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Abstract The aim of the paper is to present, test and discuss the implementation of 
Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) 
outdoors, in partially structured environments. Every issue of the whole process is 
discussed in order to obtain more accurate localization and mapping from UAVs 
flights. Firstly, the issues related to the visual features of objects in the scene, their 
distance to the UAV, and the related image acquisition system and their calibration 
are evaluated for improving the whole process. Other important, considered issues 
are related to the image processing techniques, such as interest point detection, the 
matching procedure and the scaling factor. The whole system has been tested using 
the COLIBRI mini UAV in partially structured environments. The results that have 
been obtained for localization, tested against the GPS information of the flights, show 
that Visual SLAM delivers reliable localization and mapping that makes it suitable 
for some outdoors applications when flying UAVs. 
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1 Introduction 

Vision is the richest source of information from our environment, and that is the 
reason why SLAM algorithms have also begun to be used with visual information. 
The information provided by vision systems consists on a vaste amount of data per 
time that requires to be processed in order to provide SLAM algorithms with useful 
information. Hence, image processing algorithms have to precede SLAM algorithms 
and they highly determine the results and successfulness of the whole visual SLAM 
process. 

This paper tackles the whole process of visual SLAM by rotary wings UAVs in 
outdoor environments, from the image acquisition to the final UAV localization and 
environment mapping. The obtained results are shown to be a useful information 
source that complements, and in some applications can replace, other onboard sen­
sors as GPS or inertial ones. The information provided by visual SLAM is related to 
actual objects present in the environment, constructing a map of them and localizing 
the UAV relatively to these objects. This information can not be provided by GPS 
or other onboard sensors, which can only localize the UAV without any relative 
localization to external objects that can be verified by actual, external data, as visual 
SLAM does. Visual SLAM can also be useful in cases of GPS signal drop-off. Finally 
Visual SLAM can also be used for sensor fusion, providing the complementary 
advantages of diverse and complementary sources. 

Visual SLAM techniques can be first classified in Stereo and Monocular. The 
first includes also more than two cameras approaches. There are many successful 
implementations of visual slam with stereo cameras [1, 2]. Monocular approaches 
where started by Davison et al. [3] who used only one camera to reconstruct indoor 
environments. Successful results have been obtained using Visual SLAM indoors 
also by [4], Kim and Oh in [5] and Choi and Oh in [6]. 

With monocular vision the initialization of features is a difficult problem. The 
approach given by Davison et al. [3] used a delayed initialization algorithm. This 
algorithm waits until the camera position has parallax enough to determine the 
position of a feature and then includes it on the filter. This approach needs a depth 
interval in which we expect to find the features and therefore is not suitable for 
outdoor uses where very near features and very far features can coexist. Montiel 
et al. [7] proposes a solution to the aforementioned estimation problem by using the 
so called inverse parametrization, which is also used in our approaches and tests. This 
technique allows the application of the algorithm to outdoor scenes. Nonetheless, as a 
drawback that increases the computational cost, which is also augmented in our case 
due to the big amount of key points in non-structured outdoors 3D environments. 

Another problem of SLAM in outdoor environments is the high number of 
features and the long displacement between loop-closings. The most impressive 
application for outdoor SLAM algorithms is [8]. Here the authors use a SLAM 
algorithm based on 3D laser profiles and uses a vision based algorithm to detect loop-
closure after a very long loop. Other approaches like Lemaire et al. [9] uses a feature 
database jointly with a strong detection algorithms based on the feature topology. 



There are two main filters used in the SLAM problem: Extended Kalman Filter, 
EKF, and Rao-Backwellized Particle Filter, RBPF. Particle filters are not widely used 
because it needs a very high number of particles when the state dimension is high, so 
the RBPF is used instead of this. Examples of implementations of Visual Slam with 
RBPF are [1, 2,10]. Approaches using EKF are [3, 7]. 

Visual SLAM implementations mainly use point features in contrast with the 
implementations of 2D laser based SLAM which are based on occupancy grids. 
Occupancy grids are not exclusive of non visual systems as shown in [1]. Several 
algorithms have been used for interest point detection and visual features extraction 
[11,12], as well as for their matching in consecutive images [13], or not consecutive 
[8]. Other approaches use other geometry entities as features, like Dailey in [10] 
which uses lines. 

The use of visual SLAM onboard UAV is no yet very spread although there 
are some successful implementations like: [9, 14-16]. The system presented by 
Tornqvist et al. [14] uses a FastSLAM offline algorithm that is fussed with the 
Rao-Blackwellized particle filter in order to get 2D information that is necessary 
to estimate the position and the altitude of the UAV. Good results concerning the 
position estimation have been obtained but, on the contrary, not so good results 
have been achieved in relation to altitude estimation. Another work in the same 
field was presented by Kim and Sukkarieh [15] where vision, a Radar device and 
an high-quality Inertial Measurement Unit (IMU) are used for a 2D inertial-SLAM 
in order to get better results. Yet they are still shown in 2D SLAM, which means 
there is not three dimensional reconstruction of the environment. In Miniature Air 
Vehicle (MAV) platform, the research made by McLain et al. [16] was based on a 
camera positioning device that estimates the position and altitude of the MAV and 
the pixel location of the target in an image. Its results can localize the target in world 
coordinates using different techniques so as to reduce the localization error. N. Aouf 
et al, on the other hand, developed in [17] an airbone SLAM algorithm with Inertial 
Navigation System (INS) and Visual system by implementing an Extended Kalman 
Filter (EKF). They proposed a solution to remove the landmarks from the EKF, a 
methodology based on circle intersections, and gave results with virtual images taken 
from a downward looking virtual camera. 

