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Abstract

Acute coronary syndrome (ACS) represents a leading cause of mortality and mor-
bidity worldwide. Providing better diagnostic solutions and developing therapeu-
tic strategies customized to the individual patient represent societal and econom-
ical urgencies. Progressive improvement in diagnosis and treatment procedures
require a thorough understanding of the underlying genetic mechanisms of the
disease. Recent advances in microarray technologies together with the decreasing
costs of the specialized equipment enabled affordable harvesting of time-course
gene expression data. The high-dimensional data generated demands for compu-
tational tools able to extract the underlying biological knowledge.

This thesis is concerned with developing new methods for analysing time-course
microarray gene expression data, focused on identifying differentially expressed
genes, deconvolving heterogeneous gene expression measurements and inferring
dynamic gene regulatory interactions. The main contributions include: a novel
multi-stage feature selection method, a new deconvolution approach for estimat-
ing cell-type specific signatures and quantifying the contribution of each cell type
to the variance of the gene expression patters, a novel approach to identify the
cellular sources of differential gene expression, a new approach to model gene
expression dynamics using sums of exponentials and a novel method to estimate
stable linear dynamical systems from noisy and unequally spaced time series data.

The performance of the proposed methods was demonstrated on a time-course
dataset consisting of microarray gene expression levels collected from the blood
samples of patients with ACS and associated blood count measurements. The re-
sults of the feature selection study are of significant biological relevance. For the
first time is was reported high diagnostic performance of the ACS subtypes up to
three months after hospital admission. The deconvolution study exposed features
of within and between groups variation in expression measurements and identi-
fied potential cell type markers and cellular sources of differential gene expression.
It was shown that the dynamics of post-admission gene expression data can be ac-
curately modelled using sums of exponentials, suggesting that gene expression
levels undergo a transient response to the ACS events before returning to equi-
librium. The linear dynamical models capturing the gene regulatory interactions
exhibit high predictive performance and can serve as platforms for system-level
analysis, numerical simulations and intervention studies.



Contents

Nomenclature xiii

Acronyms xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Feature selection methods for microarray gene expression data 6
2.1 Introduction to microarray technology . . . . . . . . . . . . . . . . . . 7

2.1.1 Glass slide cDNA microarrays . . . . . . . . . . . . . . . . . . 7
2.1.2 High-density oligonucleotide microarrays . . . . . . . . . . . 8

2.2 Gene expression profiling using microarrays . . . . . . . . . . . . . . 9
2.2.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Hybridization and washing . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Statistical hypothesis testing in microarray experiments . . . . . . . . 13
2.3.1 Single hypothesis testing . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Multiple hypothesis testing . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Statistical significance and biological relevance . . . . . . . . 18

2.4 Feature selection in machine learning . . . . . . . . . . . . . . . . . . 19
2.4.1 Unsupervised filtering approaches for microarray data . . . . 21
2.4.2 Filters based on information theory . . . . . . . . . . . . . . 24
2.4.3 Wrapper methods . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Embedded methods based on SVM . . . . . . . . . . . . . . . 30

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



iv Contents

3 Modelling methods for microarray gene expression data 33
3.1 Deconvolution of microarray gene expression data from heteroge-

neous tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 The linear deconvolution model . . . . . . . . . . . . . . . . . 34
3.1.2 Estimation of cell type-specific proportions . . . . . . . . . . . 35
3.1.3 Estimation of cell type-specific expression levels . . . . . . . . 36
3.1.4 Joint estimation of cell type-specific proportions and expres-

sion levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Modelling dynamic GRNs . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 General properties of GRNs . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Boolean and probabilistic Boolean networks . . . . . . . . . . 42
3.2.3 Dynamic Bayesian networks . . . . . . . . . . . . . . . . . . . 44
3.2.4 Linear state-space models . . . . . . . . . . . . . . . . . . . . . 45

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 A novel multi-stage feature selection method for microarray gene expres-
sion data 50
4.1 Stage I: Filtering uninformative genes . . . . . . . . . . . . . . . . . . 52
4.2 Stage II: Gene subset selection using statistical tests . . . . . . . . . . 53

4.2.1 The Welch’s t-test . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 The Wilcoxon’s rank-sum test . . . . . . . . . . . . . . . . . . . 54
4.2.3 pFDR control and q-value estimation . . . . . . . . . . . . . . 55

4.3 Stage III: Gene subset selection using mRMR . . . . . . . . . . . . . . 56
4.3.1 The CACC discretization algorithm . . . . . . . . . . . . . . . 56

4.4 Stage IV: Gene subset selection using SVMs . . . . . . . . . . . . . . . 58
4.5 Model selection and reliable performance evaluation . . . . . . . . . 60

4.5.1 The nested cross-validation design . . . . . . . . . . . . . . . . 60
4.5.2 The multi-stage feature selection method . . . . . . . . . . . . 62

4.6 Gene selection for ACS classification . . . . . . . . . . . . . . . . . . . 66
4.6.1 The ACS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.2 Selection of differentially expressed genes between MI and UA 67
4.6.3 Selection of differentially expressed genes between NSTEMI

and STEMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 A novel deconvolution method for microarray gene expression data 82
5.1 An orthogonal forward regression approach for microarray data de-

convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Testing for cell type-specific differential expression . . . . . . . . . . 86



Contents v

5.3 Expression deconvolution of the genes differentiating between the
ACS subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 The CBC dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Expression deconvolution of the genes differentiating MI from

UA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.3 Expression deconvolution of the genes differentiating NSTEMI

from STEMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 A novel approach for modelling stable GRNs 103
6.1 Nonlinear approximation of gene expression dynamics by sums of

exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.1 The gene expression model . . . . . . . . . . . . . . . . . . . . 104
6.1.2 Parameter estimation using non-linear least squares . . . . . 106
6.1.3 Selecting the regularization parameter using the Morozov’s

discrepancy principle . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Modelling GRNs using linear dynamical systems . . . . . . . . . . . 109

6.2.1 Parameter estimation using non-linear least squares . . . . . 109
6.2.2 Selecting the regularization parameter by cross-validation . . 111

6.3 Estimating sparse GRNs . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Modelling GRNs for the diagnostic groups of ACS . . . . . . . . . . 113

6.4.1 Modelling the regulatory interactions between the genes dif-
ferentiating MI from UA . . . . . . . . . . . . . . . . . . . . . . 113

6.4.2 Modelling the regulatory interactions between the genes dif-
ferentiating NSTEMI from STEMI . . . . . . . . . . . . . . . . 117

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions 123
7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Fundamentals of genetics 127

B Feature selection for ACS classification 132

C Deconvolution of microarray gene expression data 144

D Reconstruction of GRNs for the ACS subtypes 152

Bibliography 165



List of Figures

4.1 Hierarchical organization of the stage-specific forms of relevance . . 51

4.2 Nested cross-validation design of the multi-stage feature selection
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Expression levels across arrays for (a) a non-informative probe set
and (b) an informative probe set. The bars denote the technical
variance of each measurement. . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Mean densities (dotted lines) of the Hedges’ g scores for the subsets
of gene selected using pFDR (Stage II) and mRMR (Stage III) in
the external cross-validation loop. The continuous lines denote one
standard deviation around the mean densities. . . . . . . . . . . . . . 68

4.5 Hierarchical clustering of the group-specific expression averages of
the genes selected at Stage III in one fold of the external cross-
validation loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Principal component analysis of the combined expression data of
S f . Dotted lines represent one standard deviation around the group-
specific gene expression averages projected onto the principal com-
ponents space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Group-specific expression averages across visits for (a) X1 (WASH1),
(b) X3 (C17orf103) and (c) X6 (OSBP2). The bars denote one stan-
dard deviation around the mean expression levels. . . . . . . . . . . 71

4.8 Principal component analysis of the combined expression data of
S∗f . Dotted lines represent one standard deviation around the group-
specific gene expression averages projected onto the principal com-
ponents space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Expression level across arrays for (a) a non-informative probe set
and (b) an informative probe set. The bars denote the technical
variance of each measurement . . . . . . . . . . . . . . . . . . . . . . 75

vi



List of Figures vii

4.10 Mean density (dotted line) of the Hedges’ g scores for the subsets of
gene selected using pFDR (Stage II) in the external cross-validation
loop. The continuous lines denote one standard deviation around
the mean density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Hierarchical clustering of the group-specific expression averages of
the genes selected at Stage II in one fold of the external cross-
validation loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.12 Principal component analysis of the combined expression data of
S f . Dotted lines represent one standard deviation around the group-
specific gene expression averages projected onto the principal com-
ponents space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.13 Group-specific expression averages across visits for (a) X1 (HLA-
DQB1), (b) X2 (MAPK8Ip1) and (c) X21 (LRRC37A). The bars denote
one standard deviation around the mean expression levels. . . . . . 77

4.14 Principal component analysis of the combined expression data of
S∗f . Dotted lines represent one standard deviation around the group-
specific gene expression averages projected onto the principal com-
ponents space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Distributions of the CODs across visits for the models fitted on data
from the MI and UA groups using (a) the constrained OFR and (b)
the unconstrained OFR. The lower and upper edge of the box repre-
sent the 25th and 75th percentiles, respectively, while the whiskers
extend to the most extreme points not considered outliers. . . . . . . 93

5.2 Cell type-specific contributions to the expression level of genes X1,
X3 and X6 in the MI and UA groups. . . . . . . . . . . . . . . . . . . 94

5.3 Distributions of the blood cell counts in the MI and UA groups . . . 95

5.4 Distributions of the CODs across visits for the models fitted on data
from NSTEMI and STEMI groups using (a) the constrained OFR
method and (b) the unconstrained OFR method. . . . . . . . . . . . . 98

5.5 Cell type-specific contributions to the expression level of genes X1,
X2 and X3 in the NSTEMI and STEMI groups. . . . . . . . . . . . . . 99

5.6 Distributions of the blood cell counts in the NSTEMI and STEMI
groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Estimated dynamic profiles for (a) X1 (WASH1), (b) X3 (C17orf103)
and (c) X6 (OSBP2). The bars denote one standard deviation around
the group-specific gene expression averages. . . . . . . . . . . . . . . 114

6.2 Distributions of the prediction errors for the families of GRNs. . . . 116



viii List of Figures

6.3 Sparsity filters for the parameters of the GRNs associated with NSTEMI,
STEMI and UA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Regulatory map for genes X1-X5 in the: (a) NSTEMI network, (b)
STEMI network and (c) UA network. Each gene is represented by an
unique colour. Regulatory connections sharing the colour of a gene
point towards the genes that regulate it. The (∗) marks the regula-
tory interactions with the largest magnitude that were removed by
the sparsity filter. These connections were included to show at least
one regulator per gene. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Estimated dynamic profiles for (a) X1 (HLA-DQB1), (b) X2 (MAPK8IP1)
and (c) X21 (LRRC37A). The bars denote one standard deviation
around the group-specific gene expression averages. . . . . . . . . . 119

6.6 Distributions of the prediction errors for the families of GRNs . . . . 120

6.7 Sparsity filters for the parameters of the GRNs associated with NSTEMI
and STEMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.8 Regulatory map for genes X1-X5 in the: (a) NSTEMI network and
(b) STEMI network. Each gene is represented by an unique colour.
Regulatory connections sharing the colour of a gene point towards
the genes that regulate it . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1 DNA double helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 RNA hairpin loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3 The fundamental stages of protein biosynthesis . . . . . . . . . . . . 128

A.4 Schematic representation of a GRN. Gene1 and Gene4 jointly reg-
ulate the expression level (abundance of ribonucleic acid (RNA)
and protein) of Gene5 through the protein complex assembled for
their individual translation products (Protein1 and Protein4). The
amount of Protein1 is regulated by Gene2 through RNA2 that binds
to molecules of RNA1, preventing further protein translation. . . . . 129

A.5 Affymetrix GeneChip design . . . . . . . . . . . . . . . . . . . . . . . 130

A.6 Example of a gene (X1) with three inward connections (in-degree)
and eleven outward connections (out-degree). X1 is regulated by
X2, X3 and X4 and regulates the expression level of genes X5 − X15. 131

B.1 Group-specific expression averages across visits for genes X1 − X18

in the MI vs. UA study. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2 Group-specific expression averages across visits for genes X19−X36

in the MI vs. UA study. . . . . . . . . . . . . . . . . . . . . . . . . . . 136



List of Figures ix

B.3 Group-specific expression averages across visits for genes X1 − X15

in the NSTEMI vs. STEMI study. . . . . . . . . . . . . . . . . . . . . . 141

B.4 Group-specific expression averages across visits for genes X16−X21

in the NSTEMI vs. STEMI study. . . . . . . . . . . . . . . . . . . . . . 142

D.1 Estimated dynamic profiles for genes X1 − X12 in the MI vs. UA
study. The bars denote one standard deviation around the group-
specific gene expression averages . . . . . . . . . . . . . . . . . . . . . 153

D.2 Estimated dynamic profiles for genes X13 − X20 in the MI vs. UA
study. The bars denote one standard deviation around the group-
specific gene expression averages . . . . . . . . . . . . . . . . . . . . . 154

D.3 Dynamic profiles of the combined expression levels for genes X∗1 −
X∗12 selected by l1-StaR in the MI vs. UA study. The bars denote
one standard deviation around the group-specific gene expression
averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D.4 Dynamic profiles of the combined expression levels for genes X∗13−
X∗20 selected by l1-StaR in the MI vs. UA study. The bars denote
one standard deviation around the group-specific gene expression
averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.5 Gene regulatory network for genes X1-X20 in the NSTEMI group.
Each gene is represented by an unique colour. Regulatory connec-
tions sharing the colour of a gene point towards the genes that reg-
ulate it. The (∗) marks the regulatory interactions with the largest
magnitude that were removed by the sparsity filter. These connec-
tions were included to show at least one regulator per gene. . . . . . 158

D.6 Gene regulatory network for genes X1-X20 in the STEMI group.
Each gene is represented by an unique colour. Regulatory connec-
tions sharing the colour of a gene point towards the genes that reg-
ulate it. The (∗) marks the regulatory interactions with the largest
magnitude that were removed by the sparsity filter. These connec-
tions were included to show at least one regulator per gene. . . . . . 159

D.7 Gene regulatory network for genes X1-X20 in the UA group. Each
gene is represented by an unique colour. Regulatory connections
sharing the colour of a gene point towards the genes that regulate
it. The (∗) marks the regulatory interactions with the largest mag-
nitude that were removed by the sparsity filter. These connections
were included to show at least one regulator per gene. . . . . . . . . 160



x List of Figures

D.8 Estimated dynamic profiles for genes X1-X12 in the NSTEMI vs.
STEMI study. The bars denote one standard deviation around the
group-specific gene expression averages . . . . . . . . . . . . . . . . . 161

D.9 Estimated dynamic profiles for genes X13-X21 in the NSTEMI vs.
STEMI study. The bars denote one standard deviation around the
group-specific gene expression averages . . . . . . . . . . . . . . . . . 162

D.10 Dynamic profiles of the combined expression levels for genes X∗1 −
X∗11 selected by l1-StaR in the NSTEMI vs. STEMI study. The bars
denote one standard deviation around the group-specific gene ex-
pression averages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



List of Tables

2.1 Possible outcomes from m hypothesis tests . . . . . . . . . . . . . . . 15

4.1 Quanta matrix for feature Xj . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Amount of patients by visits and diagnostic groups . . . . . . . . . . 67

4.3 Classification performance of the subsets of genes S IV . . . . . . . . 70

4.4 l1-STaR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 l1-STaR performance and number of selected genes for each η . . . . 72

4.6 Classification performance of the subsets of genes selected by l1-
StaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Classification performance for the subsets of genes S IV . . . . . . . . 76

4.8 l1-STaR performance and number of selected genes for each η . . . . 78

4.9 Classification performance of the subsets of genes selected by l1-StaR 78

5.1 Amount of arrays associated with CBC data . . . . . . . . . . . . . . 90

5.2 Average count for each blood cell in the diagnostic groups of ACS . 90

5.3 Gene differentially expressed between NSTEMI and STEMI . . . . . 91

5.4 Correlation between blood cell counts in the MI and UA groups . . 92

5.5 Gene differentially expressed between NSTEMI and STEMI . . . . . 96

5.6 Pairwise correlations between blood cell in the NSTEMI and STEMI
groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Gene differentially expressed between NSTEMI and STEMI . . . . . 101

6.1 Eigenvalues of the GRNs associated with the ACS subtypes . . . . . 115

6.2 Eigenvalues of the GRNs associated with NSTEMI and STEMI . . . 120

B.1 Sample of estimated gene expression levels . . . . . . . . . . . . . . . 133

B.2 Standard errors of the estimated gene expression levels listed in
Table B.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.3 Differentially expressed genes between the MI and UA groups se-
lected by the multi-stage feature selection method . . . . . . . . . . . 137

xi



xii List of Tables

B.4 Optimal classifier parameters for the MI vs. UA study . . . . . . . . 138
B.5 Differentially expressed genes between the MI and UA groups se-

lected by l1-StaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.6 Differentially expressed probe sets between the NSTEMI and STEMI

groups selected by the multi-stage method . . . . . . . . . . . . . . . 140
B.7 Optimal classifier parameters for the NSTEMI vs. STEMI study . . . 140
B.8 Differentially expressed genes between the NSTEMI and STEMI

groups selected by l1-StaR . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.1 Cell type-specific contributions to the variance of the genes X1−X18

in the MI group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.2 Cell type-specific contributions to the variance of the genes X19 −

X36 in the MI group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.3 Cell type-specific contributions to the variance of the genes X1−X18

in the UA group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.4 Cell type-specific contributions to the variance of the genes X19 −

X36 in the UA group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
C.5 Cell type-specific contributions to the variance of the genes X1−X21

in the NSTEMI group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.6 Cell type-specific contributions to the variance of the genes X1−X21

in the STEMI group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.7 Amount of genes expressed in each cell type in the MI and UA groups151
C.8 Amount of genes expressed in each cell type in the NSTEMI and

STEMI groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.1 Goodness of fit for the genes differentiating MI from UA . . . . . . . 155
D.2 Goodness of fit for the genes differentiating NSTEMI from STEMI . 163



Nomenclature

A list of the variables and notation used in this thesis is defined below. The def-
initions and conventions set here will be observed throughout unless otherwise
stated. For a list of acronyms, please consult page xv.

#(S) cardinality of set S

α significance level for hypothesis testing

∩ set intersection

∪ set union

∆t sampling time

det determinant of a matrix

dim V dimension of the vector space V

∅ empty set

η regularization parameter

γ rejection region in statistical hypothesis testing

κ(·, ·) kernel function for the SVM classifier

ker V kernel of the vector space V

λ eigenvalue

[x]+ maximum of x and 0

C complex numbers

R+ positive real numbers

Z integer numbers

xiii



xiv List of Tables

N (µ, Σ) normal distribution with mean µ and covariance Σ

U [a, b] uniform distribution with support [a, b]

\ set difference

var(x) variance of the random variable x

> matrix transpose

$ tolerance parameter for the OFR algorithm

I identity matrix

C box constraint for the SVM classifier

E[·] expected value operator

p p-value

P(x) probability density function of the random variable x

t time



Acronyms

A/M/P Absent/Marginal/Present. 22, 23

ACS acute coronary syndrome. ii, 1–3, 5, 52, 66, 80, 81, 89, 90, 101, 113, 114, 121,
123–126

AIC Akaike information criterion. 37

ANOVA analysis of variance. 125

BDe Bayesian Dirichlet equivalent. 45

BIC Bayesian information criterion. 45

BNRC Bayesian network and nonparametric regression criterion. 45

CACC class-attribute contingency coefficient. 56–58

CBC complete blood count. 89–91, 97

cDNA complementary DNA. 7–10, 31, 129

CMIM conditional mutual information maximization. 26

COD coefficient of determination. 43, 85, 92, 97, 101, 102

cRNA complementary RNA. 10, 129

csSAM cell type-specific significance analysis of microarrays. 37

DISR double input symmetrical relevance. 27

DNA deoxyribonucleic acid. 127–129

DrSVM doubly regularized SVM. 31

ECG electrocardiogram. 2

xv



xvi Acronyms

EM expectation maximization. 45–47

FARMS factor analysis for robust microarray summarization. 12, 13, 23, 53

FDR false discovery rate. 16–18, 87

FWER family-wise error rate. 15–18

GCV generalized cross-validation. 112

GEO Gene Expression Omnibus. 35

GRN gene regulatory network. 3–5, 33, 39–41, 44, 47–49, 103, 104, 109–113, 115–
119, 121, 124, 126, 129

I/NI informative/non-informative. 23, 24, 53

IM ideal mismatch. 12

JMI joint mutual information. 27, 32

LASSO least absolute shrinkage and selection operator. 40

LCM laser capture micro-dissection. 34, 35

LDA linear discriminant analysis. 21, 28

LOOCV leave-one-out-CV. 61

MAS 5.0 Affymetrix microarray suite 5.0. 11, 12, 22

MCMC Markov chain Monte Carlo. 38

MI myocardial infarction. 2, 3, 66–70, 78, 82, 89–92, 94, 96, 113, 114, 118, 125

MID mutual information difference. 26, 56, 80

MIFS mutual information based feature selection. 26

MIQ mutual information quotient. 26, 56, 80

MM mismatch. 8, 11–13, 22

mRMR minimum redundancy - maximum relevance. 26, 27, 32, 50, 56, 80, 125

mRNA messenger ribonucleic acid. 6, 9, 10, 23, 34, 128, 129



Acronyms xvii

multi-mgMOS multi-chip modified gamma Model for Oligonucleotide Signal.
12, 13, 52, 66, 79, 108

NB naive Bayes. 21, 27

NSTEMI non-ST elevation MI. 2, 3, 66, 69, 74–78, 82, 89, 91, 96, 97, 100, 113, 115,
116, 119

OFR orthogonal forward regression. 4, 82, 83, 85–87, 89, 92, 97, 98, 101, 124

OLS orthogonal least squares. 83, 84, 87, 88

PCR polymerase chain reaction. 7, 8

pFDR positive false discovery rate. 17, 18, 32, 53, 55, 80, 89

PM perfect match. 8, 11–13, 22, 23

PPLR probability of positive log ratio. 66

RFE recursive feature elimination. 30, 50

RMA robust multi-array average. 11–13

RMSPE root mean square percentage error. 116, 119

RNA ribonucleic acid. viii, 9, 66, 92, 101, 127–129

RT reverse transcriptase. 9, 10

STEMI ST elevation MI. 2, 3, 66, 69, 74–78, 82, 89, 91, 96, 97, 100, 113, 115, 116,
119

SVM support vector machine. 21, 28–32, 50, 58, 59, 72, 80, 125

SVM-RFE SVM with recursive feature elimination. 30, 50, 51

UA unstable angina. 2, 66–70, 78, 82, 89–92, 94, 96, 113–116, 118, 125





Chapter 1

Introduction

1.1 Background

The cellular pathways are regulated by complex functional interactions between
genes. Abnormal levels of gene expression can indicate irregularities in cell func-
tioning (e.g. diseases) induced by changes in gene regulatory interactions (Emils-
son et al., 2008, Schadt et al., 2005). Gene expression profiling and analysis can pro-
vide a deeper understanding of current diseases and assist personalized medicine
to develop more efficient treatments tailored to the individual patients that ac-
count for their unique genetic variations.

Gene expression profiling is performed using high-throughput screening tech-
nologies such as microarrays, which allow for a genome-wide interrogation of the
cell’s transcriptional activity. Depending on the objectives of the experiment, the
high dimensionality of the microarray data can raise significant computational and
theoretical challenges in terms of extracting the underlying biological knowledge.
Responses to these challenges emerged from various disciplines such as applied
mathematics, computers science, statistics and engineering which recently defined
the multidisciplinary field of computational biology. This field became the work-
ing ground for uncovering the dynamics of diseases that eluded the traditional
medical understanding.

One such disease and a leading cause of mortality worldwide is acute coronary
syndrome (ACS), which accounts for more than 2.5 million hospitalisations each
year (Grech and Ramsdale, 2003). ACS is caused by the rupture of an atheroscle-
rotic plaque (accumulation of fatty and calcium substances on an artery wall),
resulting in a complete, partial or intermittent obstruction of blood supply to the
heart (Libby, 2001). This occurs when inflammatory reactions caused by the in-
teraction between macrophages and low density lipoproteins (molecules in charge
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with the transport of cholesterol) trigger plague erosion or disruption (Davies,
2000). The resulting thrombosis (blood clot inside a blood vessel) decreases the
oxygen supply to the heart and leads to chest pain or to myocardial infarction
(MI). Major factors influencing the risk of ACS consists of age, sex, family history,
smoking, alcohol consumption and type II diabetes (Overbaugh, 2009).

ACS is usually diagnosed by performing an electrocardiogram (ECG) test. This
test allows the doctor to evaluate the heart’s electrical activity. Abnormal changes
in the electrical activity patterns can be used to identify the three subtypes of ACS:
non-ST elevation MI (NSTEMI), ST elevation MI (STEMI) and unstable angina
(UA), which differ with respect to severity, duration and treatment (Overbaugh,
2009). The ECG test is often insufficient to accurately diagnose MI due to other
medical conditions presenting ST deviations (Ahmad and Sharma, 2012). To assist
and improve the diagnostic accuracy of MI, cardiac markers such as troponin, cre-
atine kinase-MB and myoglobin are often measured. The markers rise in response
to the ischemic event and return to baseline in 24 hours (myoglobin), 72 hours
(creatine kinase-MB) or are cleared from circulation up to 14 days (troponin) after
infarction (Ahmad and Sharma, 2012).

The symptoms of the disease, ranging from chest pain (with or without radia-
tion to the left arm, back or neck), nausea, shortness of breath and fatigue, emerge
when the atherosclerotic process is already well-developed and often result in
critical coronary events. Recent figures show that in UK only, every four minutes
someone suffering from ACS is admitted to hospital and over 90 people die every
day from a heart attack (Associates, 2011), a large proportion of deaths occurring
before the patients reach a hospital. Treatment procedures consisting of drug ther-
apy, percutaneous cardiac intervention or coronary artery bypass grafting, induce
substantial healthcare expenditure and economic losses, amounting to £3.6 billion
in 2009-10 (Associates, 2011). The high mortality rate and the current economic
burden of the disease highlight the urgency to acquire a better understanding of
the genetics of ACS in order to improve diagnosis and treatment solutions.

1.2 Motivation

The increasing affordability of gene expression profiling services empowered time-
course studies of ACS (Kiliszek et al., 2012, Silbiger et al., 2013). These studies
focused on identifying genes serving as new biomarkers for the early stages of
the disease and for monitoring cardiac ischemic recovery. Extending the tempo-
ral range of the gene expression studies together with the spectrum of biological
questions addressed using the resulted time-course data could greatly advance
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our understanding of the disease.

This thesis addresses three fundamental challenges related to the genetics of
ACS from a computational biology perspective. The first challenge consists of
identifying genes differentiating between MI (NSTEMI and STEMI) and UA pa-
tients, and between NSTEMI and STEMI patients, up to three months after hos-
pital admission given time-course microarray data measured from blood samples.
These findings could reveal novel cardiac markers for long term diagnosis or in-
dicate genes explaining the genetic predisposition to ACS.

The second challenge consists of identifying the blood cells expressing the
genes discriminating between the ACS subtypes and quantifying their contribu-
tion to the variability and abundance of the total gene expression measured. These
findings could indicate sources of interindividual variability in the gene expres-
sion patterns, reveal the cellular sources of differential gene expression or pinpoint
cell type-specific markers (gene uniquely expressed only in particular cell types).

The third challenge consists of inferring the regulatory pathways between the
genes distinguishing between the ACS subtypes. Models describing the dynamics
of the gene regulatory networks (GRNs) could be used to make qualitative and
quantitative predictions about the network’s behaviour under different conditions.
Numerical simulations and intervention studies based on these networks could
expose the underlying mechanisms of the disease and assist the development of
more efficient treatments.

To address the first challenge, a novel feature selection method consisting of
four stages is proposed. In the first stage, a new unsupervised filter is used to
remove noisy and uninformative genes based on their biological and technical
variance. The second stage uses standard test statistics to select differentially ex-
pressed genes while accounting for the problems arising when simultaneously
testing multiple hypotheses. The third stage adopts an information theoretic based
criterion operating on discretized data to select genes highly correlated with the
ACS subtypes and minimally correlated with each other. Data discretization is
performed using a state-of-the-art discretization algorithm that accounts for the
unequal number of patients in each diagnostic group of ACS. The final stage com-
bines a search strategy with a state-of-the-art classifier to select a minimal subset
of genes with the highest diagnostic performance. To provide an unbiased es-
timate of the diagnostic performance and avoid the sources of bias incurred in
feature selection and parameter estimation, the stages are embedded in a nested
cross-validation framework.

To address the second challenge, a novel deconvolution method for microar-
ray gene expression data is proposed. This method combines non-negative least
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square optimization with the orthogonal forward regression (OFR) approach pro-
posed by Billings et al. (1988) to estimate positive cell type-specific expression
levels and quantify their contribution to the variance of the gene expression pat-
terns. To identify the cellular sources of differential gene expression, an approach
for comparing the coefficients of two regression models is adopted from the econo-
metrics literature. This approach consists of introducing interaction terms between
the regressing variables and the covariates (diagnostic groups) into the deconvo-
lution model and testing the significance of their coefficients using a Wald test
(Wald, 1943).

To address the third challenge, a novel method to estimate stable linear dynam-
ical systems from time course gene expression data is proposed. The approach
exploits the particular form of the state transition matrix when the dynamical
system has single eigenvalues. The parameters of the state transition matrix are
estimated using a regularized nonlinear optimization approach incorporating sta-
bility constraints. To generate enough gene expression data for reconstructing
GRNs of arbitrarily large sizes, a new approach based on modelling gene expres-
sion dynamics using sums of exponentials is proposed. This approach can handle
unequally sampled time series data and accounts for the measurement noise.

1.3 Overview of the thesis

This thesis is organized as follows:

• Chapter 2 provides an in-depth review of feature selection methods for mi-
croarray data widely used in computational biology. The chapter begins with
an introduction to microarray technology followed by an overview of the
central steps of a microarray experiment. Emphasis is put on the Affymetrix
GeneChip format and associated data pre-processing methods. The chapter
continues with an introduction to statistical hypothesis testing in microarray
experiments and a review of the multiple comparison procedures. The re-
lation between statistical significance and biological relevance is further dis-
cussed. An introduction to feature selection in machine learning is presented
setting the scene for an extensive review of the state-of-the-art methods used
to remove noisy and uninformative genes and select subsets of highly rele-
vant features.

• Chapter 3 provides a review of modelling methods for microarray data fo-
cused on gene expression deconvolution and reconstruction of GRNs. The
review of deconvolution methods highlights the biases induced by sample
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heterogeneity in differential expression studies and discusses computational
tools addressing different deconvolution problems. The review of GRN re-
construction methods lists the biological properties of GRNs together with
strategies to incorporate biological constraints into the modelling process.
Three major modelling formalism are reviewed and their strengths and lim-
itations are highlighted.

• Chapter 4 presents the novel multi-stage feature selection method for mi-
croarray data. A comparative study of the performance of the novel method
and another multi-stage approach is conducted on a time-course microarray
dataset collected from patients suffering from ACS. The results report the
comparable performance of the two approaches expressed in terms of dis-
criminatory power of the selected genes and highlight the appropriateness of
the novel method for biomarker discovery in time-course microarray studies.

• Chapter 5 introduces the novel deconvolution method together with the ap-
proach to conduct cell type-specific differential expression analysis. These
methods are applied on the genes discriminating between the subtypes of
ACS to identify the cellular sources of differential expression and measure
the increments to the proportion of explained gene expression variance asso-
ciated with each cell type. Results from this study show high deconvolution
performance for most of the genes and argue that features of interindividual
variability specific to microarray data collected from blood samples are re-
sponsible for the low variability captured by the deconvolution model in the
case of some genes. The need to supplement cell type-specific differential
expression analysis with information regarding the deconvolution perfor-
mance is also formulated.

• Chapter 6 presents the novel approaches to model gene expression dynam-
ics and reconstruct stable GRNs. Additionally, a method to obtain sparse
topologies for the estimated GRNs is discussed. Results show that mod-
elling time course gene expression data using sums of exponentials ade-
quately capture the dynamics of the genes differentiating between the ACS
subtypes and that the novel method for GRN reconstruction estimates stable
dynamical systems whose trajectories match extremely well the trajectories
approximated using sums of exponentials. Sparse topological representa-
tions for the estimated GRNs are derived and briefly discussed.

