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Abstract

Several recent approaches to distributed control design over networks of interconnected
dynamic systems rely on certain assumptions, such as identical subsystem dynamics, absence
of dynamical couplings, linear dynamics and undirected interaction schemes. In this thesis,
we investigate systematic methods for relaxing a number of simplifying factors leading to a
unifying approach for solving general distributed-control stabilization problems of networks
of dynamic agents.

We show that the gain-margin property of LQR control holds for complex multiplicative
input perturbations and a generic symmetric positive definite input weighting matrix. Proving
also that the potentially non-simple structure of the Laplacian matrix can be neglected for
stability analysis and control design, we extend two well-known distributed LQR-based
control methods originally established for undirected networks of identical linear systems, to
the directed case.

We then propose a distributed feedback method for tackling large-scale regulation prob-
lems of a general class of interconnected non-identical dynamic agents with undirected
and directed topology. In particular, we assume that local agents share a minimal set of
structural properties, such as input dimension, state dimension and controllability indices.
Our approach relies on the solution of certain model-matching type problems using local
linear state-feedback and input matrix transformations which map the agent dynamics to
a target system, selected to minimize the joint control effort of the local feedback-control
schemes. By adapting well-established distributed LQR control design methodologies to
our framework, the stabilization problem of a network of non-identical dynamical agents
is solved. We thereafter consider a networked scheme synthesized by multiple agents with
nonlinear dynamics. Assuming that agents are feedback linearizable in a neighborhood
near their equilibrium points, we propose a nonlinear model-matching control design for
stabilizing networks of multiple heterogeneous nonlinear agents.

Motivated by the structure of a large-scale LQR optimal problem, we propose a stabilizing
distributed state-feedback controller for networks of identical dynamically coupled linear
agents. First, a fully centralized controller is designed which is subsequently substituted by
a distributed state-feedback gain with sparse structure. The control scheme is obtained by



x

optimizing an LQR performance index with a tuning parameter utilized to emphasize/de-
emphasize relative state difference between coupled systems. Sufficient conditions for
stability of the proposed scheme are derived based on the inertia of a convex combination of
two Hurwitz matrices. An extended simulation study involving distributed load frequency
control design of a multi-area power network, illustrates the applicability of the proposed
method.

Finally, we propose a fully distributed consensus-based model-matching scheme adapted
to a model predictive control setting for tackling a structured receding horizon regulation
problem.
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Chapter 1

Introduction

DISTRIBUTED control is one of the most challenging research domains which deals with
the study of how a global decision making task can be shared across several local

controllers. The field is intrinsically connected to control of large dynamic systems, and
its significance predominantly stems from the necessity or preference for control design in
a decentralized manner. The concept of decentralization was initially introduced in socio-
economic literature primarily devised to address the efficient capital allocation of competitive
economic systems [88, 130, 136, 23]. Thereafter, the term decentralized control has been
widely adopted by the control community in problems where typical centralized schemes
result in prohibitive data handling and computational requirements. The interest in designing
controllers in a non-classical decentralized fashion dates from the early 70s [82, 6, 111, 227],
and has skyrocketed over the past few years due to the abundance of network applications
demanding decentralized and distributed control schemes [233, 144, 181, 226].

Advances in information and computer science have revolutionized data and commu-
nication networks in recent years, leading to a global Internet that allows for information
exchange among users worldwide. Data and communication networks usually consist of a
modular architecture that allows for an anarchic proliferation of network nodes, despite their
diversity in by-wire or wireless connections. This plug-and-play capacity of most information
networks is established via network control protocols that tackle network caching, congestion,
and routing problems in a decentralized fashion hence enabling nodes and links to be added
to or removed from the overall scheme. For instance, the flow rate and path of data packets
transmitted across the Internet obey the principles of the TCP/IP protocol, which provides
peer-to-peer communication. While there is no ambiguity that data transmission among
various computers and routers has been a tractable task over the past few years, further
network interaction with the physical environment opens new opportunities and sets intense
challenges for network control design. Sensor and actuation signals flowing in networks can
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form elaborate aggregates of subsystems that tackle various tasks that do not admit a solution
at the subsystem level. Progress along these lines, along with the digitalization of control
systems, have enabled the development of highly sophisticated networked schemes, and have
introduced new paradigms of large-scale complex systems. Intelligent highways and vehicle
platoons, smart power grids, blockchain technologies, and smart supply and logistics chains
are just a few instances of a growing array of network applications.

Networked systems are compositions of several entities that can exchange various types of
information with each other over a network topology which has arisen naturally or designed
for a specific purpose. From a control and systems perspective, such structures belong to the
family of large-scale complex systems. In particular, each network building block represents
a distinct dynamical system. In this regard, the network constitutes an aggregate of systems
each defined by the interaction of local state and input variables. This network definition as a
systems’ aggregate allows us to decompose the network into simpler units and helps identify
network problems both at global and local levels.

Further, recognising the network as an aggregate system often facilitates the introduction
of a degree of local autonomy at the individual level, from which the notion of agent-based
modeling emerges in a natural way. In this setup, the network becomes a multi-agent system,
with each agent represented as an intelligent dynamical unit with fully independent actuation
capacity. Agents can cooperate with some of their counterparts within the network towards
a common objective or according to specific tasks despite their fully independent control
operation. The advantages of introducing the notion of autonomous agents are especially clear
in cases where network control strategies with distributed architecture are either imperative
or desirable over policies imposed by a global coordinator of the network.

Most large-scale dynamic systems, networked systems inclusive, admit of architectures
which group the various input and output variables of the total system into non-overlapping
pairs [182]. Each pair representing a subsystem of the overall scheme, consists of two
vectors of distinct input and output variables, respectively, and is designed either to operate
completely independently or in a distributed fashion. Adopting this approach, the main
difference of a decentralized control strategy over a distributed design is the absence of
information exchange between control units of different subsystems. A simple example of a
decentralized control pattern is illustrated in Fig. 1.1, where system S is decomposed into two
state-dependent subsystems S1, S2, each represented by pair (u1, y1), (u2, y2), respectively.
In this instance, the design of controllers u1, u2 is based on local information only, despite
the mutual interaction between states x1 and x2 of each local subsystem. On the contrary, a
distributed architecture allows for data transmissions between different control units, usually
involving local information exchange. Fig. 1.2 highlights a simple example of this situation.
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x1

controller-C1 subsystem-S1

y2
u2

x2

controller-C2 subsystem-S2

System-S

Fig. 1.1 Decentralized closed-loop configuration of a two input (u1, u2) - two output (y1, y2)
system [182].

Despite the compelling reasons for devising decentralized and distributed control struc-
tures, it is worth noting that such schemes, either physically imposed or consciously con-
ceived, may give rise to highly elaborate situations even if a centralized version of the
problem admits a typically simple solution. The inherent intricacy of such complex control
problems is further amplified by the presence of communication links in the overall system.
Traditionally, control theory focuses on the study of interconnected dynamical systems linked
via ideal channels. However, in practice, information exchange carried out over communi-
cation channels is usually limited by certain imperfections of the communication scheme,
e.g. communication delays, distortion due to limited bandwidth, packet loss due to buffer
overflows, channel multipath, thermal noise at receivers, etc. Overall, network control lies
in the intersection of control and communication theories [80]. The combination of these
two domains represents a substantial challenge for the efficient control design of networked
systems in real applications.

Algebraic graph theory has proved powerful for network modeling and has been widely
used in multi-agent network control. Essentially, each agent representing a dynamical
system is denoted by a labeled node on a graph, while edges denote interactions/information
exchange between two nodes. A typical assumption made in a variety of research works
requires that the communication scheme (information exchange), and the interaction scheme
(state/input dependence, control couplings) have identical topology. In these instances, the
information graph and interaction graph coincide. Graph representation of multi-agent
networks allows for 1) an algebraic interpretation of network’s major attributes (complexity,
connectivity, sparsity) and 2) a simpler view of the overall large-scale system. These are
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y1
u1

x1

controller-C1 subsystem-S1
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controller-C2 subsystem-S2

System-S

Fig. 1.2 Distributed closed-loop configuration of a two input (u1, u2) - two output (y1, y2)
system [182].

highly beneficial for network control design and prove useful in a wide array of tasks
associated with multi-agent networks.

Multi-vehicle formation problems, gossip algorithms, distributed estimation in networks,
synchronization of multiple power units in smart power grids are typical application examples
arising in multi-agent control. Various problems in networked systems often appear as state-
agreement, synchronization, and consensus tasks [212, 42, 33, 180]. From a practical point
of view, network stabilization is fundamental and one of the most challenging problems
in multi-agent network control [153, 62]. Many significant results in this direction have
made use of systems and control theory along with algebraic tools from graph theory.
Frequently, the network stabilization task is considered as a large-scale regulation problem
formulated as a structured optimal control problem. Despite the fact that optimal control
theory is standard for centralized configurations, distributed optimal control design of large-
scale structured systems is a definite challenge. Several contributions in this field are the
result of simplifying assumptions such as homogeneous subsystem dynamics, bidirectional
communication, dynamically decoupled subsystems, suboptimal control design.

Linear optimal control theory [85] has emerged as a tool of central importance in the
development of solutions to problems of networked systems and multi-agent control. In
general, the optimality of a control protocol often leads to desirable characteristics for network
control design. For instance, the robust stability margins of the linear quadratic regulator
(LQR), along with its appealingly simple feedback solution, constitute highly attractive
features for distributed control design. In various cases, the task of network regulation
is formulated as an infinite-time optimal control problem in the presence of constraints.
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However, such problems are often hard to solve in an optimal sense. Network sparsity and
absence of global information are two of the main limitations of optimal design and make
suboptimal control approaches highly attractive [17, 46].

Model predictive control (MPC) techniques have also been considered for distributed
design in multi-agent network control [182]. MPC relies on extensive computations carried
out at run-time by solving sequentially several optimization problems in real-time. This
concept can adapt straightforwardly to a distributed control setup by requiring that local MPC-
based regulators predict their future control actions and the corresponding state trajectories
and transmit them to neighboring control units. Recent results [176, 244, 129, 209, 16] in
distributed optimization exemplify that MPC-based distributed control methods are very
efficient for network control [184, 40, 64], although this is still an active area for research.

Various distributed design techniques for network control appearing in the literature
conform to particular assumptions made on 1) the global network objective, 2) the type of
interaction between distinct interconnected subsystems (dynamical couplings, information
exchange), 3) the performance specifications of each subsystem (dynamics, constraints,
objective), 4) the model of each subsystem (linear, nonlinear, continuous-time, discrete-time),
5) the structure of the information exchange scheme (connected, undirected, directed), and
6) the control design method to be utilized (optimal control, predictive control, nonlinear
control).

This thesis deals with regulation problems of multi-agent networks. Our interpretation of
networks as multi-agent configurations is inspired by the vast array of network applications
involving multiple autonomously actuated systems. This inspiration is also enriched by the
meteoric rise in popularity of multi-agent control design with distributed architecture. Our
main focus is on the design of stabilizing distributed feedback controllers for three general
setups:

1) networks of linear non-identical dynamically decoupled agents,

2) networks of nonlinear non-identical dynamically decoupled agents,

3) networks of linear dynamically coupled agents.

In the first two configurations, results are presented for both undirected and directed in-
terconnection schemes, while in the third configuration, the dynamical couplings between
interconnected agents are assumed to appear in a bidirectional manner.

The problem of distributed control for networks of decoupled systems, as defined in
the first and second settings above, is formulated as follows. A network is composed of
distinct dynamical subsystems that can be independently actuated. The subsystems have
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joint objectives, which typically couple their dynamic behavior. Local interactions are
represented by a connected graph, where the vertices denote subsystems, and the edges
between vertices represent coupling terms in the controller associated with the respective
vertices. It is assumed that the interaction graph also represents a communication scheme
according to which subsystems exchange state-information with their neighboring peers.
In the third setting above, we assume that dynamical couplings of the overall system are
expressed in a state-space form, which is consistent with the associated interaction graph of
the network. The distributed control scheme consists of local controllers, each corresponding
to a subsystem where the inputs of each control unit are functions of local information only.

The aims and objectives of this thesis, along with the specific contributions and novelties
of this work in the field of distributed network control, are summarized in the following two
sections.

1.1 Aims and objectives

Many recent approaches of distributed control over networks of dynamical agents rely on the
following simplifying assumptions:

1) bidirectional information exchange,

2) identical agent dynamics,

3) linear agent dynamics,

4) decoupled agent dynamics.

The main objective of this thesis is to propose systematic methods for relaxing these as-
sumptions, thereby leading to enhanced applicability of distributed control techniques to the
problem of stabilization of networks of dynamical agents.

Two complementary distributed LQR methods have been proposed in [17] and [46].
The first is a top-down approach, [17], in which the centralized optimal LQR controller
is approximated by a distributed control scheme whose stability is guaranteed by the sta-
bility margins of LQR control. The second, [46], consists of a bottom-up approach in
which optimal interactions between self-stabilizing agents are defined to minimize an upper
bound of the global LQR criterion. Both methods require that 1) networks be composed
of identical systems and 2) information exchange graph be undirected. Motivated by these
two well-established distributed LQR-based control design methods, we attempt to remove
the assumptions mentioned earlier, which may be unrealistic in practical applications. In
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particular, in Chapter 4, we show that the strict limitation of bidirectional communication
between interconnected agents, postulated in [17, 46], can be removed. In Chapter 5, we
extend the two distributed LQR-based techniques [17, 46] to a more general agent-model
setup. Therein, rather than assuming identical system dynamics, we consider that agent
models belong to a class of systems that share the same structural properties (input and state
dimensions, controllability indices). In this setting, the stabilization problem of networks of
heterogeneous dynamically decoupled agents is tackled via a model-matching technique. In
Chapter 6, motivated by the well-established feedback linearization method, we formulate
and solve model-matching problems of a nonlinear type via feedback linearization control.
Then, based on the results of Chapter 5, we generalize the regulation problem over networks
of nonlinear dynamically decoupled agents.

Chapter 7 is devoted to the stabilization problem of networks of dynamically coupled
agents. Focusing on linear dynamical agents, we assume that coupling terms between
interconnected agents are expressed in a state-space form of a certain structure. We follow
a top-down approach, which results in a distributed scheme whose stability is guaranteed
via a stability test involving a convex combination of two Hurwitz matrices. In Chapter
8, a case study of load frequency control (LFC) problem over a six-area power network
illustrates the applicability of the distributed control scheme proposed in Chapter 7. Finally,
in Chapter 9, we consider the stabilization problem of networks in a model predictive control
framework. Therein, we formulate the regulation problem of a network of dynamically
decoupled linear agents as a large-scale receding horizon optimal control problem. Stability
results and feasibility properties of the proposed distributed solution are presented. In the
chapter, we also attempt to adapt the results of Chapter 5 to a model-predictive control setting,
via a model-matching approach carried out in a fully distributed manner using a distributed
gradient descent optimization algorithm.

1.2 Contributions and novelties

The main contributions and novelties of this thesis are summarized in this section. These are
presented in detail as follows.

Chapter 3:

1) The gain-margin property of the LQR control holds for complex multiplicative input
perturbations and a generic symmetric positive definite input weighting matrix R. The
result is summarized in Theorem 3.2.8.
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Chapter 4:

1) A new distributed control method for the regulator problem of networks with undirected
topology is proposed. The control design is introduced via a two-stage optimization
approach which combines techniques from the top-down [17] and bottom-up [46] meth-
ods presented in Chapter 3. Sufficient conditions for stability of the new distributed
scheme are derived, minimizing an upper bound of the global LQR criterion.

2) The assumption of bidirectional communication between interconnected agents, pos-
tulated in [17, 46] is removed. This relaxation relies on the following useful results:
(i) the gain-margin property of the LQR control holds for complex multiplicative
perturbations (see Theorem 3.2.8), and (ii) the potentially non-simple structure of
the Laplacian matrix can be neglected for stability analysis and control design. The
distributed control design method for networks with directed topology adopting the
top-down approach proposed in [17] is summarized in Theorem 4.3.4.

Chapter 5:

1) We propose a model-matching approach for distributed-control stabilization of net-
works with non-identical dynamics. Local agents are assumed to share a minimal set
of structural properties, such as input dimension, state dimension, and controllabil-
ity indices, which are generically satisfied for parametric families of systems. The
method relies on the solution of certain model-matching type problems using local
state-feedback and input matrix transformations, which map agents dynamics to a
target system, selected to minimize the joint control effort of the local feedback-control
schemes. By adapting two well-established distributed LQR control design methodolo-
gies to this setting, the stabilization problem of a network of non-identical dynamical
agents is solved. The method is summarized in Theorem 5.4.1 and Theorem 5.4.2,
for undirected and directed communication schemes, respectively. The results of this
chapter have been published in [223, 221, 222].

2) In [223], we present a simulation study on a formation control problem of four non-
identical low-speed experimental UAV’s, illustrating the applicability of the method.

Chapter 6:

1) We propose a solution to the regulation problem of a network of heterogeneous
nonlinear agents via a model-matching feedback linearization technique combined
with a distributed LQR-based feedback control. The method is summarized in Theorem
6.5.5.
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Chapter 7:

1) A distributed LQR method for solving regulator problems of networks of dynamically
dependent agents is proposed. Dynamical couplings between state-dependent agents
are expressed in a state-space form of a certain structure. This allows for approximating
a centralized LQR optimal controller by a distributed scheme, the stability of which
is guaranteed via a stability test applied to the convex combination of two Hurwitz
matrices. The main results of the chapter are summarized in Theorem 7.1.3 and
Theorem 7.2.1 and have been published in [220, 219].

Chapter 8:

1) A novel distributed-LQR control algorithm is proposed for solving the load frequency
control problem of large-scale multi-area power systems.

2) The control scheme is obtained by optimizing an LQR performance index with a
tuning parameter that can emphasize/de-emphasize relative state difference between
interconnected areas. In effect, this parameter controls the magnitude of tie-line power
exchange and frequency synchronization between interconnected areas.

3) Our approach enhances power system modularity and leads to a simple and verifiable
stabilizability condition for a class of network topologies. Extensive simulations
presented in this study support our conjecture that this stabilization criterion can be
extended to more general LFC problems. The proposed method has been published in
[217].

Chapter 9:

1) A novel distributed model-matching time-varying feedback technique is proposed. The
matching protocol is combined with a distributed model predictive control scheme the
stability of which is guaranteed subject to sufficient conditions. The main result is
summarized in Theorem 9.2.14.

2) A distributed model-predictive solution is proposed for the load frequency control
problem of multi-area power networks. The method relies on a novel decoupling
approach, which allows for the formulation and solution of a model predictive control
problem with a quadratic performance index and input saturating constraints along
with an overall equality constraint to address the energy balance of the network. The
MPC-based load frequency control method has been published in [218].
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1.4 Structure of the thesis

In this section, we briefly discuss the breakdown of the thesis into chapters. There are ten
chapters, listed below with brief comments.

Chapter 1 - Introduction. This is the introductory first chapter of the thesis.
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Chapter 2 - Literature survey. This chapter is a thorough review of multi-agent and
network control methods appearing in distributed control literature. We emphasize distributed
control techniques that rely on optimal control theory, linear quadratic regulator, and model
predictive control. Various significant results on consensus algorithms, formation control
methods as well as distributed optimization techniques are also discussed in detail.

Chapter 3 - Regulator Problem. This chapter is a concise review of the linear quadratic
regulator (LQR) problem, along with the basic mathematical results associated with it. The
main scope of the chapter is to show how the LQR theory can be adapted to networks of
interconnected systems. The concept of multi-agent networks and network control, as well
as two well-established methods in the context of distributed LQR control, are introduced.

Chapter 4 - Stabilization of multi-agent networks with undirected and directed topol-
ogy. In the first part of the chapter, we propose a new distributed control design method
for stabilizing undirected networks of identical dynamic agents. The method combines
techniques from two approaches discussed in Chapter 3. In the second part, we relax the
assumption of undirected network topology, and we study the regulation problem of mul-
tiple identical agents over connected digraphs. The establishment of the proposed control
schemes relies on the gain-margin property of LQR control and the non-simple structure of
the Laplacian matrix of a connected digraph.

Chapter 5 - Model-matching and regulation of interconnected heterogeneous linear
agents. In this chapter, we study the regulation problem of multiple heterogeneous dynam-
ically decoupled agents over connected graphs and digraphs. Formulating the regulation
problem as a large-scale structured optimal control problem, we propose a two-stage design
procedure. In the first stage, we assume that agents constituting the network have the same
structural properties, and we follow a model-matching approach to match agents’ dynamics
with a target model. Typically, we use local feedback controllers and input-matrix transforma-
tions to compensate for the dynamical mismatch among the models of the agents. We show
that distributed control methods for networks formed of identical dynamically decoupled
linear agents can adapt to the present setting, by merely constructing stabilizing distributed
controllers depending on the target dynamics only. To exemplify our results, we employ two
methods presented in Chapter 3.

Chapter 6 - Feedback linearization and model-matching of nonlinear systems. This
chapter aims to extend the model-matching approach studied in Chapter 5 for linear systems,
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to a particular class of nonlinear systems. We consider a model-matching problem of multiple
nonlinear systems, which is solved by the feedback linearization technique. In effect, via
feedback control and a coordinate transformation, the dynamics of each system are mapped
to a linear model referred to as the target system. By establishing the notion of controllability
indices for nonlinear systems, we adopt the proposed model-matching scheme to a network
setup in which heterogeneous nonlinear self-linearizable agents are stabilized by a distributed
LQR-based controller designed on target dynamics.

Chapter 7 - Distributed LQR for coupled LTI systems. This chapter is concerned with
the regulation of a large-scale dynamical system that can be expressed as a network of
multiple dynamically coupled linear agents. Typically, we assume that dynamical couplings
among agents are expressed in a state-space form of a specific structure consistent with an
undirected graph describing information exchange between coupled agents. We follow a
top-down approach to approximate a centralized LQR optimal controller by a distributed
control scheme. The stability of the proposed controller is guaranteed via a stability test
applied to the convex combination of two Hurwitz matrices.

Chapter 8 - Distributed LQR-based load frequency control of multi-area power system.
In this chapter, we present a simulation study of a six-area power network, highlighting the
applicability of the results presented in the previous chapter. In particular, we consider a
power system formed of six distinct control areas with identical dynamics that are intercon-
nected via weak tie-lines. We then formulate the load frequency problem of the network as a
disturbance rejection task of power-load step variations of unknown size. We approximate
a centralized linear quadratic regulator (LQR) optimal controller by a distributed control
scheme. Overall network stability is guaranteed via a stability test applied to a convex
combination of Hurwitz matrices, the validity of which guarantees stable network operation
for a class of network topologies. The efficiency of the proposed distributed load frequency
controller is illustrated via various simulations. In the study, we also consider significant
parametric variations in the parameters of each area.

Chapter 9 - Distributed model predictive control design. In this chapter, we start with a
brief review of the deterministic model predictive control theory and then study the regulation
problem over networks of dynamically decoupled linear systems from a model-predictive
control (MPC) perspective. We propose a distributed MPC-based control scheme, the
stability of which is proved via local Lyapunov functions. In the chapter, we also adapt the
results of Chapter 5 to a model-predictive control setting, and propose a model-matching
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control method carried out in a fully distributed manner using a distributed gradient descent
optimization algorithm. Further, motivated by the structure of a multi-area power network,
we consider a large-scale load frequency control problem of a power network composed of
multiple interconnected areas. The task is formulated as a receding horizon optimal control
problem with a quadratic performance index and input equality constraints that address the
energy balance of the entire system.

Chapter 10 - Conclusions and future work. This is the final chapter of the thesis. It
discusses the conclusions of the derived results and suggests various topics and directions for
future work and research.





Chapter 2

Literature survey

Networked systems emerge in various disciplines and fields and are of particular interest
to the control community due to their association with a broad spectrum of important
applications. Many reasons, ranging from technological advances to economic benefits, have
incentivized the development of large dynamic systems, often referred to as multi-agent
networks, which are composed of several interacting subsystems and multiple control units.
Due to various factors such as system complexity, robustness, and reliability problems as
well as communication-related issues, distributed control techniques have experienced a
considerable rise in popularity in multi-agent and network control domains.

The interest in dealing with large-scale control problems dates from the early 70s with
the seminal works [82, 111, 227] establishing the decentralization concept in the distinct
domain of control theory. Therein, a decentralized control scheme of a linear multivariable
system is defined as a controller with several control units, each one having access only
to local system outputs and controlling only local inputs. Adopting terminology from the
economic literature and energy industry, [6] discusses the notion of local control agents
acting on a large-scale dynamical system, the stability of which relies on the information
exchange among agents. These early advances in control of large-scale systems, along with
the ever-increasing integration of communication and control theories, have led to more
sophisticated concepts such as distributed control and networked systems.

This chapter presents a comprehensive review of control methods appearing in the
recent literature of distributed control. We focus on distributed control techniques that are
based on optimal control theory, linear quadratic regulator, and model predictive control.
Recent results on consensus algorithms, formation control methods as well as distributed
optimization techniques, are also given attention.

Specifically, the chapter reviews recent research results in the following directions, which
are not independent but actually overlap to some extent:
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1) Distributed feedback design methods for stabilizing large-scale dynamic systems
(distributed parameter systems, networked systems, multi-agent systems). Several
references on this subject are reviewed in Section 2.1 and are associated with Chapter
3, Chapter 4, Chapter 5, Chapter 6, and Chapter 7.

2) Distributed control design protocols for agreement problems (consensus problems,
formation control). Several references on this subject are reviewed in Section 2.2 and
are associated with Chapter 4, Chapter 5, and Chapter 6.

3) Distributed model predictive control. A number of references on this subject are
reviewed in Section 2.3 and are associated with Chapter 9.

4) Distributed gradient descent optimization methods. A number of references on this
subject are reviewed in Section 2.4 and are associated with Chapter 9.

2.1 Distributed feedback control

Over the past few years, there has been a rapid rise in interest in large-scale control sys-
tems composed of several interconnected units with interactive and cooperative capacity
[41, 24, 140, 63, 8, 9, 93, 56, 110, 75, 177, 99, 19, 100, 57, 74, 173, 18, 198]. Significant
results in stability analysis of such schemes led to a deeper understanding of the relationship
between algebraic properties of the interconnection graph and global stability of the overall
system. Perhaps the most insightful contribution in this direction has been the significant
work of [63], which establishes stability analysis tools for networks of identical linear dy-
namical systems over generic graph interconnection schemes. Therein, authors focusing on
formation distributed control problems develop information exchange protocols that guar-
antee formation stability and performance and are robust to changes in the communication
topology of the network.

Several studies are concerned with control problems of distributed parameter systems
with spatially invariant dynamics and spatially distributed controls and measurements. The
important work of [8] in this area discusses fully actuated distributed control problems
involving quadratic criteria such as linear quadratic regulator (LQR), H2, and H∞. It is shown
that for infinite-dimensional spatially invariant systems, optimal controllers have an inherent
degree of decentralization, which helps decompose the problem exactly into a parameterized
family of finite-dimensional optimal problems. Authors also establish a general result that
applies to partially distributed control and a variety of performance criteria, proving that
optimal controllers inherit the spatial invariance structure of the overall system. In [9],
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another approach to distributed parameter system problems considers distributed control
design in spatially invariant systems for which communication among subsystems is confined.
In particular, authors assume that the controller is constrained so that information flow among
sites is propagated with a delay that depends on the distance between subsystems. Authors
term this structure as "funnel" causality, and show that the problem of optimal design can
be cast as a convex problem as long as the overall system has a similar funnel-causality
structure, and the propagation speeds in the controller are at least as fast as system dynamics.

Spatially invariant systems with special structure have also received attention. The study
in [93] analyzes inverse optimality of localized distributed controllers for an infinite string of
linear systems. Therein, a frequency domain criterion is established that separates controllers
that are never optimal from controllers that are optimal (in the LQR sense). It is shown
that this criterion can, in general, be expressed in terms of the reciprocal of sensitivity
functions, and especially for single-input systems, it requires the return difference be at least
equal to one at all spatial and temporal frequencies. Several results, however, pertain to
spatio-temporal instability phenomena arising in the class of spatially invariant systems on
lattices as a result of aggregate effects [95, 8, 203]. Authors in [94] and [185] have addressed
some fundamental design limitations in the control design of systems on lattices focusing
specifically on vehicle-platoon applications. In particular, [94] showed drawbacks of two
widely cited papers [112, 137], which address the linear quadratic regulator problem for large-
scale systems composed of moving vehicles. There, the authors employ spatially invariant
theory to show analytically how these formulations lack stabilizability or detectability.

Further, the study of [185] proves that string stability of a finite platoon with linear
dynamics cannot be achieved with any linear controller that uses only information on relative
distance between two successive vehicles. An equivalent result was also exhibited earlier
in [37], where string stability of a spatially invariant infinite string of moving vehicles was
established with static feedback controllers of identical architecture. Interesting results with
practical importance for automated highway systems are presented in [95]. Therein, the
peaking phenomenon in the control of large-scale vehicular platoons is investigated, and it
is shown that imposing a uniform rate of convergence for all vehicles towards their desired
trajectories may generate unacceptable transient peaks in both velocity and control. Authors
also derive explicit constraints on feedback gains that allow for desired position transients
without peaking phenomena and excessive use of control effort.

A distinguished group of recent control strategies involves linear matrix inequality (LMI)
relaxations to control problems of large-scale distributed systems. In [56], authors study
networks of heterogeneous subsystems and derive sufficient conditions for the existence of
distributed controllers that guarantee global stability. It is shown that under the proposed
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distributed control scheme, a certain level of performance is guaranteed, with closed-loop
systems being strictly contractive. The corresponding conditions are defined in general via an
infinite-dimensional operator which becomes linear matrix inequalities when the state-space
form of the overall system is either of finite extent or periodic in every variable. The work in
[110] deals with the distributed control design of networks of finite and possibly nonidentical
LTI systems over arbitrarily connected graphs. Authors assuming graphs with bidirectional
edge orientation, formulate convex existence conditions for output-feedback controllers,
which achieve a guaranteed H∞ performance level. The resulting linear matrix inequalities
grow redundant with the number of subsystems in the interconnection graph.

Computational complexity associated with the solution of a distributed optimal control
problem is well elucidated in the study of [75]. Therein, the synthesis problem of a linear
quadratic regulator (LQR) controller is studied when the matrix describing the control law is
constrained to lie in a particular vector space. Authors consider the finite-horizon version of
the problem and provide both a computationally intensive optimal solution and a sub-optimal
solution that is computationally more tractable. There, the proposed method is applied to
a decentralized vehicle formation control problem exemplifying the loss in performance
due to the use of the suboptimal solution. A notable result in characterizing the complexity
of large-scale optimal control design subject to constraints on the controller structure is
proposed in [177]. Therein, authors formulate the task of constructing optimal decentralized
controllers as a problem of minimizing the closed-loop norm of a feedback system subject
to constraints on the controller structure. In particular, it is proved that quadratic invariance
of the assumed controller structure implies that the corresponding minimum-norm problem
may be solved efficiently via convex programming. The proposed results are developed in a
very general framework and are shown to hold in both continuous and discrete-time, for both
stable and unstable systems, and for any norm, thereby unifying many previous results in the
class of convex decentralized control problems.

A powerful method for distributed LQR design for stabilizing networks of homogeneous
dynamically decoupled LTI systems is presented in [17]. There, a distributed regulation task
is formulated as a large-scale optimal control problem where the performance index couples
the behavior of the systems. Authors propose a top-down approach in which the centralized
optimal LQR controller is approximated by a distributed control scheme whose stability
is guaranteed by the stability margins of LQR control. This elegant feature clarifies the
connection of the stability of a large-scale system to the robustness of local controllers and the
spectrum of a matrix representing the sparsity pattern of the corresponding interconnection
graph. Although the assumptions of identical dynamics and suboptimality of the global
controller may be restrictive in practice, however, they simplify the problem considerably.
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The results can be used directly to improve stability margins and facilitate controller synthesis
in the field of distributed receding horizon control [24, 99, 57].

A complementary method for designing distributed LQR controllers is presented in [46].
The proposed technique consists of a bottom-up approach in which optimal interactions
between self-stabilizing agents are defined to minimize an upper bound of the aggregate
LQR criterion. In the paper, an analysis of the proposed control law in the presence of
delays in the relative communication scheme is carried out and a bound on the maximum
delay accommodated by the proposed controller is established. A thorough procedure for
designing distributed controllers for a class of identical dynamically coupled systems based
on a decomposition approach has been presented in [132]. Therein, the validity of the
proposed scheme relies on specific structural properties satisfied by the system matrices.
Authors optimizing a multi-objective function subject to linear matrix inequality constraints
derive explicit expressions for computing distributed feedback controllers with H∞ and H2

performance, respectively.
The synchronization problem of a set of identical independently actuated systems ex-

changing output-measurement information over a communication scheme is considered in
[138]. Authors propose a distributed static output feedback controller with guaranteed H2

performance, which is compared to a fully centralized scheme. Necessary conditions for
network stability are expressed as convex linear matrix inequalities, the formulation of which
allows for certain nonlinearities as well as uncertainties to be considered into the nominal sys-
tems’ models. A "finite-section" approximation method for solving large-scale LQR optimal
control problems of spatially distributed systems is introduced in [142]. The method involves
the construction of a series of finite-dimensional LQR problems, such that their solutions
converge to an infinite-dimensional LQR problem for large-scale systems. The authors study
the limit behavior of the proposed approximation method and show that the solution of the
approximate problems converges strongly to the solution of the large-scale problem. The
proposed technique exemplifies the design of finite-dimensional local optimal controllers.
The paper also proposes a spatial interpolation method which integrates all locally designed
controllers to a parameterized family of stabilizing controllers for the spatially distributed
system.

LQR control theory has also emerged as a critical tool for tackling consensus and
state-agreement tasks over networked multi-agent systems. For instance, in [26], optimal
algorithms are developed for mobile agents with single-integrator kinematics seeking con-
sensus. Therein, authors focusing on continuous-time dynamical agents derive optimal
linear consensus protocols from solving standard LQR control problems. Two different
performance indices which couple the behavior of the agents are considered. In the first, the
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weighting parameters are selected independently of the relative weighted graph, while in the
second, the state weighting matrix is consistent with the entries of the associated weighted
adjacency matrix. In the paper, a systematic procedure for deriving an optimal multiplicative
feedback-gain shift of the Laplacian dynamics is also presented for a given interaction graph
and a particular tuning of the LQR performance index. A similar LQR-based method for a
formation control problem is presented in [87]. Therein, LQR design is employed for solving
optimal formation control problems of multiple agents whose communication topology, as
well as the interaction parameters, are tunable upon a global performance index defined as
the summation of node-level LQR cost functions.

As mentioned earlier, networked control systems (NCS) lie in the intersection of control
and communication theories. While this convergence effectively allows for control design
with distributed architecture, robust control algorithms are needed to guarantee network
stability and compensate for various communication imperfections and constraints. Typically,
properties such as optimality and stability margins of networked control schemes vanish in
the presence of delays leading often to instability phenomena under certain circumstances
[38, 78]. Significant results on the effects of time-varying delays on the stability of NCS are
presented in [38, 70, 96, 146, 243]. A Lyapunov-based stability criterion for discrete-time
NCS models with bounded time-varying delays defined in terms of LMI’s is proposed in
[38]. In the study, delays assumed either greater or less in magnitude than the sampling
interval, are expressed as a combination of uncertainty functions, an approach that allows
for a model approximation that explicitly contains the bounds of the time-varying delays.
An interesting work on NCS with uncertain delays is presented in [70]. Therein, authors
based on polytopic inclusions for modeling systems with time-varying delays and using the
Cayley–Hamilton theorem, propose a new technique for generating discrete-time models of
linear systems with time-varying input delays. Effective stability criteria for continuous- and
discrete-time systems with bounded time-varying delays are presented in [96]. It is shown
that overall stability can be tested via a simple Bode diagram. Delay impulsive systems are
investigated in [146]. Authors establish asymptotic and exponential stability theorems by
employing Lyapunov functionals with discontinuities. Specifically, demonstrating that a NCS
interconnected through imperfect communication channels can be modelled as a linear delay
impulsive system, authors derive stability conditions for the closed-loop system in terms of
LMI’s. An iterative LMI-based approach for calculating stabilizing state-feedback gains for
a class of networked control systems with random delays is proposed in [243]. In the study,
stability conditions are established using Markov chain and switched systems theories.
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2.2 Agreement control problems

Agreement control problems emerge in various domains ranging from physics and biology
[107, 199] to robotics and computing [45, 211], and have been a subject of constant research
over the past few years. Such problems typically arise in applications involving multi-agent
networks where individual agents need to agree upon specific quantities related to a global
objective. In essence, each agent resolves the agreement task via a distributed control
protocol using local information. Next, we review some of the significant research results
on distributed control of multi-agent networks for agreement problems classified into two
categories. We list the following:

1) Consensus, synchronization, and rendezvous problems. These tasks pertain to the
group behavior that all agents asymptotically reach a collective agreement through a
local distributed protocol. We simply refer to this category as consensus problems.

2) Formation, flocking, and swarming problems. Such problems pertain to the group
behavior that all agents form a pre-designed geometrical configuration through local
interactions. We refer to this group of problems simply as formation control problems.

We emphasize that this distinction is not restrictive, in the sense that several problems
arising in the two categories above may be interpreted from the same point of view.

2.2.1 Consensus problems

One of the most notable results in addressing consensus problems in their general form
for networks of dynamic agents is presented in [155]. Therein, authors study convergence
properties of consensus protocols for directed networks of multiple agents with single-
integrator dynamics. Specifically, they establish a relationship between algebraic properties
and the performance of reaching agreement of the network in the presence or absence
of switching-topology and time-delay scenarios. It is shown that there is a connection
between the performance of a linear consensus protocol on a directed network and the Fiedler
eigenvalue of the disoriented version of the associated digraph modeling the information
flow. Highlighting important properties of balanced graphs, authors derive necessary and
sufficient conditions for a linear protocol to solve the average-consensus problem over a
directed graph with fixed topology and in the absence of communication delays. Further,
considering networks with switching topology, authors introduce a joint Lyapunov function
that proves asymptotic convergence to a group decision value. In [155], using several tools
from graph and control theories, a connection between the robustness margin to time-delays
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and the maximum eigenvalue of a given network topology is established. Fundamental
results of [155] are well exemplified in [154] via a more application-oriented study on
consensus problems for networks of continuous-time as well as discrete-time agents with
single-integrator dynamics. The study in [234] builds upon the results of [155, 154], and
presents linear consensus control protocols for networks of multiple agents with more
elaborate dynamics.

Simplicity in implementation as well as inherent robust characteristics are two of the
main reasons that Proportional-Integral (PI) control is appealing for distributed control
design especially in consensus applications. Stabilizing a system in the presence of unknown
disturbances or compensating for model imperfections as well as nonlinearities are well-
studied problems in the context of PI control. However, designing distributed PI controllers
of networked systems is still a challenging problem mainly due to the difficulty in deriving
stability conditions for generic system models [11]. Significant results on distributed PI
control of networked systems with single- and double-integrator dynamics are proposed
in [3]. Specifically, authors demonstrate that the proposed distributed PI control scheme
enable systems to reach consensus while compensating for constant disturbances in the
network. A tight upper bound on the integral gain is explicitly derived for both single- and
double-integrator schemes. In this study, the proposed PI control design as well as necessary
and sufficient conditions for consensus are derived for static interaction graphs. Similar
works in designing distributed PI controllers in the presence of constant disturbances in
networks can be found in [69, 83, 240].

Studying the effect of time-delays in consensus problems is an issue of fundamental
importance since information exchange carried out over non-ideal communication channels
is usually delivered with a delay. Research efforts in this area are manifested in several recent
works [155, 186, 187, 161, 145, 86] addressing and evaluating the level of delays that can
be accommodated in the exchange of information over multi-agent networks. Specifically,
in [155], necessary and sufficient conditions are derived for average consensus problems
of networks of single-integrator agents with fixed delays in the communication scheme.
In [186, 187], authors consider double-integrator agents, each receiving its own output
information instantaneously, and after a constant delay the information from its neighbors.
The results are based on Lyapunov-Krasovskii techniques and are expressed in terms of
LMI’s. The effect of heterogeneous multiple delays on consensus in multi-agent systems is
explored in [161], while robustness issues related to consensus of multi-agent systems subject
to non-identical feedback delays are studied in [145]. In [86] a stability analysis of time-
varying delays in consensus problems for multi-agent systems described by double-integrator
dynamics are presented by employing Lyapunov–Razumikhin functions.
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The problem of reaching consensus for multi-agent networks with varying topology
is explored in [171]. There, authors consider a directional information exchange scheme
subjected to variations and establish the minimum requirements for an update algorithm to
converge, thereby generalizing the significant results presented in [91] on coordination rules
for multi-agent networks with undirected topology. In particular, it is shown that information
consensus under altering interaction topologies can be achieved asymptotically if the union of
the directed interaction graphs has a spanning tree frequently enough as the system evolves.

Stationary consensus problems over multi-agent schemes are also studied in [10]. There,
authors focusing on schemes with fixed topologies, define consensus as a group decision
value, which is a function of the initial states of all agents. Enforcing this definition of
consensus, authors establish sufficient conditions for a consensus value to be an attainable
target and introduce a local nonlinear protocol allowing consensus on a general set of values.
It is shown that these local protocols are solutions to individual optimization problems carried
out entirely in a distributed fashion.

Agreement control protocols for leader-follower type consensus tasks over multi-vehicle
schemes are proposed in [169]. In contrast to [155, 154, 171, 10], in [169], authors define
consensus as a dynamic decision value which is expressed as a time-varying reference state.
Specifically, they assume that a limited number of vehicles in the network have access to
a reference state, which is either a time-varying exogenous signal or evolves according to
a nonlinear model. For this setting, authors propose distributed consensus algorithms and
derive necessary and sufficient conditions for a time-varying consensus achievement.

Optimal strategies for tackling consensus problems are presented in [43]. In particular,
authors focus on directed networks of interconnected agents aiming to reach the average
value of their initial positions and show that the optimal topology of the communication
scheme among the agents is given by a de Bruijn graph. It is proved that for information
exchange schemes designed as de Bruijn graphs with maximum out-degree bounded, the
best consensus control policy among linear, nonlinear, and time-varying techniques, is a
deadbeat strategy that converges in finite time. Authors also show that the proposed strategies
can adapt to a more general consensus problem allowing for finite convergence even with
quantized communication between agents.

Finite-time convergence in consensus problems is also explored in [225, 27, 67]. In
particular, authors in [225] solve consensus problems of networks of agents with single-
integrator dynamics in finite-time via continuous-time feedback control. On the contrary,
the study in [67] focusing on directed topologies, proposes a discontinuous interaction
rule which guarantees effective disturbance rejection and finite consensus-reaching time.
Finite-time consensus problems are well reviewed in [27]. Therein, authors focusing on
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networks with switching topology and a specific class of nonlinear agents, analyze the
finite-time convergence of a continuous-time nonlinear consensus algorithm. It is proved that
the proposed nonlinear consensus algorithm guarantees finite-time convergence when the
switching interaction graph has a directed spanning tree at each time interval.

Another significant group of research results on consensus strategies involves multi-
agent systems with high-order dynamics. Specifically, in [86], authors consider consensus
problems for networks formed of interconnected double integrators representing planar
mobile agents. In the study, it is assumed that communication among agents is corrupted
by time-varying delays and topologies. Double-integrator dynamics are also considered
in [238]. In particular, authors derive necessary and sufficient conditions for second-order
consensus in a multi-agent network. In [238], it is pointed out that both the real and the
imaginary parts of the eigenvalues of the associated Laplacian matrix play critical roles in
consensus achievement. The proposed consensus algorithms guarantee consensus when
communication delays are less than a specific value. In [245], the consensus problem is
cast as a synchronization task over a network of multivariable dynamic systems. With this
interpretation in force and assuming that communication topology remains invariant, authors
in [245] propose a distributed observer-based consensus protocol expressed as a function
of local states and relative output measurements. In the study, the notion of consensus
region is also introduced and analyzed. Specifically, it is proved that local stabilizability and
detectability are necessary and sufficient for the proposed distributed protocol to guarantee
consensus yielding an unbounded consensus region.

Several works deal with the derivation of conditions that guarantee consensusability, a
term which has been used by many researchers in the context of multi-agent control and
refers to the existence of consensus protocols given the dynamic structure of each agent and
the topology of the interaction scheme among agents. Existence conditions of a consensus
protocol are derived in [122] for multi-agent networks of LTI systems with fixed topology. In
[71], authors focusing on undirected graphs and single-input agents, derive a consensusability
condition for a state-feedback controller. In the paper, it is also shown that introducing
a properly designed dynamic filter into the local feedback protocols, the consensusability
condition derived in [236] can be improved. Significant results on consensusability properties
of multi-agent schemes interconnected over communication channels with time-varying
delays are presented in [235, 230].

Most recent results involve the study of distributed feedback design of consensus pro-
tocols for networked systems of various setups. For instance, works [232, 3] study the
design of distributed feedback protocols for consensus problems of undirected networks
of multiple agents with general linear dynamics. Output and state feedback techniques are
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proposed in [113] and [114], respectively, for multi-agent systems with directed topology.
Feedback design for multi-agent schemes with both cooperative and competitive interactions
is considered in [1]. Therein, the author introduces a suitable notion of consensus in the
presence of antagonistic links and investigates conditions for which agents on signed graphs
can achieve consensus via the proposed distributed feedback protocols.

Consensus problems of multi-agent systems with prescribed transient behavior has also
been given attention by several authors. In particular, the study in [126], deals with a con-
sensus problem of multiple double-integrator agents with transient constraints. Authors
initially set time-dependent constraints on the transient response of the relative positions
between neighboring agents and propose a distributed control law consisting of a proportional
term of the transformed error and an additional damping term based on absolute velocities
measurements. In the paper, an agreement protocol that can additionally achieve prescribed
performance for a combined error of positions and velocities is also studied. Consensus algo-
rithms for multi-agent schemes with nonlinear dynamics and transient constraints have also
been explored. In [97] and [98], two prescribed performance consensus control schemes are
designed for the first- and second-order nonlinear multi-agent systems, respectively. Authors
in [228], propose a leader-follower consensus scheme for networked uncertain nonlinear
strict-feedback systems with unknown control directions. The control methods proposed in
[97, 98, 228] consider nonlinear dynamic agents described by differential equations linear in
the control input. A general class of nonlinear dynamic agents is considered in [39]. Therein,
authors study a prescribed performance distributed consensus problem of multiple nonlinear
dynamic agents interconnected over a directed communication network.

Another critical group of recent results on consensus control problems deals with the
design of resilient and secure control for multi-agent networks vulnerable to malicious
activities. Distributed networked systems are prone to attacks and component failures,
and therefore trustworthy control computation in the presence of misbehaving components
is of fundamental importance. The characterization of the resilience properties of linear
consensus strategies has been addressed in [163, 200, 201], where it is shown that the
resilience to external attacks is limited by the connectivity of the network. In [163] the
problem of detecting and identifying misbehaving agents in a linear consensus network is
first introduced, and a solution is proposed for the single faulty agent case. Authors in [200]
and [201], develop a distributed control strategy that enables all or a number of nodes to
calculate any consensus task defined as a function of their initial states despite the presence of
some malicious (or faulty) nodes. In [164], the effect of misbehaving inputs on the network
performance is quantified from a system theoretic perspective. Therein, authors address the
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problem of detection complexity and propose a computationally efficient detection method
that is compatible with both discrete and continuous-time linear consensus networks.

2.2.2 Formation problems

Formation control deals with the coordination of interconnected vehicles and is important
for many practical applications such as formation flying, cooperative transportation, and
sensor networks. The main objective of distributed formation control is to enforce the desired
motion pattern throughout a cooperative task of a multi-vehicle system. Excellent surveys of
formation control of multi-agent systems are found in [154, 65, 28].

Existing approaches to vehicle formation control typically fall into two categories [63].
The "leader–follower" approach has the advantage of simplicity in that a reference trajectory
is defined by the leader, and in that internal stability of the formation is implied by the
stability of the individual vehicles’ control laws. The second approach is the "virtual leader"
approach [195, 59], in which mobile agents in the formation jointly synthesize a fictitious
leader whose trajectory is cast as a leader for the group.

One of the most notable recent works on formation control is [63]. Therein, authors
establish information exchange protocols that guarantee formation stability and performance
and are robust to changes in the communication topology of the network. In the paper,
the problem of cooperation among a collection of vehicles performing a shared task using
inter-vehicle communication to coordinate their actions is considered. Authors prove a
Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the
effect of the communication topology on formation stability. They also propose a method for
decentralized information exchange between vehicles, which yields a dynamical system that
supplies each vehicle with a common reference to be used for a cooperative motion.

The study in [170] presents a position-based control scheme considering mobile agents
with double-integrator dynamics. Therein, agents are assumed to be able to measure their
absolute positions and velocities, as well as relative positions of their neighbors. The authors
propose a formation protocol that enables agents to move from their initial positions to the
desired positions. The ending points of the formation, as well as the formation shape, are
specified a priori. An equivalent method applied to multi-agent networks of nonholonomic
systems is found in [52, 53]. There, authors propose a position-based control law that allows
agents to track the desired trajectories. They also show that the proposed control scheme
achieves satisfactory trajectory tracking for a static interaction graph. Similar problems for
time-varying interaction graphs have been explored in [53, 179].

Collision avoidance is an important and rather difficult problem in multi-vehicle networks.
Methods for distributed formation control with obstacle as well as inter-vehicle collision
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avoidance capacity have been presented in [61, 197, 133, 193, 104, 77, 175]. The studies
in [61, 193, 104, 77] propose receding horizon control techniques for tackling avoidance
problems of nonholonomic vehicle formations. However, none of the works mentioned above
addresses the feasibility and stability of the proposed control scheme explicitly. In [133], a
switching control method that guarantees trajectory tracking with bounded tracking error and
collision avoidance is proposed. The work of [175] presents a trajectory tracking method
that enables obstacle and inter-vehicle collision avoidance and respects input saturation
constraints. The method in [175] is only valid for formations of a limited number of vehicles.
Communication preservation in multi-vehicle formation schemes is fundamental for collision
avoidance purposes [7]. In [229], a multi-region control scheme is proposed for a formation
of nonholonomic vehicles to track a reference trajectory while avoiding collisions and
preserving network connectivity in unknown environments. Unfortunately, all the papers
mentioned in this paragraph suffer from important drawbacks, namely, use of unbounded
input forces, lack of scalability, irregular fragmentation and collapse. In contrast, the work in
[29, 178], does not possess these undesirable properties. Collision and obstacle avoidance
has been well-explored in research studies dealing with flocking problems of multi-agent
systems.

Flocking is a term that refers to the collective behavior of a large number of agents
that interact one another towards a common group objective. Swarming, schooling, and
platooning are similar concepts, each pertaining to a particular family of applications. For
instance, there are swarms/flocks of cooperative unmanned aerial vehicles (UAVs), vehicle
platoons, and schooling schemes of multiple underwater vehicles. In the following, we adopt
the flocking terminology. Stability is a fundamental qualitative property of flocking control
since if it is not present, then it may be impossible for a multi-agent system to achieve any
other global objective. Stability analysis of an M-dimensional mobile swarm with a fixed
communication topology is considered in [121]. Therein, authors also derive conditions
under which a mobile swarm can maintain cohesion during movements even in the presence
of sensing delays and asynchronism. Authors in [206] propose a centralized algorithm for a
particle system that leads to irregular collapse for generic initial states. They also suggest
a distributed scheme that leads to irregular fragmentation. Fragmentation and collapse are
two well-known pathological abnormalities arising in flocking schemes that are discussed
in [153] in detail. In particular, [153] presents a theoretical framework for the design and
analysis of distributed flocking algorithms. Author considers free-space flocking as well as
flocking in the presence of multiple obstacles. The proposed distributed control algorithms,
which lead to the emergence of collective behavior, are derived via a Lyapunov stability
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approach. More recent results on flocking stability of distributed multi-agent systems can be
found in [237, 73, 242, 213].

2.3 Optimization based control methods

Model predictive control (MPC) is an optimization-based control technique that uses a
mathematical model to predict the system’s behavior over a finite future horizon. A system’s
desirable behavior is manifested as the minimization of an objective function, possibly
subjected to a set of constraints representing the acceptable range of state and input variables
of the system. Typically, the input variables of a system are defined from the solution
of an optimization problem carried out online at each time instant of a discretized time
horizon. This iterative control calculation demands a control unit with intense computation
capacity and represents the main drawback of model predictive control. However, its ability
to handle explicitly complex phenomena, such as actuator constraints and multi-objective
control problems, has been substantial, especially for tackling complex control problems of
large-scale dynamic systems. Advances in communications, as well as the establishment
of powerful computing resources, have led to an ever-increasing rise in popularity of MPC
strategies for multi-agent problems and distributed network control. In the section, we review
a limited number of papers on distributed MPC, identifying some of the most interesting
works of this vast research area.

2.3.1 Distributed model predictive control methods

Recently, several approaches have been proposed for distributed MPC. Survey papers [182,
35, 152, 135] and textbook [128] provide comprehensive overviews of the relevant literature.
An important group of results pertains to the study of large-scale systems that can be
decomposed into a number of dynamic subsystems, possibly dynamically decoupled with
state/input constraints and coupled objectives. Authors in [58], study a finite horizon optimal
control problem of a set of interacting systems whose dynamic behavior is coupled via a given
objective function. It is proved that a distributed receding horizon control implementation is
stabilizing to a neighborhood of the objective states when subsystems and their constraints
are open-loop separable. The proposed algorithm in [58], requires synchronous updates
as well as exchange of the most recent optimal control trajectory between interconnected
subsystems before each update. Similar approaches to optimal MPC control of open-loop
decoupled systems are proposed in [99, 174].
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Receding horizon optimal control problems of dynamically decoupled systems with
coupled constraints have also been given attention. In such schemes, closed-loop performance
is coupled even in the absence of coupling terms in the objective function. Finite horizon
distributed control problems with coupled constraints are studied in [102] adopting a hybrid
logic rule-based approach, in [168, 165] via a dual decomposition based method, as well as
in [89, 196, 108] where excessive information exchange between coupled agents is required.
The study in [100] proposes a decentralized scheme in which individual agents optimize
a local performance index respecting objective functions of neighboring agents as well as
coupling constraints with them.

Cooperative MPC, whereby each local controller optimizes a common objective function
represented as a weighted sum of local cost functions, is initially introduced in [215] and
also developed in [196]. Sequential [116–118] and iterative [119] approaches for cooperative
MPC design are well exemplified in the review paper [35]. Therein, a cooperative MPC
control problem with state and input constraints is tackled via a Lyapunov-based method.
In particular, a stabilizing controller is designed in the absence of constraints by solving
a typical infinite horizon linear quadratic regulator problem. Then, a distributed and a
decentralized model predictive control strategies are employed to guarantee stability of the
closed-loop agents in the presence of constraints. A complementary "almost decentralized"
Lyapunov-based MPC method is described in [128]. A concise study of cooperative control
problems of decoupled, nonlinear, discrete-time agents associated with objective functions
composed of individual as well as cooperative terms, is considered in [68]. Therein, each
agent is assumed to evolve in discrete-time, based on a locally computed control law, which
is defined by exchanging delayed state-information with neighboring agents. A rigorous
stability analysis considering the input-to-state stability properties of the receding-horizon
local control laws is also carried out. Stability of the overall system is proved by utilizing
small-gain theorem results. A similar multi-agent setup in which local control units have a
limited access to global information as well as limited communication capacities is studied
in [127]. In the proposed scheme, agents are assumed to communicate a limited number of
times over a time interval in order to share information needed for making a cooperative
decision. In the paper, authors propose an optimization procedure for designing a distributed
controller, which guarantees stability of the overall system subject to a set of sufficient
conditions.

Networked MPC methods deal with the development of distributed MPC-based control
strategies of networked systems which are robust to network imperfections, such as time-
varying transmission delays, topology variations, packet losses in data transmission [135].
Model predictive schemes have been effectively used to compensate for network delays oc-
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curring on measurement channels [143], or in the presence of various measurements collected
by distributed networked sensors. The study in [120] proposes a detailed stability analysis
for designing distributed Lyapunov-based model predictive controllers that compensate for
asynchronous and delayed measurements. Sufficient conditions for stability of the proposed
distributed scheme are also derived. A robust control scheme combining model predictive
control with a network delay compensation strategy is proposed in [166]. Therein, authors
showing that the feasible region is invariant under the proposed networked closed-loop
strategy, establish a feasibility property of the optimization problem associated with the
proposed receding horizon control law. In this paper, robust stability of the closed-loop
system is also established using a characterization of regional input-to-state stability and
time-varying Lyapunov functions.

2.4 Distributed optimization

Control and optimization are two mathematical disciplines that are intrinsically connected.
There are great advantages to formulating a control problem as an optimization problem.
Perhaps the most essential is that the problem can then be solved efficiently and in a mean-
ingful manner. Distributed optimization has emerged as a powerful paradigm for attacking
large-scale control problems [12, 205] and, among others, has widely been adopted in the
contexts of distributed feedback control [110, 115] and distributed model predictive control
[182, 35, 152]. The development of distributed optimization algorithms and the study on
their convergence properties help the implementation of computationally efficient control
schemes. In this section, we review a number of recent distributed optimization methods
which are important in solving complex control problems in networked and multi-agent sys-
tems. We focus on distributed (sub)-gradient descent (DGD) methods proposed for solving
the following distributed optimization problem:

minimize
x ∈ X

m

∑
i=1

fi(x). (2.1)

Several recent advances in distributed (sub)-gradient methods have built upon the seminal
works [210, 211, 12], which have epitomized the analysis of optimization models for decision-
making processes distributed across several decision-makers (agents). Inspired by this line of
research, numerous recent results pertain to the study of distributed computation models for
optimizing a global performance index expressed as a sum of multiple objective functions,
each measuring a local performance controlled by a local agent. This particular problem,
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which is also intensely related to the literature on reaching consensus and resource allocation
in networks, is initially presented in the pioneering paper [151].

