252 research outputs found

    Control in distribution networks with demand side management

    Get PDF
    The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches

    Decentralized receding horizon control of cooperative vehicles with communication delays

    Get PDF
    This thesis investigates the decentralized receding horizon control (DRHC) for a network of cooperative vehicles where each vehicle in the group plans its future trajectory over a finite prediction horizon time. The vehicles exchange their predicted paths with the neighbouring vehicles through a communication channel in order to maintain the cooperation objectives. In this framework, more frequent communication provides improved performance and stability properties. The main focus of this thesis is on situations where large inter-vehicle communication delays are present. Such large delays may occur due to fault conditions with the communication devices or limited communication bandwidth. Large communication delays can potentially lead to poor performance, unsafe behaviour and even instability for the existing DRHC methods. The main objective of this thesis is to develop new DRHC methods that provide improved performance and stability properties in the presence of large communication delays. Fault conditions are defined and diagnosis algorithms are developed for situations with large communication delays. A fault tolerant DRHC architecture is then proposed which is capable of effectively using the delayed information. The main idea with the proposed approach is to estimate the path of the neighbouring faulty vehicles, when they are unavailable due to large delays, by adding extra decision variables to the cost function. It is demonstrated that this approach can result in significant improvements in performance and stability. Furthermore, the concept of the tube DRHC is proposed to provide the safety of the fleet against collisions during faulty conditions. In this approach, a tube shaped trajectory is assumed in the region around the delayed trajectory of the faulty vehicle instead of a line shaped trajectory. The neighbouring vehicles calculate the tube and are not allowed to enter that region. Feasibility, stability, and performance of the proposed fault tolerant DRHC are also investigated. Finally, a bandwidth allocation algorithm is proposed in order to optimize the communication periods so that the overall teaming performance is optimized. Together, these results form a new and effective framework for decentralized receding horizon control with communication faults and large communication delays

    Robust distributed control of constrained linear systems

    Get PDF
    This thesis presents new algorithms for the distributed control of a group of contrained, linear time-invariant (LTl) dynamic subsystems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Survey of Decentralized Adaptive Control

    Get PDF

    Economic Model Predictive Control for Large-Scale and Distributed Energy Systems

    Get PDF

    Coordinating Multiple Model Predictive Controllers for Large-scale systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Survey of Decentralized Adaptive Control

    Get PDF
    Systems with multi inputs and multi outputs are in common controlled by centralized controllers, multivariable controllers or by a set of single input and single output controllers. The decentralized systems dominated in industry and can be found in a broad spectrum of applications ranging from robotics to civil engineering. Approaches to decentralized control design differ from each other in the assumptions ? kind of interaction, the model of the system, the model of information exchange and the control design. One of the useful approaches to decentralized control problems was the parametrization. During last years it was proven that it seems to be perspective to combine predictive and decentralized control, for example unconstrained decentralized model predictive control or adaptive decentralized control using recurrent fuzzy neural networks. Another task is to use automatic decentralized control structure selection. Adaptive control enlarges the area of usage at decentralized controllers. AdaptiveZ(MSM7088352101
    corecore