• Chapter 7 concludes the work done in this thesis and provides suggestions
for future directions of research



Chapter 2

Feature selection methods for
microarray gene expression data

A major challenge in molecular biology is to uncover disease-specific genes that
can be used as targets for treatment or as biomarkers for diagnosis. This challenge
is traditionally approached through differential gene expression studies compar-
ing the transcriptome abundance between case and control groups. The microar-
rays technology is instrumental for this task, allowing the expression levels (abun-
dance of messenger ribonucleic acid (mRNA) molecules) of tens of thousands of
genes to be measured simultaneously. The high-dimensional data thus generated
demands for computational tools able to remove genes that generate uninforma-
tive signals and to select the genes that best discriminate between groups.

This chapter presents an introduction to microarray technology in Section 2.1
and an overview of the fundamental steps of a gene expression profiling experi-
ment in Section 2.2. This is followed by a review of the statistical methods used to
select differentially expressed genes in Section 2.3 and a survey of the supervised
and unsupervised feature selection methods widely used in machine learning and
bioinformatics in Section 2.4. Concluding remarks are given in Section 2.5. Fun-
damental concepts of genetics introduced in this chapter and used throughout the
thesis are discussed in more detail in Appendix A.

The supervised feature selection methods presented in this chapter address the
problem of class comparison while the unsupervised approaches serve the task of
removing noisy features. Unsupervised feature selection methods searching for
the subspaces where data points cluster (class discovery) are outside the scope
of this thesis. Comprehensive reviews of feature selection methods for clustering
are provided by a number of authors including Parsons et al. (2004), Kriegel et al.
(2009), Dash and Koot (2009) and Alelyani et al. (2013).

6
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2.1 Introduction to microarray technology

The first step towards understanding the dynamics governing gene regulation
was made by single-gene studies (Guan et al., 2010). The purpose of these studies
was to characterize the selective activation and the functional role of individual
genes. Recently, genome-wide-scale studies of genetic regulation became possible
thanks to technological advances that enabled a global assessment of the cell’s
transcriptional activity (Fryer et al., 2002). In particular, the microarray technology
allowed for the expression of thousands of genes to be measured simultaneously
using high-density and massively-parallel chips (Heller, 2002).

The microarray consists of oligonucleotides or polymerase chain reaction (PCR)
products generated from purified complementary DNA (cDNA) templates, immo-
bilized on a solid surface in an ordered arrangement (Falciani, 2007). Gene expres-
sion profiling using microarrays relies on nucleic acid hybridization – the ability of
single stranded nucleic acids to bind to complementary sequences (Strachan and
Read, 2011). Complementarity between the nucleic acids immobilized on the array
(probes) and the fluorescently labelled nucleic acids in the experimental sample
(targets) allows for parallel quantification of the transcript abundance. Probes are
incorporated on the array based on their sensitivity (strong complementarity with
the target sequence) and specificity (absence of near-complementarity with non-
target sequences) (Draghici et al., 2006, Kane et al., 2000). Variation in sensitivity
and specificity among microarrays can be tracked down to fabrication technology.

Microarrays are manufactured using two different technologies: spotting PCR
products of cDNA templates on a glass surface (glass slide cDNA microarrays)
(Duggan et al., 1999) or in situ synthesis of oligonucleotides (high-density oligonu-
cleotide microarrays) (Lipshutz et al., 1999). The first manufacturing method
is usually adopted within single facilities or laboratories; the second method is
adopted by commercial companies. In what follows, the fabrication protocols of
the glass slide cDNA microarrays and high-density oligonucleotide microarrays
are presented with emphasis on the Affymetrix GeneChip format. Advantages
and disadvantages of each technology are further discussed.

2.1.1 Glass slide cDNA microarrays

The first step in cDNA microarrays fabrication consists of selecting the templates
for the probes (cDNA fragments of hundreds to thousands bases long) from ge-
nomic libraries. The templates are cloned and amplified using PCR. In the next
step, the glass slide is coated with chemicals that restrict the spread of spotted
probes and facilitate their immobilization to the surface. Purified PCR products
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representing specific genes are later deposited in a matrix format. This is ac-
complished through highly accurate contact printing methods (physical contact
between the metal pin of a robotic arm and the slide surface) or non-contact print-
ing methods (ink-jet array printers). Finally, the glass slide is dried and kept at
room temperature.

Glass slide cDNA microarrays are particularly appealing for their reduced fab-
rication costs. They are also highly versatile platforms for gene expression pro-
filing studies, allowing customization in terms of the probes that are arrayed on
the slide. cDNA microarrays have high sensitivity but low specificity. Their re-
producibility is affected by problems inherent to PCR product concentration and
quality of PCR clones (Järvinen et al., 2004).

2.1.2 High-density oligonucleotide microarrays

The first step in high-density oligonucleotide microarrays fabrication consists of
attaching covalent linker molecules with photolabile protecting groups on a quartz
wafer. Light directed through a photolithographic mask produces deprotection at
specific locations on the quartz. Next, a solution of single protected nucleotides is
incubated with the quartz and chemical coupling occurs at the deprotected sites.
Uncoupled nucleotides are washed away and the process is repeated by changing
the photolithographic mask and the solution of nucleotides until oligonucleotides
with desired lengths are synthesized (Pease et al., 1994).

The Affymatrix GeneChip format uses 25-mer oligonucleotides (25 bases in
length) representing unique sequences of genes. Target abundance is measured
using a collection of 11-20 probe pairs, called a probe-set. Each probe pair consists
of a perfect match (PM) probe and a mismatch (MM) probe which is obtained from
the PM probe by changing the middle nucleotide. The MM probes quantify back-
ground and non-specific hybridization thus allowing PM values to be corrected
for hybridization artefacts. Multiple probe sets can interrogate the same gene.
This level of redundancy enables false-positives detection and improves signal-to-
noise ratios (Lipshutz et al., 1999). A schematic representation of the Affymetrix
GeneChip is shown in Figure A.5 of Appendix A.

High-density oligonucleotide microarrays have high reproducibility. Consis-
tency in fabrication protocols guarantees that the same gene profiling platform
is used across experiments. Oligonucleotides have high specificity but low sensi-
tivity. However, Affymetrix GeneChips achieve an optimal balance between high
sensitivity and specificity through MM control probes. This additional level of in-
formation improves the quality of the gene expression measurements thus increas-
ing the robustness of genome-wide expression studies results (Affymetrix, 2001).
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One disadvantage of this technology is affordability – oligonucleotide microarrays
are expensive platforms. The costs of the specialized equipment necessary for con-
ducting a gene expression profiling experiment make this technology unavailable
for many average size laboratories.

2.2 Gene expression profiling using microarrays

Gene expression profiling experiments typically involve the following steps:

1. Experimental design

2. Sample preparation

3. Hybridization and washing

4. Image acquisition (scanning)

5. Data pre-processing

6. Data analysis

These steps are discussed in more detail below.

2.2.1 Experimental design

Careful formulation of the questions to be addressed or hypothesis to be tested
lies at the heart of properly conducted gene expression studies (Yang and Speed,
2002). The aims of the experiment influence the choice of the microarray platform
(cDNA arrays, oligonucleotides arrays), the number of technical replicates (arrays
hybridized with the same sample) or biological replicates (arrays hybridized with
different individual samples from the population being studied) needed, and the
tools necessary for data pre-processing and analysis. Crafting the experimental
setup around clear objectives maximizes the information leveraged from the data
whilst minimizing the efforts and the costs (Stekel et al., 2003).

2.2.2 Sample preparation

Sample preparation consists of extracting mRNA from frozen tissue (freezing pre-
vents further degradation or production of RNA). Isolation of mRNA can be per-
formed directly from the cells or through purification of total RNA extracted.
After isolation, mRNA is converted to cDNA using reverse transcriptase (RT) and
labelled with a fluorescent dye. Sample preparation for Affymetrix GeneChips
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involves additional steps: isolated mRNA is linearly amplified before the RT re-
action and the resulted cDNA is used to produce anti-sense complementary RNA
(cRNA) which is fluorescently labelled. Detailed technical specifications of sam-
ple preparation are provided by a number of authors including Mahadevappa and
Warrington (1999) and Hegde et al. (2000).

2.2.3 Hybridization and washing

The labelled sample is poured onto the microarray and incubation follows (at high
salt concentrations, presence of formamide and temperature of 42◦ C, or presence
of an aqueous solution and temperature of 65◦C) to promote probe-target hy-
bridization. After the microarray is removed from the incubation chamber, strin-
gent washes are performed (at lower salt concentrations and room temperature)
to remove non-specific and weak bindings. For high-quality gene expression pro-
filing, the hybridization and washing solution must be evenly mixed and spread
on the microarray (Freeman et al., 2000).

2.2.4 Image acquisition

The microarray is scanned to produce an image containing the fluorescence inten-
sity of each probe. This stage consists of exciting the dye using a laser beam thus
generating signals dependent on the quantity of target sample hybridized with
each probe on the chip. Ideally, fluorescent signals should come only from targets
that hybridized to their complementary probes. In practice, unwashed targets
adhering to the slide, non-specific bindings, and other chemicals used for array
preparation, hybridization and washing also generate fluorescent signals (Scharpf
et al., 2007). These residual signals (background noise) need to be accounted for
as they affect probe value calculations.

2.2.5 Data pre-processing

Processing of the raw intensities generated during scanning consists of the follow-
ing steps:

1. Background correction

2. Normalisation

3. Summarization (Affymetrix GeneChips only)

These steps are discussed in more detail below.
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Background correction

The purpose of background correction is to adjust the probe intensities by remov-
ing the background noise. Methods for estimating and subtracting the background
noise are microarray technology dependent.

For cDNA microarrays, an unbiased estimate of the probe-specific background
can be calculated from the local neighbourhood surrounding the probe by taking
the mean of the pixel intensity values. The standard correction approach consists
of subtracting the local background from the raw intensity values (Yin et al., 2005).
To correct for negative adjusted intensities resulting from this approach, Edwards
(2003) proposed a method that uses subtraction only when the difference exceeds
a certain threshold; otherwise a smooth monotonic function that is linear on the
log-scale with respect to the raw probe intensities is used. Yang et al. (2002) pro-
posed sampling the probe-specific background at the probe nominal location from
a background image estimated using morphological operations. This approach re-
sults in less variable background adjusted intensities. Ritchie et al. (2007) provides
a comparison of background correction methods for cDNA microarrays and their
effect on identifying differentially expressed genes.

For oligonucleotide microarrays, the high-density of the chip prohibits the use
of local neighbourhood methods. Instead, the MM control probes, which are adja-
cent to their PM probes, can be used for background correction. Two widely used
background correction methods are integral parts of Affymetrix microarray suite
5.0 (MAS 5.0) (Affymetrix, 2002) and robust multi-array average (RMA) (Irizarry
et al., 2003).

The MAS 5.0 background correction method splits the chip into 16 rectangular
zones of equal size. Zone-specific background and noise are taken as the mean and
standard deviation of the lowest 2% probe intensities. For each probe, background
and noise are calculated as weighted averages of the zone-specific background and
noise signals, respectively. Probe intensities are adjusted by subtracting their back-
ground unless the difference leads to a value less than the probe-specific noise, in
which case the raw intensity is replaced by the noise.

The RMA background correction assumes the observed PM values within a
probe set follow a linear additive model consisting of an exponentially distributed
true signal and a normally distributed background. The adjustment procedure
consists of replacing the PM intensity with the expected value of the true signal
(which depends on the particular PM being adjusted, PM values above their mode
and MM below their mode).
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Normalization

The purpose of normalization is to adjust for systematic biases in sample collec-
tion (Fentz et al., 2004), hybridization (Han et al., 2006), labelling (Gregory Cox
et al., 2004) and scanning (Bengtsson et al., 2004) so that unbiased comparisons
can be made across technical and biological replicates. Robust and widely used
normalization methods vary from global normalization (Stafford, 2012) to quantile
normalization (Bolstad et al., 2003) and lowess normalization (Smyth and Speed,
2003).

Global normalization consists of multiplying the probe intensities of each ar-
ray with an array-specific scaling factor to adjust the mean or the median intensity
values of the arrays; quantile normalization consists of transforming the distribu-
tions of the array-specific intensities to have identical statistical properties; lowess
normalization consists of removing the dependency of the log2 ratio values on
the intensity using locally weighted linear regression analysis. Normalization is a
growing field which generated a consistent amount of literature. Comprehensive
reviews are provided by a number of authors including Quackenbush (2002) and
Bilban et al. (2002).

Summarization

The purpose of summarization is to estimate probe set expression levels from asso-
ciated probe-pair intensities. Summarization methods are divided into two major
categories: single-chip methods (summarization is performed for each array inde-
pendently) and multi-chip methods (summarization is performed by borrowing
information across arrays).

One of the most widely used single-chip methods is MAS 5.0 which provides
for each probe set a robust average of the differences between the PM values and
the associated ideal mismatch (IM) values. The IM value is equal to the MM value
if MM<PM and is slightly less than the PM value (according to some adjustment
formula) if MM>PM. Subtraction of MM values from PM values can induce bias
in probe set level summarization (Irizarry et al., 2003) as MM probes also measure
specific hybridization (Wu et al., 2004b) and can often exceed the values of the PM
probes (effect observed in about one third of the probe-sets) (Naef et al., 2002). In
addition, the PM and MM intensities vary in probe-specific ways (Li and Wong,
2001). These factors confounding accurate probe-set level summarization are not
accounted for by MAS 5.0.

Multi-chip methods such as RMA, factor analysis for robust microarray sum-
marization (FARMS) (Hochreiter et al., 2006) and multi-chip modified gamma
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Model for Oligonucleotide Signal (multi-mgMOS) (Liu et al., 2005) adjust for the
systematic differences in probe hybridization affinities. RMA assumes the log2

transformed PM intensities follow a linear additive model consisting of the true
probe set level, probe pair affinity effect and independent and identically dis-
tributed error term. FARMS assumes the log2 transformed PM intensities follow
a factor analysis model consisting of the normally distributed true signal and nor-
mally distributed noise. Finally, multi-mgMOS uses a probabilistic model with
gamma distributed PM and MM values that additionally accounts for the MM
probes measuring specific hybridization. This method returns the estimated probe
set levels and the uncertainties (standard errors) around these estimates, which are
particularly useful for downstream analyses adopting a Bayesian framework.

2.2.6 Data analysis

The pre-processed data is analysed to extract biologically-relevant information.
Analysis methods are purpose-specific and the choice of the algorithms influences
the quality of the results which are usually based on a list of selected genes. These
genes need to be enriched with functional information (molecular functions and
biological processes associated with the genes) in order to strengthen the under-
standing of the biological process being studied.

Functional annotation can be performed using Gene Ontology (Consortium
et al., 2004) which unifies functional information in highly interconnected struc-
tures and under a common nomenclature. If valuable knowledge was gained by
addressing the questions or testing the hypothesis of the experiment, the data is
published following carefully defined standards (Brazma et al., 2001) into a public
repository (Gardiner-Garden and Littlejohn, 2001).

2.3 Statistical hypothesis testing in microarray experiments

Statistical hypothesis testing is concerned with making inference about a statistical
population given information from a random statistical sample (measured data).
In the arena of differential gene expression studies, statistical hypothesis testing
consists of assessing the quality of the evidence provided by the data against the
claims of no differential expression.

Section 2.3.1 introduces the terminology of statistical testing and presents the
single hypothesis testing scenario. This will lay the foundations for a discussion
of multiple hypothesis testing and a review of multiple comparison correction
methods in Section 2.3.2. Finally, a discussion on the relation between statistical
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significance and biological relevance is presented in Section 2.3.3, highlighting the
need to supplement statistical findings with information from effect size measures.

2.3.1 Single hypothesis testing

In a single hypothesis testing scenario, given a statistic that quantifies an effect
(or difference) in the sample data through a numerical summary T, one tests a
null hypothesis (absence of an effect) against an alternative hypothesis (presence
of the effect) at a chosen significance level α (commonly 0.05 or 0.01). If the p-
value i.e. the probability (under the null hypothesis) of observing a statistic at
least as extreme as T is less than α, the null hypothesis is rejected in favour of
the alternative hypothesis; otherwise, one fails to reject the null hypothesis or
equivalently concludes the data provides no reliable evidence against the null
hypothesis.

Statistics commonly applied in differentially gene expression studies are di-
vided into two major categories: parametric methods (distributional assumptions
are made about the data) and non-parametric methods (no distributional assump-
tions are made). The Welch t-test (Welch, 1947) and the Wilcoxon rank-sum test
(Hollander et al., 2013) are two widely used parametric and non-parametric meth-
ods, respectively. These methods are discussed in more detail in Chapter 4.

The known sampling distribution of these statistics under the null hypothe-
sis allows for direct p-values calculation. When the sampling distribution is not
known a priori, it can be estimated using random permutation methods (Dudoit
et al., 2002b, Pan, 2003). These methods are robust against outliers and repre-
sent powerful alternatives to using known sampling distributions in studies with
small sample size (Saeys et al., 2007). Chen et al. (2005) and Pan (2002) provide
comprehensive reviews of the test statistics used in microarray studies.

There are two types of errors that can be committed when performing statisti-
cal hypothesis testing: type I error and type II error. A type I error (false positive)
is committed when rejecting a true null hypothesis; a type II error (false nega-
tive) is committed when failing to reject a false null hypothesis. In the context
of differential gene expression, type I error corresponds to erroneously calling a
gene differentially expressed; a type II error corresponds to calling a gene non-
differentially expressed when in fact it is differentially expressed. The false posi-
tive rate is the rate at which true null hypotheses are called significant and equals
the significance level α. The false negative rate is the rate at which true alternative
hypotheses are called null. The single hypothesis testing scenario described above
aims to control the false positive rate conditional on maximizing the power (1-false
negative rate) of detecting an effect.
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2.3.2 Multiple hypothesis testing

In a typical microarray experiment tens of thousands of genes are tested for dif-
ferential expression. Controlling the false positive rate at a common significance
level α when simultaneously testing multiple hypotheses increases the chance of
committing type I errors (Dudoit et al., 2003). The significance level α multiplied
by the number of hypothesis tested represents a conservative upper bound for the
expected number of false positives. This bound is too large for microarray data.

By increasing the stringency of individual tests (lowering α) in an attempt to
decrease the expected number of Type I errors one instead decreases the power of
the tests thus lowering the chances of detecting true differentially expressed genes.
Since control of the false positive rate in the single hypothesis testing sense is
unsatisfactory for multiple hypotheses testing, several generalizations of the Type
I error rate were proposed together with procedures that control these error rates
at a desired level α. These compound error measures and associated controlling
procedures are summarized within the setup of a multiple comparison experiment
presented below.

Consider testing simultaneously m null hypotheses Hi, i = 1, . . . , m, at a com-
mon significance threshold α. Assume the hypotheses are ordered in ascending
order of their p-values pi, which are associated with the independent test statistics
Ti. The possible outcomes of the multiple comparison tests are listed in Table 1.
Specifically, V represents the number of false positives, U represents the number of
true positives, T represents the number of false negatives, S represents the number
of true negatives and R represents the number of rejected null hypotheses. The
quantities V, U, T and S are unobservable random variable; R is an observable
random variable; the number of true null hypotheses m0 and the number of true
alternative hypotheses m1 = m−m0 are unknown parameters.

Table 2.1: Possible outcomes from m hypothesis tests

Hypothesis Called significant Called non-significant Total
Null true V S m0

Alternative true U T m1
Total R m− R m

Historically, the first type I error rate proposed for multiple hypothesis testing was
the family-wise error rate (FWER) (Shaffer, 1995):

FWER = P(V ≥ 1) (2.1)

FWER represents the probability of rejecting at least one true null hypothesis out
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of all hypotheses tested. Control of the FWER at a significance level α can be
achieved using various sequential p-value procedures reviewed by Dudoit et al.
(2003) and Nichols and Hayasaka (2003). Presented below, in increasing order of
their power, are three widely known representatives.

• The Bonferroni procedure (Simes, 1986) controls the FWER as follows:

reject Hj for j = 1, . . . , max
{

i|pi ≤
α

m

}
) (2.2)

• The Holm procedure (Holm, 1979) controls the FWER as follows:

reject Hj for j = 1, . . . , min
{

i|pi ≥
α

m− i + 1

}
− 1 (2.3)

If there is no i for which the p-value inequality is satisfied, all hypotheses
are rejected.

• The Hochberg procedure (Hochberg, 1988) controls the FWER as follows:

reject Hj for j = 1, . . . , max
{

i|pi ≤
α

m− i + 1

}
(2.4)

If there is no i for which the p-value inequality is satisfied, mo hypotheses
are rejected.

Controlling the FWER is concerned with guarding against the occurrence of any
false positives. While this strict criterion is appropriate for studies where few true
alternatives are expected, it is far too stringent for differential gene expression
studies where the presence of an effect is manifested through more than one or
two genes. In general, when controlling the FWER the power decreases with
increasing number of hypothesis being tested (Storey, 2002).

Instead of controlling the probability of making at least one Type I error, one
may be interested in making as many significant findings as possible while con-
trolling the proportion of false positives. This problem was address by Benjamini
and Hochberg (1995) who proposed controlling the false discovery rate (FDR):

FDR = E
(

V
R

∣∣∣∣R > 0
)

P(R > 0) (2.5)

as follows:
reject Hj for j = 1, . . . , max

{
i|pi ≤

i
m

α

}
(2.6)

The FDR represents the expected proportion of Type I errors among the rejected
null hypotheses times the probability of making at least one rejection. Control-
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ling the FDR leads to a substantial gain in power over Bonferroni and Hochberg
procedures for FWER control. This gain increases when the number of tested hy-
pothesis or the number for true alternative hypotheses also increase (Benjamini
and Hochberg, 1995). Storey (2002) signals that caution must be taken when con-
trolling the FDR at a significance level α as in the case when null hypothesis are
rejected, one really controls the FDR at level α/P(R > 0).

The previous methods relied on setting the significance level α prior to estimating
the rejection region for the p-values. The appropriateness of this approach is
conditional upon the number of rejected hypothesis. Additionally, none of these
methods uses information about the number of true null hypotheses m0 in the
data. To address these issues, Storey (2002) proposed fixing the rejection region γ

and then estimating the significance level α through control of the positive false
discovery rate (pFDR):

pFDR(γ) = E
(

V (γ)

R (γ)

∣∣∣∣R (γ) > 0
)

(2.7)

The pFDR cannot be controlled using sequential p-value approaches but needs to
be estimated for the particular rejection region γ as follows:

p̂FDRδ(γ) =
mπ̂0(δ)γ

# {pi ≤ γ} (2.8)

where
π̂0(δ) =

# {pi > δ}
(1− δ)m

(2.9)

with δ ∈ [0, 1] representing a tuning parameter used to determine the estimated
fraction of true null hypotheses π̂0(δ). The bias of π̂0(δ) is the smallest when
δ → 1 (Storey, 2002). Equation (2.9) shows that pFDR control takes into account
the information stored in the observed p-values to estimate m0/m.

Within the pFDR framework, Storey (2003) proposed the q-value as an individ-
ual measure of significance analogous to the p-value. The q-value of the statistic
Ti, given a set of nested rejection regions Γ containing Ti is:

q(Ti) = inf
{Γ:Ti∈Γ}

pFDR(Γ) (2.10)

The q-value of a statistic gives the pFDR obtained when rejecting any statistic
at least as extreme as the one observed among all the hypotheses; the p-value
gives the false positive rate when rejecting any statistic at least as extreme as the
observed statistic. A fundamental difference between the q-value and the p-value
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is that the former quantity accounts for the multiple comparisons carried out in
parallel while the latter quantity does not. Thus the p-value carries no information
about the set of more extreme statistics; the q-value directly provides a measure of
strength for this set.

If the hypotheses are assumed to be independent, the q-value of a statistic Ti

can be expressed in terms of the associated pi as follows:

q(pi) = inf
γ≥pi

pFDR(γ) (2.11)

This allows for the q-values to be estimated as:

q̂(pi) = inf
γ≥pi

p̂FDR(γ) (2.12)

Storey et al. (2004) proved the simultaneous conservative consistency of these es-
timates. This means that the estimated q-values are simultaneously greater than
or equal to the true q-values for any rejection region. Thus, by calling significant
statistics with q-value less than α one obtains a conservative point estimate for
the pFDR at significance level α. When compared with the FDR control method
of Benjamini and Hochberg (1995), pFDR control provided greater power (Storey,
2002).

The multiple adjustment procedures listed above rely on the independence
between the statistics Ti. Although microarray data violate this simplifying as-
sumption through correlated gene expression levels, positive results were reported
in differential gene expression studies adopting the multiple adjustment frame-
work (Dudoit et al., 2002b, 2003, Efron and Tibshirani, 2002, Storey and Tibshirani,
2003). Methods that account for the dependence structure among statistics were
proposed by Tusher et al. (2001) for FWER control and by Benjamini and Yeku-
tieli (2001) and Storey et al. (2004) for FDR control. However, the area of multiple
hypotheses testing exploiting the distribution of the statistics is still in its infancy
and much research is needed to lay solid theoretical foundations.

2.3.3 Statistical significance and biological relevance

A common criticism addressed to statistical hypothesis testing is that statistical
significance doesn’t necessarily translate into biological relevance (Lovell, 2013,
Martínez-Abraín, 2008). The p-values don’t offer a quantitative measure of the
magnitude of an effect but a qualitative measure of evidence against the null hy-
pothesis. Thus, genes statistically significant can have a biologically irrelevant
effect size.
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This raises the question of how to define biological relevance or important ef-
fect. There is no agreed upon definition and expert opinion is required to make the
right judgement for the experiment at hand. Thompson (2001) argues that using
benchmark values to define biological relevance would be no different than set-
ting the significance level for statistical hypothesis testing. Nakagawa and Cuthill
(2007) and Hentschke and Stüttgen (2011) recommend using measures of effect
size as a supplement or alternative to hypothesis tests. A widely used measure of
effect size is the Hedges’ g metric (Hedges, 1981) defined below.

Let y1 ∈ Rn1 and y2 ∈ Rn2 denote independent samples from two populations.
The Hedges’ g metric is defined as:

g(y1, y2) =
ȳ1 − ȳ2

σ∗
(2.13)

where ȳ1 and ȳ2 are the means of y1 and y2, respectively, while the pooled stan-
dard deviation σ∗ is defined as:

σ∗ =

√
(n1 − 1) σ2

1 + (n2 − 1) σ2
2

n1 + n2 − 2
(2.14)

where σ2
1 and σ2

2 denote the variances the two samples. The metric (2.13) repre-
sents a biased estimator for the standardized mean difference between two popu-
lations (Nakagawa and Cuthill, 2007). An unbiased estimator is given by:

g∗ = g
(

1− 3
4 (n1 + n2 − 2)− 1

)
(2.15)

Intuitively, the Hedges’ g metric quantifies the number of standard deviations
necessary to move one distribution over the other such that their means match.

2.4 Feature selection in machine learning

Feature selection methods are based on two approaches: individual evaluation
(Guyon and Elisseeff, 2003) and subset evaluation (Dash and Liu, 1997).

Individual evaluation (variable ranking) consists of ranking features according
to independent criteria such as correlation and mutual information (Guyon and
Elisseeff, 2003). From the top of the ranking list, a subset of user-supplied car-
dinality is selected for further analysis. Computationally, this approach is very
appealing for its linear time complexity. However, it focuses on feature relevance
only and disregards feature redundancy. Guyon and Elisseeff (2003) point out that
redundant features provide no additional information in classification problems
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while Yu and Liu (2004) and Saeys et al. (2007) suggest that redundant features
may decrease classification performance.

Subset evaluation (feature subset selection) consists of identifying the optimal
subset of features according a suitable criterion function that accounts for both fea-
ture relevance and feature redundancy (Blum and Langley, 1997). Subset methods
consist of three major components:

• a generation procedure

• an evaluation function

• a stopping criterion

The generation procedure is essentially a search strategy that supplies candi-
date feature subsets to the evaluation function. There are three major families of
search strategies: exhaustive search, sequential search and random search. Ex-
haustive search methods generate all the possible subsets; sequential search meth-
ods (Somol et al., 2010) add features iteratively to an initial empty set (sequential
forward selection), remove features iteratively from the initial full set of features
(sequential backward selection) or alternate between adding and removing fea-
tures (sequential forward floating selection, sequential forward backward selec-
tion); random search methods (Brassard and Bratley, 1996, Liu and Setiono, 1996)
generate subsets in a completely random manner. Subset methods adopting the
exhaustive search identify the optimal subset according to the evaluation function
but are computationally prohibitive for large datasets; subset methods adopting
sequential or random search trade optimality for computational efficiency.

The evaluation function uses data intrinsic measures (distance, consistency, de-
pendence and information) (Molina et al., 2002) or the classifier error rate (Kohavi
and John, 1997) to measure the goodness of the feature subsets produced by the
generation procedure. A subset replaces the previous best if it has a better score
according to the evaluation function. Subset methods adopting data intrinsic mea-
sures are called filters while subset methods adopting the classifier error rate are
called wrappers. Methods combining the characteristics of filters and wrappers
are known as embedded methods.

The stopping criterion defines when the generation procedure stops produc-
ing candidate feature subsets. Stopping criteria include: bounding the number of
selected features or finding a subset whose score cannot be improved by adding
ot removing features. Subset methods adopting the first stopping criterion select
feature subsets of user-specified cardinality; subset methods adopting the second
stopping criterion optimize the number of features for the given evaluation func-
tion.
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Section 2.4.1 proposes a review of variable ranking methods used in bioinfor-
matics to remove noisy and non-informative genes. Note that within the bioinfor-
matics community these methods are referred to as unsupervised filters, although
they operate based on individual evaluation than subset evaluation. By abuse of
terminology, for the remaining of the thesis, these methods will be called unsu-
pervised filters even though they don’t satisfy the definitions of filters proposed
in machine learning.

The overview of the unsupervised filters will be followed by comprehensive
reviews of the state-of-the-art filters (Section 2.4.2), wrappers (Section 2.4.3) and
embedded methods (Section 2.4.4) widely used in machine learning and pattern
recognition. Specifically, the survey of the filter methods will focus on approaches
adopting information theoretic measures; the survey of wrapper methods will
focus on approaches based on three widely used classifiers: naive Bayes (NB)
(Duda and Richard, 1973), linear discriminant analysis (LDA) (Webb, 2003) and
support vector machine (SVM) (Vapnik, 2000). Special attention will be given to
the SVM classifier for two main reasons. Firstly, the SVM classifier outperforms
other state-of-the-art classification tools (including NB and LDA) on microarray
data (Lee et al., 2005). Secondly, its mathematical formulation will be used to
present the embedded methods (based on SVM) within a unified optimization
framework.

2.4.1 Unsupervised filtering approaches for microarray data

Affymetrix GeneChips can measure the transcriptional activity of more than 33,000
genes simultaneously. Practically, only 10,000 – 15,000 genes are actively expressed
in most tissues (Tang et al., 2004). Most of these genes are housekeeping genes
i.e. genes that code for proteins necessary for the cell and that are expressed at
relatively constant levels under any condition (Gohlmann and Talloen, 2010). This
leaves only a small fraction of genes potentially differentially expressed between
conditions (Gohlmann and Talloen, 2010).

The genes that are not expressed in a tissue can still generate fluorescent sig-
nals due to non-specific bindings. Inclusion of these noisy genes and housekeep-
ing genes in differential expression studies increases the risk of reporting false pos-
itives (Dudoit et al., 2003) and reduces the power of multiple testing adjustment
procedures (Talloen et al., 2007). Conversely, discarding these genes increases sub-
stantially the number of discoveries (rejected null-hypothesis) and detection power
(Bourgon et al., 2010a).

The next three sections provide an overview of the key representatives from
two classes of unsupervised gene filtering methods. The methods in the first class
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(overall variance and overall mean) work with probe set expression levels and are
compatible with most microarray platforms; the methods in the second class (Ab-
sent/Marginal/Presents calls and Informative/non-informative calls) work with
probe pair intensities and are particularly suited for Affymetrix GeneChip mi-
croarrays. In the fourth section, a discussion of the marginal independence be-
tween the filter and the test statistics used to select differentially expressed genes
is presented.

Overall variance and overall mean filtering

Filtering by overall variance consists of removing a user-specified percentage of
the genes with the lowest variance, measured across all arrays. This simplistic
approach has powerful features: Hackstadt and Hess (2009) show that filtering
by overall variance increases the number of discoveries and the statistical power
to detect differentially expressed genes while Bourgon et al. (2010b) argue that
removing genes with the lowest 50% variance provides a powerful alternative to
platform-specific filtering techniques. An adaptive method for selecting the strin-
gency of the filter was proposed by Marczyk et al. (2013).

