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a b s t r a c t

The complex task of vision based fruit and vegetables classification at a supermarket self-checkout poses
significant challenges. These challenges include the highly variable physical features of fruit and vegeta-
bles i.e. colour, texture shape and size which are dependent upon ripeness and storage conditions in a
supermarket as well as general product variation. Supermarket environments are also significantly vari-
able with respect to lighting conditions. Attempting to build an exhaustive dataset to capture all these
variations, for example a dataset of a fruit consisting of all possible colour variations, is nearly impossible.
Moreover, some fruit and vegetable classes have significant similar physical features e.g. the colour and
texture of cabbage and lettuce. Current state-of-the-art classification techniques such as those based on
Deep Convolutional Neural Networks (DCNNs) are highly prone to errors resulting from the inter-class
similarities and intra-class variations of fruit and vegetable images. The deep features of highly variable
classes can invade the features of neighbouring similar classes in a learned feature space of the DCNN,
resulting in confused classification hyper-planes. To overcome these limitations of current classification
techniques we have proposed a class distribution-aware adaptive margins approach with cluster embed-
ding for classification of fruit and vegetables. We have tested the proposed technique for cluster-based
feature embedding and classification effectiveness. It is observed that introduction of adaptive classifica-
tion margins proportional to the class distribution can achieve significant improvements in clustering
and classification effectiveness. The proposed technique is tested for both clustering and classification,
and promising results have been obtained.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Classification of fruit and vegetables is a complex task that is
based on a set of highly variable attributes i.e. texture, colour,
shape and size. These attributes are used as features and their vari-
ability poses significant challenges for a classification task. Due to
this variance, it is very impractical to obtain an exhaustive dataset
to train a classifier for fruit and vegetables classification. Such fea-
tures also provide a perfect environment for creation of imbal-
anced and incomplete datasets under the open-set protocol [62].
Training on an imbalanced dataset can constraint performance of
a classifier to readily available samples [31,32]. For example, a fruit

and vegetables dataset will usually have more images of a fruit
with normal colour, texture, shape and size than a fruit with irreg-
ular colour, shape or size. In the past several years, Deep Learning
(DL) approaches have achieved state-of-the-art classification per-
formance, but are prone to errors when trained using imbalanced
and complex datasets. Deep Convolutional Neural Networks
(DCNNs) have achieved a performance boost for different applica-
tions e.g. object recognition [1,19], and face recognition and verifi-
cation [51,71,75,60]. The non-linear hyper-dimensional features
extracted by the layered architecture of the DCNN have the capa-
bility to learn the lower and higher level visual details of an image.
Incremental depth enhancement [41,61] is used as the most
common technique to deal with complex datasets in the state-of-
the-art DCNNs, although smaller stride sizes [59] and non-linear
activations [26] are also used. The strong learning capability of
the DCNNs can also create issues of overfitting and memorisation
of the complete training datasets. Large scale dataset [56], CNN
connection dropout [39], data augmentation [61], feature regular-
isation [64,26] and stochastic pooling [72] are amongst the recent
techniques proposed to deal with this issue.
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Much research has been reported recently on the methods to
overcome the issue of imbalanced and complex datasets
[32,11,38,18,46]. The most common techniques include synthetic
sampling and sensitive cost estimation. Class priors are balanced
by synthetically over or under sampling the classes. For instance,
a synthetic sampling technique has been used in [49], where fore-
ground and background images are re-sampled for object classifi-
cation. Inverse class frequencies have been used as a cost
function for semantic segmentation with an ensemble of Support
Vector Machines (SVMs) in [9]. An inverse class frequency is used
as a scaling factor for the loss function in [47], where a significant
improvement is reported for an imbalanced class semantic seg-
mentation task. Similarly, a relative [55] and median [21] class fre-
quency has been used to scale the loss function for face attributes
recognition and complex scene understanding, respectively. The
loss function is regularised for edge detection in [58], where an
equal scaling factor is used for positive and negative class edge
examples. An improvement of this work is proposed in [54], where
an adaptive scaling factor has been applied at pixel-level for
observed segmentation loss. Feature transformation and embed-
ding is also used as a technique to strengthen DCNNs with more
discriminative features. The intuition behind this approach is to
maximise the inter-class separability and intra-class compactness
to enhance the distribution margins between the features in an
imaginary space with d dimensions. However, this is a complex
task for applications with significant intra-class variance e.g. fruit
and vegetables classification. Recently, much research has been
reported on feature transformation and embedding to enhance
the intra-class compactness, hence inter-class separability
[27,57]. However, most of the techniques proposed such as
[27,57] have an inherent limitation based on the significant time
complexity. Both techniques work on tuples of training data and
can reach to a non-linear time complexity, for example OðN3Þ in
the case of [57], where N is number of training samples.

In our research, we have explored vision-based classification of
fruit and vegetables at a supermarket self-checkout as a complex
application of computer vision. This application also has additional
complexities due to variable lighting conditions and backgrounds
in addition to the feature variability. The schematic and design of
a proposed supermarket self-checkout kiosk along with prelimi-
nary efforts on vision-based fruit and vegetables classification is
reported in [29,30,2]. However, more sophisticated vision-based
classification techniques need to be explored for this complex
application [28]. Moreover, considering our commercial applica-
tion, a significant accuracy is required to classify the fruit and veg-
etables to a known class in order to demonstrate the variability of
this approach. There are significant limitations in the state-of-the-
art techniques discussed above i.e. are these techniques effective
for fruit and vegetables classification in a supermarket, where
the imbalance and complexity of datasets is barely considered?
Moreover, classification of fruit and vegetables requires a DCNN
to estimate the complex hyperplane due to the large number of
fruit and vegetable varieties. The above discussed techniques have
been studied for shallow and small CNNs [22], but their implemen-
tation to DCNNs has not previously been studied in detail. There
are also inherent limitations from synthetic sampling and sensitive
cost estimation. For instance, over and under sampling techniques
can introduce unnecessary noise and or loss of significant informa-
tion, respectively. The meta heuristic techniques applied for cost
sensitivity analysis have been applied to DCNNs however, no
noticeable performance increase has been reported [35,36,10].