Therefore, we have implemented an EKF version that takes into account our 
specific UAV application in order to optimize the computational time, not letting 
it increase oversize, as detailed in Section 4. Below we present in this paper the 
results of applying Visual 3D SLAM techniques onboard an UAV. Those results 
will be compared with the flight information delivered by the GPS and IMU. 
These results are presented in Section 5 and they demonstrate that robust and 
coherent positioning and mapping are obtained,which make them suitable for being 
used in UAV applications where the visual information regarding its environments 
plays an important role, such as outdoors civilian infrastructures visual inspection, 
environmental events detection and tracking, and visual security applications. 

2 System Description 

The COLIBRI testbed [18], is based on a gas powered industrial twin helicopter 
with a two stroke engine 52 cc and 8 hp (Fig. 1) capable to carry up to 12 kg 



Fig. 1 UPM-COLIBRII Helicopter platform used for Visual SLAM tests 

payload. The platform is equipped with a xscale-based flight computer augmented 
with sensors (GPS, IMU, Magnetometer, etc fused with a Kalman filter for state 
estimation). Additionally it includes a Pan Tilt servo controlled platform for many 
different cameras and sensors. On the other hand, in order to enable it to perform 
vision processing, it has a VIA mini-ITX 1.25 GHz onboard computer with 1 Gb 
RAM, a wireless interface and support for many Firewire cameras including Mono 
(BW), RAW Bayer, color, and stereo head for images acquisition. Additionally, it is 
possible to use IP cameras and analog cameras as well. 

The system runs in a client-server architecture using TCP/UDP messages. Com­
puters run Linux OS working in a multi-client wireless 802.11g ad-hoc network, 
allowing the integration of vision system and visual tasks with the flight control. 
This architecture allows embedded applications to run onboard the autonomous 
helicopter while it interacts with external processes through a high level switching 
layer. The visual control system and additional external processes are integrated 
with the flight control through this layer using TCP/UDP messages [19]. The layer 
is based on a communication API where all the messages and data types are defined. 
The helicopter's low-level controller is based on simple PID control loops to ensure 
its stability.The higher level controller uses various sensing mechanisms such as 
GPS and/or vision to perform tasks such as navigation, landing, visual tracking, 
etc. Several applications based on visual control have been achieved employing the 
control architecture [20, 21]. 

3 Interest Points Detection and Matching 

The selection of interest points that can be tracked along an image sequence is a key 
step in the visual SLAM algorithm because it ensures the stability of the Kalman 
filter. Since this step needs to be a reliable process it is important to have a measure 
of the reliability of an extracted feature, in order to choose the most important and 
robust one. There are some alternatives to find robust features that can be identified 



and characterized with a descriptor like the SURF [22] or SIFT [23]. For example, in 
[24] Danesi et al. they use SIFT for a wheeled vehicle visual servoing. Other detectors 
like the Harris Corner Detector [25] find corner features that are very common in 
semi-structured environments, like in [26], where Garcia-Garcia et al. used the Harris 
Detector with RANSAC for a robust position estimation. Based on previous work 
that evaluates the performance of interest point detectors for the SLAM problem 
[27] and [13], the most appropriate choices are the Harris detector, SIFT and SURF, 
but since it is a well known fact that SURF computation is faster than SIFT's and 
their behaviors are similar SIFT is not consider in the work. 

Two alternatives are presented in this section; Harris Detector with a reliability 
measure (plus cross-correlation) and the SURF feature. The subsequent matching 
algorithm is also described for each type of feature too. 

3.1 Harris Corner Detection and a Reliability Index 

The Harris detector is a well known detector that is widely used in a large amount 
of applications. It extracts many corners very quickly based on the magnitude of 
the eigenvalues of the autocorrelation matrix. However, it is not enough to use this 
procedure to ensure the robustness of the extracted corner. The aim that is sought is 
to increase the probability to find it again in the next image and to match it correctly. 
For that purpose a quality measure has been defined and some procedures have been 
implemented in order to achieve the extraction of good features to track. 

