w, and

the existence of SI? to perform clustering.

Consider a set of points X = {xi}M
i=1 with known labels yi ∈ {1, 2, ..., k}

belonging to one of the k linearly separable classes. A supervised classifier produces

the final decision boundary Ŝ by combining several independent binary separating

hyperplanes Si,

Ŝ = g(S1, S2, ..., Sl) (6.2)

where g is a combination function3 that determines the piece-wise linear boundaries

of the decision regions Ri, i = 1 to k, belonging to the k classes. An illustration is

provided in Figure 6.3 for a three-class problem.

Notations: Let Xi ⊂ X represent the set of points that are separated by Si. Let

wi be the normal to Si, and let the length of the corresponding margins be denoted

by γi. Let MSi
denote the margin region corresponding to γi when Si is considered

3The value of l depends on the type of binary classifiers used, for instance, one-vs-all or one-vs-one, and the mode

of combination g. The maximum number of such classifiers, l′, is therefore k for one-vs-all, and
(k
2

)
for one-vs-one.

Since not all hyperplanes might contribute to decision making, l ≤ l′.
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in isolation (i.e. a two-class problem with X = Xi), and let M ′
Si
⊆ MSi

denote the

bounded margin region in a multi-class setting where Si independently classifies Xi

(6.2). For subsequent analysis, we partition the space of X into two regions; (i)

cluster regions CL = ∪k
i=1CLi, where CLi is the convex hull of all points belonging

to the ith cluster, and (ii) non-cluster regions CL′ that include ∪k
i=1M

′
Si

pertaining

to margins, and T comprising of ∪k
i=1Ri \CLi, and regions where more than one Si

is involved in decision making. Figure 6.3 illustrates this for k = 3.

To study the validity of Proposition 6.1.1 in clustering unlabelled X belonging

to multiple linearly separable groups, we first seek to understand the interference

of X′i = X \ Xi on the pair of clusters an Si separates. To visualize what we mean

by this, consider the line interval a2 ∈ Lp in Figure 6.1 that lies in a margin region

perpendicular to Si which separates Xi belonging to group 2 and 3. Although a2

does not contain any points from Xi, many points X′i belonging to group 1 and 4 get

projected on a2. Therefore, we first analyze the relevance of SI? for a multi-cluster

problem.

6.1.2.1 Existence of SI? - Information conveyed by xip

Instead of analyzing the projections of X directly on Lp, we consider the set of

all continuous intervals that are contained in Lp. Let Int = {IntCL} ∪ {IntCL′} be

a set, such that IntCL denotes intervals within the cluster regions CLi, ∀i = 1 to k,

and IntCL′ denotes those outside the cluster. For example, the line segment Ap ∈ Lp

in Figure 6.2 has IntCL corresponding to its intervals within the ellipses, and IntCL′

corresponding to those in MS. We now analyze the existence of SI?, in this case,
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Figure 6.3: Partitioning the space of X into different regions. The data X, shown in

yellow circles, belong to three linearly separable clusters (k = 3). With known class

labels, a supervised classifier Ŝ produces decision regions Ri, i = 1 to 3 belonging to

the three classes, shown in red, blue, and green respectively. The margins regions

M ′
Si

are bounded by solid black lines, with their corresponding margins denoted by

γi. The separating hyperplanes Si are given in black dashed lines. We now divide

the space of X into, (i) cluster regions CLi in white dotted lines, and (ii) non-cluster

regions that comprise of margin regions M ′
Si

and T .
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SI = γi,∀i = 1 to l, for intervals in the corresponding margin regions M ′
Si

. In doing

so, we assume that there are no outliers in the data; (i.e.) if the maximum margin

between points belonging to a same cluster is Mm, we require that Mm <
l

min
i=1

γi.

Proposition 6.1.2 For any IntCL′ in M ′
Si
⊥ Si, a SI? = γi will be realized iff

M ′
Si
≡ MSi

.

Proof The basic criteria for SI? = γi to exist is that there should be no X in MSi
.

From the definition of the margin of a separating hyperplane, MSi
will not contain

Xi. If ∃ X′i in MSi
, then there will exist a Sj, j 6= i (as determined by g), to classify

X′i from Xi. This, in turn, leads to an M ′
Si
⊂ MSi

containing no X, which results in

a maximum realizable SI < γi for any IntCL′ in M ′
Si
⊥ Si.

We now focus on intervals belonging to other regions.

Corollary 6.1.3 For any interval IntCL within the cluster region, SI <
l

min
i=1

γi;

and for an interval IntCL′ in M ′
Si
6⊥ Si, SI < γi.

Proof Follows from Propositions 6.1.1 and 6.1.2.

However, SI for intervals belonging to T is completely dependent on the spatial

configuration of the data. Unless otherwise M ′
Si
≡ MSi

,∀i = 1 to k, the maximum

SI realizable at an interval in M ′
Si

can be realized for intervals in T also. An

illustration is provided in Figure 6.4. Hence, with regard to the information conveyed

by xip , we finally state the following without a proof.

Corollary 6.1.4 Irrespective of whether M ′
Si
≡ MSi

, an interval with SI ≥
l

min
i=1

γi

can exist only outside a cluster.
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Figure 6.4: Illustrating the data-dependent nature of projections in intervals Int in

T . Consider a three cluster problem, where the ellipses are completely filled with

points. (a): Since M ′
Si
⊂ MSi

, SI? does not exist. However, the maximum possible

SI occurs for intervals both in margin regions, and in T (shown with double head

arrows). (b): When M ′
Si
≡ MSi

, SI? exists, and such intervals only belong to the

margin regions (as in the case of a two-cluster problem).
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6.1.2.2 Role of distance of projection dip

Since existence of SI? is itself dependent on the data, the location information

of projected points xip alone is insufficient to characterize margin properties for

a multi-cluster problem. We make the following observation. M ′
Si

, the informative

subset of MSi
, is obtained by spatially bounding MSi

to remove the interactions of X′i.

Hence, one way of translating this spatial neighborhood information for clustering

is to use the distance of projection of points dip . To understand the role of dip , let

us define Dmin of a line interval to be the minimum4 dip of all xip projected in that

interval. In similar vein, let Dmax of an interval denote the maximum dip of all xip

from that interval.

Proposition 6.1.5 Dmin for intervals within a cluster is less than that for all in-

tervals Int? in a margin region perpendicular to their corresponding separating hy-

perplanes, i.e. Int? = ∪i{IntCL′ in M ′
Si
⊥ Si}. Specifically, for intervals:

1. within a cluster region, max
IntCL

Dmin ≤ Mm/2;

2. in the margin region perpendicular to the separating hyperplane, min
Int?

Dmin ≥
l

min
i=1

γi.

Proof (i) This result comes directly from the no-outlier assumption in X. When the

maximum margin between any two points belonging to a cluster Mm <
l

min
i=1

γi, for

any IntCL there will exist an xip with 0 ≤ dip ≤ Mm/2. Furthermore, there exists a

4To facilitate later discussion, for intervals with a Dmin = 0, we set Dmin = εmin, where εmin

is a positive real number slightly greater than zero. εmin = .001 in our experiments.
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pair of projections (xip , xjp), j 6= i such that, 0 ≤ dip ≤ Mm/2, 0 ≤ djp ≤ Mm and

0 ≤ |dip − djp | ≤ Mm. (ii) For intervals Int?i ∈ Int? in M ′
Si
⊥ Si, the points X′i need

to travel a minimum distance of their corresponding margins to interfere with Int?i .

Hence, across all such intervals Int?, Dmin ≥
l

min
i=1

γi.

The salient points of these discussions are captured by Figure 6.1 for a four-

cluster problem where, (i) the intervals a1, a2 ∈ Int? illustrate that SI? need not

be realized at all margin regions, and (ii) Dmin for intervals belonging to Int?, for

instance a2 ∈ L2 whose Dmin = d1, is always larger than that for intervals within

a cluster. Hence, dip conveys much more data-independent5 information than that

portrayed by xip alone. We now define the following.

Definition Sparsity index of a line interval for a multi-cluster problem, SIm =

[SI]D ∈ R, is the maximum distance travelled on that interval in which there exist

no projected points xip with dip < D. The dependency of SIm on dip is controlled

by D, which can take any value in the closed interval [Dmin, Dmax].

As in the case of two-cluster problem, where Dmin = Dmax = ∞ for an interval with

SI? (Proposition 6.1.1), SIm can be used to determine if an interval is associated

within a cluster or outside cluster regions, as follows.

Proposition 6.1.6 An interval with [SI]D?
min

≥
l

min
i=1

γi can lie only outside a clus-

ter, where D?
min ≥

l

min
i=1

γi.

5The properties of Dmin for intervals in T , however, are completely dependent on data, as was the case with

xip (Figure 6.4).
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Proof Follows from Corollary 6.1.4 and Proposition 6.1.5. Since max
IntCL

Dmin <

min
Int?

Dmin, intervals satisfying the above condition, say ˜Int, can belong only to,

(i) Int?, and (ii) an interval in T depending on the data configuration.

However, unlike the two-cluster problem, such informative intervals ˜Int do not

provide the cluster assignments of X directly. This is due to the inherent limitation

of linear classifiers which, at the most, can separate only a pair of classes. Figures

6.1 and 6.2 illustrate this contrast, where although the interval a1 on L1, and the

interval in Ap pertaining to MS realize a SI?, only the latter interval could provide

the cluster assignments. Methods by which the information contained in ˜Int can

be modeled to estimate the cluster assignments is the focus of the following section.

At that point, we will also relax our assumption of requiring linear separability of

clusters in their input space, and address the issue of outliers in data.

6.2 A Maximum-margin clustering algorithm

Determining the minimum value of D?
min and the corresponding lower bound of

[SI]D?
min

, in an unsupervised setting, would require identifying a line perpendicular

to separating hyperplane with the least margin. This is an ill-posed problem because

the notion of D?
min and [SI]D?

min
are relative with respect to the data configuration.

Further, this process would ideally necessitate an analysis of projections of X on all

possible lines, and is therefore computationally intensive. Hence, we evaluate the

probability of presence of ˜Int between all pair of points in X using Proposition 6.1.6,

and perform global clustering using it to obtain the cluster assignments.
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Since an interval belonging to ˜Int will have a Dmin (and the corresponding

[SI]Dmin
) greater than that for all intervals within a cluster, we define a pair-wise

similarity measure,

f(xi, xj) = exp(−max
D:Intij

D[SI]D) (6.3)

which determines how probable is the absence of ˜Int between the points xi and

xj. Intij is the line interval between xi and xj containing projections of X, from

which the bounds for D are determined to compute (6.3). Since Intij can contain

intervals belonging to both IntCL and IntCL′ , maximization over D helps to identify

the presence of ˜Int (Proposition 6.1.6). We now make the following observations,

• Maximum value f(xi, xj) = 1 occurs only when xi = xj since, (i) there exist

no ‘interval’ between them (SI = 0), and (ii) for any point-pair (xi, xj), j 6= i,

one can always find an infinitesimal interval (up to a discretization error) in

Intij with Dmin > 0, which would make f(xi, xj) < 1;

• Minimum value f(xi, xj) ≈ 0 occurs only if xi and xj belong to different

clusters, and Intij is perpendicular to the hyperplane that separates xi and

xj, i.e., Intij ∈ Int? ⊂ ˜Int. Such cases will have a large max
D
D[SI]D, and

from previous discussions, this value will be much higher than those when xi

and xj belong to same cluster.