To overcome the limitations of the current state-of-the-art
techniques, we have proposed cluster-based feature embedding
with adaptive classification margins, which can maintain a large
inter-class separability and intra-class compactness. This cluster-

based embedding is motivated by the observation that the fruit
and vegetables classes have significant intra-class variability and
inter-class similarities. There are fair chances that the instances
from the classes with significant variability can invade the classes
with a reasonable similarity. The invasion of instances offer an
extra level of complexity for a classifier, where the estimated
hyperplanes will get confused. This condition is true for many fruit
and vegetable classes that have significant similarity in physical
features e.g. lettuce and cabbage, orange and mandarin. An exam-
ple of Gaussian kernel density distribution of colour channels in
the RGB and YCbCr colour spaces of fruit and vegetable images with
similar physical features is depicted in Fig. 1 illustrating the over-
lapping of the vision-based features. A set of 100 images per class
has been used to extract the sample colour features and to under-
stand the concept of feature overlapping. We have used Apple,
Cabbage, Carrot, Lettuce, Mandarin, Orange and Tomato as fruit
and vegetables with significant feature similarity for representa-
tion and presentation of our proposed concept, more details on
the dataset are described in Section 4. We have selected these
classes based on three pairs of classes with significant feature sim-
ilarities i.e. Cabbage and Lettuce, Mandarin and Orange, and Apple
and Tomato. We have also used images of Carrots as an indepen-
dent class for better understanding and representation of the pro-
posed approach. Implementation of the proposed technique with
DCNNs can be beneficial to classify the considered fruit and vegeta-
bles with significantly similar physical features. This technique can
also be considered as robust towards fruits and vegetables with
deformation, damage and extra ordinary features, hence an open-
set classification protocol. A comparison of the effectiveness
achieved for the proposed and the state-of-the-art techniques for
classification of fruit and vegetables in a supermarket environment
is presented in Table 1. The comparison is emphasised on the
application of the proposed technique in a real-life supermarket
considering the segmentation techniques, number of classes, fea-
tures representation and classification techniques. It is noted that
inter-class feature similarity and intra-class variance is scarcely
considered along with limited datasets for experiments. The earli-
est approach for vision-based classification of fruit and vegetables
in a supermarket is reported in [8]. A dataset of 150 produce items
consisting of 5000 images including fruit and vegetables has been
developed where a combination of colour and texture features is
used for classification achieving an accuracy of 96%. However,
details regarding class-level dataset distribution are missing, if
considered as a uniform distribution it can be concluded that the
dataset is significantly small and can result in the overfitting. A
similar limitation can be noted in [53,20,50] where there are a
small number of images per class, moreover the inter-class similar-
ities are not considered for classification. A visual produce verifica-
tion has been performed in [7] using the HSI based colour
histogramwhere no fresh produce (i.e. fruit and vegetables) is con-
sidered. Similarly, no fresh produce is considered for vision-based
retail in [70] where produce item are detected and classified using
You Only Look Once (YOLO) CNN. A custom supermarket dataset
based fruit and vegetables classification is performed in [28] where
an AdaBoost CNN optimisation technique is used for classification.
However, it can be noted that less effective classification results
are obtained for fruit and vegetables with similar physical features.
The techniques presented in [50,23] can also be considered prone
to misclassification of the fruit and vegetables with similar physi-
cal features. Considering these limitations a significant corollary
can be concluded that the state-of-the-art techniques are limited
for classification of fruit and vegetates with similar physical fea-
tures. We have emphasised on the classification of fruit and veg-
etables with significant similar physical features where a
reasonable number of samples per class are considered in our
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experiments to avoid overfitting; promising results have been
achieved reported in Table 1.

The rest of the paper is organised as follows. The state-of-the-
art techniques used for intra-class compactness and inter-class
separability enhancement are discussed in Section 2. A detailed
discussion on the proposed cluster-based embedding with adap-
tive classification margins is presented in Section 3. The experi-
mental implementation inline with the tests performed to verify
the effectiveness of the proposed approach is described in Sec-
tion 4. The effectiveness of the proposed technique based on the
results obtained is analysed in Section 5. An overall discussion on
the proposed technique and future directions is provided in
Section 6.

2. Related work

To the best of our knowledge, only a few efforts have been
reported to deal with complex and imbalanced dataset classifica-
tion with DCNNs [35,36,22,10,74,68,17,66,67,63,48]. A comple-
mentary Neural Network is used as an under-sampling technique

for class imbalance improvement in [35]. A re-sampling is also per-
formed based on the Synthetic Minority Over-sampling Technique
(SMOTE) [11] technique to re-balance the training dataset. How-
ever, the SMOTE technique is not constrained with respect to the
neighbouring samples considered i.e. the neighbouring samples
can be from other overlapped classes, which can introduce signif-
icant noise. A DL on complex and imbalanced datasets has been
proposed as an extension of conventional imbalanced learning
techniques in [36]. A cost sensitivity loss function has been derived
based on the complexity and skewness of the dataset for classifica-
tion with a CNN. A similar approach has been proposed in [10],
where a joint objective function is proposed on a binary classifica-
tion problem. A Cost Sensitive Multi Layer Perception (CSMLP)
method is proposed considering a single cost parameter based on
the skewness of the samples in two classes. However, this cost
parameter is significantly sensitive to the number of classes, level
of imbalance, and overlap among features of different classes. This
technique can also be considered as DL based extension of conven-
tional techniques proposed in [6,37]. An alternative approach is
proposed in [66], where a Mean Squared False Error (MSFE) loss
has been defined on a binary classification. The proposed loss func-

Table 1
A comparison of the state-of-the-art fruit and vegetable classification techniques in a supermarket environment.

Year Ref. Classes Segmentation Features Classification Accuracy (%)

1996 [8] 150 Threshold based HSI histogram and mask based texture Euclidean KNN 96.00
2010 [53] 15 Normalised background GCH, CCV and Unser’s SVM 95.00
2011 [7] 20 Pixel-level blob HSI colour and edge contours Barcode verification 70.00
2013 [20] 15 K-means clustering Improved sum and difference histogram SVM 96.90
2016 [70] 24 YOLO mask YOLO mask shape CaffeNet 66.40
2018 [50] 15 Resizing CNN features Fruit-Alex CNN 97.50
2018 [23] 10 Resizing CNN features MobileNet 97.00
2019 [24] 9 Manual cropping Multi-CNN features Inception net 97.70
2019 [52] 10 YOLOv3 mask CNN features RetinaNet 80.20
2020 [30] 15 Fixed background CNN features Custom CNNs 91.30
2020 [12] 12 YOLO mask CNN features Faster-RCNN 97.90
This work 15 Fixed background ResNet50 features Distribution-aware feature embedding 99.00

Fig. 1. Example Gaussian kernel density distribution of fruit and vegetables in RGB and YCbCr colour spaces: (a) R-channel, (b) G-channel, (c) B-channel, (d) Y-channel, (e) Cb-
channel, and (f) Cr-channel.