Filtering by overall mean consists of removing a user-specified percentage of
the genes with the lowest mean, measured across all arrays. Compared to overall
variance, the overall mean filter is less effective leading to substantially fewer
detections of differentially expressed genes at higher stringencies (Bourgon et al.,
2010a). This effect is due to the filter depleting the set of differentially expressed
genes with small overall mean. Additionally, genes that are expressed in one
group and unexpressed in another can also have low overall mean and therefore
risk to be erroneously removed.

Absent/Marginal/Present calls

The Absent/Marginal/Present (A/M/P) calls (Mei et al., 2002) is an integral part
of MAS 5.0 summarization algorithm. Each probe set is declared absent, marginally
present or present based on the p-value of a non-parametric statistical test per-
formed on the PM and MM intensity values. Specifically, for the ith probe set, a
discrimination score is computed for each probe pair j as follows:

Rij =
PMij −MMij

PMij + MMij
(2.16)
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A one sided Wilcoxon signed-rank test is conducted with the null and alternative
hypotheses: H0 : median

(
Rij
)
= τ

H1 : median
(

Rij
)
> τ

(2.17)

where the user-adjustable parameter τ is set to the default value of 0.015. The
p-value of the test statistic is compared against two significance levels α1 and α2

with default values of 0.4 and 0.6, respectively. The probe set is declared present
if p < α1, marginally present if α1 < p < α2, and absent if p > α2.

The A/M/P calls can be used to filter probe sets across arrays. A typical set-
ting is to retain for further analysis probe sets that where called present in at least
one array (Mei et al., 2002). However, this approach decreases the statistical power
to detect differentially expressed genes (Talloen et al., 2007). McClintick and Eden-
berg (2006) proposed removing probe sets that are not called present in at least
half of the arrays in any of the treatment groups. Bourgon et al. (2010a) remarks
that since this method uses information about the class labels of the arrays, it can
lead to overly optimistic results when assessing differential gene expression using
statistical methods.

Informative/non-informative calls

The informative/non-informative (I/NI) calls (Talloen et al., 2007) expands upon
the FARMS summarization method to remove probe sets with technical variation
exceeding its biological variation (measured across arrays). Specifically, for the ith
probe set, FARMS assumes the zero mean normalized vector of log2 PM intensities
xi depends on the true log-concentration of mRNA zi via:

xi = νizi + εi (2.18)

with
zi ∼ N (0, 1) , εi ∼ N (0, Σi) , Σi = σ2

i In (2.19)

where νi ∈ Rn models the probe-specific factors, εi ∈ Rn models the independent
homoscedastic probe-specific noise, and n is the number of probes in a probe set.
The I/NI calls accesses the variance of zi given the measurements xi and removes
the ith probe set if

var (zi|xi) = ν>i Σ−1
i νi < 1 (2.20)

Note that ν>i Σ−1
i νi represents the ratio between the biological signal of the ith
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probe set measured by ν>i νi and its technical noise measured by Σi through σ2
i .

The I/NI call for a probe set relates to the consistency of the corresponding
probes to measure the same biological signal. If the probe measurements are
highly correlated across arrays, the probe set is called informative and kept for
further analyses. If more than 11 probes show no consistent probe behaviour, the
probe set is called non-informative.

The I/NI calls filter has the advantage of being independent of user-supplied
parameters. Additionally, it increases the statistical power to detect differentially
expressed genes (Talloen et al., 2007).

The marginal independence criterion

A necessary (but not sufficient) condition to obtain an increase in detection power
is the marginal independence under the null hypothesis between the filter and test
statistic used to assess differential gene expression (Bourgon et al., 2010a). This
criterion requires the unconditional null distributions of the test statistic before
filtering and the conditional null distributions after filtering to match. Violations
of this criterion occurs when using supervised filtering prior to the statistical test
(McClintick and Edenberg, 2006) or moderated statistic after unsupervised filter-
ing (Scholtens and Von Heydebreck, 2005) . These combinations results in overly
optimistic p-values and reduced detection power.

The overall variance, overall mean and I/NI calls are marginally independent
of t-test and Wilcoxon rank sum test statistics. While marginal independence
preserves the correct size of the p-values, their correlation structure can change
which in turn may impact the performance of the multiple adjustment procedures.
For microarray data, these effects are negligible (Bourgon et al., 2010a).

2.4.2 Filters based on information theory

Information theory has been a fruitful ground for the development of subset se-
lection methods (Brown et al., 2012). Two central concepts in information theory
used to define compound measures of relevance and redundancy are: entropy and
mutual information. These quantities together with their conditional formulation
are defined below.

Definition 1. The entropy of a discrete random variable X with support X and
probability density function P(X) is:

H(X) = − ∑
x∈X

P(x) log P(x) (2.21)
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H(x) measures the uncertainty associated with X.

Definition 2. The conditional entropy of discrete random variable X with sup-
port X and probability density function P(X) given the discrete random variable
Y with support Y and probability density function P(Y) is:

H(X|Y) = − ∑
y∈Y

P(y) ∑
x∈X

P(x|y) log P(x|y) (2.22)

H(X|Y) measures the uncertainty around X once we learned about Y.

Definition 3. The mutual information between the discrete random variables X
and Y with joint probability density function P(X, Y) is:

I(X; Y) = ∑
y∈Y

∑
x∈X

P(x, y) log
P(x, y)

P(x)P(y)
(2.23)

Alternatively, I(X; Y) can be expressed using the entropy of X and conditional
entropy of X given Y as follows:

I(X; Y) = H(X)− H(X|Y) (2.24)

I(X; Y) measures the amount of information shared by X and Y.

Definition 4. The conditional mutual information between the discrete random
variables X and Y given the discrete random variable Z is:

I(X; Y|Z) = ∑
z∈Z

P(z) ∑
y∈Y

∑
x∈X

P(x, y|z) log
P(x, y|z)

P(x|z)P(y|z) (2.25)

Alternatively, I(X; Y|Z) can be expressed using the conditional entropy of X given
Y and Z as follows:

I(X; Y|Z) = H(X|Z)− H(X|Y, Z) (2.26)

I(X; Y|Z) measures the amount of information shared by X and Y once we learned
about Z.

In a feature selection problem, given the set of features Sm = {X1, . . . , Xm} and the
class variable C, one is faced with the task of selecting an optimal subset Sk of car-
dinality k according to some evaluation function. In terms of mutual information,
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Sk can be found by solving the optimization problem:

arg max
Sk∈SK

I(Sk; C) (2.27)

where SK is the space of feature subsets of cardinality k and I(Sk; C) is the multi-
variate (joint) mutual information between Sk and C. Estimation of I(Sk; C) can be
approached using non-parametric methods such as histograms and kernel meth-
ods (Beirlant et al., 1997). For datasets with large number of features exceeding the
number of observations, these estimation methods become impractical. To avoid
this problem, several iterative approximations of (2.27) were proposed. Specifi-
cally, given Si−1, the ith feature can be selected from Sm \ Si−1 according to one
of the criteria:

• Mutual information based feature selection (MIFS) Battiti (1994):

max
Xi∈{Sm\Si−1}

I(Xi; C)− β ∑
Xj∈Si−1

I(Xi; Xj)

 (2.28)

where β is a user-supplied parameter.

• Minimum redundancy - maximum relevance (mRMR) (Ding and Peng,
2005) with mutual information quotient (MIQ) formulation:

max
Xi∈{Sm\Si−1}

I(Xi; C)/

 1
i− 1 ∑

Xj∈Si−1

I(Xi; Xj)

 (2.29)

which is equivalent to the MIFS criterion where β was set to 1/(i− 1).

• MRMR (Ding and Peng, 2005) with mutual information difference (MID)
formulation:

max
Xi∈{Sm\Si−1}

I(Xi; C)−
1

i− 1 ∑
Xj∈Si−1

I(Xi; Xj)

 (2.30)

• Conditional mutual information maximization (CMIM) (Fleuret, 2004):

max
Xi∈{Sm\Si−1}

[
I(Xi; C)− max

Xj∈Si−1

(
I(Xi; Xj)− I(Xi; Xj|C)

)]
(2.31)

which accounts for the conditional redundancy I(Xi; Xj|C)
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• Joint mutual information (JMI) (Brown, 2009, Yang and Moody, 1999):

max
Xi∈{Sm\Si−1}

I(Xi; C)−
1

i− 1 ∑
Xj∈Si−1

(
I(Xi; Xj)− I(Xi; Xj|C)

) (2.32)

which extends the mRMR criterion to account for conditional redundancy

• Double input symmetrical relevance (DISR) (Meyer et al., 2008):

max
Xi∈{Sm\Si−1}

 ∑
Xj∈Si−1

I(XiXj; C)
H(XiXjC)

 (2.33)

where XiXj denotes the joint random variable of Xi and Xj .

These criteria balance relevance measured by I(Xi; C) with redundancy measured
by I(Xi; Xj) and conditional redundancy measured by I(Xi; Xj|C). Meyer et al.
(2008) and Brown et al. (2012) show on various datasets that mRMR and JMI
outperform the remaining criteria.

2.4.3 Wrapper methods

The NB classifier uses the Bayes theorem to compute the probability of each class
given a multi-dimensional test instance, under the assumption that the features
(dimensions) are conditionally independent given the class. This assumption
states that each feature independently contributes to the probability of the test
instance belonging to a certain class. In spite of this stringent and unrealistic
assumption, the NB classifier competes in terms of predictive performance with
more complex classification tools (Friedman et al., 1997a).

The wrapper approach based on NB was introduced by Langley and Sage
(1994) who showed that the classifier guided by a forward selection search leads
to improved classification performance and argued that this scheme is beneficial
for applications involving correlated features. Kohavi and Sommerfield (1995)
proposed a wrapper approach based on NB that uses compound operators to dy-
namically change the search topology. These compound operators were also used
by Kohavi and John (1997), who additionally experimented with best-fit search
and hill-climbing search to generate candidate feature subsets evaluated by the
NB classifier. Cortizo and Giraldez (2006) proposed an improved NB wrapper ap-
proach that uses information about the correlation between features to guide the
search for the optimal subset. Inza et al. (2002) used a NB wrapper approach with
sequential forward selection for gene subset selection.
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The LDA classifier performs classification in a one-dimensional space by pro-
jecting the multidimensional test instance on the direction that maximizes the
separation between the two classes i.e. maximizes the distance between the means
of the classes while minimizing the variance within the classes. The test instance
is assigned to the class associated with the smallest distance between the projected
test instance and the projected class mean.

Xiong et al. (2001a) used a LDA wrapper approach with sequential forward
search and sequential forward floating search for biomarker discovery. Xiong et al.
(2001b) used LDA with step-wise selection and Monte Carlo methods to select
genes for tumour classification. Yue et al. (2007) proposed a novel wrapper-based
method using LDA which recursively removes redundant genes while Huerta
et al. (2010) used a genetic algorithm to generate candidate feature subsets evalu-
ated by a LDA classifier. Peng et al. (2005) used a LDA wrapper approach with
backward elimination and sequential forward selection to select relevant genes
while Pique-Regi et al. (2005) proposed a novel sequential diagonal LDA (Dudoit
et al., 2002a) for microarray classification.

The SVM is a powerful classification tool widely used in gene expression stud-
ies (Lee et al., 2005, Lee and Lee, 2003, Statnikov et al., 2008). The SVM maps the
data into a high dimensional space (possibly infinite) and searches for the optimal
hyperplane that maximizes the margin (the smallest distance between any of the
data points and the decision boundary) in order to minimize the generalization
error.

Consider a binary classification problem with nonlinear decision boundary.
Given a set of training examples {xi}n

i=1 ∈ Rm with associated class labels {ci}n
i=1 ∈

{−1, 1} and the mapping φ : Rm −→ H that maps the training examples to a
higher dimensional space, the SVM algorithm constructs the maximum margin
hyper-plane:

f (x) = w>φ(x) + b (2.34)

by solving the quadratic optimization problem:

min
w,ξ,b

1
2
‖w‖2

2 + C
n

∑
i=1

ξi (2.35)

subject to:

ci(w>i φ(x) + b) ≥ 1− ξi

ξi ≥ 0, ∀i = 1, . . . , n
(2.36)

where C is user supplied parameter that balances model complexity with training
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error minimization while ξ = (ξ1, ξ2, . . . , ξn) is a vector of slack variables (one
slack variable for each xi) measuring the the degree of misclassification for the
training examples.

The optimization problem (2.35) with constraints (2.36) admits the following
dual formulation (Bishop et al., 2006):

max
a

n

∑
i=1

ai −
1
2

n

∑
i=1

n

∑
j=1

aiajcicj κ
(
xi, xj

)
(2.37)

subject to:

n

∑
i=1

aici = 0

0 ≤ ai ≤ C, ∀i = 1, . . . , n

(2.38)

where a = (a1, a2, . . . , an) is a vector of Lagrange multipliers while κ(xi, xj) is a
kernel function defined as:

κ(xi, xj) = φ(xi)
>φ(xj) (2.39)

By solving (2.37) with constraints (2.38), w and b can be recovered using:

w =
n

∑
i=1

aiciφ(xi)

b =
1

#(V) ∑
i∈V

(
ci − ∑

j∈V
ajcj κ(xi, xj)

) (2.40)

where V is the set of indices of the support vectors i.e. indices of the training
examples associated with non-null Lagrance multipliers. For a test instance x, the
predicted class is given by the sign of:

f (x) =
n

∑
i=1

aici κ(xi, x) + b (2.41)

Equation (2.41) shows that the decision boundary is a linear combination of dot
products in H between the support vectors and the test instance.

Yu and Cho (2003), Huerta et al. (2006) and Zhuo et al. (2008) proposed SVM-
based wrapper approaches using genetic algorithms to identify minimal subsets of
features associated with high classification performance. Maldonado and Weber
(2009) proposed a wrapper approach combining SVM with sequential backward
elimination while Tang et al. (2006) used least squares SVM (Suykens and Vande-
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walle, 1999) with sequential forward selection. SVM-based wrapper approaches
using backward elimination and forward selection were also used in the work of
Peng et al. (2005). Li et al. (2004) used sequential floating forward search with
SVM for leukemia subtype classification.

2.4.4 Embedded methods based on SVM

Besides its merits in terms of classification, the SVM has emerged as a powerful
feature selection tool. Surveys on the feature selection methods using SVM-based
criteria are provided by a number of authors including Lal et al. (2006) and Rako-
tomamonjy (2003). This section discusses embedded method based on the linear
SVM:

f (x) = w>x + b (2.42)

These methods will be presented within a unified optimization framework by
noting that problem (2.35) with constraints (2.36) can be expresses as a Tikhonov
regularization problem (Hastie et al., 2004):

min
w,b

n

∑
i=1

[
1− ci

(
b + w>xi

)]
+
+

η

2
‖w‖2

2 (2.43)

where η corresponds to 1/C in (2.35). Formulation (2.42) with optimization prob-
lem (2.43) will be referred to as L2-norm SVM.

Guyon et al. (2002) proposed an embedded method based on the L2-norm SVM
and recursive feature elimination (RFE) , termed SVM-RFE. The method starts
with the full set of features and computes at each iteration the vector of weights
w of a L2-norm SVM trained on the training data. The feature associated with the
component with the smallest contribution to ‖w‖2

2 is removed and the process is
repeated until the subset of features with the highest prediction performance of
the test data is found. Duan et al. (2005) improved the performance on SVM-RFE
by stabilizing feature ranking at each step of the recursive procedure using data
resampling methods.

Bradley and Mangasarian (1998) proposed an embedded method based on the
L1-norm SVM:

min
w,b

n

∑
i=1

[
1− ci

(
b + w>xi

)]
+
+ η‖w‖1 (2.44)

The L1-norm induces sparsity on w for sufficiently large values of the tuning
parameter η (Tibshirani, 1996), allowing features to be removed simultaneously
rather than iteratively. Zhu et al. (2004) supplemented the feature selection method
with adaptive selection of the tuning parameter η.
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Wang et al. (2006a) noted two major limitations of the L1-norm SVM approach
to feature selection. Firstly, the L1-norm penalty selects few representatives from
groups of highly correlated features that are relevant for class separation and dis-
regards the rest. Secondly, the upper bound for the number of features selected us-
ing the L1-norm SVM is equal to the number of training examples. For microarray
data with small sample size (where the number of differentially expressed genes
can exceed the number of biological replicates available), feature selection using
L1-norm SVM can omit interesting genes. To compensate for these shortcomings,
they proposed for feature selection the doubly regularized SVM (DrSVM):

min
w,b

n

∑
i=1

[
1− ci

(
b + w>xi

)]
+
+

η2

2
‖w‖2

2 + η1‖w‖1 (2.45)

where η2 and η1 are tuning parameters. DrSVM uses the elastic net penalty (Zou
and Hastie, 2005) on w consisting of the L1-norm penalty, which imposes spar-
sity, and the L2-norm penalty, which selects groups of correlated genes. DrSVM
removes features simultaneously rather than iteratively, in a manner analogous
to the L1-norm SVM. When compared to feature selection methods based on L1-
norm SVM and L2-norm SVM, the DrSVM approach achieved superior perfor-
mance (Wang et al., 2006a).

2.5 Conclusions

This chapter provided an overview of the microarray technology and of the gene
expression profiling using microarrays, a review of statistical methods used to
select differentially expressed genes and a survey of the feature selection methods
used in bioinformatics and machine learning.

The overview of the microarray technology presented the principles and the
technical aspects of two widely used gene expression profiling platforms: glass
slide cDNA microarrays and high-density oligonucleotide microarrays. It was
argued that the former platform has high sensitivity, low specificity and low re-
producibility while the latter has low sensitivity, high specificity and high repro-
ducibility, the exception being the Affymetrix GeneChip format which achieves
high sensitivity through control probes.

The overview of gene expression profiling presented the fundamental steps of
a typical microarray experiment. Emphasis was placed on the data pre-processing
step where widely used methods for background correction, normalization and
summarization were further discussed.

The review of the statistical methods for selecting differentially expressed
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genes highlighted the multiplicity problems occurring when simultaneously test-
ing multiple hypothesis and presented appropriate strategies for controlling dif-
ferent Type I error rates. It was argued that pFDR control provides greater power
among the reviewed methods. The relation between statistical significance and
biological relevance was also discussed and the need to complement statistical
findings with measures of effect size was presented.

The survey of feature selection methods presented unsupervised filters for re-
moving noisy and non-informative genes, supervised filters based on mutual in-
formation, wrapper approaches and embedded methods based on SVMs. It was
argued that when the marginal independence criterion holds, unsupervised filter-
ing can increase the power of multiple testing procedures. Additionally, it was
claimed that mRMR and JMI outperform the other supervised filters while SVM-
based wrapper and embedded approaches excel due to the performance of the
SVM classifier.



Chapter 3

Modelling methods for microarray
gene expression data

Various modelling formalisms for analysing and characterising microarray gene
expression data, which can help answer important biological questions, have been
developed. This chapter focuses on deconvolution of heterogeneous gene expres-
sion data and reconstruction of GRNs. Specifically, Section 3.1 presents sample
heterogeneity as a major confounding factor of differential gene expression stud-
ies and provides a review of the methods used to deconvolve gene expression sig-
nals from mixture of cells into cell type-specific signatures weighted by cell type-
specific proportions. Section 3.2 provides an overview of the biological properties
of the GRNs and a review of the main formalisms used to model the dynamic
gene regulatory interactions. Concluding remarks are given in Section 3.3.

3.1 Deconvolution of microarray gene expression data from
heterogeneous tissues

Microarray gene expression data is usually measured from tissue samples contain-
ing multiple cell types (heterogeneous sample) in varying degrees of abundance
(Liebner et al., 2013) and operating according to different programs of transcrip-
tion (Su et al., 2002). Thus, gene expression patterns represent a convolution of
the cell type-specific signals weighted by the associated cell type frequencies. This
convolution masks the underlying sources of measurement variability and hin-
ders the biological interpretation of the results from downstream analyses (Erkkilä
et al., 2010). In particular, it limits the conclusions derived from differential gene
expression studies as the observed differences in gene expression cannot be at-
tributed to differences in cell type composition or differences in cellular contri-

33
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butions to the total mRNA pooled from the mixture (Shen-Orr et al., 2010, Wang
et al., 2006b).

Cell separation techniques such as laser capture micro-dissection (LCM) can
be used to address the problems underlying sample heterogeneity by extracting
purified cell type signatures. However this approach is costly, time consuming,
labour intensive and can introduce artefacts in gene expression measurements
(Lähdesmäki et al., 2005, Zuckerman et al., 2013). A powerful alternative to phys-
ical separation methods has emerged in the form of computational tools that per-
form gene expression deconvolution (Gaujoux and Seoighe, 2013). These methods
are based on a linear deconvolution model and depend on the type of data avail-
able.

Section 3.1.1 discusses the deconvolution model and presents the problems that
can be addressed within its framework. Solutions to these problems are reviewed
in Section 3.1.2, Section 3.1.3 and Section 3.1.4.

3.1.1 The linear deconvolution model

Considering that gene expression is often measured from complex mixtures of cell
types present in various proportions and exhibiting different transcriptional pro-
grams, a sensible approach to expression deconvolution is to model the transcript
abundance of a gene as a linear combination of cell type-specific expression levels
weighted by the cell type-specific proportions (Shen-Orr et al., 2010). Formally,
given the gene expression matrix X ∈ Rn×m, where n denotes the number of sam-
ples (biological or technical replicates) and m denotes the number of genes, the
deconvolution model is defined as:

xij =
K

∑
k=1

fikgkj (3.1)

with
K

∑
k=1

fik = 1, ∀i (3.2)

where xij ≥ 0 represents the expression level of gene j in sample i, fik ≥ 0 repre-
sents the proportion of cell type k in sample i, gkj ≥ 0 represents the expression
level of gene j in cell type k, and K is the total number of cell types in the mixture.
The measurements xij can represent raw or log-transformed data. The benefits of
performing expression deconvolution using raw and log-transformed data will be
discussed later in this chapter.

Being arguably the most widespread formalism for gene expression deconvo-
lution (Zhao and Simon, 2010), this model faithfully describes how cell types in a
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mixture collectively contribute to the overall transcript abundance (Shen-Orr et al.,
2010). Depending on the type of data available, the linear model (3.1)-(3.2) can be
used to address different deconvolution problems:

1. Estimation of the cell type-specific proportions fik given heterogeneous gene
expression data xij and cell type-specific expression levels gkj.

2. Estimation of the cell type-specific expression levels gkj given heterogeneous
gene expression data xij and cell type-specific proportions fik

3. Joint estimation of cell type-specific proportions fik and cell type-specific
expression levels gkj given heterogeneous gene expression data xij.

Methods for solving these problems are discussed in the following sections.

3.1.2 Estimation of cell type-specific proportions

In order to estimate the cell type proportions from heterogeneous gene expres-
sion data, the purified expression levels of the cell types in the mixture (gkj) are
required. These quantities can be obtained prior to gene expression profiling us-
ing LCM or can be substituted with reference expression signatures (Abbas et al.,
2009) available at Gene Expression Omnibus (GEO) (Barrett et al., 2009). Given
these measurements, estimation of the cell type-specific proportions associated
with the ith sample reduces to solving the linear systems of equations:

xij =
K

∑
k=1

fikgkj, j = 1 . . . m (3.3)

for the unknowns fik ≥ 0 satisfying (3.2).

Many genes exhibit the same transcriptional program across cell types (Mellick
et al., 2002) and therefore have little utility in estimating the mixing proportions
(Gong et al., 2011). Only genes relatively specific for the cell types in the mixture
(cell type markers) can be used as reliable basis for deconvolution (Gong et al.,
2011). Methods for estimating the cell type-specific proportions consist of two
steps: (i) selecting an appropriate subset of basis genes for deconvolution, (ii)
solving the linear deconvolution problem using an optimization algorithm.

To select the deconvolution basis, Wang et al. (2010) proposed an approach
that consists of ranking genes by their F-statistic. Subsets of increasing numbers of
highest ranked genes were evaluated using cross-validation on test data to identify
the subset with the lowest average prediction error rate. Lu et al. (2003) manually
selected the genes associated with the transcriptional program of interest. Abbas
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et al. (2009) ranked genes based on their degree of differential expression between
cell types using Student’s t-test. Matrices containing the reference expression sig-
natures for subsets of increasing numbers of top genes were evaluated by their
condition number. The genes contained in the matrix with the smallest condi-
tion number (lowest sensitivity to small perturbations in the data) were selected
as basis for deconvolution. Gong et al. (2011) adopted the same approach based
on minimizing the condition number of matrices containing reference expression
signatures but selected cell type-specific markers using linear modelling and em-
pirical Bayes methods (Smyth, 2004). Finally, Wang et al. (2006b) used stepwise
discriminant analysis to identify the optimal subset of genes for deconvolution.

To solve the linear deconvolution problem, Lu et al. (2003) and Wang et al.
(2006b) used an approach based on simulated annealing (Kirkpatrick, 1984) while
Abbas et al. (2009) applied a linear least squares algorithm iteratively until posi-
tive mixing proportions were estimated. Gong et al. (2011) noted that the former
method can be trapped in local minima while the later requires small negative
parameters to be removed at each step. To avoid these problems, they proposed a
quadratic programming technique that identifies the globally optimal set of posi-
tive mixing parameters (in the least squares sense).

Deconvolution of the cell type-specific proportions can provide a valuable in-
sight into the biology of the system being studied by revealing the dynamics of
cell populations and identifying cell growth defects (Lu et al., 2003). Additionally,
it can enhance the understanding of human diseases (Abbas et al., 2009, Wang
et al., 2010) and increase the statistical power to detect differentially expressed
genes (Wang et al., 2006b).

3.1.3 Estimation of cell type-specific expression levels

In order to estimate the cell type-specific expression levels from heterogeneous
gene expression data, the cell type-specific fractions for each sample are required.
These quantities can be obtained using automated methods such as flow cytome-
try (Shapiro, 2005). Given these measurements, estimation of the cell type-specific
signatures associated with the jth gene reduces to solving the system of linear
equations:

xij =
K

∑
k=1

fikgkj, i = 1 . . . n (3.4)

for the unknowns gkj ≥ 0.
Stuart et al. (2004) solved the system of equations using standard linear least-

squares regression to identify cell type-specific patterns in prostate cancer. The
same approach was used by Shen-Orr et al. (2010) to identify cell type-specific
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genes that are differentially expressed between groups of kidney transplant recip-
ients. Their method, termed cell type-specific significance analysis of microarrays
(csSAM), sets to zero negative estimates of gkj.

Zhong and Liu (2011) noted that csSAM underestimates true expression signals
when log-transformed data is used and showed that better deconvolution perfor-
mance can be obtained in the linear space (raw data). On the other hand, decon-
volution of log-transformed data increases the performance of statistical methods
to detect cell type-specific differences between groups compared to the case when
raw data is used (Shen-Orr et al., 2011).

Liebner et al. (2013) addressed the problem of over-fitting the model param-
eters when individual cell types are present at low frequencies in the mixture or
the number of cell types exceeds the number of samples. Their method partitions
the cell types into subsets and assumes that within a subset the cell types share
common expression signatures. These subsets are evaluated using the Akaike in-
formation criterion (AIC) (Akaike, 1974) to identify the subset best supported by
the data. Parameter optimization is performed using standard least squares.

While the methods discussed above provide estimates of the cell type-specific
levels, they don’t quantify the contribution of each cell type to the variance of the
heterogeneous gene expression measurements. Ranking cell types in terms of their
increment to the observed variance can help identify features of interindividual
variation in gene expression patterns. This problem is addressed in Chapter 5
where a new deconvolution method that additionally identifies the number of cell
type sources of gene expression is proposed.

Deconvolution of the cell type-specific expression levels defines the framework
where problems related to cell type-specific markers discovery and identification
of cell type-specific transcriptional programs across different experimental condi-
tions can be adequately tackled using efficient computational tools.

3.1.4 Joint estimation of cell type-specific proportions and expression
levels

Most gene expression profiling studies rarely measure the proportions of cells in
the mixture or isolate cell populations to extract purified expression signatures
(Zuckerman et al., 2013). The previous methods relied on purified cell type sig-
natures or mixing percentages to solve different deconvolution problems. In the
absence of such data, these problems can be addressed within the unified frame-
work of blind deconvolution by solving the system of equations:

X = F ∗G (3.5)
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for the unknowns F = [ fik] and G = [gkj] with fik ≥ 0 and gkj ≥ 0 subject to the
constraints (3.2).

Venet et al. (2001) estimated the model parameters in (3.5) using a two-step ap-
proach. Starting from an initial guess of G, the positive entries in F are estimated
using a non-negative least squares algorithm. In the second step, the estimated F
is used to optimize G in the non-negative least squares sense using the additional
constraints:

m

∑
j=1

gkj = m, ∀k (3.6)

These constraints ensure that X and G have the same normalization. The two
steps are repeated until convergence to a local or global optimum. To find a
unique solution, the authors proposed a transformation that makes the rows of
G uncorrelated at the end of each second step. Using this transformation, the
convergence of the algorithm to a local or global optimum is no longer guaranteed
(Venet et al., 2001).

Lähdesmäki et al. (2005) proposed a two-step approach similar to Venet et al.
(2001). In the first step, given an initial guess for F, the matrix G is estimated using
standard least squares. This estimate is used in the second step to optimize F using
the same optimization algorithm. The two steps are repeated until convergence
to a local or global optimum. For the case when the number of cell types in the
mixture is unknown, the authors proposed an extension based on cross-validation
to perform model selection.

Erkkilä et al. (2010) proposed a probabilistic approach to simultaneously esti-
mate cell type proportions and cell type-specific signatures. The method assigns
prior distributions to the model parameters in (3.5) and constructs their poste-
rior density given heterogeneous gene expression data. The optimal parameters
are estimated in a Markov chain Monte Carlo (MCMC) fashion from the posterior
density. For the case when the number of cell types in the mixture is unknown, the
authors suggest using cross-validation or reversible-jump MCMC (Green, 1995) in
order to estimate a suitable value for K.

Zuckerman et al. (2013) proposed a three-step approach for blind deconvolu-
tion that additionally identifies the number of cell types in the mixture and their
identities. In the first step, an initial estimate of the matrix G is obtained using
non-negative matrix factorization (Piper et al., 2004). This step requires an ini-
tial guess of the number of cell types in the analysed tissue together with their
reference signatures. These signatures, which need not be study-specific or reflec-
tive of pathological state of the tissue (healthy, disease), can be taken from public
databases (Gardiner-Garden and Littlejohn, 2001). In the second step, the symmet-
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ric Kullback-Leibler divergence (Cover and Thomas, 2012) between the reference
signatures and the estimated signatures is used to identify the true number of cell
types in the mixture. This step removes redundant rows from G allowing the fi-
nal estimate to be constituted only from the relevant rows. In the third stage, the
matrix F is estimated in the non-negative least squares sense.

Joint deconvolution of cell type-specific proportions and expression levels bor-
rows from the advantages of the constituent deconvolution frameworks. Specifi-
cally, it can reveal the dynamics of cell populations, identify cell growth defects,
uncover cell type-specific markers and expose differences in cell type-specific gene
expression between different classes or experimental conditions.

3.2 Modelling dynamic GRNs

Understanding the principles underlying the cellular functions, requires knowl-
edge of the underpinning GRNs (see Appendiz A for a definition). Mathematical
models of the gene regulatory pathways represents powerful tools for system-level
analysis, numerical simulation and intervention studies. Such studies could pre-
dict new structures or functionalities and ultimately uncover effective therapeutic
strategies for correcting human diseases.

The advent of high-throughput genomic technologies inspired considerable
scientific research toward efficient GRN reconstruction. In particular, the time-
course interrogation of gene expression abundance using microarrays provided
a genome-wide survey of the cell’s temporal activity. The microarray technol-
ogy signalled the departure from the limited single-gene approaches attempting
to explain the cellular processes and advanced the global perspective of genetic
regulation by harnessing the collective power of genes (to elucidate the systemic
properties of organisms).

The ability to harvest large amounts of time series gene expression data em-
powered the development of computational and formal tools to capture the topo-
logical organization of the GRN, to describe the dynamic nature of the regula-
tory pathways and to make qualitative and quantitative predictions about the net-
work’s behaviour under different conditions. These tools are rooted in a wide
spectrum of modelling formalisms that use experimental data to solve the inverse
problem of GRN reconstruction (reverse-engineering).