Essentially, the most significant edges connecting nodes from different clusters are

those with least weights, f(xi, xj) ≈ 0, which need to be ‘cut’ in order to obtain

the cluster assignments. We use normalized cuts [171] for this purpose. Details are

presented in Algorithm 5. Since we restrict our analysis to Intij between a pair of
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points (instead of using Lp in RN), we examine the fraction of such ‘meaningful’

edges obtained from each xi in the Appendix.

Input: Set X of M unlabelled points {xi}M
i=1 ∈ RN , and number of clusters k(> 0).

Output: The cluster assignments yi ∈ {1, 2, ..., k}, ∀i = 1 to M , providing the maximum

separating margin (Proposition 6.1.6). Do:

1. Compute projections of X on the set of line intervals between

all possible points pairs, Intij : (xi, xj), ∀1 ≤ i, j ≤ M .

2. Compute a symmetric M ×M similarity matrix S?, with its entries

f(xi, xj), ∀1 ≤ i, j ≤ M obtained from (6.3).

3. Perform normalized cuts (NCut) [171]; y = NCut(S?, k) to

obtain the cluster assignments.

Algorithm 5: Maximum-margin clustering algorithm.

6.2.1 Design Issues

Computing f : Since we use an exponential function to compute (6.3), we

first normalize SI and dip with the maximum distance between two data points,

and the maximum value of dip across projections of X on lines between all pairs

of points, respectively. Then while evaluating (6.3), we need to account for the

possibility of existence of no xip in a small interval (SI ≈ 0, and/or SI < γ)

within a cluster. Such a condition results in Dmin = ∞, which makes f = 0. To

avoid such instances, we place an upper bound on the maximum value of Dmin:

D̄min = n1
∗( max

Int∈Lp

dip), n1 > 1. Since we normalize dip, D̄min = n1, and we chose

n1 = 7 for our experiments. This choice would make the minimum value of f ≈ 10−3,
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when the corresponding (normalized) SI ≈ 1. From previous results, the instance

with SI ≈ 1 and Dmin = n1 will happen only when xi and xj belong to different

clusters.

When data is not linearly separable: Since the basic information needed to

compute (6.3) comes from xip and dip , and these computations involve dot products,

we accommodate non-linearly separable data using the kernel trick [5].

Effect of outliers: The choice of normalized cuts to perform clustering based

on (6.3) is primarily to obtain balanced clusters, which offers some resistance to

outliers. Hence, our method is less prone to the presence of isolated points belonging

to a cluster. An illustration is given in Figure 6.5. However, unlike outlier-robust

supervised max-margin classifiers that use slack variables (eg. [35]), we cannot deal

with conditions where a point belonging to cluster 1 is present inside cluster 2, and

both clusters are well-balanced.

Computational complexity: Obtaining the projections of X on line segments

between all pairs of points has a cost of O(M) for each line segment, and O(M2)

for all point-pairs, thereby yielding a total cost of O(M3). To compute f for a

point-pair (6.3) with this information, we need to analyze the maximum distance

between adjacent xip ’s (to compute [SI]D) for a maximum of M possible values

of dip . However, we discretized the dip values into five equal intervals between 0

and 1. Hence, this stage has a cost of O(M log M) to sort xip ’s between a point-

pair, and when performed for all point pairs incurs a cost of O(M3 log M). These

two stages, though, permit parallelization to improve efficiency. We then perform

normalized cuts, which involves eigen-decomposition with M nodes, and thereby
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has a maximum cost of O(M3). Hence, the overall computational complexity of our

method is O(M3 log M), which is slightly more than that of normalized cuts.

6.3 Experiments

We performed experiments both on synthetic, and real data to evaluate our

method. In all these experiments, we used the following set of kernels: linear,

polynomial, RBF (radial basis function), and sigmoid. We then chose the kernel

with least Ncut cost (Algorithm 5) to determine the cluster assignments. These

results are then matched with the ground truth to compute the clustering accuracy.

On the whole, we saw an improvement in clustering accuracy of about 6% on average,

and up to a maximum 15% using our method on several synthetic, and real datasets.

For cases where we did not perform the best, we were outperformed by an average

of about 1% and a maximum of 3.5%.

6.3.1 Synthetic data

We experimented with synthetic data6 containing multiple clusters (with max-

imum k = 10), and with cases where the clusters are not linearly separable in their

input space. We generated 100 synthetic data, where the first set of 50 samples

had outliers, and the second set of remaining samples had no outliers. The outlier

instances were not restricted to cases with isolated points, which normalized cuts

can handle relatively well. We tested the sensitivity of our algorithm to outliers, and

6
www.umiacs.umd.edu/users/raghuram/Datasets/MaxMarginClustering.zip
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to the absence of the exact value of k (we ran the algorithm for 2 ≤ k < 10) on this

dataset and present the results of clustering accuracy in Table 6.1(a). Some cluster-

ing results using our method are shown in Figures 6.5 and 6.6, where X ∈ R2, and

X ∈ R3. We also show some results using K-means (KM) [121] and using normalized

cuts (NC) [171] with the pairwise-similarity measure f ′(xi, xj) = exp(−‖xi−xj‖2
2/σ),

to illustrate the sensitivity of these algorithms to cluster-center initialization, and

the value of σ, respectively. Hence, one advantage of our approach is its reduced

dependence on parameter tuning. The results of KM and NC, for each kernel pa-

rameter setting (and number of clusters), were averaged over 50 trials, and different

values of σ (set by a exhaustive search over the distance between all point-pairs in

the data) respectively, and the mean and standard deviation of clustering accuracy

for the best parameter set are reported. With an improvement of around 9% in

accuracy, our method has better tolerance to outliers. It also shows much better

performance when the exact value of k is unknown.

6.3.2 Comparison with existing methods on real data

We then evaluated our method on the experimental setup of Wang et al. [192]

that performs maximum margin clustering by optimizing over all possible cluster

assignments, and that of Ye et al. [211] which performs discriminative cluster-

ing by integrating linear discriminant analysis-based dimensionality reduction and

K-means clustering. The datasets belonged to the UCI repository [73], text data
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(a)

(b)

(c)

Figure 6.5: Clustering results on synthetic data X ∈ R2. (a),(b): Results using

our method showing robustness to outliers, and in characterizing margin properties.

(c): the first two figures shows sample mis-clustering result from KM, and the last

two from NC - to illustrate the sensitivity of these algorithms to cluster center

initialization, and parameter tuning respectively. (Data magnified by a factor of 5.)
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Figure 6.6: Clustering results on synthetic data X ∈ R3. (a) original data. Data is

randomly distributed in x- and y- directions from 0 to 30, and has three splits in

the z- direction: 0 to 15, 23 to 38, and 45 to 60. Clustering results are shown in the

y-z plane. (b) our method, (c) KM, (d) NC.
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(a)

Data KM [121] NC [171] Ours

set 1, k known 72.2±3.41 67.5±4.22 76.5

set 1 & 2, k known 76.6±2.50 77.1±3.02 85.5

set 2, k unknown 70.9±3.28 78.55±2.31 92.3

set 1 & 2, k unknown 58.78±3.96 61.43±4.55 78.1

(b)

Data KM NC MMC GMMC IterSVR CPMMC Ours

[121] [171] [205] [185] [215] [192]

UCI-Iono. 54.28 75.00 78.75 76.50 77.70 75.48 86.17

UCI-Let. 82.06 76.80 - - 92.80 95.02 97.25

UCI-Sat. 95.93 95.79 - - 96.82 98.79 98.35

Text-1 50.53 93.79 - - 97.02 95.00 98.56

Text-2 50.38 91.35 - - 93.99 97.21 96.98

Digits 3-8 94.68 65.00 90.00 94.40 96.64 96.88 97.33

Digits 1-7 94.45 55.00 68.75 97.8 99.45 100.0 100.0

Digits 2-7 96.91 66.00 98.75 99.50 100.0 100.0 100.0

Digits 8-9 90.68 52.00 96.25 84.00 96.33 98.12 99.56

UCI-Digit 96.38 97.57 - - 98.18 99.40 99.52

MNIST 89.21 89.92 - - 92.41 96.21 98.55

(c)

Data KM [121] NC [171] CPM3C [192] Ours

UCI-digits 0689 42.23 93.13 96.74 96.11

UCI-digits 1279 40.42 90.11 94.52 96.54

USPS 92.15 92.81 95.03 97.11

Cora-DS 28.24 36.88 44.15 56.31

Cora-HA 34.02 42.00 59.80 69.86

Cora-ML 3-8 27.08 31.05 45.49 42.33

Cora-OS 1-7 23.87 23.03 59.16 75.87

Cora-PL 2-7 33.80 33.97 47.21 53.33

WebKB-Corn. 8-9 55.71 61.43 72.05 73.11

WebKB-Texas 45.05 35.38 69.10 75.60

WebKB-Wash. 53.52 32.85 78.17 82.43

WebKB-Wisc. 49.53 33.31 74.25 79.23

20-newsgroup 35.27 41.89 71.34 71.44

Reuters-RCVI 27.05 - 62.35 72.81

(d)

Data DisKmeans [51] DisCluster [211] LLE [156] LEI [19] Ours

(max,mean) (max,mean)

banding (77.1,76.8) (77.1,76.7) 64.8 76.4 83.2

soybean (64.1,63.4) (63.3,63.2) 63.0 64.9 68.7

segment (68.7,66.4) (67.6,67.2) 59.4 66.3 73.1

pendigits (69.9,69.0) (69.6,69.0) 59.9 69.7 70.1

satimage (70.1,65.1) (65.4,64.2) 62.7 66.3 69.5

leukemia (77.5,76.3) (73.8,73.8) 71.4 68.6 77.4

ORL (74.4,73.8) (73.9,73.8) 73.3 31.7 79.1

USPS (71.2,62.8) (69.2,68.3) 63.1 70.0 75.3

Table 6.1: (a) Clustering accuracy (in %) on a synthetic dataset of around 100

samples with X ∈ R2 and X ∈ R3.(b),(c) Comparison with max-margin cluster-

ing methods. Clustering accuracy (in %) for, (b): two-cluster problems, and (c):

multi-cluster problems. (d) Comparison with methods that integrate dimensionality

reduction and clustering on multi-cluster problem.
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(20-newsgroup7, WebKB8, Cora [126] and RCVI [112]), digits data (USPS9, and

MNIST [106]), and ORL face dataset10. The results of clustering accuracy compar-

ison with max-margin clustering methods are given in Tables 6.1(b) and 6.1(c), and

the comparison with the discriminative clustering methods is given in Table 6.1(d).