Due to the noise in the images caused by the sensor itself and vibration of the 
UAV, it is important to filter the image with a mean filter and a median filter. Then, 
the gradient G of the image is calculated, and only pixels with a norm of the gradient 
above a value are considered to be processed. Afterward the Canny edge detector 
[28] algorithm is used in the previously selected pixels keeping pixels laying on well 
define edges. This reduces the number of extracted features. After this process is 
completed, the corners are extracted with the standard version of the Harris detector. 
Next, the sub-pixel precision version of the detector is applied [29] shifting the 
window over three iteration. Based on the results of those two algorithms a stability 
measure is calculated to determine the maximum position variation es. Finally, the 
size of the detector window is increased from 5x5 to 7x7, to prove and test the 
stability of the position of the extracted corners, and a measure of this variation is 
calculated, named ew based on a "maximum difference allowed" criteria. All those 
measures are integrated into a function Q (1) that returns a global value of the quality 
and robustness of the extracted corner using the product of the eigenvalues Ai and 
A2, the norm of the gradient ||G|| of the interest point and the measures described 
above. 

6(Ai,A2, \\G\\,es,ew) = — —— (1) 
(l + e s)(l+e ro) 

The global value calculated for each point is used to reject false corners using each 
one of the 5x5 windows and considering only the corners with the maximum value 
of Q index. Also it is used to classify the extracted features into three groups. This 
distinction between the corners is going to drive the matching process: each group 
represents a level of quality of a corner. This allows one to make the assumption that 
good corners are going to appear in the next image, and to suppose that they are 
going to be found in one of the next levels in case they degrade. Figure 2 illustrates 



Fig. 2 Extracted corner features classified into three levels. Red corners are the most stable ones and 
belong to level 1 group. Green corners are classified as level 2 and blue ones as level 3 

the three levels of classification of the corners and how the extraction method 
keeps features that are on structured parts of the scene none of which belongs to 
the landscape. Another advantage of this classification resides in the possibility to 
include new features into the Kalman Filter of the SLAM process only if they belong 
to the level 1 group. 

3.2 SURF Features 

Speeded Up Robust Feature algorithm extracts features from an image which can be 
tracked over multiple views. The algorithm also generates a descriptor for each fea­
ture that can be used to identify it. SURF features descriptor are scale and rotation 
invariant. Extracted features are blob like features. Ollero et al. used this method in 
[30] for position and motion estimation from multiple planar homographies taken 
from different UAVs. The kinds of extracted features are shown in Fig. 3 on a 
structured scene. Tests were also carried out with unstructured scenes such as the 
ones shown in Fig. 4. 

Scale invariance is attained using different amplitude gaussian filters. The appli­
cation of this filter results in an image pyramid. The level of the stack from which 
the feature is extracted assigns the feature to a scale. This relation provides scale 
invariance. The next step is to assign a repeatable orientation to the feature. The 
angle is calculated through the horizontal and vertical Haar wavelet responses in 
a circular domain around the feature. The angle calculated in this way provides 
a repeatable orientation to the feature. As with the scale invariance the angle 
invariance is attained using this relationship. 

SURF descriptor is a 64 element vector. This vector is calculated in a domain ori­
ented with the assigned angle and sized according to the scale of the feature. De­
scriptor is estimated using horizontal and vertical response histograms calculated in 
a 4 by 4 grid. There are two variants to this descriptor: the first provides a 32 element 
vector and the other one a 128 element vector. The algorithm uses integral images to 
implement the filters. This technique makes the algorithm very efficient. 



Fig. 3 SURF features tested 
on semi-structured scenes 

3.3 Corner Features Matching 

Once corner features are extracted the next step is to correctly match the features 
of the current image with as many features of the previous image as possible. Since 
the corners are divided into levels, the first matching attempt is made using the level 
1 corners of the current image against the 1st and 2nd levels of the previous image. 
Then a matrix containing the result of a similarity function is calculated for all the 
possible match pairs for this set of corners. The similarity function is the normalized 
cross-correlation of the context of the corners, which in this case is a 9x9 patch 
centered at the position of the feature in pixel resolution. However, other similarity 
functions can be used as, for example sum of squared differences or the Earth Mover 

Fig. 4 SURF features tested 
on unstructured scenes 



distance. The next step is to find each and every possible set of matches that maximize 
a cost function which can be defined as follows: 

Cost function rewards high cross-correlation. 
Cost function penalizes matching pairs whose distance differs from the average 
displacement of the set of matched features, based on the fact that most of them 
will move in solidarity. 
Cost function rewards the number of attained matches. 

If Ik is the fcth image, and Lk is a corner in that image, lets define t as the match 
between a corner in the fcth and (k-l)ih image like a 2-tuple t = (Lk~l, Lk), and 
lets define £2 = L\, 12,..., H, •••, *n as the set of matches between the corners of those 
two images. Given those definitions and the considerations described above, the cost 
function is: 

J(f2) = , w E ' , C i (2) 
1 Y.i^(dx,-dx)2+(dyi-dy)2 

^(dx)2+(dy)2 

where i is the ith match of £2, ci is the cross-correlation of ith matched features, dxi 
and dyi are the position difference of the Lk corner in each axis from the matched 
corner Lk~l in sub-pixel precision, n is the number of matched features, and dx and 
dy are the mean of those differences of position of the set of matches £2. 