The following sections provide an overview of the general properties of GRNs
used to assist the modelling process and a review of three major classes of mod-
elling formalisms: Boolean and probabilistic Boolean networks, dynamic Bayesian
networks and state-space models . The review is not exhaustive with respect to the
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different formalism for modelling GRNs. Specifically, approaches based on Petri
nets (Steggles et al., 2007), non-linear differential equations (Qian et al., 2008) and
stochastic equations (McAdams and Arkin, 1999) are omitted. Comprehensive re-
views are provided by a number of authors including De Jong (2002), Schlitt and
Brazma (2007), Lee and Tzou (2009) and Hecker et al. (2009).

3.2.1 General properties of GRNs

Efficient reconstruction of large-scale GRNs requires a considerable amount of ac-
curate time-course gene expression data (low measurement noise). This amount
increases approximately logarithmically with the number of genes in the net-
work (Hecker et al., 2009). To address this dimensionality problem, some au-
thors increased the amount of data using spline interpolation (Bansal et al., 2006,
D’haeseleer et al., 1999). An alternative approach is to incorporate biological con-
straints into the modelling process to reduce the space of candidate topologies and
range of network parameters. These constraints are summarized below.

Sparsity

Sparsity is the most frequently used biological constraint in GRN reconstruction
and relates to genes having a small number of regulators (Arnone and Davidson,
1997). From a topological point of view, genes have small in-degree (number of
inward connections) but large out-degree (number of outward connections). A
pictorial representation of these notions is shown in Figure A.6 of Appendix A.

The sparsity constraint is particularly appealing for modelling as it reduces the
number of parameters to be estimated. The least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996) has been largely used to enforce topological
sparsity (Fujita et al., 2007, Gustafsson et al., 2005, van Someren et al., 2006). Other
methods rely on removing regulatory connections whose associated parameters
are either below a certain threshold (Chen et al., 2011, d’Alché Buc et al., 2005) or
have negligible sensitivity (De Hoon et al., 2002).

Scale-free property

Scale-free models (Barabási and Albert, 1999) represent a blueprint for the topo-
logical organization of large-scale biological networks (Albert, 2005, Jeong et al.,
2000, Jordan et al., 2004). According to these models, the probability distribution
of the node-specific connections k follows the power law P(k) = k−ν, where ν is a
network-specific constant. This distribution implies that the topology of scale-free
networks contains few central nodes (hubs) which are highly connected with the
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remaining, peripheral nodes. Hubs emerging in biological networks are believed
to provide the link between groups of nodes (modules) responsible for different
metabolic functions (Jeong et al., 2000). In GRNs, hubs are represented by genes
that dominate the overall regulation.

To capture the scale-free topology of the gene regulatory pathways, Chen et al.
(2008) proposed a method that constructs the network connectivity using the cor-
relation between nodes. This approach requires the central and peripheral nodes
to be specified a priori. Wildenhain and Crampin (2006) proposed two sequen-
tial methods that consists of removing and adding connections until an optimal
topology is found (according to some scoring function).

Robustness

GRNs are robust to fluctuations in molecular concentrations, noisy expression
of the constituent genes and even knock-out of individual genes (Ciliberti et al.,
2007a, MacNeil and Walhout, 2011). Highly robust networks are relatively insen-
sitive to small structural perturbations (robustness to mutations) and to variation
of their internal parameters and changes in the environment (robustness to noise)
(Ciliberti et al., 2007b, Kitano, 2002). These forms of insensitivity are essential to
ensure consistency of cell reproduction and persistence of functioning under the
inherent stochasticity of biochemical reactions (Davidson, 2001). It has also been
argued that only certain topological arrangements result in robust GRNs (Ingolia,
2004, Jeong et al., 2000).

Methods for modelling robust GRNs focused on capturing the robustness to
noise as opposed to robustness to mutations. These methods rely on conditioning
the model to be asymptotically stable under external perturbations and variations
of initial conditions of the system (Chen et al., 2011, 1999, Koh et al., 2009).

Modularity

Cellular networks consist of functionally related components clustered in densely
connected modules, which in turn are sparsely connected with each other (Hartwell
et al., 1999). Departures from this topological arrangement consisting of overlap-
ping modules were observed in protein-protein networks (Han et al., 2004). In
terms of GRNs, topological modularity reflects the scale-free organization of the
network. Strongly co-expressed genes or genes that share functional roles are
clustered in modules connected through hubs (Jeong et al., 2000).

To capture the modular structure of the GRNs Segal et al. (2003) proposed
an iterative method that reassigns gene to modules until a certain criterion is
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optimized while Hirose et al. (2008) used a state-space formulation of the network
that automatically identifies genes with similar expression patterns.

3.2.2 Boolean and probabilistic Boolean networks

Boolean networks (Kauffman, 1969) are rule-based dynamical systems that model
the qualitative (logical) interactions between genes. These models are grounded
in the biological knowledge that cells exhibit switch-like transitions between func-
tional states associated with growth or patterns of response to external stimuli. To
capture this switching behaviour, Boolean networks assume each gene can take
two possible values, ON (expressed) and OFF (unexpressed), and that the func-
tional interactions between genes are represented by logical rules. Binarized gene
expression data retain substantial biological information (Shmulevich and Zhang,
2002, Shmulevich et al., 2002b) which allows Boolean networks to capture the
generic properties of gene regulatory networks (Lähdesmäki et al., 2003).

Formally, the Boolean network can be represented as a directed graph G(V ,F )
defined by a set of nodes (genes) V = {x1 . . . , , xm} with xi ∈ {0, 1} and a set
of logic functions F = { f1, . . . , fm}. The ith gene is expressed if xi = 1 and
unexpressed if xi = 0. Each xi is associated with a Boolean function fi(xi1 , . . . , xik(i)

)

with
{

i1, . . . , ik(i)

}
⊆ {1, . . . , m}, where k(i) represents the in-degree (number of

parent nodes) for the node xi. At a given time t, the state of the Boolean network
G(V ,F ) is given by the binary vector x(t) = (x1(t), . . . , xm(t)). The transition from
x(t) to x(t + 1) is determined by the synchronous update of the nodes according
to their Boolean functions:

xi(t + 1) = fi(xi1(t), . . . , xik(i)
(t)) (3.7)

Although the gene regulation operates according to asynchronous dynamics, the
artificial synchrony of the Bayesian networks preserves the qualitative properties
of the regulatory pathways while simplifying the computation associated with
network estimation and simulation (Shmulevich et al., 2002a).

Methods for estimating the underlying network topology consists of searching
for each node the space of Boolean functions with varying number of inputs that
are consistent with the state transitions. Liang et al. (1998) reduced the search
space using mutual information to identify the regulators for each node whereas
Akutsu et al. (1999) opted for an exhaustive search. The later approach is more
general as it solves the problems of identifying all the networks that are consistent
with the data. Having the complete set of solutions allows for model validation
and selection based on unseen (testing) data. The previous methods work for
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any k(i) ≤ m; in practice k(i) is set to small values for biological considerations
(network sparsity) and computational considerations (avoid over-fitting, speed-up
estimation).

The deterministic directionality of Boolean networks coupled with the finite
cardinality of the state space guarantees that the system cycles infinitely often
through a finite set of states. These stable states, called attractors, capture the
long-term behaviour of the network (Somogyi and Sniegoski, 1996). The set of
states that leads to an attractor constitutes its basin of attraction (Wuensche, 1998).
The size of the basin of attraction dictates the likelihood that the system will cy-
cle through or settle on the corresponding attractor given random initial (starting)
conditions. Attractors of Boolean networks were associated with cellular pheno-
types (Huang, 1999). These findings suggest than questions related to cell prolif-
eration can be tackled using the Boolean formalism.

One major criticism addressed to Boolean networks is that they represent
closed systems grounded in biological determinism. These modelling assump-
tions preclude the use of the inherent stochasticity associated with biological pro-
cesses and the uncertainty in the gene expression measurements (aggregated at
each step of the gene expression profiling). To address these issues, Shmulevich
et al. (2002a) proposed the probabilistic Boolean networks.

Formally, a probabilistic Boolean network can be represented as a directed
graph G(V ,F ) defined by the set of nodes (genes) V = {x1, . . . , xm} with xi ∈
{0, 1} and a set of logic functions F = {F1, . . . ,Fm} where Fi =

{
f (i)1 , . . . , f (i)l(i)

}
and l(i) is the number of functions for xi. The sets of functions Fi are determined
using the coefficient of determination (COD) (Dougherty et al., 2000). Each func-
tion f (i)j , j = 1, . . . , l(i), has a probability p(i)j of being chosen to predict xi given
by:

p(i)j =
d(i)j

∑l(i)
k=1 d(i)k

(3.8)

where d(i)j is the COD for xi with respect to the set of genes used by f (i)j which need
not be the same across j. At any point in time, the probabilistic Boolean network
is defined by the a realization fk =

{
f 1
k1

, . . . , f m
km

}
with f (i)ki

∈ Fi, 1 ≤ ki ≤ l(i),
and k = 1, . . . , N where N denotes the number of possible realizations. Thus, state
transitions are operated at each instant of time by one of the N possible Boolean
networks.

The attractors of a probabilistic Boolean network consists of the union of the
sets of attractors associated with each Boolean network that can operate at a given
time (Xiao, 2009). These attractors have steady-state distributions characterising
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the long-term behaviour of the system independent of the initial state. Since at-
tractors can be associated with cellular phenotypes, the steady-state distributions
reflect the likelihood of observing these phenotypes. Methods for steering the
long-time behaviour of the network towards desirable states without changing
the steady-state distribution of the attractors were proposed by Shmulevich et al.
(2002d). In some cases, it would be advantageous to alter the steady state probabil-
ities in order to decreases the changes of the network ending up in an undesirable
attractor. This issue was addressed in the work of Shmulevich et al. (2002c) where
a methodology based on minimal structural modifications of the network depen-
dencies was proposed.

Probabilistic Boolean networks supplement the strengths of Boolean networks
with the ability to incorporate biological knowledge into the network topology by
constraining the space of candidate Boolean functions. Additionally, absorbing
the sources of uncertainties into the set of functions Fi allows for a more general
modelling of the qualitative rules of genetic regulation. Probabilistic Boolean net-
works are intimately related to dynamic Bayesian networks (Lähdesmäki et al.,
2006, Xiao, 2009). This class of methods for inferring GRNs is discussed in more
detail in the next section.

3.2.3 Dynamic Bayesian networks

Dynamic Bayesian networks (Murphy et al., 1999) are quantitative causal models
that capture the non-linear stochastic regulatory interactions between genes. They
represent a temporal extension to Bayesian networks (Friedman et al., 2000) to
account for cyclic regulation (feedback loops).

Formally, a Bayesian network is defined by a pair B = (G, Ω) where G is a
directed acyclic graph defined by the set of nodes V = {x1, . . . , xm} and Ω denotes
a set of network parameters. The random variable xi associated with the ith gene
is drawn from the conditional probability distribution P(xi|Pa(xi)) parameterized
by Ω, where Pa(xi) denotes the set of parents of xi. The graph G encodes the
Markovian assumption that each xi is independent of its non-descendants. This
allows for the joint probability distribution induced by B over all xi to be written
as:

P(x1, x2, . . . , xm) =
m

∏
i=1

P(xi|Pa(xi)) (3.9)

This representation, which captures the static interactions between genes, was ex-
tended by dynamic Bayesian networks to model temporal processes. Formally,
a dynamic Bayesian network is defined by a pair DB = (B0, B→) where the
prior Bayesian network B0 = (G0, Ω0) specifies the distribution of the initial state
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x(0) = (x1(0), . . . , xm(0)) and the transition Bayesian network B→(G, Ω) speci-
fies the transition probabilities P(x(t)|x(t− 1)). The joint distribution over N + 1
sequences of observations x(0), . . . , x(N) can be expressed as:

P(x(0), x(1), . . . , x(N)) = P(x(0))
N

∏
i=1

P(x(t)|x(t− 1)) (3.10)

Using the factorization in (3.9), the joint distribution (3.10) can be written as:

P(x(0), x(1), . . . , x(N)) =
m

∏
i=1

P(xi(0)|Pa(xi(0)))
N

∏
t=1

m

∏
j=1

P(xj|Pa(xj)) (3.11)

Methods from estimating the topology and the parameters of the dynamic Bayesian
network model (3.11) from discrete and continuous data were proposed by Fried-
man et al. (1998) and Kim et al. (2004). These methods consist of a search strategy
and a scoring function. The search strategy explores the space of models using
hill-climbing (Johnson et al., 1988) or simulated annealing (Kirkpatrick, 1984) to
provide candidate topologies for evaluation. The scoring function combines struc-
ture selection with parameter optimization to identify the network that is most
consistent with the data. Examples of scoring functions used are: the Bayesian
information criterion (BIC) (BIC) (Schwarz et al., 1978), Bayesian Dirichlet equiva-
lent (BDe) (Heckerman et al., 1995) and the Bayesian network and nonparametric
regression criterion (BNRC) (Kim et al., 2004). Parameter optimization can be
performed using maximum likelihood estimation (Marx and Larsen, 2006) when
complete data is available or structural expectation maximization (EM) (Friedman
et al., 1997b) when incomplete data is available (missing values or hidden nodes).

Although dynamic Bayesian networks model the temporal interactions be-
tween genes, their structure is time-invariant. Song et al. (2009) proposed an
extension exploiting time-varying topologies to capture the systematic rewiring
of gene networks. Overall, dynamic Bayesian networks represent a powerful mod-
elling tool that accounts for the inherent stochasticity of the gene expression data
and accommodates missing variables. In the next section, linear state-space mod-
els, which represent a subclass of Dynamic Bayesian networks, are discussed.

3.2.4 Linear state-space models

Linear state-space models describe a dynamical system by a set of first order dif-
ferential (continuous-time representation) or difference (discrete-time representa-
tion) equations using unobserved internal variables also known as state variables,
representing independent energy storage elements of the system. In continuous-



46 3.2. Modelling dynamic GRNs

time, the state-space description of a dynamical system with input u(t) ∈ Rm and
output y(t) ∈ Rp takes the form:

ẋ(t) = Ax(t) + Bu(t) (3.12)

y(t) = Cx(t) + Du(t) (3.13)

where t ∈ R, x(t) = (x1(t), . . . , xn(t))
> is the state vector, n is the model order and

A, B, C and D are matrices with adequate dimensions. Equation (3.12) describes
the rate of change of the system’s energy given past realizations of the input and
state vector. Equation (3.13) gives the output signals for the current realizations of
the input and state vector.

The continuous-time representation can be discretized to:

x(t + 1) = Ãx(t) + B̃u(t) (3.14)

y(t) = Cx(t) + Du(t) (3.15)

where t ∈ Z and the matrices Ã and B̃ are given by:

Ã = eA∆t (3.16)

B̃ =
∫ ∆t

0
eAτBdτ (3.17)

with ∆t denoting the sampling time. An important property for monitoring
the system’s response to external perturbations and changes in the initial con-
dition is stability. Letting σ(A) = {z ∈ C |det(zI − A) = 0} denote the spec-
trum of A, the continuous-time system (3.12)-(3.13) is asymptotically stable (Hur-
witz stable) if σ(A) ⊆ CH, where CH = {z ∈ C|Re(z) < 0}. The discrete-time
system (3.14)-(3.15) is asymptotically stable (Schur stable) if σ(Ã) ⊆ CS, where
CS = {z ∈ C||z| < 1}. These stability conditions guarantee that given bounded
input signals, the output signals will also be bounded.

Methods for estimating stable state-space models from input-output observa-
tions consist of two steps: structure selection and parameter optimization. Struc-
ture selection is concerned with identifying the dimensionality of the state vector
and can be approached using cross-validation (Rangel et al., 2004), BIC or AIC. Pa-
rameter optimization is concerned with identifying the system’s matrices together
with the initial state and can be approached using non-iterative procedures based
on subspace methods (Van Overschee and De Moor, 1994) or iterative procedures
based on prediction error minimization (Ljung, 1998), EM (Dempster et al., 1977)
or variational Bayesian EM (Beal et al., 2005).
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The state-space formalism has recently penetrated the field of GRN reconstruc-
tion. Rangel et al. (2004) used state-space models to reverse engineer the tran-
scriptional network of genes involved in T-cell activation,Yamaguchi and Higuchi
(2006) modelled the regulatory pathways between genes involved in the cell cycle
regulation of yeast, Yamaguchi et al. (2007) estimated regulatory circuits between
gene-modules while Koh et al. (2009) used state-space models to infer gene regu-
latory relationships with time delays.

These studies used time series gene expression data as input and output sig-
nals for the state-space model, leaving the state variables to model unobserved
dynamics related to regulatory proteins or mRNA effects. Another widely used
approach is to let the state variables model the observed gene expression dynamics
(changes in gene expression levels over time (hours)) using the simplified state-
space description:

ẋ(t) = Ax(t) (3.18)

where t ∈ R and A = [aij] denotes the connectivity matrix. The weight aij mea-
sures the strength of the regulatory effect that xj(t) has on xi(t). A negative value
for aij indicates that gene j inhibits gene i while a positive value for aij indicates
that gene j activates gene i; a value of zeros indicates that gene j has no regulatory
effect on gene i. The system of equations (3.18) can be approximated by the system
of difference equations:

x(t + 1) = Ãx(t) (3.19)

where t ∈ Z and Ã is given by (3.16)

Given the time series gene expression data {x(tk)}N
k=1, the problem of mod-

elling the gene regulatory interactions using (3.18) or (3.19) reduces to estimating
the parameters of the matrices Ã or A. For the discrete-time representation, when
N > n, parameter estimation can be carried out using standard methods of lin-
ear algebra such as ordinary least squares. In practice, the number of temporal
observations is smaller than the number of measured genes. This makes the in-
ference problem ill-conditioned and the parameter estimation procedure prone to
over-fitting (Aluru, 2005).

To avoid the curse of dimensionality, Yeung et al. (2002) proposed a method
that searches among all the networks consistent with the data for the solution with
the smallest number of connections (sparsity); Wang et al. (2008) proposed an EM-
based algorithm to handle data shortage while D’haeseleer et al. (1999) and Bansal
et al. (2006) sampled cubic spline interpolants of the time series data to generate
enough samples to avoid ill-conditioning.

Another problem with estimating Ã comes from the irregular sampling of the
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data. Biological experiments usually produce unequally spaced time-series mea-
surements. Sampling asynchrony is often disregarded in studies modelling the
regulatory interactions using the discrete-time representation, the exception being
(Holter et al., 2001). Additionally, discrete-time models exhibit sensitivity issues
with respect to parameters in comparison to continuous-time models (Unbehauen
and Rao, 1998).

Gene regulatory pathways operate according to continuous dynamics. The
problem of estimating A was partially addressed in Bansal et al. (2006) were the
discrete model was converted to continuous form using a bilinear transformation.
Chen et al. (1999) directly estimated A using a Fourier series decomposition of
the time-series gene expression data. This method is restricted to genes driven
by cyclic (periodic) dynamics. Wang et al. (2006c) proposed approximating the
derivatives in (3.18) using first-order finite differences prior to parameter estima-
tion while Gustafsson et al. (2005) estimated derivatives from spline interpolation
of the data. However, taking derivatives poses the risk of increasing the noise level
in the data (Bansal et al., 2006, Unbehauen and Rao, 1998).

Stability of gene regulatory pathways has been largely disregarded as a bi-
ological constraint when modelling the connectivity between genes with linear
differential equations. In the absence of this fundamental feature, monitoring
the network’s response to specific interventions becomes impractical. Chen et al.
(1999) suggested setting the eigenvalues of the continuous-time dynamical system
to integer multiples of the cell cycle frequency followed by the estimation of the
linear parameters accounting for the connectivity between genes. Zavlanos et al.
(2011) used Gersgorin’s circle theorem and Lyapunov’s theorem to estimate stable
regulatory networks from steady-state gene expression data. Improvements and
extensions to this work are proposed in (Kulkarni et al., 2012) where stability con-
straints are formulated using Perron-Frobenius diagonal dominance conditions.
Finally, Chen et al. (2011) used Gergorin’s theorem to reverse-engineer discrete-
time gene regulatory networks from multiple time-course datasets.

The problem of estimating large scale stable GRNs with continuous-time rep-
resentation (3.18) from time-course measurements without using derivatives was
not addressed in the literature. This problem is solved in Chapter 6 where a novel
method for inferring stable GRNs is presented.
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3.3 Conclusions

Microarray gene expression data can provide a valuable insight into the biology
of the system being studied. To harness this power, a wide spectrum of modelling
formalism and computational tools were developed. This chapter provided a re-
view of the methods for deconvolving heterogeneous gene expression data and
for inferring GRNs models from time-course microarray measurements.

The survey of deconvolution methods discussed the limitations imposed by
sample heterogeneity with respect to the accurate interpretation of the results aris-
ing for differential expression studies and presented different formalism to extract
the missing biological information which can take the form of cell type-specific
proportions and/or cell type-specific expression levels. Within the framework
of estimating the cell type-specific proportions it was argued that only cell type
markers should be used in the deconvolution basis. Methods for selecting an
appropriate subset of basis genes were also discussed. When estimating the cell
type-specific expression levels it was claimed that microarray deconvolution leads
to more accurate results when it is performed in the linear space as opposed to the
logarithmic space, the latter being more appropriate for cell type-specific differen-
tial expression analyses. The lack of deconvolution methods that estimate the cell
type-specific contributions to the variance of gene expression patterns was also
discussed. The typical deconvolution scenario when only heterogeneous microar-
ray data is available was tackled within the framework of joint estimation of cell
type-specific proportions and cell type-specific expression levels. Deconvolution
methods within this class are more general as they address the challenges of the
constituent deconvolution frameworks.

The survey of GRN reconstruction methods presented data scarcity as the ma-
jor obstacle for reliable inference of the gene regulatory pathways and argued that
biological constraints should be used to narrow the space of topologies that fit
the data equally well. Additionally, three major modelling formalism were pre-
sented and their strengths were further discussed. Specifically, the Boolean and
probabilistic Boolean networks were shown to be appropriate for biological sys-
tems exhibiting switching behaviour between functional states; dynamic Bayesian
networks stand out by accounting for the inherent stochasticity of microarray data
while state-space models can capture the hidden factors driving the gene regula-
tory interactions. Within the framework of state-space models, in was pointed out
the lack of methods to model stable GRNs from time-course gene expression data
using systems of differential equations.



Chapter 4

A novel multi-stage feature
selection method for microarray
gene expression data

Multi-stage feature selection methods have emerged as a powerful alternative to
standalone methods (Bins and Draper, 2001, Tang et al., 2005). Peng et al. (2005)
proposed a two-stage method consisting of mRMR filter followed by a wrapper
approach operating in either forward or backward selection fashion.

Tang et al. (2007) stabilized the SVM-RFE algorithm using a pre-filtering step
that removes noisy and redundant genes. The resulting two-stage SVM-RFE method
is computationally more efficient, more accurate and more reliable than the stan-
dard SVM-RFE.

Peng et al. (2006) used a two-stage feature selection method for biomarker
discovery. The subset of relevant genes selected in the first stage using the Fisher’s
discriminant ratio filter (Wang et al., 2011) is further narrowed in the second stage
by a wrapper approach operating in sequential forward selection fashion.

Ahsen et al. (2012) proposed a two-stage approach that combines the L1-norm
SVM with the standard t-test and RFE. The method, called l1-STaR, uses random-
ized splits of the data into training and test partitions to stabilize feature ranking
at each step of the recursive procedure.

Bins and Draper (2001) proposed a three-stage feature selection method. The
first stage uses a modified Relief algorithm (Kononenko, 1994) to filter out irrele-
vant features. In the second stage, redundant genes are removed using a K-means
algorithm (MacQueen, 1967) while in the third stage relevant genes are selected us-
ing the Mahalanobis distance (Mahalanobis, 1936) inside various sequential search
strategies.

50
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Du et al. (2013) developed a three-stage feature selection method for microar-
ray gene expression data. The first stage uses an improved version of the signal-to-
noise ratio proposed by Golub et al. (1999) to remove irrelevant genes. In the sec-
ond stage, gene clusters obtained using a support vector clustering algorithm (Sun
et al., 2008) are ranked by a recursive cluster elimination method. Low-ranking
clusters are removed and a SVM-RFE algorithm is used to rank the genes in each
on the remaining clusters. The second stage ends with redundant (low-ranking)
genes being removed. The third stage uses the standard SVM-RFE algorithm to
select a final subset of genes.

This chapter proposes a new multi-stage feature selection method that com-
bines some of the approaches reviewed in Chapter 2 according to a hierarchical
structuring of different notions of relevance. Specifically, the method consists of
four feature selection stages imposing stage-specific levels of stringency, as shown
in Figure 4.1.
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Figure 4.1: Hierarchical organization of the stage-specific forms of relevance

Section 4.1 (Stage I) proposes a new unsupervised filter that selects biological
informative genes. In Section 4.2 (Stage II) this set of genes is further screened for
statistically significant differentially expressed genes using standard test statistics.
In Section 4.3 (Stage III) genes highly correlated with the class variable and min-
imally correlated with each other are selected from the set of genes selected in
Stage II. Section 4.4 presents the final stage (Stage IV) that narrows the space of
relevant genes to the subset with the highest discriminatory power. These stages
are combined within a methodological framework allowing for unbiased param-
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eter estimation and performance evaluation in Section 4.5. The resulting novel
multi-stage feature selection method is compared with the l1-StaR algorithm on
a time-course microarray data from patients suffering from ACS in Section 4.6.
Concluding remarks are given in Section 4.7.

4.1 Stage I: Filtering uninformative genes

The first stage of the multi-stage feature selection method consists of removing
uninformative genes. In Chapter 2 it was shown that many genes either generate
noisy signals or show little or no variation across conditions. Inappropriate filter-
ing of these uninformative genes can induce bias in statistical analyses of differen-
tial gene expression (Bourgon et al., 2010a). Conversely, appropriate combinations
of unsupervised filters and test statistics (see the marginal independence criterion
in Section 2.4.1 of Chapter 2) can substantially increase the power to detect true
differences (Bourgon et al., 2010a). This section proposes a novel unsupervised
filtering method for microarray data summarized with multi-mgMOS (Liu et al.,
2005).

Let X ∈ Rn×m denote the gene expression matrix, where n represents the
number of arrays and m represents the cardinality of the set of genes S0 =

{X1, X2, . . . , Xm}. The entries xij of X represent gene expression measurements
summarized with multi-mgMOS. For each xij, multi-mgMOS additionally esti-
mates the technical variance σ2

ij representing the uncertainty of xij. The aim of the
unsupervised filter proposed here is to remove genes whose technical variance
(the variance of the sampling distribution of the summarized gene expression lev-
els) exceeds their biological variance (the variance of the gene expression levels
across biological replicates). The technical variance (σ2

t ) of gene j across n arrays
was approximated with:

σ2
t =

1
n

n

∑
i=1

σ2
ij (4.1)

while the biological variance (σ2
b ) was approximated with:

σ2
b =

1
n− 1

n

∑
i=1

(xij − x̄j)
2 (4.2)

where

x̄j =
1
n

n

∑
i=1

xij (4.3)



Chapter 4. A novel multi-stage feature selection method for microarray data 53

The gene j was rejected if :
σ2

b
σ2

t
≤ 1 (4.4)

This procedure reduces S0 to S I , where the latter contains the gene satisfying
(4.4). If the technical variance σ2

t is the same across genes then the signal-to-noise
ratio (4.4) is equivalent to the overall variance filter. Note the similarity with the
I/NI calls filter presented in Chapter 2, which also represents a ratio between the
biological variance and the technical variance of a gene, where the latter quantity
is estimated internally during gene expression level summarization using FARMS.

The signal-to-noise ratio proposed here is equivalent to applying a variance
filter using a cut-off threshold specific to each probe set. For permutation invariant
and t-test statistics, the variance filter is marginally independent of the statistics
(Bourgon et al., 2010a).

4.2 Stage II: Gene subset selection using statistical tests

The second stage of the multi-stage feature selection method consists of selecting
from S I a subset of genes S I I that are statistically significant differentially ex-
pressed between case and control groups. The Welch’s t-test and the Wilcoxon’s
rank-sum test are used to asses differential gene expression. To correct for the mul-
tiplicity problems arising when testing multiple hypotheses, control of the pFDR
was used following the implementation guidelines proposed by Storey and Tib-
shirani (2003). The statistical tests together with the pFDR controlling procedure
are presented in the following sections.

4.2.1 The Welch’s t-test

The Welch’s t-test (Welch, 1947) represents a variant of the standard t-test for
equality of two population means. Like the standard t-test, it is a parametric test
that assumes the data are independently sampled from normal distributions. Un-
like the standard t-test, it assumes that the population distributions have unequal
variances.

Let C = {ci|ci ∈ {1, 2} for i = 1 . . . n} denote the class variable for the gene
expression matrix X, where ci represents the class label for the ith array. Also, let
C1 = {i|ci = 1} with cardinality k1 and C2 = {i|ci = 2} with cardinality k2 denote
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the sets of array indices for each class. The Welch’s t-statistic for Xj is:

Tj =
x̄(1)j − x̄(2)j√

σ2
(1)j
k1

+
σ2
(2)j
k2

(4.5)

where
x̄(l)j =

1
kl

∑
i∈Cl

xij (4.6)

and
σ2
(l)j =

1
kl − 1 ∑

i∈Cl

(xij − x̄(l)j )2 (4.7)

for l ∈ {1, 2}. Under the null hypothesis of no difference between the means of
the two populations, the sampling distribution of the Welch’s t-statistic is approx-
imated with a Student’s t distribution with degrees of freedom:

dj =

(
σ2
(1)j
k1

+
σ2
(2)j
k2

)2

1
k1−1

(
σ2
(1)j
k1

)2

+ 1
k2−1

(
σ2
(2)j
k2

)2 (4.8)

The Welch’s t-test was used in this work to test the null hypothesis that the gene
expression means of the case and control populations are equal against the alter-
native hypothesis that the means are unequal (with no particular concern on the
directionality of the difference).

4.2.2 The Wilcoxon’s rank-sum test

The Wilcoxon’s rank-sum test (Hollander et al., 2013) is a nonparametric test for
equality of two population medians. To compute the rank-sum statistic for Xj,
the measurements xij are sorted in ascending order and ranked based on their
position in the series. The rank given to equal measurements is the rank that each
individual measurement would have gotten in the absence of ties, divided by the
number of competing measurements for that rank. Let wi denote the rank given
to xij. The Wilcoxon’s rank-sum statistic is:

Wj = ∑
i∈Cl

wi − k1k2 −
kl (kl + 1)

2
(4.9)

where l corresponds to the class with the smallest number of samples. When
the compared groups have equal number of samples, either group can be used
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for computing Wj. Under the null hypothesis, the sampling distribution of the
Wilcoxon’s rank-sum tests tends asymptotically to the normal distribution
N (0, k1k2 (k1 + k2 + 1) /12) as min (k1, k2) approaches infinity.

The Wilcoxon’s rank-sum test was used in this work to test the null hypothesis
that the gene expression medians of the case and control populations are equal
against the alternative hypothesis that the medians are different (with no particu-
lar concern on the directionality of the difference).

4.2.3 pFDR control and q-value estimation

Chapter 2 introduced the q-value of a statistic (associated with a feature) as the
expected proportions of false positives among features with more extreme statis-
tics. Calling significant features (from S I) with q-values less that a predefined
threshold α produces a subset of features S I I containing an expected proportion
of false positives equal to α. When the number of hypotheses tested is large, as is
often the case for gene expression data, this procedure is equivalent to controlling
the pFDR at level α (Storey and Tibshirani, 2003). The following algorithm pro-
posed by Storey and Tibshirani (2003) provides conservative estimates for the true
q-values.

Step 1. Let p1 ≤ p2 ≤ · · · ≤ pm denote the ordered set of p-values resulted from
testing m hypotheses (one for each gene in the gene expression matrix X).

Step 2. Calculate the proportion of true null hypotheses

π̂0 (δ) =
#
{

pj > δ
}

m (1− δ)

for a range of δ taken from [0, 1].

Step 3. Fit a cubic spline f̂ with 3 degrees of freedom to π̂0 (δ) on δ.

Step 4. Set the estimate of π0 to be

π̂0 = f̂ (1)

representing the least biased estimate of the proportion of true null hypothe-
ses (δ = 1).

Step 5. Calculate

q̂(pm) = π̂0 · pm
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Step 6. Calculate

q̂(pi) = min
(

π̂0m · pi

i
, q̂(pi+1)

)

The resulting estimates q̂(p1) ≤ q̂(p1) ≤ · · · ≤ q̂(pm) are simultaneously less
than or equal to the true q-values (Storey et al., 2004). This conservative property
prevents the proportion of false positives from being underestimated.