It can be seen that our method compares favorably with other methods on many

datasets, offering an overall improvement of 3 to 4%.

6.3.3 Experiments on vision problems

6.3.3.1 Face recognition across lighting variations

We used the YaleB dataset [80] and CMU-PIE Illumination dataset [173].

The YaleB dataset has images of 38 subjects under 64 different lighting conditions,

and the PIE dataset has 68 subjects with 21 lighting conditions. No other facial

variations such as pose, alignment etc. were present. The images were resized to

48× 40, and the gradient orientation information was computed at each pixel. This

feature, which was shown to be robust against lighting changes [40], was vectorized

to constitute xi’s. Clustering was then performed using normalized cuts on the

pair-wise information f (6.3).

7
people.csail.mit.edu/jrennie/20Newsgroups/

8
www.cs.cmu.edu/∼WebKB/

9
www.kernel-machines.org/data.html

10
www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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6.3.3.2 2D Shape matching

We used the MPEG-7 shape retrieval dataset [105] and an articulation dataset

[82]. The MPEG-7 dataset contains 70 classes of shapes with 20 instances per

class containing general shape deformations. The articulation dataset contains 5

classes, with 10 shapes per class, where the main source of variation is non-planar

articulations. The underlying shape representation was a shape context descriptor

invariant to non-planar articulations. For each aligned shape (2D silhouettes), 100

points were sampled uniformly along the contour, and a log-polar histogram was

associated with each point using the method of [82]. We used 5 radial bins, and 12

angular bins resulting in a 100× 60 shape descriptor for each shape. The vectorized

form of this descriptor represents xi ∈ X, using which clustering is done.

We compared our method with Zhang et al. [215], and Ye et al. [211], and

the results are given in Table 6.2. We used the publicly available source code for

[215]11, implemented [211], and verified results on the datasets used for this work.

These results, with roughly a 7% improvement, demonstrate potential applications

of our method towards unsupervised pattern discovery in vision problems. As a final

note, although it is desirable to have a good grouping mechanism, we would like to

emphasize the equally important component of ‘data representation’ on which we

operate on.
11

www.cse.ust.hk/∼twinsen
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Data DisKmeans [51] IterSVR [215] Ours

Face-YaleB 65.6 68.1 77.4

Face-PIE 69.2 71.0 79.5

Shape-MPEG7 55.9 51.2 59.3

Shape-Articulation 42.3 38.5 51.4

Table 6.2: Clustering accuracy (in %) on datasets for face recognition across lighting

condition, and shape matching. As before, the result for our method correspond to

kernel parameters with least NCut cost, whereas for the other two methods we

report the maximum clustering accuracy.

6.4 Discussion

We addressed the problem of obtaining clusters with maximum separating

margins, by studying the pattern of projections of points on all possible lines in

the data space. By drawing parallels with supervised max-margin classification, we

derived properties that projections on a line interval would satisfy if and only if that

interval lies outside a cluster, under assumptions on linear separability of clusters

and absence of outliers. We then proposed a pair-wise similarity measure to model

this information to perform clustering, by accommodating non-linearly separable

data using kernel methods, and (partially) handling outliers by placing emphasis on

the cluster size. The experiments illustrated the utility of our method when applied

to standard datasets, and to problems in computer vision.
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6.5 Appendix: On detecting margins with a restricted analysis on

line intervals between all pairs of points

We analyze the consequence of a restricted analysis on line intervals between

a pair of points in X, rather than all Lp in RN . Let Intfull
ij ⊂ Lp denote line

intervals between all pair of points (xi, xj) ∈ X containing the projections of X.

Let Intfull
ij = Int1ij ∪ Int2ij comprise of two disjoint sets that denote line intervals

between a pair of points belonging to same, and different clusters, respectively. From

Proposition 6.1.6, only those intervals in Int2ij ⊥ Si, where Si is the hyperplane

separating the pair of points connected by Int2ij, can have a Dmin ≥ D?
min. Let us

now analyze the possibility of obtaining such intervals in Int2ij.

Let 0 < θ ≤ 90◦ denote the angle12 between an interval Int2ij with its cor-

responding Si. Let us analyze the distribution of θ tended by the set of all lines

joining a point xi to all points xj belonging to a different cluster. Since this is a data-

dependent analysis, without the loss of generality, let us assume θ to be uniformly

distributed between 0 and (including) 90◦. Let us split this into n2 equally spaced

angular bins. Essentially, ∀xi ∈ X, at least 1/n2 of its connections with points xj

in other clusters will almost surely realize D?
min (since their θ u 90◦). Hence, for

each point, these are the connections that need to be ‘cut’ in order to group points

(f << 1).

12θ can not equal zero, since the line between a pair of points belonging to different clusters can never be parallel

to the hyperplane that separates them.
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Chapter 7

Domain Adaptation for Object Recognition: An Unsupervised

Approach

As the role of data becomes increasingly important in pattern classification

problems, we are often confronted with situations where the data we have to train

a classifier is ‘different’ from that presented during testing. Of the several schools

of thought addressing this problem, two prominent ones are transfer learning (TL)

[144], and domain adaptation (DA) [21]. These two strategies primarily differ on

the assumptions of ‘what’ characteristics of data are changing between the training

and testing conditions. Specifically, TL addresses the problem where the marginal

distribution of the data in the training set X (source domain) and the test set X̃

(target domain) are same, while the conditional distributions of the labels, P (Y |X)

and P (Ỹ |X̃) with Y and Ỹ denoting labels in either domain, are different. On the

other hand, DA pertains to the case where P (Y |X) = P (Ỹ |X̃), but P (X) 6= P (X̃).

This specific scenario occurs very naturally in unconstrained object recognition set-

tings, where a domain shift can be due to change in pose, lighting, blur, resolution,

among others, and thereby forms the main focus of this work.

Understanding the effects of domain change is a relatively new topic, which

has been receiving substantial attention from the natural language processing com-

munity over the last few years (e.g. [21, 26, 50]). Although many fundamental
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questions still remain on the assumptions used to quantify a domain shift, there

are several practical methods that have demonstrated improved performance under

some domain variations. Given lots of labeled samples from the source domain, these

methods can be broadly classified into two groups depending on whether the target

domain data has some labels or it is completely unlabeled. The former is referred

to as semi-supervised DA, while the latter is called unsupervised DA. While semi-

supervised DA is generally performed by utilizing the correspondence information

obtained from labeled target domain data to learn the domain shifting transforma-

tion (e.g. [50]), unsupervised DA is based on the following strategies: (i) imposing

certain assumptions on the class of transformations between domains [191], or (ii)

assuming the availability of certain discriminative features that are common to both

domains [26, 122].

In the context of object recognition, the problem of matching source and tar-

get data under some pre-specified transformations has been extensively studied. For

instance, given appropriate representation of objects such as contours or appearance

information, if it is desired to perform recognition invariant to similarity transfor-

mations, one can use Fourier descriptors [213], moment-based descriptors [98] or

SIFT features [119]. Whereas in a broader setting where we do not know the exact

class of transformations, the problem of addressing domain change has not received

significant attention. Some recent efforts focus on semi-supervised DA [161, 6, 104].

However, with the ever-increasing availability of visual data from diverse acquir-

ing devices such as a digital SLR camera or a webcam, and image collections from

the internet, it is not always reasonable to assume the availability of labels in all

155



Figure 7.1: Say we are given labeled data X from source domain corresponding

to two classes + and ×, and unlabeled data X̃ from target domain belonging to

class ×. Instead of assuming some relevant features or transformations between the

domains, we characterize the domain shift between X and X̃ by drawing motiva-

tion from incremental learning. By viewing the generative subspaces S1 and S2 of

the source and target as points on a Grassmann manifold GN,d (green and red dots

respectively), we sample points along the geodesic between them (dashed lines) to

obtain ‘meaningful’ intermediate subspaces (yellow dots). We then analyze projec-

tions of labeled ×, + (green) and unlabeled × (red) onto these subspaces to perform

classification.
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domains. Specific example scenarios include, a robot trained on objects in indoor

settings with a goal of recognizing them in outdoor unconstrained conditions, or

when the user has few labeled data and lots of unlabeled data corresponding to

same object categories, where one would want to generalize over all available data

without requiring manual effort in labeling. Having said that, unsupervised DA is

an inherently hard problem since we do not have any evidence on how the domain

change has affected the object categories.

Contributions: Instead of assuming some information on the transformation

or features across domains, we propose a data-driven unsupervised approach that is

primarily motivated by incremental learning. Since humans adapt (better) between

extreme domains if they ‘gradually’ walk through the path between the domains

(e.g. [165, 38]), we propose:

• Representing the generative subspaces of same dimension obtained from X

and X̃ as points on the Grassmann manifold, and sample points along the

geodesic between the two to obtain intermediate subspace representations that

are consistent with the underlying geometry of the space spanned by these

subspaces;

• We then utilize the information that these subspaces convey on the labeled X,

and learn a discriminative classifier to predict the labels of X̃. Furthermore,

we illustrate the capability of our method in handling multiple source and

target domains, and in accommodating labeled data in the target, if any.

Organization of the chapter: Section 7.1 reviews related work. Section 7.2
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discusses the proposed method. Section 7.3 provides experimental details and com-

parisons with domain adaptation approaches for object recognition and natural lan-

guage processing, and the chapter is concluded in Section 7.4. Figure 7.1 illustrates

the motivation behind our approach.

7.1 Related Work

One of the earliest works on semi-supervised domain adaptation was performed

by Daumé III and Marcu [50] where they model the data distribution corresponding

to source and target domains to consist of a common (shared) component and a

component that is specific to the individual domains. This was followed by methods

that combine co-training and domain adaptation using labels from either domains

[182], and semi-supervised variants of the EM algorithm [46], label propagation[204]

and SVM [58]. More recently, co-regularization approaches that work on augmented

feature space to jointly model source and target domains [49], and transfer compo-

nent analysis that projects the two domains onto an reproducing kernel Hilbert

space to preserve some properties of domain-specific data distributions [143] have

been proposed. Under certain assumptions characterizing the domain shift, there

have also been theoretical studies on the nature of classification error across new

domains [23, 21]. Along similar lines, there have been efforts focusing on domain

shift issues for 2D object recognition applications. For instance, Saenko et al [161]

proposed a metric learning approach that could use labeled data for few categories

from target domain to predict the domain change for unlabeled target categories.
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Bergamo and Torresani [6] performed an empirical analysis of several variants of

SVM for this problem. Lai and Fox [104] performed object recognition from 3D

point clouds by generalizing the small amount of labeled training data onto the pool

of weakly labeled data obtained from the internet.