In [151], authors focus on the distributed control of a network consisting of several
agents interacting over a time-varying topology. In contrast to the literature on consensus
problems [91, 155, 21, 25, 156], the study in [151] assumes that the local cost functions
depend on the entire decision vector. More specifically, the distributed algorithm proposed
in [151] adapts to the following recursive setting: at each iteration, each agent estimates
the optimal decision vector based on the subgradient of the local cost function evaluated at
the previous estimated decision vector, plus a weighted average of neighboring estimates.
Authors considering asynchronous time-varying connectivity prove that under some weak
assumptions on the communication scheme among agents the proposed first-order distributed
algorithm converges to an approximation of the global optimal solution. Authors also
present a rate of convergence analysis showing that the trade-off between convergence speed
and quality of an approximate optimal solution is controlled explicitly via the system and
algorithm parameters.

First-order distributed algorithms for solving (2.1) have also been explored in [134,
239] focusing on (sub)-gradient descent methods, in [147, 148] and [92] establishing the
(sub)gradient-push method and the fast (sub)-gradient method, respectively, and in [55]
proposing the dual averaging method. Most of the aforementioned algorithms are studied
given the assumption of bounded (sub)-gradients [192]. The work [134] considers convex
functions with bounded Hessian matrices. These assumptions are relaxed in [239] for
distributed gradient descent optimization. Projected first-order algorithms are proposed in
[202, 246] for constrained problems in the form of (2.1) where X ⊆ Rn is a bounded set,
which also lead to bounded (sub)gradients and Hessian matrices.

All first-order methods mentioned above suffer from the possible failure to converge
to an optimal solution of (2.1) when considering a fixed step-size in the algorithm updates.
This inability to reach optimal consensus, which is irrespective of the differentiability of
fi’s [239], is considered in [55, 92] proposing the use of specific diminishing step sizes that
guarantee convergence to a minimizing point. A distributed first-order algorithm (abbreviated
as EXTRA) with fixed step-size and exact convergence capacity is proposed in [192]. Therein,
authors prove that each local variable controlled by a local agent converges uniformly and
consensually to an exact minimizer of f in (2.1). In contrast to the well-known distributed
gradient descent (DGD) algorithm [151], EXTRA uses the gradients of the last two iterates,
unlike DGD, which uses just that of the last iterate.

A significant group of recent results on the distributed minimization of (2.1) involves the
introduction of a gradient tracking technique, which allows for rapid convergence subject to
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certain assumptions made on the communication scheme among the agents. For instance, the
work in [150, 167] proposes a distributed scheme that enables each agent to estimate/track
asymptotically the (sub-)gradient of the global function, thereby improving the computing
efficiency of minimizing the global objective function. Recent advances in improving
performance of DGD algorithms can be found in [51, 183, 176] and references therein, as
well as the recent survey paper [149].

Some different variants of techniques for solving the distributed optimization problem
(2.1) include the primal-dual methods proposed in [109], the alternating direction method of
multipliers presented in [22, 231, 31, 30], and the distributed mirror descent/dual averaging
methods found in [50]. The review of these significant works is beyond the scope of this
thesis and is omitted.

2.5 Literature gaps - conclusions

As evidenced throughout this chapter, distributed control is a field of study that emerges in
several domains and has many implications, problems and applications associated with it. The
aim of this chapter is to review a non-exhaustive collection of notable works and significant
results on this vast area of research. It also attempts to highlight particular gaps appearing in
the relevant literature thereby emphasizing the scope of this thesis. In particular, we list a
number of shortcomings in the literature identified primarily as the absence or presence of
certain assumptions imposed on the structure or dynamic behaviour of a distributed control
system.

I. Various results on distributed LQR-based control rely on the elegant properties of
undirected graphs assuming bidirectional interaction schemes. Chapter 4 shows that
the robust stability margins of LQR control can be used for distributed control design
over connected digraphs.

II. Perhaps the most common assumption considered in the context of distributed control
is the presence of multiple systems with identical dynamics. The relaxation of this
assumption represents the main focus of this thesis and is addressed in Chapter 5,
Chapter 6, and Chapter 9.

III. The majority of (if not all) papers on distributed LQR control postulate multi-agent
systems with linear dynamics. Chapter 6 demonstrates a general method for distributed
LQR design for a class of nonlinear systems.
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IV. There is a specific gap in the literature of distributed LQR control associated with multi-
agent systems with dynamical couplings between neighboring plants. In Chapter 7,
we propose a top-down method for designing distributed LQR controllers for identical
dynamically coupled systems.

V. Results on stability and convergence of distributed model predictive control systems
interconnected over communication graphs rely on the assumption that individual
systems are either identical or aware of the model parameters of their adjacent peers.
Chapter 9 focusing on a particular family of linear systems sharing certain struc-
tural properties, proposes a hybrid method for relaxing this requirement based on a
distributed optimization algorithm.





Chapter 3

Regulator Problem

3.1 Introduction

Regulator problem in systems and control theory involves the construction of a control
law the application of which drives an arbitrary nonzero initial state of a system to the
zero state, preferably as fast as possible. This is a fundamental problem since many tasks
arising in control engineering can be cast in this setting. In modern control theory the
regulator problem is formulated as an optimal control problem the objectives of which, apart
from fast state-regulation, also include minimization of control effort required to effect the
state transfer, during which certain measure of the state should be kept small. Quantities
such as control and state energy can be denoted as quadratic functions of input-variables
and state-variables, respectively. In effect, these quantities are included in a cost function
referred to as performance index, the minimization of which leads to the derivation of the
optimum controller. In other words, the regulator problem is translated to the task of finding
a control law which ensures optimum performance index. In the special case where the state
transition of the system is described by linear dynamics, the optimal regulator scheme results
in a linear state-feedback control law. This is known in the literature as Linear Quadratic
Regulator (LQR) [85] and the basic mathematical results associated with it are discussed in
the following section. The stabilizing solution of an optimal regulator problem performed
over infinite-time horizon is highlighted along with its robust stability margins. The main
scope of the chapter is to show how the powerful solution of an LQR problem can be applied
to stabilize networks of interconnected systems. This is discussed in Section 3.3, where the
concept of multi-agent networks and networked control systems are introduced. Two well-
established methods in literature [17, 46], for designing stabilizing LQR-based controllers
with application to multi-agent networks with distributed architecture are presented. The
first, [17], is referred to as top-down method and approximates a centralized LQR controller
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by a distributed scheme the closed-loop stability of which is guaranteed by the infinite gain
margin property of LQR controller. The second, [46], consists of a bottom-up approach in
which optimal interactions between self-stabilizing agents are defined so as to minimize an
upper bound of the global LQR criterion.

3.2 Linear quadratic regulator

The regulator problem of linear time-invariant (LTI) systems is formulated as an optimal
control problem. First, the finite-time case is discussed and then the stabilizing solution of
the infinite-time regulator problem is presented. The section attempts to summarize some of
the main well-known results on the optimal control theory which will be utilized later in the
chapter where distributed LQR control of multi-agent networks is discussed.

Throughout the chapter, we consider linear time-invariant (LTI) systems with dynamics
represented by a state-space differential equation of the form:

ẋ(t) = Ax(t)+Bu(t), x(t0) = x0. (3.1)

Here, A ∈Rn×n, B ∈Rn×m are constant matrices, x(t)∈Rn, u(t)∈Rm denote state and input
vectors at time t ∈ [0,∞), respectively, and x0 represents the initial state of the system. In the
sequel, to avoid complicated notation the variable t may be omitted from vectors x, u. We
assume that the state-vector x is continuously accessible to the controller and can be used
for constructing the input signal u. An optimal regulator problem of finite-time horizon is
defined next.

3.2.1 Finite-time optimal regulator problem

Consider performance index,

J(x(t0),u(·), t0) =
∫ T

t0
(x′(t)Qx(t)+u′(t)Ru(t)) dt+ x′(T )Gx(T ), (3.2)

where Q ∈ Rn×n, G ∈ Rn×n are symmetric non-negative definite matrices and R ∈ Rm×m is
symmetric positive definite matrix. The optimization problem is formulated as the task of
finding an optimal control u∗(t), t ∈ [t0,T ], which minimizes J, and the associated optimum
performance index J∗(x(t0), t0). For the moment, T is assumed to be finite. Detailed
derivation of the optimal solution can be found in [85]. Here we focus on the main results of
the optimal solution which are summarized next.
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I. The optimum performance index takes the quadratic form x′(t)P(t)x(t), where P(t) is
a symmetric matrix.

II. Matrix P(t) satisfies a nonlinear differential equation which is a matrix Riccati equa-
tion.

III. The optimal control is a linear function of the system state, i.e., u∗(t) = K(t)x(t).

According to statement I., we consider optimal performance index with quadratic form
which is given by:

J∗(x(t), t) = x′(t)P(t)x(t). (3.3)

Let also the Hamilton-Jacobi equation associated with optimum performance index (3.3) be
written as:

∂J∗

∂ t
(x(t), t) =−min

u(t)

{
x′(t)Qx(t)+u′(t)Ru(t)+

[∂J∗

∂x
(x(t), t)

]′
(Ax(t)+Bu(t))

}
. (3.4)

Substituting (3.3) into (3.4) leads to

x′Ṗx =−min
u(t)

{
x′Qx+u′Ru+2x′PAx+2x′PBu

}
. (3.5)

To find the minimum of the expression on the right-hand side of (3.5) we simply write the
following identity which is obtained by completing the square:

x′Qx+u′Ru+2x′PAx+2x′PBu = (u+R−1B′Px)′R(u+R−1B′P)+

x′(Q−PBR−1B′P+PA+A′P)x. (3.6)

Since R > 0 the left-hand side of (3.6) is minimized by setting:

ū(t) =−R−1B′P(t)x(t). (3.7)

Using now ū(t) the Hamilton-Jacobi equation becomes:

x′(t)Ṗ(t)x(t) =−x′(t)(Q−P(t)BR−1B′P(t)+P(t)A+A′P(t))x(t), (3.8)

which holds for all x(t) and then we can write

− Ṗ(t) = A′P(t)+P(t)A−P(t)BR−1B′P(t)+Q, (3.9)
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since we have assumed that both sides are symmetric. Eq. (3.9) is a Riccati equation with a
boundary condition following immediately from the Hamilton-Jacobi boundary condition.
Recall that J∗(x(T ),T ) = x′(T )Gx(T ) which implies that x′(T )P(T )x(T ) = x′(T )Gx(T ).
Since x(T ) is arbitrary and both P(T ) and G are symmetric the boundary condition of (3.9)
is:

P(T ) = G. (3.10)

Deriving the Riccati equation (3.9), it was shown that the minimizing control u(t) is
constructed as in (3.7). Thus the optimal control u∗(t) is given by

u∗(t) =−R−1B′P(t)x(t), (3.11)

where P(t) is the solution of (3.9) with boundary condition P(T ) = G.

3.2.2 Infinite-time optimal regulator problem

Now we relax the restriction imposed earlier that the optimization interval be finite and we are
interested in finding an optimal control u(t) that minimizes the cost function J(x(t0),u(t), t)
over infinite-time horizon. Thus, we let T → ∞ in (3.2) and we also set the terminal cost
x′(T )Gx(T ) = 0. Then the optimal regulator problem is formulated as follows:

min
u(t)

J(x(t0),u(t), t) subject to: ẋ = Ax+Bu, x0 = x(t0), (3.12)

where
J(x(t0),u(t), t) =

∫
∞

t0
(x′Qx+u′Ru) dt. (3.13)

In view of (3.13) the minimization problem (3.12) does not always attain a finite optimal
performance index as it is stated. To ensure that the regulator problem admits of a finite
optimal solution the following assumption should be made.

Assumption 3.2.1. System (3.1) is completely controllable. That is, given an arbitrary state
x(t0) at time t0, there exists a control depending on x(t0) and t0, and a time t1, depending on
t0, such that application of this control over the interval [t0, t1] takes the state x(t0) to the
zero state at time t1.

We note here that stabilizability of system (3.1) indicates a variant on Assumption 3.2.1
and suffices to ensure solvability of the infinite-time regulator problem. The solution to
optimal regulator problem (3.12) is now stated under the Assumption 3.2.1.
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Let P(t,T ) be solution to Riccati equation (3.9) with initial condition P(T,T ) = 0. Then
lim

T→∞
P(t,T ) = lim

t→−∞
P(t,T ) = P̄ exists and is constant. P̄ satisfies

A′P̄+ P̄A− P̄BR−1B′P̄+Q = 0, (3.14)

which is an Algebraic Riccati Equation (ARE) and x′(t0)P̄x(t0) is the optimal performance
index when the initial state is x(t0) and the initial time is t0. The optimal control law at time t
is given by the constant control law

u∗(t) =−R−1B′P̄x(t), (3.15)

which is independent of the initial time t0. Due to infinite-time optimization interval the
performance index (3.13) is not time dependent. This implies that the choice of the initial
time can be arbitrary and thus all initial times give the same performance index, i.e., P̄ is
constant.

3.2.3 Stability of linear quadratic regulator (LQR)

We now focus on the closed-loop stability of the system under the application of the optimal
state-feedback control u∗(t) given in (3.15). Let the dynamics of the closed-loop system be
given by

ẋ = (A−BR−1B′P̄)x. (3.16)

To guarantee asymptotic stability of the closed-loop system (3.16), it suffices to impose the
following assumption.

Assumption 3.2.2. The pair (A, C) is completely observable, where C is any matrix such
that C′C = Q.

In view of Assumption 3.2.2, all trajectories x(t) will show up in the x′Qx part of the
integrand of the performance index (3.13). Since the optimum performance index is known
to have finite value, it turns out that all potentially unstable trajectories will be stabilized
under the application of the optimal feedback control u∗(t) given in (3.15). It is also worth
noting that Assumption 3.2.2 is determined by Q itself and not by the particular factorization
C′C. This means that if there exist C1, C2 such that C′

1C1 =C′
2C2 = Q then both pairs (A,C1),

(A,C2) are completely observable.
Before showing asymptotic stability of the closed-loop system we note the following

results which are stated without proof.
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Lemma 3.2.3. Consider optimal regulator problem as defined in (3.12). Let Assumption
3.2.1 holds. Then Assumption 3.2.2 is necessary and sufficient condition for P̄ to be symmetric
positive definite.

Theorem 3.2.4. Consider a time-invariant system ẋ = f (x) with f (0) = 0 and f (·) continu-
ous. Suppose that there is a scalar function V (x) that is positive definite, approaches infinity
as ∥x∥ approaches infinity and is differentiable. Suppose also that the derivative of V along
system trajectories, that is V̇ = [∂V

∂x ]
′ f (x), is negative definite. Then the system is globally

asymptotically stable.

Theorem 3.2.5. Consider time-invariant system ẋ = f (x) with f (0) = 0 and f (·) continuous.
Suppose that there is a scalar function V (x) that is positive definite, approaches infinity as
∥x∥ approaches infinity and is differentiable. Suppose also that the derivative of V along
system trajectories, that is V̇ = [∂V

∂x ]
′ f (x), is non-positive definite, and not identically zero

on [t1,∞) for any t1, except for a trajectory starting from the zero state. Then the system is
globally asymptotically stable.

Proof of Lemma 3.2.3 can be found in [85]. Theorem 3.2.4 and Theorem 3.2.5 are well
known results in the theory of Lyapunov stability. Their proof can be found in [103].

The asymptotic stability of the closed-loop system (3.16) is now established next. Adding
P̄BR−1B′P̄−P̄BR−1B′P̄ in the left-hand side of (3.14) and rearranging the terms appropriately
yields

P̄(A−BR−1B′P̄)+(A′− P̄BR−1B′)P̄ =−Q− P̄BR−1B′P̄. (3.17)

Let also V (x) = x′P̄x be a candidate Lyapunov function for the closed-loop system (3.16).
Then Lemma 3.2.3 guarantees that V (x) is positive definite. Since V̇ (x) = ẋ′P̄x+x′P̄ẋ, (3.17)
implies that

V̇ (x) =−x′Qx− x′P̄BR−1B′P̄x. (3.18)

If Q is positive definite then it is intuitively clear that V̇ is negative definite and therefore we
can claim asymptotic stability from Theorem 3.2.4. Now, suppose that Q is non-negative
definite, with Assumption 3.2.2 still holding. According to Theorem 3.2.5, to postulate
asymptotic stability, it needs to be shown that V̇ is not identically zero along system trajecto-
ries starting from nonzero initial states.

Let V̇ be identically zero along a trajectory starting from a nonzero initial state x0 = x(t0).
Then both x′Qx = 0 and x′P̄BR−1B′P̄x = 0. Also, −R−1B′P̄x(t) = 0 which is the optimal
control for the open-loop system. Therefore, the trajectories of the open-loop and closed-
loop system coincide and are given by x(t) = eA(t−t0)x0. Since x′Qx = 0 and Q =C′C, then
x′0eA′(t−t0)CC′eA(t−t0)x0 = 0 with x0 being nonzero which contradicts Assumption 3.2.2. Thus,
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it is impossible to have V̇ = 0 along a trajectory other than that starting from the zero state.
Therefore, the asymptotic stability of (3.16) has been established.

In the analysis outlined above, the weighting matrices Q and R are assumed to be specified.
The weights (Q, R) are tuned to shift the design emphasis between penalty terms involving
state and control variables, respectively. Since it is up to designer’s discretion in adjusting
system specifications, these matrices can be selected via a trial-and-error procedure which is
usually guided by simulation results. Initial choice of the weights can be calculated by the
Bryson’s rule [79] which specifies that Q and R are diagonal with diagonal elements

Qii =
1

(xi,max)2 , Rii =
1

(ui,max)2 , (3.19)

respectively. The terms |xi,max| and |ui,max| are the maximum required values of the state and
control variables, respectively. Despite this rule of thumb, the closed-loop system is always
stable, irrespective of the choice of Q and R given the definiteness properties mentioned
earlier.

In the following paragraph, the hypotheses required for the infinite-time regulator problem
along with the main results of its solution are summarized.

LQR problem and solution: Consider the system

ẋ = Ax+Bu, x(0) = x0, (3.20)

where the pair (A, B) is completely controllable. Let Q = Q′ ≥ 0, R = R′ > 0, C′C = Q,
where (A, C) is completely observable, and define the performance index

J(x0,u(·)) =
∫

∞

0
(x′Qx+u′Ru) dt. (3.21)

The minimum value of J(·) is given by

J∗(x0) = x′0Px0, (3.22)

where P is the symmetric positive definite solution to the Algebraic Riccati Equation (ARE):

A′P+PA−PBR−1B′P+Q = 0. (3.23)

The associated optimal control is given by the linear feedback law

u∗(t) = Kx(t), (3.24)
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where K =−R−1B′P, and the closed-loop matrix

Acl = A+BK, (3.25)

is Hurwitz. Matrix
Ācl = A+ γBK, (3.26)

is also Hurwitz for all γ ∈ (1
2 ,∞) which represents the infinite gain margin of the LQR

controller [85]. This is explained in detail in the following section.

3.2.4 Stability margins of LQR controller

Before establishing robustness properties of the LQR controller, we state two preliminary
results of the linear algebra and robust stability analysis, respectively. These can also be
found in [85].

Lemma 3.2.6. Let V , W be square complex matrices of the same dimensions such that

(I +V ∗)(I +V )≥ I, (3.27)

W ∗+W > I. (3.28)

Then, I +VW is nonsingular.

Proof. Consider VWu =−u for some u ̸= 0. Now, (3.27) gives:

I +V ∗+V +V ∗V ≥ I, (3.29)

which implies
W ∗V ∗W +W ∗VW +W ∗V ∗VW ≥ 0. (3.30)

Premultiply and postmultiply the latter with u∗ and u, respectively, yields:

−u∗Wu−u∗W ∗u+u∗u ≥ 0, (3.31)

which can be written also as
u∗(W ∗+W − I)u ≤ 0, (3.32)

which is clearly a contradiction due to (3.28).

Lemma 3.2.7. Consider the closed-loop system defined in Fig. 3.1 and assume there are
no unstable pole-zero cancellations in product VW for all frequencies ω . Let also V ( jω),



3.2 Linear quadratic regulator 43

+

−
+ W ( jω) V ( jω)

Fig. 3.1 Closed-loop system used for robustness result.

W ( jω) satisfy (3.27), (3.28) of Lemma 3.2.6, respectively. Suppose also that substituting W
for I, the closed-loop is stable. Then, the closed-loop configuration of Fig. 3.1 is stable.

Proof. We substitute W for W̄ε =(1−ε)I+εW , where ε ∈ [0,1]. Note that ε = 0 corresponds
to a known stable situation by assumption, while ε = 1 to the situation of interest. We may
also write

W̄ ∗
ε +W̄ε = 2(1− ε)I + ε(W ∗+W ), (3.33)

> 2(1− ε)I + εI, (3.34)

= (2− ε)I, (3.35)

which implies
W̄ ∗

ε +W̄ε > I. (3.36)

Also, since (I +V ∗)(I +V )≥ I, by assumption, from Lemma 3.2.6, I +V ( jω)W̄ε( jω) is a
nonsingular matrix for all ω , ε ∈ [0,1].

Now, with W replaced by W̄ε , the closed-loop transfer matrix is VW̄ε(I +VW̄ε)
−1. It can

be easily verified that there is no unstable pole-zero cancellations in product VW̄ε . Then,
as ε moves from 0 to 1, an instability can arise only if there is a closed-loop pole moving
from the open left half-plane to the right half-plane, thereby crossing the imaginary axis.
That is, I +V ( jω)W̄ε( jω) loses rank for some ε ∈ [0,1] and some frequency ω , which is a
contradiction. Thus, the presence of W does not violate closed-loop stability in Fig. 3.1.

Let now matrix P be the symmetric positive definite solution to ARE:

A′P+PA−PBR−1B′P+Q = 0, (3.37)
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associated with LQR problem with parameters (A, B, Q, R). Let also K =−R−1B′P be the
optimal state-feedback controller. Then, the following identity holds true:

R+B′(− jωI −A′)−1Q( jωI −A)−1B︸ ︷︷ ︸
a

= (I −B′(− jωI −A′)−1K)R(I −K′( jωI −A)−1B),

(3.38)

for all ω ∈ [0,∞) and is referred to as the "return difference equation". Derivation of this can
be found in [85]. Since a in (3.38) is a Hermitian positive definite matrix for ω ∈ [0,∞), then

(I −B′(− jωI −A′)−1K)R(I −K′( jωI −A)−1B)≥ R. (3.39)

Pertaining to Fig. 3.1, let

V ( jω) =−R1/2K′( jωI −A)−1BR−1/2, (3.40)

with (A,B,K,R) as defined above. In view of (3.38), we have that

(I +V ∗)(I +V )≥ I, (3.41)

which is in agreement with (3.27). Assume also that there is W ( jω) = R1/2L( jω)R−1/2

satisfying (3.28). Then, with this setup in force, the closed-loop configuration in Fig. 3.1 is
stable as long as

R−1/2L∗R1/2 +R1/2LR−1/2 > I, (3.42)

or
L∗R+RL > R. (3.43)

The following results are established for a diagonal choice of weight R. They also hold
for single-input systems, since R is scalar in this setting. Let also L = diag(l1, . . . , lm), m
denoting the number of input channels. Then, (3.43) holds true if and only if

l∗i + li > 1, (3.44)

for i = 1, . . . ,m. If li ∈ R then, (3.44) is satisfied in the interval (1
2 ,∞). This represents the

gain margin of the LQR controller. If li = e− jφi , (3.44) is in force for all |φi|< π/3 which
implies that sixty degrees of phase margin can be tolerated in all input channels for a diagonal
choice of matrix R.
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We also remark that for a generic (not necessarily diagonal) weight R = R′ > 0 and
L = λ Im, with λ ∈ C, (3.43) may be written as

λ
∗R+λR > R, (3.45)

or
λ
∗+λ > 1, (3.46)

which is equivalent to

Re(λ )>
1
2
, (3.47)

highlighting the one-half-gain-reduction and infinite-gain-amplification property of the LQR
controller. Immediate implication of the latter is that for a multi-input system (A, B) and
LQR controller K, matrices

Aγ = A+ γBK ∈ Cn×n, (3.48)

and A∗
γ are Hurwitz for all γ ∈ C with Re(γ)> 1

2 . We summarize this result in the following
theorem.

Theorem 3.2.8. Consider system

ẋ = Ax+Bu, x(0) = x0, (3.49)

where (A, B) is controllable. Consider also optimal state-feedback controller K associated
with LQR problem with parameters (A, B, Q, R) where Q = Q′ ≥ 0 and R = R′ > 0. Assume
that (A, C) is observable for any matrix C such that C′C = Q. Then, the complex matrix

Aγ = A+ γBK, (3.50)

is Hurwitz for all γ ∈ C as long as Re(γ)> 1
2 .

We omit the proof as it can readily be derived from the previous arguments. Later in the
chapter (as well as in Chapter 4), it will be apparent that the robustness properties of LQR
control are useful for designing stabilizing distributed LQR-based controllers of multi-agent
networks with sparse structure. Specifically, it will be shown that condition Re(γ)> 1

2 , which
can be associated with a lower bound on the Fiedler value of a graph G (the second-smallest
eigenvalue of the Laplacian matrix of G ), can be used to guarantee stability of a distributed
LQR-based control system interconnected over a graph (cf. Theorem 3.3.14 and Theorem
4.3.4).
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3.3 Regulator problems in multi-agent networks

We investigate the regulator problem in the context of multi-agent networks. The main
focus of the section will be on network stability; two well-established methods for designing
stabilizing distributed state-feedback control of multi-agent networks are presented. A multi-
agent network is defined here as a large-scale dynamic system which can be decomposed
into a finite number of identical subsystems each having a distinct control unit. In this
regard, a subsystem (or just a system) representing an autonomous agent is assumed to be
capable of: 1) producing actuation signals independently, and 2) exchanging state-information
with a certain number of systems in the network referred to as neighboring agents (or just
as neighbors). The state-information exchange established between neighboring systems
determines network’s topology and defines an interconnection and control scheme which
is modelled as a graph. The nodes of the graph represent agents interacting dynamically
(due to control applied) and exchanging information through links (edges) of the graph. The
communication between neighboring agents is assumed to be bidirectional and thus the
information exchange scheme is modelled as an undirected graph. Before proceeding to the
networked regulator problem, we first introduce some interesting properties of a large-scale
LQR problem of a certain structure. We also introduce the following notation and some
useful concepts of graph theory.

3.3.1 Notation and preliminaries

The field of real and complex numbers are denoted by R and C, respectively. Rn denotes the
n-dimensional vector space over the field R and Rn×m denotes the set of n×m real matrices.
ξ ′ denotes the transpose of ξ . Matrix Ξ ∈ Rn×n is called symmetric if Ξ′ = Ξ. The identity
matrix of dimension m×m is denoted by Im ∈ Rm×m. The n×m zero matrix is denoted
by 0n×m (subscript may be omitted when the dimensions are obvious). The set of complex
numbers with negative and non-positive real part is denoted by C__ = {s ∈ C : Re(s)< 0}
and C_ = {s ∈ C : Re(s)≤ 0}, respectively.

Definition 3.3.1. Let A,B ∈ Rn×n be symmetric matrices. Then,

I. If x′Ax > 0 (x′Ax ≥ 0) for all nonzero x ∈ Rn, then A is positive (semi)definite. The
positive (semi)definiteness of A is denoted by A > 0 (A ≥ 0).

II. Matrix A is negative (semi)definite if −A > 0 (−A ≥ 0).

III. A < B (A ≤ B) means A−B < 0 (A−B ≤ 0).
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Let A ∈Rn×m and B ∈Rq×p. Then the Kronecker product of A and B is denoted by A⊗B
and defined as

A⊗B =


a11B · · · a1mB
...

. . .
...

an1B · · · annB

 ∈ Rnq×mp, (3.51)

where ai j is the (i, j)-th entry of A, with i = 1, . . . ,n and j = 1, . . . ,m.
Let λi(Ξ) denote the i-th eigenvalue of Ξ ∈ Rn×n, i = 1, . . . ,n. Then, the spectrum of Ξ

is denoted by S(Ξ) = {λ1(Ξ), . . . ,λn(Ξ)}.

Definition 3.3.2. Matrix Ξ ∈ Rn×n is called Hurwitz (or stable) if all its eigenvalues have
negative real part, i.e., λi(Ξ) ∈ C__ , i = 1, . . . ,n.

Proposition 3.3.1. Let A1 = aIm and A2 ∈ Rm×m. Then λi(A1 + A2) = a + λi(A2), i =
1, . . . ,m.

Proof. Let λi(A2) be any eigenvalue of A2 with corresponding eigenvector vi ∈ Cm. Then
(A1 +A2)vi = A1vi +A2vi = avi +λi(A2)vi = (a+λi(A2))vi.

Proposition 3.3.2. Consider matrices A1,A2 ∈ Rm×m and Ξ ∈ Rn×n and let Ā1 = In ⊗A1

and Ā2 = Ξ⊗A2 with Ā1, Ā2 ∈ Rnm×nm. Then S(Ā1 + Ā2) =
⋃n

i=1 S(A1 +λi(Ξ)A2) where
λi(Ξ) represents the i-th eigenvalue of Ξ.

Proof. Let v ∈ Cn be an eigenvector of Ξ associated with eigenvalue λ (Ξ) and u ∈ Cm be
an eigenvector of M = A1 +λ (Ξ)A2 associated with eigenvalue λ (M). Define the vector
v⊗u ∈ Cnm and consider

(Ā1 + Ā2)(v⊗u) = v⊗A1u+Ξu⊗A2u

= v⊗A1u+λ (Ξ)v⊗u

= v⊗ (A1u+λ (Ξ)A2u).

Since (A1 +λ (Ξ)A2)u = λ (Ξ)u, we get (Ā1 + Ā2)(v⊗u) = λ (Ξ)(v⊗u).

3.3.2 Graph theory preliminaries - Undirected graphs

An undirected graph (or just graph) G is defined as the ordered pair G = (V ,E ), where V

is the set of nodes (or vertices) V = {1, . . . ,N} and E ⊆ V ×V the set of edges (i, j) with
i ∈ V , j ∈ V . The orientation of all edges is bidirectional. The degree d j of vertex j is the
number of edges that start from j. Let dmax(G ) denote the maximum vertex degree of the
graph G . We denote by A (G ) the (0,1) adjacency matrix of the graph G . In particular,
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the (i, j)-th element of A , Ai j = 1 if (i, j) ∈ E ∀ i, j = 1, . . . ,N, i ̸= j and zero otherwise.
Let j ∈ Ni if (i, j) ∈ E and i ̸= j. We call Ni the neighborhood of node i. The adjacency
matrix A (G ) of undirected graphs is symmetric. We define the Laplacian matrix as L (G ) =

D(G )−A (G ), where D(G ) is the diagonal matrix of vertex degrees di (also called the
valence matrix). The Laplacian matrix of an undirected graph is a symmetric positive
semidefinite matrix. Let S(L (G )) = {λ1(L (G )), . . . ,λN(L (G ))} be the spectrum of the
Laplacian matrix L associated with an undirected graph G arranged in a nondecreasing
semi-order, with λi(L (G )) ≥ 0, i = 1, . . . ,N. The following Proposition is derived from
Proposition 3.3.2 in a straightforward manner.

Proposition 3.3.3. Let A, B be matrices of appropriate dimensions and L be the Laplacian
matrix of graph G with spectrum S(L ) = {λ1(L ), . . . ,λN(L )}. Then,

S(IN ⊗A+L ⊗B) =
⋃

i∈[1:N]

S(A+λi(L )B),

with λi(L ) ∈ S(L ).

Next, we recall the Geršgoring disk theorem.

Theorem 3.3.4. Let M = (mi j) be an n×n real matrix. Then all eigenvalues of M are located
in the union of the discs described by:

⋃
i

{
z ∈ C

∣∣ |z−mii| ≤
n

∑
j=1
j ̸=i

|mi j|
}
. (3.52)

The location of the eigenvalues of a Laplacian matrix L may be determined via Theorem
3.3.4 as follows.

Proposition 3.3.5. Let G be an undirected graph of N vertices with Laplacian matrix L .
Then, the spectrum of L lies on the line segment of the non-negative real axis defined by

{z ∈ R | |z−dmax| ≤ dmax}, (3.53)

where dmax denotes the maximum vertex degree of G . In other words, for every undirect
graph G , the eigenvalues of L are real and non-negative.

Proof. In view of Theorem 3.3.4, the eigenvalues of L lie in the complex region

⋃
i

{z ∈ C
∣∣ |z−di| ≤ di}, (3.54)
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where di denotes the degree of the i-th vertex. However, L is a symmetric matrix and hence
its spectrum is real, that is, z in (3.54) lies on the region defined by the intersection of the
discs |z−di| ≤ di i = 1, . . . ,N, and the non-negative real axis. Then, the line segment (3.53)
readily follows since di ≤ dmax ∀i.

Proposition 3.3.5 defines the line segment in which all eigenvalues of a Laplacian matrix
L are confined. To show explicitly the non-negativity of the Laplacian spectrum we argue the
following. Let G = (V ,E ) be an undirected graph on N vertices with associated Laplacian
matrix L . For all x ∈ RN , xi being the i-th entry of x, we may write

∑
(i, j)∈E

(xi − x j)
2 =

1
2 ∑

i∈V
∑

j∈V :(i, j)∈E

(xi − x j)
2

=
1
2 ∑

i∈V
∑

j∈V :(i, j)∈E

(x2
i + x2

j −2xix j)

=
1
2 ∑

i∈V

x2
i di +

1
2 ∑

j∈V

x2
jd j − ∑

i, j∈V

xiai jx j

= ∑
i∈V

dix2
i − ∑

i, j∈V

ai jxix j

= x′L x, (3.55)

where di denotes the degree of the i-th vertex and ai j is the (i, j)-th entry of the adjacency
matrix of G . Effectively, we have shown that x′L x is a (weighted) sum of squares and hence,
it is non-negative for all x ∈ RN . This implies that L is a symmetric positive semi-definite
matrix (Definition 3.3.1).

Consider now two graphs G = (V ,E ) and G ′ = (V ′,E ′) and let V ′ ⊆ V and E ′ ⊆ E .
We call G ′ a subgraph of G . A tree is an undirected graph in which any two vertices are
connected by exactly one edge. A spanning tree T of an undirected graph G is the subgraph
G ′ that is a tree which includes all of the vertices of G , with the minimum possible number
of edges.

By definition the rows (columns) of a Laplacian matrix L sum to zero. This implies
that L has at least one eigenvalue at the origin with associated eigenvector q = [1 1 · · · 1]′,
i.e., L q = 0 and q′L = 0 (since L is symmetric). Consequently, the smallest eigenvalue
of L is always equal to zero or λ1 = 0. The second smallest eigenvalue, also referred to
as Fiedler value, [141, 139], represents the algebraic connectivity of a graph. For instance,
a graph which comprises two distinct weakly connected subgraphs is expected to have a
Fiedler value close to zero.
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An undirected graph is called connected if there is always a path (an edge or a sequence
of edges) between every pair of its vertices. This implies that a connected graph contains at
least a spanning tree. An algebraic property which links the connectivity of a graph with the
spectrum of its associated Laplacian matrix is presented in the next theorem.

Theorem 3.3.6. Let G = (V ,E ) be an undirected graph of N vertices with associated Lapla-
cian matrix L . Let also S(L ) = {λ1,λ2, . . . ,λN} represent the spectrum of L arranged
in a nondecreasing semi-order with λ1 = 0. Then, the graph G is connected if and only if
λ2 > 0.

Proof. Let q = [1 1 · · · 1]′ be the eigenvector corresponding to the smallest eigenvalue
λ1 = 0. By the variational characterisation of eigenvalues, we may write

λ2 = min
x⊥q

x′L x
x′x

= min
x⊥q, ∥x∥=1

x′L x. (3.56)

If x is non-zero and orthogonal to q, it cannot be of the form x = cq with c ∈ R. Therefore,
there must be some (i, j) ∈ E for which xi ̸= x j, xi being the i-th entry of x. The latter
implies that x′L x = ∑(i, j)∈E (xi − x j)

2 > 0 and this is true for all non-zero x ⊥ q. It follows
straightforwardly that minx⊥q, ∥x∥=1 x′L x is strictly positive, i.e., λ2 > 0.

In the remaining of the chapter, we focus explicitly on undirected connected graphs. The
next section studies a large-scale LQR problem of identical dynamically decoupled linear
systems.

3.3.3 LQR properties of identical decoupled systems

Consider a set of NL identical, dynamically decoupled linear time-invariant systems. The
dynamics of the i-th system is described by the state-space equation

ẋi = Axi +Bui, xi(0) = xi,0, (3.57)

where xi ∈Rn, ui ∈Rm denote the state and input vectors of the i-th system, respectively, with
i = 1, . . . ,NL. Let now x̃ ∈ RnNL , ũ ∈ RmNL represent the aggregate state and input vectors,
respectively, which are constructed by stacking the state and input vectors, respectively, of
all NL systems. The aggregate state-space equation, which collects the dynamics of all NL

systems, can be written as:

˙̃x = Ãx̃+ B̃ũ, x̃0 = [x′1(0), . . . ,x
′
NL
(0)]′ (3.58)
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with
Ã = INL ⊗A, B̃ = INL ⊗B. (3.59)

We consider the following cost function pertinent to the set of NL dynamically decoupled
systems outlined above:

J(ũ, x̃0) =
∫

∞

0

NL

∑
i=1

(
x′iQiixi +u′iRiiui +

1
2

NL

∑
j=1
j ̸=i

(xi − x j)
′Qi j(xi − x j)

)
dt (3.60)

with weights:

Qii = Q′
ii ≥ 0, Rii = R′

ii = R > 0, for i = 1, . . . ,NL (3.61a)

Qi j = Q′
i j = Q ji ≥ 0, for i, j = 1, . . . ,NL, j ̸= i. (3.61b)

In cost function (3.60) the terms associated with matrices Qii and Rii weigh local states and
inputs of the i-th system, respectively, while terms associated with matrices Qi j penalize
the relative state difference between system i and j. We will show that the control scheme
obtained by optimizing an LQR performance index constructed as in (3.60) leads to a closed-
loop performance that couples dynamically each individual system with its counterparts. A
compact form of cost function (3.60) can be written as follows:

J(ũ, x̃0) =
∫

∞

0
(x̃′Q̃x̃+ ũ′R̃ũ) dt, (3.62)

where the structure of the weighting matrices Q̃ and R̃ is defined next. Matrices Q̃ and R̃ are
partitioned into N2

L blocks of dimension n×n and m×m, respectively:

Q̃ =


Q̃11 Q̃12 · · · Q̃1NL

Q̃21 Q̃22 · · ·
...

...
. . .

. . .
...

Q̃NL1 · · · · · · Q̃NLNL

 , R̃ =


R 0m×m · · · 0m×m

0m×m R · · · 0m×m
...

. . .
. . .

...

0m×m · · · · · · R

 (3.63)
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with

Q̃ii = Qii +
NL

∑
k=1
k ̸=i

Qik, i = 1, . . . ,NL, (3.64a)

Q̃i j =−Qi j, i, j = 1, . . . ,NL, j ̸= i, (3.64b)

R̃ = INL ⊗R. (3.64c)

Remark 3.3.7. The performance index (3.60) can be used to describe several practical
applications such as formation flight control, synchronization of multi-oscillator systems,
frequency and power flow control of electric power systems [223, 222, 217, 17].

We consider now the following LQR problem:

min
ũ

J(ũ, x̃0) subject to: ˙̃x = Ãx̃+ B̃ũ, x̃(0) = x̃0, (3.65)

where the performance index J(ũ, x̃0) is constructed as in (3.62). As mentioned in Section
3.2.2 and 3.2.3, the LQR problem (3.65) has a unique optimal stabilizing solution ũ∗ resulting
in a finite (optimum) performance index J∗(·) provided the following assumptions are in
force.

Assumption 3.3.8. The pair (Ã, B̃) is stabilizable and the pair (Ã, C̃) is observable, where
C̃ is any matrix such that C̃′C̃ = Q̃.

We also enforce stabilizability and observability at individual system level:

Assumption 3.3.9. The pair (A, B) is stabilizable and the pairs (A, Cii), (A, Ci j) are
observable, where Cii and Ci j are any matrices such that C′

iiCii = Qii and C′
i jCi j = Qi j,

respectively.

We note here that the complete controllability of system (A, B) enforced in Assumption
3.2.1 is relaxed with stabilizability of the pairs (Ã, B̃) and (A, B). This relaxation does not
violate closed-loop stability since stable uncontrollable modes are guaranteed to exponentially
decay to zero, irrespective of the control action ũ (see [5, 85] and references therein).

Under Assumption 3.3.8 and 3.3.9, the minimizing solution ũ∗ to LQR problem (3.65) is
a linear feedback law

ũ∗ = K̃x̃, (3.66)

with K̃ = −R̃−1B̃′P̃, and is associated with an optimal performance index J∗(x̃0) = x̃′0P̃x̃0.
Matrix P̃ is the symmetric positive definite solution to the algebraic Riccati equation (ARE)

Ã′P̃+ P̃Ã− P̃B̃R̃−1B̃′P̃+ Q̃ = 0. (3.67)
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We now partition matrices K̃ and P̃ into N2
L blocks of dimension m × n and n × n,

respectively. Let K[(i− 1)m+ 1 : im,( j− 1)n+ 1 : jn] be the (i, j)-block of K̃ denoted as
K̃i j and P[(i− 1)n+ 1 : in,( j − 1)n+ 1 : jn] be the (i, j)-block of P̃ denoted as P̃i j. The
following two theorems show that K̃i j and P̃i j satisfy certain properties which stem from the
special structure of the LQR problem (3.65). These will prove essential in Section 3.3.5 for
designing stabilizing distributed controllers for the structured optimal control problem (3.81).
In the following, we set X = BR−1B′ for convenience. Theorem 3.3.10 and Theorem 3.3.11
have been established in [17] and are stated next without proof.

Theorem 3.3.10. [17] Let K̃ and x̃′0P̃x̃0 be the optimal controller and the associated optimal
performance index, respectively, of the LQR problem (3.65). Let also K̃i j and P̃i j denote the
(i, j)-block of K̃ and P̃, respectively. Then

NL

∑
i=1

(
A′Fii +FiiA−FiiXFii +Qii

)
= 0, (3.68)

where Fii = ∑
NL
j=1 P̃i j.

In view of Theorem 3.3.10, we note that if all the weights Qii = Q1, i = 1, . . . ,NL, then
eq. (3.68) becomes:

NL
(
A′Fii +FiiA−FiiXFii +Q1

)
= 0, (3.69)

which can be seen as a single-node algebraic Riccati equation with parameters (A, B, Q1, R).
Additional properties of the solution of the LQR problem (3.65) with equal weights Qii,
i = 1, . . . ,NL and equal Qi j, i, j = 1, . . . ,NL, j ̸= i, are summarized in the following theorem.

Theorem 3.3.11. [17] Let the weighting matrices (3.61) of the LQR problem (3.65) be
chosen as

Qii = Q1, i = 1, . . . ,NL (3.70a)

Qi j = Q2, i, j = 1, . . . ,NL, j ̸= i. (3.70b)

Let K̃ and x̃′0P̃x̃0 be the optimal controller and the associated optimal performance index,
respectively, of the LQR problem (3.65) with weights (3.70). Let also K̃i j and P̃i j denote the
(i, j)-block of K̃ and P̃, respectively. Then the following statements hold.

I. Fii = ∑
NL
j=1 P̃i j = P for all i = 1, . . . ,NL, where P is the symmetric positive definite

solution of the ARE associated with a single-node local problem:

A′P+PA−PBR−1B′P+Q1 = 0. (3.71)
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II. ∑
NL
j=1 K̃i j = K for all i = 1, . . . ,NL, where K =−R−1B′P.

III. P̃i j = P̃lm = P̃2, ∀ i ̸= j and ∀ l ̸= m, is a symmetric negative semidefinite matrix
associated with the node-level algebraic Riccati equation

(A−XP)′(−NLP̃2)+(−NLP̃2)(A−XP)− (−NLP̃2)X(−NLP̃2)+NLQ2 = 0. (3.72)

The hypothesis in (3.70) implies that the absolute local state xi is equally penalized for all
nodes i = 1, . . . ,NL, via weighting matrix Q1; similarly, the relative state-difference xi − x j is
identically weighed for all neighboring nodes i, j = 1, . . . ,NL, j ̸= i, via matrix Q2. Under this
assumption, Theorem 3.3.11 suggests that the solution P̃ of the large-scale ARE (3.67) has a
repetitive pattern the building blocks (P̃i j) of which can be obtained by solving two node-level
algebraic Riccati equations, that is, (3.71) and (3.72). In particular, statements I and III imply
that all (i, i) diagonal blocks P̃ii, i = 1, . . . ,NL, are equal to the symmetric positive definite
matrix P− (NL −1)P̃2 while all (i, j) off-diagonal blocks P̃i j, i, j = 1, . . . ,NL and j ̸= i, are
equal to the symmetric negative semidefinite matrix P̃2. The negative semidefiniteness of P̃2

stems from the positive semidefiniteness of matrix −NLP̃2 ≥ 0 which is a stabilizing solution
to ARE (3.72). This particular structure of P̃ is shown below.

P̃ =


P− (NL −1)P̃2 P̃2 · · · P̃2

P̃2 P− (NL −1)P̃2 · · · P̃2
...

. . .
. . .

...

P̃2 · · · · · · P− (NL −1)P̃2

 . (3.73)

Since by assumption B̃ = INL ⊗ B and R̃ = INL ⊗ R, the optimal state-feedback gain
K̃ = −R̃−1B̃′P̃ in (3.66) retains the same structure with P̃. This implies that the optimal
solution K̃ of LQR problem (3.65) with weighting matrices chosen as in (3.70) has the
following structure:

K̃ =


K1 K2 · · · K2

K2 K1 · · · K2
...

. . .
. . .

...

K2 · · · · · · K1

 , (3.74)

with K1 =−R−1B′P+(NL−1)R−1B′P̃2 and K2 =−R−1B′P̃2. Apart from the special structure
of P̃ and K̃, shown in (3.73) and (3.74), respectively, Theorem (3.72) results in the following
corollaries arising from properties of (3.72). In particular, (3.72), as already mentioned, can
be seen as an ARE associated with an LQR problem with dynamics (A−BR−1B′P, B) and
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weighting matrices (NLQ2, R). Stability and robustness properties pertaining to an LQR
problem with parameters (A−XP, B, NLQ2, R) give rise to the following results.

Corollary 3.3.1. Matrix A−XP+NLXP̃2 is Hurwitz.

The following result is derived from the infinite gain margin of the LQR controller [85].

Corollary 3.3.2. Matrix A−XP+aNLXP̃2 is Hurwitz for all a ∈ (1
2 ,∞).

This result is useful in the next section for designing stabilizing distributed LQR-based
control. We also note that:

Remark 3.3.12. Matrix A−XP = A+BK is Hurwitz since K = −R−1B′P is the optimal
LQR state-feedback gain pertinent to LQR problem with parameters (A, B, Q1, R). Thus,
the system in Corollary 3.3.2 is stable for a = 0 as well.

In addition, we impose the following requirement.

Condition 3.3.13. Matrix A−XP+aNLXP̃2 is Hurwitz for all α ∈ [0,1].

Condition 3.3.13 states that all convex combinations of two Hurwitz matrices,

µĀ1 +(1−µ)Ā2 with µ ∈ [0,1], (3.75)

are Hurwitz, where Ā1 = A−XP+NLXP̃2 and Ā2 = A−XP. Sufficient conditions for
Hurwitz stability of a convex combination of Hurwitz matrices can be found in Theorem 2.2
in [14]. In essence, Condition 3.3.13 characterizes a class of LQR problems (3.65) where
their solutions guarantee the validity of Condition 3.3.13. In the next section, we show
that Condition 3.3.13 also extends the class of distributed controllers that can stabilize a
multi-agent network of identical dynamically decoupled linear systems. For a given choice
of weighting matrices (Q1, Q2, R) in problem (3.65), the validity of Condition 3.3.13 can be
verified by searching for a symmetric positive definite matrix P̄ for which the following LMI,−(Ā′

1P̄+ P̄Ā1) 0n×n 0n×n

0n×n −(Ā′
2P̄+ P̄Ā2) 0n×n

0n×n 0n×n P̄

> 0, (3.76)

is feasible. Obviously, if matrix P̄ exists then premultiplying and postmultiplying (3.76) by
[
√

µIn
√

1−µIn 0n×n] and [
√

µIn
√

1−µIn 0n×n]
′, respectively, with µ ∈ [0,1], leads to a

Lyapunov inequality:

(µĀ1 +(1−µ)Ā2)
′P̄+ P̄(µĀ1 +(1−µ)Ā2)< 0, (3.77)
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which admits solution P̄ = P̄′ > 0. This demonstrates that µĀ1 +(1− µ)Ā2 is a Hurwitz
matrix for all µ ∈ [0,1]. Alternatively, the stability of µĀ1 +(1−µ)Ā2 can be examined via
a simple graphical test by plotting the eigenvalue with the maximum real part of the matrix
µĀ1 +(1−µ)Ā2 for µ ∈ [0,1].

In the subsequent sections we turn our attention to the networked regulator problem. This
is formulated as a structured optimal control problem and is presented next.

3.3.4 Distributed LQR design of multi-agent networks

Let a network be composed of N identical, linear time-invariant, dynamically decoupled
systems, referred to as agents. The dynamics of each agent are described by the state-space
equation

ẋi = Axi +Bui, xi(0) = xi,0, (3.78)

where xi ∈Rn, ui ∈ Rm denote state and input vectors, respectively, for i = 1, . . . ,N. A graph
G = (V ,E ) is employed to represent network’s topology pertaining to the communication
scheme among the N agents and the structure of the controls ui, i = 1, . . . ,N. Specifically,
node i∈V of G denotes agent-i, while edge (i, j)∈ E implies that 1) agent-i has access to the
state of agent- j and 2) control ui minimizes (among other terms) a weighted norm of xi − x j.
We also note that the communication between two nodes is assumed to be bidirectional, that
is, G = (V ,E ) is an undirected graph, i.e., (i, j) ∈ E ⇐⇒ ( j, i) ∈ E .

Construct now the aggregate state and input vectors, denoted here as x̂∈RnN and û∈RmN ,
respectively, by stacking individual state and input vectors, respectively, of all N systems
taken in an ascending order depending on their label in graph G . The aggregate state-space
form of the network becomes:

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (3.79)

with:
Â = IN ⊗A, B̂ = IN ⊗B. (3.80)

Note that the aggregate state-space forms (3.79) and (3.58) differ only in number of subsys-
tems. In particular, we denote an aggregate state-space form as in (3.58) when referring to a
centralized control problem with NL subsystems, while we use a notation as in (3.79) when
pertaining to distributed control problems with N subsystems. Similarly, tilded matrices
correspond to centralized problems while hatted matrices to distributed problems. Next, a
class of matrices with a particular structure is highlighted.
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Consider now matrix Ξ ∈ RmN×nN which is partitioned into N2 blocks of dimension
m×n each referred to as (i, j)-block of Ξ and denoted by Ξi j ∈ Rm×n with i, j = 1, . . . ,N.
In particular, the (i, j)-block can be written as: Ξi j = Ξ[(i−1)m+1 : im,( j−1)n+1 : jn].
The class of structured matrices K N

n,m(G ) is now defined as follows:

Definition 3.3.3. K N
m,n(G ) = {Ξ ∈RmN×nN | Ξi j = 0m×n if (i, j) /∈ E , Ξi j = Ξ[(i−1)m+1 :

im,( j−1)n+1 : jn], i, j = 1, . . . ,N}.

A networked regulator problem of N agents formulated as a distributed optimal control
problem is defined as follows:

min
û

J(û, x̂0) =
∫

∞

0
(x̂′Q̂x̂+ û′R̂û) dt (3.81a)

subject to: ˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (3.81b)

û = K̂x̂, (3.81c)

K̂ ∈ K N
m,n(G ), (3.81d)

Q̂ ∈ K N
n,n(G ), R̂ = IN ⊗R, (3.81e)

where Q̂ = Q̂′ ≥ 0 and R̂ = R̂′ > 0. Controllability and observability assumptions are omitted
here and will be identified clearly in the sequel. We note that in the absence of constraint
(3.81d), the optimal control problem (3.81), if feasible, yields a centralized optimal control
law u∗ = K∗x̂ with K∗ =−R̂−1B̂′P∗. Matrix P∗ is the symmetric positive definite solution to:

Â′P∗+P∗Â−P∗B̂R̂−1B̂′P∗+ Q̂ = 0. (3.82)

The networked regulator problem as stated in (3.81), is an NP-hard problem to solve due to
the special structure of K̂ imposed by (3.81d). Two complimentary methods for solving this
problem approximately, have been established in [17] and [46]. Both approaches propose a
suboptimal distributed state-feedback controller, û = K̂x̂, with the following properties:

I. K̂ ∈ K N
m,n(G ).

II. The closed-loop matrix Â+ B̂K̂ is Hurwitz.

III. A certain measure of suboptimality is introduced.

The first two properties will be proved and highlighted for each method separately in
the subsequent sections, while a general rule for measuring the level of suboptimality of a
distributed control scheme will be given in the last section of this chapter.
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A schematic representation of the distributed state-feedback control scheme proposed
in [17, 46] is illustrated in Fig. 3.2. Focusing on the individual system level, the figure
indicates that agent-i, in order to construct its control signal ui at time t, requires 1) local
state xi(t), and 2) neighboring states x j(t), . . . ,xk(t), with j, . . . ,k ∈ Ni, be known signals at
time t. In effect, the control protocol displayed in Fig. 3.2 suggests that agents are capable of
communicating their state-information to their neighbors. These state transmissions among
neighboring agents are assumed to be performed continuously over a communication network
as highlighted in the figure.

ẋi xiui

x j
...xk

...
...

+ B +
∫
A

K

+ K j

Kk

Communication
Channels

xi

x j
...xk

Ni

send

receive

Physical-layer Cyber-layer

Fig. 3.2 Distributed closed-loop architecture of one agent in a multi-agent network.

In the following section, the distributed control design procedure, referred to as top-down
method originally established in [17], is presented. It will be shown that the centralized
solution of an LQR problem with weighting matrices as defined in Theorem 3.3.11 can be
approximated by a distributed scheme, the closed-loop stability of which is guaranteed by
the gain margin property of LQR control stated in Corollary 3.3.2.

3.3.5 Top-down method

A stabilizing distributed state-feedback controller, û = K̂x̂, is proposed as a suboptimal
solution to problem (3.81). The method is based on the centralized solution of an LQR
problem as formulated in (3.65) and the selection of a symmetric N×N matrix with a certain
spectral property. We note that the choice of this matrix is associated with the structure of
graph G . Pertaining to networked regulator problem (3.81), we recall that graph G = (V ,E )

represents 1) coupling terms in the control objective, and 2) an interaction (communication)
scheme among the N systems (agents), as outlined earlier in Section 3.3.4. We also denote
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the maximum vertex degree of G as dmax. The control design procedure is summarized in
the following theorem.

Theorem 3.3.14. [17] Consider LQR problem (3.65) with NL = dmax + 1 and weighting
matrices chosen as in (3.70). Define matrices P and P̃2 from (3.71) and (3.72), respectively.
Let M ∈ RN×N be a symmetric matrix with the following property:

λi(M)>
NL

2
, ∀λi(M) ∈ S(M)\{0} (3.83)

and construct the state-feedback gain:

K̂ =−IN ⊗R−1B′P+M⊗R−1B′P̃2. (3.84)

Then, the closed-loop system

Acl = IN ⊗A+(IN ⊗B)K̂ (3.85)

is asymptotically stable.

Proof. Consider the spectrum of the closed-loop system Acl:

S(Acl) = S
(
IN ⊗ (A−XP)+M⊗ (XP̃2)

)
=

N⋃
i=1

S
(
A−XP+λi(M)XP̃2

)
. (3.86)

We will prove that A−XP+λi(M)XP̃2 is a Hurwitz matrix ∀ i = 1, . . . ,N. If λi(M) = 0, then
matrix A−XP is Hurwitz based on Remark 3.3.12. If λi(M) ̸= 0, from Corollary 3.3.2 and
hypothesis (3.83) we conclude that A−XP+λi(M)XP̃2 is Hurwitz.

Theorem 3.3.14 yields the following conclusions.

1) If M ∈ K N
1,1(G ) then K̂ in (3.84) is a stabilizing distributed controller.

2) The spectrum of the large-scale closed-loop system Acl can be computed through N
(simple) eigenvalue computations as in (3.86).

3) The result is independent of the LQR tuning. Thus, matrices Q1, Q2, R can be chosen
such that the desired trade-off between various objectives in the global performance is
achieved without affecting closed-loop stability.

4) Despite that it introduces additional suboptimality in the solution, selecting matrix M a
posteriori the optimization enhances the modularity and scalability of the proposed
distributed control algorithm.
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Referring to the class of LQR problems for which Condition 3.3.13 is valid, the assump-
tion (3.83) in Theorem 3.3.14 can be relaxed as follows:

Theorem 3.3.15. [17] Consider LQR problem (3.65) with NL = dmax + 1 and weighting
matrices chosen as in (3.70). Define matrices P and P̃2 from (3.71) and (3.72), respectively.
Let M ∈ RN×N be a symmetric matrix with the following property:

λi(M)≥ 0, ∀λi(M) ∈ S(M)\{0}. (3.87)

Then the closed-loop system (3.85) is asymptotically stable when K̂ is constructed as in
(3.84).

Detailed proof is omitted here since it follows similar arguments with proof of Theorem
3.3.14. In particular, closed-loop stability can be proved straightforwardly by replacing
Corollary 3.3.2 with Condition 3.3.13 in proof of Theorem 3.3.14.