4.3 Stage III: Gene subset selection using mRMR

The third stage of the multi-stage feature selection method consists of selecting
from S I I a subset of genes S I I I maximally correlated with the class variable C and
minimally correlated with each other. This step reduces the dimensionality of the
features set selected at stage two by choosing highly relevant genes from clusters
of co-regulated genes.

To this end the mRMR algorithm presented in Chapter 2 with the MIQ formu-
lation is used to select a subset S I I I of r relevant genes. The choice of the MIQ
formulation is supported by experimental results showing that mRMR performs
better on discretized data than on continuous data and that the MIQ formulation
selects subsets leading to superior prediction accuracy than the MID formulation
when discretized data is used (Ding and Peng, 2005).

In this work, gene expression data is discretized using the class-attribute con-
tingency coefficient (CACC) algorithm (Tsai et al., 2008) presented below.

4.3.1 The CACC discretization algorithm

Before presenting the steps of the algorithm, the standard teminology and notation
for data discretization will be introduced. Let xj denote the column j of the gene
expression matrix X and consider the more general case when the class variable
C = {ci|ci ∈ {1, . . . , c} for i = 1 . . . n} has c ≥ 2 classes. The continuous attribute
xj can be partitioned into a finite set of k adjacent intervals using the discretization
scheme:

D = {[d0, d1] , (d1, d2] , . . . , (dk−1, dk]} (4.10)

where d0 and dk represents the minimum and the maximum values of xj, re-
spectively, and d1, . . . dk−1 denote the cut-points. The class variable C and the
discretization scheme D define a quanta matrix (contingency table) (Ching et al.,
1995) for feature Xj. This structure is shown in Table 4.1, where qil represents the
number of samples belonging to class i and interval (dl−1, dl ], n+l represents the
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total number of samples in the interval (dl−1, dl ] and ni+ represents the number of
measurements in class i.

Table 4.1: Quanta matrix for feature Xj

Class Interval Sum of class
[d0, d1] . . . (dl−1, dl ] . . . (dk−1, dk]

0 q11 . . . q1l . . . q1k n1+
...

...
...

...
...

...
...

i qi1 . . . qil . . . qik ni+
...

...
...

...
...

...
...

c qc1 . . . qcl . . . qck nc+
Total n+1 . . . n+l . . . n+k n

A good discretization algorithm outputs a discretization scheme D that ensures
a high degree of interdependence between the discrete vector xD

j and the class
variable C thus preserving the original distribution of the data (Su and Hsu, 2005).
Data discretization methods can be divided into two major classes (Liu et al., 2002):
top-down and bottom-up.

• Top-down methods operate by splitting the range of xj. Starting with a
discretization scheme containing an empty set of cut-points, candidate cut-
points are evaluated and successively added to the discretization scheme
until a stopping criterion is met.

• Bottom-up discretization methods, on the other hand, operate by merging
intervals. Starting with a discretization scheme containing the complete list
of distinct values of xj as cut-points, adjacent intervals are merged until a
stopping criterion is met. Bottom-up methods usually have larger computa-
tional complexity than top-down methods (Tsai et al., 2008).

The CACC algorithm is a top-down method that measures the interdependency
between xD

j and the class variable C using the criterion:

cacc =

√
y′

y′ + n
(4.11)

where

y′ =
n

log k

c

∑
i=1

k

∑
l=1

q2
il

ni+n+l
(4.12)

Good discretization schemes are associated with high cacc values (Tsai et al., 2008).
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The CACC algorithm searches for D maximizing (4.11) using the following com-
putational procedure.

Step 1. Find the minimum d0 and the maximum dk of xj

Step 2. Sort the distinct elements of xj in ascending order

Step 3. Calculate the midpoints of all adjacent pairs in the set of ordered elements

Step 4. Initialize all possible cut-points B with the midpoints calculated at Step 3.

Step 5. Set the initial discretization scheme D : {[d0, dk]} and caccGlobal = 0.

Step 6. Initialize k = 1

Step 7. Add each cut-point from B \ D to D and compute the cacc value

Step 8. Select the discretization scheme D′ with the highest cacc value.

Step 9. If (cacc > caccGlobal) or (k < c)

1. Replace D with D′

2. Set caccGlobal = cacc

3. Set k = k + 1

4. Go to Step 7

Step 10. Else, set D′ = D and terminate.

The CACC algorithm compensates for the shortcomings of class-attribute in-
terdependence maximization (CAIM) (Kurgan and Cios, 2004), the state-of-the-art
top-down discretization method. Specifically, CACC is not biased towards the
class with the highest number of samples and avoids outputting a discretization
scheme in which the number of intervals is very close to the number of classes.

4.4 Stage IV: Gene subset selection using SVMs

The last stage of the multi-stage feature selection algorithm consists of selecting
from S I I I a minimal subset of genes S IV that best discriminate between groups. To
this end, a SVM-based wrapper approach was used to identify the combination of
genes with the highest prediction accuracy. Specifically the discriminatory power
of genes was assessed during ksvm-fold cross-validation runs of the SVM classifier:

f (x) = w>φ(x) + b (4.13)
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with Gaussian kernel:

κ
(
x, x′

)
= φ(x)>φ(x′) = e−

‖x−x′‖22
σ2 (4.14)

where ksvm is a user specified parameter, the vector of weights w and the bias
parameter b are optimized during the training stage while the scaling factor σ is
tuned before training. Methods for tuning σ and the SVM regularization parame-
ter C are discussed in the next section.

To generate candidate subsets of features for evaluation, sequential forward
selection is used. This search strategy is preferred to backward elimination due
to its simplicity and computational efficiency. Additionally, forward selection has
the advantage of identifying the gene with the highest discriminatory power as
opposed to backward selection which normally ignores it (Guyon and Elisseeff,
2003). The following procedure combines sequential forward selection with ksvm-
fold cross validation to select the genes that maximize the prediction performance
of the SVM classifier (4.13):

Required The set of optimal classifier parameters Vopt =
{

σopt, Copt
}

Step 1. Set S IV = ∅ and the associated accuracy AccGlobal = 0

Step 2. For each feature in S I I I \ S IV

1. Add it to S IV

2. Split the rows of X (samples) with columns S IV into ksvm parts

3. Train the SVM classifier using Vopt on ksvm − 1 parts

4. Test the SVM classifier on the hold-out part

5. Repeat line (3) and (4) for all ksvm possible choices of the held-out part

6. Count Nhit, the total number of correctly classified instances

7. Set AccLocal =
Nhit

n

Step 3. Select the subset S IV with maximum AccLocal

Step 4. If (AccLocal > AccGlobal)

1. Set AccGlobal = AccLocal

2. Go to Step 2 with the new S IV

Else output S IV and AccGlobal from Step 2 and terminate.
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4.5 Model selection and reliable performance evaluation

The previous sections introduced the stages of the multi-stage feature selection
method. If these stages are sequentially applied on the whole data set X, given
user-supplied parameters P = {α, r, ksvm} and optimal classifier parameters Vopt ={

σopt, Copt
}

, the subset of genes with the highest discriminatory power is returned.
However, the cross-validation error of the classifier will be a biased estimate of the
true error incurred when testing the classifier on independent data. This feature
selection bias occurs when the test instances are also used to select differentially
expressed genes (Ambroise and McLachlan, 2002). Additionally, tuning the clas-
sifier parameters σ and C can induce bias in the estimation of the true error if it is
performed external to the training stage of the classifier i.e. borrows information
from the test instances (Varma and Simon, 2006).

Section 4.5.1 discusses the nested cross-validation design as a solution to the
feature selection bias and the parameter selection bias. This methodological frame-
work allowing for appropriate model selection and reliable performance evalua-
tion will serve as a template for combining the feature selection stages of the
multi-stage algorithm in Section 4.5.2.

4.5.1 The nested cross-validation design

The methodological framework for appropriate model selection and reliable per-
formance evaluation consists of two nested cross-validation loops (Statnikov et al.,
2005). The external loop addresses the feature selection bias and is used to ob-
tain a conservative estimate of the true classification performance while the inter-
nal loop addresses the parameters selection bias and is used for model selection.
These steps are discussed in more detail below.

The external cross-validation loop

To correct for the feature selection bias, supervised feature selection must be
performed within each fold of an external cross-validation loop (Ambroise and
McLachlan, 2002, Varma and Simon, 2006), as shown in the following procedure:

Required The set of optimal classifier parameters Vopt =
{

σopt, Copt
}

Step 1. Split the rows of X into kext random parts of roughly equal sizes

Step 2. Perform feature selection on XTraining consisting of kext − 1 parts of X

Step 3. Train the classifier on XTraining using Vopt and features selected at Step 2
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Step 4. Test the classifier on the hold-out part XTest

Step 5. Repeat Step 2 - Step 4 for all kext possible choices of XTest

Step 6. Return the cross-validation estimate of the prediction error εcv

The cross-validation estimate of the prediction error representing the ratio of the
number of misclassified examples to the total number of examples in X (Stone,
1974) will be corrected for the selection bias as the cross-validation loop was ex-
ternal to the feature selection process (Ambroise and McLachlan, 2002). However,
this estimate will be still subject to its own bias. Specifically, the cross-validation
estimate of the prediction error will be unbiased only for data subsets of n− n/kext

size (Bengio and Grandvalet, 2005).

The leave-one-out-CV (LOOCV) error corresponding to kext = n is nearly
unbiased as an estimator of the true error given the whole data X (Braga-Neto
and Dougherty, 2004). The widely used 10-fold cross-validation setup provides a
more biased but less variable estimate of the true prediction error (Ambroise and
McLachlan, 2002).

Depending on the stability of the feature selection method (i.e. sensitivity to
variations in the training set)(Kalousis et al., 2007), different subsets sharing at
most only a few common features may be selected in Step 2 of each fold. Ranking
these features in terms of their frequency of occurrence can shade light on their
consistency to differentiate between groups.

The internal cross-validation loop

To correct for the parameter selection bias, tuning of the classifier parameters must
be done within an internal cross-validation loop for each XTraining associated with
the external cross-validation loop (Statnikov et al., 2005, Varma and Simon, 2006).
The following procedure uses a grid-search approach for parameter tuning.

Required Range of classifier parameters V =
{(

σi, Cj
)
|i = 1, . . . , s; j = 1, . . . , q

}
Step 1. Split XTraining into kint random parts of roughly equal sizes

Step 2. For each pair
(
σi, Cj

)
1. Train the classifier on kint − 1 parts

2. Test the classifier on the hold-out part

3. Repeat (1) and (2) for all kint possible choices of the hold-out part
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Step 3. Select the pair of parameters Vopt =
{

σopt, Copt
}

on XTraining minimizing
the cross-validation error

Alternatively, a simplex search approach (Lagarias et al., 1998) could be used to
automatically select the optimum classifier parameter, as described in the follow-
ing procedure:

Required Range of random initial values for the classifier parameters: V0 =

{(σ0,i, C0,i)}i=1...s

Step 1. Split XTraining into kint random parts of roughly equal sizes

Step 2. Use a simplex search algorithm that starts from (σ0,i, C0,i) and returns the
set of parameters Vopt =

{
σopt, Copt

}
minimizing the cross-validation error

Step 3. Repeat Step 2 for each pair (σ0,i, C0,i)

Step 4. Select Vopt with the minimum cross-validation error

The optimal set of parameters Vopt resulting from either of the search procedures
is later used for training the classifier on Xtrain. Note that different sets of pa-
rameters may be selected for each Xtrain. If the goal is to identify only one set
of parameters to train the classifier on the whole data X, then either of the two
optimization procedures should be applied on X, after am unbiased estimate of
the classification performance was obtained using the nested design.

4.5.2 The multi-stage feature selection method

To select a subset of relevant genes and estimate a conservative bound of the clas-
sifier’s performance on independent data, the supervised feature selection stages
(Stage II, Stage III and Stage IV) were combined within a nested cross-validation
design, as shown in Figure 4.2 and described in the following procedure. Note
that Stage I consists of an unsupervised filter and therefore can be applied on the
whole dataset without interfering with performance evaluation.

Required User-supplied parameters P = {α, r, ksvm, kext, kint}, range of classifier
parameters V =

{(
σi, Cj

)
|i = 1, . . . , s; j = 1, . . . , q

}
Step 1. Apply Stage I on X to select S I

Step 2. Split X with columns S I into kext random parts of roughly equal sizes

Step 3. For each XTraining consisting of kext − 1 parts of X
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1. Split XTraining into kint random parts of roughly equal sizes

2. For each pair
(
σi, Cj

)
2.1. Apply Stage II using α on kint − 1 parts to select S I I

2.2. Apply Stage III using r (without data discretization) on the same
kint − 1 parts with columns S I I to select S I I I

2.3. Train the classifier on kint − 1 parts with columns S I I I

2.4. Test the classifier on the hold-out part

2.5. Repeat (2.1)-(2.4) for all kint possible choices of the hold-out part

3. Select Vopt =
{

σopt, Copt
}

minimizing the cross-validation error

4. Apply Stage II using α on XTraining to select S I I

5. Apply Stage III using r (with data discretization) on XTraining with columns
S I I to select S I I I

6. Apply Stage IV using ksvm and Vopt =
{

σopt, Copt
}

on XTraining with
columns S I I I to select S IV

7. Train the classifier using Vopt =
{

σopt, Copt
}

and S IV on XTraining

Step 4. Test the classifier on the hold out part Xtest

Step 5. Repeat Step 3 and Step 4 for all kext possible choices of XTest

Step 6. Return the cross-validation estimate of the prediction error εcv

The classifier parameters are tuned using a grid-search approach. Replacing this
optimization method with a simplex search is straightforward. Note that fea-
ture selection (without data discretization) is also performed in the internal cross-
validation loop. This dimensionality reduction step reduces the computational
burden associated with training the classifier.

The final set of relevant features S f (for which we have a nearly unbiased esti-
mate of the classifier’s accuracy acv = 1− εcv when kext approaches n) is taken as
the union of the subsets S IV selected in the external cross-validation loop. Each
feature is assigned a measure of relevance denoted by their frequency of occur-
rence in the subsets S IV .

Building the final prediction model using all the arrays consists of (Varma and
Simon, 2006):

• Tuning the classifier parameters on X (see Section 3.5.1)

• Selecting relevant features using X (without partitioning)
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• Training the classifier on X using the best model parameters and set of rele-
vant features

• Estimating a conservative bound for the classifier’s performance acv using
the nested cross-validation design

Ambroise and McLachlan (2002) noted that the set of genes selected using all the
arrays and the sets of genes selected in the external cross validation loop may
share at most a few common genes. Since the estimate acv directly relates to the
sets of genes selected in the external loop, the features for the final prediction
model can be selected by applying Stage IV on X with columns defined by S f .
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Figure 4.2: Nested cross-validation design of the multi-stage feature selection al-
gorithm.
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4.6 Gene selection for ACS classification

The multi-stage feature selection method and the l1-STaR algorithm were applied
on a time-course microarray dataset, provided by Doctor Marta Milo, containing
gene expression measurements from patients with ACS to identify differentially
expressed genes between the diagnostic groups of the disease. These genes could
serve as new biomarkers for diagnosis or direct the identification of drug targets
that may ultimately lead to clinical trials.

To this end, two genome-wide expression studies were conducted. The first
study compared the aggregated cohort of NSTEMI and STEMI patients, denoted
as the MI group, against the UA group. The second study compared the NSTEMI
group against the STEMI group.

This section is organized as follows. Section 4.6.1 describes the time-course
microarray data set. Section 4.6.2 presents a comparative analysis of the results for
the first study obtained using the multi-stage feature selection methods against the
findings of l1-STaR. Section 4.6.3 presents the results for the second study within
the same comparative framework. The criteria for comparison are: classification
performance, average number of genes used for classification and length of the
interval of differential expression.

4.6.1 The ACS dataset

The study cohort consists of 33 patients admitted to Sheffield Teaching Hospitals
with chest pain. Based on presenting ECG findings and presence or absence of el-
evated levels of serum troponin levels, patients were diagnosed as having suffered
from NSTEMI(n = 14), STEMI (n = 8) or UA(n = 11). Peripheral blood samples
were collected in Tempus tubes at day 1, day 3, day 7, day 30 and day 90 after hos-
pital admission. Blood samples for 12 visits couldn’t be obtained (see Table 4.2 for
details). Total RNA was isolated from the blood samples using standard protocols.
Transcriptomic abundance was measured using Affymetrix Human Genome U133
Plus 2.0 arrays containing 54675 probe sets. A total of 153 microarray experiments
were thus performed.

The multi-mgMOS R-package (Pearson et al., 2009) was used to estimate ex-
pression levels and standard errors for each probe set from raw microarray data
(subsets of data consisting of estimated expression levels and associated standard
errors are shown in Table B.1 and Table B.2 of Appendix B). Additionally, ro-
bust group-specific gene expression averages and standard errors were obtained
for each time point using the probability of positive log ratio (PPLR) (Liu et al.,
2006). This later dataset, onwards referred to as the combined dataset, describes
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the time-course average behaviour for each gene in each of the three diagnostic
groups.

Table 4.2: Amount of patients by visits and diagnostic groups

Visit NSTEMI STEMI UA Total
Day 1 14 8 11 33
Day 3 11 5 9 25
Day 7 14 8 10 32
Day 30 14 8 10 32
Day 90 13 8 10 31
Total 66 37 50 153

4.6.2 Selection of differentially expressed genes between MI and UA

The aim of this study is to identify genes that can distinguish between MI and UA
in a time window of 90 days after hospital admission. The following two sections
present the results obtained using the multi-stage feature selection method and
the l1-STaR algorithm, respectively.

Results using the multi-stage feature selection method

The multi-stage feature selection method was applied on the 153 arrays from
MI and UA patients using the set user parameters P = {α, r, ksvm, kext, kint} =

{0.01, 200, 10, 10, 9} and range of classifier parameters V = Rσ ×RC where Rσ =

RC =
{

10−3, 10−2.5, . . . , 102.5, 103}. To account for possible departures from nor-
mality of the aggregated case group, the two-tailed Wilcoxon’s rank-sum test was
used at Stage II. Thresholding q-values at significance level α = 0.01 means that
in S I I , on average, one gene among 100 is expected to be a false positive. The
cardinality of S I I I was set to the conservative value r = 200 on the grounds that
tens of genes are usually sufficient to discriminate between groups on microarray
datasets (Ding and Peng, 2005, Peng et al., 2005). At Stage IV a stratified 10-fold
cross-validation partitioning (ksvm = 10) of the data was used (stratified partitions
contain roughly the same class proportions as in the class variable C). A nested
stratified 10-fold cross validation design (Statnikov et al., 2008) corresponding to
a 9-fold stratified cross-validation design in the inner loop (kint = 9) and a 10-fold
stratified cross-validation design in the outer loop (kext = 10) was adopted.

Stage I of the multi-level feature selection method produced a subset S I of
29050 potentially informative probe sets. Examples of non-informative and in-
formative probe sets are shown in Figure 4.3. It can be seen that the technical
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variance of the non-informative probe set exceeds its biological variance. The op-
posite holds true for the informative probe set.
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Figure 4.3: Expression levels across arrays for (a) a non-informative probe set
and (b) an informative probe set. The bars denote the technical variance of each
measurement.

Stage II removed genes with small effect size (Hedges’ g score close to 0), as
shown in Figure 4.4. The mean densities were computed by averaging the densities
of the Hedge’s g scores for the subsets S I I and S I I I (selected in the external cross-
validation loop), respectively. In the calculation of the Hedges’ g scores, the MI
and the UA groups were taken as the first and second population, respectively.
An average of 3189 genes were selected at Stage II (standard deviation = 965.5).
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Figure 4.4: Mean densities (dotted lines) of the Hedges’ g scores for the subsets of
gene selected using pFDR (Stage II) and mRMR (Stage III) in the external cross-
validation loop. The continuous lines denote one standard deviation around the
mean densities.
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The left mode of the mean density associated with the subsets S I I (pFDR)
shows that the majority of differentially expressed genes are down-regulated in
the MI group compared to the UA group. Also note that the left mode of the
mean density associated with the subsets S I I I (mRMR) is negatively skewed. This
suggests the presence of genes with large effect size highly correlated with the
class variable and minimally correlated with the other differentially expressed
genes selected at Stage II.

The high correlation with the class variable can be visualized in Figure 4.5
which shows that the time-course expression averages of the genes in one of the
subsets S I I I , belong to group-specific clusters. In addition, in the MI group the
vectors of gene expression averages associated with each visit also cluster, indicat-
ing that the selected genes have similar time-course profiles in the NSTEMI and
STEMI groups. These patterns are consistent across eight of the subsets S I I I se-
lected in the external cross-validation loop. The cosine distance (Pang-Ning et al.,
2006) was used to measure the similarity between the time-course vectors of gene
expression averages (columns in Figure 4.5) while one minus the Pearson corre-
lation coefficient (Goshtasby, 2012) was used for the gene clusters. The distance
between cluster trees was measured using the average linkage (Hastie et al., 2009).
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Figure 4.5: Hierarchical clustering of the group-specific expression averages of the
genes selected at Stage III in one fold of the external cross-validation loop.

Stage IV selected minimal subsets of genes S IV with high discriminatory power.
These subsets together with their classification performance are listed in Table 4.3.
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The union of these subsets (S f ) consist of 36 probe sets, referred to as X1 − X36,
corresponding to 36 unique genes. These genes are listed in Table B.3 of Appendix
B together with their Hedges’ g score (computed across 153 arrays) and frequency
of occurrence in the subsets S IV . The optimal classifier parameters for each fold
of the external cross-validation loop are listed in Table B.4 of Appendix B.

Table 4.3: Classification performance of the subsets of genes S IV

Fold Number of arrays Selected genes
Training set Test set Predicted

1 138 15 15 X1, X2, X3, X11,
X12, X16

2 137 16 16 X1, X2, X3, X8,
X10, X17, X32

3 137 16 16 X2, X3, X4, X13,
X30, X35

4 137 16 14 X1, X2, X8, X20,
X21, X25, X26, X29

5 138 15 14 X1, X2, X5, X19,
X22

6 138 15 13 X1, X2, X6, X9,
X27, X34

7 138 15 15 X1, X4, X7, X15,
X18, X24, X28, X31

8 138 15 14 X1, X2, X6, X7,
X14, X23

9 138 15 14 X1, X2, X3, X5,
X36

10 138 15 15 X1, X2, X3, X4,
X33

The classifier achieves a 95.4% accuracy on the test data (total number of cor-
rectly classified sampled over total number of test instances) using an average of
6.4 genes. These findings suggest that the classifier can efficiently distinguish be-
tween MI and UA during the three months after hospital admission. Although the
classification boundary is non-linear, an insight into the discriminatory power of
the genes in S f can be grasped by inspecting Figure 4.6 which shows the cluster-
ing of group-specific expression averages in the linear space spanned by the first
two principal components. The principal component analysis also suggests that
at each time point there are genes differentially expressed between MI and UA
groups. Examples of genes consistently differentially expressed across all the time
points are shown in Figure 4.7. The time-course statistics of the remaining genes
are shown in Figure B.1 and B.2 of Appendix B.
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Figure 4.6: Principal component analysis of the combined expression data of S f .
Dotted lines represent one standard deviation around the group-specific gene ex-
pression averages projected onto the principal components space.
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Figure 4.7: Group-specific expression averages across visits for (a) X1 (WASH1),
(b) X3 (C17orf103) and (c) X6 (OSBP2). The bars denote one standard deviation
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Results using l1-STaR

The results presented in this section were obtained using the Matlab implemen-
tation of the l1-STaR algorithm, published at (Nitin K Singh, 2013). Table 4.4 lists
the parameters of the algorithm.

Table 4.4: l1-STaR parameters

Parameter Description Default value
k1 Fraction of control group data used for training 0.5
k2 Fraction of case group data used for training 0.5
h Trade-off between sensitivity and specificity 0.5
η Regularization parameter for the L1-norm SVM 0.5
α Significance level for the t-test 0.05
N Number of randomized data splits 80

The authors of l1-STaR suggest setting k1 and k2 to values less than or equal
to half the number of examples in the control group and case group, respectively.
In this study, the default values for k1 and k2 were used (corresponding to half
the number of examples). The parameter h was also used with the default val-
ues to assign equal importance to predicting the instances of each group. Given
that l1-STaR algorithm doesn’t automatically select an optimal value for the regu-
larization parameter, candidate values for η were sequentially chosen from the set
Rη = {0.1, 0.3, 0.5, 0.7, 0.9}. The significance level α was used with its default value
while the number of randomized data splits was set to N = 30 for computational
reasons.

The l1-StaR algorithm was applied for each η ∈ Rη on the same training parti-
tions of the external cross-validation loop used for the multi-stage feature selection
study and the performance was evaluated on the corresponding test partitions. In
the training partitions, only the genes in S I were used to prevent the algorithm
from selecting relevant but noisy genes. Table 4.5 lists the classification accuracy
together with the average number of selected genes for each value of regulariza-
tion parameter η.

Table 4.5: l1-STaR performance and number of selected genes for each η

η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.9
Accuracy 98 % 96.7 % 98% 99.3% 98.6%

Number of genes 12.3 12.9 12.6 12.9 12.3

The highest prediction performance (99.3%) is achieved for η = 0.7. The perfor-
mance of the subsets of genes selected for each training partition using this value
is shown in Table 4.6. The union of these subsets (S∗f ) consists of 34 probe sets,
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referred to as X∗1 − X∗34, corresponding to 33 unique genes. These genes are listed
in Table B.5 of Appendix B together with their Hedge’s g score (computed across
the 153 arrays) and frequency of occurrence in the subsets associated with each
training partition. The principal component analysis of the combined expression
data of S∗f shown in Figure 4.8 provides an insight into the discriminatory power
of these genes. As in the case of S f , the group-specific gene expression averages
form clusters in the linear space spanned by the first two principal components.

Table 4.6: Classification performance of the subsets of genes selected by l1-StaR

Fold Number of arrays Selected genes
Training set Test set Predicted

1 138 15 15 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗8 , X∗10, X∗11, X∗17, X∗26

2 137 16 16 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗8 , X∗11, X∗13, X∗14, X∗18

3 137 16 16 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗8 , X∗10, X∗11, X∗12, X∗25

4 137 16 16 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗8 , X∗9 , X∗10, X∗20, X∗21, X∗23

5 138 15 15 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗8 , X∗10,X∗12,X∗18, X∗27,X∗30,X∗31

6 138 15 14 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 , X∗8 ,
X∗9 , X∗13, X∗14, X∗15, X∗16, X∗32, X∗34

7 138 15 15 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗9 , X∗10 ,X∗11, X∗12, X∗13, X∗16

8 138 15 15 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗8 , X∗9 , X∗11, X∗15

9 138 15 15 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗7 ,
X∗9 , X∗19, X∗24, X∗28, X∗33

10 138 15 15 X∗1 , X∗2 , X∗3 , X∗4 , X∗5 , X∗6 , X∗9 , X∗10,
X∗12, X∗13, X∗14, X∗17, X∗19, X∗22, X∗29

The l1-StaR algorithm uses, on average, twice the number of genes selected by
the multi-stage method to increase the classification performance by 3.9%. How-
ever, most of these genes don’t exhibit long-term differential expression but dis-
tinguish between the groups only at specific time-points, as shown in Figure D.3
and Figure D.4 of Appendix D, where the dynamic profiles of the genes X∗1 − X∗20

are presented. The remaining genes exhibit similar overlapping profiles. In com-
parison, Figure D.1 and Figure D.2 show that the genes X1 − X20 selected by the
multi-stage method are differentially expressed over multiple time-points which
strengthen their utility as potential biomarkers. The gene expression dynamics
were modelled using a technique described in Chapter 6. Thus, the l1-StaR algo-
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Figure 4.8: Principal component analysis of the combined expression data of S∗f .
Dotted lines represent one standard deviation around the group-specific gene ex-
pression averages projected onto the principal components space.

rithm leads to better classification performance whereas the multi-stage method,
whilst providing a comparable classification performance, appears to be more ap-
propriate for biomarker discovery.

4.6.3 Selection of differentially expressed genes between NSTEMI and
STEMI

The aim of this study is to identify genes that can help distinguish between
NSTEMI and STEMI in a time window of 90 days after hospital admission. The
following two sections present the results obtained using the multi-stage feature
selection method and the l1-STaR algorithm, respectively.

Results using the multi-stage feature selection method

The multi-stage feature selection method was applied on the 103 arrays from
NSTEMI and STEMI patients with the same set of user parameters P , range of
classifier parameters V and settings for the nested-cross validation used for the
first study. The Welch’s t-test was used at Stage II to asses differential gene ex-
pression.

Stage I of the multi-level feature selection method produced a subset S I of
27910 potentially informative probe sets. Figure 4.9 shows an example of a non-
informative and an informative probe set, respectively.

The subsets S I I of differentially expressed genes selected in each fold of the ex-
ternal cross-validation loop contain, on average, only a small proportion of genes
with small effect size (Hedges’ g score close to 0). This can be seen by inspect-
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Figure 4.9: Expression level across arrays for (a) a non-informative probe set and
(b) an informative probe set. The bars denote the technical variance of each mea-
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of gene selected using pFDR (Stage II) in the external cross-validation loop. The
continuous lines denote one standard deviation around the mean density.

ing Figure 4.10, which shows the mean density of the Hedges’ g scores for these
subsets. In the calculation of the Hedges’ g scores, the NSTEMI and the STEMI
groups were taken as the first and second population, respectively. An average
of 187.40 genes were selected at Stage II (standard deviation = 103.85). Only sub-
sets S I I of more than 200 genes were screened at Stage III. The remaining subsets
were directly advanced to Stage IV. The subsets S I I I together with the subsets S I I

of cardinality less than 200 contain genes highly correlated with the class vari-
able. Figure 4.11 shows that the time-course expression averages of the genes in
one of these subsets belong to group-specific clusters. This pattern is consistent
across nine of the subsets. The clustering was performed using the same similarity
metrics adopted for the first study.

The subsets S IV selected at Stage IV together with their classification perfor-
mance are listed in Table 4.7. The union of these subsets (S f ) consist of 21 probe
sets, referred to as X1 − X21, corresponding to 20 unique genes. These probe sets
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Figure 4.11: Hierarchical clustering of the group-specific expression averages of
the genes selected at Stage II in one fold of the external cross-validation loop.

are listed in Table B.6 of Appendix B together with their Hedges’ g score (com-
puted across the 103 arrays) and frequency of occurrence in the fold-specific sub-
sets. The optimal classifier parameters for each fold of the cross-validation loop
are listed in Table B.7 of Appendix B.

Table 4.7: Classification performance for the subsets of genes S IV

Fold Number of arrays Selected genes
Training set Test set Predicted

1 93 10 10 X1, X4, X6, X8
2 92 11 11 X1, X9, X12, X16
3 92 11 11 X1, X2, X3, X17, X21
4 92 11 11 X1, X2, X3, X6
5 93 10 9 X4, X7, X8, X15
6 93 10 10 X1,X2,X3,X5
7 93 10 10 X1, X9, X10, X14, X20
8 93 10 10 X2, X4 ,X5, X6, X13
9 93 10 10 X1, X4, X6, X11, X18, X19
10 93 10 10 X1, X2, X3, X5

The classifier achieves a 99% accuracy on the test data using an average of
4.5 genes. These findings suggest that the classifier can efficiently distinguish
between NSTEMI and STEMI during the three months after hospital admission.
Figure 4.12 shows the clustering of group-specific expression averages for all the



Chapter 4. A novel multi-stage feature selection method for microarray data 77

21 probe-sets in the linear space spanned by the first two principal components.
The principal component analysis also suggest that at each time point there are
genes differentially expressed between NSTEMI and STEMI groups. Examples of
genes consistently differentially expressed across all the time points are shown in
Figure 4.13. The time-course statistics of the remaining genes are shown in Figure
B.3 and B.4 of Appendix B.
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Figure 4.12: Principal component analysis of the combined expression data of
S f . Dotted lines represent one standard deviation around the group-specific gene
expression averages projected onto the principal components space.
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Figure 4.13: Group-specific expression averages across visits for (a) X1 (HLA-
DQB1), (b) X2 (MAPK8Ip1) and (c) X21 (LRRC37A). The bars denote one standard
deviation around the mean expression levels.
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Results using l1-STaR

The l1-StaR algorithm was applied on the external training partitions of the multi-
stage feature selection study using the parameters settings discussed in the MI vs.
UA study. The training partitions contained only the genes in S I , to prevent the
algorithm from selecting relevant but noisy genes. The performance of the subsets
of genes selected on each training set was evaluated on the corresponding test
set. Table 4.8 lists the classification accuracy together with the average number of
selected genes for each value of regularization parameter η.