Unsupervised DA, on the other hand, is a harder problem since we do not

have any labeled correspondence between the domains to estimate a transforma-

tion between them. Differing from the set of many greedy (and clustering-type)

solutions for this problem [172, 95, 34], Blitzer et al [28, 27] proposed a structural

correspondence learning approach that selects some ‘pivot’ features that would oc-

cur ‘frequently’ in both domains. Ben-David et al [22] generalized the results of

[28] by presenting a theoretical analysis on the feature representation functions that

should be used to minimize domain divergence, as well as classification error, under

certain domain shift assumptions. More insights along this line of work was pro-

vided by [26, 122]. Another related method by Wang and Mahadevan [191] pose

this problem in terms of unsupervised manifold alignment, where the manifolds on

which the source and target domain lie are aligned by preserving a notion of the

‘neighborhood structure’ of the data points. All these methods primarily focus on

natural language processing. However in visual object recognition, where we have

still have relatively less consensus on the basic representation to use for X and X̃,

it is unclear how reasonable it is to make subsequent assumptions on the relevance

of features extracted from X and X̃ [28] and the transformations induced on them

[191].
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7.2 Proposed Method

7.2.1 Motivation

Unlike existing methods that work with the information conveyed by the source

and target domains alone, our methodology of addressing domain shift is inspired

from incremental learning (that illustrates the benefits of adapting between extremes

by gradually following the ‘path’ between them), and we attempt to identify ‘po-

tential’ intermediate domains between source and target and learn the information

they convey on domain change. In quest of these novel domains, (i) we assume that

we are given a N -dimensional representation of data from X and X̃, which depends

on the user/ application, rather than relying on the existence of pivot features across

domains [28], and (ii) we learn the ‘path’ between these two domains by exploiting

the geometry of their underlying space, without making any assumptions on the

domain shifting transformation (as in [191]). We now state the problem formally.

7.2.2 Problem Description

Let X = {xi}N1
i=1 ∈ RN denote the data from source domain pertaining to M

categories or classes. Let yi ∈ {1, 2, 3, ...M} denote the label of xi. We assume that

the source domain is mostly labeled, i.e. X = Xl ∪ Xu where Xl = {xli}Nl1
i=1 has

labels, say {yli}Nl1
i=1, and Xu = {xui}Nu1

i=1 are unlabeled (Nl1 + Nu1 = N1). We further

assume that all categories have some labeled data. Let X̃ = {x̃i}N2
i=1 ∈ RN denote

unlabeled data from the target domain corresponding to the same M categories.

Since subspace models are highly prevalent in modeling data characteristics (e.g.
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[184]), we work with generative subspaces1 corresponding to the source and target

domain. Let S1 and S2 denote generative subspaces of dimension2 N × d obtained

by performing principal component analysis (PCA) [184] on X and X̃ respectively,

where d < N . We now address two questions: (i) How to obtain the N × d interme-

diate subspaces St, t ∈ R, 1 < t < 2, and (ii) How to utilize the information conveyed

by these subspaces on the labeled data Xl to estimate the identity of unlabeled X̃?

7.2.3 Generating Intermediate Subspaces

To obtain meaningful intermediate subspaces between S1 and S2, we require

a set of tools that are consistent with the geometry of the space spanned by these

N×d subspaces. The space of d-dimensional subspaces in RN (containing the origin)

can be identified with the Grassmann manifold GN,d. S1 and S2 are points on GN,d.

Understanding the geometric properties of the Grassmann manifold have been the

focus of works like [199, 60, 1], and these have been utilized in some vision problems

with subspace constraints, e.g. [183, 84, 120]. A compilation of statistical analysis

methods on this manifold can be found in [42]. Since a full-fledged explanation of

these methods is beyond the scope of this chapter, we refer the interested readers

to the papers mentioned above.

1Since we do not have labeled data from target domain, our initial start point will be generative

subspaces that characterize the global nature of the domains, rather than discriminative ones.
2d refers to the number of eigenvectors of the PCA covariance matrix that have non-zero

eigenvalues. We choose the value of d to be minimum of that of S1 and S2, and restrict its

maximum value to be less than N to enable use of methods that’ll be discussed soon. It is

interesting to determine a better alternate way of doing this.
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• Given two points S1 and S2 on the Grassmann manifold.

• Compute the N ×N orthogonal completion Q of S1.

• Compute the thin CS decomposition of QT S2 given by

QT S2 =




XC

YC


 =




V1 0

0 Ṽ2







Γ(1)

−Σ(1)


 V T

• Compute {θi} which are given by the arccos and arcsine of the diagonal elements of Γ and

Σ respectively, i.e. γi = cos(θi), σi = sin(θi). Form the diagonal matrix Θ containing θ’s as

diagonal elements.

• Compute A = Ṽ2ΘV1.

Algorithm 6: Numerical computation of the velocity matrix: The inverse exponential

map [79].

We now use some of these results pertaining to the geodesic paths, which

are constant velocity curves on a manifold, to obtain intermediate subspaces. By

viewing GN,d as a quotient space of SO(N), the geodesic path in GN,d starting

from S1 is given by a one-parameter exponential flow [79]: Ψ(t′) = Q exp(t′B)J ,

where exp refers to the matrix exponential, and Q ∈ SO(N) such that QT S1 = J

and J =




Id

0N−d,d


. Id is a d × d identity matrix, and B is a skew-symmetric,

block-diagonal matrix of the form B =




0 AT

−A 0


 , A ∈ R(N−d)×d, where the

superscript T denotes matrix transpose, and the sub-matrix A specifies the direction

and the speed of geodesic flow. Now to obtain the geodesic flow between S1 and

S2, we compute the direction matrix A such that the geodesic along that direction,

while starting from S1, reaches S2 in unit time. Computing A is generally achieved
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through the inverse exponential map (Algorithm 6). Once we have A, we can use the

expression for Ψ(t′) to obtain intermediate subspaces between S1 and S2 by varying

the value of t′ between 0 and 1. This is generally performed using the exponential

map (Algorithm 7). Let S ′ refer to the collection of subspaces St, t ∈ R, 1 ≤ t ≤ 2,

which includes S1, S2 and all intermediate subspaces. Let N ′ denote the total

number of such subspaces.

• Given a point on the Grassmann manifold S1 and a tangent

vector B =




0 AT

−A 0


.

• Compute the N ×N orthogonal completion Q of S1.

• Compute the compact SVD of the direction matrix A = Ṽ2ΘV1.

• Compute the diagonal matrices Γ(t′) and Σ(t′) such that γi(t′) = cos(t′θi) and

σi(t′) = sin(t′θi), where θ’s are the

diagonal elements of Θ.

• Compute Ψ(t′) = Q




V1Γ(t′)

−Ṽ2Σ(t′)


, for various values of t′ ∈ [0, 1].

Algorithm 7: Algorithm for computing the exponential map, and sampling along the

geodesic [79].

7.2.4 Performing Recognition Under Domain Shift

We now model the information conveyed by S ′ on X and X̃ to perform recog-

nition across domain change. We basically approach this stage by projecting X and

X̃ onto S ′, and looking for correlations between them (by using the labels available

163



from X). Let x′li denote the dN ′× 1 vector formed by concatenating the projection

of xli onto all subspaces contained in S ′. We now train a discriminative classifier

D(X ′
l , Y

′
l ), where X ′

l is the dN ′ × Nl1 data matrix (with x′li, i = 1 to Nl1 forming

the columns), and Y ′
l is the corresponding Nl1 × 1 label vector (whose ith row cor-

responds to yli), and infer identity of dN ′ × 1 vectors corresponding to projected

target data x̃′i. We use partial least squares3 (PLS) [198] to construct D since dN ′ is

generally several magnitudes higher than Nl1, in which case PLS provides flexibility

in choosing the dimension of the final subspace unlike other discriminant analysis

methods such as LDA [18].

7.2.5 Extensions

7.2.5.1 Semi-supervised Domain Adaptation

We now consider cases where there are some labels in the target domain. Let

X̃ = X̃l ∪ X̃u where X̃l = {x̃li}Nl2
i=1 has labels, say {ỹli}Nl2

i=1, and X̃u = {x̃ui}Nu2
i=1 is

unlabeled (Nl2 + Nu2 = N2). We now use a dN ′ × (Nl1 + Nl2) data matrix (whose

columns correspond to the projections of labeled data from both domains onto S ′)

and the corresponding (Nl1 +Nl2)×1 label vector to build the classifier D, and infer

the labels of x̃ui, i = 1 to Nu2.

3Alternately, one can choose any other method for the steps involving PCA, and PLS.
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7.2.5.2 Adaptation Across Multiple Domains

There can also be scenarios where we have multiple domains in source and

target [123, 57]. One way of dealing with k1 source domains and k2 target domains

is to create generative subspaces S11, S12, .., S1k1 corresponding to the source, and

S21, S22, ..., S2k2 for the target. From this we can compute the mean of source sub-

spaces, say S̄1, and the mean for target S̄2. A popular method for defining the

mean of points on a manifold was proposed by Karcher [97]. A technique to obtain

the Karcher mean is given in Algorithm 8. We then create intermediate subspaces

between S̄1 and S̄2, and learn the classifier D to infer target labels as before.

1. Given a set of k points {qi} on the manifold.

2. Let µ0 be an initial estimate of the Karcher mean, usually

obtained by picking one element of {qi} at random. Set j = 0.

3. For each i = 1, .., k, compute the inverse exponential map νi

of qi about the current estimate of the mean i.e. νi = exp−1
µj

(qi).

4. Compute the average tangent vector ν̄ = 1
k

k∑

i=1

νi.

5. If ‖ν̄‖ is small, then stop. Else, move µj in the average tangent direction using

µj+1 = expµj
(εν̄), where ε > 0 is small step size, typically 0.5.

6. Set j = j + 1 and return to Step 3. Continue till µj does not change anymore or till

maximum iterations are exceeded.

Algorithm 8: Algorithm to compute the sample Karcher mean [42].
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(a)

Domain Metric learning [161] Ours

(semi-supervised)

Source Target asymm symm Unsupervised Semi-supervised

webcam dslr 0.25 0.27 0.19 0.37

dslr webcam 0.30 0.31 0.26 0.36

amazon webcam 0.48 0.44 0.39 0.57

(b)

Domain Metric learning [161] Ours

(semi-supervised)

Source Target asymm symm Un- Semi-

supervised supervised

webcam dslr 0.53 0.49 0.42 0.59

Table 7.1: Comparison of classification performance with [161]. (a) with labels

for all target domain categories. (b) with labels only for partial target categories.

asymm and symm are two variants proposed by [161].

7.3 Experiments

We first compare our method with existing approaches for 2D object recog-

nition [161, 6], and empirically demonstrate the benefits of creating intermediate

domains. In this process, we also test the performance of the semi-supervised ex-

tension of our algorithm, and for cases with more than one source or target domains.