To find all possible sets of matches, including the case there is no match for some 
of the current corners, a recursive algorithm is used to explore possible combinations. 
Yet, the amount of combinations is too large to calculate the cost function for every 
single possibility. The way to avoid unnecessary calculation can be found in the 
criteria used to formulate the cost function. A corner is consider to be matched with 
other if their correlation is higher than an umbral and if the difference in position 
is lower than a maximum displacement. These conditions reduce the number of 
possible sets to a more reasonable amount of possible sets to be calculated. In order 
to exploit the assumption that the matching will be done on consecutive images 
captured at a reasonable frame rate like 30 fps, empirically we have found that cross-
correlation higher than 0.98, and a search radius of 100 pixels, works fine for this 
first step of the matching procedure. The size of this radius of search depends on the 
frame rate, the angular and lineal velocity of the UAV and the distance of the objects 
in the scene. This procedure results in the definition of a global motion parameter 
of the corners of the current image compared with the ones in the previous frame. 
Using the information of the best found match, the procedure is repeated with the 
unmatched corners of the 1st level and 2nd level corners of the current image. But 
this time candidate corners of the current image are translated (—dx, —dy) to match 
them with the unmatched features of the previous image in a radius of 4 pixels. Only 
matching pairs with a cross-correlation higher than 0.96 are considered. To find the 
best set of matches in this second step the cost function is ^ c*. 

Finally, in the third phase, the algorithm tries to match features in the previous 
image that were matched before. All unmatched features of the current and previous 
images, including 3rd level corners are matched using the same procedure of the 
second matching attempt, allowing matched pairs with a cross-correlation higher 
than 0.96 to remain only if they were matched before. Some results of the entire 



Image 

Level 1 corners 
Level 2 corners 
Level 3 corners 
Total corners 
Matched on phase 
Matched on phase 
Matched on phase 
Correct matches 
Wrong matches 
Tracked corners 

1 
2 
3 

1 

15 
20 
52 
87 

0 
0 
0 
0 
0 
0 

2 

15 
20 
53 
88 
11 
3 

11 
25 

0 
0 

3 

15 
20 
55 
90 
11 
0 
5 

16 
0 
9 

4 

15 
20 
47 
82 
10 
0 
3 

11 
2 
8 

5 

15 
20 
43 
78 
10 
9 
9 

24 
4 

10 

6 

15 
20 
46 
81 
13 
9 

20 
38 

4 
16 

7 

15 
20 
46 
81 
10 
0 
6 

14 
2 

12 

stages of the matching process are summarized in Table 1, while Fig. 5 shows the 
attained matching graphically. 

3.4 SURF Features Matching 

The procedure to match SURF features is based on the descriptor associated to the 
extracted interest point. An interest point in the current image is compared to an 
interest point in the previous one by calculating the Euclidean distance between 
their descriptor vectors. A matching pair is detected if its distance is closer than 
0.9 times the distance of the second nearest neighbor and the SSD error between 
the two descriptors is less than 150000. The procedure for a sequence of images 
begins with the extraction of all features in the first image. Thirty interest points well 
distributed all over the image are selected to become the initial database. Extracted 
SURF features in the next image are compared to the database using the Euclidean 

iB^^^^BB^HI 
Fig. 5 Corner features are matched using the procedure described in Section 3.3. Red lines show 
matches obtained in phase 1, while green lines represent the matches of phase 2 and the blue lines 
depict the ones made in phase 3 

Table I Results attained with 
the matching algorithm 
described in Section 3.3 for 
corner features 



Table 2 Comparison between semi-structured and unstructured scenes for SURF algorithm 

Scene 

Semi-structured 
Unstructured 

Total features 

1559 
3590 

Matched features 

884 
1518 

Ratio 

56% 
42% 

distance as described above. This reduces the computational cost of matching all 
the possible features between frames and allows to track a constant set of features 
along a high number of frames. If the matching of the thirty features in the set is not 
possible, new features are added to this set using the same procedure employed for 
the first thirty. To avoid the insertion of features during short periods of no-detection 
of features, new features are inserted only when the number of matched features is 
below ten. 

SURF features extraction and matching have been tested with semi-structured 
and unstructured scenes to use different techniques depending on the scenes and to 
achieve better performance in SLAM algorithms. SURF features behave similarly in 
both cases. Table 2 summarizes the behavior of SURF. The results of Harris detector 
indicate that it finds features that almost in all cases belong to structured objects of 
the scene. For this reason, the SURF features are used on unstructured scenes. 

4 Visual SLAM 

This section presents the implementation of a visual SLAM algorithm with monoc­
ular information. No prior information of the scene is needed for the proposed 
formulation. In this approach, no extra absolute or relative information, GPS or 
odometry are used. First, the formulation of the problem will be described. Then, the 
details of the Kalman filter are explained. Finally, the particularities of this approach 
are addressed. 

