885 research outputs found

    Gene clusters reflecting macrodomain structure respond to nucleoid perturbations

    Full text link
    Focusing on the DNA-bridging nucleoid proteins Fis and H-NS, and integrating several independent experimental and bioinformatic data sources, we investigate the links between chromosomal spatial organization and global transcriptional regulation. By means of a novel multi-scale spatial aggregation analysis, we uncover the existence of contiguous clusters of nucleoid-perturbation sensitive genes along the genome, whose expression is affected by a combination of topological DNA state and nucleoid-shaping protein occupancy. The clusters correlate well with the macrodomain structure of the genome. The most significant of them lay symmetrically at the edges of the ter macrodomain and involve all of the flagellar and chemotaxis machinery, in addition to key regulators of biofilm formation, suggesting that the regulation of the physical state of the chromosome by the nucleoid proteins plays an important role in coordinating the transcriptional response leading to the switch between a motile and a biofilm lifestyle.Comment: Article: first 24 pages, 3 figures Supplementary methods: 1 page, 1 figure Supplementary results: 14 pages, 11 figure

    Evolution of Daily Gene Co-expression Patterns from Algae to Plants

    Get PDF
    Daily rhythms play a key role in transcriptome regulation in plants and microalgae orchestrating responses that, among other processes, anticipate light transitions that are essential for their metabolism and development. The recent accumulation of genome-wide transcriptomic data generated under alternating light:dark periods from plants and microalgae has made possible integrative and comparative analysis that could contribute to shed light on the evolution of daily rhythms in the green lineage. In this work, RNA-seq and microarray data generated over 24 h periods in different light regimes from the eudicot Arabidopsis thaliana and the microalgae Chlamydomonas reinhardtii and Ostreococcus tauri have been integrated and analyzed using gene co-expression networks. This analysis revealed a reduction in the size of the daily rhythmic transcriptome from around 90% in Ostreococcus, being heavily influenced by light transitions, to around 40% in Arabidopsis, where a certain independence from light transitions can be observed. A novel Multiple Bidirectional Best Hit (MBBH) algorithm was applied to associate single genes with a family of potential orthologues from evolutionary distant species. Gene duplication, amplification and divergence of rhythmic expression profiles seems to have played a central role in the evolution of gene families in the green lineage such as Pseudo Response Regulators (PRRs), CONSTANS-Likes (COLs), and DNA-binding with One Finger (DOFs). Gene clustering and functional enrichment have been used to identify groups of genes with similar rhythmic gene expression patterns. The comparison of gene clusters between species based on potential orthologous relationships has unveiled a low to moderate level of conservation of daily rhythmic expression patterns. However, a strikingly high conservation was found for the gene clusters exhibiting their highest and/or lowest expression value during the light transitions

    Feature selection and modelling methods for microarray data from acute coronary syndrome

    Get PDF
    Acute coronary syndrome (ACS) represents a leading cause of mortality and morbidity worldwide. Providing better diagnostic solutions and developing therapeutic strategies customized to the individual patient represent societal and economical urgencies. Progressive improvement in diagnosis and treatment procedures require a thorough understanding of the underlying genetic mechanisms of the disease. Recent advances in microarray technologies together with the decreasing costs of the specialized equipment enabled affordable harvesting of time-course gene expression data. The high-dimensional data generated demands for computational tools able to extract the underlying biological knowledge. This thesis is concerned with developing new methods for analysing time-course gene expression data, focused on identifying differentially expressed genes, deconvolving heterogeneous gene expression measurements and inferring dynamic gene regulatory interactions. The main contributions include: a novel multi-stage feature selection method, a new deconvolution approach for estimating cell-type specific signatures and quantifying the contribution of each cell type to the variance of the gene expression patters, a novel approach to identify the cellular sources of differential gene expression, a new approach to model gene expression dynamics using sums of exponentials and a novel method to estimate stable linear dynamical systems from noisy and unequally spaced time series data. The performance of the proposed methods was demonstrated on a time-course dataset consisting of microarray gene expression levels collected from the blood samples of patients with ACS and associated blood count measurements. The results of the feature selection study are of significant biological relevance. For the first time is was reported high diagnostic performance of the ACS subtypes up to three months after hospital admission. The deconvolution study exposed features of within and between groups variation in expression measurements and identified potential cell type markers and cellular sources of differential gene expression. It was shown that the dynamics of post-admission gene expression data can be accurately modelled using sums of exponentials, suggesting that gene expression levels undergo a transient response to the ACS events before returning to equilibrium. The linear dynamical models capturing the gene regulatory interactions exhibit high predictive performance and can serve as platforms for system-level analysis, numerical simulations and intervention studies

    From gene-expressions to pathways

    Get PDF
    Rapid advancements in experimental techniques have benefited molecular biology in many ways. The experiments once considered impossible due to the lack of resources can now be performed with relative ease in an acceptable time-span; monitoring simultaneous expressions of thousands of genes at a given time point is one of them. Microarray technology is the most popular method in biological sciences to observe the simultaneous expression levels of a large number of genes. The large amount of data produced by a microarray experiment requires considerable computational analysis before some biologically meaningful hypothesis can be drawn. In contrast to a single time-point microarray experiment, the temporal microarray experiments enable us to understand the dynamics of the underlying system. Such information, if properly utilized, can provide vital clues about the structure and functioning of the system under study. This dissertation introduces some new computational techniques to process temporal microarray data. We focus on three broad stages of microarray data analysis - normalization, clustering and inference of gene-regulatory networks. We explain our methods using various synthesized datasets and a real biological dataset, produced in-house, to monitor the leaf senescence process in Arabidopsis thaliana

    The complexity of gene expression dynamics revealed by permutation entropy

    Get PDF
    ABSTRACT: BACKGROUND: High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. RESULTS: Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. CONCLUSIONS: We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data
    • …
    corecore