Finally, we provide comparisons with unsupervised DA approaches on natural lan-

guage processing tasks.
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Figure 7.2: Sample retrieval results from our unsupervised method on the dataset

of [161]. Left column: query image from target domain. Columns 2 to 6: Top 5

closest matches from the source domain. Source/ target combination for rows 1 to

4 are as follows: dslr/amazon, webcam/dslr, amazon/webcam, dslr/webcam.
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7.3.1 Comparison with Metric Learning Approach [161]

We used the dataset of [161] that has 31 different object categories collected

under three domain settings: images from amazon, dslr camera, and webcam.

There are 4652 images in total, with the object types belonging to backpack, bike,

notebook, stapler etc. The amazon domain has a average of 90 instances for each

category, whereas DSLR and webcam has roughly around 30 instances for a cate-

gory. The domain shift is caused by several factors including change in resolution,

pose, lighting etc.

We followed the protocol of [161] in extracting image features to represent the

objects. We resized all images to 300 × 300 and converted them into grayscale.

SURF features [16] were then extracted, with the blob response threshold set at

1000. The 64-dimensional SURF features were then collected from the images, and

a codebook of size 800 was generated by k-means clustering on a random subset of

amazon database (after vector quantization). Then the images from all domains are

represented by a 800 bin histogram corresponding to the codebook. This forms our

data representation for X and X̃, with N = 800. From this we learn the subspaces

corresponding to source and target, and we chose the subspace dimension d to be

the lower of the two (and less than N). The value of d was between 185 and 200

for different experiments on this dataset. We experimentally fixed the number of

intermediate subspaces to 8 (i.e. N ′ = 10), and the PLS dimensions p to 30.

We report results on two experimental settings, (i) with labeled data available

in both source and target domains - 3 labels per category in target for amazon/webcam/dslr,
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and 8 per category in source domain for webcam/dslr, and 20 for amazon; and (ii)

labeled data is available in both domains only for the first half of categories, whereas

the last 16 categories has labels only in the source domain. For the first setting,

we determine the identity of all unlabeled data from target domain, whereas for

the second setting we determine the labels of unlabeled target data from the last

16 categories. For both experiments, we report the results of our method in un-

supervised setting (where we do not use labels from target, even if available) and

semi-supervised setting (where target labels are used) in Tables 7.1(a) and 7.1(b) re-

spectively. The mean performance accuracy (number of correctly classified instances

over total test data from target) is reported over 20 different trials corresponding to

different labeled data across source and target domains. It can be seen that although

our unsupervised adaptation results are slightly lower than that of [161] (which is

reasonable since we throw away all correspondence information, while [161] uses

them), our semi-supervised extension offers a better improvement. Also note that

the result in Table 7.1(b) is better than the corresponding category of Table 7.1(a)

since the former is a 16 way classification, while the later is a 31-way classification.

Some retrieval results from our unsupervised approach are presented in Figure 7.2.

7.3.2 Comparison with Semi-supervised SVM’s [6]

We then used the data of [6] that has two domains: the target domain with

images from Caltech256 that has 256 object categories, and the source domain cor-

responding to the weakly labeled results of those categories obtained from Bing
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image search. We used the classeme features to represent the images. Each image

was represented by a 2625-dimensional binary vector, which models several semantic

attributes of the image [6]. We followed the protocol of [6] and present results on

classifying the unlabelled target data under two experimental settings, (i) by fixing

the number of labeled samples from source domain and varying the labeled samples

from target (starting from one), and (ii) doing the reverse by fixing the number of

labeled target data, and varying the labeled samples from source. We also consider

another operating point of no labeled data from target and source domain respec-

tively (corresponding to the above two settings) to perform unsupervised DA. It

can be seen from Figures 7.3(a) and 7.3(b) that our method has gives better perfor-

mance overall, with the gain in accuracy improving with the number of labeled data.

The performance is measured using the percentage of correctly classified unlabeled

samples from the target, averaged across several trials on choosing different labeled

samples.

7.3.3 Studying the information conveyed by intermediate subspaces,

and multi-domain adaptation

We now empirically study the information we gain by creating the intermediate

domains. We use the data of [161, 6] where we evaluate the performance of our

algorithm (unsupervised case) across different values4 of N ′ ranging from 2 to 15.

The same experimental setup of Sec 7.3.1 and 7.3.2 was followed. N ′ = 2 denotes

4All these runs correspond to p = 30, which was empirically found to give the best performance.
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Figure 7.3: (a), (b): Performance comparison with [6]. (a) Number of labeled source

data = 300. (b) Number of labeled target data = 10. Semi-supervised SVM refers

to the top performing SVM variant proposed in [6]. Please note that our method

also has an unsupervised working point (at position 0 on the horizontal axis). (c)

Studying the effect of N ′ on data from [161, 6]. Naming pattern refers to source

domain/ target domain. Accuracy for N ′ > 2 is more than that for N ′ = 2, which

says that the intermediate subspces do provide some useful information.
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no intermediate subspace, and we use the information conveyed by S1 and S2 alone.

This provides a baseline for our method. As seen in Figure 7.3(c), all values of N ′ > 2

offers better performance than N ′ = 2. Although this result is data-dependent, we

see that we gain some information from these new domains.

We then experimented with the data of [161] when there are multiple domains

in source or target. We created six different possibilities, three cases with two source

domain and one target domain, and the other three with two target domains and one

source domain. The experimental setup outlined in Sec 7.3.1 was followed, where

we consider the case with labels for all target categories. We provide the mean

classification accuracy of our unsupervised and semi-supervised variants in Table

7.2. Although we do not have a baseline to compare with, one possible relation with

the results in Table 7.1(a) is for the case where target domain is webcam and source

domains contain dslr and amazon. It can be seen that the joint source adaptation

results lie somewhere in between those single source domain cases.

7.3.4 Comparison with unsupervised approaches on non-visual do-

main data

We now compare our approach with other unsupervised DA approaches that

are proposed for natural language processing tasks. We used the dataset of [27] that

performs adaptation for sentiment classification. The dataset has product reviews

from amazon.com for four different domains: books, DVD, electronics and kitchen

appliances. Each review has a rating from 0 to 5, a reviewer name and location,

172



Domain Ours

Source Target Un- Semi-

supervised supervised

amazon, dslr webcam 0.31 0.52

amazon, webcam dslr 0.25 0.39

dslr, webcam amazon 0.15 0.28

webcam amazon, dslr 0.28 0.42

dslr amazon, webcam 0.35 0.46

amazon dslr, webcam 0.22 0.32

Table 7.2: Performance comparison across multiple domains in source or target,

using the data from [161].

Domain Method

Target Source [28] [27] Ours

B (D,E,K) (.768,.754,.661) (.797,.754,.686) (.782,.763.742)

D (B,E,K) (.74,.743,.754) (.758,.762,.769) (.761,.758,.791)

E (B,D,K) (.775,.741,.837) (.759,.741,.868) (.812,.762,.876)

K (B,D,E) (.787,.794,.844) (.789,.814,.859) (.781,.820,.897)

Table 7.3: Performance comparison with some unsupervised DA approaches on

language processing tasks [27]. Key: B-books, D-DVD, E-electronics, and K-kitchen

appliances. Each row corresponds to a target domain, and three separate source

domains.
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review text, among others. Reviews with rating more than 3 were classified as

positive, and those less than 3 were classified negative. The goal here is to see how

the positive/ negative reviews learned from one domain, is applicable to another

domain. We followed the experiment setup of [27], where the data representation

for X and X̃ are unigram and bigram features extracted from the reviews. Each

domain had 1000 positive and negative examples each, and the data for each domain

was split into a training set (source domain) of 1600 instances and test set (target

domain, with hidden labels) of 400 instances. We now report the classification

accuracies with different settings of source and target domain in Table 7.3. We

can see that our method performs better overall, even though we do not identify

pivot features from the bigram/unigram data features (as done by the other two

methods). This experiment also illustrates the utility of our method for domain

adaptation across general, non-visual domains.

7.4 Discussion

We have proposed a data driven approach for unsupervised domain adapta-

tion, by drawing motivation from incremental learning. Differing from the existing

methods that make assumptions on transformations or feature distributions across

domains, we illustrated the benefits of creating intermediate domains to account for

the unknown domain shift. Despite creating these new domains using tools that re-

spect the underlying geometry of data, we acknowledge the challenges posed by lack

of correspondence across domains in explaining how well these domains correlate
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with the ‘real’ domain change. In summary, although we do not consider to have

solved the problem of unsupervised DA by any means, we have offered a principled

alternate methodology that relaxes some assumptions made by existing methods.
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Chapter 8

A Computationally Efficient Method for Contour-based Object

Detection

Detecting objects in images using their contour information is a common prob-

lem in computer vision. It is generally used as a preprocessing step to localize po-

tential regions pertaining to the object, before analyzing those regions using more

detailed descriptors. Edges are perhaps the most informative low-level image fea-

tures that give a good estimate of contours in images. Characterizing edges, hence,

is an important aspect of this problem, and the traditional approaches have followed

a two-step process: (i) building a set of shape primitives representing the object’s

contour under different deformations, say to detect a football, generate circles (or

ellipses) of different scales (and orientations) to account for the distance (and the

projective) effect of the imaging process; and then (ii) given a new image, looking

for the object in it by first computing its edge map to get approximate information

of the contours, and then obtaining a matching score for the shape primitives at

different regions in the edge image. The regions with higher matching score imply

a higher probability of presence of the object at that location.

Related Work: There are various contour-based shape matching algorithms

proposed in the literature. In this work, we mainly focus on approaches that perform

matching using the ‘actual’ contour information rather than computing a descriptor
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based on the contour to handle shape deformations (e.g. [20]). In other words, given

a set of contour primitives representing the object of interest, we are interested in

finding regions in image containing the object. Methods in this category include

the Hough transform ([52, 13, 100]) that maps the detection process from the image

space onto an accumulator space spanned by all possible parameters of the object

contour, where the points of local maxima correspond to the contour parameters of

the object present in the edge image. On the other hand, correlation-based matching

(e.g. [86, 66]) fits different shape contours to the edge image, and then compute

the matching score by summing up the edge pixels underlying them. The regions

with large correlation values potentially correspond to the object of interest. Since

these methods are not robust to clutter, Chamfer matching-based algorithms (e.g.

[14, 29]) together with distance transform have been popular in detecting occluded

objects. However, they have some drawbacks, such as requiring much more training

samples than the other two classes of approaches.