The construction of matrix M in Theorem 3.3.14 and Theorem 3.3.15 is now discussed.
As already mentioned, in order for K̂ to be a distributed controller, matrix M should be
sparse reflecting the structure of graph G and satisfying either condition (3.83) or condition
(3.87). In the following paragraph, a particular choice of M for arbitrary graph structures is
highlighted.

Arbitrary graph structures: Consider a generic graph G of N nodes with a Laplacian
matrix L . Let dmax denote the maximum vertex degree of G , λi ∈ S(L ) with i = 1, . . . ,N,
and 0 = λ1 < λ2 ≤ . . .≤ λN . The following corollary suggests a certain choice of M in (3.84)
leading to a stabilizing state-feedback controller K̂ with sparse structure.

Corollary 3.3.3. Compute M in (3.84) as M = aL . If a > NL
2λ2(L ) then the closed-loop

matrix Acl in (3.85) is Hurwitz when K̂ is constructed as in (3.84). In addition, if Condition
3.3.13 is valid, then Acl in (3.85) is Hurwitz for all a ≥ 0.

In essence, Corollary 3.3.3 indicates that if M = aL , with L being the Laplacian matrix
of G , then there is always an appropriate choice of the scaling factor a such that the distributed
scheme (3.85) is asymptotically stable. Several choices for how to construct matrix M can be
found in [17].

3.3.6 Bottom-up method

A bottom-up approach for solving problem (3.81) is proposed in [46]. In this method, which
is carried out in two steps, N agents (represented as identical, dynamically decoupled, linear
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time-invariant systems) are self-stabilized by a node-level LQR controller. Then an upper
bound of the global LQR criterion is minimized by coordinating optimal interactions between
neighboring agents. These interactions are manifested as coupling terms in the control
objective as well as state-information transmissions between adjacent agents. Similarly to
top-down method, the interconnection scheme (cf. Fig. 3.2) is represented by an undirected
graph G = (V ,E ) with a Laplacian matrix L . Specifically, node i ∈ V denotes agent-i
while edge (i, j) ∈ E indicates 1) state-information exchange between node i and j, and 2)
that the control signal of node-i is partly constructed by the relative state-difference between
node i and j. This relative information is defined next.

Let the state-space form

ẋi = Axi +Bui, xi(0) = xi,0, (3.88)

describe the dynamics of the i-th agent, where xi ∈Rn, ui ∈Rm denote state and input vectors,
respectively, with i = 1, . . . ,N. The pair (A, B) is assumed to be controllable. Let Ni ⊂ V

denote the neighborhood of the i-th node, that is, if j ∈ Ni then (i, j) ∈ E . Considering
j ∈ Ni implies that xi − x j is a known signal to agent-i. Then, the signal representing the
relative state-difference of agent-i with respect to its neighborhood is defined as

zi = ∑
j∈Ni

(
xi − x j

)
. (3.89)

Consider now performance index

J(û, x̂0) =
∫

∞

0

(
x̂′Q̂x̂+ û′R̂û

)
dt, (3.90)

where
Q̂ = IN ⊗Q1 +L ⊗Q2, R̂ = IN ⊗R. (3.91)

Here, x̂ = [x′1, . . . ,x
′
N ]

′ ∈ RnN , û = [u′1, . . . ,u
′
N ]

′ ∈ RmN and x̂0 = [x1(0)′, . . . ,xN(0)′]′ ∈ RnN

denote the aggregate state, input and initial state vectors, respectively. Matrices Q1 = Q′
1 ≥ 0

and R = R′ > 0 penalize local states and inputs of each agent, respectively, while matrix
Q2 = Q′

2 ≥ 0 weighs state difference between two neighboring agents. Similarly to x̂ and û,
the aggregate relative state-difference vector is defined as:

ẑ = (L ⊗ In)x̂. (3.92)
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The method proposes a state-feedback control law which, at node level, takes the follow-
ing form:

ui = Kxi +ΦKzi, i = 1, . . . ,N, (3.93)

where K ∈ Rm×n and Φ ∈ Rm×m are to be designed. At network level,

û = K̂x̂, (3.94)

is a distributed state-feedback controller, with

K̂ = IN ⊗K +L ⊗ΦK. (3.95)

The optimal control problem considered in [46] is shown below:

min
û

J(û, x̂0) =
∫

∞

0

(
x̂′(IN ⊗Q1 +L ⊗Q2)x̂+ û′R̂û

)
dt subject to: (3.96)

˙̂x = (IN ⊗A)x̂+(IN ⊗B)û, x̂(0) = x̂0, (3.97)

û = (IN ⊗K +L ⊗ΦK)x̂. (3.98)

Note that the optimal control problem as stated in (3.96) is equivalent to (3.81). Note also
that IN ⊗K +L ⊗ΦK ∈ K N

m,n(G ) and Q̂ ∈ K N
m,n(G ). Thus, if matrices K, Φ are chosen

such that J(û(·), x̂0) is finite, then, û in (3.94) represents a (suboptimal) stabilizing distributed
state-feedback controller. The problem of finding K and Φ will be tackled in a suboptimal
way via a two-step optimization process which is outlined below.

At the first step, no interactions between agents are considered. Thus scaling matrix Φ in
(3.93) and weight Q2 in (3.90) are temporarily taken identical to zero. Then, setting Q2 = 0,
the performance index (3.90) is written as J = ∑

N
i=1 Ji where

Ji =
∫

∞

0

(
x′iQ1xi +u′iRui

)
dt. (3.99)

At this stage, there is no coupling in the control objective, that is, K can designed as the
optimal state-feedback gain derived from an LQR problem with parameters (A, B, Q1, R),
i.e.,

K =−R−1B′P, (3.100)

where P is the symmetric positive definite solution to algebraic Riccati equation:

A′P+PA−PBR−1B′P+Q1 = 0. (3.101)
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This completes the first step of the design procedure. We now proceed with the design of
matrix Φ in (3.93), lifting the temporary assumption that Q2 = 0.

Letting L =V ΛV ′ be the spectral decomposition of the Laplacian matrix L , where V ∈
RN×N is an orthogonal matrix composed of the eigenvectors of L , and Λ = diag(λ1, . . . ,λN)

with λi ∈ S(L ), i = 1, . . . ,N, define the following state-space transformation:

ξ̂ = (V ⊗ In)x̂. (3.102)

Considering now that û is given as in (3.98), the closed-loop system in the original coordinates
can be written as:

˙̂x = (IN ⊗ (A+BK)+L ⊗ (BΦK)) x̂, (3.103)

while in the new coordinates, ξ̂ , we have

˙̂
ξ = (IN ⊗ (A+BK)+Λ⊗ (BΦK)) ξ̂ . (3.104)

Note also that, in the new coordinates, the weighting matrix IN ⊗Q1 +L ⊗Q2 in (3.90) is
mapped to:

(V ⊗ In)(IN ⊗Q1 +L ⊗Q2)(V ⊗ In)
′ = IN ⊗Q1 +Λ⊗Q2, (3.105)

and thus, the performance index (3.90) can also be written as:

J(·) =
∫

∞

0

(
ξ̂
′(IN ⊗Q1 +Λ⊗Q2)ξ̂ + û′R̂û

)
dt. (3.106)

Since matrix Λ is diagonal, letting [ξ ′
1, . . . ,ξ

′
N ]

′ ≜ ξ̂ , the closed-loop system (3.104) can be
decomposed into N node-level state-space equations written as:

ξ̇i = (A+BK +λiBΦK)ξi, i = 1, . . . ,N. (3.107)

Similarly, the performance index (3.106) can be reduced to:

J(·) =
N

∑
i=1

∫
∞

0

(
ξ
′
i (Q1 +λiQ2)ξi +u′Rui

)
dt. (3.108)
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For each decoupled node-level system in (3.107), consider a quadratic Lyapunov function
Vi = ξ ′

i Piξi where Pi has the following structure:

Pi =

[
Pi,11 0

0 Π2

]
> 0. (3.109)

Here, Pi,11 ∈ R(n−m)×(n−m), Π2 ∈ Rm×m are assumed to be symmetric positive definite
matrices. Note that Π2 is taken identical for all i = 1, . . . ,N. Finally, the second step of the
design procedure attempts to tackle the following optimization problem.

min
N

∑
i=1

trace(Pi) subject to: (3.110a)

Pi(A+BK +λiBΦK)+(A+BK +λiBΦK)′Pi +(Q1 +λiQ2)

+(K +λiΦK)′R(K +λiΦK)< 0, i = 1, . . . ,N, (3.110b)

Pi > 0, i = 1, . . . ,N. (3.110c)

For an initial state x̂0 uniformly distributed on the surface of the n-dimensional unit sphere,
the optimum performance index J∗(·) in (3.96) satisfies [20, 46]:

J∗(·)≤
N

∑
i

trace(Pi), (3.111)

with Pi as given in (3.109). Thus, the optimization problem (3.110) represents the minimiza-
tion of an upper bound of the global LQR criterion. We also note the following:

1) The block diagonal structure of Pi in (3.109) introduces conservatism in the solution.
This special structure is chosen to impose a convex representation of the optimization
problem.

2) Setting Φ = 0, then Pi = P is a feasible solution to (3.110), where P is derived from
(3.101). Thus the optimization problem is guaranteed to have a non-trivial solution.

3) û in (3.94) is a distributed state-feedback controller. It is also stabilizing if the opti-
mization problem (3.110) is feasible.

Detailed description for how to solve the optimization problem (3.110) can be found in
[46]. In Chapter 4, an attempt to combine the two distributed LQR-based control design
methods (top-down, bottom-up) described in this chapter will be presented. Therein, all
technical details for solving the optimization problem (3.110) will be clearly identified.
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3.3.7 Measure of suboptimality

Two complementary techniques for designing stabilizing distributed state-feedback con-
trollers were presented in Section 3.3.5 and Section 3.3.6, respectively. In both methods,
approximate solutions to optimal control problem (3.81) were presented. Here, we wish to
employ a suboptimality measure which can be cast as a performance loss index pertinent to
a particular suboptimal distributed design. First, we define a performance reference index
whereby a suboptimal distributed control scheme can be assessed. Such an index has been
originally introduced in [17] and is also outlined here.

We consider optimal control problem (3.81) where constraint (3.81d) is not in force. In
this case, (3.81) can be seen as a typical LQR problem with weights given as in (3.81e). In
this respect, let K∗ and P∗ be the optimal LQR controller and the symmetric positive definite
solution to the associated ARE, respectively. Therefore, û∗ = K∗x̂ minimizes the LQR cost
function for any x̂0:

J(û∗, x̂0) = x̂′0P∗x̂0. (3.112)

Note that, since constraint (3.81d) is ignored, K∗ and P∗ are centralized solutions, and thus,
the value x̂′0P∗x̂0 is the minimum achievable performance index for a given x̂0.

Assume now that constraint (3.81d) is in force. Then a stabilizing distributed state-
feedback controller K̂ can be obtained either via the top-down or the bottom-up method
described earlier. Assume that K̂ is constructed as in (3.84) and the closed-loop system (3.85)
is stable. Then, a performance index for this distributed scheme can be computed as

J(K̂x̂, x̂0) = x̂′0P̂x̂0, (3.113)

where P̂ is the positive definite solution to the following Lyapunov equation:

(IN ⊗A+(IN ⊗B)K̂)′P̂+ P̂(IN ⊗A+(IN ⊗B)K̂)+(Q̂+ K̂′R̂K̂) = 0. (3.114)

Since P∗ is optimal, J(K∗x̂, x̂0)≤ J(K̂x̂, x̂0) for all x̂0 and thus ∆P = P̂−P∗ is a positive
semidefinite matrix which is equal to zero if K̂ = K∗. Any norm of ∆P can be considered
as a measure of suboptimality of the distributed controller K̂. In the sequel, we will use the
Frobenius norm, ∥∆P∥F , in order to judge the suboptimality level of a distributed control
scheme. The best linear state-feedback distributed controller could be constructed by solving:

J(x̂0) = min
K̂∈K N

m,n

∥∆P∥F , (3.115)

which is an NP-hard problem to solve.
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3.4 Conclusion

A concise review of the regulator problem is presented in the first part of this chapter.
Structural assumptions for optimality and closed-loop stability of the infinite-time regulator
problem are discussed and then properties of a large-scale LQR problem of decoupled linear
systems are identified. In this setting, the concept of multi-agent networks and distributed
control is developed for networked systems represented by undirected graphs. Two existing
methods for designing stabilizing distributed state-feedback controllers are comprehensively
described highlighting their properties. In the last section, a general rule, originally introduced
in [17], for assessing the suboptimality level of a state-feedback controller with distributed
structure is also presented. A distributed control design method which combines techniques
from the top-down [17] and the bottom-up [46] approach is proposed in the following chapter.
Therein, it also becomes evident that the distributed control methods originally presented
here for tackling regulation problems of networks with undirected topology, can be extended
to regulating networks with directed interconnection pattern.



Chapter 4

Stabilization of multi-agent networks
with undirected and directed topology

4.1 Introduction

In the previous chapter the stabilization of multi-agent networks with sparse structure was
considered. It was shown that this task can be formulated as a large-scale LQR problem
augmented by control structure constraints. Two well-established methods (top-down [17],
bottom-up [46]) for solving this problem approximately were discussed. Here, a new
distributed control design method, which combines techniques from both aforementioned
approaches, is presented. This hybrid method is initially exemplified in multi-agent networks
with undirected topology, and then it is shown that it can successfully be extended also to
directed networks. An illustrative numerical example attempts to show the applicability of
the new distributed control algorithm. In the study, both cases of undirected and directed
graphs are considered. The suboptimality measure discussed in Section 3.3.7 is used to
evaluate the performance of the proposed distributed scheme with respect to a centralized
optimal solution. Comparison with the suboptimality level achieved via the distributed
solutions derived from both the top-down and bottom-up methods is also highlighted. Next,
we start with the construction of the new stabilizing distributed controller for networks with
undirected topology, while directed networks are studied in the last part of the chapter.

4.2 Distributed control for undirected networks

Consider a network of N identical, dynamically decoupled linear systems. Each system
represents a dynamic agent with autonomous actuation capacity. Let the linear state-space
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equation
ẋi = Axi +Bui, xi(0) = xi,0, (4.1)

describe the dynamics of the i-th agent, where xi ∈ Rn and ui ∈ Rm denoting the i-th state-
and input-vector, respectively, and A ∈ Rn×n, B ∈ Rn×m. Let also matrix B ∈ Rn×m have the
following structure:

B =

[
0

B2

]
, (4.2)

where matrix B2 ∈ Rm×m is nonsingular. The structure in (4.2) is called a regular form
[36] and is a technical assumption postulated here for control design purposes. Note that
this particular structure of B is considered without loss of generality since it can always be
obtained via an appropriate change of coordinates in (4.1), provided matrix B has full-column
rank. A linear map B → T B which ensures this form is constructed next:

Lemma 4.2.1. Let matrix B ∈ Rn×m have full-column rank. Then, there is always a nonsin-

gular matrix T ∈ Rn×n such that T B =
[
0 B′

2

]′
where B2 ∈ Rm×m is nonsingular.

Proof. Let U

[
Σ

0

]
V ′ be singular value decomposition of B, i.e., B =U

[
Σ

0

]
V ′, where U ∈

Rn×n, V ∈ Rm×m are unitary matrices and Σ ∈ Rm×m is a diagonal nonsingular matrix. Let

also U = [U1 U2], with U1 ∈ Rn×m and U2 ∈ Rn×(n−m). Then, we may write [U1 U2]

[
Σ

0

]
=

[U2 U1]

[
0
Σ

]
, and B = [U2 U1]

[
0

ΣV ′

]
. Let now a permutation matrix Π =

[
0 In−m

Im 0

]

and define a non-singular matrix T = (UΠ)−1, where Π−1 = Π. Then, T B =

[
0

B2

]
, with

B2 = ΣV ′, and detB2 ̸= 0, since matrices Σ, V are nonsingular by definition.

The network is represented by an undirected graph G = (V ,E ) with Laplacian matrix L

and maximum vertex degree dmax. We recall that node i ∈ V denotes agent-i while edge (i, j)
represents coupling terms in the control objective as well as a state-information exchange
between agent i and j. Let also Ni denote the set of neighbors of node-i, i.e., if (i, j) ∈ E

then j ∈ Ni. Constructing the aggregate state- and input-vector as x̂ = [x′1, . . . ,x
′
N ]

′ and
û = [u′1, . . . ,u

′
N ]

′, respectively, we represent the collective state-space form of the network as
follows:

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (4.3)

where
Â = IN ⊗A, B̂ = IN ⊗B, (4.4)
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We wish to solve the following optimization problem:

min
û

J(û, x̂0) subject to: (4.5a)

J(û, x̂0) =
∫

∞

0

(
x̂′(IN ⊗Q1 +L ⊗Q2)x̂+ û′(IN ⊗R)û

)
dt, (4.5b)

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (4.5c)

û = (IN ⊗K +M⊗ΦK̃2)x̂, (4.5d)

M ∈ K N
1,1(G ), (4.5e)

where K, M, Φ and K̃2 are design parameters. In view of constraint (4.5e), matrix M
determines the sparsity pattern of û in (4.5d) in line with the particular structure of graph
G . Here, we assume that matrix M is selected prior to problem (4.5) execution. A specific
choice of M is defined later in the section.

In order for problem (4.5) to be feasible with a stabilizing solution û and finite perfor-
mance index J(x̂0), we require the following; (A, B) is controllable, (A, C1) and (A, C2)

are observable for any matrix C1 and C2, respectively, such that C′
1C1 = Q1 = Q′

1 ≥ 0 and
C′

2C2 = Q2 = Q′
2 ≥ 0. We also assume that R = R′ > 0.

We note that if we set M = L and K̃2 = K, then problem (4.5) is identical to (3.96). Sim-
ilarly, if Φ = Im, then the state-feedback gain IN ⊗K+M⊗ΦK̃2 in (4.5d) can be constructed
as in (3.84) as shown in Theorem 3.3.14. Our interest here is to construct and propose a new
stabilizing distributed solution to problem (4.5) borrowing techniques from both methods
(top-down, bottom-up) presented in the previous chapter. Our approach follows a two-step
optimization procedure which is outlined below.

In the first step of our method, we define the state-feedback gains K, K̃2 by solving
LQR problem (3.65) for NL = dmax +1 systems with Ã = INL ⊗A, B̃ = INL ⊗B, and weights
Qii = Q1 for i = 1, . . . ,NL, Qi j = Q2 for i, j = 1, . . . ,NL with j ̸= i, and R̃ = INL ⊗R. In
view of Theorem 3.3.11, we compute P and P̃2 from (3.71) and (3.72), respectively, and
then we define K = −R−1B′P and K̃2 = R−1B′P̃2. At this stage, a suboptimal distributed
state-feedback controller may be constructed as in (3.84) of Theorem 3.3.14, that is,

û = (IN ⊗K +M⊗ K̃2)x̂, (4.6)

provided the spectrum of the design matrix M ∈RN×N satisfies property (3.83). Without loss
of generality, let M = aL with a > 0. As mentioned in Section 3.3.5, we can always chose a
scalar a > 0 such that û in (4.6) stabilizes the differential equation (4.5c). Since the choice
of M = aL is either at the designer’s discretion or imposed by the problem itself, it makes
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sense to formulate a second-stage optimization problem that takes into account this particular
choice of M. In essence, this second stage involves the procedure of finding matrix Φ in
(4.5d). Before formulating the new optimization problem, some technical manipulations of
the model need to be considered. These are outlined next.

Let P̃2, defined earlier as solution to ARE (3.72), be partitioned as:

P̃2 =

[
P̃2,11 P̃2,12

P̃′
2,12 P̃2,22

]
, (4.7)

where P̃2,11 ∈ R(n−m)×(n−m), P̃2,22 ∈ Rm×m with det P̃2,22 ̸= 0 since matrix P̃2 is symmetric
and nonsingular. Letting

T =

[
I(n−m) 0

P̃−1
2,22P̃′

2,12 Im

]
, (4.8)

define matrices (A, B, K, K̃2, P, P̃2, Q1, Q2) in the new coordinate system (x̄ = T x) as
follows:

x̄ = T x, (4.9)

Ā = TAT−1, (4.10)

B̄ = T B, (4.11)

K̄ = KT−1, (4.12)

K̄2 = K̃2T−1, (4.13)

P̄ = (T−1)′PT−1, (4.14)

P̄2 = (T−1)′P̃2T−1, (4.15)

Q̄1 = (T−1)′Q1T−1, (4.16)

Q̄2 = (T−1)′Q2T−1. (4.17)

Computing

T−1 =

[
I(n−m) 0

−P̃−1
2,22P̃′

2,12 Im

]
, (4.18)

in the new coordinates it can be easily verified that

P̄2 =

[
P̃2,11 − P̃2,12P̃−1

2,22P̃′
2,12 0

0 P̃2,22

]
, (4.19)
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and
K̄2 =

[
0 K2

]
, (4.20)

where K2 ∈ Rm×m and detK2 ̸= 0. Note that, this special structure follows easily from K̄2 =

−R−1B′P̄2 since P̄2 is block-diagonal and B̄ = T B = B is invariant in the new coordinates.
Let now the collective state-space form

Ż = (IN ⊗ Ā)Z +(IN ⊗ B̄)û, Z(0) = Z0, (4.21)

with Z = (IN ⊗T )x̂, describe the dynamics of the network in the transformed coordinates. In
the new coordinate system the performance index in (4.5b) and the control law in (4.5d) can
be written as

J(·) =
∫

∞

0

(
Z′(IN ⊗ Q̄1 +L ⊗ Q̄2)Z + û′R̂û

)
dt, (4.22)

û = (IN ⊗ K̄ +aL ⊗ (ΦK̄2))Z, (4.23)

respectively. Note that we have made the choice of M = aL . Since a > 0 is a scalar, it may
be absorbed in the design matrix Φ. Finally, we may write

û = (IN ⊗ K̄ +L ⊗ (ΦK̄2))Z. (4.24)

Substituting (4.24) into (4.21),the closed-loop system (in the new coordinates) at network
level is written as

Ż =
(
IN ⊗ (Ā+ B̄K̄)+L ⊗ (B̄ΦK̄2)

)
Z, Z(0) = Z0. (4.25)

The subsequent analysis is concerned with the formulation of a convex optimization problem
as stated in Section 3.3.6.

Let L = V ΛV ′ be the spectral decomposition of the Laplacian matrix L where V ∈
RN×N is an orthogonal matrix composed of the eigenvectors of L , and Λ = diag(λ1, . . . ,λN)

where λi ∈ S(L ), i = 1, . . . ,N. Defining now a new state-space transformation as

ξ̂ = (V ′⊗ In)Z, (4.26)

the augmented state-space form (at network level) in these coordinates becomes

˙̂
ξ =

(
IN ⊗ (Ā+ B̄K̄)+Λ⊗ (B̄ΦK̄2)

)
ξ̂ , ξ̂ (0) = ξ̂0. (4.27)
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Clearly, the weighting matrix IN ⊗ Q̄1 +L ⊗ Q̄2 in (4.22) is mapped to

(V ′⊗ In)(IN ⊗ Q̄1 +L ⊗ Q̄2)(V ⊗ In) = IN ⊗ Q̄1 +Λ⊗ Q̄2, (4.28)

while using (4.28), the performance index (4.22) can be written as

J(·) =
∫

∞

0

(
ξ̂
′(IN ⊗Q1 +Λ⊗Q2)ξ̂ + û′(IN ⊗R)û

)
dt. (4.29)

Letting [ξ ′
1, . . . ,ξ

′
N ]

′ ≜ ξ̂ , since matrix Λ is diagonal, the closed-loop (4.27) can be
decomposed into N node-level state-space equations:

ξ̇i = (Ā+ B̄K̄ +λiB̄ΦK̄2)ξi, ξi,0 = ξi(0), i = 1, . . . ,N. (4.30)

Similarly, the performance index (4.29) can be reduced to:

J(·) =
N

∑
i=1

∫
∞

0

(
ξ
′
i (Q1 +λiQ2)ξi +u′iRui

)
dt. (4.31)

For each decoupled node-level system in (4.30), consider a quadratic Lyapunov function
Vi = ξ ′

i Piξi where Pi has the following structure:

Pi =

[
Pi,1 0
0 Π2

]
> 0. (4.32)

Here, Pi,1 ∈ R(n−m)×(n−m), Π2 ∈ Rm×m are assumed to be symmetric positive definite matri-
ces. Note that Π2 is taken identical for all i = 1, . . . ,N. Then, the second-stage optimization
problem is formulated as follows.

min
N

∑
i=1

trace(Pi) subject to: (4.33a)

Pi(Ā+ B̄K̄ +λiB̄ΦK̄2)+(Ā+ B̄K̄ +λiB̄ΦK̄2)
′Pi +(Q̄1 +λiQ̄2)

+(K̄ +λiΦK̄2)
′R(K̄ +λiΦK̄2)< 0, i = 1, . . . ,N, (4.33b)

Pi > 0, i = 1, . . . ,N. (4.33c)
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For an initial state ξ̂0 uniformly distributed on the surface of the n-dimensional unit
sphere, the optimum performance index J∗(·) (4.5) satisfies [20, 46]:

J∗(·)≤
N

∑
i

trace(Pi). (4.34)

Consequently, the optimization problem (4.33) represents the minimization of an upper
bound of the global LQR criterion. We remark that the problem (4.33) differs from (3.110)
in the definition of K̃2 as shown in (4.5d) only. In (3.110) this gain matrix was taken identical
to K. However, in this new method, it has been shown that K̃2 may also be constructed via
the top-down technique (cf. Section 3.3.5) as K̃2 = R−1B′P̃2, where the symmetric negative
definite matrix P̃2 is associated with ARE (3.72) while the latter is associated with LQR
problem (3.65) of NL systems as shown in Section 3.3.3 (cf. Theorem 3.3.11). Regarding
problem (4.5) we also note the following:

1) The block diagonal structure of Pi in (4.32) introduces conservatism in the solution.
This special structure is chosen to impose a convex representation of the optimization
problem which is constructed in the following paragraph.

2) Setting Φ = 0, Pi = P is a feasible solution to (4.33), where P is derived from (3.71).
Alternatively, setting Φ = aIm for a > 0 such that û in (4.23) is stabilizing, a symmetric
positive definite matrix Pi can be obtained by solving the Lyapunov equation:

Pi(Ā+ B̄K̄ +aλiB̄K̄2)+(Ā+ B̄K̄+aλiB̄K̄2)
′Pi +(Q̄1 +λiQ̄2)

+(K̄ +aλiK̄2)
′R(K̄ +aλiK̄2) = 0, (4.35)

for i = 1, . . . ,N. Thus, the optimization problem is guaranteed to have a non-trivial
solution.

3) The state-space transformation (4.8) diagonalizes matrix P̃2 and hence, in the trans-
formed coordinates, gain matrix K̄2 in (4.5) has the particular structure (4.20). This
will ensure a closed form for deriving matrix Φ as long as the optimization problem
(4.5) is feasible.

4) û in (4.5d) is a distributed state-feedback controller since M = aL ∈ K N
1,1(G ). It is

also stabilizing if the optimization problem (4.33) is feasible.

5) The matrix inequality constraints in (4.33) grow in number with the number of subsys-
tems constituting the network.
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We now develop a convex formulation of the optimization problem (4.5) which has also
been proposed in [46].

We define matrix

Wi ≜ P−1
i =

[
Wi,1 0

0 W̄2

]
. (4.36)

From (4.32), clearly, Wi,1 = P−1
i,1 and W̄2 = Π

−1
2 . Pre-multiplying and post-multiplying

(4.33b) by Wi gives

(Ā+ B̄K̄ +λiB̄ΦK̄2)Wi +Wi(Ā+ B̄K̄ +λiB̄ΦK̄2)
′+Wi(Q̄1 +λiQ̄2)Wi

+Wi(K̄ +λiΦK̄2)
′R(K̄ +λiΦK̄2)Wi < 0, (4.37)

for i = 1, . . . ,N. Clearly, since Wi =W ′
i > 0, the negative definiteness of (4.33b) is consistent

with (4.37). In view of the structure of K̄2 = [0 K2] and Wi = diag(Wi,1,W̄2), the product

ΦK̄2Wi =
[
0 ΦK2W̄2

]
, (4.38)

in (4.37) may be written as a new variable defined as

Ȳ =
[
0 Y2

]
, (4.39)

with
Y2 = ΦK2W̄2. (4.40)

Provided that a particular value is assigned to matrix Ȳ , (4.40) represents a closed-form for
Φ since, by definition, K2 and W̄2 are nonsingular matrices.

Viewing (4.37), this is a quadratic matrix inequality in variable Wi, i = 1, . . . ,N, and
hence convexity cannot clearly be concluded. In order to show that (4.37) is convex in Wi, we
convert this representation into a linear matrix inequality (LMI) using the Schur complement
condition [20] for positive definite matrices which is stated next.

Proposition 4.2.2. Let X = X ′ > 0 be partitioned as

X =

[
X11 X12

X ′
12 X22

]
> 0. (4.41)

Then, the Schur complement of block X22 of matrix X is defined as X/X22 ≜ X11−X12X−1
22 X ′

12

and is a positive definite matrix, i.e., X11 −X12X−1
22 X ′

12 > 0.
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Define now matrices

Ωi =

[
−Ψi Wi(Q̄1 +λiQ̄2)

1
2

(Q̄1 +λiQ̄2)
1
2Wi In

]
, (4.42)

Hi =

[
(λiȲ + K̄Wi)

′

0n×m

]
, (4.43)

where Ψi = (Ā+ B̄K̄)Wi +λiB̄Ȳ +Wi(Ā+ B̄K̄)′+λiȲ ′B̄′, i = 1, . . . ,N. Then, the quadratic
matrix inequality (4.37) is expressed as Schur complement of the block diag(In,R−1)> 0 of
the LMI [

Ωi Hi

H ′
i R−1

]
> 0, (4.44)

for i = 1, . . . ,N. Obviously, (4.44) is linear and convex in both variables Wi, Ȳ , and proves the
convexity of (4.37) in Wi, i = 1, . . . ,N. After we have completed the convex representation
of (4.33), we introduce the following symmetric positive definite matrices:

Zi ≜

[
Zi,1 0
0 Z̄2

]
, (4.45)

with Zi,1 ∈ R(n−m)×(n−m) and Z̄2 ∈ Rm×m, for i = 1, . . . ,N. Then minimizing ∑
N
i=1 trace(Zi)

subject to [
Zi −In

−In Wi

]
> 0, (4.46)

and (4.44), for i = 1, . . . ,N, is equivalent to minimizing

N

∑
i=1

trace(W−1
i ) =

N

∑
i=1

trace(Pi), (4.47)

subject to (4.44), for i = 1, . . . ,N.
Finally, the optimization problem (4.33) can now be re-formulated as

min
Wi>0,Ȳ,Zi>0

N

∑
i=1

trace(Zi) subject to (4.44)− (4.46). (4.48)

This is a convex optimization problem, linear in Wi, Ȳ and Zi, with linear matrix inequality
constraints, and can be solved by a standard LMI solver. If (4.48) is feasible, then matrix Φ

can be designed as Φ = Y2W̄−1
2 K−1

2 . This completes the second stage of the control design.
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In this section, a new method for designing distributed state-feedback controllers for
solving problem (4.5) has been proposed. In summary, the design approach is based on a
two-stage optimization procedure where a centralized state-feedback controller is initially
obtained from an LQR problem of dmax + 1 systems, dmax denoting the maximum vertex
degree of the graph, and subsequently, a stabilizing distributed control scheme is constructed
by minimizing an upper bound of the global LQR criterion. So far, only networks with
undirected topology have been considered. In the following section, we remove the restrictive
requirement of the two-way agent-to-agent interaction and attempt to generalize the top-
down [17] and bottom-up [46] distributed control design techniques in this direction via a
systematic approach.

4.3 Networks with directed topology

In this section, we focus on networks with directed topology. Our main objective is to show
that the two powerful methods (top-down, bottom-up), presented in Chapter 3, can also be
used for solving regulation problems of multi-agent networks with oriented interconnection
topology. The relaxation of the two-way connectivity assumption considered in the original
studies [17, 46], represents the main result of this chapter. Extension of the method proposed
in Section 4.2, follows straightforwardly and is omitted. In the subsequent analysis, we use a
graph representation to model coupling terms in local control actions and communication
between neighboring agents. The special class of directed graphs is considered. In the
sequel, these are referred to as digraphs. Redefining the notion of the adjacency, degree and
Laplacian matrices of digraphs, we show that the stability of the distributed control scheme
derived either from the top-down or the bottom-up technique, can effectively be identified by
the spectrum of a block diagonal matrix. Next, we collect the main definitions and properties
of digraphs.

4.3.1 Directed graphs, digraphs

Let D = (V ,E ) represent a digraph of N vertices with i ∈ V , i = 1, . . . ,N, denoting the index
of each vertex, and (i, j) ∈ E , i, j = 1, . . . ,N with j ̸= i, denoting the edge between vertex i
and j. In contrast to undirected graphs, every edge (i, j) ∈ E represents an ordered pair and
can be seen as an arrow with i being its head and j its tail. This orientation assigns a direction
to edges and can be described by a function in the following sense; let f : E → {−1,1},
with f (i, j) =− f ( j, i). Then, an edge (i, j) originates in j (tail) and terminates in i (head)
if f (i, j) = 1 otherwise f ( j, i) =−1. It will be shown that this edge orientation choice will
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facilitate the modelling of the information flow between agents. For instance, an edge (i, j)
pointing from j to i implies that the i-th node is receiving information from node j. It also
explains the semantics of the choice of the vertex in-degree instead of vertex degree. This is
defined next.

For a digraph D = (V ,E ) of N vertices we define the in-degree d j of the j-th vertex as
the number of edges terminating in j. Let dmax(D) denote the maximum vertex in-degree
of D . We denote by A (D) the (0,1) adjacency matrix of the digraph D . In particular,
the (i, j)-th element of A , Ai j = 1 if the ordered pair (i, j) ∈ E ∀ i, j = 1, . . . ,N, i ̸= j and
zero otherwise. Clearly, the adjacency matrix A (D) of digraphs is not necessarily symmetric.
Let j ∈ Ni if (i, j) ∈ E and i ̸= j. Note here that (i, j) is an ordered pair and denotes an
oriented edge starting from vertex j and terminating in vertex i. We call Ni the in-degree
neighborhood (or just neighborhood) of vertex i. We define the in-degree Laplacian (or
just Laplacian) matrix as L (D) = D(D)−A (D), where D(D) is the diagonal matrix of
vertex in-degrees di. In contrast to undirected graphs, the Laplacian matrix of digraphs is
generically non-symmetric.

We note here that our choice of in-degree to define the degree matrix D(D) and the
Laplacian matrix L (D) is primarily motivated by the way these matrices will be used in
the network control design. As already seen from the previous analysis, carried out on
undirected networks, the control action of each subsystem is a function of the local state
as well as the states from adjacent subsystems. In other words, each agent, representing
a distinct subsystem of the network, in order to construct its control signal, apart from its
own state, requires also neighboring states be communicated to itself. Clearly, the choice of
the out-degree version of the Laplacian matrix, which captures in essence how each node
influences other nodes, would not accommodate the design of a distributed control scheme.

By construction, for every digraph D with associated in-degree Laplacian matrix L (D),
it follows that

q ∈ N (L (D)), (4.49)

where q = [1 1 · · · 1]′, and N (·) denotes the null space of a matrix. This means that the
Laplacian matrix L has at least one eigenvalue at the origin. Next, we indicate conditions
which link the multiplicity of the zero eigenvalue of L with the structure of the corresponding
digraph. We introduce now the following definitions.

Definition 4.3.1. A directed path in a digraph is a sequence of vertices in which there is a
(directed) edge pointing from each vertex to its successor in the sequence, with no repeated
edges.
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Definition 4.3.2. A digraph is strongly connected if between every pair of distinct vertices
there is a directed path.

A digraph D is said to have been disoriented if all of its directed edges have been replaced
by undirected ones.

Definition 4.3.3. A digraph is weakly connected if its disoriented version is connected.

Obviously, all strongly connected digraphs are automatically weakly connected. A
directed tree of a digraph D = (V ,E ) is a subgraph D ′ = (V ′,E ′) of D which contains a
vertex r ∈ V ′ such that for every other j ∈ V ′ with j ̸= r there is a directed path form r to
j. If V ′ ≡ V then the directed tree D ′ is spanning. In the sequel, we focus on the class
of digraphs which are weakly connected and contain at least a directed spanning tree. We
refer to this class of digraphs as connected digraphs. The rank of Laplacian matrix L of a
connected digraph D is identified in the following proposition [139].

Proposition 4.3.1. A weakly connected digraph D = (V ,E ) of N vertices contains a directed
spanning tree as a subgraph if and only if rank(L ) = N−1. In this case, N (L ) is spanned
by the vector q = [1 1 · · · 1]′.

Proof. It is equivalent to show that zero as the root of the characteristic polynomial of L

has algebraic multiplicity of one. Let

p(λ ) = λ
N +aN−1λ

N−1 + · · ·+a1λ +a0, (4.50)

be the characteristic polynomial of L . Note that a0 = 0 since zero is an eigenvalue of L .
Thus,

rank(L ) = N −1, (4.51)

if and only if a1 ̸= 0. The coefficient a1 satisfies:

a1 = ∑
u

det(Lu), (4.52)

where Lu is the matrix obtained by deleting the u-th row and the u-th column of L . From
matrix-tree theorem (Theorem 2.12 of [139]) we have

det(Lu) ̸= 0, (4.53)

if and only if there is a directed spanning tree in D starting from vertex u. Hence, a1 ̸= 0 if
and only if there is a directed spanning tree originated in some u ∈ V and therefore the zero
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eigenvalue has algebraic multiplicity of one. Since an eigenvalue with algebraic multiplicity
of one also has geometric multiplicity of one [84], for a weakly connected digraph D , it
follows that L p = 0 if and only if p ∈ span(q), i.e., rank(L ) = N −1.

As shown in Proposition 4.3.1, the connectedness of N vertices over digraph D is
established by the rank of the corresponding (in-degree) Laplacian matrix L . We recall
that for N vertices over a connected graph, the associated Laplacian matrix has also rank of
N −1. So far, the differences between undirected and directed graphs have been identified
mainly in the definition of the set of edges as well as the adjacency, degree and Laplacian
matrices, respectively. Unfortunately, elegant properties, especially due to the symmetry of
the adjacency and Laplacian matrices of undirected graphs, do not hold for the in-degree
version of the corresponding matrices of digraphs. In particular, the in-degree Laplacian L

is not necessarily symmetric and as a result its non-zero eigenvalues may be complex with
algebraic and geometric multiplicities not necessarily coinciding. However, they are always
located in the right half-plane. This is highlighted in the following proposition.

Proposition 4.3.2. Let D be a digraph of N vertices with associated in-degree Laplacian
matrix L . Then the spectrum of L lies in the complex region denoted by

{z ∈ C| |z−dmax| ≤ dmax}, (4.54)

where dmax denotes the maximum vertex in-degree of D . In other words, for every digraph
D , the eigenvalues of L have non-negative real parts.

The proof follows straightforwardly from Geršgorin disk Theorem 3.3.4 and is omitted.
Next, we consider the spectral decomposition of a Laplacian matrix L associated with

a connected digraph D of N vertices. We recall that due to the directed orientation of D ,
matrix L is not necessarily symmetric, and hence, may not be perfectly diagonalizable. Let
J(Λ) denote the Jordan canonical form of a Laplacian matrix L . This is a block diagonal
matrix where each diagonal block denoted as J(λ j), is also a block diagonal matrix, i.e.,
J(Λ) = diag(J(λ1), . . . ,J(λp)) with J(λ j) = diag(J1(λ j), . . . ,Jd j(λ j)), j = 1, . . . , p. Note
that the full dimension of J(λ j) represents the algebraic multiplicity of λ j while the number
of different blocks (d j) pertinent to λ j denotes the geometric multiplicity of λ j. Clearly, if
L is perfectly diagonalizable, p = N. Note also that J(0) = 0 since D is assumed to be
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connected. Matrix Jk(λ j) has an upper-triangular form as shown below:

Jk(λ j) =



λ j 1 0 0 0
0 λ j 1 0 0

0 0
. . .

. . . 0

0 0 0
. . . 1

0 0 0 · · · λ j


. (4.55)

Scalar λ j appearing on the main diagonal of Jk(λ j), can be either real or complex. Let now

L = PJ(Λ)P−1, (4.56)

be the Jordan decomposition of L . Detailed description for how to construct matrix P can be
found in [84]. Since D is connected, implying that rank(L ) = N −1, a nonsingular matrix
P can be chosen such that

J(Λ) =


0 0 . . . 0
0 J(λ2) . . . 0
...

. . .
. . .

...

0 . . . 0 J(λp)

 , (4.57)

where Re(λ j)> 0 ∀ j = 2, . . . , p. We denote by

S̄(L ) = {0,λ2, . . . ,λp}, (4.58)

with λ j ∈ S(L ), j = 2, . . . , p, the set of distinct modes of L without considering algebraic
multiplicities. We also define a diagonal matrix Λ associated with the spectrum of L as
follows:

Λ = diag(0,λ2, . . . ,λp). (4.59)

Clearly, S(Λ) ≡ S̄(L ). Later in the chapter, matrix Λ will prove useful for establishing
closed-loop stability of networks with directed topology. Now, before proceeding to the
regulator problem, we consider a simple consensus problem of networks with undirected and
directed topology.
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4.3.2 Agreement protocol for agents with single-integrator dynamics

To give insight to the subsequent analysis, we consider the following motivating example.
Let

ẋi = ui, xi(0) = xi,0, i = 1, . . . ,N, (4.60)

be the state-space forms of N agents with single-integrator dynamics. For simplicity, let xi,
ui be scalar, with i = 1, . . . ,N. Here, we wish to solve the rendezvous problem of N agents
via agreement protocol

ẋ =−L x, x(0) = x0, (4.61)

where x = [x1, . . . ,xN ]
′, and L is the Laplacian matrix of the graph associated with the inter-

actions between agents. We consider two interconnection schemes, namely, 1) a connected
undirected graph G , and 2) a connected digraph D .

Connected graph: We recall that the Laplacian matrix of an undirected graph is a symmet-
ric positive semi-definite matrix with L 1 = 0, where 1 = [1 1 · · · 1]′. The zero eigenvalue
(with associated eigenvector 1) has algebraic multiplicity of one if and only if the undirected
graph contains at least one spanning tree, i.e., it is connected. Hence, for a connected
undirected graph the solution of (4.61), initialized from x0, is

x(t) = e−L tx0, (4.62)

which can be decomposed into

x(t) = e−λ1t(v′1x0)v1 + e−λ2t(v′2x0)v2 + · · ·+ e−λNt(v′Nx0)vN , (4.63)

where vi is the i-th eigenvector of L associated with eigenvalue λi, i = 1, . . . ,N, with
[v1 · · ·vN ] forming a orthogonal matrix. Since λi > 0 for i = 2, . . . ,N and λ1 = 0,

lim
t→∞

x(t) = (v′1x0)v1 =
1′x0

N
1, (4.64)

where v1 ∈ span{1} has been selected such that v′1v1 = 1. Therefore, the rendezvous problem
of N agents interconnected over a connected undirected graph can be solved asymptotically
under the Laplacian dynamics (4.61). The corresponding consensus value is the average of
agents’ initial states, i.e., x′01

N .

Connected digraph: The (in-degree) Laplacian matrix of a digraph, is generically non-
symmetric. Let L = PJ(Λ)P−1 be the Jordan decomposition of L . Letting a digraph be
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connected, a nonsingular matrix P can be chosen such that J(Λ) = diag(0,J(λ2), . . . ,J(λp)),
where Re(λ j)> 0 ∀ j = 2, . . . , p, and J(λ j) is a block-diagonal matrix formed of as many
blocks as the geometric multiplicity of λ j, i.e., J(λi) = diag(J1(λ j), . . . ,Jd j(λ j)) where d j is
the geometric multiplicity of λ j. Now, from L P = PJ(Λ), we denote the first column of
matrix P as p1, which represents the right eigenvector associated with the zero eigenvalue of
L , that is, L p1 = 0. By definition of the in-degree Laplacian matrix, the latter implies that
p1 belongs to span{1}. Similarly, from P−1L = J(Λ)P−1, we denote the first row of P−1 as
q′1, which represents the left eigenvector of L associated with the zero eigenvalue. Clearly,
p1, q1 ∈ RN . Since, PP−1 = I, it follows that p′1q1 = 1. We may write

e−L t = P


e0 0 · · · 0
0 eJ(−λ2)t · · · 0
...

...
. . .

...

0 0 · · · eJ(−λp)t

P−1, (4.65)

where limt→∞ e−J(λ j)t = 0 ∀ j = 2, . . . , p, since Re(λ j) > 0 for j = 2, . . . , p. Thus, setting
p1 = 1 and letting p′1q1 = 1, the solution to (4.61), initialized from x0, is:

lim
t→∞

x(t) = (q′1x0)1. (4.66)

From (4.66), it turns out that the consensus value obtained from the agreement protocol −L x
does not necessarily converge to the average value of agents’ initial states and generically
differs from 1′x0

N 1 for a directed topology.
In the following, the distributed control design method proposed in Section 4.2 is extended

to networks with directed topology.

4.3.3 Regulator problem of directed networks

In this section, we turn our attention to a regulation problem pertaining to networked systems
with directed interconnection topology. Specifically, focusing on the optimal control problem
(4.5), we consider the following alterations.

Let
ẋi = Axi +Bui, xi(0) = xi,0, i = 1, . . . ,N, (4.67)

be the state-space forms of N systems representing the dynamics of N autonomous agents
which have the ability to exchange state-information with one another. Vectors xi ∈ Rn,
ui ∈ Rm represent the states and inputs of agent-i, respectively. Let also D = (V ,E ) be a
connected digraph of N nodes modelling the interaction scheme of the N agents. Clearly,
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agent-i is associated with node-i. We denote by L the (in-degree) Laplacian matrix associated
with D . Constructing the aggregate state- and input-vector as x̂ = Col(x1, . . . ,xN) ∈ RnN and
û = Col(u1, . . . ,uN) ∈ RmN , respectively, we write the collective state-space of the directed
network as:

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (4.68)

where
Â = IN ⊗A, B̂ = IN ⊗B, (4.69)

and we formulate the following optimization problem:

min
û

J(û, x̂0) subject to: (4.70a)

J(û, x̂0) =
∫

∞

0

(
x̂′(IN ⊗Q1 +Lc ⊗Q2)x̂+ û′(IN ⊗R)û

)
dt, (4.70b)

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (4.70c)

û = (IN ⊗K1 +M⊗K2)x̂, (4.70d)

M ∈ K N
1,1(D), (4.70e)

with Q1 = Q′
1 ≥ 0, Q2 = Q′

2 ≥ 0 and R = R′ > 0. Matrices M ∈ RN×N , K ∈ Rm×n and
K2 ∈ Rm×n are design parameters. We note that Lc in (4.70b) is a symmetric matrix. The
off-diagonal entries of Lc are constructed as follows:

Lc(i, j) =

−1 if L (i, j) =−1 or L ( j, i) =−1, for i ̸= j,

0 if L (i, j) = L ( j, i) = 0, for i ̸= j,
(4.71)

while the diagonal entries of Lc are given by

Lc(i, i) =−
N

∑
p=1
p̸=i

Lc(i, p), for i = 1, . . . ,N. (4.72)

This choice of Lc guarantees that Q̂= IN ⊗Q1+Lc⊗Q2 is a symmetric positive semidefinite
matrix, and J(û, x̂0) in (4.70b) is well-defined.

Our objective is to design a stabilizing control law û with structure as in (4.70d). The
two methods (top-down, bottom-up) presented in Chapter 3 are utilized here for constructing
matrices K1, M and K2, indicating that these design techniques can effectively be used for
regulating networks in the setting of problem 4.70.
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Before presenting the first method, we consider the following closed-loop state-space
form:

˙̂x = (IN ⊗ (A+BK1)+M⊗ (BK2))x̂, (4.73)

which arises by substituting û as given in (4.70d) into (4.68). We also write the closed-loop
matrix:

Acl = IN ⊗ (A+BK1)+M⊗ (BK2), (4.74)

the inertia of which determines the stability of the closed-loop system. Without loss of
generality let M = L . Let also matrix P ∈ RN×N be an invertible matrix such that

L = PJ(Λ)P−1, (4.75)

where J(Λ) denotes a Jordan matrix with structure as shown in (4.57). Considering now a
new coordinate system ξ̂ = T̂ x̂ where T̂ = P−1 ⊗ In, matrix

Âcl = T̂AclT̂−1 = IN ⊗ (A+BK1)+ J(Λ)⊗BK2, (4.76)

is clearly similar to matrix Acl , thereby having identical eigenvalues. Note that Âcl ∈CnN×nN

is a block diagonal matrix and hence its inertia is determined by the diagonal blocks. We
denote as

Âcl, j j = Ik j ⊗ (A+BK1)+ J(λ j)⊗BK2, (4.77)

the j-th diagonal block of Âcl associated with the j-th Laplacian mode λ j ∈ S(L ) with
algebraic multiplicity of k j for j = 1, . . . , p. Due to its block upper-triangular form, matrix
Âcl, j j is Hurwitz if and only if matrix

Âcl,λ j = A+BK1 +λ jBK2, (4.78)

with j = 1, . . . , p. In other words, closed-loop matrix Acl in (4.74) is Hurwitz if and only if
matrix

Âcl,Λ = Ip ⊗ (A+BK1)+Λ⊗BK2, (4.79)

is Hurwitz, where Λ = diag(0,λ2, . . . ,λp). This result is stated in the following proposition.

Proposition 4.3.3. Let matrix

Ã = IN ⊗A1 +C⊗A2, (4.80)

where A1 ∈ Rn×n, A2 ∈ Rn×n and C ∈ RN×N . Let also (λ1, . . . ,λp) ∈ S(C) be the distinct
eigenvalues of matrix C without considering algebraic multiplicities. Then, matrix Ã is
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Hurwitz if and only if matrix
Ã j = A1 +λ jA2, (4.81)

is Hurwitz ∀ j = 1, . . . , p.

The proof is omitted since it follows straightforwardly from the previous arguments. The
main conclusions of this paragraph are now highlighted as follows.

1) The algebraic multiplicities of the eigenvalues of matrix M along with its potentially
non-simple structure may be neglected for stability analysis of the closed-loop system
(4.73).

2) Designing K1, K2 as suggested in the top-down method, closed-loop stability can be
guaranteed via the robustness properties of LQR control.

3) Due to the structure of matrix Acl,Λ in (4.79), sufficient conditions for closed-loop
stability can be formulated via Lyapunov inequalities as suggested in the bottom-up
distributed control design approach.

Two different approaches to designing matrices K1, K2 and M are proposed in the
following sections, illustrating the interesting implications mentioned above.

4.3.4 Top-down design for directed networks

As described in Section 3.3.5, for a multi-agent network with undirected topology, a dis-
tributed LQR-based controller can be constructed by solving a low dimension LQR problem
(3.65) of NL = dmax +1 subsystems, dmax denoting the maximum vertex degree of the corre-
sponding graph. Then, stability of the overall distributed control system is established via the
gain margin property of LQR control. Here, we build upon this method studying regulator
problems of networked systems with directed topology. Our results primarily rely on two
particular aspects, namely, 1) the simple structure of the low-dimension matrices (4.78), and
2) the complex-gain-margin property of LQR control stated in Theorem 3.2.8.

The method is generalized as follows. We solve an LQR problem (3.65) with weights
(Q1, Q2, R) for NL systems. To avoid a trivial solution to (3.65), number NL can be equal to
dmax +2, dmax denoting the maximum vertex in-degree of the corresponding digraph. Then,
the state-feedback gains K1, K2 are defined as follows:

K1 =−R−1B′P, (4.82)

K2 = R−1B′P̃2, (4.83)
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with P and P̃2 being associated with ARE:

A′P+PA−PXP+Q1 = 0, (4.84)

(A−XP)′(−NLP̃2)+(−NLP̃2)(A−XP)− (−NLP̃2)X(−NLP̃2)+NLQ2 = 0, (4.85)

respectively, where X = BR−1B′. We recall that the expression (4.84) can be cast as an
ARE associated with a node-level LQR problem with parameters (A, B, Q1, R), while the
expression (4.85) can be seen as an ARE associated with an LQR problem with parameters
(A−BR−1B′P, B, NLQ2, R). The following corollary follows from the stability of the two
node-level LQR solutions pertinent to ARE (4.84) and ARE (4.85), respectively.

Corollary 4.3.1. Matrix A−BR−1B′(P+ γNLP̃2) is Hurwitz for γ = 0 and γ = 1.

From the robust stability property stated in Theorem 3.2.8, we also have the following
result.

Corollary 4.3.2. Matrix A−BR−1B′(P+ γNLP̃2) is Hurwitz ∀γ ∈ C such that Re(γ)> 1
2 .

The distributed control design (top-down) method for problem (4.70) is now summarized
in the following theorem.

Theorem 4.3.4. Consider LQR problem (3.65) with weights (Q1, Q2, R) for NL = dmax +2
systems. Define matrices P and P̃2 from (4.84) and (4.85), respectively. Define also K1 =

−R−1B′P and K2 = R−1B′P̃2 and let M ∈RN×N be a real matrix with the following property:

Re(λi)>
NL

2
, ∀ λi ∈ S(M)\{0}. (4.86)

Then, constructing state-feedback gain:

K̂ = IN ⊗K1 +M⊗K2, (4.87)

the closed-loop system
Acl = IN ⊗A+(IN ⊗B)K̂, (4.88)

is asymptotically stable.

Proof. Consider closed-loop matrix Acl which can be written as

Acl = IN ⊗ (A+BK1)+M⊗BK2. (4.89)

From Proposition 4.3.3, matrix Acl is Hurwitz if and only if

Acl, j = A+BK1 +λ jBK2, (4.90)
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is Hurwitz for all λ j ∈ S(M). If λ j = 0, then, A+BK1 is a Hurwitz matrix from Corollary
4.3.4. If λ j ̸= 0, then from Corollary 4.3.2 and condition (4.86) we conclude that matrix Acl, j

is Hurwitz ∀ λ j ∈ S(M).

The main corollaries of Theorem 4.3.4 are listed below:

1) If M ∈ K N
m,n(D), then K̂ in (4.87) is a stabilizing distributed controller.

2) Closed-loop stability is irrespective of the LQR cost function tuning.

3) Stability can always be guaranteed with M = aL for

a >
NL

2Re(λ2)
, (4.91)

with λ2 ∈ S(L ) denoting the non-zero eigenvalue of L with the smallest real part.

4.3.5 Bottom-up design for directed networks

Here, we propose a distributed control design for problem (4.70) using the bottom-up method
presented in Section 3.3.6. The method requires input matrix

B =

[
0

B2

]
, (4.92)

where detB2 ̸= 0. We recall that this structure of matrix B can always be attained considering
a state-space transformation as suggested in Lemma 4.2.1. Setting, now,

K1 = K, (4.93)

K2 = ΦK, (4.94)

M = L , (4.95)

in (4.70d), the distributed state-feedback control law û takes the following form:

û = (IN ⊗K +L ⊗ΦK)x̂, (4.96)

where K = −R−1B′P is derived from the solution of a node-level LQR problem with pa-
rameters (A, B, Q1, R), L is the (in-degree) Laplacian matrix of digraph D , and Φ is the
design matrix to be defined. We recall that in the original setup of the method, pertaining to
networks with undirected topology, matrix Φ is computed by solving constrained optimiza-
tion problem (3.110) the constraints of which represent sufficient conditions for closed-loop



88 Stabilization of multi-agent networks with undirected and directed topology

stability. Therein, the formulation of these conditions relies on two simplifying factors: 1)
the closed-loop system

˙̂x = (IN ⊗ (A+BK)+L ⊗ΦK)x̂, (4.97)

can be decomposed into N node-level differential equations (4.30) under a state-space
transformation defined in (4.26), and 2) LQR cost function (4.70b), in the transformed
coordinates, can be written as a sum of N node-level integrals (3.108). Unfortunately, these
two elegant features vanish in the present setting and arise only if a network has an undirected
topology.

In view of Proposition 4.3.3, closed-loop stability can be established by requiring the
eigenvalues of

Âcl, j = A+BK +λ jBΦK, with λ j ∈ S(L ), (4.98)

have negative real part ∀ j = 1, . . . , p. The derivation of sufficient conditions for closed-loop
stability is outlined next.

First, we arrange the Laplacian modes into three groups:

1) The zero eigenvalue denoted as λ1 = 0.

2) The purely real eigenvalues denoted as λν where ν ∈ NR with NR ⊆ {2, . . . , p}.

3) The complex eigenvalues denoted as λµ where µ ∈ NC with

NC ⊆ {2, . . . , p}\ j̄ : λ j̄ = λ
∗
j and j ∈ NC. (4.99)

Note that if λ j ∈ C with j ∈ NC and λ j̄ = λ ∗
j then j̄ ̸⊂ NC.

Stability conditions for matrices Âcl, j, j = 1, . . . , p in (4.98) are considered in the follow-
ing three paragraphs, each one is associated with a certain type of Laplacian modes as listed
above.

Zero eigenvalue: For λ1 = 0, matrix

Âcl,1 = A+BK, (4.100)

is clearly Hurwitz since K is the optimal gain obtained from LQR problem with parameters
(A, B, Q1, R). This can be verified by checking the validity of the following LMI condition:

P1(A+BK)+(A+BK)′P1 < 0, (4.101)

for P1 = P′
1 > 0.
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Real eigenvalues: Let λν ∈ S(L ), with ν ∈ NR as defined earlier, be a purely real non-zero
Laplacian eigenvalue associated with matrix

Âcl,ν = A+BK +λνBΦK. (4.102)

For a given matrix Φ, checking the inertia of Âcl,ν can be seen as an LMI problem searching
for matrix Pν = P′

ν > 0 such that the following inequality:

Pν(A+BK +λνBΦK)+(A+BK +λνBΦK)′Pν < 0, (4.103)

is satisfied.