Table 4.8: l1-STaR performance and number of selected genes for each η

η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.9
Accuracy 97 % 99 % 99% 98% 100%

Number of genes 6 5.3 5.6 5.6 4.9

The highest prediction performance (100%) is achieved for η = 0.9. The perfor-
mance of the subsets of genes selected for each training partition using this value
is shown in Table 4.9. The union of these subsets (S∗f ) consists of 11 probe sets,
referred to as X∗1 − X∗11, corresponding to 10 unique genes. These probe sets are
listed in Table B.8 of Appendix B together with their Hedge’s g score (computed
across the 103 arrays) and frequency of occurrence in the subsets associated with
each training partition. The principal component analysis shown in Figure 4.8
provides an insight into the discriminatory power of the genes in S∗f .

Table 4.9: Classification performance of the subsets of genes selected by l1-StaR

Fold Number of arrays Selected genes
Training set Test set Predicted

1 93 10 10 X∗1 , X∗2 , X∗3 , X∗4 , X∗7
2 92 11 11 X∗1 , X∗2 , X∗3 , X∗4 , X∗5
3 92 11 11 X∗1 , X∗2 , X∗3 , X∗6
4 92 11 11 X∗1 , X∗2 , X∗3 , X∗4
5 93 10 10 X∗1 , X∗2 , X∗3 , X∗6 , X∗7
6 93 10 10 X∗1 , X∗2 , X∗3 , X∗4 , X∗5
7 93 10 10 X∗1 , X∗2 , X∗3 , X∗4 , X∗7 , X∗11
8 93 10 10 X∗1 , X∗2 , X∗3 , X∗5 , X∗6
9 93 10 10 X∗1 , X∗2 , X∗3 , X∗5
10 93 10 10 X∗1 , X∗2 , X∗3 , X∗4 , X∗9 , X∗10

While the multi-stage method misclassifies one array in one of the ten testing
partitions, the l1-StaR algorithm identifies subsets of genes that perfectly discrim-
inate between the NSTEMI and STEMI groups on all testing partitions. However,
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Figure 4.14: Principal component analysis of the combined expression data of
S∗f . Dotted lines represent one standard deviation around the group-specific gene
expression averages projected onto the principal components space.

as noticed in the case of the MI vs. UA study, the genes identified by l1-StaR
don’t exhibit the long differential expression observed in the genes selected by the
multi-stage method. This can be observed by comparing the dynamic profiles of
the genes selected by l1-StaR shown in Figure D.10 of Appendix D against the
dynamic profiles of the genes selected by the multi-stage method shown in Fig-
ure D.8 and Figure D.9. It appears the multi-stage method identifies many more
genes that are differentially expressed over multiple time-points that the l1-StaR
algorithm. This feature renders the multi-stage method more appropriate for fea-
ture selection studies based on time-course microarray data.

4.7 Conclusions

This chapter proposed a new multi-stage feature selection method operating in a
nested cross-validation fashion. The internal loop is used to select optimal model
parameters while the external loop is used to select relevant features and provide
an unbiased estimate of the their predictive performance.

In Stage I, a new unsupervised filter that takes advantage of the uncertainty
around the gene expression measurements summarized with multi-mgMOS was
used to select biological informative genes (i.e remove nosy and housekeeping
genes). If the gene expression data are summarized using other methods, the
filter can be replaced by any of the unsupervised filters presented in Chapter 2.

In Stage II, differentially expressed genes were selected using either the Welch’s
t-test (when the population distributions were assumed to be normal) or the
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Wilcoxon’s rank-sum test (when no distributional assumptions were made about
the data). Note that any other statistical test that is marginally independent with
the filter in Stage I can be used. To correct for the multiplicity problem, pFDR
control was adopted.

In Stage III, genes highly correlated with the class variable and minimally cor-
related with each other were selected using mRMR with MIQ formulation given
the superior classification performance over the MID formulation. However the
MID formulation is more stable that the MIQ formulation (Gulgezen et al., 2009).
If there is little overlap between the subsets selected in the external cross-validation
loop, the MID formulation could be used for more consistent results.

In Stage IV, a SVM-based wrapper approach operating in a sequential forward
selection fashion was used to select the minimal subset of genes associated with
the highest discriminatory power.

Excluding the new unsupervised filter, the remaining methods have been pre-
viously used in feature selection studies. However, to the author’s knowledge, this
is the first time the methods have been combined within a multi-stage method that
not only avoids the sources of bias in performance evaluation but outputs at each
step subsets satisfying stage-specific measures of relevance which can be used for
other downstream analyses.

The novel multi-stage feature selection method and the l1-StaR algorithm were
compared in two differential expression studies based on time-course microarray
data from patients with ACS. The l1-StaR algorithm selected, on average, more
genes than the multi-stage method ( 12.9 compared to 6.4 in the first study; 4.9
compared to 4.5 in the second study) providing better diagnostic performance
(99.3% compared to 95.4% in the first study; 100% compared to 99% in the sec-
ond study). While both methods identify genes than can efficiently distinguish
between the diagnostic groups of ACS three months after hospital admission, the
genes selected by the multi-stage method show longer-term differential expression
than the genes selected by l1-StaR, suggesting that the method is more appropriate
for biomarker discovery in time-course microarray studies.

Given the absence of pre-admission data, extensive biological research is needed
to investigate the causes underlying the observed differences in the expression
level of these genes. These differences could be attributed to:

• the response of the gene regulatory network to the ACS episode

• changes in the patient’s physical activity and/or dietary habits

• differences in blood cell counts

• medication
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Genes responding to the ACS episode could have powerful implications in terms
of diagnosis. In the context where the temporal utility for diagnosis of the known
cardiac markers is at most 14 days after onset of the symptoms, genes differentially
expressed up to 90 days after hospital admission could become reliable biomark-
ers for late diagnosis. Additionally, if some of the genes were also differentially
expressed before the ACS events, new hypothesis about the genetic predisposition
to heart attacks could be formulated.



Chapter 5

A novel deconvolution method for
microarray gene expression data

Deconvolution of heterogeneous gene expression data represents a powerful al-
ternative to cell separation methods for identifying cell type-specific markers and
studying the dynamics of cell populations. As discussed in Chapter 3, there are
three major classes of deconvolution methods estimating cell type-specific propor-
tions and/or cell type-specific expression levels from heterogeneous microarray
data. Existing methods estimating cell type-specific expression levels don’t mea-
sure the contribution of each cell type to the variance of the heterogeneous gene
expression measurements. This information could reveal sources of interindivid-
ual variation in gene expression patterns and provide a deeper understanding of
the biological system under study.

This chapter proposes in Section 5.1 a novel approach to estimate positive cell
type-specific expression levels from heterogeneous microarray data that exploits
the OFR approach (Billings et al., 1988). This method naturally quantifies the con-
tribution of each cell type to the variance of the gene expression patterns. Section
5.2 discusses a method used in econometrics for comparing coefficients between
two regression models. This method is proposed for cell type-specific differential
expression analysis which is concerned with identifying the cell types contribut-
ing differently to the total measured expression level of a given gene in the case
and control groups. In Section 5.3, the novel deconvolution approach together
with the test for cell type-specific differential expression analysis are applied on
the genes distinguishing MI from UA and NSTEMI from STEMI, given associated
blood cell counts, to identify the cellular sources of differential expression and
measure the increments to the proportion of explained gene expression variance
associated with each cell type. Concluding remarks are given in Section 5.4.

82



Chapter 5. A novel deconvolution method for microarray data 83

5.1 An orthogonal forward regression approach for microar-
ray data deconvolution

Let X = [xij] ∈ Rn×m
+ denote the matrix of raw gene expression measurements,

where n represents the number of samples and m represents the number of genes.
Also, let F = [ fik] ∈ Rn×K

+ denote the matrix of cell type fractions satisfying (3.2),
where K represents the number of cell types in the mixture. Deconvolution of
the cell type-specific expression signatures gkj, contributing to the heterogeneous
measurements of gene j, consists of solving the system of linear equations (3.4).
This system can be represented in the following matrix form:

xj = Fgj (5.1)

where xj represents the jth column of X and gj =
(

g1j, g2j, . . . , gKj
)>. The system

(5.1) assumes that all the cell types in the mixture contribute to xj. In practice, the
number and identity of these cell types are rarely known apriori. Additionally,
correlation between the columns fk of F mask how each cell type contribute to the
variance of xj. To identify the cellular sources of gene expression and quantify
their contribution to the variance of the heterogeneous gene expression patterns,
an novel approach based on OFR is proposed. Before presenting the OFR frame-
work and the particularities of the new approach, the orthogonal least squares
(OLS) solution of (5.1) (which lies at the heart of the OFR method) is discussed.

Solving the deconvolution system (5.1) using OLS consists of decomposing the
regression matrix into:

F = WA (5.2)

where the triangular matrix A ∈ Rk×k takes the form:

A =



1 a12 a13 · · · a1k

0 1 a23 · · · a2k
...

...
...

. . .
...

0 0 · · · 1 ak−1 k

0 0 · · · 0 1


(5.3)

while the matrix W ∈ Rn×k with orthogonal columns wi satisfies:

W>W = H (5.4)
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where the entries of the diagonal matrix H are defined by:

hi = w>i wi, i = 1 . . . k (5.5)

The factorization (5.2) can be obtained using classical Gram-Schmidt method (Chen
et al., 1989) which computes one column of A at a time and orthogonalizes F as
described in the following computational procedure:

• Set w1 = f1

• At the ith stage (i = 2 . . . K), compute the ith column of A

ali =
w>l fi

w>l wl
, 1 ≤ l < i (5.6)

• And make wi orthogonal on the previously i− 1 orthogonalized columns

wi = fi −
i−1

∑
l=1

aliwl (5.7)

Using the factorization (5.2), the deconvolution system (5.1) can be written as:

xj = Wzj (5.8)

where
zj = Agj (5.9)

The OLS solution ẑj in the space spanned by wi is given by (Chen et al., 1991):

ẑj = H−1W>xj (5.10)

or equivalently:

ẑij =
w>i xj

w>i wi
, 1 ≤ i ≤ K (5.11)

The solution ĝj in the space spanned by the regressors fi can be recovered by
solving (5.9) using backward elimination. Letting εj = (ε1j, . . . , εnj)

> denote the
vector of residuals (fitting errors) and taking into account the orthogonality of the
vectors wi, the variance of xj can be expressed as:

x>j xj

n
=

1
n

k

∑
i=1

z2
ijw
>
i wi +

ε>j εj

n
(5.12)

The first term on the right side of equation (5.12) represents the variance of xj
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explained by the cell types while the second term represents the unexplained
variance. Dividing in (5.12) by the variance of xj we get:

1 =
∑k

i=1 z2
ijw
>
i wi

x>j xj
+

ε>j εj

x>j xj
(5.13)

The quantity:

R2
j =

∑k
i=1 z2

ijw
>
i wi

x>j xj
(5.14)

is known in econometrics as the non-centered coefficient of determination (COD)
(not to be mistaken with the COD discussed in Section 3.2.2 of Chapter 3) and
represents the proportion of output variance explained by the regressors. The R2

j

can be interpreted as measure of the goodness of fit of a model. A value of R2
j

equal to one indicates that the model perfectly fits the data whereas a value of
zero indicates that the model can’t capture any variation in xj.

The increment to the proportion of explained variance associated with the ith
cell type is given by:

ε i = z2
ij
(wi)

>wi

x>j xj
(5.15)

These increments can be used to select a minimal subset of cell types explaining
a desired proportion of explained variance, as described in the following OFR
procedure:

• At the first step, for each 1 ≤ r ≤ k compute:

1. w(r)
1 = fr

2. z(r)ij =
(w(r)

1 )>xj

(w(r)
1 )>w(r)

1

3. ε
(r)
1 =

(
z(r)1j

)2 (w(r)
1 )>w(r)

1
x>j xj

Set w1 = fr1 where r1 is the index of max
{

ε
(r)
1 |r = 1 . . . k

}
• At the ith step (1 ≤ i ≤ K) and for 1 ≤ r ≤ k, r 6= r1, . . . ri−1, compute:

1. a(r)li =
w>l fr

w>l wl
, 1 ≤ l < i

2. w(r)
i = fr −∑i−1

l=1 a(r)li wl

3. z(r)ij =
(w(r)

i )>xj

(w(r)
i )>w(r)

i
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4. ε
(r)
i =

(
z(r)ij

)2 (w(r)
1 )>w(p)

1
x>j xj

Set wi = w(ri)
i where ri is the index of max

{
ε
(r)
i |r = 1 . . . k, r 6= r1, . . . ri−1

}
• Terminate the procedure if R2

j ≥ 1 − $, where 0 ≤ $ ≤ 1 represents the
desired tolerance.

Note that for $ = 0, the OFR procedure selects all cell types and sorts them in
descending order of their increment to the proportion of explained variance. Solv-
ing the system (5.9) using backward elimination yields the estimates ĝkj, which can
take negative as well as positive values. The negative estimates carry no biological
interpretation and confound the evaluation of the cell type-specific contributions
to the variance of xj. To estimate positive ĝkj, in this work the system is solved
using a non-negative least squares algorithm (Lawson and Hanson, 1974). In what
follows, the OFR procedure using backward elimination and the procedure using
non-negative least squares will be referred to as the unconstrained and constrained
OFR, respectively. The two approaches produce identical results when the solu-
tion of (5.9) contains only positive entries. In this case, the association between the
cell types and their increment to the explained variance is preserved.

This property doesn’t hold when the unconstrained solution ĝj contains neg-
ative entries as during non-negative optimization, regressors with non-zero con-
tribution to the explained variance can be associated with zero estimates of the
cell type-specific expression signatures. This in turn changes the increments to
the observed variance of the next regressors in the ranking. To correct these esti-
mates, the constrained OFR deconvolution is repeated for the fk associated with
the non-zero parameters resulted from non-negative least squares optimization. If
this step produces additional zero coefficients for some regressors, the constrained
OFR algorithm is successively applied until only cell types with non-zero gene
expression signature are selected. Note that since the cell counts and the gene ex-
pression measurements are positive, there is at least one regressor associated with
a positive coefficient.

5.2 Testing for cell type-specific differential expression

Differential gene expression between case and control groups can be attributed
to differences: (i) in cell type proportions or (ii) in the contribution of each cell
type to the measured gene expression levels. Considering that the number of cell
types in the mixture rarely exceeds the order of tens, testing for differences in cell
type proportions can be approached using single hypothesis testing procedures.
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To test for cell type-specific differential expression, Shen-Orr et al. (2010) proposed
the test statistics :

Tkj = ĝ(1)kj − ĝ(2)kj , k = 1 . . . K (5.16)

where ĝ(1)kj and ĝ(2)kj represent the cell type-specific expression levels estimated for
the case and control group, respectively. The null distributions of the test statistics
were estimated by permuting the class labels of the arrays and the FDR was cal-
culated for each cell type as the ratio of the genes whose statistic exceed a given
threshold in the real data to the average number of genes exceeding the same
threshold in the permuted data. This approach doesn’t expose which cell types
contribute differently to the measured expression level of a given gene but pro-
vides an estimate of the number of gene differentially expressed in each cell type
at a given significance threshold. Additionally, this approach is computationally
expensive for large number of permutations. To reduce the computational burden
and directly measure the significance of the difference in cell type-specific gene ex-
pression signatures between case and control deconvolution models, the following
approach used in econometrics was adopted.

Let x(1)j ∈ R
n1×1
+ and x(2)j ∈ R

n2×1
+ denote the vectors of expression measure-

ments for gene j in the case and control groups, respectively, where n1 and n2 rep-
resent the number of samples in each group. Also, let F∪ = F (1) ∪F (2), (#(F∪) =
l∪ ≤ K), and F∩ = F (1) ∩ F (2), (#(F∩) = l∩ ≤ K), denote the union and the in-
tersection of the subsets of cell types selected by the OFR procedure for the case
and control groups, respectively. Define the regression matrix for the case group
F(1) = [f(1)i ] ∈ R

n1×l∪
+ , with column order dictated by the order of F∪, consisting

of the counts for the cell types in F (1) and zero entries otherwise. The regression
matrix for the control group F(2) = [f(2)i ] ∈ R

n2×l∪
+ is analogously defined. The

joint deconvolution model for the n = n1 + n2 expression measurements of gene j
takes the form:

x̆j = F̆ğj (5.17)

where x̆ = [x(1)j ; x(2)j ] ∈ Rn×1
+ , F̆ = [F(1); F(2)] ∈ Rn×l∪

+ and ğj = [g(1)
j ; g(2)

j ] ∈ Rn×1
+ .

Note that solving (5.17) using the OLS algorithm is equivalent to simultaneously
estimating the cell type-specific expression signatures for the case and control
groups.

Let C = [1n1×1; 0n2×2] denote the class vector consisting of entries of 1 for the
samples in the case group and entries of 0 for the samples in the control group.
To study the difference in cell type-specific expression signatures between the case
and control groups, the model (5.17) is supplemented with l∩ interaction terms,
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one for each cell type in F∩, as follows:

x̆j = F̆ğj + β1(C ∗ f̆k1) + · · ·+ βl∩(C ∗ f̆kl∩
) (5.18)

where f̆ki represents the column of F̆ associated with the ith cell type in F∩ and
the interaction parameters βi, i = 1 . . . l∩, measure the difference in contribution
to the heterogeneous gene expression measurements for the common cell types.
Note that solving (5.18) using OLS is equivalent to fitting the model:

x(1)j = F(1)g(1)
j + β1f(1)k1

+ · · ·+ βl∩f(1)kl∩
(5.19)

to the data of the case group, and the model:

x(2)j = F(2)g(2)
j (5.20)

to the data of the control group. The system (5.18) can be expressed in a more
compact form as follows:

x̆j = Φθj (5.21)

where Φ = [F̆ C ∗ f̆k1 . . . C ∗ f̆kl∩
], θ = [g(1)

j ; g(2)
j ; β] and β = (β1, . . . , βl∩)

>.

After estimating θj in (5.21), conducting cell type-specific differential expres-
sion analysis reduces to testing that the interactions β̂i and the parameters ĝ(1)kj

and ĝ(2)kj associated with the cell types in F (1) \ F (2) and F (2) \ F (1) , respectively,
are significantly different from zero. This can be accomplished using the Wald test
(Wald, 1943) described below.

Let θ̂ denote the estimated value of the parameter θ and let θ0 denote the value
proposed for comparison. The Wald test works by testing the null hypothesis
H0 : θ̂ = θ0 against the alternative hypothesis H1 : θ̂ 6= θ0 using the statistic:

T0 =
θ̂ − θ0

σ(θ̂)
(5.22)

where σ(θ̂) represents the standard error of θ̂. In the context of the deconvolution
model (5.21), the squared standard errors of the parameters in θ̂j represents the
diagonal entries of the covariance matrix:

cov(θ̂j) = σj(Φ
>Φ)−1 (5.23)

where

σj =
ε>j εj

n− (l∩ + l∪)
(5.24)
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denotes the variance of the residuals εj = x̆j −Φθ̂j. Parameters whose associated
p-values are less than or equal to the significance threshold α correspond to cell
types contributing differently to the total expression level of gene j. The magni-
tude and the directionality of the contrast is given by the absolute value and sign
of the difference between the values of the same parameter in the case and control
groups. Note that in the case when deconvolution is performed for multiple genes,
the pFDR can be estimated for each cell type from the p-values associated with
each gene, using the algorithm presented in Section 4.2.3 of Chapter 4. Thus the
approach described in this section can be used to study differential gene expres-
sion for each cell type in the mixture as well as estimate the proportion of genes
differentially expressed in each cell type when multiple deconvolution problems
are solved.

5.3 Expression deconvolution of the genes differentiating
between the ACS subtypes

The constrained and unconstrained OFR methods together with the method for
cell type-specific differential expression were applied on the complete blood count
(CBC) dataset presented in Section 5.3.1, to identify the cell types expressing the
genes distinguishing between the diagnostic groups of ACS, to measure the contri-
bution of each cell type to the variability of these genes and to identify the cellular
sources of differential gene expression.

To this end, two studies were conducted. The first study, presented in section
5.3.2, focuses on the differentially expressed genes between MI and UA selected
using the multi-stage method, while the second study, presented in Section 5.3.3,
focuses on the genes distinguishing NSTEMI from STEMI. These studies indicate
group-specific features of variation in gene expression patterns and identify cell
type-specific differentially expressed genes.

5.3.1 The CBC dataset

A CBC measures the concentration of white blood cells (basophils, eosinophils,
lymphocytes, monocytes and neutrophils), red blood cells (erythrocytes) and plate-
lets in the blood. A total of 136 CBC tests were performed on peripheral blood
samples collected from the 33 patients with ACS at day 1, day 3, day 7, day 30
and day 90 after hospital admission. Out of the 136 CBC tests, 131 correspond
to patients and visits for which gene expression data was collected (see Section
4.6 of Chapter 4 for a description of the microarray dataset). Table 5.1 lists the
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number of arrays associated with CBC data for each visit and diagnostic group.
The average count (median) for each cell type in the diagnostic groups of ACS is
listed in Table 5.2. These quantities were computed using data from all the visits.

Table 5.1: Amount of arrays associated with CBC data

Visit NSTEMI STEMI UA Total
Day 1 10 8 10 28
Day 3 8 5 5 18
Day 7 12 7 8 27

Day 30 14 8 10 32
Day 90 12 7 7 26
Total 56 35 40 131

Table 5.2: Average count for each blood cell in the diagnostic groups of ACS

Cell type NSTEMI STEMI UA
Basophils 0 0 0

Eosinophils 0.1 0.200 0.2
Lymphocytes 1.7 1.9 1.7

Monocytes 0.5 0.7 0.4
Neutrophils 4.45 5.6 4.3

Red blood cells 4515 4360 4465
Plateles 245.5 260 233.5

1 unit = 109cells/liter of blood

5.3.2 Expression deconvolution of the genes differentiating MI from
UA

The results of this section are organized as follows. The first section deals with
the correlation between cell type counts within each group, deconvolution of cell
type expression levels and quantification of the cell type-specific contributions to
the variance of the differentially expressed genes. The second section is concerned
with testing for differences in cellular proportions between the MI and UA groups
and identifying cell type-specific differentially expressed gene.

Basophils were removed from the study due to their low count, recorded for
most of the arrays as zero. Although mature red blood cells lack a nucleus, these
were included in the study following evidence of transcriptional and translational
activity in human red blood cells (Kabanova et al., 2009).

This study was conducted on the raw microarray data and blood cell counts
from all the visits combined due to the large sample size of both MI and UA
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groups. Results from visits-specific analyses were invoked to justify the aggrega-
tion of the NSTEMI and STEMI groups and to compare the distributions of the
coefficients of determinations for the models fitted using data from all the visits
combined with the distributions arising from models fitted using data from each
visit.

The study can be repeated for each visit independently, excluding day 3 due
to the number of arrays in the UA group falling below the number of cell types
in the mixture. Note that in these cases, caution must be taken when interpreting
the biological relevance of the findings due to the small sample size of both MI
and UA groups associated with each visit (comparable at times to the number of
parameters to be estimated).

Deconvolution of cell type-specific expression levels

To investigate if the NSTEMI and STEMI groups can be taken as an aggregated
group for deconvolution, differences in cell type composition and in the expression
level of the genes X1 − X36 (listed in Table B.3) between the two groups were
tested at significance level α = 0.05 using the Wilcoxon’s rank-sum test for each
time point independently. Significant differences in cellular compositions were
identified at day 1 for monocytes and neutrophil, at day 3 for eosinophils and
lymphocytes and at day 7 for platelets. Significant differences in gene expression
levels are shown in Table 5.3.

Table 5.3: Gene differentially expressed between NSTEMI and STEMI

Visit Genes
Day 1 X9, X14, X19, X23, X26
Day 3 X19
Day 7 X9,X23

Day 30 X19
Day 90 X9

Given the absence of consistent differences in cellular compositions and in gene
expression levels (excluding X9 and X19) across visits, the NSTEMI and STEMI
cohorts were aggregated (MI group).

As discussed previously, correlation between blood cell counts masks how each
cell type contributes to the variance of the gene expression measurements. To mea-
sure the pairwise correlation between cell type counts in the MI and UA groups,
Pearson correlation coefficient were computed using data from the corresponding
91 and 40 CBC tests, respectively. Significant correlations at level α = 0.05 for the
MI group and UA group are shown in Table 5.4.
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Table 5.4: Correlation between blood cell counts in the MI and UA groups

Group Correlated cell types Correlation coefficient

MI

Lymphocytes Eosinophils 0.39
Lymphocytes Monocytes 0.52
Lymphocytes Neutrophils 0.29
Neutrophils Monocytes 0.57
Neutrophils Platelets 0.25

UA

Red blood cells Eosinophils 0.34
Red blood cells Lymphocytes 0.33
Red Blood cells Platelets 0.39

Neutrophils Platelets 0.35
Neutrophils Monocytes 0.49

Next, the cell type-specific expression profiles of the genes X1 − X36 in the MI
and UA groups were deconvolved using the constrained and unconstrained OFR
methods, with the tolerance $ set to zero for both algorithms. For each gene, the
deconvolution was performed using the expression measurements and the cell
counts aggregated from all the visits and for each visit independently, except at
day 3 for the UA group due to insufficient data (number of measurements less
than the number of cellular types). Figure 5.1 shows the distributions of the CODs
for the deconvolution models fitted using the two OFR methods on the data from
each visit as well as on the data from all the visits combined.

Note in Figure 5.1(a) that the distributions associated with each visit are similar
to the distributions obtained using data from all the visits combined. These find-
ings suggest that the variability of the coefficients of determination associated with
models fitted on data from all the visits doesn’t originate primarily from grouping
sampled from different time points but from the larger variability of some genes
at specific time points which can’t be captured by visit-specific models.

The overall medians of the CODs summarized in Figure 5.1 (a) and 5.1 (b) are
0.89 and 0.93, respectively. Although the unconstrained OFR produces a slight in-
crease in the overall goodness of fit at the expenses of allowing negative estimated
of the cell type-specific expression signatures, the distributions of the CODs re-
main heavily skewed towards zero (Figure 5.1 (b)). These findings suggest that
the large variability observed in the performance of the constrained OFR approach
doesn’t represent an artefact of the new algorithm but rather of the unaccounted
sources of interindividual variability specific to blood-based gene expression mea-
surements. These sources are of biological origin (e.g. age, gender or time of
the day at which the blood samples were collected) (Whitney et al., 2003), and
technical origin (e.g. RNA isolation method) (Min et al., 2010).
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Figure 5.1: Distributions of the CODs across visits for the models fitted on data
from the MI and UA groups using (a) the constrained OFR and (b) the uncon-
strained OFR. The lower and upper edge of the box represent the 25th and 75th
percentiles, respectively, while the whiskers extend to the most extreme points not
considered outliers.

Figure 5.2 shows the cell types contributing to the expression level of the genes
X1, X3 and X6 (exhibiting differential expression across all the visits) together with
their increments to the explained variance. Note that in the case of the most rel-
evant gene (X1), more than half of the variance in the data is left unexplained,
suggesting high variability in the gene expression measurements induced by ad-
ditional sources, other than cellular composition. Moreover, the cell subsets ex-
pressing this gene are different in the MI and UA groups. This observation holds
for gene X3 whose variability is largely captured by the deconvolution model. In
the case of X6, most of the variability is attributed to platelets in both groups.

The deconvolution results for the remaining genes, presented in Table C.1,
Table C.2, Table C.3, and Table C.4 of Appendix C, expose the cell type sources
of gene expression and reveal features of within and between groups variation in
expression measurements. Table C.7 shows the number of genes expressed in each



94 5.3. Expression deconvolution of the genes associated with ACS

cell type within each group. In the MI group the variability of the gene expression
measurements is predominantly explained by erythrocytes and platelets. In the
UA group, lymphocytes and neutrophils also capture large proportions of variance
for some genes, alongside with erythrocytes and platelets.
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Figure 5.2: Cell type-specific contributions to the expression level of genes X1, X3
and X6 in the MI and UA groups.

Cell type-specific differential expression analysis

Differences in cell type proportions between case and control groups represent a
major confounding factor for the accurate interpretation of the results arising from
differential gene expression studies. Testing for differences in cell type proportions
between the MI and UA was performed using the two-sided Wilcoxon’s rank sum
test at significance level α = 0.05 for each visit independently and for all the
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visits combined. Significant differences were identified at day 1 for monocytes,
at day 7 for neutrophils and platelets and across all visits between monocytes
and neutrophils. Removing the monocytes counts from day 1 and testing again
for difference across the remaining visits showed that the contrast in monocytes
counts didn’t originate from the measurement taken at day one. On the other
hand, the observed differences in platelets counts across all visits originated from
the proportion measured at day 7. The distributions of the cell type counts for
each visit are shown in Figure 5.3.
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Figure 5.3: Distributions of the blood cell counts in the MI and UA groups

Given the absence of consistent differences in cell type proportions (excluding
monocytes), observed differences in the expression of genes X1 − X36 may be at-
tributed to cell type-specific contributions to the total transcript abundance. To
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identify the cellular sources of gene expression, cell type-specific differential ex-
pression analysis was carried out using data cross all visits following the approach
described in section 5.2 for the significance threshold α = 0.05. Table 5.5 list the
genes differentially expressed in each cell type.

Table 5.5: Gene differentially expressed between NSTEMI and STEMI

Cell type Genes Total
Eosinophils X28, X32, X35 3
Monocytes X4, X23, X24, X34 4

Neutrophils X1,X3,X15,X16,X18 5

Lymphocytes
X3, X6, X9, X10, X12, X14, X23 11X27,X29, X30, X35

Erythrocytes
X7, X9, X10, X12, X14, X17, X20 13X22 , X23 , X24, X26 , X34 , X35

Platelets
X3, X12, X15, X16, X17, X18, X19 14X21, X22, X24, X26, X29, X30, X33

Most of the genes are differentially expressed in lymphocytes, erythrocytes
and platelets. The genes X2, X5, X8, X13, X25, X28, X31, X32 and X36 are not differen-
tially expressed in any of the cell types. Out of these genes, X2, X25 and X32 are
expressed in monocytes in both groups. Therefore the observed difference in the
expression level of these gene could be attributed to differences in the monocytes
proportions between MI and UA. The source of differential expression for the re-
maining genes could be attributed to basophils whose counts were removed from
the analysis due to the poor precision on the measurements. Basophils are known
to be involved in inflammatory reactions and could play a role in coronary and
myocardial diseases (Marone et al., 1989).

5.3.3 Expression deconvolution of the genes differentiating NSTEMI
from STEMI

The results of this section are organized following the format and of the study
presented in Section 5.3.2. This study was conducted on the raw microarray data
and blood cell counts of the NSTEMI and STEMI groups taken from all the visits.
Deconvolution results based on the arrays from each visit were briefly discussed
when comparing the variability captured by the models fitted on the data from
all the visits against the variability captured by models fitted using data from
each visit independently. Cell type-specific differential expression analysis was
not conducted for the models associated with each visit due to the small number
of arrays in each group.
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Deconvolution of cell type-specific expression levels

The first step of the analysis consisted of measuring the pairwise correlation be-
tween cell types in the NSTEMI and STEMI groups. Pearson correlation coefficient
were computed using data from the corresponding 56 and 35 CBC tests, respec-
tively. Significant correlations at level α = 0.05 are shown in Table 5.6. These
correlations mask the contribution of each cell type to the variance of the gene
expression measurements. The OFR approach deals with correlation in a princi-
pled way and allows for reliable quantification of the increments to the variance
explained associated with each relevant cell type.

Table 5.6: Pairwise correlations between blood cell in the NSTEMI and STEMI
groups

Group Correlated cell types Correlation coefficient

NSTEMI

Lymphocytes Eosinophils 0.40
Lymphocytes Monocytes 0.43
Erythrocytes Platelets -0.26
Neutrophils Monocytes 0.48
Neutrophils Platelets 0.34

STEMI
Monocytes Lymphocytes 0.56

Neutrophils Eosinophils -0.34
Neutrophils Monocytes 0.58

Next, the cell type-specific expression profiles of the genes X1 − X21 in the
NSTEMI and STEMI groups were deconvolved using the OFR method imposing
positivity constraints as well as the unconstrained OFR, with the tolerance $ set
to zero for both algorithms. The deconvolution was performed for each group
using data from all the visits and for each visit independently, except at day 3 for
the STEMI group due to insufficient data (number of measurements less than the
number of cellular types). The distributions of the CODs for the fitted models are
showed in Figure 5.4.