In all these methods, a critical step is the analysis of edge strength between a

pair of points in the image. This information, computed between all possible point-

pairs, is dependent on the number of intermediate points connecting the points of

interest thereby making it computationally demanding. In this work, we address

this problem by proposing a representation of the edge image using which the edge

strengths can be computed in O(1) operations, irrespective of the distance between

the points. We approximate the object contour using line segments and compute

the line integral image Il, which is the cumulative sum of pixels of the edge image

along different possible line orientations. This preprocessing step, motivated in
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part by the integral image computations of a rectangular region [189], is done only

once per image along different line orientations determined by the desired spatial

resolution. Il can then be used to analyze the edge strengths between any pair of

contour points, across translations, rotations and scale variations of the object, in

just O(1) operations thereby resulting in huge computational savings. We motivate

our work through a face detection application, by considering a correlation-based

algorithm [129] that detects face contours using ellipses. We approximate the face

contours using hexagons, and compare the computational savings obtained from our

proposed approach in different stages of the matching algorithm. For the task of

frontal face detection, across scale variations, we obtain a reduction in the overall

computational complexity of [129] from quadratic to linear in time with respect to

the number of contour primitives used for detection. We then improve the detection

accuracy of [129] by analyzing regions pertaining to the hexagonal contour using a

combination of three existing appearance-based descriptors. Specifically, we use the

color information [89], histogram of oriented gradients [47], and eigenfaces [184] in

a support vector machine framework [140] to obtain good detection results on the

widely tested CMU+MIT dataset [166] on both frontal and profile faces.

Organization of the Chapter: We first motivate the need for a computation-

ally efficient image representation for computing edge strengths between a pair of

points through a face detection application in Section 8.1, and discuss its computa-

tional complexity in Section 8.1.1. We then present our proposed line integral image

representation Il and compare its computational efficiency across different stages of

correlation-based matching in Section 8.2. The generalizability of Il in detecting
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contours of arbitrary objects, across different matching algorithms, is discussed in

Section 8.3. Section 8.4 has details of experiments that study the computational effi-

ciency of our method in detecting faces, and other arbitrary objects. We also discuss

the face detection accuracy using the proposed fusion approach, by analyzing the

regions pertaining to face contours with a combination of three appearance-based

descriptors. The chapter is concluded in Section 8.5.

8.1 Baseline Face Detection Algorithm - A Brief Overview

We consider the problem of detecting faces using contour information to moti-

vate the need for an efficient representation of edge image. We restrict our analysis

to the task of frontal face detection using correlation-based contour matching. We

first overview the baseline algorithm [129] and its computational stages in obtaining

the edge map and matching contours.

The baseline face detection algorithm is a feature-based approach that em-

ploys an optimal step-edge operator to detect shapes. The core formulation of the

algorithm is to detect 2D shapes by analyzing the intensity differentials across the

object boundary. This method of detecting a object is in fact a natural extension

of edge detection at the pixel level to that of global contour detection. The object

boundary is assumed to be piecewise smooth, and the change in the intensity is

modeled as a step function. In order to preserve the global step edge structure of

the object under the presence of noise, an optimal smoothing filter ĥ is first designed

using a criterion that minimizes the sum of the noise power, and the mean square

179



error between the input signal and filter output. To explain this further, consider a

step edge with amplitude (α)

X(t) =





0 t ≤ 0

α t > 0

which is corrupted by additive white gaussian noise N(t). Let the noise corrupted

step-edge signal be represented by

X̂(t) = X(t) + N(t)

We then apply the filter ĥ to X̂(t) to obtain

Ŷ (t) = ĥ ∗ X̂(t) = ĥ ∗X(t) + ĥ ∗N(t)

where ∗ denotes convolution. Let Y (t) = ĥ ∗ X(t), M̂(t) = ĥ ∗ N(t), and Ê(t) =

X(t)−Y (t). Given this setup, we would like to obtain an optimal smoothing filter ĥ

that minimizes the squared sum Ê2 + M̂2, where Ê2 is the mean squared difference

between the input signal and the filter output, and M̂2 is the mean squared sum of

the output noise response. After some analytical operations, the optimal smoothing

filter (8.1) is obtained as,

ĥ(t) = (d/2) ∗exp(−d|t|) (8.1)

The 1D smoothing operator is then extended to 2D by the following operation,

h(x, y) = ĥ((x2 + y2)1/2) = (d/2) ∗exp(−d|
√

x2 + y2|) (8.2)

The optimal step-edge operator h′ is then obtained by taking the piecewise derivative

of the smoothing filter h following the simple relation between differentiation and
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convolution.

(h ∗ f)′ = h′ ∗ f (8.3)

where f is the image under interest. This filter h′ turns out to be the derivative

of double exponential (DODE) function, originally derived by [151]. While using

this framework to detect faces present in f , the facial boundary is approximated as

an ellipse. The DODE operator [151] is then applied across all possible ‘hypothet-

ical’ elliptical contours in f to identify regions that might correspond to a face, as

explained in the following sub-section.

8.1.1 Computational Complexity of the Baseline Algorithm

From a computational viewpoint, the baseline face detection algorithm can be

viewed as a three-step process.

Step 1: The initial step is to compute the edge map of an image f of resolution

V ∗
1 V2, using the DODE filter of size, say N∗N . This essentially involves convolving

the DODE filter at all image locations Z (where, Z = V ∗
1 V2, is the number of pixels

in f), which has a computational cost of

Z ∗N2 multiplications, Z ∗(N2 − 1) additions (8.4)

Step 2: The next step is to fit an ellipse over the computed edge map to find regions

that might resemble a face. Let Z1 (where, Z1 < Z) denote the number of locations

in the image where the ellipse can be placed. Then for every such location, say Z ′
1,

ellipse fitting consists of three steps; (i) placing a hypothetical ellipse centered at Z ′
1,

(ii) multiplying all points on the elliptical contour (say, M) with their counterparts

181



on the edge map, and (iii) summing up all the product values to get the overall

response of the ellipse fit. This process is then repeated at all possible Z1 locations

of the image, which translates to

Z1
∗M multiplications, Z1

∗(M − 1) additions (8.5)

The response values obtained at all Z1 locations are subject to a threshold,

and those locations with response values more than the threshold signifies a higher

likelihood of presence of a face.

Step 3: Then to detect faces of various sizes, the above process is repeated for

different sized ellipses, thereby incurring similar computational cost, as (8.5), for

each elliptical size. Specifically, if Zi is the number of locations in the image where

the ith ellipse can be placed, and if Mi is the number of points in its contour, then

the cost of this process is given by

∑
i

(Zi
∗Mi) multiplications,

∑
i

(Zi
∗(Mi − 1)) additions (8.6)

Given the computational requirements of the baseline face detection algorithm

in (8.4), (8.5), and (8.6), we now describe the proposed image representation in

Section 8.2 and compare its computational savings with different stages of the cor-

responding baseline counterparts.

8.2 The Line Integral Image Representation

By approximating the object contour using line segments, we propose the line

integral image Il, represented by the cumulative sum of edge pixels along different
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line orientations, as a preprocessing step to perform efficient computation of edge

strengths between a pair of points. For detecting faces, we approximate the face

contour using hexagons and perform detection by correlation-based matching. We

first explain a simple strategy to perform efficient convolution for a class of symmet-

ric filters, and then compare the construction of our image representation in stages

that parallel the ones for the baseline algorithm discussed in previous section.

8.2.1 Speed-up 1

We first utilize the structure of the DODE filter to reduce the amount of

computations in obtaining the edge map of the image. It can be easily seen that

the DODE filter h′, obtained by taking piecewise derivatives of h (8.2), is an odd-

symmetric function. We use this property to reduce the computations required to

perform convolution in the discrete domain. To begin with, consider a DODE filter

of size N∗N as shown in Fig 8.1(i). Then while doing convolutions, instead of multi-

plying the entire N∗N filter coefficients with the underlying image values, we create

a matrix K of size (N/2)∗(N/2) containing the filter coefficients of the first quadrant

alone. We then utilize the odd-symmetric property of the DODE filter by adding

(and subtracting) the underlying image values (according to their quadrant posi-

tion) and then multiplying them with the co-efficients stored in K. This essentially

reduces the number of multiplications by substituting them with equivalent but less

computationally intensive additions. The amount of computations required is given

by (8.7), and it can be readily compared with its baseline algorithm counterpart
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(8.4).

Z ∗(N2/4) multiplications, Z ∗(3N2/4 + N2/4− 1) additions (8.7)

8.2.2 Speed-up 2

After obtaining the edge map of the image in a computationally efficient way,

we experimented with replacing ellipses by hexagons to identify regions that prob-

ably contain faces. Hexagons, besides being a good approximation to ellipses, are

more structured with the presence of six distinct vertices (labeled a-f, in Fig 8.1(ii))

that provide a good representation of the contour. The intuition behind this is:

when fitted with hexagons, each point in the underlying edge map can lie on one

of the three types of hexagonal edges that a vertex point can support namely, the

rising edge (RE), the falling edge (FE), or the straight edge (SE) in Fig 8.1(ii).

Hence the points on the hexagonal contour are more tractable than in the case of

ellipses, where this kind of a structure is not present.

To illustrate this approach further, we shall consider a hexagon with a base

size (say, L) for all its sides. We then pre-compute the edge strengths of all the Z

image locations in three directions (RE, FE, SE), each of length L, by summing up

their values in the edge image. Then to fit a hexagon at a particular image location,

we first determine which points on the edge image would represent its vertices,

and then sum their edge strengths (of the appropriate direction) to compute the

overall response for the hexagonal fit. We then repeat this process at all possible Z1

image locations. This way of computing the hexagonal response values requires the
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Figure 8.1: Speed-up methods: (i) A 5*5 DODE filter, (ii) Replacing ellipse by

hexagon, (iii) Reusing hexagon values, (iv) The proposed line integral image Il

for three orientations of the hexagon - RE(Rising Edge - blue, long dashed lines

in bold), FE(Falling Edge - red, dashed lines), SE(Straight Edge - green, solid

lines). Each location on the lines denote the cumulative sum of pixels at that

point, along the specified direction, (v) Pipeline for detecting frontal faces using the

proposed method: Input image, preprocessing to compute Il by overlaying three line

orientations on the edge image, and detected face represented by a hexagon.
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knowledge of only six vertex points at a given time, when compared with all the M

contour points as in fitting an ellipse. This results in replacing the multiplications

during the fitting stage with less computationally intensive additions, and does not

add too much overhead to the number of additions in pre-computations either. Let

the number of line segments needed to represent the contour be M̃ , with D distinct

line orientations (for a hexagonal representation of frontal faces, M̃ = 6, D = 3).

The computational cost of this method is given below,

#Pre− computations : Z ∗(D(L− 1)) additions;

#Computations for fitting : Z1
∗(M̃ − 1) additions (8.8)

It can be seen that (8.8) provides significant computational savings when com-

pared to the complexity of the baseline algorithm given in (8.5).

8.2.3 Speed-up 3

Next, we fit different-sized hexagons to account for the possible variations in

the size of faces present in images. We approach this stage by representing a larger

sized hexagon, as an ordered collection of oriented base-size hexagonal vertices along

its contour, as shown in Fig 8.1(iii). This representation enables us to re-use the

edge strength values (of appropriate direction) of the vertex points computed for

the base-size hexagon, rather than re-computing the entire contour edge strength

every time as in the case of fitting ellipses. For instance, let the length of the side j

(j = 1 to 6) of the larger sized hexagon be represented by some integral multiple S
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of the base-size hexagonal side L. Then, the computational cost for this speed-up

approach during fitting is given by

∑
i

(Zi
∗((

M̃∑
j=1

Sij)− 1)) additions (8.9)

where the index i corresponds to the total number of hexagons used for fitting.

