3,898 research outputs found

    Robust fault estimation based on zonotopic Kalman filter for discrete-time descriptor systems

    Get PDF
    This paper proposes a set-based approach for robust fault estimation of discrete-time descriptor systems. The considered descriptor systems are subject to unknown-but-bounded uncertainties (state disturbances and measurement noise) in predefined zonotopes and additive actuator faults. The zonotopic fault estimation filter for descriptor systems is built based on fault detectability indices and matrix to estimate fault magnitude in a deterministic set. The zonotopic fault estimation filter gain is designed in a parameterized form. Within a set-based framework, following the zonotopic Kalman filter, the optimal filter gain is computed by minimizing the size of the corresponding zonotopes to achieve robustness against uncertainties and the identification of occurred actuator faults. Besides, boundedness of the proposed zonotopic fault estimation is analyzed, which proves that the size of obtained fault estimation bounds is not growing in time. Finally, the simulation results with two application examples are provided to show the effectiveness of the proposed approach.Peer ReviewedPostprint (author's final draft

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Visual SLAM for flying vehicles

    Get PDF
    The ability to learn a map of the environment is important for numerous types of robotic vehicles. In this paper, we address the problem of learning a visual map of the ground using flying vehicles. We assume that the vehicles are equipped with one or two low-cost downlooking cameras in combination with an attitude sensor. Our approach is able to construct a visual map that can later on be used for navigation. Key advantages of our approach are that it is comparably easy to implement, can robustly deal with noisy camera images, and can operate either with a monocular camera or a stereo camera system. Our technique uses visual features and estimates the correspondences between features using a variant of the progressive sample consensus (PROSAC) algorithm. This allows our approach to extract spatial constraints between camera poses that can then be used to address the simultaneous localization and mapping (SLAM) problem by applying graph methods. Furthermore, we address the problem of efficiently identifying loop closures. We performed several experiments with flying vehicles that demonstrate that our method is able to construct maps of large outdoor and indoor environments. © 2008 IEEE

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics
    corecore