K. Hameed, D. Chai and A. Rassau Neurocomputing 461 (2021) 292–309

294



tion is tested on eight imbalanced datasets and a significant perfor-
mance gain is reported. A stacked auto encoder technique is used
to deal with the overlapping classification problem. The learned
features are concatenated to achieve a better representation using
different properties of a dataset. A Sigmoid and tanh functions are
compared for DL of complex datasets, where the former is reported
as robust while learning the features of a complex dataset. An
adaptive sample batch weighting technique has been proposed in
[60] based on the gradient direction. A more sophisticated and
unbiased validation dataset, is however, required for training the
classifier. A multidimensional dataset distribution skewness is
studied in [68], where the balance in one dimension does not guar-
antee the balance in all dimensions for features of a class in a
hyperplane. The learned knowledge of balance features in a dimen-
sion is transferred to another dimension with skewed features.
This technique, however, results in significant time complexity
for complex and large datasets. There are also other significant lim-
itations of these approaches, e.g. no class structure or data distribu-
tion is considered for all these approaches.

Significant efforts have been reported to enhance the loss func-
tion to deal with complex datasets for classification and recogni-
tion tasks. The Softmax loss is used in the state-of-the-art vision-
based classification and recognition techniques i.e. face recognition
and image classification. However, the Softmax loss is limited to
the discriminative features for classification. Recently, many
enhancements of Softmax loss have been proposed to deal with
the less discriminative features [44,43,65]. These enhancements
are based on the concept of forcing a large margin between the
classification hyper-surfaces. More recent techniques have used
the triplet loss [57] for classification of the complex dataset. A
range-based loss is defined in [73], where the maximum intra-
class feature difference (range) is used to adapt the inter-class clas-
sification margins. Combined Softmax, margin loss and centre loss
are also used for classification of complex datasets [69,15]. How-
ever, all these techniques are limited to inter-class margin
enhancement while ignoring the intra-class data distribution
structure and any neighbouring feature invasion within the com-
plex classes. A Class-level Rectification Loss (CRL) has been defined
in [17] where the classes with small numbers of samples, imbal-
anced features and skewed features are identified at batch level.
The features of such classes are then regularised to normalise the
cross entropy loss for DL. This is a preliminary effort towards the
class structure consideration however, feature regularisation and
loss normalisation only for minority classes cannot be equally
effective for a dataset like fruit and vegetables. In a fruit and veg-
etable dataset all classes are equally prone to imbalanced class dis-
tribution, for example samples with extraordinary features i.e.
highly irregular shape. Multiple classes in a fruit and vegetables
dataset can also have a significantly overlapping features. Consid-
ering this limitation we have proposed a multi-class cluster
embedding to enhance the intra-class compactness and adaptive
hyperplane margins to accommodate the inter-class separability.
The proposed technique is considered more aware of distribution
structure of dataset classes at global level as compared to the pre-
viously proposed approaches.

3. Methodology

DCNNs have significant limitations when learning non-linear
hyperplanes to differentiate between complex and imbalanced
classes in fruit and vegetable datasets. A simple example has been
demonstrated in Fig. 2, where we have considered a set of 200
images per class for representation of learned features by a pre-
trained ResNet50 [33]. The learned features have been embedded
into a normalised unit sphere using t-distributed Stochastic Neigh-
bor Embedding (t-SNE) [45] based feature embedding. A ResNet50

[33] pre-trained on the ImageNet dataset [14] has been used to
learn these features for seven classes. It can be observed that there
is significant inter-class overlap in the learned features especially
for the fruit and vegetables with similar physical features e.g. tex-
ture and colour. This overlap confirms our concept of inter-class
similarity and intra-class variations, where the significant variation
in the features of a class can invade similar neighbouring classes.

Considering this limitation of DCNNs, we have proposed a
multi-class cluster-based embedding approach with adaptive clas-
sification margins to deal with the complex dataset of fruit and
vegetables. A block diagram of the proposed approach is depicted
in Fig. 3. A simple assumption of minimum inter-class margins
under the d-dimensional hyperplane has been considered where
the minimal inter-class margins should be greater than the maxi-
mum intra-class variations. This assumptions has been considered
carefully based on the state-of-the-art techniques for complex fea-
ture embedding discussed in Section 2. To overcome the limitation
of a complex and imbalanced dataset we have used the vector pro-
jection based similarity of feature vectors extracted with a DCNN
for clustering. The training set Z ¼ fsi; cigLi¼1, consists of a sample
si with a corresponding class label ci 2 f1; . . . ;Pg, where P repre-
sents the number of classes. Our goal is to assign a cluster hci for
each sample si in Z, where the maximum number of clusters are
represented by K described as:

hc1; . . . ; h
c
K ¼ argmax

hc1 ;...;h
c
K

XK
k¼1

X
i2hck

VðsiÞT � lc
k; ð1Þ

lc
k ¼

1
jhckj

X
i2hck

VðsiÞ; ð2Þ

where lc
k represents the centre of the cluster k for a class c and CNN

based features of sample si are represented as VðsiÞ. These super-
vised class label based cluster centroids are kept consistent for
the training and testing process. A fixed number of clusters equal
to the number of classes have been used for our experiments where
the proposed technique allows us to achieve significant classifica-
tion effectiveness as compared to the state-of-the-art differential
labelling techniques e.g. pointwise mutual information, Chi-
Squared and Euclidean norm based label estimation. These learned
features are embedded to a d-dimensional space such that
kVðsiÞk2 ¼ 1. This constraint on the features helps to achieve signif-
icant benefits toward the highly variant features i.e. lighting condi-
tions and any reasonable colour difference in the samples from a
class. The cluster size can be expressed as lc ¼ jhckj where an
assumption has been made that the cluster sizes are equal for all
classes. This assumption will reduce the complexity of feature
embedding to K clusters. To deal with the variable class distribution
and complex dataset with imbalanced features due to significant
feature variation of fruit and vegetables we have used a product
of vectors projection in a d-dimensional Euclidean space as a simi-
larity measure for clustering. This similarity measure for clustering
is significantly helpful to deal with global data distribution-aware
clustering, which is achieved by dealing with the complex and over
lapping features from multiple classes in a coherent manner i.e.
product of vector projection. The concept here is to use the Eucli-
dean difference of cluster centroids and the projections of feature
vectors on a unit sphere E for the similarity measure, which can
be achieved as:

EðVðxiÞ;lc
kÞ ¼ cosðVðsiÞ;lc

kÞ ¼ hVðsiÞ;lc
ki

kVðsiÞkklc
kk

: ð3Þ

This clustering technique helps in a standard characterisation of
the complex features of a fruit and vegetables dataset with over-
lapping features. In the training process of J iterations a sample
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si is mapped to a cluster hi based on the similarity measure
between si and K clusters depending upon the angle a between
centroids and the feature vector projection onto a unit sphere.
The intra-class compactness can be ensured by correctly mapping
the high dimensional features i.e. VðsiÞ with respect to lc

k. An
extension of Softmax loss has been derived based on concept pre-
sented in [42,13] to enhance the intra-class compactness with the
vector projection based clustering, described as:

Lc ¼ � 1
P
XP
i¼1

log
eVðsiÞ

T�liP
KeVðsiÞ

T�li

 !