4.1 Formulation of the Problem 

The problem is formulated using state variables to describe and model the system. 
The state of the system is described by the vector: 

X= [x, Si ,S 2 , s3 , . . . ] (3) 

where x denotes the state of the camera and s* represents the state of each feature. 
The camera state has 12 variables. The First six variables represent the position 
of the vehicle in iteration k and in the previous iteration. The Next six variables, 
vector [p, q, r], represent the rotation at the iteration k and k — 1. Rotation is 
expressed using Rodrigues notation. This expresses a rotation around a vector with 
the direction of co = [p, q, r] of an angle 0 = y p2 + q2 + r2. The rotation matrix is 
calculated from this representation using 

eM = I + wsin{6) + £2(1 - cos(6)) (4) 



where / is the 3x3 identity matrix and a> denotes the antisymmetric matrix with 
entries 

0 
r 0 

-q p 

r q 

0 
(5) 

Therefore the state of the camera, not including the features, is composed by the 
following 12 variables, 

[xk, xk-i, yk, yk-i, Zk, Zk-i, Pk, Pk-i, qk, qk-i,n, rk-i] (6) 

Other implementations of monocular SLAM uses quaternion to express the rotation 
[7]. The use of Rodrigues notation, instead of quaternion, allows to reduce the 
dimension of the problem using only three variables to represent the rotation. 

Rodrigues representation avoids the singularities of other three-parameter repre­
sentations but has a discontinuity at rotations of 180 degrees. This parametrization is 
chosen instead of quaternions since quaternions force the introduction of a unit norm 
restriction. This restriction is difficult to handle in the context of a conventional EKF. 
It can even lead to singularities in the Kalman filter matrices [31] although noise and 
system imperfections help to avoid this situation. 

Using a discrete system storing the states at instant k and k-1 instead of consider­
ing a state composed of position and velocities at instant k helps the introduction of 
angular representations that are not linear with angular velocities. It also allows the 
introduction of movement models without many changes in the algorithm structure. 
Both formulations are equivalent mathematically. 

Each feature is represented as a vector [s*] of dimension 6 using the inverse 
depth parametrization proposed by Javier Civera in [7]. This parametrization uses six 
parameters to define the position of a feature in a 3Dimensional space. Each feature 
is defined by the position of a point, the direction of a line based on the point and the 
inverse distance form the point to the feature along the line. This parametrization 
is shown in Fig. 6. This reference system allows the initialization of the features 
without any prior knowledge about the scene. This is important in exterior scenes 
where features with very different depths can coexist. 

si = [x0,yo,Zo,6,<i>,p] (7) 

This parametrization is converted to 3D world coordinates using 

cos(9)sin(<fi) 
—sin{6) 

cos(0)cos((p) 

r n 1 
\xw, yw, Zw\ = [x0, ya, z0]-\ m(9, <p) 

P 

(8) 

4.2 Prediction and Correction Stages 

The algorithm's main loop has two stages: prediction and correction. In the pre­
diction stage, uncertainty is propagated using the movement model. The correction 
stage uses real measurements and predicted measurements to compute a correction 



Fig. 6 Inverse depth 
parametrization. The position 
xw of a feature si is given by 
the position of a point x0, the 
direction of a line, 9, <f>, and 
the inverse of the distance 
from the point x0 to the 
feature xw. The state vector is 
completed by the position of 
the camera and its rotation 

Xo 

<\N 
A 

^ 

(x,y,z) 

to the prediction stage. Both stages need a precise description of the stochastic 
variables involved in the system. 

There are mainly two approaches to implement this filter: extended Kalman 
filter and particle filter (FastSLAM). Both filters use the same formulation of the 
problem but have different approaches to the solution. The advantages of the 
Kalman filter are the direct estimation of the covariance matrix and the fact that it 
is a closed mathematical solution. Its disadvantages are the increasing computational 
requirements with the number of features, the need of linearization of the model and 
the assumption of gaussian noise. On the other hand, particle filters can deal with 
non-linear, non-gaussian models but the solution they provide depends on an initial 
random set of particles which can differ in each execution. 

Given the previous facts, the Kalman filter has thus been chosen since its results 
can be traced back and experiments are repeatable. The Extended Kalman filter 
allows the use of non-linear models through equation linearization. 

The prediction stage is formulated using linear equations 

Xk+1 = A • Xk + B • Uk 

Pk+l=A-Pk-A
T+Q 

(9) 

where A is the transition matrix, B is the control matrix and Q is the model covari­
ance. Camera movement is modeled using a constant velocity model. Accelerations 
are included in a random noise component. For a variable n which represents any of 
the position components (x, y, z) or the rotation components (p, q, r) we have: 

Wfc+i = nk + vk • At (10) 



Where Vk is the derivative of n or speed. We can estimate Vk as the differences in 
position, 

nk ~ nk-l 
rik+i = nk + ( — ) At = 2nk - xn_x 

(11) 

Feature movement is considered constant and therefore is modeled by an identity 
matrix. Now full state model can be constructed 