Figure 5.4(a) shows variability in the performance of the models fitted for each
visit independently. Note that for some genes (outliers), large proportions of vari-
ance can’t be explained by the deconvolution model. The performance of the
models fitted on the data from all the visits combined is comparable to the perfor-
mance of the visit-specific models. The overall medians of the CODs summarized
in Figure 5.4 (a) and 5.4 (b) are 0.88 and 0.95, respectively. The models fitted using
the unconstrained OFR explain better the observed variability in the gene expres-
sion patters at the cost of including negative estimates of the cell type-specific ex-
pression signatures. Considering that the linearity assumption of microarray con-
volution (and deconvolution) was shown to hold experimentally (Shen-Orr et al.,
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Figure 5.4: Distributions of the CODs across visits for the models fitted on data
from NSTEMI and STEMI groups using (a) the constrained OFR method and (b)
the unconstrained OFR method.

2010), the presence of genes whose variability couldn’t be explained by both de-
convolution approaches support the idea that there are other sources of variation
(biological and/or technical) not included in the model and exclude the possibility
that the fitting performance is an attribute of the constrained OFR method.

The deconvolution results for the first three most relevant genes are shown in
Figure 5.5. The variability in the expression measurements of gene X1 is largely
explained by erythrocytes in both groups. Gene X2 exhibits variability that can’t
be attributed to the considered cell counts alone. In the case of gene X3 five cell
types participate in explaining large proportions of variability in both groups. The
results for the remaining genes are presented in Table C.5 and Table C.6 of Ap-
pendix C. Table C.8 shows the number of genes expressed in each cell type within
each group. In the NSTEMI group the variability of the gene expression mea-
surements is predominantly explained by erythrocytes and monocytes whereas in
the STEMI group neutrophils participate alongside erythrocytes to explain large
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proportions of variance in the gene expression measurements.
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Figure 5.5: Cell type-specific contributions to the expression level of genes X1, X2
and X3 in the NSTEMI and STEMI groups.

Cell type-specific differential expression analysis

Testing for differences in cell type proportions between the two groups was per-
formed using the Wilcoxon’s rank-sum test as significance level α = 0.05. Sig-
nificant differences in the data from all the visits combined were identified for
eosinophils, monocytes, lymphocytes and neutrophils. These differences originate
from the contrasts in eosinophils and lymphocytes at day one and in monocytes
and neutrophils at day three, reported when discussing the aggregation of the
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NSTEMI and STEMI groups in Section 5.3.2. The distributions of the cell type
counts for each visit are shown in Figure 5.6.
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Figure 5.6: Distributions of the blood cell counts in the NSTEMI and STEMI
groups

Given the absence of consistent differences in cell type proportions, observed
differences in the expression of genes X1 − X21 may be attributed to cell type-
specific contributions to the total transcript abundance. To identify the cellular
sources of gene expression, cell type-specific differential expression analysis was
carried out following the same approach and settings used in the first study. Table
5.7 list the genes differentially expressed in each cell type.

The genes X3, X9, X13 and X19 are not differentially expressed in any of the cell
types. This could be attributed to the absence of basophils in the deconvolution
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Table 5.7: Gene differentially expressed between NSTEMI and STEMI

Cell type Genes Total
Eosinophils — 0

Lymphocytes X14 1
Monocytes X2, X17, X21 3

Neutrophils X5,X8,X10,X21 4
Platelets X4, X6, X12, X15, X20 5

Erythrocytes
X1, X2, X6, X7, X8 8X11 , X16, X18

model or to the small magnitude of differential expression associated with these
genes (see Figure D.8 and Figure D.9 in Appendix D).

5.4 Conclusions

This chapter discussed a novel approach based on OFR for deconvolution of cell
type-specific gene expression levels that naturally measured the contribution of
each cellular type to the variance of the gene expression patters. This additional
layer of information can reveal the sources of within and between groups vari-
ation in the heterogeneous expression measurements. To identify the cellular
sources of differential gene expression, an approach measuring interaction effects
was adopted. This approach is computationally more efficient than permutation
based methods which require repeated runs of deconvolution with permuted data
to test the significance of the contrast in the regression coefficients.

The deconvolution method was applied on the genes distinguishing between
the subtypes of ACS. Results showed high deconvolution performance for the
majority of genes using the constrained OFR approach. This performance was
comparable to the deconvolution performance obtained in the absence of positiv-
ity constraints. The variability of genes associated to low COD could be attributed
to the absence of basophils in the deconvolution model, to biological sources such
as age, sex, time of the day the blood samples were collected or technical sources
such as RNA isolation method.

The cell type-specific differential expression analysis identified cellular sources
of (differential) expression for most of the genes distinguishing between the ACS
groups. These results didn’t account for the CODs of the deconvolution models.
An in-depth search through the literature identified no methods that incorporate
information about model fitting performance when comparing regression coeffi-
cients. Such an approach is essential for increasing the accuracy of the results or
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removing possible sources of bias associated with comparing coefficients of poor
fitted models. Future research will investigate the relationship between the CODs
and the precision of the results derived from cell type-specific differential expres-
sion analysis.



Chapter 6

A novel approach for modelling
stable GRNs

A major challenge in computational biology is the reconstruction of large-scale
stable GRNs. This challenge is strengthened by the shortage of data (number of
temporal gene expression measurements less than the number of genes in the net-
work). To reduce the space of candidate network topologies and avoid over-fitting
the model parameters when data is scarce, strategies based on generating gene ex-
pression measurements using spline interpolation techniques and incorporation
of biological constraints, were discussed in Chapter 3. As pointed out by Wu et al.
(2004a), spline interpolation represents an ad hoc solution which may affect the
biological interpretability of the model.

This chapter proposes in Section 6.1 a new approach to generate gene expres-
sion data for the unobserved time-points given unequally spaced time series mi-
croarray data. This approach accounts for the measurement noise and is congruent
with the mathematical form of the response of stable dynamical system. A novel
method to reconstruct large-scale stable GRNs modelled using the system of linear
differential equations (3.18) is presented in Section 6.2. This method formulates
parameter estimation as a nonlinear optimization problem to avoid the need for
taking derivatives. Section 6.3 reviews an approach to obtain sparse topological
representations for the estimated GRNs. An application to reconstruct the regu-
latory pathways between the differentially expressed genes selected by the multi-
stage feature selection method in the studies conducted in Chapter 4 is presented
in Section 6.4. Concluding remarks are given in Section 6.5.

103
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6.1 Nonlinear approximation of gene expression dynamics
by sums of exponentials

GRNs are nonlinear dynamical systems that can operate around multiple equilib-
rium points (Huang et al., 2005). In the neighbourhood of an equilibrium point, a
nonlinear dynamical system can be approximated with a linear dynamical system
(Khalil and Grizzle, 2002). Under certain assumptions, the solution of a linear dy-
namical system can be described using sums of exponentials. These assumptions
are discussed in Section 6.1.1 where the general solution of a linear dynamical
system is presented. This solution is used to derive a nonlinear model to approxi-
mate gene expression dynamics in the form of sums of exponentials. Section 6.1.2
presents a review of the methods to estimate the model parameters and discusses
regularization to avoid over-fitting. Section 6.1.3 presents a strategy to select the
regularization parameter that accounts for the measurement noise in the data.

6.1.1 The gene expression model

Let us consider the linear dynamical system:

ẋ (t) = A (x(t)− xe) (6.1)

where x (t) = (x1 (t) , x2 (t) , . . . , xn (t))
> , A ∈ Rn×n is a stable matrix (σ(A) ⊂

CH) and xe = (xe1, xe2, . . . , xen)
> represents the equilibrium point (steady-state).

The solution of the system of linear differential equations (6.1) with initial condi-
tion x0 = x (t0) is (Friedland, 2012):

x (t) = eA(t−t0) (x0 − xe) + xe, t ≥ t0 (6.2)

Let λ1, λ2, . . . , λk denote the k distinct eigenvalues of A and mi = dim ker (A− λiIn)

denote the geometric multiplicity of λi. The transition matrix eA(t−t0) admits the
following Jordan decomposition (Teschl, 2012):

eA(t−t0) = VeJ(t−t0)V−1 (6.3)

where the columns vi of V are the generalized eigenvectors of A and eJt is the
block diagonal matrix:

eJt =


eJ1t

eJ2t

. . .

eJkt

 (6.4)
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where each Jordan block eJit is a square matrix of the form:

eJit = eλit


1 t

1!
t2

2! · · ·
tmi−1

(n−1)!

0 1 t
1! · · ·

tmi−2

(n−2)!
...

...
...

. . .
...

0 0 0 · · · 1

 (6.5)

It follows from (6.3) and (6.2) that the trajectories of the dynamical system (6.1)
can be expressed using sums of complex exponentials multiplied by polynomi-
als. Consider now the particular case when A has n distinct eigenvalues which
implies mi = 1,∀i. The Jordan matrix decomposition (6.3) reduces to the spectral
decomposition:

eA(t−t0) = Ve∆(t−t0)V−1 (6.6)

where ∆ is a diagonal matrix whose non-zero entries are the eigenvalues λi. Let-
ting U =

[
u>1 , u>2 , . . . , u>n

]> denote the inverse of V, equation (6.6) takes the form:

eA(t−t0) =
n

∑
i=1

viuieλit (6.7)

Replacing equation (6.7) in (6.2), it follows that the solution of the dynamical
system (6.1) can be expressed as:

x (t) =
n

∑
i=1

wieλit + xe (6.8)

where wi = 〈ui, x0 − xe〉vi also represents an eigenvector of A associated with λi.
Equation (6.8) shows that the individual trajectories xi(t) can be expressed using
weighted sum of exponentials:

xi (t) = wi0 +
n

∑
j=1

wijeλjt, ∀i (6.9)

where wi0 = xei and wij are the entries of the modal matrix W = [w1, w2, . . . , wn].
When the gene regulatory pathways are described by (6.1), the complexity of the
model (6.9) can be reduced if knowledge of the sparsity pattern of A is available.
However, in practice we rarely known the topological structure of the network,
the number of genes in the network or even if the genes we measure belong to the
same network. In the absence of this information, the dynamic behaviour of the
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ith gene on the array is approximated with:

fi (wi, λi, t) = wi0 +
m

∑
j=1

wijeλijt (6.10)

where wi = (wi0, wi1, . . . , wim) and λi = (λi1, λi2, . . . , λim). The parameter wi0

models the steady state level of gene expression while wij and λij characterize the
transient behaviour. The model complexity m is chosen such that the number of
model parameters (2 ∗m + 1) doesn’t exceed the length of the time series.

6.1.2 Parameter estimation using non-linear least squares

The first method for estimating the parameters in (6.10) was proposed by Prony
(1795). The method consists of estimating the non-linear parameters λi as roots of
a polynomial and the linear parameters wi using linear least squares optimization.
Kahn et al. (1992) points out that Prony’s method is inconsistent even when the
number of observations approaches infinity while Lanczos and Teichmann (1957)
remarks that convergence to the true parameters is not guaranteed even when
good initial estimates for λi are available.

Golub and Pereyra (1973), Kaufman (1975) and Ruhe and Wedin (1980) used a
separable least squares approach to estimate the model parameters. Kundu and
Mitra (1998) noted that this approach is sensitive to the initial value of the parame-
ters and proposed a non-iterative algorithm that provides reliable initial parameter
estimates. The algorithm modifies Prony’s method by extended order modelling
and singular value decomposition. Osborne and Smyth (1995) proposed a modi-
fied Prony method that is relatively insensitive to initial values of the parameters.
Their method formulates the optimization problem as a non-linear eigenvalue
problem which is solved iteratively.

Wiscombe and Evans (1977) proposed an iterative algorithm for fitting positive
exponential sums. Their method automatically selects the number of exponen-
tial terms and has guaranteed convergence to the best fit parameters. De Groen
and De Moor (1987) proposed two approaches where the nonlinear parameters λi

emerge as eigenvalues of two suitably defined matrices. For both algorithms, the
linear parameters wi can be derived from the eigenvectors of the matrices or using
linear least squares.

Non-linear least squares optimization represents the most widely used ap-
proach for exponential-sum fitting (Wiscombe and Evans, 1977) which stands out
as a very versatile platform allowing incorporation of both linear and non-linear
constraints. In a comprehensive review of parameter estimation methods for fit-
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ting sums of exponentials, Holmström and Petersson (2002) note that non-linear
least squares optimization represents a central part of many (exponential fitting)
algorithms and conclude that this optimization approach should be used when
the number of exponential terms in (6.10) is known in advance.

Although the previous methods vary in their theoretical framework and per-
formance, they don’t tackle the sensitivity of the exponential-sum fitting problem
to small variations in the experimental data. As Wiscombe and Evans (1977) point
out, the fitting of sums of exponentials is a classically ill-posed problem in the
Hadamard sense, with small perturbations in the data resulting in large changes
in the model parameters (Varah, 1985). A classical approach to ill-posed problems
is Tikhonov regularization (Tikhonov, 1995). This approach was used in the work
of Alvarez and Lara (2011) who estimated the parameters of positive exponential
sums by solving a mixed integer non-linear programming problem.

In this work, non-linear least square optimization is used with Tikhonov reg-
ularization to estimate the model parameters from time series microarray data
data. Specifically, given {xi (tk)}N

k=1 (the time course data for gene i), wi and λi

are estimated by solving the regularized nonlinear optimization problem:

min
wi ,λi

Rη(wi, λi) (6.11)

where

Rη(wi, λi) =
N

∑
k=1

(xi (tk)− fi (wi, λi, tk))
2 + η‖wi‖2

2 + η‖λi‖2
2 (6.12)

subject to the linear constraints λij < 0, ∀j and bound constraints ai ≤ wi0 ≤ bi.
The bound constraints incorporate into the optimization framework prior biologi-
cal information on the location of the steady state. The values for the lower bound
ai and upper bound bi will be discussed in Section 6.4. In (6.12), η represents the
regularization parameter while ‖·‖2 denotes the Euclidean norm.

The objective function (6.12) (without the regularization term) has very flat
valleys and very steep slopes suggesting that the minimum is badly conditioned
(Varah, 1985). Wiscombe and Evans (1977) remark that the non-linear least squares
approach requires good initial estimates for wi and λi and suggest using less so-
phisticated methods for exponential-sum fitting to get these estimates. However,
these estimates can still be associated with local minima. In this work, the op-
timization problem (6.11) was solved using the trust-region reflective algorithm
implemented in the Matlab Optimization Toolbox, for random initial values of the
parameters and the best-fit solution was selected.
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6.1.3 Selecting the regularization parameter using the Morozov’s dis-
crepancy principle

Consider the following non-linear ill-posed problem

F(q) = g (6.13)

where F : D(F) ⊂ Q → G is a non-linear operator between the infinite dimen-
sional Hilbert spaces Q and G, with norms ‖·‖Q and ‖·‖G , respectively. Let
g = F(q†) represent the unperturbed data corresponding to the true solution
q† and gδ denote the noisy data with noise level δ according to:

‖g− gδ‖ ≤ δ (6.14)

Given the optimization problem:

min
q∈D(F)

{
‖F(q)− gδ‖

2
G + η‖q− q†‖2

Q

}
(6.15)

the optimal regularization parameter η according to the Morozov’s discrepancy
principle (Scherzer, 1993) satisfies the implicit equation:

‖F(qη
δ )− gδ‖

2
G = τ2δ2 (6.16)

where qη
δ is a solution to (6.15) and τ > 1 is some constant. Since in practice q† is

not known in advance, a random initial guess is taken instead. To solve the dis-
crepancy equation (6.16), Kaltenbacher et al. (2011) proposed and inexact Newton
algorithm while Tautenhahn and Jin (2003) used a secant method.

Note that Morozov’s discrepancy principle requires an estimate of the mea-
surement noise δ. In the context of microarray data summarized with multi-
mgMOS, δ can be estimated from the measurement errors associated with the
gene expression levels. In this work, the noise level δi for gene i was taken as:

δi =

√√√√ 1
N

N

∑
k=1

σ2
i (tk) (6.17)

where σi(tk) is the uncertainty around xi (tk). Using this estimate, the optimal reg-
ularization parameter for the optimization problem (6.11) can be found by solving
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for η the discrepancy equation

‖fi(w
η
i , λ

η
i , t)− xi‖2

2 = τ2δ2
i (6.18)

where fi(w
η
i , λ

η
i , t) =

(
fi(w

η
i , λ

η
i , t1), . . . , fi(w

η
i , λ

η
i , tN)

)
, xi = (xi(t1), . . . , xi(tN))

denotes the vector of noisy gene expression measurements while the pair
(
wη

i , λ
η
i

)
represents a minimizer of (6.12) for the current η. However, for genes with small
δi and complex dynamics that can’t be fully captured by the model (6.10), the
discrepancy equation (6.18) may have no solution for fixed τ. For this reason, the
regularization parameter η satisfying:

arg min
η
|‖fi(w

η
i , λ

η
i , t)− xi‖2

2 − τ2δ2
i | (6.19)

is selected from a fixed range Rη .

6.2 Modelling GRNs using linear dynamical systems

Although the regulatory interactions between genes are nonlinear (Heinrich and
Schuster, 1996), the gene expression dynamics can be captured by linear dynamical
systems modelled around the equilibrium points of the GRN (Gustafsson et al.,
2005).

Let x(t) ∈ Rn denote the n-dimensional vector containing the expression level
of n genes at time point t. The regulatory interactions between these genes in
the neighbourhood of the attractor xe are modelled using the system of ordinary
differential equations (6.1), where the stable matrix A encodes the coupling be-
tween genes. The problem of reconstructing GRNs modelled using (6.1) consists
of estimating the parameters w0 = (w10, w20, . . . , wn0), λ = (λ1, λ2, . . . , λn) and W
from time course gene expression data. Knowing W and λ, the system matrix
A can be recovered using the spectral decomposition A = W∆W−1. A method
for estimating the model parameters in the form of regularized nonlinear least
squares optimization in presented in Section 6.2.1 while a strategy for selecting
the optimal regularization parameter is discussed in Section 6.2.2.

6.2.1 Parameter estimation using non-linear least squares

Given time course gene expression measurements {x(tk)}N
k=1, estimating the pa-

rameters w0, λ and W consists of solving the regularized nonlinear optimization
problem:

min
w0,λ,W

Rη(w0, λ, W) (6.20)
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where

Rη(w0, λ, W) =
n

∑
i=1

N

∑
k=1

(
xi(tk)− wi0 −

n

∑
j=1

wijeλjtk

)2

+ η‖λ‖2
2 + η

n

∑
i=0
‖wi‖2

2 (6.21)

subject to the linear constraints λj < 0, ∀j.

Note the similarity between the objective functions (6.12) and (6.21). The for-
mer measures the fitting error between the time series data of one gene and the
sum of exponentials model (6.10) while the latter simultaneously quantifies the
fitting error between the time course gene expression data of n genes and the sum
of exponentials models (6.9).

The objective function (6.21) contains n2 + 2n parameters. Using time course
microarray data satisfying N < n + 2 for parameter estimation will result in over-
fitting. It follows that for reliable parameter estimation, the size of the network
needs to be adjusted to the length of the time series. For short-time series gene
expression data this represents a limiting factor for reconstructing GRNs of arbi-
trarily large sizes. This problem can be avoided by modelling the gene expression
dynamics as described in section 6.1 and sampling the resulting models to gen-
erate sufficient gene expression data to avoid over-fitting. Note that in this case,
the number of parameters in the optimization problem (6.21) can be reduced by
n if xe is taken as the vector containing the steady-state values of the fitted gene
expression models.

The regularization term in (6.21) can take the form of the non-linear constraint:

‖λ‖2
2 +

n

∑
i=0
‖wi‖2

2 ≤ ζ (6.22)

where the regularization parameter ζ is inversely related to η. Removing the
regularization term has the advantage that the objective function:

Rη(w0, λ, W) =
n

∑
i=1

N

∑
k=1

(
xi(tk)− wi0 −

n

∑
j=1

wijeλjtk

)2

(6.23)

quantifies only the fitting error. This quantity will be used in the next section to
select an appropriate value for ζ.

Similar to (6.11), the optimization problem (6.20) is sensitive to the initial val-
ues of the parameters w0, λ and W. To tackle this problem, (6.20) was solved
for random initial values of the model parameters and the best fit solution was
selected. The sequential quadratic programming algorithm implemented in the
Matlab Optimization Toolbox was used due to its robustness to non-double re-



Chapter 6. A novel approach for modelling stable GRNs 111

sults. This means that the algorithm takes smaller steps to prevent the objec-
tive function (6.21) from returning complex values, Inf (positive infinity) of NaN
(not-a-number), as opposed to the active-set algorithm implemented in the same
optimization toolbox.

6.2.2 Selecting the regularization parameter by cross-validation

Section 6.1.3 proposed the Morozov’s discrepancy principle for selecting the regu-
larization parameter in non-linear ill-posed problems. In the context of exponential-
sum fitting to short time course gene expression data, this method is appealing as
it requires only the measurement errors and therefore allows the whole time series
data to dictate the model complexity and be used for parameter estimation.

The optimization problem (6.20) also consists of fitting sums of exponentials
to noisy gene expression data. Thus, the Morozov’s discrepancy principle could
be used to select the regularization parameter, given the relative sizes of the mea-
surement uncertainties. However, since the noise estimates are available only for
the short time-course gene expression data, the Morozov’s discrepancy principle
can be applied only for small size GRNs.

By modelling the time course gene expression data using sums of exponentials,
artificial measurements can be obtained for the unobserved time points and used
to fit large scale GRNs. Taking advantage of the abundance of the artificial samples
that can be generated, the regularization parameter ζ can be selected using k-fold
cross-validation as described below.

Required Gene expression data {x(tk)}N
k=1

Initial estimates w0
0, λ0, W0

Range Rζ = {ζ1, ζ2, . . . , ζk}

Step 1. Split {x(tk)}N
k=1 into k random parts of roughly equal sizes

Step 2. For every ζi ∈ Rζ

1. Solve (6.20) with objective function (6.23) subject to the linear con-
straints λj < 0 (∀j) and non-linear constraint (6.22) starting from w0

0,
λ0, W0 using k− 1 parts

2. Calculate the fitting error (6.23) on the hold-out part using the optimal
parameters estimated in (1)

3. Repeat (1) and (2) for all possible choices of the hold-out part

4. Sum the fitting errors calculated across hold-out parts

Step 3. Select ζopt ∈ Rζ with the minimum sum of fitting errors
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The final model is obtained by estimating the parameters using the whole data
{x(tk)}N

k=1 and ζopt. In the context of linear inverse problems, the above procedure
for the particular case when one observation is left out (leave-one-out) is widely
known as the generalized cross-validation (GCV) method for selecting the regu-
larization parameter (Golub et al., 1979). This approach admits a formulation that
avoids solving the inverse problem for each left-out observation (Wahba, 1990).

Haber and Oldenburg (2000) extended the GCV method to non-linear inverse
problems solved using iterative methods. The method consists of applying GCV to
the linearized approximation of the non-linear ill-posed problem at each iteration.
When the linearized approximation represents an adequate description of the non-
linear ill-posed problem, the approach has the same performance as in the case of
linear inverse problems (Farquharson and Oldenburg, 2004).

6.3 Estimating sparse GRNs

Solving the optimization problem (6.20) produces complete network topologies,
given the absence of sparsity constraints. Methods for enforcing topological spar-
sity are based on l1-norm regularization of the coefficients of A.

Gustafsson et al. (2005) proposed a method to estimate sparse (but not neces-
sarily stable) GRNs using l1-norm regularization of the row coefficients of A. Wu
et al. (2010) used l1-norm regularization of the entries of A when estimating stable
GRNs and noted that this approach leads to low magnitude coefficients. Per-
rin et al. (2003) used a similar regularization approach and argued that for large
values of the regularization parameter, the l1-regularization term encourages real
sparseness. Finally, Zavlanos et al. (2011) used a weighted l1-norm of the entries
of A to estimate stable and sparse GRNs from steady-state gene expression data.

In the context where the objective function (6.23) is not parametrized in terms
of the entries of A but rather in terms of its eigenvectors and eigenvalues, none of
the these approaches can be applied to enforce topological sparsity. Also note that
since sparse matrices are not always associated with sparse eigenvectors, using
l1-norm regularization on the eigenvectors can induce bias in the structure of A.

To obtain a sparse representation of the GRN modelled using (6.1), weak con-
nections (entries of A close to 0) are removed using the following approach pro-
posed by Perrin et al. (2003):

Step 1. Derive a family of connectivity matrices A =
{

A(k)|k = 1 . . . K
}

, by solv-

ing (6.20) from K random initial estimates for w0
0, λ0, W0

Step 2. Compute Ā, Σ, where āij and σ2
ij represents the mean and variance of a(k)ij ,
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respectively.

Step 3. Compute σ2, the variance of the entries āij

Step 4. Set to zero entries of Ā satisfying |āij| < σ and σ2
ij < σ.

The remaining positive and negative coefficients represent probable up-regula-
ting and down-regulating connections, respectively. Another related approach to
removing weak connections (not used in this work) was proposed by Rangel et al.
(2004). The method consists of setting to zero parameters for which the confidence
intervals computed using bootstrap estimates contain the value 0.

6.4 Modelling GRNs for the diagnostic groups of ACS

The novel GRN reconstruction algorithm was applied on the combined data to
estimate for each diagnostic group of ACS the signalling pathways between the
differentially expressed genes identified in Chapter 4 using the multi-stage feature
selection method. Specifically, the studies presented in Section 6.5.1 and Section
6.5.2 focus on the regulatory interactions between the genes that differentiate MI
from UA and NSTEMI from STEMI, respectively. Each study consists of estimating
stable GRNs and computing their sparsity pattern.

6.4.1 Modelling the regulatory interactions between the genes differen-
tiating MI from UA

In this section the regulatory interactions between the genes X1 − X20 listed in
Table B.3 of Appendix B were estimated for each diagnostic group. Given that
the number of temporal gene expression measurements in the combined dataset
(N = 5) was insufficient for unbiased estimation of the network parameters, the
gene expression dynamics were approximated using sums of exponentials and
sampled as discussed below.

Fitting sums of exponentials to gene expression data

For each diagnostic group, given the combined expression data {xi(tk)}N
k=1 for

gene Xi, where tk ∈ {1, 3, 7, 30, 90}, and the associated standard errors {σi(tk)}N
k=1,

the parameters of the gene expression model (6.10) with m = 2 were estimated by
solving the nonlinear optimization problem (6.11) subject to the linear constraints
λij < 0, j = 1 . . . m, and additional boundary constraints xi(tN)− 3σi(tN) ≤ wi0 ≤
xi(tN) + 3σi(tN). These later constraints localize the gene expression steady state
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wi0 in the neighbourhood (99.7% confidence interval) of the final time point mea-
surement to capture the long transient behaviour of cardiac markers (settling time
up to 14 days for the known biomarkers of ACS (Ahmad and Sharma, 2012)).
The regularization parameter γ satisfying (6.19) for τ = 1.1 was selected from the
range Rη =

{
10−3, 10−2.9, . . . , 10−2.9, 103}.
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Figure 6.1: Estimated dynamic profiles for (a) X1 (WASH1), (b) X3 (C17orf103) and
(c) X6 (OSBP2). The bars denote one standard deviation around the group-specific
gene expression averages.

For each Xi, the optimization was repeated a number of Kopt = 30 times from
random initial guesses of model parameters and the best fit solution was selected.
Specifically, the linear parameters wij (j = 0 . . . m) were sampled from the normal
distribution N (0, 10) while the nonlinear parameters λij were sampled from the
uniform distribution U (−5, 0). The dynamic profiles of the genes differentially
expressed across all time point are shown in Figure 6.1. The dynamic profiles of
the remaining genes, shown in Figure D.1 and Figure D.2 of Appendix D, also
shade light on the long term differences between MI and UA. The residual sums
of squares for each in each diagnostic group, listed in Table D.1, show that the
sums of exponentials model adequately captures the gene expression dynamics.
The expression trajectories for the genes X1− X20 were sampled using a sampling
period of ∆t = 1 day over a time period of T = 120 days. The resulting dataset
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was used to estimate stable GRNs, as described in the next section.

Estimation of the network parameters

For each diagnostic group, given the sampled gene expression data {f(tk)}>k=1

where f(tk) = ( f1(w1, λ1, tk), . . . , f20(w20, λ20, tk)) and tk = 1 . . . 120, the parame-
ters of the GRN were estimated as described in Section 6.2.1. To reduce the number
of parameters, xe was taken as the vector containing the steady-state values of the
fitted gene expression models. The regularization parameter ζ was selected from
the range Rζ =

{
1, 100,1, . . . , 102.9, 103} using a 10-fold cross-validation partition-

ing of the data {f(tk)}>k=1 following the steps presented in Section 6.2.2. For each
diagnostic group, the optimization was repeated a number of Kopt = 20 times
from random initial values of the model parameters and the best fit solution was
selected. Each time, the entries of W0 were sampled from the normal distribu-
tion N (0, 10) while the entries of λ0 were taken from the uniform distribution
U (−10, 0).

Table 6.1: Eigenvalues of the GRNs associated with the ACS subtypes

Eigenvalue NSTEMI STEMI UA
λ1 -1.8222 -2.0169 -1.9416
λ2 -0.9555 -1.2313 -0.6902
λ3 -0.4588 -1.2305 -0.2722
λ4 -0.4487 -0.7029 -0.2311
λ5 -0.4362 -0.6329 -0.1388
λ6 -0.4334 -0.6294 -0.1168
λ7 -0.2602 -0.5961 -0.1157
λ8 -0.1805 -0.5351 -0.1094
λ9 -0.1555 -0.4954 -0.1052
λ10 -0.1216 -0.4786 -0.0884
λ11 -0.0854 -0.4463 -0.0801
λ12 -0.0804 -0.4174 -0.0791
λ13 -0.0729 -0.3695 -0.0741
λ14 -0.0521 -0.2739 -0.0738
λ15 -0.0425 -0.2446 -0.0445
λ16 -0.0299 -0.2421 -0.0414
λ17 -0.0285 -0.1076 -0.0379
λ18 -0.0216 -0.0613 -0.0346
λ19 -0.0116 -0.0137 -0.0170
λ20 -0.0001 -0.0033 -0.0064

The estimated GRNs are stable dynamical systems. Table 6.1 lists the eigenvalues
for the GRN of each diagnostic group. The values of ζopt for the NSTEMI, STEMI
and UA networks are 15.84, 25.11 and 63.09, respectively. These values are used
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in the next section to estimate families of group-specific GRNs. To measure the
prediction performance of the estimated models, the root mean square percent-
age error (RMSPE) (Holden et al., 1990) between each ith trajectory approximated
using sums of exponentials and the ith trajectory resulted from simulating the
networks using f(t1) as initial condition, was computed for all i = 1 . . . 20. The
average RMSPEs (across trajectories) for the NSTEMI, STEMI and UA networks
are 0.020%, 0.014% and 0.026%, respectively. These results show that the state
trajectories match extremely well the trajectories approximated using sums of ex-
ponentials.

Sparse representations of the group-specific GRNs

The procedure described in Section 6.3 was applied to obtain sparse representa-
tions of the group-specific GRNs. Specifically, for each diagnostic group, a family
A of K = 50 matrices was derived using {f(tk)}>k=1, ζopt listed in the previous
section and initial values W0 and λ0 sampled from N (0, 10) and U (−10, 0), re-
spectively. Each family consists of networks with high prediction performance
(low average RMSPEs), as shows in Figure 6.2.
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Figure 6.2: Distributions of the prediction errors for the families of GRNs.

The filtering areas for the entries of the mean connectivity matrices Ā associ-
ated with each diagnostic group are shown in Figure 6.3. The standard devi-
ations of the entries of Ā for the NSTEMI, STEMI and UA groups are 2.808,
3.028 and 1.731, respectively. These values denote the boundaries of the filter-
ing areas associated with each group. From the total number of N = 400 pos-
sible connections for each network, after filtering the group-specific connectivity
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graphs consisted of: NNSTEMI = 84 connections (38 down-regulating and 46 up-
regulating), NSTEMI = 169 connections (88 down-regulating and 81 up-regulating),
and NUA = 127 connections (58 down-regulating and 69 up-regulating). For scal-
ability purposes, the regulators for genes X1 − X5 in each diagnostic group are
shown in Figure 6.4. The complete connectivity maps for each diagnostic group
are shown in Figure D.5, Figure D.6 and Figure D.7 of Appendix D.
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Figure 6.3: Sparsity filters for the parameters of the GRNs associated with
NSTEMI, STEMI and UA

6.4.2 Modelling the regulatory interactions between the genes differen-
tiating NSTEMI from STEMI

In this section the regulatory interactions between the genes listed in Table B.6
of Appendix B were estimated for each diagnostic group. Since the probe sets
X6 and X7 target the same gene, only the measurements of the most frequently
selected probe set (X6) were used to represent gene NCAM1. To generate enough
data for the estimation of large-scale GRNs, the gene expression dynamics were
approximated using sums of exponentials and sampled as discussed below.