¼ � 1
P
XP
i¼1

log
ekVðsiÞ

Tk:klik cosai

ekVðsiÞTk:klik cosai þPJ
j–ie

kVðsjÞTk:kljk cosaj

 !
: ð4Þ

A projection based similarity of inter and intra class features is
obtained by evaluating the query feature vector w.r.t. centroids of
all classes. As discussed before we have normalised the class cen-

Fig. 3. A block schematic of the proposed multi-class cluster-based embedding and adaptive classification margin technique.

Fig. 2. A t-SNE [45] based 3D embedding to represent: (a) inter-class similarity and intra-class variation of pre-trained ResNet50 features of seven classes, and the respective
(b) X-Y, (c) Y-Z, and (d) Z-X axes views of Mandarin and Orange featu.res overlapping.
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troid and query feature vector to a unit sphere i.e. L2 norm is equal
to 1. Considering the significantly larger number of classes of fruit
and vegetables we have considered a sphere of radius r P1. This
consideration will allow us to deal with a scalable embedded fea-
ture space to deal with a large number of classes. The adaptive
radius of the feature embedding space can be described as:

Lc ¼ � 1
P
XP
i¼1

log
erkVðsiÞ

Tk:klik cosai

erkVðsiÞTk:klik cosai þPJ
j–ie

rkVðsjÞTk:kljk cosaj

 !
: ð5Þ

This cluster based embedding will distribute the features on an
imaginary sphere of radius r based on the similarity between the
centroids and the query feature vector. To improve the intra-
class compactness in a progressive way with the corresponding
training iterations, each class centroid is updated after a particular
number of iterations. This centroid update will reduce the size of
each cluster significantly and hence reduce the inter-class overlap-
ping. The progressive update is intended to shift the centroid to the
centre of the cluster, resulting in a reduced standard deviation as a
metric of cluster size. Moreover, considering significant physical
feature variations, centroid updating can help us to deal with the
outliers. The centroid updating also allows us to consider the sig-
nificant inter-class feature variations including both physical and
environmental features. However, the inter-class distribution
should also be considered to deal with the complex, imbalanced
and open-set classification problem. We have used a linear penalty
to enforce margin between classification boundaries. This linear
penalty has been considered as a phase between the angles of
embedded clusters on a feature space in terms of a sphere with a
radius of r. This addition of phase is considered as an offset
between the class centroids. This offset acts as an additive margin
u as described in (6). This additive margin shifts the angles of the
classes w.r.t. to the centre of the feature space. This phase angular
shift is equivalent to an enhanced distance between the centres of
classes in a geodesic space. An illustration of the process of intra-
class compactness and inter-class distribution enhancement based
on the proposed technique is depicted in Fig. 4.

Lc ¼ � 1
P
XP
i¼1

log
erkVðsiÞ

Tk:klik cosðaiþuÞ

erkVðsiÞTk:klik cosðaiþuÞ þ
XJ
j–i

erkVðsjÞ
Tk:kljk cosaj

0
BBBB@

1
CCCCA: ð6Þ

The loss function inherently depends upon the local similarity
of the features as described in (6) based on the preliminary
approach towards the local similarity consideration described in
[34]. However, we have considered a global distribution-aware
similarity measure to cluster the DCNN features. Moreover, we
have designed an adaptive phase shift based angular margin tech-

nique that can translate well w.r.t. to our proposed similarity
approach described in (3). This clustering similarity along with fea-
ture normalisation to a unit sphere helped us to achieve significant
invariance to environmental conditions, scale and rotation, which
is one of the most desirable properties for a complex and imbal-
anced dataset classifier. Considering the angle a between the cen-
troids and query feature vector we have estimated an upper bound
of the angular shift u, where a lower bound is considered as zero.
We have also considered a rule of thumb that the minimum inter-
class difference should be greater than the maximum intra-class
variations i.e. cluster size for each class. This intuition leads us to
a simple and effective rule to set the adaptive value of u. Consid-
ering the projection of class centroids and query feature vectors
to a hyper dimensional sphere feature space depicted in Fig. 4
the class distribution can be represented on angle a in feature
space. As an extreme case, we assumed that each of the classes col-
lapses to single point, where they achieve maximum intra-class
compactness. In this case, classes can be represented as single
point i.e. the centroids in (2) with intra-class similarity in (3) equal
to 1. Hence, the maximum inter-class margin will be u ¼ 2p=P.
However, it is very unlikely to achieve maximum intra-class com-
pactness. For a complex and imbalanced dataset, each cluster occu-
pies a proportion of the embedding hyperspace proportional to the
standard deviation of the class. We have estimated an upper bound
on the additive angular margin in order to choose an adaptive mar-
gin to enhance the inter-class distribution. The adaptive angular
penalty for a class with centroid lc and standard deviation rc is
defined as:

uc ¼ jrc=hj; ð7Þ

where h represents the class-level distribution scaling factor. Using
different values of h we can control the distribution awareness of
our proposed technique for each class in an experiment where an
equal scaling factor is used for all classes in a particular experiment.
We have used a value of h = 1, 2, 4 and 8 corresponding to full to
1=8th of a class distribution considered, respectively. The embed-
ding effectiveness achieved for different values of h is depicted in
Fig. 8 where class distribution can be derived as:

rc ¼
X
i2hc

VðsiÞ � lk
c

lc

� �1
2

: ð8Þ

The consideration of standard deviation ri also help us to
achieve a class distribution aware embedding and penalisation of
inter-class margins. As an effect of this penalisation each class is
compacted internally, hence classification margins are improved.
A graphical representation of this is presented in Fig. 5. We sup-
pose that the centroids and query feature vectors are initially
orthogonal i.e. a 6 90, which are converged as an effect of adaptive

Fig. 4. An illustration of methodology: (a) pre-trained ResNet50 features, (b) vector projection based cluster embedding to enhance intra-class compactness, and (c) cluster-
level classification margin adaptation to improve the inter-class distribution.
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angular penalty uc . Moreover, this adaptive angular margin has
better geometric attributes with respect to a class-level feature dis-
tribution, which is referred to as cluster distribution in our work.
As stated previously highly variant features of the fruit and vegeta-
bles can result in highly distributed clusters hence, it is more desir-
able to deal with the embedding of each class in an adaptive
manner. A detailed description of the class distribution-aware
adaptive angular margins based cluster embedding is presented
in Algorithm 1.