When the hexagon reuse is not used, the number of computations that would result

by sequential application of the algorithm until speed-up 2 is given by

∑
i

(Zi
∗(M̃ − 1) + DZ ∗ ∑

k

(Sk
∗L− 1)) additions (8.10)

where the index k refers to the number of different side lengths of the hexagon

i. It can be easily seen that the computational cost after speed-up 3 (8.9), is signif-

icantly lower when compared to the cost without hexagonal reuse (8.10), and also

with that of the corresponding baseline algorithm (8.6).

8.2.4 Speed-up 4: The Line Integral Image

Although the method discussed in Section 8.2.3 can be used for any polygon,

one limitation is that the different-sized polygons must have their side lengths as

some integral multiple S of the base side length L. To overcome this requirement,

we propose an image representation Il to characterize the edge strength of object

contours represented by line segments, inspired in part, from the integral image

representation for regions (fint) introduced by Viola and Jones [189].

We first briefly review fint. Given a V ∗
1 V2 intensity image f , the integral

image fint at location (x, y) contains the sum of pixels above and to the left of
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(x, y), inclusive:

fint(x, y) =
∑

x′≤x,y′≤y

f(x′, y′) (8.11)

Using the pair of recurrences:

sc(x, y) = sc(x, y − 1) + f(x, y) (8.12)

fint(x, y) = fint(x− 1, y) + sc(x, y) (8.13)

where sc(x, y) is the cumulative row sum, sc(x,−1) = 0, and fint(−1, y) = 0, the

integral image fint can be computed in one pass over the original image f . Such a

representation can be readily used to compute the sum of the image values under any

rectangular region, by doing just one round of computation over the entire image.

In our case, however, we are interested in the sum of edge pixels along the

contour of an object. Towards this end, given a 2D rectangular lattice corresponding

to the edge map of an image f and a set of D orientations corresponding to the sides

of the polygon, we rotate the lattice into each of the Di, i = 1, ..., D orientation to

compute the line integral image Il = {sDi
(x, y)}D

i=1, ∀(x, y) ∈ f , which is the set of:

sDi
(x, y) = sDi

(x, y − 1) + fDi
(x, y) (8.14)

where sDi
(x, y) is the cumulative row sum of the edge image fDi

at the pixel location

(x, y) for the line orientation Di. An illustration of Il for a hexagon (with D = 3)

is given in Figure 8.1(iv). With this set of sDi
, i = 1, ..., D, in order to fit a polygon

to an image, we first determine the set of M̃ vertices of the polygon and their

corresponding orientations. Then for each pair of vertices, say (x1, y1) and (x2, y2),

we compute the edge strength es between them in just O(1) operations using the
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following formula,

es = abs(sDj
(x1, y1)− sDj

(x2, y2)) (8.15)

where sDj
(xi, yi) is the cumulative row sum of the point (xi, yi) at the orientation

Dj of the side connecting them. For a particular polygonal fit at the location Z ′
1, es

will be computed at all M̃ edges of the polygons to obtain the sum of edges along

the contour.

For the case of detecting frontal faces using hexagons (where M̃=6), this trans-

lates into

#Pre− computations : ZD additions;

#Computations for fitting :
∑

i

Zi
∗(2M̃ − 1)additions (8.16)

where Zi refers to the number of location in which the ith hexagon needs to be

fitted. This set of computations (8.16) is independent of the length of the polygonal

side in the fitting stage, as opposed to speed-up 3 (8.9), thereby resulting in a

considerable reduction in the number of additions. Further, it requires at most the

same number of additions during pre-computation for the case when the base length

L = 2, and reduced number of additions for any L > 2. A pipeline illustrating the

proposed method is given in Figure 1(v).

The overall computational gains obtained from the strategies discussed in Sec

8.2.1 through Sec 8.2.4 can be visualized in Figure 8.2. The line integral represen-

tation (8.14) has translated a quadratic dependency in the relationship between the

computational time with the number of ellipses (of the baseline algorithm), into a

linear dependency. This significant gain in the computation time proves very handy
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for real-time applications. Also, this representation can be readily extended to de-

tect any general object contour approximated by line segments, as discussed in the

next section.

8.3 Generalizability of the Line Integral Image Representation in De-

tecting Arbitrary Objects

Let us now analyze the information conveyed by (8.14) in more detail. The

main claim behind this representation is to spend more resources in preprocessing by

computing the line integrals, so that the computations during the fitting stage can be

considerably reduced. We now qualitatively study the complexity of contour fitting

process. Assume an arbitrary contour C ′ to be detected in an image f containing

Z pixels. Let P ′ be the set of shape primitives representing C ′ under different

deformations such as, translation, rotation, scaling and shear. To find the region

corresponding to C ′ from the edge map of f , irrespective of the matching process like

correlation or the Hough transform, one needs to estimate the possibility of each of

primitives P ′
i ∈ P ′ at all possible locations in f . This basically involves computing

the edge strengths corresponding to each P ′
i with the underlying edge map of f .

Let N1 denote the total number of fitting operations needed for all shape primitives

P ′ at all possible locations in f . This requires O(N1x) computations, where x is a

variable that can range from 1 up to the maximum number of intermediate points

of the primitives P ′. This is a computationally intensive process.

To circumvent this, our proposed line integral representation Il (8.14) prepro-

190



cesses the edge image of f by computing the cumulative sum of pixels along different

possible line orientations D. Since a line segment has two degrees of freedom, the

intervals between two orientations in D can be chosen according to the desired spa-

tial resolution. This one-time operation has a complexity of O(ZD). Hence during

fitting, we could accomplish the task of detecting any linearly approximated object

contour in just O(N1) operations, without the need to re-compute the edge strengths

corresponding to different P ′
i all over again. This results in a tremendous decrease

in computations, since ZD is generally several orders of magnitude lesser than N1x.

This is mainly because the preprocessing allows us to reuse the edge strength val-

ues, for instance, while fitting a straight line of same orientation but with different

lengths.

Although one drawback of (8.14) is the assumption of a linear approxima-

tion of the contour C ′, the line integral representation can be extended to general

polynomials. However, this might increase the number of preprocessing computa-

tions, and hence a balance needs to be established between the accuracy of contour

representation and the computational efficiency. This tradeoff is dependent on the

application. Sample examples of detecting arbitrary shapes using the representation

in (8.14) are given in Figure 8.6.

8.4 Performance Analysis

In this section we discuss the details of experiments involving the compu-

tational requirements of the proposed representation Il, and the face detection
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accuracy obtained after analyzing regions pertaining to the hexagonal prior with

appearance-based descriptors. We also show some examples of detecting arbitrary

objects using Il (8.14), under a linear approximation of their contour.

8.4.1 Computational Efficiency - Detecting the Facial Contour

On the effect of filter size N : We first experimentally evaluate the com-

putational efficiency of the proposed speed-up algorithms presented in Section 8.2.

We ran two experiments, one with the DODE filter of N=5 and the other with

N=10. For both experiments we used ten different ellipses/hexagons to detect the

facial contour, with the hexagonal sides being some integer multiple of the base

side length L (for these two experiments, L = 3). This, although not necessary for

speed-up 4, was done to compare all speed-up algorithms in a common benchmark.

We repeated each experiment twenty times to compute the average time required for

each of the speed-up method to perform detection. Standard image size of 240∗320

was used, and the results are given in Figure 8.2. It can be seen that when the filter

size N increases, the computational savings obtained from speed-up 1 (8.7) reduce

and the amount of computations becomes almost equal to that of the baseline algo-

rithm (8.4). This is because, although (8.7) reduces the number of multiplications,

it results in an increase in the memory requirements to store the first quadrant co-

efficients of the filter in the matrix K. This speed-up step, though, is specific to the

DODE filter [151] and the set of symmetric filters.

We then compare the remaining three speed-up methods that are generalizable
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to any closed polygon of different side lengths and orientations. We notice that

the speed-up methods 2 to 4 results in a substantial improvement in computational

efficiency when compared with the baseline algorithm. Specifically, speed-up 4 (8.16)

performs best by translating a quadratic dependency in the computational time

with the number of shape primitives of the baseline algorithm to that of a linear

dependency. This is mainly because speed-up 4 is not dependent on the length of

the hexagonal sides, whereas speed-up 3 (8.9) requires more additions with since

the number of vertex points M to represent the hexagonal contour increases with

increasing side lengths. Speed-up 2 (8.10) performs poorly because it has to re-

compute the edge strengths of all the image points for different sizes of the shape

primitive.

On the effect of varying base length L of the hexagon: Further, when

increasing the length of the base side of an hexagon L, we see that speed-up 4 of-

fers much better computational savings that speed-up 3. We did experiments using

DODE filter with N = 10, and three different values for L = 3, 5, 7. This behav-

ior is because speed-up 4 (8.16) does not depend on L during pre-computations,

whereas speed-up 3 (8.9) does. This is in addition to the flexibility of speed-up 4

not requiring the hexagonal sides to be an integral multiple of L. Hence speed-up

4 (8.16), obtained from the line integral representation Il (8.14), can be used as a

preprocessing stage for any object detection algorithm, where the object’s contour

can be used as a prior for localization.

On the effect of varying image size f : We then experimented with chang-

ing the size of the input image f to observe variations in computational gains. As
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explained by the equations in Section 8.2, the amount of computations is approx-

imately a linear function of the image size (through the number of pixels in f , Z,

and the number of possible locations for the contour fit, Z1). We observed almost

a linear dependency in the computations gains obtained from speed-up 4 with the

increasing size of f . This is illustrated for three image sizes (240*320, 480*640, and

720*960) in Figure 8.2.

8.4.2 Face Detection Accuracy

Let {Ri}NS
i=1 denote the regions with high value of correlation when fitted with

hexagonal primitives using (8.14). We now discuss the analysis of these regions with

a combination of appearance-based descriptors.

8.4.2.1 Feature Selection for Face Detection

We perform a face-adaptive post-processing on the intensity images of {Ri}Ns
i=1

to verify if they correspond to a face. This is required because many objects other

than the face can also have similar contours, for instance a football. Therefore

we use a set of existing descriptors to characterize the appearance of faces and

non-faces. Specifically, we compute three different cues - color [89], histogram of

oriented gradients [47], and eigenfaces [184], and combine these feature channels

using support vector machines [140] to identify which of the Ri pertain to a face. A

block diagram of the proposed face detection system is given in Figure 8.3.