Complex conjugate eigenvalues: Let λµ ∈ S(L ), with µ ∈ NC as defined earlier, be a
complex Laplacian eigenvalue associated with matrix

Âcl,µ = A+BK +λµBΦK. (4.104)

Before stating a stability condition of Âcl,µ we consider the following proposition.

Proposition 4.3.5. Let matrix A ∈ Cn×n be written as A = A1 + iA2 with A1 = Re(A), A2 =

Im(A), and i2 =−1. Let also Ā denote its complex conjugate, i.e., Ā = A1− iA2. Then matrix

Ã =

[
A 0
0 Ā

]
, (4.105)

is Hurwitz if and only if the real matrix

Â =

[
A1 A2

−A2 A1

]
, (4.106)

is Hurwitz with Â ∈ R2n×2n.

Proof. Let unitary matrix

T =
1√
2

[
In iIn

iIn In

]
. (4.107)

It can easily be verified that T ÃT ∗ = Â. Since matrix T is unitary, matrices Ã and Â are
similar and consequently they have equal eigenvalues. The latter proves the argument.



90 Stabilization of multi-agent networks with undirected and directed topology

For a given matrix Φ, suppose matrix A+BK+λµBΦK ∈Cn×n is Hurwitz and Γ ∈Cn×n

is a Hermitian positive definite matrix such that

Γ(A+BK +λµBΦK)+(A+BK +λµBΦK)∗Γ < 0. (4.108)

Matrix Γ may be written as Γ = Γ1 + iΓ2, where Γ1 = Re(Γ) is a symmetric matrix, Γ2 =

Im(Γ) is a skew-symmetric matrix, and i2 =−1. Since A+BK +λµBΦK is assumed to be
Hurwitz, considering the conjugate expression of (4.108) leads to

Γ̄(A+BK +λ
∗
µBΦK)+(A+BK +λ

∗
µBΦK)∗Γ̄ < 0, (4.109)

where Γ̄ = Γ1 − iΓ2 denotes the conjugate of Γ, and i2 = −1. Clearly, matrix A+BK +

λµBΦK is also Hurwitz. Combining (4.108) and (4.109) results in a single inequality written
as: [

Γ 0
0 Γ̄

][
A+BK +λµBΦK 0

0 A+BK +λ ∗
µBΦK

]

+

[
A+BK +λµBΦK 0

0 A+BK +λ ∗
µBΦK

]∗[
Γ 0
0 Γ̄

]
< 0. (4.110)

Pre-multiplying and post-multiplying the former by T and T ∗, respectively, T being unitary
matrix constructed as in (4.107), does not violate the strict inequality condition and thus we
may write:

T

[
Γ 0
0 Γ̄

]
T ∗T

[
A+BK +λµBΦK 0

0 A+BK +λ ∗
µBΦK

]
T ∗

+T

[
A+BK +λµBΦK 0

0 A+BK +λ ∗
µBΦK

]∗
T ∗T

[
Γ 0
0 Γ̄

]
T ∗ < 0. (4.111)

We use Proposition 4.3.5 to write

T

[
Γ 0
0 Γ̄

]
T ∗ =

[
Γ1 Γ2

−Γ2 Γ1

]
(4.112)
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and

T

[
A+BK +λµBΦK 0

0 A+BK +λ ∗
µBΦK

]
T ∗

=

[
A+BK +aµBΦK bµBΦK

−bµBΦK A+BK +aµBΦK

]
, (4.113)

where aµ = Re(λµ) and bµ = Im(λµ). Clearly, checking the inertia of Âcl,µ can be imposed
as an LMI problem searching for a symmetric positive definite matrix

Pµ =

[
Pµ,11 Pµ,12

−Pµ,12 Pµ,11

]
, (4.114)

with Pµ,11 = P′
µ,11 and Pµ,12 =−P′

µ,12, such that the inequality[
Pµ,11 Pµ,12

−Pµ,12 Pµ,11

][
A+BK +aµBΦK bµBΦK

−bµBΦK A+BK +aµBΦK

]

+

[
A+BK +aµBΦK bµBΦK

−bµBΦK A+BK +aµBΦK

]′[
Pµ,11 Pµ,12

−Pµ,12 Pµ,11

]
< 0,

(4.115)

is in force.
We collect now all stability conditions derived earlier for each Laplacian mode and write

them in a compact form as follows:

P1(Âcl,1)+(Âcl,1)
′P1 < 0, (4.116a)

P1 > 0, (4.116b)

Pν(Âcl,ν)+(Âcl,ν)
′Pν < 0, (4.116c)

Pν > 0, (4.116d)

Pµ Âµ + Â′
µPµ < 0, (4.116e)

Pµ > 0, (4.116f)

where matrices Âcl,1, Âcl,ν are as defined in (4.100), (4.102), respectively, λν ∈ S(L ) with
ν ∈ NR, and

Âµ =

[
A+BK +aµBΦK bµBΦK

−bµBΦK A+BK +aµBΦK

]
, (4.117)
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where aµ = Re(λµ), bµ = Im(λµ) and λµ ∈ S(L ) with µ ∈ NC. Here, we have postulated
that matrix Φ is known and hence LMI (4.116a)-(4.116e) can be seen as sufficient conditions
for closed-loop stability. In the following, motivated by the systematic approach suggested
in [46] for solving problem (3.110), we formulate a convex optimization problem and we
propose a closed form expression for designing matrix Φ.

First, we consider a nonsingular matrix

T̂ =

[
I(n−m) 0
P−1

22 P′
12 Im

]
, (4.118)

where P22 ∈Rm×m and P12 ∈R(n−m)×m are constructed by partitioning the unique symmetric
positive definite solution P to ARE (4.84) as:

P =

[
P11 P12

P′
12 P22

]
. (4.119)

We also define the following matrices:

Ā = T̂AT̂−1, (4.120)

B̄ = T̂ B, (4.121)

K̄ = KT̂−1, (4.122)

P̄ = (T̂−1)′PT̂−1, (4.123)

Q̄1 = (T̂−1)′Q1T̂−1, (4.124)

Q̄2 = (T̂−1)′Q2T̂−1. (4.125)

Note that

B̄ =
[
0′ B′

2

]′
, (4.126)

K̄ =
[
0 K2

]
. (4.127)

Clearly, introducing a node-level state-space transformation x̄i = T̂ xi, matrices (4.98) are
similar to

Ācl, j = Ā+ B̄K̄ +λ jB̄ΦK̄, with λ j ∈ S(L ), (4.128)

with j = 1, . . . , p. We recall that p is the total number of the distinct eigenvalues of L . Let
now j ∈ {1,NR,NC}, and consider a symmetric positive definite matrix Pj ∀ j. In particular,
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for j = 1, define:

P1 =

[
P1,1 0
0 Π2

]
> 0, (4.129)

where P1,1 ∈ R(n−m)×(n−m) and Π2 ∈ Rm×m are assumed to be symmetric positive definite
matrices. Similarly, for j ∈ NR, set j = ν and define:

Pν =

[
Pν ,1 0

0 Π2

]
> 0, (4.130)

where Pν ,1 ∈ R(n−m)×(n−m) is assumed to be a symmetric positive definite matrix. Finally,
for j ∈ NC, set j = µ and define:

Pµ =


Pµ,1 0 Pµ,3 0

0 Π2 0 0
−Pµ,3 0 Pµ,1 0

0 0 0 Π2

> 0, (4.131)

where Pµ,1 ∈ R(n−m)×(n−m) is a symmetric positive definite matrix and Pµ,3 ∈ R(n−m)×(n−m)

is a skew-symmetric matrix. We note that matrix Π2 is assumed identical for all P1, Pν and
Pµ , with ν ∈ NR and µ ∈ NC, respectively. We now define aµ = Re(λµ), bµ = Im(λµ), and
λν ,λµ ∈ S(L ) for ν ∈ NR and µ ∈ NC, and introduce the following optimization problem:

min trace(P1)+ ∑
ν∈NR

trace(Pν)+ ∑
µ∈NC

trace(Pµ) subject to: (4.132a)

P1(Ā+ B̄K̄)+(Ā+ B̄K̄)′P1 + Q̄1 + K̄′RK̄ < 0, (4.132b)

P1 > 0, (4.132c)

Pν(Ā+ B̄K̄ +λν B̄ΦK̄)+(Ā+ B̄K̄ +λν B̄ΦK̄)′Pν +(Q̄1 +λνQ̄2)

+(K̄ +λνΦK̄)′R(K̄ +λνΦK̄)< 0, (4.132d)

Pν > 0, (4.132e)

PµAµ +A′
µPµ +

[
Q̄1 +aµQ̄2 0

0 Q̄1 +aµQ̄2

]

+

[
K̄ +aµΦK̄ bµΦK̄
−bµΦK̄ K̄ +aµΦK̄

]′[
R 0
0 R

][
K̄ +aµΦK̄ bµΦK̄
−bµΦK̄ K̄ +aµΦK̄

]
< 0, (4.132f)

Pµ > 0, (4.132g)
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where

Aµ =

[
Ā+ B̄K̄ +aµ B̄ΦK̄ bµ B̄ΦK̄

−bµ B̄ΦK̄ Ā+ B̄K̄ +aµ B̄ΦK̄

]
. (4.133)

Pertaining to problem (4.132), we list the following remarks.

1) Constraints (4.132b)-(4.132g) can be cast as sufficient conditions for closed-loop
stability for a given choice of design parameter Φ.

2) Problem (4.132) if feasible, admits of a conservative solution due to the special
structure imposed on matrices P1, Pν and Pµ . This formulation will allow for a
convex representation of the problem accommodating a closed-form expression for Φ.

3) Tuning LQR cost function with weight Q2 = 0 (i.e., zero penalty on relative state-
difference between neighboring agents), it can easily be seen that Φ = 0 satisfies all
constraints where optimal P1, Pν and Pµ can be obtained as

P1 = P, (4.134)

Pν = P, (4.135)

Pµ = diag(P,P), (4.136)

for ν ∈ NR and µ ∈ NC, respectively, where P is the optimal solution to ARE (4.84).
Thus, we conclude that the optimization problem is guaranteed to have a meaningful
solution.

4) The resulting matrix inequality constraints in (4.132) grow redundant with the number
of subsystems constituting the network.

Constraints (4.132d) and (4.132f) are unambiguously nonlinear in variables Pν , Pµ and
Φ. Here, in order to define an equivalent optimization problem with linear constraints we
introduce new variables as shown in the following.
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Let matrices

W1 =

[
W1,1 0

0 W̄2

]
> 0, (4.137)

Wν =

[
Wν ,1 0

0 W̄2

]
> 0, for ν ∈ NR, (4.138)

Wµ =


Wµ,1 0 Wµ,3 0

0 W̄2 0 0
−Wµ,3 0 Wµ,1 0

0 0 0 W̄2

> 0, for µ ∈ NC, (4.139)

We require that

W1 = P−1
1 , (4.140)

Wν = P−1
ν , for ν ∈ NR, (4.141)

Wµ = P−1
µ , for µ ∈ NC. (4.142)

It is easily verified that conditions (4.140), (4.141) and (4.142) hold true as long as

W1,1 = P−1
1,1 , (4.143)

Wν ,1 = P−1
ν ,1 , (4.144)

Wµ,1 = (Pµ,1 +Pµ,3P−1
µ,1Pµ,3)

−1, (4.145)

Wµ,3 =−P−1
µ,1Pµ,3(Pµ,1 +Pµ,3P−1

µ,1Pµ,3)
−1, (4.146)

W̄2 = Π
−1
2 , (4.147)

for ν ∈ NR, µ ∈ NC. Clearly, W1,1 = W ′
1,1 > 0, Wν ,1 = W ′

ν ,1 > 0, Wµ,1 = W ′
µ,1 > 0 and

W̄2 = W̄ ′
2 > 0 are all symmetric positive definite matrices. We also note that Wµ,3 =−W ′

µ,3 is
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a skew-symmetric matrix. This is shown next. From (4.146) we have:

W ′
µ,3 =−(P−1

µ,1Pµ,3(Pµ,1 +Pµ,3P−1
µ,1Pµ,3)

−1)′ = ((Pµ,1 +Pµ,3Pµ,1Pµ,3)
−1)′(−P−1

µ,1Pµ,3)
′

=−(Pµ,1 +Pµ,3P−1
µ,1Pµ,3)

−1P′
µ,3P−1

µ,1 =−(Pµ,1 +Pµ,3P−1
µ,1Pµ,3)

−1(−Pµ,3)P−1
µ,1

= (Pµ,1 +Pµ,3P−1
µ,1Pµ,3)

−1Pµ,3P−1
µ,1 = (Pµ,1 +Pµ,3P−1

µ,1Pµ,3)
−1(Pµ,1P−1

µ,3)
−1

= ((Pµ,1P−1
µ,3)(Pµ,1 +Pµ,3P−1

µ,1Pµ,3))
−1 = (Pµ,1P−1

µ,3Pµ,1 +Pµ,1P−1
µ,1Pµ,3)

−1

= (Pµ,3 +Pµ,1P−1
µ,3Pµ,1)

−1 = (Pµ,3P−1
µ,1Pµ,1 +Pµ,1P−1

µ,3Pµ,1)
−1

= (Pµ,3P−1
µ,1Pµ,3P−1

µ,3Pµ,1 +Pµ,1P−1
µ,3Pµ,1)

−1 = ((Pµ,3P−1
µ,1Pµ,3 +Pµ,1)(P−1

µ,3Pµ,1))
−1

= (P−1
µ,3Pµ,1)

−1(Pµ,3P−1
µ,1Pµ,3 +Pµ,1)

−1 = P−1
µ,1Pµ,3(Pµ,3P−1

µ,1Pµ,3 +Pµ,1)
−1

=−Wµ,3.

Now, pre-multiplying and post-multiplying (4.132b), (4.132d) and (4.132f) by W1, Wν ,
ν ∈ NR and Wµ , µ ∈ NC, respectively, yields

(Ā+ B̄K̄)W1 +W1(Ā+ B̄K̄)′+W1Q̄1W1 +W1K̄′RK̄Wν < 0, (4.148)

(Ā+ B̄K̄ +λν B̄ΦK̄)Wν +Wν(Ā+ B̄K̄ +λν B̄ΦK̄)′+Wν(Q̄1 +λνQ̄2)Wν

+Wν(K̄ +λνΦK̄)′R(K̄ +λνΦK̄)Wν < 0, (4.149)

AµWµ +WµA′
µ +Wµ

[
Q̄1 +aµQ̄2 0

0 Q̄1 +aµQ̄2

]
Wµ

+Wµ

[
K̄ +aµΦK̄ bµΦK̄
−bµΦK̄ K̄ +aµΦK̄

]′[
R 0
0 R

][
K̄ +aµΦK̄ bµΦK̄
−bµΦK̄ K̄ +aµΦK̄

]
Wµ < 0. (4.150)

As seen in (4.127), due to the structure of K̄ = [0 K2], the following products

ΦK̄Wν =
[
0 ΦK2W̄2

]
, (4.151)

ΦK̄

[
Wµ,1 0

0 W̄2

]
=
[
0 ΦK2W̄2

]
, (4.152)

in (4.149) and (4.150), respectively, are all equal and can be represented as a separate variable
defined as

Ȳ =
[
0 Y2

]
, (4.153)

with Y2 = ΦK2W̄2. Next, we convert the quadratic matrix inequalities in (4.149) and (4.150)
into linear matrix inequalities (LMI) using the Schur complement condition (see Proposition
4.2.2). Note that LMI’s corresponding to (4.149) can be derived straightforwardly as shown
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in Section 4.2. We define now the following matrices:

Ω1 =

−Ψ1 W1Q̄
1
2
1

Q̄
1
2
1W1 In

 , (4.154)

H1 =

[
(K̄Wν)

′

0n×m

]
, (4.155)

Ων =

[
−Ψν Wν(Q̄1 +λνQ̄2)

1
2

(Q̄1 +λνQ̄2)
1
2Wν In

]
, (4.156)

Hν =

[
(λνȲ + K̄Wν)

′

0n×m

]
, (4.157)

Ωµ =


−Ψµ Wµ

[
Q̄1 +aµQ̄2 0

0 Q̄1 +aµQ̄2

] 1
2

[
Q̄1 +aµQ̄2 0

0 Q̄1 +aµQ̄2

] 1
2

Wµ I2n

 , (4.158)

Hµ =



aµȲ ′+

[
Wµ,1 0

0 W̄2

]
K̄′ −bµȲ ′−

[
W3 0
0 0

]
K̄′

bµȲ ′+

[
W3 0
0 0

]
K̄′ aµȲ ′+

[
Wµ,1 0

0 W̄2

]
K̄′

0n×m 0n×m

0n×m 0n×m


, (4.159)

where

Ψ1 = (Ā+ B̄K̄)W1 +W1(Ā+ B̄K̄)′, (4.160)

Ψν = (Ā+ B̄K̄)Wν +λν B̄Ȳ +Wν(Ā+ B̄K̄)′+λνȲ ′B̄′, (4.161)

Ψµ =


(Ā+ B̄K̄)

[
Wµ,1 0

0 W̄2

]
+aµ B̄Ȳ (Ā+ B̄K̄)

[
Wµ,3 0

0 0

]
+bµ B̄Ȳ

(Ā+ B̄K̄)

[
−Wµ,3 0

0 0

]
−bµ B̄Ȳ (Ā+ B̄K̄)

[
Wµ,1 0

0 W̄2

]
+aµ B̄Ȳ



+


[

Wµ,1 0
0 W̄2

]
(Ā+ B̄K̄)′+aµȲ ′B̄′

[
Wµ,3 0

0 0

]
(Ā+ B̄K̄)′−bµȲ ′B̄′[

−Wµ,3 0
0 0

]
(Ā+ B̄K̄)′+bµȲ ′B̄′

[
Wµ,1 0

0 W̄2

]
(Ā+ B̄K̄)′+aµȲ ′B̄′

 , (4.162)
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for ν ∈ NR and µ ∈ NC, respectively. The quadratic matrix inequalities (4.148) and (4.149)

can then be expressed as the Schur complement of the block

[
In 0
0 R−1

]
> 0 of the LMI

[
Ω1 H1

H ′
1 R−1

]
> 0, (4.163)

and [
Ων Hν

H ′
ν R−1

]
> 0, (4.164)

with ν ∈ NR, respectively. Similarly, the inequality condition (4.150) can be expressed as the

Schur complement of the block

[
I2n 0
0 I2 ⊗R−1

]
> 0 of the LMI

[
Ωµ Hµ

H ′
µ I2 ⊗R−1

]
> 0, (4.165)

with µ ∈ NC. We also define symmetric positive definite matrices Z1, Zν and Zµ which are
assumed to have the same structure and properties with matrices P1, Pν and Pµ , for ν ∈ NR

and µ ∈ NC, respectively. Finally, we require that[
Z1 −In

−In W1

]
> 0, (4.166)[

Zν −In

−In Wν

]
> 0, (4.167)[

Zµ −I2n

−I2n Wµ

]
> 0. (4.168)

Clearly, minimizing

trace(Z1)+ ∑
ν∈NR

trace(Zν)+ ∑
µ∈NC

trace(Zµ)
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subject to (4.148), (4.149), (4.150), (4.166), (4.167) and (4.168) is equivalent to minimizing

trace(W−1
1 )+ ∑

ν∈NR

trace(W−1
ν )+ ∑

µ∈NC

trace(W−1
µ ) = (4.169)

trace(P1)+ ∑
ν∈NR

trace(Pν)+ ∑
µ∈NC

trace(Pµ), (4.170)

subject to (4.163), (4.164) and (4.165). A convex representation of problem (4.132) with
linear constraints can now be expressed as follows:

min
W1,Wν ,Wµ>0
Z1,Zν ,Zµ>0

Ȳ

trace(Z1)+ ∑
ν∈NR

trace(Zν)+ ∑
µ∈NC

trace(Zµ) (4.171)

subject to (4.163)− (4.168).

If problem (4.171) is feasible, matrix Φ can be constructed via the closed-form expression:

Φ = Y2W̄−1
2 K−1

2 . (4.172)

In the following paragraph, we slightly modify problem (4.171) and suggest a distributed
controller as constructed in Section 4.2.

4.3.6 Hybrid method for directed networks

Let P̃2, defined in Section 4.3.4 as solution to ARE (4.85), be partitioned as:

P̃2 =

[
P̃2,11 P̃2,12

P̃′
2,12 P̃2,22

]
, (4.173)

with P̃2,11 ∈ R(n−m)×(n−m) and P̃2,22 ∈ Rm×m, where P̃2,22 is a symmetric nonsingular matrix
since matrix P̃2 is symmetric and nonsingular. Consider also a state-space transformation T̂
as in (4.118) defined here as:

T̂ =

[
I(n−m) 0

P̃−1
2,22P̃′

2,12 Im

]
. (4.174)

Defining (Ā, B̄, K̄, P̄, Q̄1, Q̄2) as in (4.120)-(4.125) with T̂ as in (4.174), and solving
problem (4.171), matrix Φ can be designed as:

Φ = Y2W̄−1
2 K̃−1

2 , (4.175)
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where K̃2 is obtained from:
R−1B′P̃2T̂−1 =

[
0 K̃2

]
. (4.176)

Then, control law û in (4.70d) takes the following form:

û = (−IN ⊗ (R−1B′P)+L ⊗Φ(R−1B′P̃2))x̂, (4.177)

where P and P̃2 are derived from (4.84) and (4.85), respectively.
Before illustrating the applicability of the control methods presented in this chapter via a

numerical study, we investigate the regulation problem of a special class of directed networks.
This is presented in the following section.

4.3.7 Cascaded networks

Let a network be composed of a single directed path of N nodes as depicted in Fig. 4.1. Such
digraphs are clearly connected regardless the number of nodes are composed of, since a
directed path of an arbitrary number of nodes represents a directed spanning tree itself. In
the following, we denote the digraph of a directed path over N vertices as DP,N .

1234

· · ·
rr+1r+2

· · ·
N −1N

Fig. 4.1 Directed path of N nodes.

We will show that the adjacency matrix and the in-degree Laplacian matrix associated
with digraphs representing directed paths retain certain properties irrespective of the number
of vertices in the path. Let matrices A (DP,N), L (DP,N) denote the adjacency matrix and
the in-degree Laplacian matrix, respectively, of digraph DP,N . These matrices are written as
follows:

A (DP,N) =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, (4.178)
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which is a nilpotent matrix, and

L (DP,N) =



0 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1
... 0

...
...

. . .
. . .

...

0 0 · · · −1 1


. (4.179)

Next, we show that S(L (DP,N)) = (0,1, . . . ,1). Let

T =



0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ... 0

0 1 · · · 0 0
1 0 · · · 0 0


, (4.180)

be a permutation matrix with T = T ′ = T−1. Then, matrix L (DP,N) is similar to L̄ =

TL (DP,N)T ′ with

L̄ =



0 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 −1
0 0 · · · 0 1


. (4.181)

We consider the spectrum of matrix −L̄ with

L̄ =−



0 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1
0 0 · · · 0 −1


. (4.182)

Clearly,
S(−L̄ ) = (0,−1, . . . ,−1), (4.183)
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since −L̄ = diag(0,JN−1(−1)) where JN−1(−1) is the Jordan block associated with eigen-
value λ =−1 with algebraic multiplicity of N −1. From (4.183), we conclude

S(L (DP,N)) = (0,1, . . . ,1). (4.184)

Now, we consider regulator problem (4.70) which is re-written here for convenience:

min
û

J(û, x̂0) subject to: (4.185a)

J(û, x̂0) =
∫

∞

0

(
x̂′(IN ⊗Q1 +Lc ⊗Q2)x̂+ û′R̂û

)
dt, (4.185b)

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (4.185c)

û = (IN ⊗K1 +M⊗K2)x̂. (4.185d)

First, we wish to design matrices K1, K2 and M via the top-down method. For an arbitrary
positive integer NL, we solve LQR problem (3.65) with weights (Q1, Q2, R) for NL systems,
and we define P and P̃2 from (4.84) and (4.85), respectively. Then, from Corollary 4.3.2,
matrix A−BR−1B′(P+ γNLP̃2) is Hurwitz for all γ > 1

2 .
From Proposition 4.3.3, the closed-loop matrix

Acl = IN ⊗ (A+BK1)+M⊗BK2, (4.186)

is Hurwitz if and only if matrix

Acl,λ j = A+BK1 +λ jBK2, (4.187)

is Hurwitz ∀ λ j ∈ S(M). Denoting the adjacency matrix (4.178) as A , without loss of
generality, we select M =−A . Note that λ j = 0 for j = 1, . . . ,N and λ j ∈ S(A ) since A

is a nilpotent matrix as mentioned earlier. As a result of this particular option of M, we
conclude that Acl in (4.186) is Hurwitz irrespective of the choice of K2 as long as matrix
A+BK1 is Hurwitz. Therefore, we may construct K1 and K2 in (4.185d) as

K1 =−R−1B′(P+ γ1P̃2), (4.188)

K2 = R−1B′P̃2, (4.189)

respectively, where γ1 ∈ R. Finally, the closed-loop matrix Acl becomes:

Acl = IN ⊗ (A−BR−1B′(P+ γ1P̃2))−A ⊗BR−1B′P̃2, (4.190)
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which is Hurwitz for all γ1 >
NL
2 .

Now, suppose û is constructed as in bottom-up method, i.e.,

û = (−IN ⊗R−1B′P−L ⊗ΦR−1B′P)x̂, (4.191)

with L denoting the Laplacian matrix (4.179). With this control law û in force, it follows
that the closed-loop matrix

Acl = IN ⊗ (A−BR−1B′P)−L ⊗BΦR−1B′P, (4.192)

is Hurwitz if and only if

A1 = A−BR−1B′P, (4.193)

A2 = A−B(Im +Φ)R−1B′P, (4.194)

are Hurwitz matrices. Clearly, matrix A1 in (4.193) is Hurwitz, while matrix A2 in (4.194) is
Hurwitz for all Φ >−0.5Im. The latter stems from the gain-margin property of LQR control.
Alternatively, matrix Φ can be derived from (4.172) solving optimization problem (4.171).

The stabilization of directed paths finalizes the study of the regulator problem of networks
with directed topology. Next, a numerical example attempts to highlight the applicability of
the control design methods proposed in this chapter.

4.3.8 Numerical example: regulation of interconnected agents

We consider eleven (N = 11) identical, linear time-invariant systems, each representing
an autonomous mobile agent. Specifically, agents are assumed to move in a plane with
double integrator dynamics in both spatial directions (denoted as x-direction and y-direction,
respectively, in simulations) described by the following state-space equations:

ẋi = Axi +Bui, xi(0) = xi,0, i = 1, . . . ,11, (4.195)

with

A =

[
0 I2

0 0

]
, B =

[
0
I2

]
. (4.196)

Clearly, pair (A, B) is controllable with input matrix B being in the regular form as in (4.2)
and (4.92).

We examine two interconnection schemes, each specifying the communication scheme
between agents as well as the structure of the entire distributed control system. The interaction
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(a) Graph G11.
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(b) Digraph D11.

Fig. 4.2 Interconnection schemes of eleven agents.

graph of each scheme is depicted in Fig. 4.2. As can be seen, in the first scheme the
interactions between agents are allowed to be bidirectional and thus are modelled by a
connected graph shown in Fig. 4.2a. In the second, the information flow is restricted to be
directed and is represented by a connected digraph shown in Fig. 4.2b.

In the following, we denote the Laplacian matrix associated with graph G (Fig. 4.2a) as
LG,11, and the in-degree Laplacian matrix associated with digraph D (Fig. 4.2b) as LD,11.
These are computed below:

LG,11 =



3 −1 0 0 0 0 0 0 0 −1 −1
−1 4 −1 0 0 0 0 −1 0 −1 0
0 −1 4 −1 0 −1 0 −1 0 0 0
0 0 −1 3 −1 −1 0 0 0 0 0
0 0 0 −1 3 −1 −1 0 0 0 0
0 0 −1 −1 −1 3 0 0 0 0 0
0 0 0 0 −1 0 3 −1 −1 0 0
0 −1 −1 0 0 0 −1 4 −1 0 0
0 0 0 0 0 0 −1 −1 4 −1 −1
−1 −1 0 0 0 0 0 0 −1 3 0
−1 0 0 0 0 0 0 0 −1 0 2



, (4.197)
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and

LD,11 =



2 0 0 0 0 0 0 0 0 −1 −1
−1 3 0 0 0 0 0 −1 0 −1 0
0 −1 2 0 0 −1 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 −1 0 2 −1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 −1 2 0 0
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 0 1



. (4.198)

For each interconnection scheme, the control objective is to regulate the state variables of
each subsystem. In other words, we wish to move each agent to a desired position, here taken
as the origin of the plane. This task can be formulated as the following regulation problem:

min
û

J(û, x̂0) subject to: (4.199a)

J(û, x̂0) =
∫

∞

0

(
x̂′(I11 ⊗Q1 +LG,11 ⊗Q2)x̂+ û′(I11 ⊗R)û

)
dt, (4.199b)

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (4.199c)

û = (I11 ⊗K1 +M⊗K2)x̂, (4.199d)

where Â = I11⊗A, B̂ = I11⊗B. Note that depending on the topology of each interconnection
scheme, matrix M ∈ K 11

2,4 (G11) or M ∈ K 11
2,4 (D11). In the study, we select matrix M as the

Laplacian matrix of each particular structure, i.e., for the undirected topology M = LG,11,
while for the directed topology M = LD,11. Note also that the Laplacian matrix LG,11 in
the weighting matrix Q̂ = I11 ⊗Q1 +LG,11 ⊗Q2 in (4.199b) has been chosen irrespective of
the interconnection structure, in other words, the performance index (4.199b) is considered
identical for both interconnection schemes. This is to guarantee that J(·) is well-defined
and matrix Q̂ = Q̂′ ≥ 0 for both schemes. We also note that matrix Q1 is selected to
penalize the local state of each agent while matrix Q2 can be seen as a tuning parameter
used to emphasize/de-emphasize relative state-difference between interconnected agents. For
simulation purposes, we consider two different choices of the weights (Q1, Q2), while we
keep the input weighting matrix R = I2 identical for both settings. In the first, we weigh local
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and relative states equally:
Q1 = Q2 = diag(1,1,0,0), (4.200)

while in the second setting we shift much more emphasis on the relative states (xi − x j), by
selecting Q2 = 106Q1 with

Q1 = diag(0.001,0.001,0,0). (4.201)

We remark that a control policy û tuned to minimize a heavily weighted norm of relative
states among other terms, namely, a less weighted norm of absolute states, as well as a
weighted norm of control effort, can be cast as a distributed state-agreement control protocol.
This becomes apparent in the simulation results. Velocity states are not penalized in this
numerical study. Design matrices K1, K2 in (4.199d) are constructed via the two methods
(top-down, bottom-up) presented in Chapter 3. First, we present simulation results for the
structure illustrated in Fig. 4.2a.

Undirected topology: We denote by

ût = (I11 ⊗ (−R−1B′P)︸ ︷︷ ︸
K1

+γLG,11︸ ︷︷ ︸
M

⊗(R−1B′P̃2)︸ ︷︷ ︸
K2

)x̂, (4.202)

the control law derived from the top-down design. For each particular tuning of the cost
function (4.199b), we solve an LQR problem (3.65), with tuning parameters (Q1, Q2, R),
for NL = dmax +1 systems, dmax = 4 denoting the maximum vertex degree of G11. We then
define matrices P and P̃2 in (4.202) by solving ARE (3.71) and (3.72), respectively. Scalar γ

in (4.202) is independent of a particular LQR tuning. Any choice of

γ >
NL

2λ2(LG,11)
, (4.203)

where λ2(LG,11) is the second smallest Laplacian eigenvalue, suffices for condition (3.83)
to be in force. Since

S(LG,11) = (0, 0.629, 1.834, 1.937, 2.785, 3.554, 4, 4.528, 5.188, 5.645, 5.901),
(4.204)

we select
γ = 4, (4.205)

with minimum value calculated at 3.9746.
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Fig. 4.3 Closed-loop behavior of the undirected distributed system under top-down control
with low penalty Q2.

Fig. 4.3 and Fig. 4.4 depict the closed-loop behavior of the large-scale distributed system
under control action ût . Stable operation is maintained for both simulations where identical
initial conditions are considered. It is evident that agents converge to the origin fairly faster
in simulation shown in Fig. 4.3 than in simulation shown in Fig. 4.4. This is because, in
the latter, the control action is tuned to minimize a heavily weighted state-distance xi − x j,
thereby enforcing agents to synchronize with each other, reaching state-agreement first and
converging subsequently to the origin.

Let now
ûb = (I11 ⊗ (−R−1B′P)︸ ︷︷ ︸

K1

+LG,11︸ ︷︷ ︸
M

⊗Φ(−R−1B′P)︸ ︷︷ ︸
K2

)x̂, (4.206)

denote the control law obtained from the bottom-up approach, where matrix P is as defined
in (4.202). Here, for each choice of tuning parameters (Q1, Q2, R), we evaluate matrix Φ by
solving optimization problem (3.110). In particular, for Q1 = Q2, we get

Φ = 1.3058I2, (4.207)

while for Q2 = 10000Q1, we have, respectively,

Φ = 1060.2I2. (4.208)
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Fig. 4.4 Closed-loop behavior of the undirected distributed system under top-down control
with large penalty Q2.

The existence of matrix Φ such that problem (3.110) is feasible for both options of weighting
parameters, guarantees network’s closed-loop stability under control policy ûb as illustrated
in Fig. 4.5 and Fig. 4.6. Viewing Fig. 4.3 and Fig. 4.5, it is obvious that both distributed
control schemes regulate the network in a similar manner. On the contrary, despite agents
reaching state-agreement under both distributed protocols, this objective is achieved relatively
faster in simulation shown in Fig. 4.4 (with respect to the simulation shown in Fig. 4.6), with
controller ût outperforming control law ûb. This is also evident from Table 4.1 where the
top-down control ût is approximately a thousand times less suboptimal than the bottom-up
controller ûb.

In order to compare the performance of the two control actions, we measure their
suboptimality level with respect to an optimal centralized controller, as suggested in Section
3.3.7. Let u∗ = K∗x̂ be an optimal controller with K∗ = −R̂−1B̂′P∗. Matrix P∗ is the
symmetric positive definite solution to the large scale ARE with parameters (Â, B̂, Q̂, R̂),
where Q̂ = I11 ⊗Q1 +LG,11 ⊗Q2, and R̂ = I11 ⊗R. We denote by Kt and Kb the distributed
state-feedback gain obtained from the top-down and bottom-up method, respectively.

As mentioned in Section 3.3.7, any norm of P̂−P∗ can be cast as a measure of subopti-
mality of the corresponding distributed control scheme, where P̂ is evaluated by the following
Lyapunov equation:

(IN ⊗A+(IN ⊗B)K̂)′P̂+ P̂(IN ⊗A+(IN ⊗B)K̂)+(Q̂+ K̂′R̂K̂) = 0, (4.209)
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Fig. 4.5 Closed-loop behavior of the undirected distributed system under bottom-up control
with low penalty Q2.
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Fig. 4.6 Closed-loop behavior of the undirected distributed system under bottom-up control
with large penalty Q2.
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|P̂−P∗|F10−8 Q2 = Q1 Q2 = 106Q1
top-down 0.0016 0.058
bottom-up 1.0535 66.905

Table 4.1 Suboptimality measure of top-down and bottom-up schemes.

with K̂ representing the distributed controllers Kt and Kb. The Frobenius norm of P̂−P∗ for
the various control settings is shown in Table 4.1.

While both distributed schemes are stabilizing, their performance differentiates consid-
erably with respect to the optimal solution P∗ as demonstrated in Table 4.1. Clearly, the
top-down control strategy appears less expensive as well as less suboptimal in the Frobenius
norm sense compared to the bottom-up setup.

Directed topology: Consider now the interconnection scheme shown in Fig. 4.2b. Here,
we present simulations of the regulation problem (4.199) tuning the performance index in
(4.199b) with Q2 = 106Q1. The top-down control design is outlined next.

Matrices K1, K2 in (4.199d) are defined by solving an LQR problem (3.65), with weights
(Q1, Q2, R), for NL systems. As mentioned in Section 4.3.4, NL can be selected as dmax +2,
dmax denoting the maximum vertex in-degree of D11. Clearly, dmax = 3, then NL = dmax+2=
5 suggesting that K1 and K2 may be selected as defined in (4.202). The distributed top-down
controller is denoted by:

ūt = (I11 ⊗ (−R−1B′P)︸ ︷︷ ︸
K1

+ γ̄LG,11︸ ︷︷ ︸
M

⊗(R−1B′P̃2)︸ ︷︷ ︸
K2

)x̂, (4.210)

where the selection of parameter γ̄ guarantees stability of the directed network. In view of
condition (4.91), we may choose any

γ̄ >
NL

2Re(λ2)
, (4.211)
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Fig. 4.7 Closed-loop behavior of the directed distributed system under top-down control with
large penalty Q2.

where λ2 denotes the non-zero eigenvalue of LD,11 with the smallest real part. Calculating
the Jordan matrix of LD,11:

J(Λ)=



0
1 0
0 1

2 1 0
0 2 1
0 0 2

2.76
1.13+ i0.75

1.13− i0.75
2.5+ i0.87

2.5− i0.87



,

(4.212)
where i2 = −1, clearly, λ2 = 1, and hence γ̄ > 2.5. The simulation shown in Fig. 4.7
illustrates the behavior of the directed network under the control law ūt with γ̄ = 4. Evidently,
network’s stability is maintained for γ̄ = 4, while any violation of condition (4.211) might
result in instability phenomena as highlighted in Fig. 4.8.
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Fig. 4.8 Unstable behavior of the top-down directed distributed system for γ̄ < 2.5.

The design of distributed controller via the bottom-up method presented in Section 4.3.5
finalizes the numerical study. The control scheme, here, is denoted as

ūb = (I11 ⊗ (−R−1B′P)︸ ︷︷ ︸
K1

+LG,11︸ ︷︷ ︸
M

⊗Φ(−R−1B′P︸ ︷︷ ︸
K2

)x̂, (4.213)

where matrix P is defined as in (4.210). The design of matrix Φ depends on the feasible
solution of problem (4.171) for a particular choice of weighting parameters. Optimization
problem (4.171) is solved subject to 1 + ν + µ constraints corresponding to ν + 1 real
eigenvalues of LD,11 and µ complex Laplacian eigenvalues, (ν ,µ) indicated in Table 4.2.
Then, for weighting matrices (Q1, Q2, R), as defined earlier with Q2 = 106Q1, (4.171) is
feasible and formula (4.172) yields:

Φ = 9560.5I2. (4.214)

The existence of Φ guarantees that ūb is a stabilizing distributed controller as illustrated in
Fig. 4.9.



4.4 Conclusion 113

-2
2

-1

25

0

y
-d

ir
e
c
ti
o
n

20

Bottom-up control with large penalty Q
2

1

x-direction

0 15

Time

2

10
5

-2 0

Fig. 4.9 Closed-loop behavior of the directed distributed system under bottom-up control
with large penalty Q2.

Eigenvalue AM GM index ν index µ

0 1 1 1 -
1 2 2 2 -
2 3 1 3 -

2.76 1 1 4 -
1.13± i0.75 1 1 - 5
2.5± i0.87 1 1 - 6

Table 4.2 Algebraic and geometric multiplicity (AM, GM) of the eigenvalues of LD,11.

4.4 Conclusion

In the first part of the chapter, a new distributed control method for solving a regulator
problem of networked systems with undirected topology is proposed. The control design
is introduced via a two-stage optimization approach which combines techniques from the
top-down [17] and bottom-up [46] method presented in Chapter 3. Sufficient conditions for
stability of the new distributed scheme are derived minimizing an upper bound of the global
LQR criterion. Regulation problems over networks with directed topology are discussed in
the second part of the chapter. Therein, we prove that the strict assumption of bidirectional
communication between interconnected agents, postulated in the original version of the



114 Stabilization of multi-agent networks with undirected and directed topology

aforementioned control techniques [17, 46] can be removed. We show that this relaxation
relies on two elegant facts: 1) the gain-margin property of LQR control holds true for
complex multiplicative perturbations, and 2) the potentially non-simple structure of the
Laplacian matrix can be neglected for stability analysis and control design. These results
highlight the main contributions of the chapter. A numerical study in the end of the chapter,
attempts to illustrate these contributions. Having examined large-scale regulation problems
of multi-agent networks of identical systems, we wish to tackle the stabilization problem of
heterogeneous interconnected agents. This task is studied in the following chapter, where a
general class of interconnected systems sharing common structural properties is introduced.



Chapter 5

Model-matching and regulation of
interconnected heterogeneous linear
agents

5.1 Introduction

The top-down [17] and bottom-up [46] control strategies presented in Chapter 3 have proved
very powerful for designing distributed state-feedback controllers and tackling stabilization
problems of multi-agent networks. Notable advantages of these two approaches are the
results of two main simplifying assumptions compared to a general structured optimal design:
1) identical subsystem dynamics, and 2) undirected network topology. As shown in Chapter
4, the structural requirement of network’s bidirectional connectivity can be relaxed for both
methods via slight modifications. In this chapter, we wish to remove the strong assumption
of agents’ identical dynamics, which evidently might be unrealistic for certain applications.
In essence, we replace this stringent limitation with a more natural requirement and consider
a broader class of networked systems. In particular, we formulate a regulator problem of N
interconnected heterogeneous agents as follows:

min
û

J(û, x̂0) subject to: (5.1a)

J(û, x̂0) =
∫

∞

0

(
x̂′Q̂x̂+ û′R̂û

)
dt, (5.1b)

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (5.1c)

û = M x̂, (5.1d)
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where

Â = diag(A1, . . . ,AN), (5.2)

B̂ = diag(B1, . . . ,BN), (5.3)

and M ∈ K N
m,n(G ) (M ∈ K N

m,n(D)), with G (D) denoting an undirected (directed) graph.
The lack of homogeneity among the agents is clearly identified in (5.1c), with systems
(Ai, Bi), i = 1, . . . ,N being generically non-identical. This represents the main difference of
problem (5.1) with respect to regulator problems examined in Chapter 3 and Chapter 4.

Here, we attempt to solve problem (5.1) via a two-stage control strategy. In the first stage,
we follow a model-matching approach to the network stabilization problem and assume
that agents constituting the network have same structural properties. These are completely
characterized by a set of integers referred to as controllability indices. Local state-feedback
control and input-matrix transformations are used to solve model-matching type-problems
and compensate for dynamical mismatch among the models of the agents. We emphasize that
in our case, the definition of "model-matching" (in contrast to other "exact model-matching"
problems defined in the literature) gives us considerable flexibility. In the present context,
the output matrices of the mapped systems are required to be square and invertible but are
otherwise arbitrary. In effect, the model of each agent matches the input-to-state part of
a target system via state-feedback control and input matrix scaling. It is shown that the
distributed control methods (top-down, bottom-up) presented earlier, can also be utilized in
the present setting, simply by constructing stabilizing distributed controllers depending on
the target dynamics only. This represents the second stage of the control design.

It is also shown, that the selection of the target model can be specified such that the
perturbations in the agents’ models produced by state-feedback controllers are minimal in a
sense which is clearly defined. In this respect, the definition of target dynamics is achieved
by minimizing a measure of the joint model-matching control effort. This allows closed-loop
network performance to depend primarily on the LQR optimality criterion (5.1b), defined
and optimized in the second stage of our approach.

In the chapter, a special case of multi-input systems is also considered in which agents
are mapped to a single-input target system. This leads to the solution of the stabilization
problem of networks composed of generic heterogeneous agent models of the same state
dimension, of course at the expense of the number of independent input variables of each
agent. Next, we formulate a general model-matching task and subsequently define a special
class of systems for which the model-matching problem always admits of a solution.
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5.2 Model-matching control

5.2.1 Problem definition

Throughout the chapter, we consider linear time-invariant systems referring to them as
systems. Initially, we wish to identify a well-defined class of systems the state-space form
of which can be mapped to a certain model (characterized in the sequel as target system,
target model or target dynamics) via similarity transformations, state-feedback control, and
input-matrix scaling. Next, we define the model-matching task of a set of systems as follows:

Problem 5.2.1. Consider N + 1 controllable multi-input linear systems described by the
state-space equation:

ẋi = Aixi +Biui, xi(0) = xi,0, i = 1, . . . ,N, (5.4)

with Ai ∈ Rn×n, Bi ∈ Rn×m, and rank(Bi) = m. Let the pair (AN+1, BN+1) pertain to the
target dynamics. Then, we wish to find matrices Pi, Fi, and Gi of appropriate dimensions
with det(Pi) ̸= 0 and det(Gi) ̸= 0 such that:

Pi(Ai +BiFi)P−1
i = AN+1, (5.5)

PiBiGi = BN+1, (5.6)

for i = 1, . . . ,N.

Problem 5.2.1 involves the control design ui = Fixi+Givi, vi ∈Rm, i = 1, . . . ,N, whereby
N systems match their dynamics with a target model denoted as (AN+1, BN+1). It also
involves matrices Pi, i = 1, . . . ,N, which represent similarity transformations accommodating
a change of local coordinates. In the following, the special class of systems with common
controllability indices is defined. It will be shown that a solution to Problem 5.2.1 is always
guaranteed for this family of systems. Some basic concepts of linear control theory, which
are useful in our definitions and proofs, are introduced next.

5.2.2 Controllability indices of multi-input systems

In the following, we recall the notion of controllability indices of a controllable system
(A, B). Let

ẋ = Ax+Bu, x(0) = x0, (5.7)
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be the state-space form of a controllable system (A, B), where A ∈ Rn×n, B ∈ Rn×m, with
rank(B) = m. Let also

C = [B, AB, . . . , An−1B],

= [b1, . . . , bm, Ab1, . . . , Abm, . . . , An−1b1, . . . , An−1bm], (5.8)

be the controllability matrix of the pair (A, B), where b1, . . . ,bm represent the columns of B,
and C ∈ Rn×nm. Since (A, B) is controllable, rank(C ) = n. Now, collect the first n linearly
independent columns of C starting form the left and moving to the right; rearrange these
columns to obtain

C̄ = [b1, Ab1, . . . , Aµ1−1b1, . . . , bm, Abm, . . . , Aµm−1bm], (5.9)

where C̄ ∈ Rn×n. The integer µ j denotes the number of columns involving b j in the set of
the first n linearly independent columns of C while moving from left to right. The set of µ j’s
is defined next.

Definition 5.2.1. The set of m integers {µ1, . . . ,µm}, as defined in (5.9), with ∑
m
j=1 µ j = n,

represents the controllability indices of the controllable pair (A, B) with A ∈Rn×n, B ∈Rn×m,
and rank(B) = m.

The family of systems to be considered in this chapter is defined by the class of control-
lable systems with identical sets of controllability indices. In particular, we are interested
in studying stabilizing (distributed) state-feedback solutions to the regulation problem (5.1)
focusing on networks of non-identical agents with identical sets of controllability indices.
The following lemma is standard and is included without proof, [5].

Lemma 5.2.2. Given (A, B) is controllable, then (P(A+BF)P−1, PBG) has the same
controllability indices (c.i.), up to reordering, for any P, F, and G (det(P) ̸= 0, det(G) ̸= 0)
of appropriate dimensions.

Lemma 5.2.2 states that the c.i. of a controllable pair (A, B) is an invariant set under a
state-space transformation P, a state-feedback control F , and an input scaling G. Pertaining
to a set of systems (Ai, Bi), i = 1, . . . ,N, characterized by identical sets of c.i., Lemma 5.2.2
also implies that pairs (Pi(Ai +BiFi)P−1

i , PiBiGi), i = 1, . . . ,N, coincide, for a certain choice
of Pi, Fi, and Gi, i = 1, . . . ,N. This becomes evident in the following section.
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5.2.3 Model-matching existence

We consider a set of N systems the dynamics of which are described by the state-space form
rewritten here as:

ẋi = Aixi +Biui, xi(0) = xi,0, i = 1, . . . ,N, (5.10)

where xi ∈ Rn, ui ∈ Rm are the states and inputs of the i-th system, respectively. Let integers
µ1, . . . ,µm be the controllability indices of the pairs (Ai, Bi), i = 1, . . . ,N. Let also matrix
Pi represent the similarity transformation that brings the i-th pair (Ai, Bi) into controllable
canonical form. We refer readers to [5] (Chapter 3, Section 3.4), for how to construct matrix
Pi. Changing coordinates to xc,i = Pixi, the i-th state-space form in the new coordinate system
becomes

ẋc,i = Ac,ixc,i +Bc,iui, xc,i(0) = Pixi,0, (5.11)

where xi = P−1
i xc,i represents the state vector xi in the original coordinates. Matrices Ac,i,

Bc,i can be decomposed as follows:

Ac,i = Āc + B̄cAm,i, (5.12a)

Bc,i = B̄cBm,i, (5.12b)

with Āc ∈ Rn×n, B̄c ∈ Rn×m, Am,i ∈ Rm×n and Bm,i ∈ Rm×m. The pair (Āc, B̄c) is called the
Brunovsky canonical form and is unique for all systems with identical sets of controllability
indices. Detailed description of the Brunovsky form can be found in [5]. By definition,
matrices (Am,i, Bm,i) are not fixed; Later, we show that the selection of a target model relies
on these two matrices. The Brunovsky form (Āc, B̄c) has a block-diagonal structure as shown
below:

Āc = diag(Ā11, . . . , Āmm), (5.13a)

B̄c = diag(B̄11, . . . , B̄mm) (5.13b)
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where

Ā j j =


0
... Iµ j−1

0
0 0 · · ·0

 ∈ Rµ j×µ j , (5.14a)

B̄ j j =


0
...

0
1

 ∈ Rµ j , (5.14b)

for j = 1, . . . ,m. We note here that the diagonal blocks in (5.14) are completely defined by the
controllability indices µ1, . . . ,µm. Consider now a target system denoted as (AN+1, BN+1),
and assume the pair (AN+1, BN+1) has common c.i. with the remaining systems in the set.
This implies identical Brunovsky forms for all N +1 systems. Without loss of generality, let
(AN+1, BN+1) be in canonical form. The state-space form of the target system is written as

ẋN+1 = AN+1xN+1 +BN+1uN+1, (5.15)

where

AN+1 = Āc + B̄cAm,N+1, (5.16a)

BN+1 = B̄cBm,N+1. (5.16b)

The pair (Āc, B̄c) represents the Brunovsky form with c.i. µ1, . . . ,µm, while matrices Am,N+1,
Bm,N+1 are as defined earlier. Viewing (5.12) and (5.16), there is no ambiguity that matching
(Ac,i, Bc,i), i = 1, . . . ,N, with (AN+1, BN+1) depends exclusively on matrices Am,i, Bm,i,
i = 1, . . . ,N + 1. It is also clear that Problem 5.2.1 has a solution if and only if the N + 1
systems have identical sets of controllability indices. This is expressed in the following
theorem.

Theorem 5.2.3. Consider N controllable systems (Ai, Bi), with Ai ∈ Rn×n, Bi ∈ Rn×m,
rank(Bi) = m, i = 1, . . . ,N, and state-space form given in (5.10). Let a target system be
described by the state-space form:

ẋN+1 = AN+1xN+1 +BN+1uN+1, (5.17)
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and assume that all pairs (Ai, Bi), i = 1, . . . ,N+1 have identical c.i., µ1, . . . ,µm. Then, there
are always matrices Fi, and Gi, defined as

Fi = B−1
m,i(Am,N+1 −Am,i)Pi,

Gi = B−1
m,iBm,N+1,

(5.18)

respectively, such that

Φ
−1
i (Ai +BiFi)Φi = AN+1,

Φ
−1
i BiGi = BN+1,

(5.19)

where (Am,i, Bm,i), i = 1, . . . ,N, are defined in (5.12), pair (Am,N+1,Bm,N+1) is defined in
(5.16), and Φi = P−1

i PN+1, i = 1, . . . ,N, with det(Φi) ̸= 0. Matrices Pi, i = 1, . . . ,N + 1,
represent similarity transformations that bring the state-space form of the systems in a
controllable canonical form.

Proof. We denote by

ẋi = Aixi +Biui, (5.20)

the state-space form of the i-th system, with i = 1, . . . ,N +1, index N +1 referring to the
target model, and we consider a change of coordinates xc,i = Pixi, i = 1, . . . ,N +1. Applying

ui = Fc,ixc,i +Givi, (5.21)

for i = 1, . . . ,N, the closed-loop state-space form of the i-th system in the new coordinates is
written as:

ẋc,i = (Ac,i +Bc,iFc,i)xc,i +Bc,iGivi, (5.22a)

xi = P−1
i xc,i. (5.22b)

We require that

Ac,i +Bc,iFc,i = Ac,N+1 (5.23a)

Bc,iGi = Bc,N+1, (5.23b)
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for i = 1, . . . ,N. Since the pairs (Ac,i, Bc,i), i = 1, . . . ,N + 1, have identical c.i., thereby
having identical Brunovsky form denoted as (Āc, B̄c), (5.23) leads to

Fc,i = B−1
m,i(Am,N+1 −Am,i), (5.24a)

Gi = B−1
m,iBm,N+1, (5.24b)

where det(Bm,i) ̸= 0 since, by assumption, rank(Bi) = m, i = 1, . . . ,N. From (5.23) we also
write that

Pi(Ai +BiFi)P−1
i = PN+1AN+1P−1

N+1 (5.25a)

PiBiGi = PN+1BN+1, (5.25b)

or

Ai +BiFi = P−1
i PN+1AN+1P−1

N+1Pi (5.26a)

BiGi = P−1
i PN+1BN+1, (5.26b)

where
Fi = B−1

m,i(Am,N+1 −Am,i)Pi, (5.27)

for i = 1, . . . ,N. Denoting Φi = P−1
i PN+1 in (5.26) proves (5.19) while (5.24) along with

(5.27) proves (5.18).

For a family of N systems with identical sets of controllability indices, Theorem 5.2.3
essentially guarantees the existence of state-feedback gains Fi and input-matrix scaling
transformations Gi such that:

ẋi = (Ai +BiFi)xi +BiGivi, (5.28)

ξ = Φ
−1
i xi, (5.29)

for all i = 1, . . . ,N where Φi = P−1
i PN+1, with Pi, PN+1 as defined in the theorem. Since

(5.29) represents a one-to-one linear map, Φi can be cast as a nonsingular output matrix of
the i-th system. Note also that for identical initial conditions xi,0, and controls vi, i = 1, . . . ,N,
the output trajectories of (5.28)-(5.29) coincide for all i = 1, . . . ,N, and are denoted as ξ (t).
Variable ξ can be seen as the state of the target model:

ẋN+1 = AN+1xN+1 +BN+1uN+1, (5.30)

ξ = xN+1. (5.31)
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Mapping

Agent-1

Agent-2

Agent-N

Target

ẋ1 x1v1 ξG1 Σ B1 Σ
∫

Φ
−1
1

A1

F1

ẋ2 x2v2 ξG2 Σ B2 Σ
∫

Φ
−1
2

A2

F2

ẋN xNvN ξGN Σ BN Σ
∫

Φ
−1
N

AN

FN

ξ̇u ξB Σ
∫
A

Fig. 5.1 Schematic representation of N agents matching the target dynamics.

This is also highlighted in Fig. 5.1 where the target system is denoted as (A, B). We remark
that the state-feedback and input-matrix operations defined in (5.18), represent the model-
matching design of N systems with a target model specified a priori. In the following section,
we introduce further existence conditions that are useful for the model-matching control
synthesis.

5.2.4 Model-matching control synthesis

Consider a set of N controllable systems (Ai, Bi) with

Ai = Ao +BiZi, (5.32a)

Bi = BoG−1
i , (5.32b)

for i = 1, . . . ,N. Here Ao ∈ Rn×n is assumed to be a fixed matrix, Zi ∈ Rm×n an arbitrary
matrix, and Gi ∈ Rm×m an arbitrary and nonsingular matrix for all i = 1, . . . ,N. Note that if
all pairs (Ai, Bi), i = 1, . . . ,N, have identical sets of controllability indices, their controllable
canonical forms

(Ac,i, Bc,i) = (PiAiP−1
i , PiBi), i = 1, . . . ,N, (5.33)



124 Model-matching and regulation of interconnected heterogeneous linear agents

satisfy condition (5.32). In this case, (Ao, Bo) = (Āc, B̄c) represents the Brunovsky form
of all pairs (Ai, Bi), i = 1, . . . ,N with common controllability indices. Clearly, a possible
target pair (AN+1, BN+1) has to satisfy condition (5.32). The following lemma guarantees
the existence of a input matrix transformation that maps Bi, i = 1, . . . ,N, matrices to a target
(input) matrix denoted as BN+1. In the following, let Im(·) denote the subspace spanned by
the columns of a matrix.

Lemma 5.2.4. Let matrices Bi ∈ Rn×m, i = 1, . . . ,N, have full-column rank. Then, there are
a matrix Bo ∈ Rn×m, and square and nonsingular matrices Gi ∈ Rm×m, i = 1, . . . ,N, such
that BiGi = Bo ∀i, if and only if Im(B1) = Im(B2) = · · ·= Im(BN).

Proof. (i) Necessity: Let Im(Bi) = X ⊆ Rn with dim(X ) = m. Then, Bi has a singular
value decomposition:

Bi =UΣiV ′
i , i = 1, . . . ,N, (5.34)

with Im(Bi)= Im(U)=X and U ′U = Im, det(Σi) ̸= 0, V ′
i Vi =ViV ′

i = Im. Define: Gi =ViΣ
−1
i ,

Bo =U . Then, BiGi =UΣiV ′
i ViΣ

−1
i =U = Bo. (ii) Sufficiency is immediate.