4. Experimental implementation

An extensive and detailed experimental validation has been
performed to evaluate the proposed technique. We have used a
dataset of 15 fruit and vegetable classes for our experiments. This
dataset includes Onion (Brown onion), Carrot, Cauliflower, Cucum-
ber (Continental cucumber), Potato (Creme potato), Cabbage
(Drumhead cabbage), Granny Smith (Grannay Smith apple), Let-
tuce (Iceberg lettuce), Banana (Lady finger banana), Mandarin,
Orange (Navel orange), Pear (Packham pear), Apple (Pink lady
apple), Strawberry, and Tomato consisting of 2000 images per
class. The images have a base resolution of 4384 � 3288 pixels
with a fixed background where the sensor distance and lighting

conditions have been considered and controlled during the image
capturing process. In particular, a horizontal and vertical distance
of 19.5 cm and 8.0 cm, respectively have been maintained where
a uniform room ambient lighting is used for all images. Moreover,
fixed background reduces the efforts required for pre-processing
for example detection and segmentation. A low cost embedded
system based (ArduCam MTF9001) High Definition (HD) sensor
has been used for the imaging process. A useful discussion on the
dataset development and the environmental conditions can also

be found in our recent work [30]. Example dataset images used
for the proposed technique are shown in Fig. 6. The images are
resized to a resolution of 224 � 224 pixels as an input to ResNet50.
Using this lower resolution can help to achieve lower time com-
plexity and robustness to implement the proposed approach on
platforms with lower computational power.

The dataset has been apportioned randomly into disjoint train-
ing, validation and testing sets by a ratio of 80%, 10% and 10%,
respectively. A similar dataset distribution techniques is used for
experiments with 2, 7, and 15 classes. This assumption can help
us to gain better understanding of the proposed approach and a
consistent experimental setup. A ResNet50 [33] pre-trained on
the ImageNet dataset [14] has been used as a backbone DCNN fea-

Fig. 5. A graphical depiction of adaptive angular margin: (a) a representation of maximum inter-class margin depicted for three classes, (b) an effect of additive angular
margin based on the standard deviation of the individual class, and (c) intra-class compactness achieved by adaptive angular margin.

Algorithm 1. Class distribution-aware adaptive margins and cluster embedding
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ture extractor. This selection has been made based on an assump-
tion to test our proposed method using the recent state-of-the-art
DL networks. The proposed technique has been implemented
based on the concept presented in [44] with a learning rate
between 0.1 to 0.001 which is sequentially reduced after a partic-
ular number of iterations. We have used the pre-trained weight as
an initialisation for the ResNet50 and have been kept this the same
for all experiments. The convergence of our technique is entirely
dependent upon the proposed clustering and adaptive classifica-
tion margins, hence this initialisation has negligible effect on the
overall performance. To test our concept we have also transfer
learned the ResNet50 on a set of 200 images for seven classes with
significant similarities. Considering the significant size and number
of parameters we have transfer learned only the last five layers of
ResNet50 while the rest of the layers were frozen. This assumption
is made based on the similar lower-level abstractions of ImageNet
and our custom dataset. Significant benefits can be achieved to
deal with overfitting and time complexity issues by updating the
lower number of layers. An assumption has been made that the ini-
tialisation with pre-trained weights on ImageNet is less crucial for
the proposed technique due to embedding and updating of cen-
troids based on the similarity measure and adaptive margin after
a particular number of iterations. The training dataset has been
divided into batches, where each batch has 20 random images of
each class. This technique of training data distribution in batches
help us to perform the inter and intra class clustering simultane-
ously in a coherent and consistent manner while achieving a global
distribution-aware clustering. The initial learning rate of 0.1 is
used where considering the performance plateau, the learning rate
was divided by 10 at 16 K and 18 K iterations. The proposed net-
work was trained for up to 24 K iterations, where cluster centroids
are updated ever 1 K iterations. A weight decay and momentum
value was considered as 0.9 and 5e�4, respectively. A disjoint vali-
dation dataset (10% of dataset) is used to avoid overfitting where
an L2 weight regularisation is also performed with a fixed weight
decay rate. L2 regularisation has an inherent capability to deal with
large number of features as a continuous function for complexity
management by reducing the weight proportional to the training
iterations. A significant large weight decay rate is considered to
penalise the CNN for uniform weight distribution across the fea-
tures, hence avoiding feature estimation loss. The reduced CNN
weights proportional to training iterations can achieve a better
overfitting goal for larger numbers of iterations. Moreover, the
additive angular margin based loss function defined in (4), (5)
and (6) also applies strict penalties to coverage as compared to
the state-of-the-art CNN loss function e.g. Softmax loss. This prop-
erty is achieved by forcing the features into a concise feature space,
hence reducing the overlapping. These strict convergence penalties
also enhance the capability to deal with overfitting. A combination
of discrete leaning rate decay [25] and Adam optimisation [16] is
used to optimise the CNN training process. A small learning rate
for higher number of iterations avoid the loss function bouncing
at false global minimums and can result in a faster convergence.
Adam optimisation as a combination of RMSprop and Stochastic
Gradient Descent (SGD) with a momentum offers significant bene-

fits in our proposed technique. A parameter-level moment optimi-
sation is obtained with the inherent moving gradient average of
Adam optimisation. A diagonal gradient rescaling invariance is also
obtained with less computational and memory requirements. Con-
sidering the discrete learning rate decay we have used an exponen-
tial decay rate of first (b1) and second (b2) momentum as 0.9 and
0.999, respectively where a division normalisation (�) of 1e�8 is
used to initialise the Adam optimisation. Only the feature embed-
ding part of ResNet50 (162 MB) was used for testing and training
process i.e. the proposed Softmax layers were used along with
the clustering based embedding. For testing purposes we extracted
features from the 1st fully connected layer of the ResNet50. The
extracted features are then used to determine the similarity mea-
sure w.r.t to the cluster centroids. The use of the fully connected
layer based feature can help us to achieve a scalability w.r.t. to
number of classes in future. The feature scaling i.e. the radius of
the embedded feature space r is set to 32. A Python (3.7) and Ten-
sorflow (2.1.0) based implementation has been performed where
data analysis and visualisation is supported by Sklearn2. Real-
time computer vision and image processing support is obtained
through the Opencv-python (4.1.1.26) library. The network is
trained and tested on a 12 GB Tesla K80 (4992 cores) with 32 GB
installed memory.