The motivation behind the choice of these descriptors is: (i) the human face
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Figure 8.2: Comparison of the speed-up methods discussed in Section 8.2 by varying

the hexagonal base length L, the filter size N , and the image size f . Speed-up

4 (8.16) results in substantial decrease in the computational requirements of the

baseline algorithm [129], and is not affected much by the varying the parameters

for polygon fitting. Il, therefore, reduces the edge strength computations, without

bringing a heavy overload from preprocessing. Please note different y-axis scales for

graphs in the last row.
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Figure 8.3: The proposed face detection system. Contour detection using Il, followed

by analyzing R′
is by combining three appearance based descriptors using Support

vector machines.

has a distinct color pattern which can be characterized by fitting Gaussian mod-

els for the color pattern of face regions and non-face regions; (ii) the histogram of

oriented gradients captures the high interest areas in faces that have rich gradient

information (such as, eyes, nose, and mouth), and provides reasonable robustness

to lighting variations [40], and (iii) Eigenfaces captures the holistic appearance of

the human face. These three feature channels represent a mix of global and local

information about the face. We then assign the facial pose into three categories, one

for frontal poses with the maximum in-plane and out-of-plane rotations lying be-

tween -20 degrees and +20 degrees, and two for profile views with rotations ranging

between 20 degrees and 90 degrees, and the other from -20 degrees to -90 degrees.

A separate SVM is trained for each of these cases with around 100 samples each for

face and non-face class. We then normalize the test regions {Ri}NS
i=1, detected by

constructing Il with 10 equally spaced orientations Di spanning the 0 to 180 degree
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range, to a pre-specified size of 30*30 and concatenate their three appearance-based

descriptions into a long vector to give as the input to the SVM. These regions are

then classified as a face if at least one of the three SVM’s gives high probability for

the presence of a face.

8.4.2.2 Experimental Setting

We then tested this framework on the standard CMU+MIT face dataset [166]

by first identifying regions corresponding to the hexagonal contour primitive, and

then perform postprocessing on those regions. The first part of the CMU+MIT

dataset (referred as dataset A in Fig 8.4) has 125 frontal face images with 483

labeled faces, the second part (dataset B) has 208 images containing 441 faces of

both frontal and profile views. Since this dataset has only grayscale images, the color

channel was not used for the post-processing discussed in Section 8.4.2.1. The three

SVM’S described in Section 8.4.2.1, trained for different ranges of face pose, were

applied on regions {Ri}NS
i=1 having high correlation-based matching scores with the

shape primitives as determined in Section 8.2. The SVM results are then subjected

to non-maximum suppression [134] to unify overlapping detection results to obtain

the ROC curves given in Fig 8.4. These results are comparable with the existing

approaches (e.g. [207], [166], [189], [157], [201]) as shown in Table 8.1. Only few

operating points on the ROC are given in the table, since most of the existing

approaches do not provide the full ROC.

Discussion: It is interesting to see that our algorithm performs almost equally

197



0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of false positives
C

or
re

ct
 d

et
ec

tio
n 

ra
te

ROC curves of our face detection algorithm − on the CMU+MIT dataset

Dataset A − frontal faces
Dataset B − frontal + profile faces

Figure 8.4: ROC curves of our face detection algorithm on the CMU+MIT dataset

[166] on both frontal and profile faces.

Figure 8.5: Sample face detection results on the internally collected maritime face

dataset
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well on the dataset with profile views, given that we do postprocessing only on re-

gions pertaining to shape primitives as determined in Section 8.2.4. This can be due

to two reasons, (i) the DODE operator captures edge information very effectively,

and (ii) the hexagonal fitting is relatively less-affected by changes in the face pose.

This is an advantage of our approach. This, when coupled with algorithmic speed-

up techniques (figure 8.2) that reduce computational complexity of the baseline face

detection algorithm from quadratic to linear in time, is very useful for robust, real-

time applications. The overall processing speed of our face detection algorithm is

30 frames per second on a standard 2 GHz processor. We present some sample face

detection results in Fig 8.5 from an internally collected dataset that contains images

taken at long distances.

8.4.3 Detecting Arbitrary Object Contours using the Line Integral

Image Representation

We now present some examples of detecting arbitrary objects using Il. We

took some example images from the ETHZ dataset [65] that contains five different

object categories under considerable clutter. We used the edge images provided in

the dataset, and constructed a shape primitive through a linear approximation of

the object contour. We then computed Il from the edge image, along 10 orientations

Di equally spaced in the 0 to 180 degree interval. Using correlation-based matching,

we present the detection results in Figure 8.6. Though only the external contours of

the object have been used in the shape primitive, one can use the internal contours
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Algorithm (with the correct Number of false positives

detection rate in %) 10 31 57 95

Ours 91.2% 92.6% 95.1% 95.8%

Viola Jones [189] 78.3% 85.2% - 90.8%

Rowley et al [157] 83.2% 86.0% - 89.2%

Wu et al [201] 90.1% - 94.5% 95%

Algorithm (with the Number of false positives

correct detection rate in %) 8 12 34 91

Ours 79.8% 81.3% 85.2% 88.7%

Schneiderman et al [166] - 75.2% - 85.5%

Wu et al [201] 79.4% - 84.8% -

Table 8.1: Face detection - Experimental results on CMU+MIT dataset. (Top)

Dataset A, (Bottom) Dataset B

if needed. The main point we would like to stress from this experiment is that Il

(8.14), in addition to significantly reducing the number of operations in computing

the edge strengths, can be used for detecting arbitrary objects. Such a representation

of edge strength values between all point-pairs can also be used with other matching

algorithms for localizing objects.

We then analyze the computational requirements for this experiment by com-
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paring correlation-based matching using Il (8.14) with, correlation-based matching

without Il (8.6) and the generalized Hough transform [13]. We used a subset of

five images (shown in Figure 8.6) obtained from the ETHZ dataset [65]. The shape

primitives corresponding to all five objects were used for detection in the five im-

ages. The experiment was repeated ten times, and the mean and standard deviation

of processing times for different matching methods is provided in Table 8.2. It can

be seen that preprocessing using Il (8.14) substantially reduces the computational

complexity.

Algorithm Computational time in seconds

(mean±standard deviation)

Correlation-based matching (8.6) 0.51±0.067

Generalized Hough transform [13] 0.46±0.057

Using Il (8.14) 0.115±0.021

Table 8.2: Computational requirements for different matching methods on the subset

of five images from the ETHZ dataset [65].

8.5 Discussion

We have proposed an image representation, the line integral image, using which

the edge strengths between any pair of points can be computed in just O(1) opera-

tions. We showed the generalizability of this representation for efficient detection of

arbitrary objects under a linear approximation of the object contour. Specifically,

we illustrated its utility for contour-based face detection by approximating the face
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contour using hexagons, and achieved a reduction in computational complexity from

quadratic to linear in time with respect to the number of contour primitives used

for detection. We then proposed a combination of three appearance-based features

to analyze regions pertaining to the facial contour and obtained good face detection

performance on standard datasets.
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(a)

(b)

(c)

(d)

(e)

Figure 8.6: Detection results on ETHZ shape dataset [65]. Column orderings: (i)

original image, (ii) edge image from the dataset, (iii) localization result (in blue/red)

using Il, and (iv) ground truth localization.
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Chapter 9

Future Work

In this chapter we outline potential directions in which the problems addressed

by this dissertation can be explored further.

9.1 Representing and matching non-planar shapes invariant to artic-

ulations

The method outlined in Chapter 2 compensates for non-planar articulations by

‘explicitly’ performing affine normalization of object parts. Another way to address

this problem is to ‘implicitly’ generate an affine shape space [183] corresponding to

each convex part, by sampling equal number of points on the contour of each part,

and then forming the product manifold [60] of the affine subspaces corresponding

to all parts of an articulating shape. Matching two shapes across articulations can

then be seen as a problem of comparing product manifolds corresponding to those

two shapes, which implicitly contain the set of all possible part-wise affine transfor-

mations of the shape. Besides the ‘representation’ aspect, the effects of articulations

can also be addressed in the ‘matching’ stage. Given atleast a pair of shapes, with

the corresponding descriptors generated from Chapter 2, it is interesting to see how

the ‘error’ in shape matching correlates with the model assumptions for articula-

tions. A particularly interesting case is to account for self-occlusions, where pixels
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in two shapes that have been occluded can be thought of as imposing a structured

noise in the matching error between the shapes. In other words, the manner in

which the occluding pixels affect the shape descriptor of unoccluded pixels must be

geometrically meaningful. This problem can in principle be formulated as a ‘dirty

paper coding’ setting [44] where we have some prior on the noise in the channel (i.e.

how pixel occlusions can affect the shape description on other points), and this can

be used to explain shape matching errors due to self-occlusions.

9.2 Unconstrained face recognition using subspace representations

In Chapter 3 we showed the utility of subspace representations to match faces

across arbitrary blur. To extend this line of work to recognize faces under uncon-

strained settings, one need to account for other facial variations such as pose, lighting

etc. Linear subspace models for variations in pose [107], lighting [15], and registra-

tion [120] have been well studied in the literature. These data-driven/ model-driven

subspaces when combined with the blur subspace can be thought of as a tensor (e.g.

[186]) that intrinsically represents a face across all those variations. During recog-

nition, a probe image can then be matched with tensors corresponding to gallery

faces to determine its identity.

9.3 Alternate strategies for max-margin clustering

The max-margin clustering algorithm proposed in Chapter 6 has a complexity

that is cubic in terms of the number of data points. There are atleast two possible
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ways to perform efficient clustering. Firstly, the idea of core sets [12] can be used to

examine a limited subset of points that need to be picked to obtain a good estimate

of margin regions, rather than analyzing line intervals between all pair of points.

The convergence bounds on identifying margins, atleast for a two cluster problem,

are similar to those results established for a supervised two class problem [154, 75].

Secondly, instead of using the results derived in Chapter 6 to obtain a ‘pair-wise

similarity measure’, there could be other ways of understanding the information

between the projected points rather than computing just the location and distance

of their projections.

9.4 Encoding transformation priors for unsupervised domain adap-

tation

In generating intermediate domains in Chapter 7 to understand the unknown

domain shift, we use the geodesic between the two domains as a ‘possible’ path to

traverse on. However, since we do not have correspondence between domains, and

we have no knowledge about the physical transformation across domains, this path

need not correspond to the ‘actual’ domain shift. In such cases, if we have some

prior on the possible domain transformations such as, changes in pose, lighting, blur

etc for a face recognition setting, we could use that knowledge to generate ‘more

meaningful’ intermediate domains. The problem of choosing a path between the

source and target domains then becomes a shortest path problem on the Grassmann

manifold, with the domains as nodes and edges containing information on the ‘cost’
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of travelling between the two nodes. This cost would represent the effect of the

domain shift between the two nodes, using the information conveyed by the prior

on the physical domain shift.
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[49] H. Daumé III, A. Kumar, and A. Saha. Co-regularization based semi-
supervised domain adaptation. In Advances in Neural Information Processing
Systems, pages 478–486, Vancouver, Canada, December 2010.
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