For simplicity, the matching problem 5.2.1 of N systems (Ai, Bi), i = 1, . . . ,N, with
structure as in (5.32), is first solved for N = 2 systems, and it is then generalized for an
arbitrary number N. Consider the controllable pairs (A1, B1), (A2, B2) with Ai ∈ Rn×n,
Bi ∈ Rn×m, i = 1,2. Assume that there are F1, F2 such that

A1 +B1F1 = A2 +B2F2, (5.35)

and matrices B1, B2 satisfying Lemma 5.2.4. Let now Fi = YiX−1
i , with Yi ∈ Rm×n, and

Xi ∈ Rn×n being symmetric positive definite (s.p.d.), for i = 1,2. Then, (5.35) can be
rewritten as:

A1 +B1Y1X−1
1 = A2 +B2Y2X−1

2 . (5.36)

Assume there exists (s.p.d) X ∈ Rn×n such that (5.35) gives

A1 +B1Y1X−1 = A2 +B2Y2X−1, (5.37)

which is then post-multiplied by X on both sides and results in

A1X +B1Y1 = A2X +B2Y2. (5.38)

The following theorem generalizes the previous analysis to the case of N systems. First, we
define a special class of systems.



5.2 Model-matching control 125

Definition 5.2.2. Let (Ao, Bo) ∈ Rn×n ×Rn×m, with rank(Bo) = m. Define the set:

S(Ao, Bo) = {(Ao +BoZ, BoG−1) : Z ∈ Rm×n, G ∈ Rm×m with detG ̸= 0}. (5.39)

Theorem 5.2.5.

(i) Let (Ai, Bi)∈ S(Ao, Bo), i = 1, . . . ,N. Then, Im(Bi) = Im(Bo), ∀i = 1, . . . ,N and there
exist X ∈ Rn×n, X = X ′ > 0, Yi ∈ Rm×n such that

AiX +BiYi −A jX −B jYj = 0, (5.40)

for every pair (i, j) ∈ {1,2, . . . ,N}2.

(ii) Conversely, let {(Ai, Bi)}N
i=1 be given with Im(Bi) = X ⊆ Rn, ∀i = 1, . . . ,N, and

dim(X ) = m. Suppose also that (5.40) is true for every pair (i, j) ∈ {1,2, . . . ,N}2 for
some X ∈ Rn×n, X = X ′ > 0, and {Yi}N

i=1, Yi ∈ Rm×n, i = 1, . . . ,N. Then, there exist
matrices Ao ∈ Rn×n, and Bo ∈ Rn×m, with Im(Bo) = X , such that

(Ai, Bi) = S(Ao, Bo), (5.41)

for all i ∈ {1, . . . ,N}.

Note: If (5.40) holds for X = X ′ > 0 and {Yi}N
i=1, then, for all (5.40) ∃{Fi}N

i=1, Fi ∈ Rm×n

such that
Ai +BiFi = A j +B jFj, (5.42)

for every pair (i, j) ∈ {1,2, . . . ,N}2.

Proof. (i) If (Ai, Bi) ∈ S(Ao, Bo), i ∈ {1, . . . ,N}, then

Ai = Ao +BoZi and Bi = BoG−1
i , (5.43)

for Zi ∈ Rm×n, Gi ∈ Rm×m, det(Gi) ̸= 0. Then, BiGi = Bo, ∀i ∈ {1, . . . ,N}, and hence,
Im(Bi) = Im(Bo), ∀i ∈ {1, . . . ,N}. Let X = In, Yi =−GiZi. Then, ∀(i, j) ∈ {1, . . . ,N}2,

AiX +BiYi −A jX −B jYj = (Ao +BoZi)In +BoG−1
i (−GiZi) (5.44)

− (Ao +BoZ j)In −BoG−1
j (−G jZ j) = 0, (5.45)
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as required. (ii) Conversely, let {(Ai, Bi)}N
i=1 be given with Im(Bi)=X ⊆Rn, dim(X )=m.

Then, let Bi have a singular value decomposition

Bi =
[
U1 U2

][
Σi

0

]
V ′

i , (5.46)

for i = 1, . . . ,N, with U1 ∈ Rn×m, Im(U1) = Im(Bi) = X , Im(U2) = X ⊥, det(Σi) ̸= 0 and
V ′

i Vi =ViV ′
i = Im. Define Bo =U1, Gi =ViΣ

−1
i , for i = 1, . . . ,N. Then,

BiGi =U1ΣiV ′
i ViΣ

−1
i =U1 = Bo, (5.47)

which implies that Bi = BoG−1
i , i = 1, . . . ,N. Further, ∀(i, j) ∈ {1, . . . ,N}2:

AiX +BiYi −A jX −B jY j = 0, (5.48)

=⇒ (Ai −A j)X +BoG−1
i Yi −BoG−1

j Yj = 0, (5.49)

=⇒ Ai −A j = Bo(G−1
j Yj −G−1

i Yi)X−1, (5.50)

=⇒ U ′
2(Ai −A j) =U ′

2U1(G−1
j Yj −G−1

i Yi)X−1 = 0, (5.51)

=⇒ Ai −A j = BoZi j, (5.52)

for some Zi j ∈ Rm×n. Hence,

A1 −A2 = BoZ12, (5.53)

A2 −A3 = BoZ23, (5.54)
... (5.55)

AN−2 −AN−1 = BoZN−2,N−1, (5.56)

AN−1 −AN = BoZN−1,N . (5.57)

Set now Ao = AN , which implies AN = Ao +Bo0. Then,

AN−1 = AN +BoZN−1,N = Ao +BoZN−1,N , (5.58)

AN−2 = AN−1 +BoZN−2,N−1 = Ao +Bo(ZN−2,N−1 +ZN−1,N), (5.59)
... (5.60)

A1 = A2 +BoZ12 = Ao +Bo(Z12 +Z23 + · · ·+ZN−1,N), (5.61)
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and consequently,
(Ai, Bi) = S(Ao, Bo), ∀i = 1, . . . ,N. (5.62)

For numerical reasons, we wish to relax the exact model-matching in (5.40) with approx-
imate conditions. These are formulated in an LMI form [20] in the following paragraph.

5.2.5 Approximate model-matching

As shown in Theorem 5.2.5, the model-matching

Ai +BiFi = A j +B jFj, (5.63)

can be written as
AiX +BiYi = A jX +B jY j, (5.64)

where Fi = YiX−1, Fj = Y jX−1, for i, j = 1, . . . ,N, with X = X ′ > 0. For a sufficiently small
tolerance γ > 0 we write

∥AiX +BiYi − (A jX +B jYj)∥< γ, (5.65)

for i, j = 1, . . . ,N and i ̸= j. We also consider the following well-known fact.

Lemma 5.2.6. Let Φ ∈ Rn×n be an arbitrary matrix. The following are equivalent.

∥Φ∥< γ ⇔ Φ
′
Φ < γ

2In ⇔

[
In Φ

Φ′ γ2In

]
> 0. (5.66)

Using Lemma 5.2.6, conditions (5.65) can be formulated as linear matrix inequalities
(LMI’s):

X = X ′ > 0,[
I AiX +BiYi −A jX −B jYj

∗ γ2I

]
≥ 0 for i, j = 1, . . . ,N and i ̸= j,

(5.67)

which can be seen as a standard LMI feasibility problem for a certain upper bound γ > 0.
To construct the model-matching state-feedback gains Fi = YiX−1, i = 1, . . . ,N, achieving
minimum γ > 0, we may consider the following convex optimization problem:

min
γ>0

γ subject to (5.67), (5.68)
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Fig. 5.2 LMI region R.

which can be used along with additional constraints (see next paragraph) to satisfy a numerical
tolerance of the form ∥AiX +BiYi −A jX −B jYj∥ ≤ γ . Finding optimal X , Yi yields a target
system, which can be specified by any of the pairs (Ai +BiFi, Bi), i = 1, . . . ,N, with Fi =

YiX−1. We remark here that the inertia of (Ai +BiFi) can not be controlled via constraints
(5.67). Next, we impose certain stability specifications on the target dynamics by augmenting
problem (5.68) by additional constraints.

5.2.6 Approximate model-matching with LMI stability constraints

As already mentioned, it might be desirable to solve a model-matching problem such that
N systems be mapped to a stable target model. In a network setup, this will guarantee
stability of the individual systems even in the presence of communication failure between
agents. Pertaining to the approximate model-matching via LMI conditions shown above, it is
possible to achieve stable target dynamics by adding extra LMI constraints to problem (5.68).
In particular, we may allow the poles of the target system to lie in a confined region of the
complex plane. If these regions are convex, then, they can be expressed as LMI constraints.
For instance, such regions may be selected to ensure a minimum decay rate, a maximum
undamped natural frequency, and a minimum damping ratio, each performance requirement
specified by a parameter λ , ρ , and θ , respectively. An example of such a convex region of
the complex plane is shown in Fig. 5.2. Comprehensive study of pole assignment via LMI
constraints can be found in [34]. An approximate model-matching problem with additional
pole clustering constraints is stated next.

We consider a set of N controllable pairs (Ai, Bi), i = 1, . . . ,N, with structure as in (5.32),
and Ai ∈ Rn×n, Bi ∈ Rn×m. We wish to construct state-feedback gains Fi, i = 1, . . . ,N, so
that the eigenvalues of the i-th matrix Ai +BiFi lie on a convex region of the complex plane
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defined by performance parameters λ , ρ , and θ , as shown in Fig. 5.2. Let

X = X ′ > 0, (5.69a)[
I AiX +BiYi −A jX −B jY j

∗ γ2I

]
≥ 0 for i, j = 1, . . . ,N and i ̸= j,

λX +Λi +Λ
′
i < 0, i ∈ {1, . . . ,N}, (5.69b)[

−ρX Λ′
i

∗ −ρX

]
< 0, i ∈ {1, . . . ,N}, (5.69c)[

sinθ [Λi +Λ′
i] cosθ [−Λi +Λ′

i]

∗ sinθ [Λi +Λ′
i]

]
< 0, i ∈ {1, . . . ,N}, (5.69d)

where Λi = AiX +BiYi, i = 1, . . . ,N, and γ > 0 is a small tolerance. Solving the following
convex optimization problem:

min
γ>0

γ subject to (5.69), (5.70)

yields a target system with the desirable dynamics. The feasibility of problem (5.70) ensures
that all eigenvalues of the closed-loop matrix Ai+BiFi lie on a confined region of the complex
plane specified by LMI conditions (5.69b), (5.69c), (5.69d). In the following section, we
define particular performance indexes pertinent to a joint model-matching control effort and
propose a systematic method for selecting target models the choice of which guarantees an
optimal model-matching scheme.

5.3 Optimal selection of target system

So far in this chapter, we have shown that the model-matching problem of a family of systems,
characterized by identical sets of controllability indices, can be solved via state-feedback
control and input-matrix transformations. It has been shown that picking a target system with
identical controllability indices, model-matching state-feedback compensators and input-
matrix transformations can be obtained by (5.18). We have also shown that model-matching
controllers incorporating additional objectives (stability, pole location) can be designed
approximately via linear matrix inequalities. In this section, we shift our attention to the
decision needed to be made on the choice of the target model for a particular set of dynamic
agents, represented as N systems (Ai, Bi), i = 1, . . . ,N, with identical sets of controllability
indices. Defining the model-matching scheme as an aggregate of each local model-matching
state-feedback controller, we attempt to minimize the joint model-matching control effort
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associated with a particular target system. We impose this objective because we wish to
use the "minimum amount of feedback" in the first stage of the control design of problem
(5.1), so that the overall performance of the closed-loop network is effectively defined by the
weighting matrices of the quadratic performance index (5.1b). For this purpose, we introduce
the concept of a cost-function that indicates a specific measure of the joint model-matching
energy loss. We also show that minimizing a model-matching cost-function results in a
specific optimal target model. A worst-case control effort is examined first, defined as a
discrete minimax problem the solution of which is achieved via an efficient steepest-descent
algorithm. A quadratic cost-function involving a least-squares problem is also employed. It
is shown that optimal target model in the least-squares sense can be derived from a closed
form expression. Next, some preliminaries on minimax optimization are introduced.

5.3.1 Preliminaries on minimax theory

Consider N convex quadratic functions of d ∈ Rn, denoted by Mi(d), i ∈ [1 : N], and let

φ(d) = max
i∈[1:N]

Mi(d), (5.71)

be the maximum function φ(d). Finding d∗ for which maxi∈[1:N]Mi(d∗) becomes minimum
is formulated as the discrete minimax problem:

min
d∈Rn

φ(d) = min
d∈Rn

max
i∈[1:N]

Mi(d). (5.72)

Since φ(d) is a continuous and convex function, by the continuity and convexity of Mi’s,
i = 1, . . . ,N, and its sub-level sets are bounded, the minimizing solution d∗ exists and is
unique. An efficient ε-steepest decent algorithm is employed to approximate the optimal
solution. We omit here detailed geometric interpretations of the problem (which can be
found in [44]) and focus on basic definitions and concepts which are helpful for deriving the
minimax algorithm.

Let
Rε = {i | 0 ≤ φ(d)−Mi(d)≤ ε} ⊆ {1, . . . ,N}, (5.73)

be the active set at point d ∈ Rn. In essence, Rε represents the set of indices i’s for which
φ(d)−Mi(d)≤ ε is satisfied for a given ε > 0 and fixed d. Obviously, if ε ′ ≥ ε this implies
Rε ′ ⊃ Rε . Let now

Hε(d) =
{

Z ∈ Rn | Z =
∂Mi(d)

∂d
, i ∈ Rε

}
, (5.74)
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be the set of gradients of Mi for all i ∈ Rε . Then,

Lε(d) =
{

Z = ∑
i∈Rε (d)

σi
∂Mi(d)

∂d

∣∣ σi ≥ 0 and ∑
i∈Rε(d)

σi = 1
}
, (5.75)

denotes the convex hull of Hε(d). Note that Lε(d) is a bounded, closed and convex set. The
inclusion 000 ∈ Lε(d∗) implies that d∗ is ε-stationary point. This is a necessary condition
for φ(d) to have a minimum on Rn at d∗. In our case, this condition is also sufficient
(by assumption) due to convexity of φ(d) as a consequence of Mi(d), i = 1, . . . ,N, being
(quadratic) convex functions. This is stated next.

Proposition 5.3.1. A point d∗ is ε-stationary point of φ(d) if and only if the origin is a point
of Lε(d∗), i.e., 000 ∈ Lε(d∗).

In effect, the solution to (5.72) relies on an approximation algorithm which searches
for ε-stationary points of φ(d). The determination of ε-stationary points (ε > 0) can be
accomplished by solving three auxiliary problems successively. The first involves the question
whether the origin lies in the polyhedron Lε(d) and is equivalent to whether the system

s

∑
i=1

aiZi = 0 subject to
s

∑
i

ai = 1, ai ≥ 0, i ∈ [1 : s], (5.76)

is solvable, where Z1, . . . ,Zs are points of Hε(d). This can be formulated as a linear program-
ming problem. Proposition 5.3.1 implies that the inclusion of the origin in the Polyhedron
Lε(d) is an equivalent necessary and sufficient condition for φ(d) to have minimum at d,
and can be used as a termination condition for the approximation algorithm. If the origin
fails to be included in Lε(d∗), then there is a unique ε-steepest descent direction along which
the maximum function φ(d) decreases most rapidly. This direction is given in the following
Proposition.

Proposition 5.3.2. If d is not an ε-stationary point of φ(d), then φ(d) has a unique direction
of ε-steepest descent gε(d) at d: gε(d) =− Z∗

ε

∥Z∗
ε ∥

, where Z∗
ε is the point of Lε(d) nearest the

origin.

Let now gε(d) =− Z∗
ε

∥Z∗
ε ∥

, where Z∗
ε is the point of Lε(d) nearest the origin. Attaining Z∗

ε

is the second auxiliary problem to be solved and is formulated here as the quadratic program:

min
as

(Z′
ia

s)′(Z′
ia

s), whereas = [a1, . . . ,as]
′ subject to

s

∑
i

ai = 1, ai ≥ 0, i ∈ [1 : s], (5.77)
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where Z1, . . . ,Zs, are points of Hε(d). The minimizer vector as, obtained from (5.77), leads
to Z∗

ε = ∑
s
i=1 aiZi. Assume now that d is not an ε-stationary point of φ(d), and gε is the

ε-steepest descent direction of φ(d) at d. Consider the ray d+(a) = d +agε with a ≥ 0. The
third auxiliary problem is to find optimal step-size a∗ ∈ [0,∞) for which φ(d+(a∗)) attains
its minimum along the ray d+. We present here a pseudo-analytical procedure for obtaining
this minimum.

Take γ = φ(d+(0)) = φ(d) and find the smallest ā ≥ 0 for which Mi(d+(ā))≥ γ for all
i ∈ Rε . Then, the unique minimizer of φ(d+(a)) a∗ ∈ [0, ā]. Let Πs be the set comprising
all the points a of the line segment d+(a), with a ∈ [0, ā], for which ∂Ms

∂a = 0 where s ∈ Rε .
Note that Πs has the same cardinality with Rε , say nRε

. Now with lexicographic order take
all pairs (i, j) where i, j ∈ Rε and i ̸= j (e.g, if Rε = {1, 2, 3}, then, consider the pairs (1,2),
(1,3) and (2,3)) and find the two roots (a1

i, j, a2
i, j) of each equation Mi(ai, j) = M j(ai, j). Let

set Ωs consist of all the roots ai, j ∈ [0, ā] with cardinality at most n2
Rε
− nRε

. Clearly, the
cardinality of the union Πs ∪Ωs is at most n2

Rε
. The unique minimizer a∗ is finally obtained

by searching the minimum of φ(d) at distinct points which are at most n2
Rε

, i.e.:

a∗ = arg min
a∈Πs∪Ωs

φ(d+(a)). (5.78)

Now assume that the kth approximation of the sequence d0, d1, . . . , dk, . . . has been obtained.
A single iteration of the ε-steepest descent algorithm is presented in Algorithm 1. Performing
the algorithm iteratively, an approximate solution d∗ of (5.72) is attained given a desired
level of convergence.

5.3.2 State-feedback design for optimal target system

We consider a set of N systems represented by controllable pairs (Ai, Bi), Ai ∈ Rn×n,
Bi ∈Rn×m with rank(Bi) = m and state-space forms given as in (5.10). Let a target model be
denoted by system matrices (AN+1, BN+1) with AN+1 ∈ Rn×n, BN+1 ∈ Rn×m. We assume
that systems (Ai, Bi), i = 1, . . . ,N +1, are characterized by identical sets of controllability
indices denoted as µ1, . . . ,µm with ∑

m
j=1 µ j = n. Without loss of generality, let (AN+1, BN+1)

be written in canonical form given in (5.12), as

AN+1 = Āc + B̄cAm,N+1, (5.79a)

BN+1 = B̄cBm,N+1, (5.79b)

where Am ∈ Rm×n, Bm ∈ Rm×m are defined in (5.12). The pair (Āc, B̄c) represents the
Brunovsky form of all linear systems with controllability indices µ1, . . . ,µm. To simplify the
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Algorithm 1: ε-steepest descent algorithm.
input :ε,dk,ak,µ
while ak > µ do

compute :Rε = {i|φ(dk)−Mi(dk)≤ ε}
Hε(dk) = {∂Mi(dk)

∂d , i ∈ Rε}
Lε(dk)

if 000 ∈ Lε(dk) then
dk+1 = dk
terminate

else
compute :Zk ∈ Lε(dk) nearest 000

gk
ε =− Zk

∥Zk∥
ak = OptimalStepSize(dk,gk

ε ,Rε)

dk+1 = dk +akgk
e

end
end
return dk+1
Function: OptimalStepSize(d,gε ,Rε)

set : γ = φ(d)
compute : smallest ā > 0: Mi(d + āgε)≥ γ ∀ i ∈ Rε

find : all ai ∈ [0 : ā] for which ∂Mi
∂a = 0 with i ∈ Rε

set : Πs = {ai|i ∈ Rε}
find : (aρ1

i, j,a
ρ2
i, j) for all lexicographic pairs (i, j)

with i < j and i, j ∈ Rε : Mi(d +agε) = M j(d +agε)

set : Ωs = {aρ1,2
i, j ∈ [0, ā]}

compute : a∗ = arg mina∈Πs∪Ωs φ(d +agε)
return

subsequent analysis, we consider Bm,N+1 = Im. Model-matching state-feedback gains and
input-matrix transformations defined in (5.18) are written here as:

Fi = B−1
m,i(Am,N+1 −Am,i)Pi, (5.80a)

Gi = B−1
m,i, (5.80b)

where matrices Am,i, Am,N+1, Bm,i, Pi are as defined in Theorem 5.2.3. Letting now ui =

Fixi +Givi, i = 1 · · · ,N, with vi ∈ Rm, the closed-loop state-space form of the i-th system

ẋi = (Ai +BiFi)xi +BiGivi, (5.81)
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matches the target dynamics:

ξ̇ = AN+1ξ +BN+1uN+1, (5.82)

through the bijective mapping:
ξ = Φ

−1
i xi, (5.83)

where Φi = P−1
i is a nonsingular matrix. In view of (5.80), matrix Am,N+1 is the only term

that associates a specific target selection with the local model-matching control action. In
this regard, we wish to identify an optimal matrix Am,N+1 the selection of which minimizes
a certain measure of the joint model-matching control-effort defined as a function of state-
feedback gains Fi, i= 1, . . . ,N. In the following, two cost-functions are considered. These are
referred to as model-matching performance indexes. Optimizing a performance index over
the set of matrices Ām ∈ Rm×n results in a specific optimal target model. Before formulating
the optimization problems, we state the following well-known fact which accommodates an
isometric embedding of the Frobenius norm of a matrix in Rm×n into the Euclidean norm of
a vector in Rmn.

Proposition 5.3.3. Consider
J(Ξ) = ∥AΞB−C∥2

F , (5.84)

where A ∈ Rp×p, B ∈ Rq×q, C, Ξ ∈ Rp×q. Let vec(·) denote the vectorization operator
(stacking columns of argument matrix). Then

vec(AΞB−C) = (B′⊗A)vec(Ξ)−vec(C). (5.85)

Let also B′⊗A = H, vec(C) = c, and vec(Ξ) = ξ . Since ∥M ∥F = ∥vec(M )∥, then

J(Ξ) = ∥Hξ − c∥2, (5.86)

where ∥ · ∥ is the Euclidean norm.

In the following, we define two performance indexes that penalize the joint control effort
pertinent to the model-matching state-feedback scheme.

5.3.2.1 Minimum worst-case control

We denote the joint worst-case model-matching control action as the maximum function:

φ(Am,N+1) = max
i=[1:N]

Mi, where Mi = ∥Fi∥2
F = ∥B−1

m,i(Am,N+1 −Am,i)Pi∥2
F , (5.87)
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and we wish to find matrix Am,N+1 ∈ Rm×n for which φ(Am,N+1) attains its minimum. This
is a discrete minimax problem formulated as

min
Am,N+1∈Rm×n

φ(Am,N+1) = min
Am,N+1∈Rm×n

max
i∈[1:N]

∥B−1
m,i(Am,N+1 −Am,i)Pi∥2

F . (5.88)

To perform the optimization over the vector space Rmn, we utilize the vectorization technique
shown in Proposition 5.3.3. Let Mi = ∥Hiξ − ci∥2 where Ξ = Am,N+1, Hi = P′

i ⊗ B−1
m,i,

Ci = B−1
m,iAm,iPi, ξ = vec(Ξ), ci = vec(Ci), i = 1, . . . ,N. We recall that ∥ · ∥ stands for the

Euclidean norm. The minimax problem (5.88) becomes

min
ξ∈Rm·n

φ(ξ ) = min
ξ∈Rm·n

max
i=[1:N]

Mi = min
ξ∈Rm·n

max
i=[1:N]

ξ
′(H ′

i Hi)ξ −2ξ
′(H ′

i ci)+ c′ici. (5.89)

The maximum function φ(ξ ) is continuous and convex by the continuity and convexity of Mi,
i = 1, . . . ,N, and its sub-level sets are bounded. Thus, a minimizing solution ξ ∗ exists and is
unique. The ε-steepest decent algorithm shown earlier can be employed here to approximate
the optimal solution ξ ∗. Letting ξ0 be the initial choice of ξ and performing the algorithm
iteratively, the optimal solution ξ ∗ is obtained approximately. Finally, the optimal solution to
minφ(Am,N+1) is derived from

A∗
m,N+1 = vec−1(ξ ∗). (5.90)

Optimal model-matching state-feedback gains Fi, i = 1, . . . ,N, are constructed by substituting
Ā∗

m into (5.80), while an optimal target system is defined as (Āc + B̄cA∗
m,N+1, B̄c).

5.3.2.2 Least-squares control

Another measure that penalizes the joint model-matching control effort is defined as

J(Am,N+1) =
N

∑
i=1

∥Fi∥2
F =

N

∑
i=1

∥B−1
m,i(Am,N+1 −Am,i)Pi∥2

F . (5.91)

Here, we are interested in finding a matrix Am,N+1 for which J in (5.91) becomes minimum.
Setting Ξ = Am,N+1, Hi = P′

i ⊗B−1
m,i, Ci = B−1

m,iAm,iPi, ξ = vec(Ξ), ci = vec(Ci), i = 1, . . . ,N,
and embedding each matrix B−1

m,i(Am,N+1−Am,i)Pi into Rmn as suggested in Proposition 5.3.3,
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we can optimize J over ξ ∈ Rmn. This is written as

J(ξ ) =
N

∑
i=1

∥Hiξ − ci∥2 =
N

∑
i=1

(ξ ′H ′
i − c′i)(Hiξ − ci)

= ξ
′(

N

∑
i=1

H ′
i Hi)ξ −2ξ

′(
N

∑
i=1

H ′
i ci)+

N

∑
i=1

c′ici, (5.92)

which is a convex function of ξ ∈ Rmn. Setting

∂J
∂ξ

= 0, (5.93)

leads to the least-squares solution, where the unique minimizer of J(ξ ) is attained by:

2(
N

∑
i=1

H ′
i Hi)ξ −2(

N

∑
i

H ′
i ci) = 0, (5.94)

which gives

ξ
∗ = (

N

∑
i

H ′
i Hi)

−1(
N

∑
i=1

H ′
i ci). (5.95)

Then, the unique minimizer of J(Am,N+1) is given by

A∗
m,N+1 = vec−1

(
N

∑
i=1

(H ′
i Hi)

−1
N

∑
i=1

H ′
i ci

)
. (5.96)

Optimal state-feedback gains Fi, i = 1, . . . ,N, in the least-squares sense are obtained by
substituting A∗

m,N+1 into (5.80). The following section is devoted to the special model-
matching problem of single-input linear systems.

5.3.3 Model-matching of single-input systems

The analysis presented earlier pertains to multi-input systems, thereby applying to single-
input systems straightforwardly. Here, we study and build upon some interesting properties
arising in model-matching problems with single-input target dynamics. In particular, focusing
on a set of controllable systems (Ai, bi), i = 1, . . . ,N, that are mapped to a single-input target
model (Ad, bd) via the model-matching operations defined in the previous sections, we
remark the following:

1) Matrices Ai only need to have same dimensions.
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2) Optimization problems defined in Section 5.3.2 may be augmented with stability
constraints leading to an optimal single-input target model with certain stability and
performance specifications.

3) The pair (Ai, bi) may represent a multi-input system (Ai, Bi) that is converted to a
controllable system (Ai, Biξi), where bi = Biξi ∈ Rn×1.

Let
ẋi = Aixi +biui, xi(0) = xi,0, i = 1, . . . ,N, (5.97)

be the state-space forms of N single-input systems, where Ai ∈ Rn×n, bi ∈ Rn, i = 1, . . . ,N.
We denote a single-input target system by pair (Ad, bd), with Ad ∈ Rn×n, bd ∈ Rn. We also
note that there is always a similarity transformation that can be used to match the state-space
forms of two controllable single-input systems with the same state dimensions, given that
the two systems have identical poles. Clearly, this argument holds for multiple systems.
In this respect, we show that a matching problem of N single-input systems reduces to a
pole-placement task. Let now

ai =
[
ai

0 ai
1 · · · ai

n−1

]′
, (5.98)

d =
[
d0 d1 · · · dn−1

]′
, (5.99)

denote the coefficients of the characteristic polynomials of system-i and the target model,
respectively. We construct the following matrices: Ti = (Γc,iHa,i)

−1, i = 1, . . . ,N, where

Γc,i =
[
bi Aibi . . . An−1

i bi

]
, (5.100)

Ha,i =



ai
1 · · · ai

n−2 ai
n−1 1

... . .
.

ai
n−1 1 0

ai
n−2 . .

.
. .
.

. .
. ...

ai
n−1 1 . .

.
. .
.

0
1 0 . . . 0 0


, (5.101)

represent the controllability matrix and the Hankel matrix, respectively, of system-i. Similarly,
we construct matrix Td = (Γc,dHd)

−1. We wish to represent systems in controllable canonical
forms, i.e.,

(Ac,i, en) = (TiAiT−1
i ,Tibi), (5.102)

(Ac,d, en) = (TdAdT−1
d ,Tdbd), (5.103)
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where
en =

[
0 · · · 0 1

]′
, (5.104)

and letting state-feedback control ui = f ′i xi, we require that

Ti(Ai +bi f ′i )T
−1

i = TdAdT−1
d . (5.105)

In view of the special structure of the canonical forms TiAiT−1
i , i = 1, . . . ,N, and TdAdT−1

d ,
it is readily verified that the matching state-feedback gains fi, i = 1, . . . ,N, can be obtained
from

fi = T ′
i (a

i −d), i = 1, . . . ,N. (5.106)

Clearly, defining a vector d (coefficients of the target characteristic polynomial) suffices in
establishing a single-input target model. As suggested in the previous section, an optimal
target system can be achieved by optimizing a specific model-matching performance index
that penalizes the joint model-matching state-feedback control scheme. This is exemplified
next.

5.3.3.1 Single-input optimal target system selection

In order to define an optimal (single-input) target model, we consider cost functions as
introduced in the multi-input case earlier in the chapter. We recall that solving a discrete
minimax problem formulated as

min
d∈Rn

φ(d) = min
d∈Rn

max
i∈[1:N]

∥ fi∥2, (5.107)

leads to an optimal single-input target system (in the minimax sense) with characteristic
polynomial p(s,d∗), where d∗ is the minimizing solution of (5.107). Then, a minimum
worst-case model-matching control scheme can be achieved by designing state-feedback
gains fi, i = 1, . . . ,N, as in (5.106) with d = d∗.

Similarly, we consider the following quadratic function in d ∈ Rn:

J(d) =
N

∑
i=1

∥ fi∥2. (5.108)

Setting
∂J
∂d

= 0, (5.109)
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yields the unique least-squares solution

d∗ = (
N

∑
i=1

TiT ′
i )

−1(
N

∑
i=1

TiT ′
i ai). (5.110)

Optimal state-feedback gains in the least-squares sense are obtained by substituting d∗ to
(5.106).

As was shown above, model-matching optimization problems adapted to the single-input
case can be carried out straightforwardly over the coefficients of the target’s characteristic
polynomial denoted by vector d ∈ Rn. This standard formulation facilitates the inclusion
of constraints into the optimization problems representing stability specifications of target
dynamics. In the single-input case, it makes sense that these extra constraints are derived
from the Routh-Hurwitz stability criterion. This illustrated in the next simple numerical
example.

Example 5.3.4. Let the state-space form of two unstable systems be given as

ẋi = Aixi + e3ui, (5.111)

with i = 1,2 where

A1 =

0 1 0
0 0 1
1 −3 1

 , A2 =

0 1 0
0 0 1
1 −2 1

 , e3 =

0
0
1

 . (5.112)

We wish to find the best Hurwitz characteristic polynomial that minimizes the joint state-
feedback control effort denoted as ∑

2
i=1 ∥ai −d∥2. This is formulated as

min
d∈R3

2

∑
i=1

∥ai −d∥2 subject to d0 > 0, d2 > 0, and d2d1 > d0, (5.113)

where ai represents the coefficients of the characteristic polynomial of Ai, i = 1,2. The
infimizing solution obtained in MatLab using the fmincon function, is

d∗ =
[
0 2.5 0

]
, (5.114)

representing the coefficients of the best target polynomial. Note that two poles of the optimal
solution lie on the imaginary axis which defines the boundary of the constrained set. This
may be rectified, if desired, by redefining the stable region.
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Unfortunately, stability constraints derived from the Routh-Hurwitz criterion are highly
nonlinear so they can be used effectively only for low-dimensional problems. An alternative
approach is to enforce "local" stability conditions by calculating the maximum region in
the coefficient space that the coefficients of a nominal Hurwitz polynomial, po(s,do), can
be perturbed so that the perturbed polynomial remains stable. This can be achieved by
specifying the maximum stability radius ρ(do) of a nominal Hurwitz polynomial,

po(s,do) = sn +do
n−1sn−1 + · · ·+do

1s+do
0 , (5.115)

defined either via the Euclidian or infinity norms of the coefficient vector. An explicit
formula for calculating the distance ρ of a Hurwitz polynomial from the set of non-Hurwitz
polynomials in the coefficient space is given in the following proposition.

Proposition 5.3.5. If p(s,d), d ∈ Rn is a Hurwitz polynomial,

p(s,d) = p1(−s2)+ sp2(−s2), (5.116)

where p j(−s2), j = 1,2 are real polynomials in −s2, then

ρ(d) = min{d0, [ max
ω2∈R+

f (ω2)]−1/2}, (5.117)

where

f (ω2) =


1+ω4+···+ω2n−4

p2
1(ω

2)+p2
2(ω

2)
, for even n,

(1+ω4+···+ω2n−6)(1+ω4+···+ω2n−2)

p2
1(ω

2)(1+ω4+···+ω2n−6)+p2
2(ω

2)(1+ω4+···+ω2n−2)
, for odd n.

(5.118)

Proposition 5.3.5 can originally be found in [81]. For a Hurwitz polynomial p(s,d) the
distance ρ determines the largest radius of the open cube in Rn with center d and radius
ρ > 0 for which the set

{p(s,d) : |di −δi|< ρ, i = 0, . . . ,n−1}, (5.119)

consists only of Hurwitz polynomials. In the following example, we show how to calculate
the distance ρ of a Hurwitz polynomial.

Example 5.3.6. Consider polynomial:

p(s,d) = s5 +58.2s4 +1551s3 +2524s2 +2679s+1767, (5.120)
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where
d = [d0 d1 · · · d4]

′ = [1767 2679 2524 1551 58.2]′, (5.121)

denotes the coefficient vector. The roots of p(s,d) are:

−1.0548

−28.2680+ i25.6135

−28.2680− i25.6135

−0.3046+ i1.0288

−0.3046− i1.0288,

where i2 =−1, illustrating that this is a Hurwitz polynomial. Defining a perturbation vector
as

δ = [δ0 δ1 · · · δ4]
′, (5.122)

we wish to find the maximum distance ρ with |di − δi| < ρ , i = 0,1, . . . ,4, for which any
polynomial of fifth order p(s,d −δ ) is Hurwitz. We write

p(s,d) = p1(−s2)+ sp2(−s2), (5.123)

where

p1(−s2) = 58.2(−s2)2 −2524(−s2)+1767, (5.124)

p2(−s2) = (−s2)2 −1551(−s2)+2679. (5.125)

Since p(s,d) is of fifth order, we construct function

f (ω2) =
(1+ω4)(1+ω4 +ω8)

p2
1(ω

2)(1+ω4)+ p2
2(ω

2)(1+ω4 +ω8)
, (5.126)

and we solve the following minimization problem:

min
ω2∈R+

− f (ω2). (5.127)

Using fmincon function in Matlab, the minimum of − f (ω2) or equivalently, the maximum
of f (ω2) is found 3.1247e−04 (at ω = 1549.3). This is also illustrated in Fig. 5.3 where
f (ω2) is plotted in logarithmic scale.
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Fig. 5.3 Plot of log10 f (ω2)

In view of Proposition 5.3.5, the maximum distance ρ is calculated as

ρ = min(d0,3.1247e−04−1/2) = min(1767,56.5715), (5.128)

i.e., ρ = 56.5715.

The constrained optimization problems are now outlined. Let po(s,do) be a Hurwitz
polynomial with a maximum stability radius ρ obtained as suggested in Proposition 5.3.5.
Let also δ = [δ0, . . . ,δn−1]

′, and S ⊆ Rn be such that

δ ∈ S iff |do
j −δ j|< ρ ∀ j = 0,1, . . . ,n−1. (5.129)

Pertaining to a minimum worst-case model-matching control action, we solve

inf
d∈S

max
i∈[1:N]

∥T ′
i (a

i −d)∥, (5.130)

which involves the minimization of a continuous convex function over a compact set. There-
fore, a unique minimum exists which can be calculated efficiently with the algorithms
described in [44]. Similarly, solving optimization problem

inf
d∈S

N

∑
i=1

∥ fi∥2 = inf
d∈S

N

∑
i=1

∥T ′
i (a

i −d)∥2, (5.131)

results in a minimum model-matching control effort in the least-squares sense. Note that for
nontrivial problems S is bounded, so constraining the problem on the closure of S guarantees
a unique solution obtained via standard quadratic programming algorithms.
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5.3.3.2 Single-input conversion of multi-input systems

Here we discuss briefly the model-matching problem of multi-input systems with non-
identical sets of controllability indices. In particular, we consider a matching problem of
systems (Ai, Bi), i = 1, . . . ,N, with Ai ∈ Rn×n, Bi ∈ Rn×mi , and assume that the requirement
of common c.i. does not necessarily hold. A straightforward example arises when systems of
identical state dimensions are controlled by different numbers of inputs. Our objective here
is to highlight that the model-matching task of a family of controllable systems characterized
by common state dimensions and arbitrary c.i., can be addressed by setting a single-input
target model. In other words, we wish that each individual multi-input system is controlled
by a single-input control scheme, say ui = ξiv, with v ∈ R. In effect, under this control
action, systems are converted to single-input plants. As studied earlier in the section, the
model-matching problem of a set of single-input systems has always a solution provided that
systems are controllable. A solution to the model-matching problem of multi-input systems
with non-identical sets of controllability indices is subject to the following result.

Theorem 5.3.7. Let (Ai, Bi), i = 1, . . . ,N, be controllable, with Ai ∈ Rn×n, Bi ∈ Rn×mi , and
rank(Bi) = mi. Then, there exist ξi ∈ Rmi , i = 1, . . . ,N, such that (Ai, Biξi), i = 1, . . . ,N, are
also controllable.

Pertaining to Theorem 5.3.7, we note that a possible selection of ξi, i = 1, . . . ,N, may be
almost any non-zero vector (i.e., that the set of vectors which do not give rise to this property
has measure zero). We emphasize that this conjecture that systems (Ai, Biξi), i = 1, . . . ,N,
are controllable, is generically consistent. We also stress that this conversion to controllable
single-input systems gives considerable flexibility to the model-matching design, naturally,
at the expense of the degrees of freedom of each control input. Clearly, considering the
controllability requirement is in force, model-matching state-feedback controllers of rank
one can be designed as proposed in the previous section.

5.4 Distributed LQR-based control design

The section is devoted to the distributed LQR control which represents the second stage of the
proposed design procedure. We recall that our main task throughout the chapter is to construct
a distributed state-feedback controller which stabilizes a network of N heterogeneous agents.
For convenience, the main assumptions of this problem are restated as follows.

We consider that the dynamics of N dynamic agents are described by N linear systems
that belong to a family of systems sharing identical sets of controllability indices. Let the
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state-space form of the i-th agent be written as

ẋi = Aixi +Biui, xi(0) = xi,0, i = 1, . . . ,N, (5.132)

where xi ∈ Rn, ui ∈ Rm denote state and input vectors, respectively. Let also (Ai, Bi), i =
1, . . . ,N, be controllable pairs with identical c.i., denoted as µ1, . . . ,µm, with ∑

m
j=1 µ j = n. We

use a graph (digraph) to represent interactions (couplings terms in controls, communication)
between neighboring agents. Specifically, the i-th system is associated with the i-th vertex
of a graph G = (V ,E ) (digraph D = (V ,E )). Matrix L represent the corresponding (in-
degree) Laplacian matrix of G (D). The presence of an edge (i, j) ∈ E connecting the i-th
and j-th vertex implies the following:

1) The i-th system has full access to the state information of the j-th system.

2) The control action, ui, is partly obtained by the solution of an LQR optimization
problem which penalizes (among other terms) a weighted norm of the difference
xi − x j.

We denote by Ni the set of adjacent vertices of the i-th vertex. We represent the aggregate state
and input vectors of the network as x̂ = Col(x1, . . . ,xN) and û = Col(u1, . . . ,uN), respectively.
The regulation problem (5.1) is rewritten as follows:

min
û

J(û, x̂0) subject to: (5.133a)

J(û, x̂0) =
∫

∞

0

(
x̂′Q̂x̂+ û′R̂û

)
dt, (5.133b)

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (5.133c)

û = M x̂, (5.133d)

where

Â = diag(A1, . . . ,AN), (5.134)

B̂ = diag(B1, . . . ,BN), (5.135)

and

Q̂ = IN ⊗Q1 +L ⊗Q2, (5.136)

R̂ = IN ⊗R. (5.137)
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In order for problem (5.133) to be well-posed and have a stabilizing (sub)optimal solution
(5.133d), we assume that there are matrices C′

1C1 = Q1 and C′
2C2 = Q2 such that (Ai, C1)

and (Ai, C2) are observable for all i = 1, . . . ,N. Note that if matrix M ∈ K N
m,n(G ) (M ∈

K N
m,n(D)) in (5.133d), then the global control law û = M x̂ represents a distributed state-

feedback controller. For simplicity, we presently assume that the interconnection scheme
of the network allows bidirectional connectivity between neighboring agents, thereby being
represented by an undirected graph G . At the end of the section, a directed network topology
is also considered.

As mentioned above, our objective is to construct a stabilizing distributed solution to
problem (5.133) following a two-step design method. In particular, we propose a state-
feedback distributed control scheme which node-wise takes the following form:

ui = (Fi +GiK1Φ
−1
i )xi +aGi ∑

j∈Ni

K2(Φ
−1
i xi −Φ

−1
j x j), (5.138)

with a > 0. At network level, the control law û may be written as:

û =
(
diag(F1, . . . ,FN)+diag(G1, . . . ,GN)(IN ⊗K1 +M⊗K2)diag(Φ−1

1 , . . . ,Φ−1
N )
)

x̂,
(5.139)

which is a distributed state-feedback controller. Matrix M in (5.139) reflects the structure of
the interconnection scheme. For control scheme (5.139) to be consistent with the node-level
controller in (5.138), matrix M = aL with a > 0. A schematic representation of the proposed
control scheme at individual level is shown in Fig. 5.4.

In the first stage of the proposed design, we showed that solving a model-matching prob-
lem as suggested in Theorem 5.2.3, matrices Fi, Gi and Φi, i = 1, . . . ,N can be constructed
such that:

ẋi = (Ai +BiFi)xi +BiGivi, xi(0) = xi,0, (5.140)

ξi = Φ
−1
i xi, (5.141)

where Φi, i = 1, . . . ,N, is a non-singular matrix, while the output variable ξi ∈Rn can be cast
as the state of a system described by target dynamics:

ξ̇ = Aξ +Bv. (5.142)

Given that a target system (A, B) has been specified, the next step of the method is to
define matrices K1, K2, and M in (5.139), such that û stabilizes (5.133c), i.e., is a stabilizing
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Fig. 5.4 Distributed node-level closed-loop architecture of interconnected heterogeneous
linear agents.

distributed (suboptimal) solution of problem (5.133). This represents the main task of the
second stage of our control design approach and is outlined as follows.

As can be seen from (5.141)-(5.142), the closed-loop state-space forms (5.140) match
the dynamics of the target model (A, B) through a bijective mapping represented by matrices
Φ

−1
i , i = 1, . . . ,N. Therefore, matrices K1, K2 can be cast as functions of (A, B, Q1, Q2, R),

where pair (A, B) denotes the model-matching dynamics, while matrices (Q1, Q2, R) are
tuning parameters of (5.133b). In this regard, the design matrices K1 and K2 can be derived
from the methods studied in Chapters 3, 4. The top-down design procedure is formulated as
follows. Solving LQR problem (3.65) with tuning parameters (Q1, Q2, R) for NL = dmax+1
systems (A, B), dmax denoting the maximum vertex degree of graph G , K1, K2 are defined
from the following expressions:

K1 =−R−1B′P, (5.143)

K2 = R−1B′P̃2, (5.144)

where P and P̃2 are associated with ARE (3.71) and (3.72), respectively. We note that an
alternative choice of K1, K2 may be obtained via the bottom-up method presented in Chapter
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3. Then,

K1 =−R−1B′P, (5.145)

K2 = ΞK1, (5.146)

where K1 is as defined in top-down method above, while a matrix Ξ can obtained by solving
a convex optimization problem as in (3.110). We remark that the option to select a distributed
control method, originally established for networks of identical systems, for designing
matrices K1, K2, simplifies considerably the design procedure and highlights the main
advantage of the model-matching technique proposed in the first part of this chapter. The
proposed control design as well as the closed-loop stability of the entire distributed control
scheme with undirected topology are summarized in the following theorem.

Theorem 5.4.1. Let N controllable pairs (Ai, Bi), i = 1, . . . ,N, with Ai ∈ Rn×n, Bi ∈ Rn×m,
have identical sets of controllability indices. Let also matrices A, B, Fi, Gi, and Φi be defined
as in Theorem 5.2.3, such that

(A, B) = (Φ−1
i (Ai +BiFi)Φi, Φ

−1
i BiGi), i = 1, . . . ,N, (5.147)

where (A, B) is a controllable pair. Consider LQR problem (3.65) with tuning parameters
(Q1, Q2, R) for NL = dmax +1 identical systems with dynamics described by the pair (A, B),
dmax denoting the maximum vertex degree of the associated graph. Define matrices P, P̃2

as in (3.71), (3.72), respectively, and let K1 = −R−1B′P, K2 = R−1B′P̃2. Let also matrix
M ∈ RN×N be a symmetric matrix with the following property:

λi(M)>
NL

2
, ∀ λi(M) ∈ S(M)\{0}, (5.148)

and construct a state-feedback controller as:

K̂ = (diag(F1, . . . ,FN)+diag(G1, . . . ,GN)(IN ⊗K1+M⊗K2)diag(Φ−1
1 , . . . ,Φ−1

N ). (5.149)

Then, the closed-loop matrix

Acl = diag(A1, . . . ,AN)+diag(B1, . . . ,BN)K̂, (5.150)

is Hurwitz.
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Proof. We define matrix Φ̄ as:

Φ̄ = diag(Φ1, . . . ,ΦN). (5.151)

From Theorem 5.2.3, matrices Φi, i = 1, . . . ,N, are nonsingular, hence Φ̄ is also nonsingular.
Eq. (5.147) implies

IN ⊗A = Φ̄
−1diag(A1 +B1F1, . . . ,AN +BNFN)Φ̄, (5.152)

IN ⊗B = Φ̄
−1diag(B1G1, . . . ,BNGN), (5.153)

or

Φ̄(IN ⊗A)Φ̄−1 = diag(A1 +B1F1, . . . ,AN +BNFN), (5.154)

Φ̄(IN ⊗B) = diag(B1G1, . . . ,BNGN). (5.155)

Then, expanding Acl as:

Acl = diag(A1 +B1F1, . . . ,AN +BNFN)︸ ︷︷ ︸
a1

+diag(B1G1, . . . ,BNGN)︸ ︷︷ ︸
b1

(IN ⊗K1 +M⊗K2)Φ̄
−1, (5.156)

and substituting a1 and b1 using (5.154) and (5.155), respectively, (5.156) becomes:

Acl = Φ̄(IN ⊗A)Φ̄−1 + Φ̄(IN ⊗B)(IN ⊗K1 +M⊗K2)Φ̄
−1, (5.157)

which can be written as:

Acl = Φ̄(IN ⊗A+(IN ⊗B)(IN ⊗K1 +M⊗K2))Φ̄
−1. (5.158)

From (5.158), matrices Acl , IN ⊗A+(IN ⊗B)(IN ⊗K1 +M ⊗K2) are similar. Also, from
Theorem 3.3.14, IN ⊗A+(IN ⊗B)(IN ⊗K1+M⊗K2) is a Hurwitz matrix which implies that
the closed-loop matrix Acl is also Hurwitz. This proves the theorem.

The main consequences of Theorem 5.4.1 are summarized as follows:

1) The state-feedback controller K̂ in (5.149) has a distributed sparsity pattern provided
that M ∈ K N

1,1(G ).
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2) We can use any method for designing matrices K1, K2, and M that guarantees stability
of the closed-loop system IN ⊗A+(IN ⊗B)(IN ⊗K1 +M⊗K2).

3) The latter consequence implies that matrix M may be consistent with the topology
of a connected digraph. This elegant feature stems from the specific structure of the
model-matching problem defined in Section 5.2.

4) In the setting of Theorem 5.4.1, the closed-loop stability of the distributed scheme is
irrespective of the particular tuning of the LQR performance index. Thus, selecting an
optimal target model (A, B) thereby minimizing the joint model-matching energy loss
in a certain sense, network’s performance can effectively be controlled via the tuning
parameters Q1, Q2, R.

As concluded in the second and third consequence above, network’s stability is guaranteed
as long as matrix IN ⊗A+(IN ⊗B)(IN ⊗K1 +M⊗K2) is Hurwitz. As shown in Chapter 4,
since matrices K1, K2, M can also be defined for networks with directed interconnection
topology via either the top-down or bottom-up method, the proposed model-matching
distributed scheme can then be generalized towards this direction. This is summarized
in the following theorem.

Theorem 5.4.2. Let N controllable pairs (Ai, Bi), i = 1, . . . ,N, with Ai ∈ Rn×n, Bi ∈ Rn×m,
have identical sets of controllability indices. Let also matrices A, B, Fi, Gi, and Φi be defined
as in Theorem 5.2.3, such that

(A, B) = (Φ−1
i (Ai +BiFi)Φi, Φ

−1
i BiGi), i = 1, . . . ,N, (5.159)

where (A, B) is a controllable pair. Consider LQR problem (3.65) with tuning parameters
(Q1, Q2, R) for NL = dmax +2 identical systems with dynamics described by the pair (A, B),
dmax denoting the maximum vertex in-degree of the associated digraph. Define matrices P,
P̃2 as in (3.71), (3.72), respectively, and let K1 =−R−1B′P, K2 = R−1B′P̃2. Let also matrix
M ∈ RN×N be a real matrix with the following property:

Re(λi(M))>
NL

2
, ∀ λi(M) ∈ S(M)\{0}, (5.160)

and construct a state-feedback controller as:

K̂ = (diag(F1, . . . ,FN)+diag(G1, . . . ,GN)(IN ⊗K1+M⊗K2)diag(Φ−1
1 , . . . ,Φ−1

N ). (5.161)
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Then, the closed-loop matrix

Acl = diag(A1, . . . ,AN)+diag(B1, . . . ,BN)K̂, (5.162)

is Hurwitz.

Proof. As shown in Theorem 5.4.1, matrix Acl is similar to IN ⊗A+(IN ⊗B)(IN ⊗K1+M⊗
K2) which is a Hurwitz matrix from Theorem 4.3.4. This proves the theorem.

5.5 Numerical example: stabilization of network of non-
identical oscillators

We consider a network of eleven harmonics oscillators, each one modelled by a two-mass-
two-spring system depicted in Fig. 5.5. The i-th oscillator is composed of two masses, mi,1

ki,1 mi,1

ui,1 ui,2
ki,2 mi,2

Fig. 5.5 Two-mass-two-spring harmonic oscillator.

and mi,2, which are connected through a spring, with spring constant ki,2, with the mass
mi,1 being attached to a rigid object through a spring with spring constant ki,1. Two input
forces ui,1 and ui,2 are applied on mi,1 and mi,2, respectively. The displacement of the two
masses from their equilibrium position are represented by xi,1 and xi,2, respectively, with
i = 1, . . . ,11. The state-space forms of the eleven oscillators are written as follows:


ẋi,1

ẍi,1

ẋi,2

ẍi,2

=


0 1 0 0

−ki,1−ki,2
mi,1

0 ki,2
mi,1

0

0 0 0 1
ki,2
mi,2

0 −ki,2
mi,2

0


︸ ︷︷ ︸

Ai


xi,1

xi,2

ẋi,1

ẋi,2

+


0 0
1

mi,1
0

0 0
0 1

mi,2


︸ ︷︷ ︸

Bi

[
ui,1

ui,2

]
, i = 1, . . . ,11. (5.163)

Parameters of all oscillators are summarized in Table 5.1. State-space forms (5.163) are
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Table 5.1 Masses and spring constants

System ki,1 ki,2 mi,1 mi,2
oscillator 1 1.50 N/m 1.00 N/m 1.10 kg 0.90 kg
oscillator 2 3.10 N/m 2.00 N/m 2.10 kg 1.50 kg
oscillator 3 0.50 N/m 1.10 N/m 1.50 kg 3.20 kg
oscillator 4 2.00 N/m 1.30 N/m 3.10 kg 2.10 kg
oscillator 5 1.70 N/m 3.10 N/m 4.10 kg 2.50 kg
oscillator 6 2.20 N/m 4.20 N/m 5.10 kg 4.20 kg
oscillator 7 4.10 N/m 2.50 N/m 1.20 kg 5.10 kg
oscillator 8 2.50 N/m 1.80 N/m 5.10 kg 2.30 kg
oscillator 9 10.5 N/m 30.3 N/m 1.30 kg 1.20 kg
oscillator 10 2.70 N/m 0.80 N/m 1.40 kg 5.20 kg
oscillator 11 5.20 N/m 2.20 N/m 3.50 kg 2.40 kg

clearly in controllable canonical form. Thus, matrices (Ai, Bi) may be written as:

Ai =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Āc

+


0 0
1 0
0 0
0 1


︸ ︷︷ ︸

B̄c

[−ki,1−ki,2
mi,1

0 ki,2
mi,1

0
ki,2
mi,2

0 −ki,2
mi,2

0

]
︸ ︷︷ ︸

Am,i

, i = 1, . . . ,11, (5.164a)

Bi =


0 0
1 0
0 0
0 1


︸ ︷︷ ︸

B̄c

[
1

mi,1
0

0 1
mi,2

]
︸ ︷︷ ︸

Bm,i

, i = 1, . . . ,11, (5.164b)

respectively. The pair (Āc, B̄c) denotes the Brunovsky form which is clearly identical to
all systems (Ai, Bi), i = 1, . . . ,11. Obviously, systems (Ai, Bi), i = 1, . . . ,11, have identical
controllability indices which are identified here as µ1 = 2 and µ2 = 2.

We use a graph representation of the interaction between neighboring oscillators. Two
interconnection schemes are assumed for simulation purposes, identical to those considered
in the numerical study of Chapter 4. For convenience these are also shown in Fig. 5.6. Each
graph indicates that if an edge (i, j), i, j = 1, . . . ,11, i ̸= j is present then the j-th oscillator
has full information about the state of the i-th oscillator. We denote the Laplacian matrix of
graph G11 shown in Fig. 5.6a by LG,11 and the in-degree Laplacian matrix of digraph D11

shown in Fig. 5.6b by LD,11. These have been defined in (4.197) and (4.198), respectively.
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(a) Graph G11.
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(b) Digraph D11.

Fig. 5.6 Interconnection schemes of eleven oscillators.