Centroid Updating. We have considered P = 2, 7, and 15 clusters
representing classes of fruit and vegetables in our experiments.
The centroids for these clusters have been initialised on the fea-
tures of the first training batch as described in (2). However, it is
worth noting that the feature representation is updated in a grad-
ual manner during the training process. We update the centroids of
the clusters to achieve a true distribution of features in an embed-
ding space after a particular number if iterations. A running index
of the clustering process is maintained and is updated to maintain
the true distribution of features i.e. the centroids of classes as
defined in (2) is re-evaluated after a particular number of itera-
tions. It is considered that the clustering process has negligible
computational cost as compared to the feature extraction and neu-
ral network based classification margin estimation.

Visualisation. We have used seven classes of fruit and vegetables
to represent the concept of intra-class variations and inter-class
similarities. This consideration has helped us to emphasise on
the classes with significantly similar physical features. Two differ-
ent kinds of visualisations have been used to represent our concept
and compare the experimental results. The ResNet50 learned fea-
tures has been represented in Fig. 2. The learned features are nor-
malised to an imaginary three dimensional space to represent the
feature overlapping and distribution in an arbitrary feature space
based on the technique in [45]. A set of 200 samples have been
used for this representation where a perplexity of 7 has been used
with a learning rate of 10.0 and minimum gradient norm is set to
1e�7. An experimental observation has been performed to select
the perplexity, where a large learning rate ranging from 10.0 to
1000.0 is recommended for t-SNE based visualisation. This large
value of learning rate is crucial to avoid the local minimum how-
ever, using significantly large learning rates for small samples
can force the features into a uniform equidistant distribution,

Fig. 6. Example dataset images of Granny Smith apple, onion, pear, potato and tomato.
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which is less suitable to understand the feature overlapping. An
exaggeration technique defined in [40] has been used to control
the embedded inter-cluster distribution. An exaggeration value of
12.0 has been used for our implementation. An enhanced features
dependence estimation and cluster assignment is also reported for
this technique [40]. A Euclidean distance based features similarity
is used with the Barnes Hut [5] optimisation technique for feature
embedding where an effective time complexity of Oðn lognÞ can be
achieved. A maximum number of 1000 iterations has been ini-
tialised, however, the loss function is observed for a maximum
number of 300 iterations in case of performance plateau based
on minimum gradient norm. The cluster-level embedding with
the adaptive classification margins has been used for classification
of fruit and vegetables. We have used a Silhouette score based
visualisation to analyse the clustering and classification of seven
considered classes of fruit and vegetables. A complete inter and
intra cluster feature-level analysis of our test dataset has been per-
formed, where the higher values of the Silhouette score represent
an effective inter and intra class clustering, hence classification.
The Silhouette score uses Euclidean distance to estimates the effi-
cacy of our angular margin based clustering and the effect of angu-
lar margin in an imaginary geodesic feature space. The proposed
technique is used to enforce compactness and inter class margins
simultaneously where the Silhouette score as a metric helps to
analyse the classification margins of a complex dataset.

5. Results

The proposed cluster-level embedding approach with adaptive
margins is evaluated not only for clustering effectiveness but also
for classification of a fruit and vegetables dataset. We have tested
and evaluated our proposed concept in a progressive manner i.e.
with different numbers of classes. Initially, we considered two
pairs of Cabbage and Lettuce, and Mandarin and Orange to illus-
trate our concept for two classes with significantly similar physical
features. Our main tests are performed for seven classes of fruit
and vegetables with significant inter-class similarities where
results have been evaluated for cluster embedding and classifica-
tion. These classes have been considered carefully to meet the
requirements of inter-class similarity and intra-class distribution.
The selection has also helped us to achieve a dataset with signifi-
cant complexity and imbalance. Finally, we have tested the tech-
nique for the dataset of 15 classes described in Section 4. We
have used the Silhouette score analysis to analyse the clustering
achieved, where we have used a combination of metrics for classi-
fication effectiveness. The complexity of the dataset is taken into
account for classification where we have used Receiver Operating
Characteristic (ROC) curves to analyse the classification effective-
ness with different values of h.

Cluster Embedding. A Silhouette score analysis has been pre-
sented for different numbers of classes where significant support
for our proposed technique can be observed. The Silhouette score
is analysed for DCNN based features and the proposed technique
with different number of classes and adaptive angular margins
proportional to the class distribution. An initial analysis performed
for two pairs of Cabbage and Lettuce (Pair 1), and Mandarin and
Orange (Pair 2) is presented in Fig. 7. These pairs have been consid-
ered due to significant inter-class similarities where likelihood of
inter-class overlapping is high as depicted in Fig. 2. The pre-
trained ResNet50 based features of each class pair is extracted
and are used for adaptive margin based clustering where h ¼ 1
i.e. considering the complete class distribution. Significant intu-
itions can be established based on analysis of these two class pairs,
where it can be observed that the state-of-the-art DCNNs deals

with the highly similar classes in a consistent manner. The sample
Euclidean distance between the class centroids is small with an
average Silhouette score of 0.32 and 0.30 obtained for Pair 1 and
Pair 2, respectively. A marginal difference of 0.02 Silhouette scores
can be explained as a result of the limited capability of the sate-of-
the-art DCNNs to deal with significantly similar classes. A signifi-
cantly improved inter-class distribution and classification result
has been obtained with the proposed techniques in the case of
the considered two class pairs. An average Silhouette score for Pair
1 is 0.89, while Pair 2 has achieved a 0.92 score, which can validate
the effectiveness of the proposed techniques to deal with different
similar classes robustly.

We have further extended our analysis for a seven class dataset,
where a significant overlapping among the classes can be observed
in Fig. 8(a) for the ResNet50 features as previously illustrated in
Fig. 2. An average Silhouette score of 0.37 is obtained where it
can be observed that a significant number of samples has been
wrongly clustered, hence resulting in wrong classifications. The Sil-
houette score estimates the distance of samples w.r.t. to each class
centroid, where higher value indicates the samples are at signifi-
cant distance from the neighbouring clusters. We have used Eucli-
dean distance based metrics for estimation of the Silhouette score
to relate the angular margin and geodesic distance for our pro-
posed technique. An accumulation of samples can be observed
below the average Silhouette score in Fig. 8(a), which can be trans-
lated to an overlapping set of features with thin classification mar-
gins among the classes. A wrong classification can be observed by
proportion of samples with a negative Silhouette coefficient. For
our analysis we have used the same size of cluster, i.e. equal num-
bers of samples per class, however, inconsistent width of the clus-
ters indicates a merging of samples frommultiple classes. We have
also estimated the Silhouette score for different values of adaptive
angular margins, where class distribution is considered as standard
deviation in (7). We have used h = 1, 1, 2, 4, and 8 for Fig. 8(b)–(f),
respectively. It can be observed that the best results, with a Silhou-
ette score of 0.86, has been obtained for a h ¼ 1 on the transfer
learned ResNet50 based features in Fig. 8(b), where, a consistent
cluster-level distribution can be observed. As we had assumed,
the features obtained by pre-trained or transfer learned ResNet50
have a negligible effect on the overall convergence of the clusters
and classification accuracy. A comparison of the results presented
in Fig. 8(b) and (c) strengthen our concept, where a clustering is
performed for the same number of clusters and adaptive angular
margin for the pre-trained and transfer learned ResNet50. A Sil-
houette score difference of 0.04 has been observed, where cluster-
ing on the pre-trained ResNet50 features without transfer learning
obtain a score of 0.82. Moreover, no samples have been reported
for wrong classification with a negative Silhouette score. An effect
of global class distribution on the adaptive angular margin has
been depicted in Fig. 8(d)–(f). The class structure considered as
standard deviation has a significant effect on overall performance,
where reducing the adaptive angular margin by a factor of 2 causes
a clustering loss of on average, a 0.12 Silhouette score. An average
Silhouette score of 0.74, 0.61, and 0.46 has been achieved for
h ¼ 2;4, and 8, respectively on pre-trained ResNet50 features.