Xk+l 

Xk 

yt 
Zk+l 

Zk 

rk+\ 

rk 

Pk+i 

Vk 

<lk+\ 

qk 
si,fe+i 

2 - 1 
1 0 

2 - 1 
1 0 

2 - 1 
1 0 

2 - 1 
1 0 

2 - 1 
1 0 

2 - 1 
1 0 

Xk 

Xk-\ 

yk 
yk-\ 

Zk 

Zk-\ 

rk 

nt-i 
Vk 

Vk-l 
qk 

qk-\ 
Sl,k 

(12) 

The correction stage uses a non-linear measurement model. This model is the 
pin-hole camera model. The formulation of the Extended Kalman Filter in this 
scenario is 

Kk 

Xk 

Pk 

pk- J\J • P- J1 + RT 

Xk + Kk- {Zk - H(Xk)) 

Pk-Kk-JPk 

(13) 

Where Zk is the measurement vector, H(X) is the non-linear camera model, / is the 
jacobian of the camera model and Kk is the Kalman gain. 

The movement of the system is modeled as a solid with constant motion. Accel­
eration is considered a perturbation to the movement. A pin-hole camera model is 
used as a measurement model. 

nu 
nv 
n 

= 
7oo" 

0 / o 
0 0 1 

[R\T] yw 

l 

(14) 

where u and v are the projected feature central coordinates. Distortion is considered 
using a four parameters model (kl , k2, k3, k4) 

(15) 

r2 = 

^dist = 

Xd = 

U2 + V2 

1 + k0r 
u ' Wirt 

+ hr4 

+ k^ (2M v) + k3(r
2 

+ 2M2) 

yd = v • Cdist + k2{r2 + 2v2) + fcj(2w • v) 



The state error covariance matrix is initialized in a two part process. First, 
elements related to the position and orientation of the camera, x, are initialized as 
zero or as a diagonal matrix with very small values. This represents that the position 
is known, at the first instant, with very low uncertainty. The initialization of the values 
related to the features, st, must be done for each feature seen for the first time. This 
initialization is done using the results from [7]: 

Where 

nnew T 
vk\k — J 

3s 3s 

k\k 

R, 

3xyz 3pqr 
00 

0 
3s 

0 
3s 

dxd,yd dp0 

(16) 

(17) 

3s 
3xyz 

"1 0 0 " 
0 1 0 
00 1 
0 0 0 
0 0 0 
0 0 0 

3s 

3pqr 

0 0 
0 0 
0 0 
39 39 
dp dq 
dip dip dip 
dp dq dr 

0 0 0 

0 
0 
0 
d8 
dr 

3s 
dxd, yd 

" 0 0 " 
0 0 
0 0 
d8 d8 

dxd dyd 

dip dip 
Sxd dyd 

_ 0 0 _ 

3s 
• — 
' 3p0 

" 0 1 
0 
0 

0 
0 

1 

(18) 

Robust feature tracking and detection is a key element in the system. In order to 
improve the robustness of the feature matching process a Mahalanobis test is used. 
The filter is implemented using Mahalanobis distance between the predicted feature 
measurement and the real measurement. Mahalanobis distance weighs Euclidean 

Fig. 7 Mahalanobis distance 
representation 



distance with the covariance matrix. Figure 7 shows a representation of Mahalanobis 
distance. This distance is the input to a x2 test which rejects false matches. 

{Z-J-X)t-C-\Z-J-X)>x2
n (19) 

where 

C= H- P- HT + R (20) 

The scale of the reconstruction is an unobservable system state. This problem is 
covered in [32] by Javier Civera. The use of inverse depth parametrization avoids 
the use of initialization features of a known 3D position. This allows the use of the 
algorithm in any video sequence. Without these initialization features, the problem 
becomes dimensionless. The scale of the system can be recovered using the distance 
between two points or the position of the camera and one point. Computational cost 
is dependant on the number of features in the scene, and so the increasing scene 
complexity affects processing time in a negative way. Robust feature selection and 
matching is very important to the stability of the filter to achieve a correct mapping. 

-15 _ M U.A V. East Position Local Plare (n>> 

Fig. 8 3D flight trajectory and camera position reconstruction, obtained using the flightlog data. The 
blue line depicts the translational movement and the red arrows represent the heading direction of 
the camera (pitch and yaw angles). Superimposed Images show the different perspectives obtained 
during the flight sequence around the semi-structured scene 



5 Results 

Several tests have been made using the Colibri I testbed. In this test, a series 
of trajectories around a 3D scene were performed flying in autonomous mode 
navigation based on way points and desired heading values. The scene is composed of 
many objects, including a grandstand, a van and many other elements, and also of 
a series of marks feasible for features and corners detection. For each flight test a 
30 f.p.s. image sequence of the scene was obtained, associating the U.A.V. attitude 

Fig. 9 Semi-structured scene 
reconstruction. The upper 
figure shows reconstructed 
points from the scene shown in 
the lower figure. Points are 
linked manually with lines to 
ease the interpretation of the 
figure. All the reconstruction is 
done dimensionless to show 
the original results. To recover 
the scale at least two points 
must have known coordinates 



information for each one. That includes the GPS position, IMU data (Heading, body 
frame angles and displacement velocities) and the helicopter position estimated by 
controller Kalman Filter, on the local plane with reference to the takeoff point. 