Fitting sums of exponentials to gene expression data

Modelling the time-course dynamics of the combined gene expression data (for
each diagnostic group) was performed using the setting described in the previous
study. The dynamic profiles of the genes differentially expressed across all time
point are shown in Figure 6.5. The dynamic profiles of the remaining genes,
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Figure 6.4: Regulatory map for genes X1-X5 in the: (a) NSTEMI network, (b)
STEMI network and (c) UA network. Each gene is represented by an unique
colour. Regulatory connections sharing the colour of a gene point towards the
genes that regulate it. The (∗) marks the regulatory interactions with the largest
magnitude that were removed by the sparsity filter. These connections were in-
cluded to show at least one regulator per gene.

shown in Figure D.8 and Figure D.9 of Appendix D, also shade light on the long
term dissimilarity between MI and UA. The residual sums of squares for the fitted
genes are listed in Table D.2. The expression trajectories for the unique genes were
sampled using a sampling period of ∆t = 1 day over a time period of T = 120
days. The resulting dataset was used to estimate stable GRNs, as described in the
next section.
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Figure 6.5: Estimated dynamic profiles for (a) X1 (HLA-DQB1), (b) X2
(MAPK8IP1) and (c) X21 (LRRC37A). The bars denote one standard deviation
around the group-specific gene expression averages.

Estimation of the network parameters

Stable GRNs for the NSTEMI and STEMI groups were estimated using the param-
eters settings of the previous study. Table 6.2 lists the eigenvalues for the GRN of
each diagnostic group. The values of ζopt for the NSTEMI and STEMI networks
are 31.62 and 125.89, respectively. The average RMSPEs (across trajectories) for
the NSTEMI and STEMI networks are 0.002% and 0.008%, respectively, suggesting
that the state trajectories match extremely well the trajectories approximated using
sums of exponentials.

Sparse representations of the group-specific GRNs

Families of K = 50 connectivity matrices were obtained for the GRNs of NSTEMI
and STEMI groups, using the parameter settings and approach described in the
previous study. Each family consists of networks with high prediction perfor-
mance (low average RMSPEs), as shows in Figure 6.6. The filtering areas for
the entries of the mean connectivity matrices Ā associated with each diagnostic
group are shown in Figure 6.7. The standard deviations of the entries of Ā for
the NSTEMI and STEMI are 2.64 and 2.61, respectively. From the total number of
N = 400 possible connections for each network, after filtering the group-specific
connectivity graphs consisted of: NNSTEMI = 136 connections (74 down-regulating
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Table 6.2: Eigenvalues of the GRNs associated with NSTEMI and STEMI

Eigenvalue NSTEMI STEMI
λ1 -2.4359 -4.3599
λ2 -1.8141 -2.9732
λ3 -1.1130 -2.1789
λ4 -1.0566 -1.1648
λ5 -0.8944 -0.8910
λ6 -0.8108 -0.7638
λ7 -0.7835 -0.6522
λ8 -0.7717 -0.5926
λ9 -0.7544 -0.5743
λ10 -0.7477 -0.2125
λ11 -0.7086 -0.1782
λ12 -0.6943 -0.1157
λ13 -0.6624 -0.1009
λ14 -0.4034 -0.0898
λ15 -0.3160 -0.0848
λ16 -0.2265 -0.0570
λ17 -0.0667 -0.0043
λ18 -0.0207 -0.0032
λ19 -0.0084 -0.0021
λ20 -0.0008 -0.0018

and 62 up-regulating) and NSTEMI = 199 connections (100 down-regulating and
99 up-regulating). The regulators for genes X1 − X5 in each diagnostic group are
shown in Figure 6.8. The complete connectivity maps are not shown due to the
large number of connections in each network.
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Figure 6.6: Distributions of the prediction errors for the families of GRNs
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6.5 Conclusions

This chapter proposed modelling gene expression dynamics using sums of ex-
ponentials, on the grounds that this formulation describes the response of stable
dynamical systems. Estimation of the model parameters from unequally sampled
microarray data was formulated as a regularized nonlinear optimization problem
that incorporates information about the measurement noise in the gene expression
data. This modelling approach was shown to adequately capture the time course
dynamics of the genes differentiating between the subtypes of ACS.

A novel approach for modelling stable GRNs using linear dynamical systems
was also derived. This approach estimates the parameters of the transition matrix
from time course gene expression data by solving a regularized nonlinear opti-
mization problem that also allows for the measurement noise to be incorporated
into the estimation process. Since the method directly operates on the transition
matrix, the need for computing derivatives is avoided. The novel modelling ap-
proach was used to estimate stable GRNs for each group of ACS, given uniformly
sampled gene expression trajectories approximated using sums of exponentials.

Given that the estimation of the network parameters is performed in the ab-
sence of sparsity constraints, an approach that removes weak connections was dis-
cussed. The sensitivity (proportion of connections correctly identified) and speci-
ficity (proportion of non-connections correctly identified) of this approach wasn’t
reported in the literature. Future research will focus on estimating these quantities
for the nonlinear problem at hand. Additionally, novel method for incorporating
sparsity constraints will be researched.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

This thesis proposed three novel computational tools addressing major challenges
related to the genetics of ACS that can provide an insight into the dynamics of
the disease leading to better diagnosis solutions and improved personalized treat-
ments. These challenges consists of:

• Selecting differentially expressed genes between the ACS subtypes

• Deconvolving heterogeneous microarray gene expression data

• Inferring gene regulatory pathways

The performance of the proposed methods was demonstrated on a real world
dataset consisting of ACS time-course microarray gene expression data and asso-
ciated blood count measurements.

The novel feature selection method consists of four stages imposing stage-specific
levels of stringency and operating in a nested cross-validation fashion to avoid
the parameter selection bias (internal loop) and the feature selection bias (exter-
nal loop) and provide an unbiased estimate of the discriminatory power of se-
lected genes. Two differential expression studies comparing the novel multi-stage
method against the l1-StaR algorithm on the task of identifying genes discrimi-
nating between the ACS subtypes showed that (i) the two approaches produced
subsets of genes with comparable high diagnostic performance (the l1-StaR per-
forming slightly better in both studies, (ii) the multi-stage method selected, on
average, less genes than l1-StaR and (iii) that the genes selected by the multi-
stage method show longer-term differential expression (up to three months) than
the genes selected by l1-StaR. These findings suggested that: (i) the multi-stage

123
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method is more appropriate for biomarker discovery in time-course microarray
studies, (ii) the transcriptomic signature of the ACS subtypes is distinguishable
three months after hospital admission, (iii) and that genes showing long term dif-
ferential expression could become reliable biomarkers for late diagnosis or explain
the genetic predisposition to ACS.

The novel deconvolution method for microarray gene expression data uses non-
negative optimization within the OFR approach to identify the cellular sources of
gene expression and measure their contribution to the abundance and variability
of the heterogeneous gene expression patterns. An approach based on measuring
interaction effects was proposed for cell type-specific differential expression anal-
ysis, which is computationally superior to permutation based methods and can
be used for single gene analysis. The deconvolution method applied on the genes
differentiating between the ACS subtypes demonstrated high performance in cap-
turing the variability in the expression measurements for the majority of the genes
(comparable to the performance of the unconstrained OFR approach), exposed the
cell type sources of gene expression and revealed features of within and between
groups variation in gene expression patterns. The approach for cell type-specific
differential expression analysis identified cell types contributing differently in the
case and control groups to the abundance of the genes discriminating between the
ACS subtypes. Genes expressed differently in the same cell type across groups
could represent cell type-specific markers for ACS.

The novel method to model GRN using stable linear dynamical systems relies on
non-linear optimization techniques to recover the state transition matrix of the sys-
tem. This approach (i) incorporates stability constraints, (ii) can handle unequally
sampled time series data, (iii) can account for the measurement noise via regular-
ization and (iv) bypasses the need for derivatives. When reconstruction of large
scale GRN is impeded by the scarcity of time course measurements, the novel ap-
proach for modelling gene expression dynamics using sums of exponentials can
be used to generate enough data. This approach formulates parameter optimiza-
tion as a regularized non-linear optimization problem that presents the advantages
(i)-(iii) of the GRN reconstruction method. It was shown that models consisting
of exponential can capture the dynamics of the genes differentiating between the
ACS subtypes, suggesting that the gene expression levels return to baseline af-
ter a transient regime initiated by the ACS events. The stable GRNs estimated
for each subtype of ACS using data sampled from the gene expression profiles
approximated using sums of exponentials have high prediction performance (as
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measured by the mean square percentage error) and vary in their sparse topolog-
ical structures.

The biological findings presented in this thesis consist of or rely upon a set of
genes whose association with ACS hasn’t been previously reported in the liter-
ature. While the novelty of the results is the product of the new computational
tools applied on a time-course microarray dataset capturing the gene expression
dynamics over a period of three months after the ischemic episodes, their biolog-
ical relevance strongly depends on the size of the study cohort. Validation of the
findings require further medical investigations, preferably performed on a larger
cohort of participants including healthy individuals on top of ACS patients.

7.2 Future work

The following points highlight current limitations of the study and suggest possi-
ble solutions and research directions:

• The novel multi-stage feature selection method addresses only binary clas-
sification problems. To extend the algorithm to multiclass problems, two
major changes need to made. Firstly, the statistical test used at Stage II must
be replaced by another test comparing more then two groups. Widely used
parametric and non-parametric test for multiclass problems are analysis of
variance (ANOVA)(Scheffe, 1999) and the Kruskal-Wallis test (Kruskal and
Wallis, 1952), respectively. Secondly, the SVM classifier used at Stage IV
must be replaced with a multiclass extension (Hsu and Lin, 2002). Note that
the unsupervised filter used at Stage I doesn’t require information about the
class of the arrays while the mRMR algorithm used at Stage III can operate
on multiclass data.

• The study conducted in Chapter 4 looked at differentially expressed genes
between the ACS subtypes. In particular, to identify potential cardiac mark-
ers for the long term diagnosis of MI, the UA cohort was taken as the control
group. While this setup aims at separating MI from non-MI episodes, it may
omit genes related to ACS that are expressed at comparable levels in both co-
horts. Conducting a differential expression analysis with a cohort of healthy
individuals could supplement the list of genes related to ACS. Additional
gene expression profiling experiments need to be performed to collect mi-
croarray data from a cohort of healthy participants presenting similar clinical
variables as the ACS cohort (age, sex, type II diabetes, smoking habits, family
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history, race, alcohol consumption) to minimize the biases of the exploratory
analysis.

• The method for conducting cell type-specific differential analysis presented
in Chapter 5 disregards the goodness of fit of the regression models as do
permutation based approaches (Shen-Orr et al., 2010). Studying the bias in
the estimated regression coefficients as a function of the fitting performance
could provide the prior information for increasing the sensitivity and speci-
ficity of the cell type-specific differential analysis approach. Additionally,
investigating the sensitivity the regression coefficients through systematic
degradation studies (sequential removal of regressors) could shed light into
the precision of the estimated cell type-specific expression signatures when
measurements of the cellular proportions are available only for some cell
types in the mixture.

• The sums of exponentials proposed in Chapter 6 for modelling gene ex-
pression dynamics assume real nonlinear parameters. While this modelling
approach was shown to accurately capture the dynamics of the genes dis-
criminating between the ACS subtypes, it may not be appropriate for genes
exhibiting transient oscillations or cyclic patterns of expression. Transient
oscillations could be captured by allowing complex nonlinear parameters.
Parameter optimization could be performed using a constrained Prony-like
method (Potts and Tasche, 2013). Testing for periodic patters in equally or
unequally spaced time series gene expression data can be carried out us-
ing the Fourier transform (Spellman et al., 1998) or the Lomb-Scargle pe-
riodogram (Glynn et al., 2006). The presence of cyclic regulation requires
a modelling approach different from sums of exponentials fitting, which is
based on the assumption that after the transient response to an external per-
turbation, the gene expression level returns to a constant steady state value.

• The novel approach to model GRNs using stable state-space models assumes
that the eigenvalues of the dynamical system are real. Future research will
investigate whether stable state-space models can be estimated using con-
strained Prony-like methods. Additionally, strategies to incorporate sparsity
constraints will be researched and the sensitivity and specificity of the ap-
proach estimating spare topological representations (presented in Section
6.3) will be evaluated.



Appendix A

Fundamentals of genetics

Deoxyribonucleic acid (DNA) is a nucleic acid that carries the genetic informa-
tion in all organisms (except some viruses), consisting of two antiparallel and
complementary polynucleotide chains twisted in the form of a double helix and
joined by hydrogen bonds. Each nucleotide is composed of a five-carbon sugar
(deoxyribose) attached to phosphate group and a nitrogenous base, which can be
either a purine base such as adenine (A) or guanine (G), or a pyrimidine base
such as cytosine (C) or thymine (T). The two groups of bases complement each
other and can only form hydrogen bonds with the opposing type (A with T and
G with C). The structure of a DNA molecule is shown in Figure A.1 (Alberts, 2008).
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Figure A.1: DNA double helix

Ribonucleic acid (RNA) is a nucleic acid consisting of a single strand of nu-
cleotides, often folded unto itself. The RNA nucleotide differs from the DNA
nucleotide in that it has ribose instead of deoxyribose as a sugar backbone, and
the pyrimidine base uracil instead of thymine. The structure of a RNA molecule
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is shown in Figure A.2.
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Figure A.2: RNA hairpin loop

A gene represents the physical and functional unit of heredity consisting of a seg-
ment of DNA that provides the coded instructions for the transcription of RNA
molecules, which are translated into proteins or regulate the expression or activa-
tion of other genes. Most eukaryotic genes consists of coding regions (exons) sep-
arate by non-coding regions(introns). During transcription, introns are removed
from the primary RNA trascript by splicing and the exons are covalently joined
together to form a mature messenger ribonucleic acid (mRNA) molecule which is
translated into proteins, as shown in Figure A.3.
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Figure A.3: The fundamental stages of protein biosynthesis
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Complementary DNA (cDNA) is double-stranded DNA synthesized from a mRNA
template. The synthesis reaction is catalyzed by the reverse transcriptase enzyme
which produces a single-stranded complementary DNA chain on an mRNA tem-
plate. The single-stranded molecule is converted into double-stranded cDNA by
DNA polymerase.

Complementary RNA (cRNA) is synthetic RNA produced from a DNA molecule
during an in vitro transcription reaction.

A gene regulatory network (GRN) represents a set of genes interacting with each
other through transcription (RNAss) and translation (proteins) products to control
a specific cell function. An example of a GRN is shown in Figure A.4.

Gene 4Gene 1

Gene 2 Gene 3

Gene 5

RNA 1

RNA 5

RNA 4

RNA 2 RNA 3

Protein 1 Protein 4

Protein 5

Protein complex

Figure A.4: Schematic representation of a GRN. Gene1 and Gene4 jointly regu-
late the expression level (abundance of RNA and protein) of Gene5 through the
protein complex assembled for their individual translation products (Protein1 and
Protein4). The amount of Protein1 is regulated by Gene2 through RNA2 that binds
to molecules of RNA1, preventing further protein translation.
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Microarray
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Figure B.1: Group-specific expression averages across visits for genes X1 − X18 in
the MI vs. UA study.
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Figure B.2: Group-specific expression averages across visits for genes X19−X36 in
the MI vs. UA study.



Chapter B. Feature selection for ACS classification 137

Table B.3: Differentially expressed genes between the MI and UA groups selected
by the multi-stage feature selection method

Symbol Probe set Gene Hedges’ g score Frequency
X1 1557034_s_at WASH1 -1.8603 9
X2 209581_at PLA2G16 -1.1749 9
X3 226657_at C17orf103 -1.4369 5
X4 232600_at — -0.9971 3
X5 1569608_x_at — -0.9009 2
X6 221237_s_at OSBP2 -1.1704 2
X7 230026_at MRPL43 -0.9000 2
X8 236321_at FAM200B 0.6576 2
X9 1557477_at — -0.6012 1
X10 1569110_x_at LOC728613 -1.1157 1
X11 201649_at UBE2L6 -0.9671 1
X12 202405_at TIAL1 -0.8356 1
X13 203609_s_at ALDH5A1 -0.9475 1
X14 204788_s_at PPOX -1.2844 1
X15 206136_at FZD5 -0.8422 1
X16 209019_s_at PINK1 -1.0190 1
X17 209416_s_at FZR1 -1.2603 1
X18 210151_s_at DYRK3 -0.7842 1
X19 210299_s_at FHL1 -0.5827 1
X20 219905_at ERMAP -1.3273 1
X21 221634_at RPL23AP7 0.6955 1
X22 222791_at RSBN1 0.7035 1
X23 226558_at LOC389834 -0.6496 1
X24 226974_at NEDD4L 0.9978 1
X25 227721_at CPAMB8 0.9759 1
X26 228425_at LOC654433 -0.7542 1
X27 229390_at FAM26F -0.9052 1
X28 229449_at — -1.0798 1
X29 231504_at CCDC148 -0.7238 1
X30 232362_at CCDC18 -0.5421 1
X31 235758_at LOC100287428 1.0313 1
X32 235761_at — -1.1196 1
X33 236089_at — 0.8346 1
X34 236837_x_at LOC650794 0.6433 1
X35 241233_x_at C21orf81 -0.8792 1
X36 56919_at WDR48 -0.8420 1
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Table B.4: Optimal classifier parameters for the MI vs. UA study

Fold σ C
1 100 10
2 1000 100
3 1000 10
4 1000 31.62
5 100 10
6 316.22 10
7 1000 10
8 31.62 10
9 316.22 100
10 100 31.62
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Table B.5: Differentially expressed genes between the MI and UA groups selected
by l1-StaR

Symbol Probe set Gene Hedges’ g score Frequency
X∗1 1557034_s_at WASH1 -1.8603 10
X∗2 1569955_at — -0.5798 10
X∗3 219300_s_at CNTNAP2 -0.7719 10
X∗4 224490_s_at KIAA1267 0.5763 10
X∗5 239853_at KLC3 -1.0778 10
X∗6 AFFX-LysX-M_at — 0.5967 10
X∗7 203638_s_at FGFR2 -0.7399 9
X∗8 230026_at PLA2G16 -1.1749 7
X∗9 1561754_at — -0.4367 6
X∗10 213831_at HLA-DQA1 -0.5162 6
X∗11 224489_at KIAA1267 0.4735 5
X∗12 1569481_s_at SNX22 -1.0031 4
X∗13 227474_at LOC654433 -0.6473 4
X∗14 230959_at — -0.5009 3
X∗15 207766_at CDKL1 -1.2877 2
X∗16 212768_s_at OLFM4 -0.6197 2
X∗17 216775_at USP53 0.4529 2
X∗18 224005_at — -0.6402 2
X∗19 230053_at — -0.8748 2
X∗20 1559477_s_at MEIS1 -0.8264 1
X∗21 203911_at RAP1GAP -0.8179 1
X∗22 206700_s_at KDM5D 0.5330 1
X∗23 211430_s_at IGHG1 0.4167 1
X∗24 213547_at CAND2 0.6672 1
X∗25 21736_x_at IGHA1 0.4481 1
X∗26 220004_at DDX43 -0.4885 1
X∗27 228362_at FAM26F -0.8267 1
X∗28 230336_at — -0.7275 1
X∗29 231996_at N4BP2 -0.7597 1
X∗30 233823_at FAM184B 0.4357 1
X∗31 236962_at — -0.6493 1
X∗32 236988_x_at ITGB2 0.3944 1
X∗33 237056_at INSC 0.3939 1
X∗34 243106_at CLEC12A -0.6286 1
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Table B.6: Differentially expressed probe sets between the NSTEMI and STEMI
groups selected by the multi-stage method

Symbol Probe set Gene Hedges’ g score Frequency
X1 209823_x_at HLA-DQB1 -1.7879 8
X2 213013_at MAPK8IP1 -1.4907 5
X3 213510_x_at LOC220594 -0.8613 4
X4 229778_at C12orf39 1.4668 4
X5 203695_s_at DFNA5 -1.4510 3
X6 212843_at NCAM1 1.3154 3
X7 227394_at NCAM1 1.3752 2
X8 230388_s_at LOC64246 -1.1345 2
X9 242874_at — 0.9873 2
X10 1552398_a_at CLEC12A -0.8403 1
X11 1557293_at LOC440993 1.3141 1
X12 1560071_a_at — 1.1301 1
X13 203780_at MPZL2 -0.9187 1
X14 205934_at PLCL1 1.1442 1
X15 211430_s_at IGHG1 -1.0728 1
X16 212220_at PSME4 1.1986 1
X17 215761_at DMXL2 1.0849 1
X18 227421_at C21orf57 0.9055 1
X19 228518_at IGH1/IGHM -0.8148 1
X20 231858_x_at DKFZp761E198 0.9116 1
X21 239591_at LRRC37A -1.1536 1

Table B.7: Optimal classifier parameters for the NSTEMI vs. STEMI study

Fold σ C
1 31.62 31.62
2 31.62 10
3 1000 100
4 316.22 31.62
5 100 31.62
6 10 10
7 10 31.62
8 10 10
9 3.16 10
10 10 10
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Figure B.3: Group-specific expression averages across visits for genes X1 − X15 in
the NSTEMI vs. STEMI study.
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Figure B.4: Group-specific expression averages across visits for genes X16−X21 in
the NSTEMI vs. STEMI study.
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Table B.8: Differentially expressed genes between the NSTEMI and STEMI groups
selected by l1-StaR

Symbol Gene Probe set Hedges’ g score Frequency
X∗1 APOBEC3B 206632_s_at -1.2503 10
X∗2 MAPK8IP1 213013_at -1.4907 10
X∗3 BTNL8 220421_at 1.2567 10
X∗4 NEBL 203961_at 0.5542 5
X∗5 XPNPEP2 216910_at 0.5132 4
X∗6 — 227952_at 0.8997 3
X∗7 — 239591_at -1.1536 3
X∗8 NEBL 203962_s_at 0.4581 1
X∗9 S100B 209686_at 0.4825 1
X∗10 SDC2 212158_at 0.6940 1
X∗11 RNF213 231959_at 0.6068 1
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Table C.7: Amount of genes expressed in each cell type in the MI and UA groups

Cell type MI UA
Eosinophils 10 8
Monocytes 12 3

Lymphocytes 7 6
Neutrophils 4 10
Erythrocytes 12 14

Platelets 9 7

Table C.8: Amount of genes expressed in each cell type in the NSTEMI and STEMI
groups

Cell type NSTEMI STEMI
Eosinophils 4 12
Monocytes 11 11

Lymphocytes 6 21
Neutrophils 4 12
Erythrocytes 25 13

Platelets 20 16
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Figure D.1: Estimated dynamic profiles for genes X1 − X12 in the MI vs. UA
study. The bars denote one standard deviation around the group-specific gene
expression averages
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Figure D.2: Estimated dynamic profiles for genes X13 − X20 in the MI vs. UA
study. The bars denote one standard deviation around the group-specific gene
expression averages
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Table D.1: Goodness of fit for the genes differentiating MI from UA

Gene Residual sum of squares
NSTEMI STEMI UA

X1 0.0502 0.0898 0.0574
X2 0.0277 0.0240 0.0215
X3 0.0330 0.0201 0.0162
X4 0.0315 0.0214 0.0228
X5 0.0277 0.0130 0.0156
X6 0.0900 0.0708 0.1006
X7 0.0189 0.0172 0.0289
X8 0.0016 0.0021 0.0012
X9 0.0008 0.0370 0.0016
X10 0.0131 0.0237 0.0219
X11 0.0115 0.0095 0.0077
X12 0.0019 0.0027 0.0158
X13 0.0186 0.0261 0.0972
X14 0.0042 0.0068 0.0244
X15 0.0246 0.0609 0.1104
X16 0.0375 0.0267 0.0432
X17 0.0015 0.0086 0.0722
X18 0.0452 0.0086 0.2343
X19 0.0113 0.0508 0.0432
X20 0.0075 0.0122 0.0139
X21 0.0066 0.0062 0.0068
X22 0.0029 0.0035 0.0041
X23 0.0148 0.0644 0.0429
X24 0.0012 0.0016 0.0013
X25 0.0001 0.0003 0.0003
X26 0.0540 0.0227 0.0514
X27 0.0059 0.0079 0.0058
X28 0.0105 0.0114 0.0126
X29 0.0255 0.0190 0.0690
X30 0.0009 0.0009 0.0009
X31 0.0055 0.0074 0.0114
X32 0.0106 0.0160 0.0129
X33 0.0121 0.0133 0.0025
X34 0.0007 0.0007 0.0007
X35 0.0166 0.3013 0.0902
X36 0.0058 0.0046 0.0037
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Figure D.3: Dynamic profiles of the combined expression levels for genes X∗1 −X∗12
selected by l1-StaR in the MI vs. UA study. The bars denote one standard deviation
around the group-specific gene expression averages
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Figure D.4: Dynamic profiles of the combined expression levels for genes X∗13 −
X∗20 selected by l1-StaR in the MI vs. UA study. The bars denote one standard
deviation around the group-specific gene expression averages
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Figure D.5: Gene regulatory network for genes X1-X20 in the NSTEMI group.
Each gene is represented by an unique colour. Regulatory connections sharing
the colour of a gene point towards the genes that regulate it. The (∗) marks
the regulatory interactions with the largest magnitude that were removed by the
sparsity filter. These connections were included to show at least one regulator per
gene.
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Figure D.6: Gene regulatory network for genes X1-X20 in the STEMI group. Each
gene is represented by an unique colour. Regulatory connections sharing the
colour of a gene point towards the genes that regulate it. The (∗) marks the regu-
latory interactions with the largest magnitude that were removed by the sparsity
filter. These connections were included to show at least one regulator per gene.
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Figure D.7: Gene regulatory network for genes X1-X20 in the UA group. Each gene
is represented by an unique colour. Regulatory connections sharing the colour of
a gene point towards the genes that regulate it. The (∗) marks the regulatory
interactions with the largest magnitude that were removed by the sparsity filter.
These connections were included to show at least one regulator per gene.
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Figure D.8: Estimated dynamic profiles for genes X1-X12 in the NSTEMI vs.
STEMI study. The bars denote one standard deviation around the group-specific
gene expression averages



162

NSTEMI 
STEMI 

NSTEMI
STEMI

Models Data

0 20 40 60 80 100
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8

Day

Ex
pr

es
si

on
 le

ve
l X13

0 20 40 60 80 1005.5

6.0

6.5

7.0

Day

X14

0 20 40 60 80 1008

9

10

11

12

13

Day

X15

0 20 40 60 80 100
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

Day

Ex
pr

es
si

on
 le

ve
l

X16

0 20 40 60 80 100
5.0

5.5

6.0

6.5

7.0

7.5

Day

X17

0 20 40 60 80 100
7.0

7.5

8.0

8.5

Day

X18

0 20 40 60 80 100
3

4

5

6

7

8

Day

Ex
pr

es
si

on
 le

ve
l

X19

0 20 40 60 80 100
6.0

6.5

7.0

7.5

8.0

8.5

9.0

Day

X20

0 20 40 60 80 100
1
2
3
4
5
6
7
8

Day

X21

Figure D.9: Estimated dynamic profiles for genes X13-X21 in the NSTEMI vs.
STEMI study. The bars denote one standard deviation around the group-specific
gene expression averages
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Table D.2: Goodness of fit for the genes differentiating NSTEMI from STEMI

Gene Residual sum of squares
NSTEMI STEMI

X1 0.0313 0.0549
X2 0.2094 0.3125
X3 0.0030 0.0027
X4 0.0379 0.0485
X5 0.0137 0.0305
X6 0.0077 0.0790
X7 0.0050 0.0072
X8 0.0329 0.0436
X9 0.0158 0.1924
X10 0.0313 0.0395
X11 0.0076 0.0298
X12 0.0002 0.0004
X13 0.0034 0.0133
X14 0.0038 0.0059
X15 0.0331 0.5867
X16 0.0425 0.2115
X17 0.0043 0.0298
X18 0.0067 0.0174
X19 0.0053 0.0067
X20 0.0038 0.0044
X21 0.1717 0.2544
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Figure D.10: Dynamic profiles of the combined expression levels for genes X∗1 −
X∗11 selected by l1-StaR in the NSTEMI vs. STEMI study. The bars denote one
standard deviation around the group-specific gene expression averages.
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R. Prony. Essai experimental–,-. J de lâĂŹEcole Polytechnique (Paris), 1(2):24–76,
1795.

L. Qian, H. Wang, and E.R. Dougherty. Inference of noisy nonlinear differential
equation models for gene regulatory networks using genetic programming and
kalman filtering. Signal Processing, IEEE Transactions on, 56(7):3327–3339, 2008.

J. Quackenbush. Microarray data normalization and transformation. Nature genet-
ics, 32:496–501, 2002.

A. Rakotomamonjy. Variable selection using svm based criteria. The Journal of
Machine Learning Research, 3:1357–1370, 2003.



Bibliography 183

C. Rangel, J. Angus, Z. Ghahramani, M. Lioumi, E. Sotheran, A. Gaiba, D.L. Wild,
and F. Falciani. Modeling t-cell activation using gene expression profiling and
state-space models. Bioinformatics, 20(9):1361–1372, 2004.

M.E. Ritchie, J. Silver, A. Oshlack, M. Holmes, D. Diyagama, A. Holloway, and
G.K. Smyth. A comparison of background correction methods for two-colour
microarrays. Bioinformatics, 23(20):2700–2707, 2007.

A. Ruhe and P.Å. Wedin. Algorithms for separable nonlinear least squares prob-
lems. Siam Review, 22(3):318–337, 1980.

Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

E.E. Schadt, J. Lamb, X. Yang, J. Zhu, S. Edwards, D. GuhaThakurta, S.K. Sieberts,
S. Monks, M. Reitman, C. Zhang, et al. An integrative genomics approach to
infer causal associations between gene expression and disease. Nature genetics,
37(7):710–717, 2005.

R.B. Scharpf, C.A. Iacobuzio-Donahue, J.B. Sneddon, and G. Parmigiani. When
should one subtract background fluorescence in 2-color microarrays? Biostatis-
tics, 8(4):695–707, 2007.

H. Scheffe. The analysis of variance, volume 72. John Wiley & Sons, 1999.

O. Scherzer. The use of morozov’s discrepancy principle for tikhonov regulariza-
tion for solving nonlinear ill-posed problems. Computing, 51(1):45–60, 1993.

T. Schlitt and A. Brazma. Current approaches to gene regulatory network mod-
elling. BMC bioinformatics, 8(Suppl 6):S9, 2007.

D. Scholtens and A. Von Heydebreck. Analysis of differential gene expression
studies. In Bioinformatics and computational biology solutions using R and Biocon-
ductor, pages 229–248. Springer, 2005.

G. Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6
(2):461–464, 1978.

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman.
Module networks: identifying regulatory modules and their condition-specific
regulators from gene expression data. Nature genetics, 34(2):166–176, 2003.

J.P. Shaffer. Multiple hypothesis testing. Annual review of psychology, 46(1):561–584,
1995.



184 Bibliography

H.M. Shapiro. Practical flow cytometry. John Wiley & Sons, 2005.

S.S. Shen-Orr, R. Tibshirani, P. Khatri, D.L. Bodian, F. Staedtler, N.M. Perry,
T. Hastie, M.M. Sarwal, M.M. Davis, and A.J. Butte. Cell type–specific gene
expression differences in complex tissues. Nature methods, 7(4):287–289, 2010.

S.S. Shen-Orr, R. Tibshirani, and A.J. Butte. Gene expression deconvolution in
linear space. Nature Methods, 9(1):9–9, 2011.

I. Shmulevich and W. Zhang. Binary analysis and optimization-based normaliza-
tion of gene expression data. Bioinformatics, 18(4):555–565, 2002.

I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang. Probabilistic boolean net-
works: a rule-based uncertainty model for gene regulatory networks. Bioinfor-
matics, 18(2):261–274, 2002a.

I. Shmulevich, E.R. Dougherty, and W. Zhang. From boolean to probabilistic
boolean networks as models of genetic regulatory networks. Proceedings of the
IEEE, 90(11):1778–1792, 2002b.

I. Shmulevich, E.R. Dougherty, and W. Zhang. Control of stationary behavior in
probabilistic boolean networks by means of structural intervention. Journal of
Biological Systems, 10(04):431–445, 2002c.

I. Shmulevich, E.R. Dougherty, and W. Zhang. Gene perturbation and intervention
in probabilistic boolean networks. Bioinformatics, 18(10):1319–1331, 2002d.

V.N. Silbiger, A.D. Luchessi, R.D. Hirata, L.G. Lima-Neto, D. Cavichioli, A. Car-
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