For each topology scheme shown in Fig. 5.6, we wish to solve the following regulator
problem:

min
û

J(û, x̂0) subject to: (5.165a)

J(û, x̂0) =
∫

∞

0

(
x̂′Q̂x̂+ û′R̂û

)
dt (5.165b)

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0 (5.165c)

û = (diag(F1, . . . ,FN)

+diag(G1, . . . ,GN)(IN ⊗K1 +M⊗K2)diag(Φ−1
1 , . . . ,Φ−1

N ))x̂, , (5.165d)

where

Â = diag(A1, . . . ,AN), (5.166)

B̂ = diag(B1, . . . ,BN), (5.167)

and

Q̂ = IN ⊗Q1 +LG,11 ⊗Q2, (5.168)

R̂ = IN ⊗R. (5.169)

Note that LG,11 in (5.168) is the Laplacian matrix of the graph G11. This symmetric selection
of Q̂ is in force for both interconnection schemes. We follow a two-stage control design as
suggested earlier in the chapter. First, we construct the model-matching design parameters
Fi, Gi, Φi, i = 1, . . . ,11. Since systems (Ai, Bi), i = 1, . . . ,11, are in controllable canonical
form, matrices Φi, i = 1, . . . ,11, can automatically be selected as the identity matrix. Setting
Gi = B−1

m,i, i = 1, . . . ,11, we design model-matching state-feedback gains Fi, i = 1, . . . ,11, in
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the following fashion. We consider two model-matching performance indexes represented by

Javer(Am) =
N

∑
i=1

∥Fi∥2
F =

N

∑
i=1

∥B−1
m,i(Am −Am,i)∥2

F , (5.170)

and
Jmax(Am) = max

i∈[1:11]
∥Fi∥2

F = max
i∈[1:11]

∥B−1
m,i(Am −Am,i)∥2

F , (5.171)

respectively. Obviously, minimizing these two cost functions over matrices in R2×4 results
in two different target models which are used later in the simulations. We denote by A∗

m,aver

the minimal solution of
min Javer(·), (5.172)

and by A∗
m,max the approximate minimizer of the minimax problem:

min Jmax(·), (5.173)

derived from the efficient minimax algorithm discussed in Section 5.3.1. The least-squares
solution results in

A∗
m,aver =

[
−1.8534 0 1.0178 0
0.9168 0 −0.9168 0

]
, (5.174)

while the minimax algorithm after 67 iterations converges to

A∗
m,max =

[
−7.7488 0 5.6556 0
6.7050 0 −6.7050 0

]
, (5.175)

with the convergence error set to 10−5. Note the relatively large distance between matrices
A∗

m,aver and A∗
m,max. This stems from the extreme choice of high springs’ stiffness of oscillator

9 as seen in Table 5.1. In essence, the least-squares solution A∗
m,aver attempts to achieve the

average of ∥Fi∥2
F , i = 1, . . . ,11, while the approximate minimizer A∗

m,max is clearly attracted
from the outlier matrix Am,9. The optimal model of the target system arising from the
minimization of the two performance indexes above, is obtained from (Āc + B̄cA∗

m, B̄c), A∗
m

denoting each particular optimal solution (5.174), (5.175), respectively.
An alternative target model selection is outlined next. As mentioned in Section 5.2, it is

possible to achieve a target model with certain performance specifications. As a third target
choice, we require the eigenvalues of the target system lie in the cone represented by two line
segments starting at the origin, each line segment forming an angle of π/3 with the negative
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real axis. Requiring λ = 0, ρ = 0, θ = π/3 and solving

min
γ>0

γ subject to: (5.69), (5.176)

we get

A∗
m,LMI =

[
−0.9259 0 −2.2734 0

0 −0.9257 0 −2.2733

]
. (5.177)

Having obtained three different target models, the corresponding model-matching state-
feedback gains for each choice are obtained from:

Fi = B−1
m,i(A

∗
m −Am,i), i = 1, . . . ,11, (5.178)

substituting A∗
m,aver, A∗

m,max, A∗
m,LMI into A∗

m, respectively.
In the second stage of the control design, we define matrices K1, K2, M such that

the control law in (5.165d) is stabilizing. The top-down approach is adopted next. The
maximum vertex degree of G11 is dmax,G11 = 4 while the maximum vertex in-degree of D11

is dmax,D11 = 3, as seen in Fig. 5.6a, 5.6b, respectively. For each target system represented
as (A, B), we solve LQR problem (3.65) for NL = 5 systems (A, B) with tuning parameters
(Q1, Q2, R). This choice of NL systems corresponds to either dmax,G11 +1 or dmax,D11 +2
which clearly coincide. This implies that matrices K1, K2 are chosen independently of the
interconnection scheme. For a particular choice of (Q1, Q2, R) matrices K1, K2 are defined
as

K1 =−R−1B′P, (5.179)

K2 = R−1B′P̃2, (5.180)

where P, P̃2 are associated to ARE (3.71), (3.72), respectively.
The stability of each topology is guaranteed by appropriate selection of matrix M. Cal-

culating the eigenvalues of matrices LG,11, LD,11 and choosing M = βL , L denoting the
Laplacian matrix of each topology, from Theorem 3.3.14 and 4.3.4, the closed matrix

Acl,11 = I11 ⊗A+(I11 ⊗B)(I11 ⊗K1 +M⊗K2), (5.181)

is guaranteed to be Hurwitz for all β > 2.5. Here, we choose β = 2.6 for both interconnection
schemes.

The simulation results are presented for two different choices of the tuning parameters
(Q1, Q2, R). The first choice penalizes more heavily the local displacements xi,1, xi,2 than
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Table 5.2 Dominant eigenvalues of the overall closed-loop distributed system with undirected
topology for three selections of target model

Undirected minimax least-squares LMI

Q1 = Q2 −0.1369± i3.6642 −0.3129± i1.5991 −0.8446± i0.0000
−0.1766± i3.6677 −0.3930± i1.6324 −1.1631± i0.0000
−0.5092± i3.6794 −0.5467± i1.6839 −1.6134± i0.0000
−0.4931± i3.6796 −0.6679± i1.7136 −1.3887± i0.0000

Q1 = 0.0001Q2 −0.0137± i3.6616 −0.0319± i1.5683 −0.5348± i0.0000
−0.0490± i1.0243 −0.0886± i0.5652 −1.7408± i0.0000
−2.0748± i7.1738 −2.1406± i6.5086 −3.0436± i6.0379
−2.1612± i6.4145 −2.1961± i6.3573 −3.0437± i6.0379

the second and uses Q1 = diag(1,1,0,0), Q2 = Q1, R = I2. Velocities of mass displace-
ments are not weighted in this simulation study. In the second choice, LQR cost function
is tuned to place more emphasis on the relative state information (xi − x j), by selecting
Q1 = diag(0.01,0.01,0,0), Q2 = diag(100,100,0,0), R = I2. Identical initial conditions are
considered for all simulations.

Mass displacements of each oscillator with LQR performance index tuned to weigh
equally local and relative state displacements are illustrated in Fig. 5.7-5.18 for both undi-
rected and directed interconnection schemes. As indicated in these figures, the stable
operation for both undirected and directed distributed schemes is irrespective of the tar-
get choice. However, the behavior of the network is fundamentally altered when a target
model is selected to satisfy the performance specifications defined earlier. This difference in
network’s behavior is illustrated in Fig. 5.9, 5.12, 5.15 and 5.18 where systems depict an
overdamped response complied with the specifications, in contrast to the oscillatory behavior
demonstrated when an optimal target model is chosen. This drastic change in network’s
operation with respect to target selection is more amplified when LQR cost function penal-
izes heavily the relative state difference between neighboring oscillators. This is evident for
both topologies as shown in Fig. 5.19-5.30. We emphasize here that the highly oscillatory
behavior illustrated in these figures stems from the extremely low choice of matrix Q1 in the
local LQR problem (A, B, Q1, R) resulting in a closed-loop matrix A−R−1B′P with some
eigenvalues lying near the imaginary axis (cf. Table 5.2). This may be rectified, if desired,
by adjusting appropriately this tuning parameter. As a result, it is seen that the performance
of the large-scale distributed control system is effectively controlled by tuning appropriately
the LQR cost function. Clearly, this is more evident when the collective model-matching
control effort is minimized, a fact that highlights a powerful feature of our model-matching
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Fig. 5.7 Displacement of m1 for tuning parameters Q1 = Q2, undirected topology and least-
squares target selection.
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Fig. 5.8 Displacement of m1 for tuning parameters Q1 = Q2, undirected topology and
minimax target selection.
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Fig. 5.9 Displacement of m1 for tuning parameters Q1 = Q2, undirected topology and target
system with performance specifications.
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Fig. 5.10 Displacement of m2 for tuning parameters Q1 = Q2, undirected topology and
least-squares target selection.
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Fig. 5.11 Displacement of m2 for tuning parameters Q1 = Q2, undirected topology and
minimax target selection.
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Fig. 5.12 Displacement of m2 for tuning parameters Q1 = Q2, undirected topology and target
system with performance specifications.
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Fig. 5.13 Displacement of m1 for tuning parameters Q1 = Q2, directed topology and least-
squares target selection.
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Fig. 5.14 Displacement of m1 for tuning parameters Q1 = Q2, directed topology and minimax
target selection.
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Fig. 5.15 Displacement of m1 for tuning parameters Q1 = Q2, directed topology and target
system with performance specifications.

0 5 10 15

Time [sec]

-4

-2

0

2

4

D
is

p
la

c
e
m

e
n
t 
o

f 
m

2
 [

m
]

Directed topology, average target

Fig. 5.16 Displacement of m2 for tuning parameters Q1 = Q2, directed topology and least-
squares target selection.
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Fig. 5.17 Displacement of m2 for tuning parameters Q1 = Q2, directed topology and minimax
target selection.
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Fig. 5.18 Displacement of m2 for tuning parameters Q1 = Q2, directed topology and target
system with performance specifications.
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Fig. 5.19 Displacement of m1 for tuning parameters Q2 = 10000Q1, undirected topology and
least-squares target selection.
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Fig. 5.20 Displacement of m1 for tuning parameters Q2 = 10000Q1, undirected topology and
minimax target selection.
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Fig. 5.21 Displacement of m1 for tuning parameters Q2 = 10000Q1, undirected topology and
target system with performance specifications.
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Fig. 5.22 Displacement of m2 for tuning parameters Q2 = 10000Q1, undirected topology and
least-squares target selection.
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Fig. 5.23 Displacement of m2 for tuning parameters Q2 = 10000Q1, undirected topology and
minimax target selection.
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Fig. 5.24 Displacement of m2 for tuning parameters Q2 = 10000Q1, undirected topology and
target system with performance specifications.
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Fig. 5.25 Displacement of m1 for tuning parameters Q2 = 10000Q1, directed topology and
least-squares target selection.
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Fig. 5.26 Displacement of m1 for tuning parameters Q2 = 10000Q1, directed topology and
minimax target selection.
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Fig. 5.27 Displacement of m1 for tuning parameters Q2 = 10000Q1, directed topology and
target system with performance specifications.
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Fig. 5.28 Displacement of m2 for tuning parameters Q2 = 10000Q1, directed topology and
least-squares target selection.
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Fig. 5.29 Displacement of m2 for tuning parameters Q2 = 10000Q1, directed topology and
minimax target selection.
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Fig. 5.30 Displacement of m2 for tuning parameters Q2 = 10000Q1, directed topology and
target system with performance specifications.
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control approach. Similarly, enforcing a target model with certain dynamical requirements
may be beneficial for the distributed control scheme for performance specifications which
can not be imposed through the tuning parameters Q1, Q2, R, in a straightforward manner.

5.6 Conclusion

In this chapter, we have attempted to remove the restrictive assumption of identical system
dynamics considered in two well-established distributed control methods. Via a two-stage
control strategy, we have shown that this technical limitation can be relaxed with more
natural requirements. In particular, we assume that agents constituting the network belong
to the family of linear systems completely characterized by identical sets of controllability
indices. The first stage of the method solves model-matching problems and synthesizes local
state-feedback controllers defined such that the closed-loop agents are mapped to a target
model. In the second stage of the method, the distributed control scheme is designed on the
target dynamics via either the top-down or bottom-up method. Essentially, it is emphasized
that any stabilizing distributed state-feedback scheme designed on the target dynamics, can
be adopted in the present setting. This feature is indicative of the high flexibility of our
approach. It has also been highlighted that the selection of the target model can be specified
such that the perturbations in the systems’ models produced by state-feedback controllers
are minimal in a well-defined sense. The definition of the target model can then be attained
by minimizing a certain measure of the joint model-matching control effort. In this respect,
the closed-loop network performance depends primarily on the LQR optimality criterion.
It will be shown that the model-matching approach to the distributed control design can be
extended to a certain class of heterogeneous interconnected agents with nonlinear dynamics.
This is studied in the following chapter.



Chapter 6

Feedback linearization and
model-matching of nonlinear systems

6.1 Introduction

The chapter deals with a special family of nonlinear systems which are referred to as feedback
linearizable systems. This characterization stems from the claim that certain nonlinear
systems can be described by a set of linear equations by making an appropriate change of
coordinates and applying a nonlinear state-feedback control law. Then, these linear equations
can further be transformed to the Brunovsky canonical form completely characterized by
the set of controllability indices as shown in Chapter 5. This method is called feedback
linearization and has been broadly studied in the literature. Motivated by this well-established
technique, our aim here is primarily to solve model-matching type problems over a set of
nonlinear systems via feedback linearization control. In view of this objective and based on
the results of the previous chapter, we show that, in a network setup with self-linearizable
agents mapped to a specific linear target model via model-matching operations, the regulation
problem can be solved via linear LQR-based control as evidenced in the previous chapter.

Reviewing first some useful results of differential geometry, we introduce necessary
and sufficient conditions for feedback linearization of a class of nonlinear systems. Then,
we define the model-matching problem over a set of systems as a linearization problem of
multiple nonlinear models that are mapped to a certain linear system via nonlinear feedback
control and a change of coordinates. The matching dynamics referred to as target model, can
either be specified a priori or obtained by optimizing a model-matching performance index.
The second selection strategy effectively suggests that a linear target system may be derived
such that the perturbations in the agents’ models produced by nonlinear feedback control
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are minimal. In the linear case studied in Chapter 5, these perturbations were expressed
as quadratic functions of some vector variable. However, in the present setting, defining a
performance index of model-matching energy loss results in a highly nonlinear function the
minimization of which can not be tackled straightforwardly. This is mainly due to nonlinear
dependence of the cost function on state variables. This peculiarity is addressed by defining
local cost functions expressed as weighted average model-matching energy measures over a
specific range of the state-space in which state-vectors are distributed according to a joint
density function. The latter may be utilized to emphasize/de-emphasize a specific region of
the state-space and can be designed irrespective of the statistics of the state variables. It will
be shown that the definition of weighted average cost functions simplifies the optimization
problem significantly and allows for an optimal target solution independent of state variables.

The family of nonlinear systems studied in this chapter are described by a set of equations
of the form:

ẋ(t) = f[x(t)]+
m

∑
j=1

u j(t)g j[x(t)], x(0) = x0, (6.1)

where x(t) ∈Rn, u j ∈R, j = 1, . . . ,m, and f, g1, . . . ,gm are vector fields on Rn. In the sequel,
f(x(t)) and g j(x(t)) are denoted as f[x(t)] and g j[x(t)], respectively, for clarity. Vector fields
are defined precisely in Section 6.2 below. Here, we focus on nonlinear systems described
by (6.1) which are assumed to be (locally) reachable at all points in some neighborhood of
x0 ∈ Rn. The notion of local reachability is clearly defined in the next section along with
some useful results of differential geometry. A thorough study of this subject can be found in
[216]. We remark that differential geometric methods, utilized throughout the chapter, can
also be applied to the general class of nonlinear systems with n states and m inputs described
by

ẋ(t) = f[x(t),u(t)]. (6.2)

However, due to an enormous increase in complexity in this case, and in order to keep the
subsequent technical analysis as simple as possible, we consider the less general, linear in
control class of systems described by (6.1).

6.2 Basic results of differential geometry

First, we recall the well-known inverse function theorem and then we introduce the notions
of a vector field, a form and various types of Lie derivatives.

Let f : Rn → Rn and suppose each component of f is continuously differentiable with
respect to each of its arguments. The latter can also be described by saying that f is C 1.
Then, the m×n matrix whose (i, j)-entry is ∂ fi/∂x j is called the Jacobian matrix of f and is
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denoted as ∂ f/∂x. We say that f is smooth if every component of f has continuous derivatives
of all orders with respect to all combinations of its arguments. Let now U , V be open subsets
of Rn and f : U →V be C 1. It is said that f is a diffeomorphism of U onto V if:

(i) f(U) =V .

(ii) f is one-to-one.

(iii) The inverse function f−1 : V →U is also C 1.

Then, f is called a smooth diffeomorphism if both f and f−1 are smooth functions. We now
present the inverse function theorem as stated in [216].

Theorem 6.2.1 (Inverse Function Theorem, [216]). Suppose f : Rn → Rn is C 1 at x0 ∈ Rn

and let y0 = f(x0). Let [∂ f/∂x]x=x0 be nonsingular. Then, there exist open sets U ⊆ Rn

containing x0 and V ⊆ Rn containing y0 such that f is a diffeomorphism of U onto V . If, in
addition, f is smooth, then f−1 is also smooth, i.e., f is a smooth diffeomorphism.

We note that all diffeomorphisms considered throughout the chapter are assumed to be
smooth, hence the term smooth is often omitted unless necessary.

In the sequel, an open set of Rn is denoted as X ⊆ Rn, n representing the state-dimension
of the system under study.

Definition 6.2.1. A vector field on X is a smooth function mapping X into Rn. The set of all
vector fields on X is denoted by V (X).

Definition 6.2.2. The set of all smooth real-valued functions mapping X into R is denoted
by S(X).

For a,b ∈ S(X) and f,g ∈V (X) the following hold true:

a(f+g)=af+ag

(a+b)f=af+bf

(ab)f=a(bf)

We also state the following definition.

Definition 6.2.3. A form on X is a smooth function mapping X into (Rn)∗, which is the set
of 1×n row vectors. The set of all forms on X is denoted by F(X).
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Clearly, from Definition 6.2.1 and 6.2.3, if f ∈ V (X) then f′ ∈ F(X). Next, we define
some basic operations involving vector fields, forms and smooth real-valued functions.

Suppose x0 ∈ X is given. A curve in X passing through x0 is a smooth function c mapping
some open interval (−a, b) containing 0 into X , such that c(0) = x0. Let now f be a vector
field on X and that x0 ∈ X be given, and suppose that there exists a unique solution of the
differential equation

d
dt

x(t) = f[x(t)], x(0) = x0, (6.3)

for sufficiently small values of t. Then, solution x(·) viewed as a function of t, defines a
curve passing through x0 which is called the integral curve of f and is denoted as sf,t(x0).

Next, we define the transformation of a vector field under a change of coordinates. Let
f ∈V (X), x0 ∈ X be given and also T be a (smooth) diffeomorphism in some neighborhood
of x0. Defining change of coordinates y = T (x), with x(t) satisfying (6.3), then differentiating
y(t) = T [x(t)] yields

ẏ(t) = J[x(t)]f[x(t)] = [Jf][T−1y(t)], (6.4)

where J denotes the Jacobian of T . Thus, in the new coordinates, vector field f becomes

fT (y) = J[T−1(y)]f[T−1(y)]. (6.5)

6.2.1 Lie algebra

Suppose a ∈ S(X), i.e., a is a smooth real-valued function on X (cf. Definition 6.2.2). Then,
its gradient, denoted by ∇a or da, is defined as the row vector

∇a = da =
[
∂a/∂x1 · · · ∂a/∂xn

]
. (6.6)

Clearly, da ∈ F(X), i.e., is a form on X . Next, we give the definition of a Lie derivative.

Definition 6.2.4. Let a ∈ S(X) and f ∈V (X). Then, the map

x → da(x)f(x) : X → R, (6.7)

denoted by Lfa, is smooth and is called Lie derivative of function a with respect to vector
field f.

Clearly, Lfa ∈ S(X). Interpreting Lfa as the derivative of a along integral curves of vector
field f, we note that

Lfa(x) = lim
t→0

1
t
{a[sf,t(x0)]−a(x0)}. (6.8)
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Suppose, now, h ∈ F(X), i.e., h is a form on X . Then, the map

x → h(x)f(x), (6.9)

is smooth and real-valued and is denoted by <h, f>. The quantity <h, f> ∈ S(X) and is called
the inner product of the form h and the vector field f.

A form h is called exact if there exists a smooth function a ∈ S(X) such that h = da. To
determine whether a given form is exact or not we may perform the following procedure:
Let X is an open ball in Rn, i.e., a set of the form {x : ∥x− x0∥< ε}, for some x0 and ε > 0
and construct n×n matrix Jh whose (i, j)-entry is ∂h j/∂xi. Then h is exact if and only if Jh

is a symmetric matrix for all x ∈ X .
We introduce now the definition of Lie bracket.

Definition 6.2.5. Suppose f, g ∈V (X). Then, the Lie bracket of f and g is denoted by [f, g]
and is the vector field defined by

[f, g] =
∂g
∂x

f− ∂ f
∂x

g. (6.10)

Suppose f(x), g(x) are two given vector fields and consider a change of coordinates y =
T (x). Then, as seen in (6.5), f(x) and g(x) are transformed into fT (y) and gT (y), respectively.
The Lie bracket of the vector fields after the coordinate change is computed as follows

{J(x)[f, g](x)}x=T−1(y) =
∂gT (y)

∂y
fT (y)−

∂ fT (y)
∂y

gT (y). (6.11)

The next lemma relates repeated Lie derivatives to the Lie bracket. Its proof which is omitted
can be found in [216].

Lemma 6.2.2. Suppose a ∈ S(X) and f, g ∈V (X). Then,

L[f, g]a = Lf(Lga)−Lg(Lfa). (6.12)

Before proceeding to more properties of Lie derivatives, it is useful to define matrix ∇2a,
with a ∈ S(X), to be the symmetric n×n matrix whose (i, j)-entry is ∂ 2a/∂xi∂x j. Matrix
∇2a is called the Hessian matrix of a.

Definition 6.2.6. let f ∈V (X) and that h ∈ F(X). Then, the Lie derivative of h with respect
to f is also a form and is defined as

Lfh = f′
(∂h′

∂x

)′
+h

∂ f
∂x

. (6.13)
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We summarize now the three types of Lie derivatives defined so far. Let f, g ∈ V (X),
a ∈ S(X) and h ∈ F(X). Then, the Lie derivative of the vector field g with respect to f is just
the Lie bracket [f, g]. The Lie derivative of the smooth function a with respect to f is the
smooth real-valued function ∇af. The Lie derivative of the form h with respect to f is given
by (6.13). Note that the lie derivative of a vector field, a real-valued function and a form are
again respectively a vector field, a real-valued function and a form. These derivatives can be
related via a Leibniz type of product formula given in the following lemma.

Lemma 6.2.3. Suppose f, g ∈V (X) and h ∈ F(X). Then,

Lf<h, g> = <Lfh, g>+<hLf, g>. (6.14)

Some other properties of the Lie bracket which are ready consequences of the definition
are listed in the following lemma.

Lemma 6.2.4. Let f, g, h ∈V (X), a ∈ S(X) and β , γ ∈ R. Then,

[f, βg+ γh] = β [f, g]+ γ[f, h], (6.15)

[f, g] =−[g, f], (6.16)

[f, [g, h]]+ [g, [h, f]]+ [h, [f, g]] = 0, (6.17)

[f, βg] = β [f, g]+(Lfβ )g. (6.18)

Suppose now f1, . . . , fk ∈V (X) and x0 ∈ X . Then, we say that vector fields f1, . . . , fk are
linearly independent at x0 if the column vectors f1(x0), . . . , fk(x0) are linearly independent.
Linear independence of forms is defined in the same manner. Obviously, by virtue of
continuity, if f1, . . . , fk are linearly independent at x0, then, they are essentially linearly
independent at all points in some neighborhood of x0, i.e., in an open set containing x0.

We conclude the section by denoting repeated Lie brackets of vector fields. For con-
venience, we introduce the "ad" symbol. For f, g ∈ V (X) and defining ad0

f g = g, we may
write

adi+1
f g = [f, adi

fg]. (6.19)

For instance,

ad1
f g = [f, g], (6.20)

ad2
f g = [f, [f, g]], (6.21)

ad3
f g = [f, [f, [f, g]]]. (6.22)
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6.2.2 Distributions and the Frobenius theorem

The main result of differential geometry presented in this section is the Frobenius theorem.
Before we state the theorem, we introduce some useful concepts such as submanifolds,
distributions and involutivity.

Definition 6.2.7. A subset M ⊆ X is a k-dimensional submanifold (k < n) of X if it possesses
the following property: For each x0 ∈ M, there exists an open set U ⊆ X containing x0 and
smooth functions φk+1, . . . ,φn ∈ S(X) such that

(i) {dφi(x), i = k+1, . . . ,n} is a linearly independent set of row vectors for all x ∈U ,

(ii) U ∩M = {x ∈U : φi(x) = 0 for i = k+1, . . . ,n}.

In view of this definition, subset M may be interpreted locally as a k-dimensional surface
in X defined by n− k equations φi(x) = 0, with i = k+ 1, . . . ,n. We remark here that, in
general, these functions are not unique. We also present the following result.

Lemma 6.2.5 ([216]). Suppose M is a k-dimensional submanifold of X. Suppose x0 ∈M, and
that there exist open sets U, V ∈ X, each containing x0, and smooth functions φk+1, . . . ,φn ∈
S(X), ψk+1, . . . ,ψn ∈ S(X), such that

(i) the set {dφk+1(x), . . . ,dφn(x)} is linearly independent for all x ∈V ,

(ii) the set {dφi(x), i = k+1, . . . ,n} is linearly independent for all x ∈U,

(iii) U ∩M = {x ∈U : φi(x) = 0 for i = k+1, . . . ,n},

(iv) V ∩M = {x ∈V : ψi(x) = 0 for i = k+1, . . . ,n}.

Under these conditions, the following statement is true for each x ∈ U ∩V : The (n− k)-
dimensional subspace of (Rn)∗ spanned by row vectors {dφk+1(x), . . . ,dφn(x)} is identical
to (n− k)-dimensional subspace of (Rn)∗ spanned by row vectors {dψk+1(x), . . . ,dψn(x)}.

The tangent space of a k-dimensional submanifold is defined next.

Definition 6.2.8. Suppose M is a k-dimensional submanifold of X , and choose smooth
functions φk+1, . . . ,φn such that the conditions of Definition 6.2.7 are satisfied. Then, the
tangent space of M at x ∈ M is the k-dimensional subspace of Rn defined by

T Mx = {v ∈ Rn : <dφi(x), v> = 0, for i = k+1, . . . ,n}. (6.23)

A vector field f ∈V (X) is said to be tangent to M at x if f(x) ∈ T Mx.
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From Lemma 6.2.5, it follows straightforwardly that the above definition of T Mx does not
depend on the particular choice of functions φi used to represent M in the vicinity of x. This
indicates that T Mx is just the k-dimensional subspace of column vectors that are annihilated
by the subspace spanned by the n− k row vectors dφk+1(x), . . . ,dφn(x).

Next, we show how to compute submanifolds using a change of coordinates. Let M be a k-
dimensional submanifold of X and x0 ∈ M. Then, in view of Definition 6.2.7, there is an open
neighborhood U ⊆ X of x0 and smooth functions φk+1, . . . ,φn such that dφk+1(x), . . . ,dφn(x)
are linearly independent at all x ∈U and such that

U ∩M = {x ∈U : φi(x) = 0 for i = k+1, . . . ,n}, (6.24)

holds. Now select smooth functions φ1, . . . ,φk as φi = vi(x− x0) for i = 1, . . . ,k, where
v1, . . . ,vk is a set of constant row vectors chosen such that {dφi(x0), i = 1, . . . ,n} form a
(row) basis for Rn. Now define a map T : Rn → Rn as

y = T (x) =
[
φ1 · · · φk φk+1 · · · φn

]′
, (6.25)

with yi = φi, i = 1, . . . ,n as defined above. By construction, the Jacobian ∂J/∂x evaluated at
x0 is a nonsingular matrix. Thus, from the inverse function theorem (Theorem 6.2.1), T is
locally a diffeomorphism on some U0 ⊆U , with x0 ∈U0. Viewing y1, . . . ,yn as a new set of
coordinates on U0 and due to (6.24), we may write

M∩U0 =
{[

z′ 0′
]′

: z ∈ N ⊆ Rk}, (6.26)

where N is some neighborhood of 0 in Rk.
We also consider the tangent space of M in the new coordinates. In terms of the y

coordinates, it is clear that φi is the i-th coordinate of y. Hence, dφi is a row vector with a 1
in the i-th position and zeros elsewhere. Note that a column vector v is annihilated by each
of the elementary row vectors with a 1 in positions k+1, . . . ,n, respectively, if and only if
the last n− k components of v are zero. Thus, applying (6.23) we have

T My0 = {v ∈ Rn : v =
[
v1, . . . ,vn

]′
, vi = 0 for i = k+1, . . . ,n}, (6.27)
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with y0 = T (x0). Expression (6.27) implies that a vector field f is tangent to M at a point x0

if and only if the transformed vector field fT has the form:

fT (y) =

[
fa

0n−k

]
. (6.28)

Definition 6.2.9 ([216]). A k-dimensional distribution ∆ on X is a map which assigns, to
each x ∈ X , a k-dimensional subspace of Rn such that the following smoothness condition
is satisfied: For each x0 ∈ X there exist an open set U ⊆ X containing x0 and k vector fields
f1, . . . , fk such that (i) {f1(x), . . . , fk(x)} is a linearly independent set for each x ∈U , and (ii)

∆(x) = span{f1(x), . . . , fk(x)}, ∀x ∈U. (6.29)

In view of (6.29), a k-dimensional distribution may be defined as a map which assigns to
each x ∈ X a subspace of dimension no more than k, requiring that each open set U contain
at least one point y such that dim(∆(y)) exactly equals k. The latter leads to the following
definition.

Definition 6.2.10. Point x is said to be a regular point of distribution ∆ if there is a neighbor-
hood U of x such that the dimension of ∆(y) is the same for all y ∈U .

Now, if ∆ is a given distribution and f ∈V (X), then f belongs to ∆, denoted by f ∈ ∆, if
f(x) ∈ ∆(x) ∀x ∈ X . A k-dimensional distribution ∆ on X is said to be everywhere regular, if
dim(∆(x)) = k ∀x ∈ X .

Suppose ∆ is a k-dimensional distribution, that U ⊆X is an open set, and f1, . . . , fk ∈V (X),
m ≥ k, are vector fields that span ∆ on U . Let also f ∈ ∆. Then, there exist smooth functions
a1, . . . ,am ∈ S(X) such that

f =
m

∑
i=1

aifi, ∀x ∈U. (6.30)

Before stating the Frobenius theorem, we introduce the following definitions.

Definition 6.2.11. Let ∆ be a given k-dimensional, everywhere regular, distribution on X . For
each x ∈ X , suppose also that there exists a k-dimensional submanifold Mx of X containing x
such that every vector field f ∈ ∆ is tangent to Mx at x, i.e., T Mx = ∆(x). Then, distribution ∆

is said to be completely integrable, and Mx is said to be the integral manifold of ∆ passing
through x.

Definition 6.2.12. A distribution ∆ is involutive if [f, g] ∈ ∆ whenever f, g ∈ ∆.
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Immediate consequence of the latter definition is that a distribution is involutive if it
closed under the Lie bracket. In view of Definition 6.2.11, a natural question which arises
is when a distribution is completely integrable. The answer is provided by the Frobenius
theorem stated below.

Theorem 6.2.6 (Frobenius, [216]). A distribution is completely integrable if and only if it is
involutive.

From the Frobenius theorem, it turns out that a one-dimensional distribution ∆ is auto-
matically involutive, since [af, bf] ∈ spanf = ∆, with a, b ∈ S(X). Now, in order to check
whether a k-dimensional distribution is involutive or not, with k > 1, it is only necessary to
compute a finite number of Lie brackets. This is established in the following statement.

Proposition 6.2.7. Let ∆ denote a k-dimensional distribution on U ⊆ X such that

∆(x) = span{f1(x), . . . , fm(x)}, ∀x ∈U. (6.31)

Then, ∆ is involutive if and only if [fi, f j]∈∆∀i, j, i.e., there exist smooth functions ai jl ∈ S(U),
1 ≤ i, j, l ≤ m, such that

[fi, f j] =
m

∑
l=1

ai jl(x)fl(x), ∀x ∈U. (6.32)

This leads to the following result which represents an alternate form of the Frobenius
theorem stated earlier.

Theorem 6.2.8 (Alternate Frobenius, [216]). Suppose f1, . . . , fm ∈V (X), N ⊆ X is an open
set, x0 ∈ N and that the set f1(x), . . . , fm(x) contains k linearly independent vectors at each
x ∈ N. Then, there exist functions φk+1, . . . ,φn ∈ S(X) such that

(i) dφk+1(x0), . . . ,dφn(x0) are linearly independent,

(ii) there exists a neighborhood V ⊆ N of x0 such that

<dφi, f j>(x) = 0, ∀x ∈V, for k+1 ≤ i ≤ n, 1 ≤ j ≤ m, (6.33)

if and only if the distribution spanned by f1, . . . , fm is involutive, i.e., there exist smooth
functions ai jl and a neighborhood U ⊆ N of x0 such that (6.32) holds.
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Remark 6.2.9. Let vector fields f1, . . . , fk be given by

f1 =


1
0
...

0

 , · · · , fk =



0
...

0
1
0
...

0


, ∀x ∈ X . (6.34)

Clearly, fi is a constant vector field with a 1 in the i-th position and zeros elsewhere. Define
∆ = span{f1, . . . , fk}. Then, ∆ is a k-dimensional distribution consisting of all vector fields of
the form

f(x) =

[
fa(x)
0n−k

]
. (6.35)

It is clear that ∆ is completely integrable, thereby being involutive. Indeed, for x0 ∈ X , the
corresponding integral manifold Mx0 is the set

{x ∈ Rn : xi = x0,i, k+1 ≤ i ≤ n}, (6.36)

and functions φk+1, . . . ,φn ∈ S(X) satisfying (6.33) are given by

φi(x) = xi, i = k+1, . . . ,n. (6.37)

It is worth noting that all completely integrable k-dimensional distributions can be
generated by vector fields f(x) as in (6.35) via a suitable change of coordinates. Naturally, the
Frobenius theorem is not constructive in the sense that it does not show us how to construct
the coordinate transformation, it only guarantees that such a suitable transformation exists.

6.2.3 Reachability of nonlinear systems

In this paragraph, we present the notion of reachability of nonlinear systems of the form:

ẋ(t) = f[x(t)]+
m

∑
j=1

u j(t)g j[x(t)], x(0) = x0, (6.38)
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where f, g1, . . . ,gm are vector fields in V (X) and X ⊆ Rn is an open set. Given an initial
state x0, a system is said to be reachable in the sense that there is a control action that can
steer the system to any state contained in a neighborhood of x0. A more formal definition of
reachability is given next.

Definition 6.2.13. System (6.38) is said to be (locally) reachable around a state x0 ∈ X if
there exists a neighborhood U of x0 such that, for each x f ∈U , there exist a time τ > 0 and a
set of control inputs {ui(t), t ∈ [0, τ], i = 1, . . . ,m} such that, if the system starts in the state
x0 at time 0, then it reaches the state x f at time τ .

We remark that the above definition is purely local and pertains to systems reachable
nearby an initial state. All systems analysed in this chapter are assumed to be locally
reachable. Before presenting conditions for local reachability of system (6.38), we introduce
a few preliminary definitions along with some useful results.

Definition 6.2.14. Let ∆ be a distribution on X and f ∈V (X). Then ∆ is said to be invariant
under f, or f-invariant, if [f, h] ∈ ∆ ∀h ∈ ∆.

Consider now system (6.38) and construct a sequence of distributions in the following
manner.

Procedure 6.2.1 ([216]). Step 0: Set i = 0 and define

∆0 = span {g1, . . . ,gm}. (6.39)

Step 1: Let {hi
1, . . . ,h

i
ki
} be a set of vector fields that generate ∆i. Clearly, for i = 0, this

set spans distribution ∆0, with k0 = m. Check now if ∆i is involutive in some neighborhood
of x0 by checking whether each Lie bracket [h(i)

j , h(i)
l ] belongs to ∆i for j, l = 1, . . . ,ki.

Check also if ∆i is invariant under f by checking whether [f, h(i)
l ] ∈ ∆i for all j. If ∆i is both

involutive and invariant under f, stop.
Step 2: If ∆i is either not involutive or not invariant under f, then set i = i+1 and define

∆i+1 as

∆i+1 = span {h(i)
j , 1 ≤ j ≤ ki}∪{[h(i)

j , h(i)
l ], 1 ≤ j, l ≤ ki}∪{[f, h(i)

j ], 1 ≤ j ≤ ki}, (6.40)

and return to Step 1. Note that in order to construct ∆i+1, it is only necessary to add Lie
brackets [h(i)

j , h(i)
l ] and [f, h(i)

j ] that are not contained in ∆i.

Procedure 6.2.1 generates a sequence of distributions {∆i} such that ∆i(x)⊆ ∆i+1(x) for
all x ∈ X . If x0 is a regular point of each ∆i, then dim(∆i+1) is strictly larger than dim(∆i).
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Since dim(∆i) ≤ n ∀i, the process cannot continue more than n times. Suppose that ∆c

denotes the distribution generated at the termination of the procedure. Then, this is both
involutive as well as invariant under f and g1, . . . ,gm. Evidently, ∆c is the smallest distribution
with these two properties. If, now, dim(∆c) = n, with n denoting the state dimension, system
(6.38) is locally reachable. This result is stated formally in the following theorem.

Theorem 6.2.10 ([216]). For system (6.38), the following statements are equivalent:

(i) The system is locally reachable around x0 ∈ Rn as defined in Definition 6.2.13.

(ii) There is a neighborhood U of x0 such that distribution ∆c constructed according to
Procedure 6.2.1, has dimension n at all x ∈U.

We also present the following result.

Corollary 6.2.1 ([216]). Given system (6.38), consider distribution

∆̄n−1 = span {adi
fg j, 1 ≤ j ≤ m, 0 ≤ i ≤ n−1}. (6.41)

If dim(∆̄n−1(x0)) = n, then the system is locally reachable around x0.

We remark that the converse of Corollary 6.2.1 is not always true, i.e., dim(∆̄n−1) = n is
not a necessary condition for local reachability. The next theorem states a sufficient condition
for system (6.38) to be locally reachable around an equilibrium, that is, a vector x0 ∈ X such
that f(x0) = 0.

Theorem 6.2.11 ([216]). Consider system (6.38), and suppose x0 ∈ X satisfies f(x0) = 0.
Define matrix A0 ∈ Rn×n and vectors bi,0 ∈ Rn, i = 1, . . . ,m, by

A0 =

[
∂ f
∂x

]
x=x0

, bi,0 = gi(x0). (6.42)

Consider linear system

ż = A0z+
m

∑
i=1

bi,0vi. (6.43)

Then, system (6.38) is locally reachable if system (6.43) is reachable, i.e., if matrix

W0 =
[
B0 A0B0 · · · An−1

0 B0

]
, (6.44)

has rank n, with
B0 =

[
b1,0 · · · bm,0

]
(6.45)
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6.3 Feedback linearization of nonlinear systems

In this section, we present an application of differential-geometric methods examined earlier,
namely, the transformation of a given nonlinear system to a linear one via state-feedback
control and a transformation of the state vector. This powerful method proves essential for
solving model-matching type problems of a set of nonlinear systems. This will become
evident later in the chapter. Next, we start our analysis with nonlinear systems controlled by
a single input.

6.3.1 Single-input systems

Consider a system of the form
ẋ = f(x)+ug(x), (6.46)

where f and g are smooth vector fields on some open set X ⊆ Rn containing 0, with f(0) = 0.
We wish to examine if there exist smooth functions q, s ∈ S(X), with s(x) ̸= 0 for all x in
some neighborhood U ⊆ X nearby the origin, and a local diffeomorphism T : U → Rn with
T (0) = 0, such that if we define

v = q(x)+ s(x)u, (6.47)

z = T (x), (6.48)

then, variables z and v satisfy a linear differential equation of the form

ż = Az+bv, (6.49)

where the pair (A, b) is controllable. If this is possible, then system (6.46) is said to
be feedback linearizable. Assuming now the latter is true and the pair (A, b) is indeed
controllable, consider a further state-space transformation

z̄ = Mz, (6.50)

such that the resulting system is in controllable canonical form ([5, 32]), i.e.,

˙̄x = MAM−1z̄+Mbv, (6.51)
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with

MAM−1 =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1


, Mb =



0
0
...

0
1


, (6.52)

where ai’s denote the coefficients of the characteristic polynomial

|sI −A|= sn +
n−1

∑
i=0

aisi. (6.53)

Applying now linear state-feedback (with respect to z̄ coordinates) of the form

v = v̄+
[
a0 a1 · · · an−1

]
z̄ (6.54)

yields the closed-loop linear system

˙̄z = Āz̄+ b̄v̄, (6.55)

with

Ā =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


, b̄ =



0
0
...

0
1


. (6.56)

The problem of transforming a single-input nonlinear system described by (6.46) to a set
of linear equations (6.55) via feedback control and state-space transformations is formally
stated next.

Problem 6.3.1 (Feedback linearization problem (single-input case)). Given system (6.46), we
wish to compute (i) a smooth function q∈ S(X), (ii) a smooth function s∈ S(X) with s(x) ̸= 0
for all x in some neighborhood U ⊆ Rn of the origin 0, and (iii) a local diffeomorphism
T : U → Rn with T (0) = 0, satisfying the following conditions: If new variables v and

z =
[
z1 z2 · · · zn

]′
are defined as in (6.47) and (6.48), respectively, then

ż1 = z2, ż2 = z3, . . . , żn−1 = zn, żn = v. (6.57)
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Note that representing (6.57) in a compact form results in (6.55). Necessary and sufficient
conditions for a single-input nonlinear system (6.46) to be feedback linearizable are given in
the following theorem.

Theorem 6.3.2 ([216]). The feedback linearization problem for the single-input case has a
solution if and only if the following two conditions are satisfied in some neighborhood of the
origin:

(i) The set of vector fields {adi
fg, 0 ≤ i ≤ n−1} is linearly independent.

(ii) The set of vector fields {adi
fg, 0 ≤ i ≤ n−2} is involutive.

Assuming the above conditions are satisfied for a given system (6.46), Theorem 6.3.2
[216] only guarantees Problem 6.3.1 has a solution but otherwise it does not provide a
solution to this problem. In order to construct smooth functions q(x), s(x) as in (6.47) and a
diffeomorphism z = T (x) as in (6.48), we may perform the following constructive procedure.

Suppose a single-input system is described by (6.46), where f(0) = 0 and x ∈ U with
U ∈ Rn denoting a neighborhood of the origin 0. Then, a suitable non-constant smooth
function T1(x) can be found such that

<dT1, adi
fg> = 0, i = 0,1, . . . ,n−2, ∀x ∈U, (6.58)

and T1(0) = 0. Note that if T1(0) ̸= 0, then, constant T1(0) can be subtracted from T1 without
affecting dT1 thereby the validity of (6.58). Next, we define T2, . . . ,Tn recursively by

Ti+1 = <dTi, f> = LfTi, i = 1, . . . ,n−1. (6.59)

Clearly, Ti(0) = 0 for all i, since f(0) = 0. Finally, we define

q(x) = <dTn, f>, (6.60)

s(x) = <dTn, g>. (6.61)

Then, the feedback control is given by

u =−q(x)
s(x)

+
1

s(x)
v, (6.62)

where s(x) ̸= 0 for all x ∈U , and the transformation

z =
[
T1(x) · · · Tn(x)

]′
, (6.63)
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is a smooth diffeomorphism for all x ∈U .

6.3.2 Multi-input case

In this section, the feedback linearization technique is extended to multi-input systems of the
form

ẋ = f(x)+
m

∑
i=1

uigi(x), x(0) = x0, (6.64)

where f, g1, . . . ,gm are smooth vector fields on some neighborhood X ⊆ Rn near the origin
containing x0, with f(0) = 0. Clearly, it is reasonable to assume that vector fields g1, . . . ,gm

are linearly independent in some neighborhood of the origin, since, any input redundancy
can be forestalled by redefining the inputs and reducing their number so that the linear inde-
pendence assumption is satisfied. Before presenting conditions for feedback linearizability
of system (6.64), some extra concepts need to be introduced.

The major difference between single-input and multi-input feedback linearizable systems
is that, while there is a single canonical form which all controllable single-input linear
systems of the same state dimension can be transformed to, for multi-input systems several
canonical forms are possible. However, as shown in Chapter 5, if two multi-input systems
have the same number of states and inputs, then they are said to be "feedback equivalent",
in the sense that one system can be transformed into the other via state feedback and a
state-space transformation, if and only if they have the same Brunovsky canonical form.
We recall that the Brunovsky canonical form of a linear system is completely defined by a
set of integers, namely, controllability indices. Thus it makes sense to derive a Brunovsky
canonical form for nonlinear systems of the form (6.64) from a set of integers based on the
structure of vector fields f, g1, . . . ,gm in (6.64). This set of integers is constructed via the
following procedure.

Procedure 6.3.1 (Construction of controllability indices κ1, . . . ,κm of (6.64)). Given system
(6.64), define the following distributions:

Ci = {adk
f g j, 1 ≤ j ≤ m, 0 ≤ k ≤ i}, (6.65)

∆i = span Ci, (6.66)
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for i = 0,1, . . . ,n− 1. Assuming that x0 is a regular point of the i-th distribution ∆i, i =
0, . . . ,n−1, compute

∆0 = span{g1, . . . ,gm}, (6.67)

∆1 = span{g1, . . . ,gm, [f, g1], . . . , [f, g1]}, (6.68)
...

∆n−1 = span{g1, . . . ,gm, [f, g1], . . . , [f, gm], . . . ,adn−1
f g1, . . . ,adn−1

f gm}. (6.69)

Define also

r0 = dim(∆0) = m, (6.70a)

ri = dim(∆i)−dim(∆i−1), for i ≥ 1. (6.70b)

Then, the i-th integer κi, with i = 1, . . . ,m is defined as the number of the integers ri in (6.70)
that are greater than or equal to i.

We note here that the dimension of each distribution ∆i(x) as defined in (6.66) may vary
as x varies and thus, integers in (6.70) are not well-defined. To forestall this peculiarity a
regularity assumption needs to be made. This is precisely the reason for requiring the origin
be a regular point of ∆i, i = 0, . . . ,n−1. With this assumption in force, dim(∆i(x)) is constant
for all x in some neighborhood of 0 and hence the definition of integer ri is irrespective of
the state vector x.

Integers κ1, . . . ,κm as defined in Procedure 6.3.1 are called the controllability indices of
system (6.64) (also referred to as Kronecker indices in [216]). Clearly,

κ1 ≥ κ2 ≥ ·· · ≥ κm ≥ 0, and
m

∑
i=1

κi = n. (6.71)

Now the Brunovsky canonical form derived from the set of controllability indices
κ1, . . . ,κm as defined above, is a linear system of the form

ż = Âz+ B̂v, (6.72)

where Â and B̂ have the following special structures:

Â = diag(Â1, . . . , Âm), (6.73)
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with Âi being the companion matrix corresponding to characteristic polynomial |sI− Âi|= sκi ,
i.e.,

Âi =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


∈ Rκi×κi, (6.74)

and
B̂ = diag(B̂1, . . . , B̂m), (6.75)

with B̂i being a column vector with a "1" in the last row and zeros elsewhere, i.e.,

B̂i =


0
...

0
1

 ∈ Rκi. (6.76)

As evidently seen above, the set of controllability indices κ1, . . . ,κm represent the sizes of
the various blocks of the Brunovsky form. We also need to introduce one last set of integers.
Let δ denote the largest value of i such that ri ̸= 0. Thus, rδ > 0 with ri = 0 for all i > δ .
Finally, we define

mδ = rδ , (6.77)

mi = ri − ri+1 for i = 0, . . . ,δ −1. (6.78)

Integer δ is equal to the size of the largest block of the Brunovsky form minus one, i.e.,
δ = κ1 −1. Integer mi is the number of blocks of size i+1. Hence,

δ

∑
i=0

mi = m,
δ

∑
i=0

(i+1)mi = n. (6.79)

It is worth noting that integers κ1, . . . ,κm, as defined above, purely pertain to a nonlinear
system (6.64) with given vector fields f, g1, . . . ,gm, in contrast to integers µ1, . . . ,µm referred
to as controllability indices of a linear system, as defined in Chapter 5. Yet, a Brunovsky
canonical form (6.72) can purely constructed by integers κ1, . . . ,κm as derived from the
nonlinear model. In view of this connection between controllability indices of a nonlinear
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system (6.64) and the corresponding Brunovsky form (6.72), the feedback linearization
problem in the multi-input case is stated as follows.

Problem 6.3.3 (Feedback linearization problem (multi-input case)). Given system (6.64)
with controllability indices κ1, . . . ,κm as constructed in Procedure 6.3.1, we wish to identify a
neighborhood U of 0 and compute (i) a smooth function q : U → Rm, (ii) a smooth function
S : U → Rm×m such that det S(0) ̸= 0, and (iii) a local diffeomorphism T : U → Rn such
that T (0) = 0, satisfying the following conditions: If new variables z and v are defined as

z = T (x), (6.80)

and
v = q(x)+S(x)u, (6.81)

respectively, where

u =
[
u1 · · · um

]′
, (6.82)

then, the new variables z and v satisfy the set of linear differential equations:

ż = Az+Bv, (6.83)

with (A, B) being in Brunovsky canonical form corresponding to indices κ1, . . . ,κm.

Necessary and sufficient conditions for this multi-input feedback linearization problem to
have a solution are stated in the following theorem.

Theorem 6.3.4 ([216]). Consider system (6.64), and assume that the following are in force:

(a) Vector fields g1, . . . ,gm are linearly independent at x0, so that dim(∆0) = r0 = m, with
r0 defined in (6.70).

(b) Initial condition x0 is a regular point of the distribution ∆i ∀i ≥ 0.

Under these conditions, Problem 6.3.3 has a solution if and only if the following two
conditions are satisfied:

(i) dim(∆δ ) = n.

(ii) ∆i−1 is involutive whenever mi ̸= 0.

Detailed proof of Theorem 6.3.4 can be found in [216]. Similarly to the single-input case,
the theorem is not constructive in the sense that it only guarantees existence of a solution to
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Problem 6.3.3 subject to conditions (i) and (ii), but otherwise, it does not show how to find
it.

Suppose now the feedback linearization problem 6.3.3 has a solution, i.e., there exist a
diffeomorphism z = T (x) (6.80) on U ∈ Rn and smooth functions q(x), S(x) in (6.81) such
that the linear differential equation

ż = Az+Bv, (6.84)

is in Brunovsky canonical form corresponding to controllability indices κ1, . . . ,κm. Writing

z =


z1

z2
...

zm

 ∈ Rn, (6.85)

where

zi =


zi,1

zi,2
...

zi,κi

 ∈ Rκi, (6.86)

for i = 1, . . . ,m, and expanding (6.84) accordingly, the Brunovsky canonical form can be
written as

żi,l = zi,l+1, l = 1, . . . ,κi −1, (6.87)

żi,κi = vi, (6.88)

for i = 1, . . . ,m.
Now the Brunovsky canonical form consists effectively of m decoupled single-input

systems, with the number of states of the i-th system equaling κi. Defining m (non-constant)
smooth functions φi, . . . ,φm as

φi(x) = zi,1, i = 1, . . . ,m, (6.89)

such that
<dφi, adl

fg j> = 0, for l = 0, . . . ,κi −2, and i, j = 1, . . . ,m, (6.90)
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and φi(0) = 0, and proceeding in a similar manner as in the single-input case, we may write

zi(x) =


φi

Lfφi(x)
...

Lκi−1
f φi(x)

 ∈ Rκi. (6.91)

Then, the map T : U → Rn defined as

T (x) =


z1(x)
...

zm(x)

 , (6.92)

with zi(x), i = 1, . . . ,m as in (6.91), is a smooth diffeomorphism on U .
Differentiating zi, we write the last row of d

dt zi as

d
dt

zi,κi = Lκi
f φi +

m

∑
j=1

u jLg jL
κi−1
f φi. (6.93)

Collecting now (6.93), as i varies from 1 to m, yields

d
dt


z1,κ1
...

zm,κm

= q(x)+S(x)u, (6.94)

where

q(x) =


Lκ1

f φ1
...

Lκm
f φm

 , (6.95)

and

S(x) =


Lg1Lκ1−1

f φ1 · · · LgmLκ1−1
f φ1

...
. . .

...

Lg1Lκm−1
f φm · · · LgmLκm−1

f φm

 . (6.96)
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6.4 Model-matching problems

Motivated by the feedback linearization technique presented earlier, here, we wish to study
the problem of mapping a set of nonlinear systems to a single linear target system. The
task of mapping a given number of systems to a target model was thoroughly examined
for linear systems in the previous chapter. Exploiting the feedback linearization technique,
this section attempts to extend the matching approach to nonlinear systems. Later in the
chapter, it becomes evident that this nonlinear model-matching control method simplifies the
stabilization problem of networks formed of non-identical nonlinear agents allowing for a
distributed control design based on LQR feedback techniques. In the present section, our
objective is to identify the maximal set of nonlinear systems of a special form which, via
nonlinear state-feedback control and a change of coordinates, can be mapped to the canonical
form of a linear system with the same number of states and inputs. Existence conditions
for the proposed model-matching scheme are identified. As an attempt to minimize the
joint model-matching energy loss, we describe a systematic procedure for selecting target
dynamics similar to the approach suggested in Chapter 5. We study first matching problems
of single-input systems and then the model-matching scheme is extended to the multi-input
case.

6.4.1 Model-matching of single-input nonlinear systems

We consider a set of N single-input nonlinear systems of the form

ẋi = fi(xi)+uigi(xi), xi(0) = xi,0, i = 1, . . . ,N, (6.97)

where xi ∈Rn, ui ∈R denote the state and input vector, respectively, of the i-th system. Each
fi and gi denotes a smooth vector field on some open set Xi ⊆Rn around the origin containing
xi,0. We assume that fi(0) = 0, i = 1, . . . ,N, i.e., 0 represents an equilibrium point of (6.97).

In order to proceed with formulating the model-matching problem, we suppose systems
(6.97) are feedback linearizable in the sense that conditions (i) and (ii) of Theorem 6.3.2 are
in force. Then, for each i = 1, . . . ,N, we can automatically assume that there exist smooth
functions

qi(xi) ∈ S(Xi), (6.98)

and
si(xi) ∈ S(Xi), with si(xi) ̸= 0, (6.99)
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for all xi in some neighborhood Ui ⊆ Xi nearby 0, and a local diffeomorphism

Ti : Ui → Rn, (6.100)

with
Ti(0) = 0, (6.101)

such that, if we define

vi = qi(xi)+ si(xi)ui, (6.102)

zi = Ti(xi) =
[
zi,1 zi,2 · · · zi,n−1 zi,n

]
, (6.103)

then, all pairs (zi, vi), i = 1, . . . ,N, satisfy the following set of linear equations:

żi,1 = zi,2, żi,2 = zi,3, · · · , żi,n−1 = zi,n, żi,n = vi. (6.104)

Suppose now a single-input linear system is described by

ξ̇ = Aξ +bv, (6.105)

where (A, b) is controllable. In the sequel, we refer to system (6.105) as target system. Then,
due to controllability assumption, there exists a nonsingular matrix M ∈ Rn×n such that

˙̂
ξ = MAM−1

ξ̂ +Mbv, (6.106)

is in controllable canonical form, with ξ̂ = Mξ . Let

a =
[
a0 a1 · · · an−1

]′
, (6.107)

with a j, j = 0,1, . . . ,n−1, denoting the coefficients of characteristic polynomial

|sI −A|= sn +
n−1

∑
j=0

a js j, (6.108)

corresponding to the target model (A, b). Setting now

vi =−a′zi + v̂i, (6.109)
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in (6.102), and defining ẑi = M−1zi, with zi as in (6.103), it is easy to verify that

˙̂zi = Aẑi +bv̂i, (6.110)

with i = 1, . . . ,N. Eq. (6.110) basically shows that the i-th nonlinear system

ẋi = fi(xi)+
(
− qi(xi)

si(xi)
− 1

si(xi)
a′Ti(xi)+

1
si(xi)

v̂i
)
gi(xi), (6.111a)

ẑi = M−1Ti(xi), (6.111b)

can precisely be described by the linear differential equation (6.105) representing a target
model. In the sequel, system (6.111) is said to match with the model of linear system (6.105).
This model-matching task of single-input systems described above, is formally stated as
follows.

Problem 6.4.1 (Model-matching problem (single-input case)). Given N single-input nonlin-
ear systems as in (6.97), and a single-input controllable system (A, b), referred to as target,
with characteristic polynomial |sI −A|= sn +∑

n−1
j=0 a js j, we wish to compute:

(a) a smooth function qi ∈ S(Xi) for each i = 1, . . . ,N,

(b) a smooth function si ∈ S(Xi), with si(xi) ̸= 0 for all xi in some neighborhood Ui ⊆ Rn

around 0 containing xi,0, for each i = 1, . . . ,N,

(c) a local smooth diffeomorphism Ti : Ui → Rn, with Ti(0) = 0, for each i = 1, . . . ,N,

(d) a nonsingular matrix M ∈ Rn×n such that pair (MAM−1, Mb) is in controllable canon-
ical form,

satisfying the following conditions: if we define feedback control

ui =−qi(xi)

si(xi)
− 1

si(xi)
a′Ti(xi)+

1
si(xi)

v̂i, (6.112)

with v̂i ∈ R, a =
[
a0 a1 · · · an−1

]′
and a change of coordinates as

ẑi = M−1Ti(xi), (6.113)

then,
˙̂zi = Aẑi +bv̂i, ẑi,0 = M−1Ti(xi,0), (6.114)

for i = 1, . . . ,N.
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We note that the initial conditions of systems in Problem 6.4.1, defined as xi,0, i= 1, . . . ,N,
need not coincide and, of course, generically differ to each other. The same holds true for
neighborhoods Ui’s each generated around the origin containing xi,0. Yet, setting above
N = 1 and selecting a target system with characteristic polynomial as sn, Problem 6.4.1
is precisely identical to the feedback linearization problem 6.3.1. In this setting, model-
matching problem 6.4.1 can be cast as N decoupled feedback linearization problems 6.3.1
carried out simultaneously. Clearly, Problem 6.4.1 has a solution as long as conditions (i)
and (ii) of Theorem 6.3.2 are satisfied for each individual system. If these conditions are in
force, then, a diffeomorphism Ti(xi) and smooth functions qi(xi), si(xi) can be constructed
for each i = 1, . . . ,N as suggested in Section 6.3.1.

Suppose now N systems, defined as in (6.97), are feedback linearizable in the sense that
conditions (i) and (ii) of Theorem 6.3.2 are satisfied. Suppose also functions Ti, qi and si are
known such that variables vi, zi as defined in (6.102), (6.103), respectively, satisfy (6.104)
for i = 1, . . . ,N. A compact form of the latter is written below:

żi =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


︸ ︷︷ ︸

Ao

zi +



0
0
...

0
1


︸︷︷︸

bt

vi, (6.115)

which can be seen as a target state-space form. Letting now

vi = v̂i + f ′i zi, (6.116)

with fi =
[

f0 f1 · · · fn−1

]′
and v̂i ∈ R, for each i = 1, . . . ,N, it is clear that a new target

is attained, described by the canonical form (At , bt), where

At = Ao +


0
...

0
1


[

f0 f1 · · · fn−1

]
. (6.117)

Note that canonical form (At , bt) is completely defined by state-feedback gain fi as selected
in (6.116) where coefficients f j, j = 0, . . . ,n − 1, are associated with the characteristic
polynomial |sI −At |. Evidently, any canonical form (At , bt), with At ∈ Rn×n and bt ∈ Rn,
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may be achieved with a suitable choice of fi in (6.116). This implies that any controllable
single-input linear system with n states may be selected as target model in this model-
matching setting. This observation naturally begets the question of how one should select a
target system in Problem 6.4.1. The following section attempts to address this task.