Using the flightlog it is possible to reconstruct the 3D trajectory of the vehicle and 
the camera and/or helicopter pointing direction. Figure 8 shows a reconstruction of 
one flight around the test scene. 

Tests have been made with semi-structured scenes and un-structured scenes. Also, 
very different distances to the features have been used. The implementation of 
inverse depth parameterized features and of dimensionless reconstruction allows the 
use of the algorithm in relation to different kind of scenarios. 

5.1 Semi-structured Scene 

Results for tests using a tracking algorithm for structured elements are shown on 
Fig. 9. Reconstructed features are shown as crosses. In the figure some references 
planes were added by hand in order to help with the interpretation. Figure 9 shows 
an image from the sequence used in this test. 

Results show that the reconstruction has a coherent structure but that the scale of 
the reconstruction is function of the initialization values. The scale can be recovered 
using the distance between two points or the positions of one point and the camera. 

The uncertainty of the features is reduced if observations of better known features 
are used. Figure 10 shows the variance of the features. Uncertainty is represented as 
a point cloud around the reconstructed position. Ellipsoids are not an appropriate 
form of representation due to the inverse depth parametrization. The figure shows 

0 02.. 

Fig. 10 Covariance matrix evolution. In this figure, uncertainty is represented as a point cloud. The 
figure on the right shows the reduction of uncertainty after a few observations. The uncertainty in 
depth direction is still hight due to low parallax in this short movement 



how uncertainty is reduced in sequential observation. It can also be seen how depth 
uncertainty is much greater than uncertainty of other directions. 

Uncertainty point cloud is represented in Fig. 11 as a group of small points. 
Numbers represent the detected features. The sequence shows the evolution of the 
features position and their uncertainty. 

Finally the camera movement relative to the first image is compared with the 
real flight trajectory. For this the (x, y, z) axis on the camera plane are rotated to 
be coincident with the world reference plane used by the UAV. The Heading or 
Yaw angle (t/r) and the Pitch angle (9) of the helicopter in the first image of SLAM 
sequence, define the rotational matrix used to align the camera and UAV frames. 
The Rotation Matrix is defined by: 

R(x/r, 9) 
cos(t/r) sin(t/r) 0 

cos(0) sin(t/r) cos(0) cos(t/r) —sin{9) 
sin(0) sin(t/r) sin(0) cos(t/r) cos(0) 

(21) 

The displacement values obtained using SLAM, are rotated and then scaled to 
be compared with the real UAV trajectory. Figure 12 shows the UAV and SLAM 
trajectories and the medium square error (MSE) between real flight and SLAM 
displacement, for each axe. In X and Y axes, the trajectory adjusts better to the real 
flight as soon as the features reduce theirs uncertainty, as soon as more images are 

Fig. 11 Covariance evolution. The uncertainty represented as a cloud of small points (red) decreases 
with sequential observations. Numbers show the predicted and observed features position 
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Fig. 12 SLAM reconstructed trajectory vs. UAV trajectory, a 3D flight, b North axis in meters, c East 
axis in meters, c Altitude in meters. The reconstructed trajectory on X and Y axes, adjusts better to 
the real flight as soon as more images are processed and the uncertainty of the features is reduced. 
Altitude measurement has a precision of ± 2 m causing that Z axis results can't be compared. The 
initial altitude of the test is 6.88 m 

Fig. 13 Scene and tracked 
features during a non 
structured visual flight. Video 
sequence was taken by a 
manned helicopter traveling 
along a rectilinear trajectory 
for several hundred meters. 
The scene contains mainly 
non manmade features. 
Results are satisfactory 
although vibrations and image 
quality made the feature 
matching a difficult task 
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Fig. 14 Feature and track reconstruction. The figure shows the reconstruction of the helicopter 
position by visual SLAM, shown as a blue line on top of the figure. On the lower parts, in red, are 
the reconstructions of the observed features. The main direction of the movement is coherent with 
the movement along a straight line done by the vehicle. Below, the features are reconstructed over 
a horizontal surface. In this test the reconstructed trajectory shows big amplitude movements due to 
the vibrations, which make fast image changes not well modeled by the system. All the reconstruction 
is done dimensionless to show the original results. To recover the scale at least two points must have 
known coordinates 

processed. However, in Z axis it doesn't look to have a good adjustment compared 
with the ground-truth but it has to be noticed that altitude values measured using the 
GPS on the UAV have precision of ± 2 m and that changes from initial altitude of 
6.8 m are not significant. 