The analysis is further extended to a dataset of 15 classes of
fruit and vegetables as our base-line application of classification
at a supermarket self-checkout. A Silhouette score analysis is pre-
sented in Fig. 9 for the 15 classes. Considering our results pre-
sented in Fig. 8, we have used a transfer learned ResNet50 as a
backbone for feature extraction with h ¼ 1. The average Silhouette
score of 0.34 and 0.87 has been obtained for ResNet50 features and
the proposed approach, respectively. Based on the obtained results
the proposed approach can be considered scalable and effective for
larger number of classes where significant classification accuracy
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can also be achieved, as presented in Fig. 11. A clustering compar-
ison of K-means and K-means++ has been performed for pre-
trained ResNet50 features of fruit and vegetables. An average Sil-
houette score of 0.544 and 0.606 has been achieved for K-means
and K-means++, respectively where results are shown in Fig. 9(c)
and (d). A fixed number of clusters i.e. 15 has been set for this
implementation where centroids are initialised randomly for K-
means clustering. A uniform centroid distribution technique based
on [4] is used for K-means++ centroid initialisation. A final cluster-
ing is achieved using 10 different seeds for random centroids ini-
tialisation for both techniques using a maximum number of 300
iterations. A Euclidean norm based relative tolerance of 1 e�4 is
used for centroids differences to estimate convergence on two pro-
gressive iterations. A set of 20 training dataset images per class is
used to estimate Euclidean norm based class labels. Significant

results have been obtained where compact clustering margins
and wrong cluster assignment can be observed. Moreover, K-
means and K-means++ also have significant time complexity and
are prone to larger and more variable dataset distributions. The
proposed technique has used centroid updating to deal with the
complex varying data distributions where significant outlier con-
sideration can also be achieved by updating centroids after a par-
ticular number of iterations. It can be noted that the additive
angular margin and vector projection based features similarity
has significantly improved the clustering and classification for
the proposed technique.

An experiment has been performed to validate the proposed
technique for an imbalanced dataset of fruit and vegetables with
similar physical features. A dataset of Cabbage and Lettuce consist-
ing of 200 (20%) and 800 (80%) images, respectively is used for this

Fig. 7. A two class pair analysis of the proposed approach: (a) Cabbage and Lettuce (Pair 1), and (b) Mandarin and Orange (Pair 2).
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experiment. Considering the physical features similarity the
classes have been selected carefully for this experiment. The pro-
posed technique has been tested for h = 1, 2, 4, 8 where Silhouette
score analysis is presented in Fig. 12. The proposed approach has
been tested for both pre-trained and transfer learned ResNet50,

where a significant clustering effectiveness has been achieved.
The result obtained can be considered consistent for balanced
and imbalanced data distributions. An average Silhouette score of
0.776 and 0.626 has been achieved for transfer learned and pre-
trained ResNet50 features, respectively with h ¼ 1. An effect of

Fig. 8. Silhouette score analysis: (a) Learned pre-trained ResNet50 features, (b) h ¼ 1 (transfer learned ResNet50), (c) h ¼ 1, (d) h ¼ 2, (e) h ¼ 4, and (f) h ¼ 8.
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class distribution on clustering effectiveness is noted where con-
sidering the smaller proportion of class distribution results in com-
pact and overlapping inter-class clusters. An average Silhouette
score of 0.595, 0.459 and 0.369 has been obtained for h = 2, 4
and 8, respectively where wrong cluster assignment can also be
noted in Fig. 12. Moreover, the clustering effectiveness of the pro-
posed approach is supposed prone to the significant imbalance of
the dataset distribution where a difference of 0.114 has been noted
in the average Silhouette score (Figs. 7 and 12). This difference can

be translated as reduced inter-class clusters distribution margins
which can lead to the cluster overlapping, hence wrong classifica-
tion. However, no wrong clustering assignment has been noted
while considering complete class distribution i.e. h ¼ 1 for both
pre-tranined and transfer learned ResNet50 features. As the pro-
posed approach is significantly dependent upon the deep features
extractor (ResNet50 in our case) the reduced inter-class distribu-
tion can be related to the capability of ResNet50 to deal with the
imbalanced dataset. Considering the complexity of the fruit and

Fig. 9. Implementation of distribution-aware clustering and adaptive margins on 15 classes of fruit and vegetables: (a) ResNet50 features, (b) transfer learned ResNet50
(h ¼ 1), (c) K-means clustering (ResNet50 features), and (d) K-means++ (ResNet50 features).
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vegetables dataset, it is supposed that a more sophisticated feature
similarity measure for feature embedding can significantly
improve the technique for imbalanced class distribution. A
dynamic class distribution measure consideration w.r.t. the train-
ing iterations can also help to improve the proposed approach for
imbalanced data distributions.