6.4.2 Target selection (single-input case)

We consider a set of N feedback linearizable systems defined as in (6.97), rewritten below as

ẋi = fi(x)+uigi(x), xi(0) = xi,0, i = 1, . . . ,N. (6.118)

Vectors xi ∈Rn, ui ∈R and vector fields fi, gi, i= 1, . . . ,N, are as defined earlier. Suppose also
that feedback functions qi, si as well as a local diffeomorphism Ti exist and are known. Let
pair (A, b), with A∈Rn×n, b∈R, representing a target system, denote any controllable single-
input linear system. Let also nonsingular matrix M ∈ Rn×n be such that pair (MAM−1, Mb)
is in controllable canonical form and vector

a =
[
a0 a1 · · · an−1

]′
(6.119)

denote the coefficients of characteristic polynomial |sI −A|= sn +∑
n−1
j=1 a js j. Applying now

feedback control

ui =−qi(xi)

si(xi)
− 1

si(xi)
a′Ti(xi)+

1
si(xi)

v̂i, i = 1, . . . ,N, (6.120)

where v̂i ∈ R, and performing changes of coordinates defined as

ẑi = M−1Ti(xi), i = 1, . . . ,N, (6.121)

it is readily verified that systems (6.118) match with the target model (A, b) in the sense that
variables ẑi, v̂i, i = 1, . . . ,N, satisfy the following linear equations:

˙̂zi = Aẑi +bv̂i, i = 1, . . . ,N. (6.122)

Clearly, a different target choice requires altering vector a in (6.120) resulting in different
feedback control. Parameterizing each single-input target system by its characteristic polyno-
mial and treating vector a as a design parameter, we wish to identify an optimal target model,
such that a certain measure of the joint model-matching control effort expressed as a function
of u1, . . . ,uN , is minimized. A metric of local model-matching energy loss is defined next.
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For convenience, we write the control input of the i-th system as follows:

ui = a′ψi +ωi, (6.123)

where

ψi(xi) =− 1
si(xi)

zi, (6.124)

ωi(xi) =−qi(xi)

si(xi)
, (6.125)

for i = 1, . . . ,N. Consider now the following function:

u2
i = (ψ ′

i a+ωi)(ψ
′
i a+ωi), (6.126)

which can be written as
u2

i = a′ψiψ
′
i a+2a′ψiωi +ω

2
i , (6.127)

for i = 1, . . . ,N. Note that ψi and ωi, as defined above, are smooth functions of xi in some
neighborhood U ⊆ Rn containing all xi,0’s. Yet, considering u2

i in (6.127) as a quadratic
function in vector a does not simplify the formulation of an optimization problem since the
nonlinear dependence of u2

i on xi has no specific pattern. To forestall this difficulty, namely,
the dependence of u2

i on xi, we propose the following simplification.
Let xi ∈ Rn representing the state-vector of i-th be written as

xi =
[
xi,1 xi,2 · · · xi,n,

]′
(6.128)

and suppose j-th state of i-th system denoted as xi, j, with i = 1, . . . ,N, j = 1, . . . ,n, is a ran-
dom variable with known probability density function (pdf) fxi, j(xi, j). Let also fxi(xi,1, . . . ,xi,n)

denote the joint pdf of random variables xi,1, . . . ,xi,n corresponding to the states of i-th system.
Then, treating xi, j’s as random variables, function ui as defined in (6.127) is also a random
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variable with expected value computed as

E[u2
i ] = a′

( ∞∫
−∞

· · ·
∞∫

−∞

ψiψ
′
i fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n

)
a

+2a′
∞∫

−∞

· · ·
∞∫

−∞

ψiωi fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n

+

∞∫
−∞

· · ·
∞∫

−∞

ω
2
i fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n, (6.129)

which is clearly a quadratic function in vector a.
We remark that treating states as random variables and defining the expected value of

function u2
i , gives considerable flexibility in the model-matching design. This is because

function fxi(xi,1, . . . ,xi,n) defined above as a joint probability density function, can also be
seen as a weight function utilized to emphasize a particular range of xi. A simple instance
can be the following: suppose that xi is a random variable uniformly distributed inside the
volume of the n-dimensional hypercube with edge dimension equal to ρ

2 and center at the
origin, defined as

Vi = {x ∈ Rn : − ρ

2
≤ x j ≤

ρ

2
, ∀ j = 1, . . . ,n}, (6.130)

for i = 1, . . . ,N. Then, the corresponding probability density function

fxi(xi,1, . . . ,xi,n) =

 1
ρn −ρ

2 ≤ x j ≤ ρ

2 , j = 1, . . . ,n,

0 otherwise.

Let now quadratic function Ji(a) be defined as

Ji(a) = E[u2
i ], (6.131)

for i = 1, . . . ,N. For convenience, define also

Gi =

∞∫
−∞

· · ·
∞∫

−∞

ψiψ
′
i fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n, (6.132)
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and

βi =

∞∫
−∞

· · ·
∞∫

−∞

ψiωi fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n, (6.133)

for i = 1, . . . ,N, with all parameters as defined earlier. In the following, we suggest two types
of performance indexes which measure joint model-matching energy loss inspired by the
model-matching problem of linear systems studied in Chapter 5.

6.4.2.1 Minimum worst-case control

We express joint worst-case model-matching control action by the maximum function:

φ(a) = max
i=[1:N]

Ji with Ji = E[u2
i ], (6.134)

and we wish to find vector a ∈ Rn for which φ(a) attains its minimum. This is a discrete
minimax problem formulated as

min
a∈Rn

φ(a) = min
a∈Rn

max
i∈[1:N]

E[u2
i ]. (6.135)

The maximum function φ(a) is continuous and convex by the continuity and convexity of
Ji, i = 1, . . . ,N, and its sub-level sets are bounded. Thus, minimizing solution a∗ exists and
is unique. The ε-steepest decent algorithm presented in Chapter 5 can be employed here to
approximate the optimal solution a∗. The corresponding model-matching feedback control
ui is constructed by substituting a∗ into (6.120).

6.4.2.2 Least-squares control

An index which measures joint model-matching control effort in a different manner is denoted
by

J(a) =
N

∑
i=1

Ji(a). (6.136)

Here, we are interested in a vector a for which J in (6.136) becomes minimum. Requiring

∂J
∂a

= 0, (6.137)

the least squares solution yields,
a∗ =−G−1

β , (6.138)
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where

G =
N

∑
i=1

Gi, (6.139)

and

β =
N

∑
i=1

βi, (6.140)

with Gi, βi as defined in (6.132), (6.133), respectively. Substituting a∗ into (6.120) yields the
corresponding model-matching feedback laws ui, i = 1, . . . ,N.

The following numerical example illustrates a model-matching problem of N single-input
systems with a target model, optimally selected in the least-squares sense suggested above.

Example 6.4.2. Consider N single-input systems, each representing a mass constrained by a
nonlinear spring and a nonlinear viscous damper, and driven by an external force. The i-th
system is described by

mir̈i +di(ṙi)+ ki(ri) = ui, i = 1, . . . ,N, (6.141)

where mi, ri, di and ki denote mass, displacement, damping force and restoring force,
respectively. Let di = ciṙ3

i and ki = hir3
i , where ci, hi ∈R, i = 1, . . . ,N, denote some positive

constants. A natural choice of state-vectors is

xi =

[
xi,1

xi,2

]
=

[
ri

ṙi

]
, i = 1, . . . ,N. (6.142)

Then, the dynamics of the N systems are represented by

ẋi = fi +uigi, i = 1, . . . ,N, (6.143)

where

fi =

[
xi,2

− ci
mi

x3
i,2 −

hi
mi

x3
i,1

]
, gi =

[
0
1
mi

]
, i = 1, . . . ,N. (6.144)

The objective here is to match the i-th state-space form (6.143) with a linear target model
described by a pair (At , bt) applying nonlinear feedback laws ui, i = 1, . . . ,N, and perform-
ing changes of coordinates zi = Ti, i = 1, . . . ,N. For simplicity, let system (At , bt) be in
controllable canonical form and let also vector

a =

[
a0

a1

]
, (6.145)
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denote the coefficients of the characteristic polynomial |sI −At |= s2 +a1s+a0. Then, we
wish to construct the following feedback control inputs:

ui = a′ψi +ωi, i = 1, . . . ,N, (6.146)

where

ψi(xi) =− 1
si(xi)

zi, i = 1, . . . ,N, (6.147)

ωi(xi) =−qi(xi)

si(xi)
, i = 1, . . . ,N. (6.148)

Since f(0) = 0, let xi,0 = 0, be an equilibrium of the i-th system. From Theorem 6.3.2,
the i-th system can be transformed to (6.57) if and only if the following two conditions hold
over some neighborhood of xi,0: (i) the set {gi, adfigi} is linearly independent, and (ii) the
set {gi} is involutive. Evaluating adfigi = [fi, gi] we have

[gi adfigi] =

[
0 1

mi
1
mi

−3ci
m2

i
x2

i,2

]
. (6.149)

The determinant of this matrix is −1/m2
i which is obviously nonzero irrespective of the

value of xi,2. Hence, condition (i) is in force. Condition (ii) also holds since any distribution
spanned by a constant vector is involutive. This is easily verified by letting function φi,2 = xi,2.
Then, clearly,

<dφi(xi), gi> = 0, ∀xi ∈ R2, (6.150)

which is precisely what Theorem 6.2.8 requires in (6.33). Hence, from Theorem 6.3.2, we
conclude that i-th system is feedback linearizable.

To construct a linearizing transformation, we wish to find a non-constant function

Ti(xi) =

[
Ti,1

Ti,2

]
, (6.151)

such that
<dTi,1, gi> = 0, (6.152)

which implies
1
mi

∂Ti,1

∂xi,2
= 0. (6.153)
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An obvious choice is Ti,1 = xi,1 = ri. Of course this choice is not unique. Now,

Ti,2 = <dTi,1, fi> = xi,2. (6.154)

This shows that the nonlinear state transformation, in the present case, is the linear map
Ti = I2xi. This further means that we can linearize i-th system without changing coordinates.
We also compute

qi = <dTi,2, fi> =− 1
mi

(cix3
i,2 +hix3

i,1), (6.155)

and
si = <dTi,2, gi> =

1
mi

. (6.156)

Note that qi is a smooth function ∀xi ∈ R2 and si ̸= 0 ∀xi ∈ R2. Substituting, now, qi and si

into (6.147) and (6.148), we have

ψi =−mi

[
xi,1

xi,2

]
, (6.157)

ωi = cix3
i,2 +hix3

i,1. (6.158)

Defining a function J = ∑
N
i=1 u2

i with

ui = a′ψi +ωi, i = 1, . . . ,N, (6.159)

results in

J = a′
N

∑
i=1

ψiψ
′
i a+2a′

N

∑
i=1

ψiωi +
N

∑
i=1

ω
2
i . (6.160)

To construct vector a we proceed with the following hypothesis. Let xi be a two-dimensional
random variable, uniformly distributed inside the two-dimensional cube defined as

Q = {x ∈ R2 : −1 ≤ x j ≤ 1, ∀ j = 1,2}. (6.161)

In this setting, function J is also a random variable with expected value given as

E[J(a)] = a′(
N

∑
i=1

1∫
−1

1∫
−1

ψiψ
′
i dxi,1dxi,2)a+2a′

N

∑
i=1

1∫
−1

1∫
−1

ψiωidxi,1dxi,2

+
N

∑
i=1

1∫
−1

1∫
−1

ω
2
i dxi,1dxi,2. (6.162)
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Then, an optimal vector a can be computed as

a∗ = argmin E[J(a)]. (6.163)

Evaluating the following integrals:

Gi =

1∫
−1

1∫
−1

ψiψ
′
i dxi,1dxi,2 =

m2
i

4

1∫
−1

1∫
−1

[
x2

i,1 xi,1xi,2

xi,2xi,1 x2
i,2

]
dxi,1dxi,2 (6.164)

=
m2

i
4

1∫
−1

[
1
3x3

i,1
1
2xi,2x2

i,1
1
2xi,2x2

i,1 x2
i,2xi,1

]xi,1=1

xi,1=−1

dxi,2 =
m2

i
4

1∫
−1

[
2
3 0
0 2x2

i,2

]
dxi,2 (6.165)

=
m2

i
4

[
2
3xi,2 0

0 2
3x3

i,2

]xi,2=1

xi,2=−1

=
m2

i
3

[
1 0
0 1

]
, (6.166)

βi =

1∫
−1

1∫
−1

ψiωidxi,1dxi,2 =−mi

4

1∫
−1

1∫
−1

[
xi,1

xi,2

]
(cix3

i,2 +hix3
i,1)dxi,1dxi,2 (6.167)

=−mi

4

1∫
−1

1∫
−1

[
cix3

i,2xi,1 +hix4
i,1

cix4
i,2 +hixi,2x3

i,1

]
dxi,1dxi,2 =−mi

4

1∫
−1

[
ci
2 x3

i,2x2
i,1 +

hi
5 x5

i,1

cix4
i,2xi,1 +

hi
4 xi,2x4

i,1

]xi,1=1

xi,1=−1

dxi,2

(6.168)

=−mi

4

1∫
−1

[
2hi
5

2cix4
i,2

]
dxi,2 =−mi

4

[
2hixi,2

5
2cixi,2

5

]xi,2=1

xi,2=−1

=−mi

5

[
hi

ci

]
(6.169)

and defining

G =
N

∑
i=1

Gi = I2

N

∑
i=1

m2
i

3
, (6.170)

β =
N

∑
i=1

βi =−1
5

N

∑
i=1

[
mihi

mici

]
, (6.171)

the least-square solution yields

a∗ =−G−1
β =

3
5

∑
N
i=1 mihi

∑
N
i=1 m2

i
∑

N
i=1 mici

∑
N
i=1 m2

i

 . (6.172)
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Finally, applying

ui = ψ
′
i a

∗+ωi +
1
si

v̂i, i = 1, . . . ,N, (6.173)

with v̂i ∈ R, i = 1, . . . ,N, the nonlinear equations (6.143) are transformed to the linear
differential equations

ẋi = Atxi +bt v̂i, i = 1, . . . ,N. (6.174)

The pair (At , bt) represents the target dynamics, with

At =

[
0 1

−a∗0 −a∗1

]
, bt =

[
0
1

]
, (6.175)

where a∗0, a∗1 are given in

a∗ =

[
a∗0
a∗1

]
. (6.176)

The following section attempts to extend the model-matching problem studied here to
multi-input nonlinear systems.

6.4.3 Model-matching of multi-input nonlinear systems

We consider a set of N nonlinear systems of the form

ẋi = fi(xi)+
m

∑
j=1

ui, jgi, j(xi), xi(0) = xi,0, i = 1, . . . ,N, (6.177)

where fi, gi,1, . . . ,gi,m are smooth vector fields on some neighborhood Xi ⊆Rn near the origin
containing xi,0, with fi(0) = 0. We assume that vector fields gi,1, . . . ,gi,m, i = 1, . . . ,N, are
linearly independent for all xi ∈ Xi. In the following, we denote the input vectors as

ui =
[
ui,1 · · · ui,m

]′
, i = 1, . . . ,N. (6.178)

In order to proceed with the formulation of the matching problem, we require that systems
described in (6.177) be feedback linearizable in the sense that conditions (i) and (ii) of
Theorem 6.3.4 are satisfied for i = 1, . . . ,N. A linear system, referred to as target system, is
defined by the following linear differential equation of the form

ξ̇ = Aξ +Bv, (6.179)
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where (A, B) is a controllable pair with A ∈ Rn×n, B ∈ Rn×m. Without loss of generality, let
(A, B) be in controllable canonical form with

A = Āc + B̄cAm, (6.180a)

B = B̄cBm, (6.180b)

where pair (Āc, B̄c) denotes the Brunonvsky canonical form associated with the set of
controllability indices: µ1, . . . ,µm, with ∑

m
j=1 µ j = n (cf. Chapter 5, eq. (5.13)) and Am ∈

Rm×n, Bm = Rm×m with det(Bm) ̸= 0. We now summarize the model-matching task of N
multi-input feedback linearizable systems as follows.

Problem 6.4.3 (Model-matching problem (multi-input case)). Consider N multi-input non-
linear systems as in (6.177), and a target system defined by a controllable pair (A, B) as in
(6.180). Letting Ui ⊆ Xi denote a neighborhood nearby the origin with xi,0 ∈Ui, i = 1, . . . ,N,
we wish to compute:

(a) a smooth function qi : Ui → Rm for each i = 1, . . . ,N,

(b) a smooth function Si : Ui → Rm×m such that det(Si(xi)) ̸= 0 ∀xi ∈ Ui, for each i =
1, . . . ,N,

(c) a local smooth diffeomorphism Ti : Ui → Rn, with Ti(0) = 0, for each i = 1, . . . ,N,

(d) a state-feedback gain matrix Fi ∈ Rm×n, for each i = 1, . . . ,N,

satisfying the following conditions: if we define feedback control

ui =−S−1
i (xi)qi(xi)+S−1

i (xi)FiTi(xi)+S−1
i (xi)Bmv̂i, (6.181)

with v̂i ∈ Rm and perform a change of coordinates as

zi = Ti(xi), (6.182)

then,
żi = Azi +Bv̂i, (6.183)

for i = 1, . . . ,N, with (A, B) denoting the target model.

Necessary and sufficient conditions for Problem 6.4.3 to have a solution are given in the
following theorem.
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Theorem 6.4.4. Given N feedback linearizable systems (in the sense that conditions of
Theorem 6.3.4 are in force) of the form (6.177), each associated with a set of integers
κ i

1, . . . ,κ
i
m constructed as in Procedure 6.3.1 and a linear target system as defined in (6.179)

associated with a Brunovsky form (Āc, B̄c) defined by controllability indices µ1, . . . ,µm,
Problem 6.4.3 has a solution if and only if the following condition is satisfied:

(i) the sets {κ i
1, . . . ,κ

i
m} and {µ1, . . . ,µm} coincide for all i = 1, . . . ,N.

Proof. First, we prove the "if" part of the theorem for the i-th system. Suppose Condition (i)
holds. Suppose also that feedback functions qi(xi), Si(xi) and a local diffeomorphism Ti(xi)

exist and are known. Then, from Theorem 6.3.4, variables zi and vi defined as

zi = Ti, (6.184)

vi = qi +Siui, (6.185)

satisfy the following linear differential equation,

żi = Āczi + B̄cvi, (6.186)

where (Āc, B̄c) is the Brunovsky form associated with controllability indices κ i
1, . . . ,κ

i
m.

Now, since target pair (A, B) is in canonical form, (6.179) can be written as

ξ̇ = (Āc + B̄cAm)ξ + B̄cBmv, (6.187)

or,
ξ̇ = Ācξ + B̄c(Amξ +Bmv). (6.188)

Since by assumption the sets κ i
1, . . . ,κ

i
m and µ i

1, . . . ,µ
i
m coincide, pairs (Āc, B̄c) appearing in

(6.186) and (6.188) correspond to the same Brunovsky form, thereby being identical. Setting
now

vi = Amzi +Bmv̂i, (6.189)

in (6.186), yields
żi = Āczi + B̄c(Amzi +Bmv̂i), (6.190)

which is written as
żi = (Āc + B̄cAm)zi + B̄cBmv̂i), (6.191)

or
żi = Azi +Bv̂i, (6.192)
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due to (6.180), where (A, B) denotes the target pair. Now, combining (6.185) and (6.189)
leads to

Amzi +Bmv̂i = qi(xi)+Si(xi)ui, (6.193)

or
ui =−S−1

i qi(xi)+S−1
i Amzi +S−1

i Bmv̂i, (6.194)

which becomes identical to (6.181) if we set Fi = Am. This proves the "if" part of the theorem.
We now prove the "only if" part of the theorem by contradiction. Suppose that Problem

6.4.3 has a solution and that {κ i
1, . . . ,κ

i
m} and {µ1, . . . ,µm} represent non-identical sets of

controllability indices. Let
ξ̇ = Aξ +Bv, (6.195)

denote the target state-space form. Then, setting v = B−1
m (v̄−Amξ ) in (6.195) results in

ξ̇ = Ācξ + B̄cv̄, (6.196)

while setting v̂i = B−1
m (v̄i −Amzi) in (6.183) with v̄i ≡ v̄ ∈ Rm leads to

żi = Āczi + B̄cv̄i. (6.197)

Pair (Āc, B̄c) above denotes the Brunovsky form characterized only by identical sets of
controllability indices. However, this contradicts our initial assumption of non-identical sets
of controllability indices, thereby proving the "only if" part of the theorem.

So far, it has been shown that if a set of N feedback linearizable systems with equal
state and input dimensions, n and m, respectively, are associated with identical sets of
controllability indices κ1, . . . ,κm defined as in Procedure 6.3.1, then, there are nonlinear
feedback controls ui, and changes of coordinates zi = Ti(xi), i = 1, . . . ,N, as defined in
(6.181), and (6.182), respectively, that transform their nonlinear state-space forms into a
linear (target) model represented in canonical form with controllability indices µ1, . . . ,µm,
provided that the sets {κ1, . . . ,κm} and {µ1, . . . ,µm} coincide. In the following section, we
show how to identify optimal target dynamics the selection of which guarantees a minimum
performance index defined to penalize joint model-matching control action.
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6.4.4 Target selection (multi-input case)

We consider a set of N feedback linearizable systems defined as in (6.177), rewritten below
as

ẋi = fi(xi)+
m

∑
j=1

ui, jgi, j(xi), xi(0) = xi,0, i = 1, . . . ,N, (6.198)

where vectors xi ∈Rn, ui ∈Rm and vector fields fi, gi,1, . . . ,gi,m are as defined in the previous
section. Let κ i

1, . . . ,κ
i
m denote the set of controllability indices (see Procedure 6.3.1) associ-

ated with the i-th system in (6.198). Suppose that κ i
j = κ j with j = 1, . . . ,m ∀i = 1, . . . ,N.

Assume also that there exist smooth functions qi, Si and a diffeomorphism Ti as defined in
Problem 6.4.3 for i = 1, . . . ,N. For each i = 1, . . . ,N, let also qi, Si and Ti be known and
well-defined in an open set U ⊆ Rn containing all xi,0, i = 1, . . . ,N.

Picking now a target system represented by a controllable pair (A, B) where

A = Āc + B̄cAm, (6.199a)

B = B̄cBm, (6.199b)

with (Āc, B̄c) denoting the Brunovsky form associated with controllability indices µ1 =

κ1, . . . ,µm = κm and Am ∈Rm×n, Bm ∈Rm×m then, the i-th model-matching feedback control
law can be constructed as

ui =−S−1
i (xi)qi(xi)+S−1

i (xi)AmTi(xi)+S−1
i (xi)Bmv̂i, (6.200)

where v̂i ∈ Rm, and Ti(xi) denotes a change of coordinates: zi = Ti(xi).
Since the Brunovsky form (Āc, B̄c) associated with a particular set of controllability

indices is unique, it follows that the canonical form of target pair (A, B) with known
controllability indices can precisely be identified by matrices Am, Bm shown in (6.199). This
becomes pronounced by viewing matrices Am, Bm appearing in model-matching feedback
control ui as constructed in (6.200).

Setting matrix Bm = Im for simplicity, a systematic procedure for choosing target matrix
Am is suggested next. In particular, our objective is to identify matrix Am such that a specific
measure of joint model-matching control effort, expressed as a function of û1, . . . , ûN , is
minimized. Let the model-matching part of control ui, namely, ui −S−1

i (xi)Bmv̂i, be denoted
as ûi. Clearly, control law

ûi =−S−1
i (xi)qi(xi)+S−1

i (xi)AmTi(xi), i = 1, . . . ,N, (6.201)
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is nonlinear in xi and affine in Am. Then, for the i-th system, we consider a measure of local
model-matching energy loss expressed as

∥ûi∥2 = ∥−S−1
i (xi)qi(xi)+S−1

i (xi)AmTi(xi)∥2, (6.202)

which can equivalently be written as

∥ûi∥2 = ∥(T ′
i (xi)⊗S−1

i (xi))vec(Am)−S−1
i (xi)qi(xi)∥2, (6.203)

where we have used the identity:

S−1
i (xi)AmTi(xi) = (T ′

i (xi)⊗S−1
i (xi))vec(Am), (6.204)

vec(·) denoting the vectorization operator. Using now the following notation

Ψi(xi) = T ′
i (xi)⊗S−1

i (xi), (6.205)

am = vec(Am), (6.206)

σi(xi) =−S−1
i (xi)qi(xi), (6.207)

we may write
∥ûi∥2 = (Ψi(xi)am −σi(xi))

′(Ψi(xi)am −σi(xi)), (6.208)

or
∥ûi∥2 = a′mΨ

′
i(xi)Ψi(xi)am −2σ

′
i (xi)Ψi(xi)am +σ

′
i (xi)σi(xi), (6.209)

for i = 1, . . . ,N. In order to define a local model-matching cost function dependent explicitly
on vector am = vec(Am), we proceed with the following simplification as suggested in the
single-input case earlier. Let fxi(xi,1, . . . , ,xi,n) denote the joint probability density function
of (random) variables xi,1, . . . ,xi,n corresponding to states of the i-th system. We highlight
here that this technical manipulation of state vectors xi, i = 1, . . . ,N, only aims to forestall
the dependence of function ∥ûi∥2 on state variables. Specifically, function fxi(xi,1, . . . , ,xi,n)

can be considered as a weight function utilized to emphasize/de-emphasize a particular range
of variables xi,1, . . . ,xi,n. Note that fxi can be designed without any knowledge of statistics of
variables (xi,1, . . . ,xi,n). In this setting, quantity ∥ûi∥2 is a random variable whose expected
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value can be seen as a local model-matching cost function evaluated as

E∥ûi∥2 =−
∞∫

−∞

· · ·
∞∫

−∞

(
a′mΨ

′
i(xi)Ψi(xi)am −2σ

′
i (xi)Ψi(xi)am

+σ
′
i (xi)σi(xi)

)
fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n, (6.210)

for i = 1, . . . ,N. Defining now

Gi =

∞∫
−∞

· · ·
∞∫

−∞

Ψ
′
i(xi)Ψi(xi) fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n, (6.211)

βi =

∞∫
−∞

· · ·
∞∫

−∞

σ
′
i (xi)Ψi(xi) fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n, (6.212)

and

γi =

∞∫
−∞

· · ·
∞∫

−∞

σ
′
i σi(xi) fxi(xi,1, . . . ,xi,n) dxi,1 · · ·dxi,n, (6.213)

a local model-matching control effort can be expressed as

Ji(am) = a′mGiam −2βiam + γi, (6.214)

for i = 1, . . . ,N, which clearly is a quadratic function of am. Two performance indexes
representing specific measures of joint model-matching control effort are suggested next.

6.4.4.1 Minimum worst-case control

We express the joint worst-case model-matching control action by the maximum function:

φ(am) = max
i=[1:N]

Ji, with Ji = E∥ûi∥2, (6.215)

and we wish to find vector am ∈ Rnm for which φ(am) attains its minimum. This is a discrete
minimax problem formulated as

min
am∈Rnm

φ(am) = min
am∈Rnm

max
i∈[1:N]

E∥ûi∥2. (6.216)

The maximum function φ(am) is continuous and convex by the continuity and convexity of
Ji, i = 1, . . . ,N, and its sub-level sets are bounded. Thus, a minimizing solution a∗m exists and
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is unique. The ε-steepest decent algorithm presented in Chapter 5 can be employed here to
approximate the optimal solution a∗m. The corresponding model-matching feedback control
ui is constructed by substituting A∗

m = vec−1(a∗m) into (6.200).

6.4.4.2 Least-squares control

Summing up Ji in (6.214) for i = 1, . . . ,N, a joint model-matching control effort is defined as

J(am) =
N

∑
i=1

Ji(am), (6.217)

which is a quadratic function in vector am. Here, we are interested in finding vector am for
which J in (6.217) attains its minimum. This can simply be achieved by requiring

∂J
∂am

= 0. (6.218)

Then, the least-squares solution yields

a∗m =−G−1
β
′, (6.219)

where

G =
N

∑
i=1

Gi, (6.220)

and

β =
N

∑
i=1

βi, (6.221)

with Gi, βi as defined in (6.211), (6.212), respectively. Substituting A∗
m = vec−1(a∗m) into

(6.200) yields model-matching feedback laws ui, i = 1, . . . ,N.
Having concluded the model-matching control design of multi-input nonlinear systems,

attention is now focused on the familiar stabilization problem of networks composed of
heterogeneous nonlinear agents. This is the topic of the next section.

6.5 Regulation problem of networks formed of heteroge-
neous nonlinear agents

In this section, the model-matching technique suggested earlier along with results on dis-
tributed LQR-based feedback control design presented in previous chapters are combined
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into a control strategy for tackling regulation problems over networks of nonlinear systems
that are feedback linearizable. We recall that this multiple-stage-control approach was also
considered in Chapter 5 for stabilizing networks of linear agents. It can also be adopted
here, essentially due to the highly useful feedback linearization technique for solving model-
matching problems of multiple heterogeneous nonlinear systems. We emphasize that the
aforementioned advantage of the feedback linearization method, as shown in the multi-input
case, was mainly the results of the following two conjectures: 1) systems are described by
differential equations linear in control, and 2) systems have identical sets of controllability
indices as defined in Procedure 6.3.1. These simplifying assumptions are also in force in the
present section. The regulation problem is formulated next.

We consider a set of N non-identical feedback linearizable systems whose dynamics are
described by nonlinear differential equations of the form:

ẋi = fi(xi)+
m

∑
j=1

ui, jgi, j(xi), xi(0) = xi,0, i = 1, . . . ,N, (6.222)

where xi ∈ Rn, ui ∈ Rm, and fi,gi,1, . . . ,gi,m ∈V (Xi), with Xi denoting an open set of Rn. In

the sequel, ui =
[
ui,1 · · · ui,m

]′
denotes the input vector of i-th system. It is also assumed

that fi(0) = 0, i = 1, . . . ,N, which implies that the origin 0 is an equilibrium point in the
sense that i-th system starting from xi(0) = 0 remains in this state if no input is applied. In
the sequel, we also require the following be in force:

Assumption 6.5.1. Initial conditions xi(0) = xi,0 in (6.222) are sufficiently close to the origin
∀i.

Assumption 6.5.2. Systems in (6.222) satisfy conditions of Theorem 6.3.4.

Assumption 6.5.3. Systems in (6.222) have identical sets of controllability indices denoted
as κ1, . . . ,κm.

Assumption 6.5.4. For each i= 1, . . . ,N in (6.222), there exist smooth functions qi : Xi →Rn,
Si : Xi →Rm×m, with qi(0) = 0 and detSi(0) ̸= 0, such that a local diffeomorphism zi = Ti(xi)

around 0, with Ti(0) = 0, is related to

vi = qi(xi)+Si(xi)ui (6.223)

by
żi = Āczi + B̄cvi, (6.224)

where pair (Āc, B̄c) is in Brunovsky canonical form associated with controllability indices
κ1, . . . ,κm.
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We also introduce the following familiar notation. Let x̂ ∈ RNn, ẑ ∈ RNn and û ∈ RNm,
v̂ ∈ RNm be vectors which collect states and inputs of the N systems. Then,

˙̂x = Col(f1, . . . , fN)+diag(g1, . . . ,gN)û, x̂(0) = x̂0, (6.225)

where gi =
[
gi,1 · · · gi,m

]
, i = 1, . . . ,N, x̂0 =

[
x̂1,0 · · · x̂N,0

]
, and

˙̂z = Âcẑ+ B̂cv̂, (6.226)

where

Âc = IN ⊗ Āc, (6.227)

B̂c = IN ⊗ B̄c. (6.228)

Let now the i-th system in (6.222) be associated with the i-th node of a graph G = (V ,E )

on N vertices. For simplicity, we presently assume that G denotes an undirected graph.
Let also L be the Laplacian matrix of G . We use a graph representation in the following
manner. If an edge (i, j) with i, j = 1, . . . ,N and i ̸= j, is present then, 1) system-i has full
access to the states of system- j and vice versa, and 2) vi in (6.223) is a feedback control
law constructed as a function of local states zi and neighboring states z j with j ∈ Ni. We
recall that Ni denotes the set of all adjacent nodes of vertex i. Before defining the network
regulation problem as a distributed optimal control problem, we introduce the following class
of structured feedback functions.

Definition 6.5.1. Let x̂ =
[
x′1 · · · x′N

]′
∈ RNn. Let also G = (V ,E ) and di = ∑(i, j)∈E 1.

Then,

K N
m,n(x̂,G ) = {Ξ : RNn → RNm | Ξi = Ξ[(i−1)m+1 : im] = φi(xi, . . . ,x j, . . .),

with (i, j) ∈ E , and i = 1, . . . ,N}, (6.229)

where φi : R(di+1)n → Rm represents a smooth map.
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The network regulation problem is now formulated as an optimal control problem as
follows:

min
û

J(û, x̂0) =
∫

∞

0
(x̂′Q̂x̂+ û′R̂û) dt subject to: (6.230a)

˙̂x = Col(f1, . . . , fN)+diag(g1, . . . ,gN)û, x̂(0) = x̂0, (6.230b)

û(t) = K̂(x̂(t)) (6.230c)

K̂(x̂(t)) ∈ K N
m,n(x̂,G ) (6.230d)

Q̂ = IN ⊗Q1 +L ⊗Q2, R̂ = IN ⊗R (6.230e)

where Q̂ = Q̂′ ≥ 0 and R̂ = R̂′ > 0. Next, following a model-matching approach combined
with the top-down distributed LQR method described in Chapter 3, we present a suboptimal
solution to problem (6.230). This results in a distributed feedback controller K̂(x̂(t)) with
the following two properties:

(i) K̂(x̂(t)) ∈ K N
m,n(x̂,G ).

(ii) If we apply û(t) = K̂(x̂(t)), then 0̂ =
[
0′ · · · 0′

]′
is an asymptotically stable equilib-

rium point of (6.230b).

Overall, the distributed control scheme at node level can be depicted as in Fig. 6.1. The
control design procedure is summarized in the following theorem.

Theorem 6.5.5. Consider N nonlinear systems as defined in (6.222) and suppose assump-
tions 6.5.1, 6.5.2, 6.5.3 and 6.5.4 are in force. Consider also LQR problem (3.65) with
weighting matrices (Q1, Q2, R) for NL = dmax +1 systems with dynamics represented by the
Brunovsky form (Āc, B̄c) associated with controllability indices κ1, . . . ,κm. Define also matri-
ces K1 =−R−1B̄′

cP and K2 = R−1B̄′
cP̃2 where P and P̃2 are associated with ARE (3.71) and

(3.72), respectively. Letting M ∈ RN×N be a symmetric matrix with the following property:

λi(M)>
NL

2
, ∀λi(M) ∈ S(M)\{0}, (6.231)

construct feedback controller as

û = diag(S−1
1 , . . . ,S−1

N )(IN ⊗K1 +M⊗K2)ẑ−Col(S−1
1 q1, . . . ,S

−1
N qN), (6.232)
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where ẑ =
[
T ′

1(x1) · · · T ′
N(xN)

]′
, with Ti as defined in Assumption 6.5.4. Then, the point

0̂=
[
0′ · · · 0′

]′
is an asymptotically stable equilibrium of (6.230b) for all initial conditions

x̂0 =
[
x′1,0 · · · x′N,0

]′
, (6.233)

sufficiently close to 0̂.

Proof. Letting
v̂ = (IN ⊗K1 +M⊗K2)ẑ, (6.234)

we may write the feedback control law in (6.232) as

û = diag(S−1
1 , . . . ,S−1

N )v̂−Col(S−1
1 q1, . . . ,S

−1
N qN), (6.235)

which implies that
v̂ = Col(g1, . . . ,gN)+diag(S1, . . . ,SN)û. (6.236)

In view of Assumption 6.5.4, variables ẑ and v̂ are related by

˙̂z = Âcx̂+ B̂cv̂. (6.237)

Substituting now Âc and B̂c above for IN ⊗ Āc and IN ⊗ B̄c, respectively, and using the
feedback control law in (6.234) results in the closed-loop system

˙̂z = (IN ⊗ (Āc + B̄cK1)+M⊗ (B̄cK2))ẑ, (6.238)

where the closed-loop matrix

Acl = IN ⊗ (Āc + B̄cK1)+M⊗ (B̄cK2), (6.239)

is Hurwitz from Theorem 3.3.14. This proves the theorem.

Some interesting consequences of Theorem 6.5.5 are listed below.

(i) If matrix M ∈ K N
m,n(G ), then û is a distributed nonlinear state-feedback controller.

(ii) Feedback controller v̂ in (6.234) can also be design as

v̂ = (IN ⊗K1 +L ⊗ΦK1)ẑ, (6.240)
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where L denotes the Laplacian matrix of graph G and design matrix Φ can be found
as suggested in the bottom-up method presented in Chapter 3.

(iii) The control design procedure summarized in Theorem 6.5.5 can immediately be
adapted to a directed graph setting by altering condition (6.231) and instead requiring
matrix M satisfy the following property:

Re(λi)>
NL

2
, ∀ λi ∈ S(M)\{0}. (6.241)

(iv) The result is irrespective of the LQR tuning. Thus, selecting a target model (A, B)
by minimizing a specific measure of joint model-matching control effort may be
beneficial for effectively controlling network performance by simply tuning the LQR
cost function.

(v) If feedback functions qi and Si as well as smooth diffeomorphism Ti are well-defined
∀xi ∈ Rn for all i = 1, . . . ,N, then feedback control û = K̂(x̂(t)) as defined in (6.232),
is a stabilizing distributed controller in the global sense, i.e., the origin is an asymptoti-
cally stable equilibrium for all initial conditions xi,0 ∈ Rn.

0 zi

x j

xi

zi

zi
...

...xk

· · ·

· · · · · ·

Σ Σ S−1
i ẋi = fi +giui

−qi

AmΣ

Ti

K1Σ

−TjaK2Σ Σ

−TkΣaK2

Fig. 6.1 Nonlinear model-matching control with optimal target selection and stabilizing LQR
controller with distributed architecture.

The following example attempts to illustrate the effectiveness of the control design
method proposed in this section.
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6.5.1 Numerical example: stabilization of network of planar two-link
robot arms

We consider a directed network of eleven agents modelled as a connected digraph D11 shown
in Fig. 6.2. The digraph representation indicates: 1) if an edge (i, j), i, j = 1, . . . ,11, i ̸= j
is present then j-th agent has full information about the state of i-th agent and 2) the j-th
system control law minimizes (among other terms) a weighted norm of the difference xi − x j.
We also denote by LD,11 the in-degree Laplacian matrix of D11. We recall this has been
defined in (4.198).

1 2 3 4

6

57

8

9

10

11

Fig. 6.2 Interconnection scheme of eleven robot arms.

Each node in Fig. 6.2 represents a planar two-link robot arm. The i-th robot is depicted in
Fig. 6.3 where θi,1, mi,1, li,1 and θi,2, mi,2, li,2 denote the joint angle, the mass and the length
of the first and second link, respectively.

x

y

mi,1

li,1

li,2
mi,2

θi,1

θi,2

Fig. 6.3 Planar two-link robot arm.
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The dynamic model of the i-th robot arm with two degrees of freedom is written as
follows [72]:

Mi(θi)θ̈i +Ci(θi, θ̇i)+Gi(θi) = τi, (6.242)

where

θi =
[
θi,1 θi,2

]′
is the vector of joint angles,

τi =
[
τi,1 τi,2

]′
denotes the vector of applied torques (control input),

Gi(θi) =

[
−(mi,1 +mi,2)gli,1 sin(θi,1)−mi,2gli,2 sin(θi,1 +θi,2)

−mi,2gli,2 sin(θi,1 +θi,2)

]
is the vector of grav-

itational torques where g denotes gravitational acceleration,

Ci(θi, θ̇i) =

[
−mi,2li,1li,2(2θ̇i,1θ̇i,2 + θ̇ 2

i,1)sin(θi,2)

−mi,2li,1li,2θ̇i,1θ̇i,2 sin(θi,2)

]
denotes the vector of Coriolis and

centrifugal forces,

M(θi) =

[
Di,1 Di,2

Di,3 Di,4

]
represents the inertia matrix with

Di,1 = (mi,1 +mi,2)l2
i,1 +mi,2l2

i,2 +2mi,2li,1li,2 cos(θi,2), (6.243a)

Di,2 = mi,2l2
i,2 +mi,2li,1li,2 cos(θi,2), (6.243b)

Di,3 = Di,2, (6.243c)

Di,4 = mi,2l2
i,2. (6.243d)

Planar coordinates (xi, yi) of the tip of the i-th robot arm are computed as follows:

xi = li,1 sin(θi,1)+ li,2 sin(θi,1 +θi,2), (6.244a)

yi = li,1 cos(θi,1)+ li,2 cos(θi,1 +θi,2). (6.244b)

Detailed description of the model can be found in [72]. Length and mass parameters of all
robot arms considered in this simulation study, are summarized in Table 6.1.

Choosing the natural set of variables:

ξi =
[
θi,1 θ̇i,1 θi,2 θ̇i,2

]′
, (6.245)
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Table 6.1 Length and mass parameters of eleven robot arms.

System li,1 li,2 mi,1 mi,2
robot 1 1.50 m 1.00 m 1.10 kg 0.90 kg
robot 2 3.10 m 2.00 m 2.10 kg 1.50 kg
robot 3 0.50 m 1.10 m 1.50 kg 3.20 kg
robot 4 2.00 m 1.30 m 3.10 kg 2.10 kg
robot 5 1.70 m 3.10 m 4.10 kg 2.50 kg
robot 6 2.20 m 4.20 m 5.10 kg 4.20 kg
robot 7 4.10 m 2.50 m 1.20 kg 5.10 kg
robot 8 2.50 m 1.80 m 5.10 kg 2.30 kg
robot 9 1.50 m 3.30 m 1.30 kg 1.20 kg

robot 10 2.70 m 0.80 m 1.40 kg 5.20 kg
robot 11 5.20 m 2.20 m 3.50 kg 2.40 kg

and denoting the i-th input vector as

ui =
[
ui,1 ui,2

]′
=
[
τi,1 τi,2

]′
, (6.246)

the state-space form of the dynamic model (6.242) is written as:

ξ̇i =


ξi,2

Di,4

D2
i,2−Di,1Di,4

Φi −
Di,2

D2
i,2−Di,1Di,4

Ωi

ξi,4

− Di,2

D2
i,2−Di,1Di,4

Φi +
Di,1

D2
i,2−Di,1Di,4

Ωi


︸ ︷︷ ︸

fi

+


0 0

−Di,4

D2
i,2−Di,1Di,4

Di,2

D2
i,2−Di,1Di,4

0 0
Di,2

D2
i,2−Di,1Di,4

−Di,1

D2
i,2−Di,1Di,4


︸ ︷︷ ︸

gi

ui, ξi(0) = ξi,0,

(6.247)
where Di,1, Di,2 and Di,4 are given as in (6.243), and

Φi =−mi,2li,1li,2(2ξi,2ξi,4 +ξ
2
i,2)sin(ξi,3)− (mi,1 +mi,2)gli,1 sin(ξi,1)

−mi,2gli,2 sin(ξi,1 +ξi,3) (6.248)

Ωi =−mi,2li,1li,2ξi,2ξi,4 sin(ξi,3)−mi,2gli,2 sin(ξi,1 +ξi,3). (6.249)

The control objective is to move the tip of the second link of each robot arm at the highest
position which corresponds to planar coordinates xi = 0 and yi = li,1 + li,2, respectively.
Viewing Fig. 6.3, since this position corresponds to zero joint angles (θi,1, θi,2), we formulate
this control task as a regulation problem. A stabilizing distributed controller is designed
following a two-step procedure as shown earlier in the chapter. First, we construct a local
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model-matching feedback controller mapping the nonlinear dynamics of each robot arm
to a linear system (target) and then a distributed stabilizing controller is designed on the
target dynamics via a top-down distributed LQR control method. The model-matching task
is outlined next.

It is easy to verify that the conditions of Theorem 6.3.4 are satisfied implying that system
in (6.247) is feedback linearizable. Note also that the origin is an equilibrium point of (6.247)
since fi(0) = 0. In the following, we wish to identify smooth functions qi and Si and a local
diffeomorphism Ti well-defined nearby the origin, such that new variables vi and zi defined as

vi = qi +Siui, (6.250)

zi = Ti, (6.251)

are related by
żi = Āczi + B̄cvi, (6.252)

where pair (Āc, B̄c) denotes the Brunovsky canonical form associated with controllability
indices κ1, κ2. These are identified next.

Selecting

qi =−

[
Di,1 Di,2

Di,2 Di,4

]−1[
Φi

Ωi

]
, (6.253)

Si =

[
Di,1 Di,2

Di,2 Di,4

]−1

, (6.254)

and applying
ui =−S−1

i qi +S−1
i vi, (6.255)

into (6.247) yields

ξ̇i =


ξi,2

0
ξi,4

0

+


0 0
1 0
0 0
0 1

vi, (6.256)
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with vi ∈ R2. State-space form (6.256) can be written in standard form as:

ξ̇i =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




ξi,1

ξi,2

ξi,3

ξi,4

+


0 0
1 0
0 0
0 1

vi, (6.257)

which is clearly a linear model. Also, (6.257) is in Brunovsky canonical form associated
with controllability indices κ1 = 2 and κ2 = 2. Interestingly enough, feedback control law
ui in (6.255) immediately maps the nonlinear system (6.247) into the linear model (6.257)
without the need of altering coordinates. Thus, in the present instance, local diffeomorphism
is the (trivial) linear map Ti = I4ξi. Further, we observe that inertia matrix Mi(θi), defined
by functions Di,1, Di,2, Di,3 and Di,4 shown in (6.243), is nonsingular and functions Φi(ξi),
Ωi(ξi) defined in (6.248), (6.249), respectively, are smooth ∀ξi ∈ R4. This allows us to
guarantee that also feedback functions qi(ξi) and Si(ξi) as chosen in (6.253) and (6.254),
respectively, are smooth and well-defined ∀ξi ∈R4. Thus, we conclude that feedback control
law ui(ξi(t)) as designed in (6.255) is also well-defined ∀ξi ∈R4, i.e., systems in (6.247) are
feedback linearizable in the global sense. This highly desirable property appearing in the
present study, allows for designing a stabilizing feedback controller vi in (6.255) ∀ξi,0 ∈ R4.

Clearly, feedback law ui in (6.255) can be seen as a model-matching feedback controller
that maps systems’ dynamics (6.247) to a linear target model (6.257) represented in the
Brunovsky canonical form (Āc, B̄c). We are now interested in identifying a new target
system with dynamics given by (Āc + B̄cAm, B̄c). In essence, we wish to compute a matrix
Am ∈ R2×4 such that a measure of the control effort generated by the joint model-matching
feedback action is minimimal. For this reason, a further model-matching feedback law is
designed as

vi = S−1
i Amξi, (6.258)

which is substituted in (6.255) yielding

ui =−S−1
i qi +S−1

i Amξi. (6.259)

To formulate a minimization problem of joint model-matching control effort we proceed
with the following conjectures. We consider states ξi,1, ξi,2, ξi,3 and ξi,4 as random variables
uniformly distributed in the ranges

−π

2
≤ ξi,1 ≤

π

2
, −1 ≤ ξi,2 ≤ 1, − π

2
≤ ξi,3 ≤

π

2
, −1 ≤ ξi,4 ≤ 1, (6.260)
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respectively, and we define the following:

Ψi = ξ
′
i ⊗S−1

i (6.261)

am = vec(Am) (6.262)

σi =−S−1
i qi. (6.263)

Then, a local model-matching control effort is expressed as

Ji(am) = a′mGiam −2βiam + γi, (6.264)

where Gi, βi and γi above are as defined in (6.211), (6.212) and (6.213), respectively. We
evaluate G = ∑

11
i=1 Gi and β = ∑

11
i=1 βi and we compute

a∗m =−G−1
β
′, (6.265)

which is the least-squares solution of min∑
11
i=1 Ji(am). Finally, calculating the various inte-

grals in MatLab using symbolic variables, the inverse vectorization operator vec−1(·), yields
A∗

m = vec−1(a∗m) where

A∗
m =

[
1.5047 0 0.0917 0
−0.3793 0 1.0939 0

]
. (6.266)

Optimal target system is then defined as (A, B̄c) with

A = Āc + B̄cA∗
m =


0 1 0 0

51.5047 0 0.0917 0
0 0 0 1

−0.3793 0 1.0939 0

 . (6.267)

The i-th system feedback control law ui is now written as

ui =−S−1
i qi +S−1

i A∗
mξi +S−1

i v̂i. (6.268)

Adopting a top-down design procedure, a distributed stabilizing controller v̂i is designed
in the following manner. We solve LQR problem (3.65) with tuning parameters (Q1, Q2, R),
for NL = 5 systems with dynamics represented by the target pair (A, B̄c). This choice of NL

systems corresponds to NL = dmax +2, dmax here denoting the maximum vertex in-degree of
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D11. For a particular choice of (Q1, Q2, R) matrices K1, K2 are defined as

K1 =−R−1B̄′
cP, (6.269)

K2 = R−1B̄′
cP̃2, (6.270)

where P, P̃2 are associated with ARE (3.71), (3.72), respectively. Considering the closed-loop
matrix

Acl,11 = I11 ⊗A+(I11 ⊗ B̄c)(I11 ⊗K1 +M⊗K2), (6.271)

we wish to select matrix M such that Acl,11 above is Hurwitz. Defining M = αLD,11, then,
from Theorem 4.3.4, closed-loop matrix Acl,11 is guaranteed to be Hurwitz for all α > 2.5.
Here, we choose α = 2.6, which is identical to our decision made in the numerical example
studied in Section 5.5 of Chapter 5.

Two different choices of tuning parameters (Q1, Q2, R) are considered in the simulations.
The first choice penalizes more heavily the local joint angles ξi,1, ξi,3 than the second and uses
Q1 = diag(1,0,1,0), Q2 = Q1, R = I2. Angular velocities are not weighted in this simulation
study. In the second choice, LQR cost function is tuned to place more emphasis on the relative
state information (xi−x j), by selecting Q1 = diag(0.01,0,0.01,0), Q2 = diag(100,0,100,0),
R = I2. Identical initial conditions are considered for both simulation cases.

Simulation results are presented in Fig. 6.4-6.9. Clearly, network stability is maintained
for both tuning selections of the LQR performance index. In particular, the proposed
distributed control scheme regulates state variables of each subsystem and the control
objective of driving each robot arm to a vertical position is achieved. This is illustrated in
Fig. 6.6 and Fig. 6.9, where coordinates of the tip of the second link of each robot arm are
plotted against time. Note that in these figures, y-coordinate has been normalized by total
length li,1 + li,2 so that agents’ interactive behavior is depicted clearly.

Network behavior with respect to each LQR tuning decision appears more pronounced
in the state-variables graphs. In particular, Fig. 6.7 and Fig. 6.8 demonstrate a simulation
scenario in which control action of each robot arm is tuned to penalize heavily weighted
norms ∥θi,1 −θi,2∥Q2 and ∥θi,2 −θ j,2∥Q2 . This results in a highly coupled distributed control
scheme which force robot arms to reach initially an agreement on the joint-angles variables
which are subsequently converge to zero. Fig. 6.4 and Fig. 6.5 illustrate a reversed situation
where the much loosely coupled distributed control system regulates the angle-variables of
each robot arm which then reach an agreement as converging to the origin. We emphasize that
this capacity to adjust agents behavior and control performance specifications in networks of
non-identical systems highlights a powerful feature of our model-matching control approach.
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Fig. 6.4 Joint-angle θ1 response of eleven robot arms under model-matching and top-down
control tuned with low penalty Q2.
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Fig. 6.5 Joint-angle θ2 response of eleven robot arms under model-matching and top-down
control tuned with low penalty Q2.
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Fig. 6.6 Motion of the tip of eleven robot arms under model-matching and top-down control
tuned with low penalty Q2.
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Fig. 6.7 Joint-angle θ1 response of eleven robot arms under model-matching and top-down
control tuned with high penalty Q2.
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Fig. 6.8 Joint-angle θ2 response of eleven robot arms under model-matching and top-down
control tuned with high penalty Q2.
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Fig. 6.9 Motion of the tip of eleven robot arms under model-matching and top-down control
tuned with high penalty Q2.
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6.6 Conclusion

We have extended the model-matching approach studied in Chapter 5 for linear systems, to a
special class of nonlinear systems. In the present setting, the method relies on local nonlinear
feedback control and a change of coordinates obtained by solving a feedback linearization
task of multiple nonlinear systems. In effect, via feedback control and a coordinate alteration,
local dynamics are mapped to a linear model referred to as target system. Since this is
identical to all systems, the linearization task here is cast as a model-matching control
problem. Similarly to the previous chapter the target system is specified either a priori
or obtained by minimizing joint model-matching energy loss. Establishing the notion of
controllability indices for nonlinear systems, the proposed model-matching scheme is adapted
to a network setup in which heterogeneous nonlinear self-linearizable agents are stabilized by
a distributed LQR-based controller designed on target dynamics. Here, the top-down control
method is suggested for constructing the distributed scheme. This combined setting leads
to a large-scale distributed control scheme which can further be enhanced via an optimal
target selection allowing for network performance to be effectively controlled by the LQR
tuning parameters. We believe that any distributed state-feedback control design method for
dynamically decoupled, identical linear systems can be adopted in this matching approach
for regulating networks of multiple heterogeneous nonlinear systems. This represents a
highly desirable feature in multi-agent network control and highlights the adaptability of the
proposed model-matching control scheme.



Chapter 7

Distributed LQR for coupled LTI
systems

In this chapter, we focus on multi-agent networks composed of identical dynamically coupled
linear time-invariant systems. We assume that dynamical couplings among agents can be
expressed in a state-space form of a certain structure and each system representing an agent
can produce actuation signals independently. Effectively, we consider that the topology of
physical couplings and the topology of information exchange among agents coincide and are
described by the same undirected graph.

We follow a top-down method to approximate a centralized LQR optimal controller by
a distributed scheme. Overall network stability is guaranteed via a stability test applied to
a convex combination of two Hurwitz matrices. The validity of this condition is consistent
with the stability of a class of network topologies which is identified. Sufficient condition
for stability of convex combination of Hurwitz matrices can be found in [14]. Our approach
builds upon the distributed LQR design proposed in [17] and is motivated by the structure of
a large-scale LQR optimal problem.

Our definition of a multi-agent network in the present setting has also been inspired
by the structure of a multi-area power system. In the following chapter, to illustrate the
applicability of our control algorithm, we address the load frequency control problem of a
large-scale power network formed of identical control areas by the distributed LQR-based
state-feedback controller proposed in this chapter.
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7.1 LQR for dynamically coupled systems

Let

ẋi = A1xi +A2

NL

∑
j=1, j ̸=i

(xi − x j)+Bui, xi(0) = xi,0, i = 1, . . . ,NL, (7.1)

be the state-space forms of NL dynamically coupled LTI systems representing the individual
level dynamics of NL agents forming a network. Vectors xi ∈ Rn, and ui ∈ Rm denote states
and inputs of the i-th system, respectively. A complete graph (with all possible edges)
G = (V ,E ) with Laplacian matrix Lc is utilized to model the topology of the physical
links between agents. Node i ∈ V of G corresponds to local state xi while edge (i, j) ∈ E is
associated with the xi − x j term in (7.1). Now construct the aggregate state and input vectors
x̃ ∈ RnNL , ũ ∈ RmNL , respectively by stacking all state and input vectors, respectively, of all
NL systems taken in ascending order depending on their label in the graph G . The aggregate
state-space form of the network becomes

˙̃x = Ãx̃+ B̃ũ, x̃(0) = x̃0, (7.2)

with
Ã = INL ⊗A1 +Lc ⊗A2, B̃ = INL ⊗B. (7.3)

Consider now LQR control problem associated with NL coupled systems:

min
ũ

J(ũ, x̃0) s.t. ˙̃x = Ãx̃+ B̃ũ, x̃(0) = x̃0, (7.4)

where the cost function
J(ũ, x̃0) =

∫
∞

0
(x̃′Q̃x̃+ ũ′R̃ũ) dt, (7.5)

with
Q̃ = INL ⊗Q1 +Lc ⊗Q2, R̃ = INL ⊗R. (7.6)

Here the weighting matrices Q1 = Q′
1 ≥ 0 and R = R′ > 0 penalize local states and inputs

of each node, respectively, while the matrix Q2 = Q′
2 ≥ 0 is chosen to weigh relative state

differences between subsystems. The following stabilizability and observability assumptions
guarantee solution to LQR problem (7.4).

Assumption 7.1.1. Let C′
1C1 = Q1. The pair (A1, B) is stabilizable and (A1, C1) is observ-

able.

Assumption 7.1.2. Let C′
12C12 = Q1 +NLQ2. The pair (A1 +NLA2, B) is stabilizable and

(A1 +NLA2, C12) is observable.
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Under Assumptions 7.1.1 and 7.1.2 problem (7.4) has unique stabilizing solution ũ = K̃x̃
which gives an optimum performance index (7.5) equal to x̃′0P̃x̃0. The optimal state-feedback
gain K̃ = −R̃−1B̃′P̃ where P̃ is the symmetric positive definite (s.p.d.) solution to the
large-scale ARE:

Ã′P̃+ P̃Ã− P̃B̃R̃−1B̃′P̃+ Q̃ = 0. (7.7)

Due to special formulation of (7.4), K̃ and P̃ have a specific structure which will prove useful
for designing stabilizing distributed controllers in the next section. The special structure of
these matrices is proved in Theorem 7.1.3. In the following we set X = BR−1B′ for simplicity.

Theorem 7.1.3. Assume P̃ is the s.p.d solution to (7.7) associated with the optimal solution
to (7.4). Let P̃ ∈ RnNL×nNL be decomposed into N2

L blocks of dimension n×n, each denoted
by P̃i j and referred to as the (i, j)-block of P̃. Then the following statements hold.