5.2 Unstructured Scene 

Another test was made using images from a manned helicopter. This scene has fewer 
structured elements and has been recorded from a greater distance. This Fig. 13 
shows a frame of the image sequence. The results of the reconstruction of the features 
and the track of the camera are shown in Fig. 14. 

This test has two results. The first one is the successful application in unstructured 
environments, which is shown by the great number of features tracked. The second 
result is the performance of the algorithm in a scene with features that are very far 
from each other. All the reconstruction was made using the same parameters as in 
the previously described test. Inverse depth parametrization and the dimensionless 
formulation allow the application of the algorithm in outdoor scenes without prior 
knowledge of the scene and without specific adjustments. 

6 Conclusions 

This paper shows that it is possible to obtain robust and coherent results using Visual 
SLAM for 3D mapping and positioning in vague structured outdoor scenes from 



a mini UAV. In order to obtain these results, several stages of the whole process 
need to be solved, starting with image acquisition, going on with image processing, 
interest point detection, features extraction and matching, and finishing with the 
SLAM algorithm itself, EKF prediction and correction matrix model estimation, 
state definition and distance parametrization. 

The quality, resolution and frame rate of the images should be enough to detect 
interest points that have to be tracked in several consecutive frames. The best 
results in this paper have been obtained using a RAW Bayer non-interlaced camera, 
640x480 pixels at 30 frames per second (FPS), with a 6 mm. optic, while the coher­
ently mapped environment has been in the range of 5 to 50 m. The video sequence is 
proceeded off-line at an average of 12 FPS. 

Interest points' detection and features to be tracked have been found based 
on two different approaches, Harris corner detection and SURF invariant feature 
extraction. The approach based on Harris is very quick and selective, therefore very 
convenient for this computational intensive application, but it needs to be improved 
with an exhaustive and robust corner descriptor, as the one proposed in Section 3.1, 
that enables robust matching and tracking of the detected points over time. Harris 
based detectors have shown to be very efficient for scenes with significant structure 
objects, such as houses, vans, cars and, generally human made structures. Scenes with 
significant structures have strong and stable contours that give reliable edges to fix 
Harris points. 

The SURF based feature extractors are on the contrary, more efficient when the 
scene is basically made up of non-structured objects, which is the case of natural 
environments, among others. In those cases, the SURF based algorithms have the 
advantage that they calculate a vast amount of features in the image, many of 
which vanish in following images, but a significant amount of them still remain in 
the following ones. That is the key point to match and track them for an efficient 
SLAM. SURF based algorithm also provide in those cases, an exhaustive enough, 
scale invariant feature descriptor that accomplishes the matching requirements for 
its tracking. 

The use of an extended descriptor for Harris based corner detection and the 
scale invariant SURF features enable the sorting of the interest points into different 
clusters (three chosen clusters in this paper) dependant on their relevance. That 
allows the search of matching pairs in different stages according to the points 
relevance and the number of matched points necessary for the SLAM algorithm (ten 
in the presented results), according to the procedure described in Section 3.3, that 
reduces the computational effort. The criterium for matching two interest points in 
consecutive images evaluates both, the features correlation and the deviation of the 
distance from the evaluated pair to the average distance between of other matched 
pairs. 

SLAM algorithm has been implemented using only visual information without 
considering any odometric or GPS information (which have been used afterwards 
to compare and evaluate the obtained results). The state of the system comprises 
a 12 variable array (position, orientation and their rates), where the inverse depth 
parametrization has been used in order to avoid the initialization of the distances 
to the detected visual features, that otherwise becomes a drawback when using 
SLAM outdoors in unknown environments. The rest of the state array is made 
up of the tracked features, with ten being the minimum allowed number. The 
prediction stage in EKF has been modeled considering constant velocity for both, 



the position-orientation coordinates and the feature movements in the image plane. 
The correlation stage in the EKF uses a non-linear camera model that includes a pin­
hole distortion model for the sake of more accurate results. Within the implemented 
SLAM algorithm, the Mahalanobis distance is used to disregard far away matched 
pairs that can otherwise distort the results. 

The whole described procedure has been tested in several 3D semi-structured 
environments from a camera situated onboard an unmanned operated mini-UAV. 
The previous results show that the detected features covariance matrix decreases 
over time and that the structure made up by joining these detected features is 
coherent with the objects in the scene, with the absolute distance being a free 
parameter that has to be solved out by knowing the real distance between two known 
3D points in the scene. 

The performed flights were not closed loops, so that the UAV didn't come 
back to previous positions. Therefore the position-orientation correlation is always 
increasing in performed flights, even though the 3D position calculated by the SLAM 
has been compared with the GPS position and it is made clear that the horizontal 
positioning of the UAV is performed quite well by the SLAM in our experiments, 
where the flights had a dominant horizontal movement. The obtained MSE of the 
differences between the SLAM and the GPS horizontal coordinates decreases over 
time and has an approximate average value of 2m2 in our experiments. The altitude 
estimation doesn't show such a good correlation, due to the limited range of this 
movement during the flights, and for the same reason it has a lower MSE that is of 
around 0.14m2. 
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