Classification. The proposed technique is analysed for classifica-
tion of fruit and vegetables. The classification effectiveness is anal-
ysed for our main experiments with seven classes which is further
extended to our 15 class dataset of fruit and vegetables. We have
tested for different values of h to compare the classification effec-
tiveness of the proposed technique considering different levels of
class feature distribution. A ROC curve based comparison of the
proposed technique is presented in Fig. 10, where a zoomed plot
along with Area Under the Curve (AUC) is presented in Fig. 10(b).
The classification results obtained are significantly consistent to
the clustering results presented Fig. 8, where the proposed tech-
nique used with the transfer learned ResNet50 based features
has outperformed. To analyse the statistical significance of the
classification results achieved with pre-trained and transfer
learned deep features, a p-vale hypothesis testing [3] has been per-
formed. Considering the small difference of AUC for pre-trained
and transfer learned deep features a null hypothesis (H0) of consis-
tent classification results has been considered where a significance
level (a) of 0.10 and 0.05 i.e. 10% and 5%, respectively is used. A
two-tailed p-value of 0.053 has been obtained where a strong sta-
tistical significance can be noted for a = 0.10. Moreover, a marginal
significance is evident for the more rigorous significance level con-
dition i.e. a = 0.05. Considering the p-value observations it can be

concluded that the transfer learned deep feature based class
distribution-aware features embedding has outperformed for fruit
and vegetables classification. Moreover, an improved classification
effectiveness can be achieved by transfer learning on larger num-
bers of images for deep features. Reducing the adaptive angular
margin i.e. h ¼ 2;4, and 8, reduces the classification margins in
the embedding feature space, hence causing discrepancy among
classes. These reduced classification margins caused the overlap-
ping of classes with significantly similar features, resulting in a
reduced classification accuracy. A detailed comparison of the con-
ventional classification metrics, i.e. Accuracy (ACC), Error Rate (ER),
Positive Predictive Value (PPV), True Negative Rate (TNR), and F1
score (F1) is presented in Table 2. This analysis is presented for
both pre-trained and transfer learned ResNet50 features with
h ¼ 1 i.e. the two leading variants of classifier according to ROC
and AUC analysis. The proposed approach used with the transfer
learned ResNet50 has outperformed, however the results with
the pre-trained ResNet50 are also comparable. These comparable
results strengthen the idea that the convergence of the proposed
technique is independent of deep feature extractor and initialisa-
tion of the weights. Hence, the proposed distribution aware cluster
embedding allows us to use the proposed approach with any read-
ily available state-of-the-art DL networks. The usage of these DL
networks also extends the capability of the proposed approach to
even larger numbers of classes. Considering these findings, we
have applied the proposed technique for classification of 15 classes
of fruit and vegetables with significant inter-class similarities and
intra-class distribution. A confusion matrix based comparison of
classification effectiveness for a transfer learned ResNet50 and

Table 2
Conventional classification metric comparison for pre-trained and transfer learned ResNet50 h ¼ 1.

Pre-trained ResNet50 Transfer learned ResNet50

Fruit/Veg ACC(%) ER(%) PPV(%) TNR(%) F1 ACC(%) ER(%) PPV(%) TNR(%) F1

Apple 98.00 2.00 93.88 99.00 0.929 99.14 0.86 100.00 100.00 0.969
Cabbage 97.43 2.57 90.20 98.33 0.911 99.14 0.86 97.96 99.67 0.970
Carrot 98.57 1.43 95.92 99.33 0.949 99.71 0.29 98.04 99.67 0.990
Lettuce 97.43 2.57 91.84 98.67 0.909 99.14 0.86 96.08 99.33 0.970

Mandarin 98.00 2.00 92.16 98.67 0.931 98.57 1.43 95.92 99.33 0.949
Orange 97.71 2.29 92.00 98.67 0.920 98.29 1.71 92.31 98.67 0.941
Tomato 98.00 2.00 92.16 98.67 0.931 98.57 1.43 94.12 99.00 0.950

Fig. 10. ROC curves and AUC of different adaptive angular margins: (a) ROC curves of different adaptive angular margins, and (b) a zoomed in ROC curve with AUC for better
understanding.
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adaptive classification margins is presented in Fig. 11. It can be
observed that the proposed approach can achieve significantly
classification effectiveness for classes with significant similar phys-
ical features.

Inference Analysis. An inference analysis is also performed to
analyse the effectiveness of the proposed approach for a real-
world supermarket environment. To achieve accurate inference
times, we have used 20 images per class chosen randomly from

Fig. 11. A classification effectiveness comparison: [Upper] transfer learned ResNet50, and [Lower] adaptive classification margins with cluster embedding on transfer learned
ResNet50 (h ¼ 1).
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Fig. 12. Imbalanced dataset Silhouette score analysis: (a) h ¼ 8, (b) h ¼ 4, (c) h ¼ 2, (d) h ¼ 1 (pre-trained ResNet50), and (e) h ¼ 1 (transfer learned ResNet50).
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the test dataset, where average time for each image classification is
obtained by dividing the obtained value by 20. The inference times
obtained from different values of adaptive angular margin for
ResNet50 feature extraction, feature embedding (clustering) and
classification (Softmax) is presented in Table 3. This inference anal-
ysis is performed on a 12 GB Tesla K80 (4992 cores) with 32 GB
installed memory, however this inference time is prone to varia-
tion based on the execution environment and the underlying
machine. Considering the obtained result, an important intuition
can be established that feature embedding with large values of h
penalises larger classification margin which makes the overall con-
vergence harder and increases time complexity. Moreover, it can
be observed that the proposed class distribution aware clustering
has negligible time complexity as compared to the feature extrac-
tion part, and hence can be considered suitable for a real-world
implementation.

6. Conclusion

The proposed class distribution aware adaptive classification
margins approach with cluster-based embedding has been tested
for cluster embedding and classification of seven and fifteen fruit
and vegetables classes with significantly similar physical features.
This intra-class variations and inter-class similarities limits the
state-of-the-art DCNNs ability to estimate complex hyper-planes
for classification. The intuition of the proposed approach is to
embed the features from the ResNet50 to an imaginary feature
space to enhance the intra-class compactness and inter-class mar-
gins. Extensive and detailed experiments have been performed for
different adaptive classification margins. A vector projection based
similarity is estimated between the class centroid and features vec-
tors obtained by ResNet50 to achieve intra-class compactness. The
adaptive angular margins are then used to enhance the classifica-
tion margins between classes for fruit and vegetables. An imbal-
anced dataset distribution based clustering and classification
effectiveness is also tested for the proposed approach. Significant
positive results have been achieved for clustering and classifica-
tion, where the proposed approach is able to achieve invariance
w.r.t to the challenges described. The proposed approach adds a
relatively negligible time complexity and can be considered suit-
able for real-world implementations. Considering the scalable
property of the proposed approach, this technique can be also used
for complex datasets with higher number of classes. Based on the
experimental results it is concluded that a more sophisticated sim-
ilarity measure for features embedding can be explored for further
enhancement of the proposed approach specifically to deal with
the imbalanced dataset distributions. Moreover, the capability of
the deep features extractor (ResNet50) has a significant impact
on the overall process. An enhancement of the features extractor
to deal with complex and imbalanced datasets with large numbers
of classes can also improve the clustering and classification effec-
tiveness. The class distribution measure can be dynamically

updated with the training iterations for complex datasets e.g. fruit
and vegetables classification. Moreover, considering better statisti-
cal class distribution measures for example distribution dispersion
and interquartile range can also improve the proposed approach.
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