I. ∑
NL
j=1 P̃i j = P where P = P′ ≥ 0 is the stabilizing solution to the single-node ARE:

A′
1P+PA1 −PXP+Q1 = 0. (7.8)

II. P̃i j = P̃kl = P̃2 for all j ̸= i, l ̸= k where P̃2 is a symmetric matrix associated with the
node-level ARE:

(A1 +NLA2)
′(P−NLP̃2)+(P−NLP̃2)(A1 +NLA2)− (P−NLP̃2)X(P−NLP̃2)

+Q1 +NLQ2 = 0. (7.9)

Proof. First we prove part I of the Theorem. The equations corresponding to the diagonal
blocks of (7.7) are:

(A1 +(NL −1)A2)
′P̃ii −A′

2

NL

∑
j=1
j ̸=i

P̃i j + P̃ii(A1 +(NL −1)A2)−
NL

∑
j=1
j ̸=i

P̃i jA2 −
NL

∑
k=1

P̃ikXP̃ik

+Q1 +(NL −1)Q2 = 0, (7.10)

for i = 1, . . . ,NL. Note that P̃i j = P̃ji due to symmetry of P̃ in (7.7). Now let

Fii = P̃ii +
NL

∑
j=1
j ̸=i

P̃i j. (7.11)
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Substituting (7.11) to (7.10) gives:

(NL −1)(A′
2Fii +FiiA2)−NLA′

2

NL

∑
j=1
j ̸=i

P̃i j −
NL

∑
j=1
j ̸=i

P̃i jNLA2 (7.12a)

+A′
1(Fii −

NL

∑
j=1
j ̸=i

P̃i j)+(Fii −
NL

∑
j=1
j ̸=i

P̃i j)A1 −
NL

∑
k=1

P̃ikXP̃ik +Q1 +(NL −1)Q2 = 0. (7.12b)

Using (7.11) the equations corresponding to the off-diagonal blocks of (7.7) can be written
as:

(NL −1)(A′
2P̃i j + P̃i jA2)−A′

2(Fii −
NL

∑
k=1
k ̸=i

P̃ik)− (Fii −
NL

∑
k=1
k ̸=i

P̃ik)A2 −A′
2

NL

∑
l=1
l ̸=i
l ̸= j

P̃il −
NL

∑
l=1
l ̸=i
l ̸= j

P̃ilA2

(7.13a)

+A′
1P̃i j + P̃i jA1 −

NL

∑
k=1

P̃ikXP̃k j −Q2 = 0.

(7.13b)

Summing up (7.13a) for all j ̸= i block-wise and adding this summation to (7.12a) gives

(NL −1)A′
2Fii +Fii(NL −1)A2 − (NL −1)A′

2Fii −Fii(NL −1)A2 −NLA′
2

NL

∑
j=1
j ̸=i

P̃i j

−
NL

∑
j=1
j ̸=i

P̃i jNLA2 +(NL −1)A′
2

NL

∑
j=1
j ̸=i

P̃i j +
NL

∑
j=1
j ̸=i

P̃i j(NL −1)A2 +(NL −1)A′
2

NL

∑
k=1
k ̸=i

P̃ik

+
NL

∑
k=1
k ̸=i

P̃ik(NL −1)A2 − (NL −1)A′
2

NL

∑
l=1
l ̸=i
l ̸= j

P̃il −
NL

∑
l=1
l ̸=i
l ̸= j

P̃il(NL −1)A2 = 0, (7.14)

where all the terms associated with A2 cancel out. By summing up (7.13) over all j ̸= i
block-wise and adding this summation to (7.12) gives

A′
1Fii +FiiA1 −FiiXFii +

NL

∑
k=1
k ̸=i

(
P̃ikX

(
Fii −Fkk

))
+Q1 = 0. (7.15)
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Eq. (7.15) has been established in Theorem 7.1.3 of [17]. It is also true here due to (7.14).
Adding up (7.15) over all i = 1, . . . ,NL we get

NL

∑
i=1

(
A′

1Fii +FiiA1 −FiiXFii +Q1
)
= 0, (7.16)

which is a sum of NL identical ARE’s, i.e.,

NL(A′
1Fii +FiiA1 −FiiXFii +Q1) = 0. (7.17)

Eq. (7.11) implies Fii = ∑
NL
i=1 P̃i j which along with (7.17) proves part I.

Since B̃, R̃ are block diagonal and Ã, Q̃ have a repetitive structure, the ARE (7.7)
can essentially be decomposed into NL identical equations. This implies that all P̃i j with
i, j = 1, . . . ,NL and j ̸= i are identically equal. Let P̃2 be a symmetric matrix representing the
off-diagonal blocks P̃i j of P̃. Setting P = Fii for i = 1, . . . ,NL, and P̃2 = P̃i j for i, j = 1, . . . ,NL

and j ̸= i, and substituting these matrices into (7.13) gives:

(NL −1)A′
2P̃2 +(NL −1)P̃2A2 −A′

2P−PA2 +(NL −1)A′
2P̃2 +(NL −1)P̃2A2

−(NL −2)A′
2P̃2 − (NL −2)P̃2A2 +A′

1P̃2 + P̃2A1 − P̃2X(P− (NL −1)P̃2)

−(P− (NL −1)P̃2)XP̃2 − (NL −2)P̃2XP̃2 −Q2 = 0, (7.18)

which after rearranging some terms and multiplying both sides by −NL becomes:

(A1 +NLA2)
′(−NLP̃2)+(−NLP̃2)(A1 +NLA2)+NLA′

2P+PNLA2 − (−NLP̃2)XP

−PX(−NLP̃2)− (−NLP̃2)X(−NLP̃2)+NLQ2 = 0, (7.19)

or

(A1 +NLA2)
′(−NLP̃2)+(−NLP̃2)(A1 +NLA2)+NLA′

2P+PNLA2 +PXP

−(P−NLP̃2)X(P−NLP̃2)+NLQ2 = 0. (7.20)

Adding now (7.8) to (7.20) results in:

(A1 +NLA2)
′(−NLP̃2)+(−NLP̃2)(A1 +NLA2)+(A1 +NLA2)

′P+P(A1 +NLA2)

−PXP+PXP− (P−NLP̃2)X(P−NLP̃2)+Q1 +NLQ2 = 0, (7.21)
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or

(A1 +NLA2)
′(P−NLP̃2)+(P−NLP̃2)(A1 +NLA2)− (P−NLP̃2)X(P−NLP̃2)

+Q1 +NLQ2 = 0, (7.22)

which proves part II.

By assumption matrices R̃,B̃ are selected block diagonal. Consequently, the state-feedback
gain K̃ =−R̃−1B̃′P̃ associated with the optimal solution to (7.4) retains the same structure
with P̃. This leads to the following Corollary.

Corollary 7.1.1. Assume K̃ = −R̃−1B̃′P̃ is the optimal state-feedback gain obtained from
the solution to (7.4) which gives minimum performance index x̃′0P̃x̃0 with P̃ being the s.p.d
solution to (7.7). Let K̃ ∈ RmNL×nNL and P̃ ∈ RnNL×nNL be decomposed into N2

L blocks of
dimension m×n and n×n denoted by K̃i j and P̃i j, respectively each referred to as (i, j)-block
of matrix K̃ and P̃, respectively. Then the following are true;

I. P̃ = INL ⊗P−Lc ⊗ P̃2.

II. ∑
NL
j=1 K̃i j =−R−1B′P for i = 1, . . . ,NL.

III. K̃ii =−R−1B′P+(NL −1)R−1B′P̃2 for i = 1, . . . ,NL.

IV. K̃i j =−R−1B′P̃2 for i, j = 1, . . . ,NL and j ̸= i.

V. K̃ =−INL ⊗R−1B′P+Lc ⊗R−1B′P̃2.

Theorem 7.1.3 states that due to special formulation of the cost function (7.5) and the
structure of the aggregate state-space form (7.2), the large-scale LQR problem (7.4), under
Assumptions 7.1.1 and 7.1.2, can effectively be reduced to two simpler (low-dimensional)
LQR problems associated with node-level ARE’s. This feature may be highly beneficial for
problems involving graphs with excessively large number of vertices (NL).

Applying the stabilizing optimal state-feedback control ũ = K̃x̃ to (7.2) results in a
closed-loop matrix which is Hurwitz and is written as

Acl = INL ⊗ (A1 −XP)+Lc ⊗ (A2 +XP̃2). (7.23)

Due to Proposition 3.3.2 the spectrum of Acl can be decomposed into:

S(Acl) =
NL⋃
i=1

S
(
A1 −XP+λc,i(A2 +XP̃2)

)
(7.24)
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where λc,i ∈ {0,NL, . . . ,NL}.

Remark 7.1.4. Matrix A1 −XP+αNL(A2 +XP̃2) is Hurwitz for α = 0 and α = 1.

In the sequel we require that:

Condition 7.1.5. Matrix A1 −XP+αNL(A2 +XP̃2) is Hurwitz for all α ∈ [0,1].

Condition 7.1.5 states that all convex combinations of two Hurwitz matrices

µĀ1 +(1−µ)Ā2 with µ ∈ [0,1], (7.25)

are Hurwitz, where Ā1 = A1 −XP+NL(A2 +XP̃2) and Ā2 = A1 −XP. Sufficient conditions
for Hurwitz stability of convex combination of Hurwitz matrices can be found in Theorem
2.2 in [14]. In essence, Condition 7.1.5 characterizes a class of LQR problems (7.4) which
admit of solutions for which the Condition 7.1.5 holds. This will be used later for the design
of distributed stabilizing controllers. For a given selection of weighting matrices (Q1, Q2, R)
of the LQR problem (7.4), the validity of Condition 7.1.5 can be verified by searching for a
symmetric positive definite matrix P̄ for which the following LMI−(Ā′

1P̄+ P̄Ā1) 0n×n 0n×n

0n×n −(Ā′
2P̄+ P̄Ā2) 0n×n

0n×n 0n×n P̄

> 0, (7.26)

is feasible. Obviously if matrix P̄ exists then premultiplying and postmultiplying (7.26)
by [

√
µIn

√
1−µIn 0n×n] and [

√
µIn

√
1−µIn 0n×n]

′, respectively, for µ ∈ [0,1] leads to
Lyapunov inequality

(µĀ1 +(1−µ)Ā2)
′P̄+ P̄(µĀ1 +(1−µ)Ā2)< 0, (7.27)

which admits of a solution P̄ = P̄′ > 0. This demonstrates that µĀ1 +(1−µ)Ā2 is a Hurwitz
matrix for all µ ∈ [0,1]. Alternatively, the stability of µĀ1 +(1−µ)Ā2 can be examined via
a simple graphical test by plotting the eigenvalue with the maximum real part of the matrix
µĀ1 +(1−µ)Ā2 for µ ∈ [0,1].

7.2 Distributed LQR design for dynamically coupled sys-
tems

Let a sparse network be formed of N identical dynamically coupled LTI systems. We note
here that the index N differs from index NL utilized earlier for complete-graph topologies.
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In the sequel, we use index N pertaining to schemes with sparse structure. Let now the
couplings between systems be modelled by a graph GN = (V ,E ) with Laplacian matrix LN .
The neighborhood of the i-th system is denoted by Ni ⊂ V and comprises all j ∈ V with
j ̸= i for which (i, j) ∈ E . Let

ẋi = A1xi +A2 ∑
j∈Ni

(xi − x j)+Bui, xi(0) = xi,0, i = 1, . . . ,N, (7.28)

be the dynamics of all systems as described at local level. Vectors xi ∈ Rn, ui ∈ Rm denote
local state and input variables. Consider now the aggregate state-space form of the network
written as

˙̂x = Âx̂+ B̂û, x̂(0) = x̂0, (7.29)

where x̂ ∈ RnN , û ∈ RmN and

Â = IN ⊗A1 +LN ⊗A2, B̂ = IN ⊗B. (7.30)

Note that the Laplacian matrix LN in (7.30) does not necessarily correspond to a complete
graph in contrast to (7.3) and generically matrix Ã in (7.30) is sparse. A stabilizing distributed
controller for (7.29) is constructed in the following Theorem. For convenience we set
X = BR−1B′.

Theorem 7.2.1. Consider a network of N coupled systems with dynamics described in (7.28),
and let GN be an undirected graph of N vertices with a Laplacian matrix LN . Let also λN be
the maximum eigenvalue of LN , and denote by dmax = ⌈λN⌉ the smallest integer which is
greater than or equal to λN . Consider LQR problem (7.4) for NL = dmax, define P and P̃2 via
(7.8) and (7.7), respectively, and assume Condition 7.1.5 is true. Define also the distributed
state-feedback gain:

K̂ =−IN ⊗R−1B′P+LN ⊗R−1B′P̃2. (7.31)

Then, the closed-loop matrix

Acl = IN ⊗ (A1 −XP)+LN ⊗ (A2 +XP̃2) (7.32)

is Hurwitz.

Proof. Consider the spectrum S(Acl) = S(IN ⊗ (A1 −XP)+LN ⊗ (A2 +XP̃2)). Let VN ⊗ In

be state-space transformation where VN ∈ RN×N is an orthogonal matrix whose columns
consist of the eigenvectors of LN . In the transformed coordinates, Ācl = IN ⊗ (A1 −XP)+
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ΛN ⊗ (A2 +XP̃2) where ΛN = diag(0,λ2, . . . ,λN) with λN ≤ dmax. The spectrum of Ācl is

S(Ācl) =
N⋃

i=1

(A1 −XP+λi(A2 +XP̃2)), (7.33)

where λi, i = 1, . . . ,N are the eigenvalues of LN . Condition 7.1.5 holds, hence (A1 −XP)+
αdmax(A2 +XP̃2) is Hurwitz for all α ∈ [0,1]. Consequently Ācl is also Hurwitz since
λi ∈ [0,dmax] for all i = 1, . . . ,N. This proves the theorem.

Remark 7.2.2. For a time-varying graph G (t) = (V ,E (t)) with fixed number of vertices
N and time-varying edges the maximum eigenvalue of the time-varying Laplacian matrix
L (t) is bounded by 2N. Consequently, solving problem (7.4) for NL = 2N and assuming
Condition 7.1.5 holds, leads to a distributed controller K̂ that stabilizes the network for all
possible couplings among the N systems. Naturally, this does not imply stability of switching
between stable network interconnections.

7.3 Conclusion

A distributed LQR-based controller for stabilizing networks of identical dynamically coupled
agents is proposed based on a large-scale LQR optimal control problem. The proposed
method considers that dynamical couplings between interconnected systems are expressed
in a state-space form of a certain structure, while builds upon and extends the results on
distributed LQR control of dynamically decoupled systems proposed in [17]. The control
scheme is obtained by optimizing an LQR performance index with a tuning parameter utilized
to emphasize/de-emphasize relative state difference between interconnected systems. The
proposed approach enhances the multi-agent system modularity and leads to a simple and
verifiable stabilizability condition that is valid for a class of network topologies.





Chapter 8

Distributed LQR-based load frequency
control of multi-area power networks

8.1 Introduction

Power systems are important in engineering, and their stable and continuous operation is
inherently connected to social welfare and economic prosperity. Power system networks
can be characterized as large-scale complex systems which encompass a broad array of
subsystems and tasks. This intrinsic complexity is constantly evolving and growing in
alignment with state-of-the-art technologies, facilitating a more efficient power generation,
transmission, and distribution. Recently, the increasing penetration of sustainable energy
sources into the energy map and the digitalization of power control systems have resulted in
sophisticated concepts, such as intelligent power networks and smart grids. The stochasticity
and intermittency of renewable energy sources, along with the decentralization of power
generation and the integration of vulnerable communication layers across the physical
structure of the power network, are just a few of the vital reasons that render the control of
the modern power systems highly challenging.

In this chapter, we consider power system networks formed of distinct control areas
which are interconnected via weak transmission lines referred to as tie-lines. Each area
maintains a single nominal frequency across its geographical region and comprises either
a single or a group of generators. In order for an area composed of multiple generators to
maintain its nominal frequency under load variations, a local load frequency controller is
used, distributed to the corresponding turbine-governing systems of each generating unit.
The design of load frequency control (LFC) is based on a single-plant model which represents
the sum of generating units [90]. An area is responsible for meeting power demand 1) of
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its own consumers, and 2) of certain adjacent areas with which is interconnected through
tie-lines exchanging power normally scheduled for a contracted value. However, due to
power load differentiation, the frequency of each area, along with the scheduled power
exchange between interconnected areas, may vary from their nominal value.

The rate of change of frequency (RoCoF) is related to the power system inertia and the ac-
tive power mismatch. The relationship between inertia of a distinct area, RoCoF, and change
in active power can be found in [106, 208]. Virtually, synchronous machines have been the
main source of system inertia, with the area frequency being directly coupled to the rotational
speed of the aggregated synchronous generators [157, 106]. Traditionally, the prime mover
of conventional thermal power stations and hydroelectric plants, along with the synchronous
generators (typically of large inertia), act as smoothing (low-pass) filters on variations of
electric loads and participate primarily in the frequency regulation of the area. In contrast,
renewable energy generation units behave differently from conventional synchronous genera-
tors, mostly because they are connected through power electronic interfaces. In effect, these
devices fully or partly can electrically decouple the generator from the grid [208], hence
the coupling between the rotational speed of the generator and the system frequency almost
vanishes [131]. For this reason, unlike synchronous generators, inverter-connected generation
units do not inherently contribute to the total system inertia [207]. Although control strategies
for participation in frequency regulation by inverter-connected sources have been proposed in
literature [241, 204, 158], such functions are rarely enabled in reality. Thus, the development
of inverter-connected renewable energy sources introduces new challenges in the design of
LFC, which is primarily performed by synchronous generating units due to their inherent
capability to affect the RoCoF caused by active-power-imbalance events. Here, we focus on
the design of distributed LFC schemes for multi-area power systems. In our model, we inten-
tionally consider only synchronous generating units (thermal power stations, hydroelectric
power plants) for the reasons outlined above. The violation of steady-state operation caused
by active power imbalance is formulated as a feedback disturbance rejection problem of a
large scale interconnected system.

LFC is one of the most challenging problems in multi-area power systems. An introduc-
tion to power systems design and LFC can be found in textbooks [13, 106, 123], while an
overview of control strategies in the field of LFC problems has been discussed in [191, 162].
Comprehensive literature surveys on the topic of LFC for diverse configurations of con-
ventional and future smart power systems can be found in [159, 190, 76, 47]. In typical
situations, the geographical expanse and the mere complexity of the system, resulting from
dynamical couplings among areas, make centralized control schemes either impossible or
undesirable [182, 110, 153]. Hence, decentralized and distributed control is typically needed
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to ensure stable network operation. Analytical methods for designing decentralized and dis-
tributed LFC strategies have been presented in [4, 2, 15]. Robust decentralized control design
methodologies have been proposed in [172], where the authors propose two control schemes
for LFC based on robust optimal control techniques and linear matrix inequalities (LMI).
A rigorous and computationally efficient method, also based on the versatile formulation of
LMI’s for robust decentralized control of multi-machine power systems, has been studied
in [194].

A systematic methodology based on reachability for identifying the impact of potential
cyber attacks in the Automatic Generation Control (AGC) of a two-area power system has
been presented in [60]. Set-theoretic methods for LFC design in the context of cyber-physical
power systems can be found in [105], while in [54], the authors propose LFC design based
on an anti-windup compensator, assuring stability of the closed-loop system even in cases of
large load disturbance. Model predictive control has also attracted attention from the power
system community in recent years due to its convenience in managing online disturbance
rejection problems in the presence of state and input constraints, which is a highly desired
feature in a multi-area power system control. Model predictive control with decentralized and
distributed architecture for LFC design in interconnected power systems has been proposed
in [214, 49, 224, 125, 124].

In this chapter, we formulate the LFC of multi-area power systems as a large-scale
optimal control problem in the absence of state and input constraints. An arbitrary number
of identical areas is considered. The multi-area power system is represented as a multi-
agent network composed of identical dynamically coupled linear time-invariant systems.
These dynamical couplings are expressed in a state-space form of a certain structure and
represent interconnections between areas through tie-lines. In the present setting, each agent
representing an area can produce LFC signals independently and is dynamically coupled
with a certain number of its peers referred to as neighboring agents (areas) with whom it can
exchange state information. Typically, we assume that the topology of physical couplings
(tie-lines) and the topology of information exchange between neighboring agents (areas)
coincide and are described by the same graph.

Linear quadratic regulator (LQR) control design has been successfully utilized in fre-
quency regulation problems, mostly due to large stability margins of its stabilizing solution,
with the fundamental work of [66] being a benchmark approach to LQR-based LFC of
multi-area power systems. Ever since, considerable research has been carried out on this
topic; [160, 189, 48, 188] represent some recent work. Over the past few years, there has
been a renewal of interest in control of networks composed of a large number of interacting
systems. The fundamental work of [17, 46] in this field discusses distributed LQR design
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for a set of identical decoupled dynamical systems. There is no documented distributed
LQR-based approach to networked systems with dynamical couplings and, consequently, no
distributed LQR-based LFC has been reported in literature so far. The research of this chapter
motivated by the structure of a multi-area power system with dynamical couplings between
interconnected areas, attempts to address this particular gap in literature. The description of
our approach is outlined in the following paragraph.

We follow a top-down method to approximate a centralized LQR optimal controller by
a distributed control scheme. It is shown that overall network stability is guaranteed via
a stability test applied to a convex combination of Hurwitz matrices. The validity of this
condition is consistent with the stability of a class of network interconnection structures
which is identified. A major assumption of our work is that the dynamical models of each
area are identical. Although this assumption may be unrealistic in practice, it simplifies the
design problem considerably, which is especially hard due to the coupling terms appearing in
the model. Future work will attempt to eliminate or relax this assumption based on results
presented in earlier chapters. The simulation study presented in Section 8.4.2 is carried out
under considerable perturbations and suggests that this hypothesis is valid and that our results
can be extended to the non-identical case with minor modifications.

In this chapter, our interest in distributed LFC arises from the necessity to avoid central-
ized schemes when these become computationally prohibitive. We wish to tackle the LFC
problem of geographically sparse power grids following a distributed control approach, the
main advantage of which is that it can replace the conventional centralized controller, which
has high communication and processing costs and suffers from a single-point-of-failure
drawback [15]. Faults caused by interconnection losses might give rise to an unacceptable
frequency deviation and may accelerate a cascading failure event. The proposed distributed
LFC controller is stabilizing even if tie-line interconnections and communication links are
added to or removed from the overall system, as long as the stability condition given in
Section 8.3 (and Section 7.1) is not violated. This powerful feature gives integrity to the
control unit of each area and enhances the resilience of the power system as a whole in
the presence of interconnection variations. The main contributions of the chapter are listed
below.

a. We propose a novel distributed-LQR algorithm for networked systems with dynamical
couplings applied to LFC of large-scale multi-area power systems.

b. The control scheme is obtained by optimizing an LQR performance index with a tuning
parameter which can be used to emphasize/de-emphasize relative state differences
between interconnected areas. In effect, this parameter controls the magnitude of
tie-line power exchange and frequency synchronization between interconnected areas.
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c. Our approach enhances power system modularity and leads to a simple and verifiable
stabilizability condition valid for a class of network topologies. Extensive simulations
presented in this work support our conjecture that this stabilization criterion can be
extended to more general LFC control network problems.

8.2 Multi-area power system design

Power system networks can be decomposed into multiple distinct dynamical subsystems,
referred to as control areas, each area having two primary characteristics; 1) it comprises
either a single generator or a group of generators, and 2) it maintains a single frequency
across its geographical expanse. The areas are responsible for meeting the demand of their
own consumers and are interconnected with each other through transmission lines, referred
to as tie-lines, over which they exchange certain amount of power normally scheduled for a
contracted value for each tie-line interconnection. In this chapter, we consider a multi-agent
representation of power systems where each agent/area has autonomous actuation capacity
and is dynamically coupled with certain neighboring agents/areas with which it exchanges
state-information. We assume that the topology of the physical links (tie-lines) and the
communication scheme coincide. This multi-agent approach to multi-area power systems is
illustrated in Fig. 8.1, where physical structure of the network (solid lines) and communication
links (dotted lines) are incorporated into one unified entity, representing a modern large-scale
power system. The consistency between the structures of the communication network and
the physical grid, as shown in Fig. 8.1, facilitates information exchange between control
subsystems enabling the development of control schemes with distributed architecture.
As mentioned earlier, each distinct area consists of a group of generating units, the aggregate
power generation of which should match the demand of the consumers spanned across the
geographical expanse covered by the corresponding area. The aggregate generation may
comprise thermal power stations, hydroelectric plants, wind turbine farms, photovoltaic
and battery storage power stations, and, in general, any type of conventional and renewable
energy sources. In this work, to avoid further complications in designing distributed control
schemes, the power generation of each area is limited to thermal and hydroelectric power
stations.
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Fig. 8.1 Tie-line interconnections (solid lines) and communication scheme (dotted lines) in
large-scale multi-area power system.

8.2.1 Modeling

Let a power system be composed of N areas the topology of which is modeled by an
undirected graph G = (V ,E ). Each node i ∈ V represents an area and an edge (i, j) ∈ E

between two nodes denotes interaction between the two nodes/areas. We note that the edge
(i, j) of the graph determines coupling terms in the dynamics of area i and j and also indicates
information exchange between node i and j. Let also all j ∈ V with j ̸= i such that (i, j) ∈ E

be denoted by Ni. In the sequel, all j ∈ Ni are referred to as adjacent or neighboring
nodes/areas to i. At steady-state operation the power sharing via tie-line interconnection
between two areas i and j is denoted by Ptie,i, j and is given by:

Ptie,i, j =
ViVj

Xi j
sin(δi −δ j). (8.1)

Here, Xi j is the reactance of the tie-line which connects the two areas, δi, δ j represent the
power angles of equivalent machines of area i and j, respectively, and Vi, Vj are the voltages
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at equivalent terminals of area i and j, respectively. A tie-line interconnection in a two-area
system is depicted in Fig. 8.2.

Vi∠δi

Gi

Loadi

Xi j

Vj∠δ j

G j

Load j

Fig. 8.2 Tie-line interconnection of two-area system.

For small deviations of (δi, δ j) from equilibrium (δ o
i , δ o

j ), the power flow deviation over
(i, j)-tie-line from the nominal value is given by the linear equation:

∆Ptie,i, j = Ti j(∆δi −∆δ j), (8.2)

where the synchronizing torque coefficient Ti j =
|Vi||V j|

Xi j
cos(δ o

i −δ o
j ), [13]. Notation ∆

indicates deviation from steady-state operation conditions. Differentiating (8.2) with respect
to time results in:

∆Ṗtie,i, j = Ktie,i, j
(
∆ fi −∆ f j

)
, (8.3)

where Ktie,i, j = 2πTi j is referred to as synchronization coefficient between area i and j, while
∆ fi and ∆ f j represent the frequency deviation of each area from their common nominal value,
denoted here by f o. According to (8.3), the linearized dynamics of the total power inflow to
the i-th area from all interconnected areas j ∈ Ni, is given by:

∆Ṗtie,i = ∑
j∈Ni

Ktie,i, j(∆ fi −∆ f j). (8.4)

The open-loop linearized dynamics of the i-th interconnected area is represented by a
model widely used in literature [13, 106], the block diagram of which is shown in Fig. 8.3.

∆PC,i

∆Pf ,i

Σ
∆utot,i Kt,i

sTt,i+1
∆PG,i

Σ

−∆Ptie,i

−∆PL,i

Kp,i
sTp,i+1 ∆ fi

− 1
Ri

Fig. 8.3 Single block representation of the i-th interconnected area.
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The total control signal of the i-th area is the sum of two components: ∆utot,i = ∆Pf ,i +

∆PC,i, namely the primary frequency control action, defined as ∆Pf ,i =− 1
Ri

∆ fi and the AGC
signal ∆PC,i to be designed. The first is a fixed static linear control law performed by the
speed governor which is a regulating unit attached on the prime mover. Detailed description
of this topic can be found in [106]. The static gain Ri is referred to as speed droop or
speed regulation and expresses the ratio of the frequency deviation ∆ fi to a change in output
generated power by ∆PG,i assuming the AGC signal ∆PC,i = 0. A typical droop characteristic
of a single generator actuated by primary frequency control is shown in Fig. 8.4.

PG,i[MW ]

fi[Hz]

Ri

Po
G,i PG,i

f o
i

fi

∆ fi

∆PG,i

Fig. 8.4 Droop characteristic.

The signal ∆utot,i is assumed to be subjected to a component-wise saturation hard con-
straint of the form:

∆utot,i,min ≤ ∆utot,i ≤ ∆utot,i,max, (8.5)

where ∆utot,i,max is taken greater than the maximum expected load deviation ∆PL,i,max; oth-
erwise, zero frequency deviation error is not guaranteed. Negative values of ∆utot,i allow
for handling of negative values of ∆PL,i in case of load reduction. The rate of change of
power generation due to the limit of the thermal and mechanical movements in the generating
unit of each area, as well as the speed governor dead band, are important issues in power
system modeling. For simplicity, these constraints will be ignored in the linear stability
analysis carried out in Section 8.3, and they will only be considered in simulation results in
Section 8.4.
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The corresponding state-space form of each area can be written as:

 ∆ ḟi

∆ṖG,i

∆Ṗtie,i

=


− 1

Tp,i

Kp,i
Tp,i

−Kp,i
Tp,i

− Kt,i
RiTt,i

− 1
Tt,i

0

0 0 0


︸ ︷︷ ︸

A1,i

 ∆ fi

∆PG,i

∆Ptie,i


︸ ︷︷ ︸

xi

+ ∑
j∈Ni

 0
0

Ktie,i, j(∆ fi −∆ f j)


︸ ︷︷ ︸

Ei

+

 0
Kt,i
Tt,i

0


︸ ︷︷ ︸

Bu,i

∆PC,i︸︷︷︸
ui

+

−
Kp,i
Tp,i

0
0


︸ ︷︷ ︸

Bw,i

∆PL,i︸︷︷︸
wi

,

(8.6)
for i = 1, . . . ,N, where we have used the state-space differential equations with respect to
block diagram Fig. 8.3, along with (8.4). Note that Ei corresponds to the dynamic coupling
between the i-th area and its adjacent peers and gives rise to a state-space model of non-
standard form. A standard state-space model for the complete network will be derived in the
sequel. The variables ∆ fi and ∆Ptie,i in the state-vector have been already defined; variable
∆PG,i in (8.6) is the deviation from equilibrium value of the electrical power generated by the
aggregate generating units of each area and is taken equal to the mechanical power produced
in the output of the turbines. All parameters involved in (8.6), along with basic power
system terminology, are summarized in Table 8.1. The disturbance signal ∆PL,i denotes a
time-varying demand of the consumers of the i-th area which is assumed to be unknown,
piece-wise constant with known upper and lower bounds. Here, we study the case where
∆PL,i,min ≤ ∆PL,i ≤ ∆PL,i,max, i = 1, . . . ,N.

Table 8.1 Parameters and power system terminology.

Parameter, Symbol Value Units

Nominal Frequency, f o 50 Hz
Power Base, PB,i 2000 MW

Load Dependency Factor, Di 16.66 MW/Hz
Speed Droop, Ri 1.2×10−3 Hz/MW

Generator Inertia Gain, Hi 5 s
Turbine Static Gain, Kt,i 1 MW/MW

Turbine Time Constant, Tt,i 0.3 s
Area Static Gain, Kp,i 0.06 Hz/MW

Area Time Constant, Tp,i 24 s
Tie-line Coefficient, Ktie,i 1090 MW/Hz
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8.2.2 State-augmentation for integral action

A well-established technique for tackling step-disturbances with zero steady-state error is to
include integral action into the state-space model. For the i-th area, let a performance variable
be expressed as the summation of the frequency deviation ∆ fi multiplied by a bias factor βi

and the total tie-line power inflow ∆Ptie,i, i.e., zi = βi∆ fi +∆Ptie,i. This quantity is referred to
as “Area Control Error” (ACE) and a usual choice for βi is Di +

1
Ri

, [13]. Parameters Di and
Ri are defined in Table 8.1. Take now zi =Cz,ixi with xi given in (8.6) and Cz,i = [βi 0 1] and
consider the augmented state-vector:

xa,i =
[
x′i

∫
zi

]′
. (8.7)

The augmented state-space form of the i-th area can then be written as:

ẋa,i =

[
A1,i 03×1

Cz,i 0

]
xa,i +

[
Bu,i

0

]
ui +

[
Ei

0

]
+

[
Bw,i

0

]
wi, (8.8)

where A1,i, Bu,i, Ei and Bw,i are as given in Equation (8.6). If the coupling term Ei in Equation
(8.8) is neglected, due to state-augmentation by the integral of the ACE signal of each area,
a stabilizing control signal ui would lead automatically to zero steady-state frequency and
tie-line power inflow deviations provided these are driven by step disturbances wi = ∆PL,i.
However the term [E ′

i 0]′ involving state-coupling between the i-th area and its neighbors
cannot be neglected, and therefore the disturbance rejection task for the complete network
becomes more challenging.

8.2.3 Problem statement

Possible power load change in the i-th area of an interconnected power system causes the
electrical frequency fi to deviate from its nominal value. Due to interconnections among
the areas through power transmission tie-lines and the dependence of the power exchange
between the i-th and j-th area upon the associated difference ∆ fi −∆ f j, any power load
deviation occurring in the i-th area will also affect the linked j-th area, causing a transient
alteration in its frequency f j. Here, we formulate the LFC of multi-area power systems as a
large-scale optimal control problem in the absence of state and input constraints. The special
case of N identical areas is considered. The aggregate dynamics in this case can be represented
by a state-space model of the form:

˙̂x = (IN ⊗A1 +L ⊗A2)x̂+(IN ⊗Bu)û+(IN ⊗Bw)ŵ. (8.9)



8.3 Large-scale LQR for load frequency control 247

Here, x̂ = [x′a,1 · · · x′a,N ]
′, û = [u′1 · · · u′N ]

′, ŵ = [w′
1 · · · w′

N ]
′ and:

A1 =


− 1

Tp

Kp
Tp

−Kp
Tp

0

− Kt
RTt

− 1
Tt

0 0
0 0 0 0
β 0 1 0

 , A2 =


0 0 0 0
0 0 0 0

Ktie 0 0 0
0 0 0 0

 , Bu =


0
Kt
Tt

0
0

 , Bw =


−Kp

Tp

0
0
0

 ,
(8.10)

where the subscript i has been neglected from all entries of A1, A2, Bu, and Bw since areas
are assumed to have identical dynamics. A distributed LQR-based load frequency control
design is outlined in the following section.

8.3 Large-scale LQR for load frequency control

In this section, we consider LQR problem (7.4) for a multi-area power system. Recall that
we denote by NL the number of areas of a power network, the topology of which is modeled
by a complete graph and by N the number of areas associated with sparse networks. Let the
aggregate state-space model of NL-area power system be written as:

˙̃x = (INL ⊗A1 +Lc ⊗A2)x̃+(INL ⊗Bu)ũ+(INL ⊗Bw)w̃, (8.11)

where x̃ = [x′a,1 · · · x′a,NL
]′, ũ = [u′1 · · · u′NL

]′, w̃ = [w′
1 · · · w′

NL
]′, xa,i, ui, wi, i = 1, . . . ,NL, are

defined in (8.8) and:

A1 =


− 1

Tp

Kp
Tp

−Kp
Tp

0

− Kt
RTt

− 1
Tt

0 0
0 0 0 0
β 0 1 0

 , A2 =


0 0 0 0
0 0 0 0

Ktie 0 0 0
0 0 0 0

 , Bu =


0
Kt
Tt

0
0

 , Bw =


−Kp

Tp

0
0
0

 .
(8.12)

Parameters in (A1, A2, Bu, Bw) can be found in Table 8.1. In view of Assumption 7.1.1,
LQR problem (7.4) for Ã = INL ⊗A1 +Lc ⊗A2 and B̃ = INL ⊗Bu with (A1, A2, Bu) given
in (8.12) initially fails to admit a solution since (7.8) cannot be solved. This stems from the
fact that the pair (A1, Bu) has an uncontrollable mode at the origin, and the realization (8.11)
is non-minimal. The non-minimality is due to a redundant equation related to the sum of
the total power inflow ∆Ptie,i to each area, which is identically zero, namely, ∑

NL
i=1 ∆Ptie,i = 0.

Next, we show how to address this peculiarity in order to derive a stabilizing controller for
the network under study.
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Let a permutation matrix:

T =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (8.13)

where T = T ′ = T−1, and consider a Kalman decomposition of the pair (A1, Bu) carried out
via state-space transformations T xa,i, i = 1, . . . ,NL. Let system matrices (Ā1, Ā2, B̄u, B̄w) =

(TA1T ′, TA2T ′, T Bu, T Bw) in the new coordinates be written as:

Ā1 =


− 1

Tp

Kp
Tp

0 −Kp
Tp

− Kt
RTt

− 1
Tt

0 0
β 0 0 1
0 0 0 0

 , Ā2 =


0 0 0 0
0 0 0 0
0 0 0 0

Ktie 0 0 0

 , B̄u =


0
Kt
Tt

0
0

 , B̄w =


−Kp

Tp

0
0
0

 ,
(8.14)

where B̄u = Bu, B̄w = Bw. Let the controllable part of (Ā1, B̄u) be denoted as (Ac, Bc) where

Ac =

−
1
Tp

Kp
Tp

0

− Kt
RTt

− 1
Tt

0
β 0 0

 , Bc =

 0
Kt
Tt

0

 . (8.15)

The zero in the (4,4)-entry of Ā1 stands for the uncontrollable mode (at the origin) of
(A1, Bu). Now, construct a perturbation matrix as

E =

[
03×3 03

0′3 e

]
, (8.16)

where e < 0, with |e| sufficiently small, and define:

A1e = Ā1 +E =

[
Ac A12

0′3 e

]
, A2e = Ā2 −

1
NL

E =

[
03×3 03

a21 − 1
NL

e

]
, (8.17)

where A12 = [− Kt
RTt

0 1]′ and a21 = [Ktie 0 0]. Since e < 0, the pair (A1e, Bu) is stabilizable.
According to Theorem 7.1.3, LQR problem (7.4) with parameters (A1e, A2e, Bu, Q1, Q2, R)
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is reduced to two node-level ARE, namely,

A′
1ePe +PeA1e −PeXPe +Q1 = 0, (8.18)

(A1e +NLA2e)
′(Pe −NLP̃2e)+(Pe −NLP̃2e)(A1e +NLA2e)− (Pe −NLP̃2e)X(Pe −NLP̃2e)

+Q1 +NLQ2 = 0, (8.19)

where Pe, P̃2e are e-dependent, and X = BuR−1B′
u. Note that the solution Pe −NLP̃2e to

ARE (8.19) remains invariant under e-perturbation. Theorem 8.3.1, next, summarizes the
method of solving large-scale LQR problem (7.4) with one uncontrollable mode at the origin.
For simplicity, we have set X = BuR−1B′

u.

Theorem 8.3.1. Consider a NL-area power system with an aggregate state-space form given
as in (8.11). Consider a Kalman decomposition of (A1, Bu), and define (Ā1, Ā2, B̄u, B̄w) as
given in (8.14). Choose e < 0, with |e| sufficiently small, and define perturbed matrices A1e,
A2e as in (8.17). Solving LQR problem (7.4) with parameters (A1e, A2e, Bu, Q1, Q2, R) and
defining Pe and P̃2e from (8.18) and (8.19), respectively, leads to the following argument: the
matrix,

Ā1 −XPe +α(NLĀ2 +XP̃2e), (8.20)

I. is Hurwitz for α = 1.

II. has n−1 eigenvalues in the left-half-plane and one at the origin for α = 0.

Proof. In view of the special structure of A1e and A2e, it can easily be seen that:

Ā1 +NLĀ2 = A1e +NLA2e. (8.21)

Due to (8.19), matrix A1e +NLA2e −XPe +NLXP̃2e is Hurwitz and because of (8.21)
matrix Ā1 +NLĀ2 −XPe +NLXP̃2e is also Hurwitz. This proves part I.

Now, let matrix Pe in (8.18) be decomposed into blocks of appropriate dimensions
according to the Kalman decomposition (8.15). Then, ARE (8.18) can be written as:[

Ac A12

0′3 e

]′[
P11e P12e

P′
12e P22e

]
+

[
P11e P12e

P′
12e P22e

][
Ac A12

0′3 e

]

−

[
P11e P12e

P′
12e P22e

][
Bc

0

]
R−1

[
B′

c 0
][P11e P12e

P′
12e P22e

]
+

[
Q11 Q12

Q′
12 Q22

]
= 0.

(8.22)
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The first diagonal block of (8.22) gives:

A′
cP11e +P11eAc −P11eBcR−1B′

cP11e +Q11 = 0, (8.23)

and implies that the matrix Ac −BcR−1B′
cP11e is Hurwitz where the symmetric positive

definite matrix P11e does not depend on parameter e. The two remaining blocks P12e and P22e

of Pe are e-dependent and given by:

P12e =−(A′
c −P11eBcR−1B′

c + eIn−1)
−1(P11eA12 +Q12), (8.24)

P22e =
1
2e

(P′
12eBcR−1B′

c −2A′
12)P12e −

1
2e

Q22. (8.25)

Matrix A′
c −P11eBcR−1B′

c + eIn−1 in (8.24) is invertible since Ac −BcR−1B′
cP11e is Hur-

witz and e < 0. Now, the closed-loop matrix A1e −BuR−1B′
uPe is Hurwitz and can be written

as:

A1e −BuR−1B′
uPe =

[
Ac −BcR−1B′

cP11e A12 −BcR−1B′
cP12e

0′3 e

]
. (8.26)

Since (8.26) is in canonical form, its spectrum can be decomposed in:

S(A1e −BuR−1B′
uPe) = S(Ac −BcR−1B′

cP11e)∪ e. (8.27)

Setting e = 0 in (8.27) proves the theorem.

Similarly to Condition 7.1.5, we impose the following stability requirement.

Condition 8.3.2. Matrix Ā1 −XPe +α(NLĀ2 +XP̃2e) is Hurwitz for all α ∈ (0,1].

In the next paragraph, based on Condition 8.3.2, we propose a stabilizing distributed
LQR-based LFC design for multi-area power systems with sparse topology.

8.3.1 Distributed LQR-based LFC

Let an undirected graph GN = (V ,E ) with Laplacian matrix LN(GN) describe the intercon-
nection topology of a multi-area power system formed of N identical areas with aggregate
state-space form written as:

˙̂x = (IN ⊗A1 +LN ⊗A2)x̂+(IN ⊗Bu)û+(IN ⊗Bw)ŵ. (8.28)

Matrices A1, A2, Bu, and Bw are given as in (8.12), while aggregate vectors x̂, û, and ŵ
are constructed as earlier by stacking vectors xa,i, ui, wi, respectively, of each area, with
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ascending order depending on their label in the graph GN . Consider a perturbation matrix:

E =


0 0 0 0
0 0 0 0
0 0 e 0
0 0 0 0

 , (8.29)

where e < 0, with |e| sufficiently small, and define also perturbed matrices A1e, A2e as:

A1e = A1 +E, A2e = A2 −
1

NL
E, (8.30)

where NL is as defined in Theorem 7.2.1. A distributed LFC controller for (8.28) is con-
structed next, in Theorem 8.3.3.

Theorem 8.3.3. Consider a power system of N identical areas with network topology mod-
eled by a graph GN with Laplacian matrix LN . Let the aggregate state-space form of the
entire system be given by (8.28). Let also λN be the maximum eigenvalue of LN and de-
note by dmax the smallest integer which is greater than or equal to λN , i.e., dmax = ⌈λN⌉.
Set NL = dmax, specify e< 0, with |e| sufficiently small, and define perturbed matrices A1e, A2e

as in (8.30). Consider an LQR problem (7.4) for NL = dmax perturbed systems (A1e, A2e, Bu),
and define Pe and P̃2e via (8.18) and (8.19), respectively, assuming that Condition 8.3.2 holds.
Construct a distributed state-feedback controller

K̂ =−IN ⊗R−1B′
uPe +LN ⊗R−1B′

uP̃2e. (8.31)

Then, the closed-loop matrix of the overall system,

Acl = IN ⊗ (A1 −XPe)+LN ⊗ (A2 +XP̃2e), (8.32)

has 3N −1 eigenvalues in the left-hand-plane and one at the origin.

The proof follows similar arguments stated for proving Theorem 7.2.1 and is omitted.
We remark here that under the application of the state-feedback controller (8.31) the network
maintains stability even if the controllability Assumption 7.1.1 is not strictly in force. As
it will become evident in the following simulation studies, although a single eigenvalue
of the closed-loop matrix lying at the origin cannot be shifted, the proposed distributed
control scheme guarantees network stability while compensates for unknown, piece-wise
constant disturbances. In particular, the uncontrollable mode at the origin pertains to a trivial
differential equation ∑

NL
i=1 ∆Ṗtie,i = 0, implying that 0̇ = 0. The latter can easily be removed
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via an appropriate state-space transformation leading to a minimal state-space realization of
the system. However, this is beyond the scope of the present analysis.

In the following section, the distributed LQR controller constructed above is employed
to drive the LFC of a six-area power system. We show that network stability is guaranteed
for a class of tie-line interconnection schemes via a single tuning of the LFC controller.
In the simulations, we consider three different interconnection examples. We also consider
various input and state constraints in the linear model of each area in order to assess the
stability margins of the proposed controller. A robust stability analysis has also been carried
out as a separate case study involving parametric uncertainties in each area. We stress here
that a thorough robust stability and nonlinear analysis are beyond the scope of this chapter.
Nonlinearities and parameter perturbations considered in the next section are only used for
simulation purposes whereby the performance of the proposed controller is also verified
under more intense conditions.

8.4 Simulation case studies

We consider a power system of six identical areas, the parameters of which are summarized
in Table 8.1. Three interconnection schemes are considered; each graph shown in Fig. 8.5a–c,
with corresponding Laplacian matrix given in (8.33), models the network topology of each
interconnection scheme (S1,S2,S3), respectively.

1 2

3

45

6

(a) Interconnection scheme S1
with Laplacian matrix L1.

1 2

3

45

6

(b) Interconnection scheme S2
with Laplacian matrix L2.

1 2

3

45

6

(c) Interconnection scheme S3
with Laplacian matrix L3.

Fig. 8.5 Three different tie-line interconnection schemes of six control areas.

L1 =



2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 3 −1 0 −1
0 0 −1 2 −1 0
−1 0 0 −1 2 0
0 0 −1 0 0 1


, L2 =



1 0 0 0 −1 0
0 1 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 0 0 −1 2 0
0 0 0 −1 0 1


, L3 =



3 0 −1 0 −1 −1
0 1 0 −1 0 0
−1 0 1 0 0 0
0 −1 0 2 −1 0
−1 0 0 −1 3 −1
−1 0 0 0 −1 2


.

(8.33)
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In the simulations, one scenario of power demand is considered. Specifically, areas are
subject to step disturbances which represent power load deviations from a nominal value.
Power load profiles of the six areas are depicted in Fig. 8.6. For the control design, we also
assume that there is a communication cyber-layer, the topology of which is identical with
the tie-line interconnection scheme considered. The performance of the distributed LFC
controller designed in Theorem 8.3.3 is verified in three case studies. These are summarized
below:

1. We test closed-loop stability of topology S1, S2, and S3, respectively, applying LFC
controller derived from the solution of a single LQR problem. This stability test is
performed for two different tunings of the LQR performance index. The transients
in frequency and total power inflow of the linear model of each area is compared to
the responses of a nonlinear model containing saturation hard constraints on the total
magnitude of the input signal of each area.

2. We consider parametric uncertainty in the linear model of each area, and we show that
closed loop stability of topology S2 for two different tunings of the LFC controller is
maintained. Perturbations have been carried out on the following parameters: turbine
time constant (Tt,i), area time constant (Tp,i) of each area, respectively, and tie-line
coefficient (Ktie,i, j) of each tie-line interconnection.

3. Tuning the LQR controller via the Bryson’s rule, we demonstrate frequency regulation
for all interconnection schemes S1, S2, and S3. In this simulation study, the model
of each area is subject to a generation rate constraint (GRC) and a saturation hard
constraint on the total input signal.

8.4.1 Case study 1

Block representation of the linear dynamics of each control area at local level is given in
Fig. 8.3. The corresponding augmented state-space form of each area is shown in (8.8),
where the integral of the ACE signal has also been included in the state-vector. We construct
the collective state-space of the network as in (8.28), where matrices A1, A2, Bu, and Bw

are given in (8.12). The Laplacian matrix L of each topology considered is given in
(8.33). Parameter values are given in Table 8.1. The distributed LQR controller presented
in Section 8.3.1 is proposed here to drive the AGC signal ∆PC,i of each area. The control
objective is to meet the load demand at each area shown in Fig. 8.6 and recover the nominal
operating conditions of each area for three possible interconnections. Stabilizing distributed
state-feedback controller is constructed as follows.
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Fig. 8.6 Power demand deviation ∆PL,i for i = 1, . . . ,6.
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Fig. 8.7 Stability test and validity of Condition 8.3.2.

The maximum eigenvalue of each matrix (L1, L2, L3) in (8.33) is 4.3028, 4.3028, and
4.3928, respectively. We take the smallest integer denoted by dmax which is greater or equal to
the maximum of these (4.3928), i.e., dmax = 5. We select perturbation parameter e =−0.01,
and we alter matrices A1 and A2 to A1e and A2e, respectively, according to (8.30). We solve an
LQR problem (7.4) for NL = dmax = 5 systems with matrices (A1e, A2e, Bu) for two different
selections of the weights Q̃, R̃. In the first, Q̃ = I5 ⊗Q1, with Q1 = diag(100,10,10,5000)
and R̃ = I5⊗100, while in the second, R̃ is kept the same and Q̃ = I5⊗Q1+L5⊗Q2, where
Q2 = 200Q1, L5 denotes the Laplacian matrix associated with a complete graph (all possible
edges) of 5 nodes. Terms in (7.5) pertinent to matrix Q2 penalize the relative state-difference
(xi − x j) between neighboring areas. We calculate Pe and P̃2e from (8.18), (8.19), and define
the respective state feedback gains K = −R−1B′

uPe and K2 = R−1B′
uP̃2e for each tuning.
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These are:

K =
[
−2502.857 −1.203 −1.757 −7.071

]
,

K2 =
[
−342.491 −0.104 0.225 0.000

]
,

(8.34)

for the first tuning where Q2 = 0 and:

K =
[
−2502.857 −1.203 −1.757 −7.071

]
,

K2 =
[
−12084.071 −2.356 −6.374 −43.329

]
,

(8.35)

for the case where Q2 = 200Q1. Note that K = −R−1B′
uPe is identically equal for both

cases, since Pe is the solution to a single node-level ARE with parameters (A1e, Bu, Q1, R).
We also verify Condition 8.3.2, which can be seen to hold. Fig. 8.7 displays the real
part of the eigenvalue of the matrix (A1 −BuR−1B′

uPe)+αdmax(A2 +BuR−1B′
uP̃2e) with the

maximum real part with α ∈ [0,1] for both tuning choices. In essence, this implies stable
network operation under both control schemes for all possible interconnections associated
with Laplacian matrices with maximum eigenvalue bounded by dmax.

At network level, the distributed stabilizing controller K̂ takes the form:

K̂ = I6 ⊗K +Ls ⊗K2, (8.36)

where Ls, s = 1,2,3, is given in (8.33) according to each topology. Node-wise, the AGC
signal at each area is derived from:

∆PC,i = Kxi +K2 ∑
j∈Ni

(xi − x j), (8.37)

with i = 1, . . . ,6, j ̸= i and j ∈ Ni. In effect, each area requires local and neighboring
state-information be accessible in order to construct its control signal. In the following
simulations, we show the transients in frequency and total power inflow of each area resulting
from power demand deviations ∆PL,i, i = 1, . . . ,6. Comparison with the response of a
nonlinear model containing saturation hard constraints on the total input signal of each area
is also illustrated in the simulation results. Block representation of each area with saturating
input constraint is shown in Fig. 8.8, where the symmetric saturator models the lower and
upper bound of the magnitude of the total control signal of each area. Here, we consider
−220 [MW]≤ ∆utot,i ≤ 220 [MW], i = 1, . . . ,6.
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Fig. 8.8 Single block representation of the i-th interconnected area with saturation hard
constraint on the total input signal.

Fig. 8.9–8.12 show the transient response of frequency and total power inflow deviations,
respectively, of each area from the equilibrium operation for two control schemes given
in (8.34), (8.35). Stable operation is guaranteed and the nominal working conditions for
all three interconnection schemes are recovered via both LFC control choices. For the
given choices of weighting matrices (Q1, Q2, R), stability can also be guaranteed from
the validity of Condition 8.3.2, which is verified graphically in Fig. 8.7. Note also that,
the magnitude of the total power flow over the tie-lines is significantly limited in the case
where the controller is designed as in (8.35). This stems from the large weighting matrix
Q2 selection in the performance index (7.5). In this case, since the relative state-difference
between neighboring areas is highly penalized, the areas tend to acquire similar frequencies
deviations during the transients (see Fig. 8.11), thus the total power flow over the tie-lines
given in (8.4) is kept low. Comparing Fig. 8.10, 8.12, the same behavior is observed
for the case in which saturating input constraint is included in the model of each area.
Despite the strong nonlinearity introduced by the saturator, total power inflow of each area
is significantly reduced when the relative state-difference (xi − x j) is penalized heavily in
the LQR performance index. This powerful feature to control the magnitude of tie-line
power exchange enhances the applicability of the proposed controller and may prove highly
beneficial for networks composed of weak tie-line interconnections. Simulations of a fully
centralized control scheme carried out with identical tuning parameters, suggest that the
proposed distributed control scheme not only respects system constraints but also guarantees
a performance almost indistinguishable from the optimal (centralized) one. This becomes
evident if one compares Fig. 8.9–8.12 with Fig. 8.13–8.16.
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Fig. 8.9 Frequency transients of the six-area power system for three tie-line interconnection
schemes (S1,S2,S3). Zero penalty on the relative state-difference between interconnected
areas. Solid lines depict transients of the linear model; dashed lines depict transients of the
model with saturator (Fig. 8.8).

Fig. 8.10 Total power inflow response of the six-area power system for three tie-line in-
terconnection schemes (S1,S2,S3). Zero penalty on the relative state-difference between
interconnected areas. Solid lines depict transients of the linear model; dashed lines depict
transients of the model with saturator (Fig. 8.8).
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Fig. 8.11 Frequency transients of the six-area power system for three tie-line interconnection
schemes (S1,S2,S3). Large penalty on relative state-difference between interconnected areas.
Solid lines depict transients of the linear model; dashed lines depict transients of the model
with saturator (Fig. 8.8).

Fig. 8.12 Total power inflow response of the six-area power system for three tie-line inter-
connection schemes (S1,S2,S3). Large penalty on relative state-difference between intercon-
nected areas. Solid lines depict transients of the linear model; dashed lines depict transients
of the model with saturator (Fig. 8.8).
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Fig. 8.13 Frequency transients for three interconnection schemes (S1,S2,S3) with centralized
control and zero penalty on relative state-difference. Solid lines: transients of the linear
model, dashed lines: transients of the model with saturator (Fig. 8.8).

Fig. 8.14 Total power inflow response for three interconnection schemes (S1,S2,S3) with
centralized control and zero penalty on relative state-difference. Solid lines: transients of the
linear model, dashed lines: transients of the model with saturator (Fig. 8.8).
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Fig. 8.15 Frequency transients for three interconnection schemes (S1,S2,S3) with centralized
control and large penalty on relative state-difference. Solid lines: transients of the linear
model, dashed lines: transients of the model with saturator (Fig. 8.8).

Fig. 8.16 Total power inflow response for three interconnection schemes (S1,S2,S3) with
centralized control and large penalty on relative state-difference. Solid lines: transients of
the linear model, dashed lines: transients of the model with saturator (Fig. 8.8).
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8.4.2 Case study 2

To assess the stability margins of the LFC controller constructed in the previous case study,
we introduce uncertain parameters in the model of each area, and we carry out simulations for
the interconnection topology S2 shown in Fig. 8.5b. Both tunings of the LQR performance
index considered in the previous section are also employed here. We consider parametric
uncertainties in: turbine time constant Tt,i, area time constant Tp,i, and tie-line coefficient
Ktie,i, j for i, j = 1, . . . ,6 and j ∈ Ni. The perturbation magnitude of each parameter is shown
in Table 8.2.

Table 8.2 Parametric uncertainties in Tt,i, Tp,i, and Ktie,i, j, i = 1, . . . ,6, j ∈ Ni.

Parameter Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Turbine Time Constant, Tt,i +20% −20% −30% +30% +25% −25%
Area Time Constant, Tp,i −25% +30% +25% +20% −20% +30%

Parameter Line 15 Line 23 Line 34 Line 45 Line 46

Tie-line coefficient, Ktie,i, j +20% −20% −25% +30% −25%

The frequency and total power inflow deviation of each subject to step disturbances
(Fig. 8.6) are depicted in Fig. 8.17–8.20. The robustness of the proposed distributed LQR-
based LFC scheme is validated, and it can be seen that stable operation is maintained even
for magnitude of parametric uncertainties taken equal to 30%.
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Fig. 8.17 Frequency deviation ∆ fi response for i = 1, . . . ,6, topology S2, control tuning with
Q2 = 0, uncertain parameters.
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Fig. 8.18 Frequency deviation ∆ fi response for i = 1, . . . ,6, topology S2, control tuning with
Q2 = 200Q1, uncertain parameters.

0 5 10 15 20 25 30 35

Time [sec]

-80

-60

-40

-20

0

20

40

60

80

100

P
o
w

e
r 

in
fl
o
w

 
 P

ti
e

,i
 [
M

W
] 
- 

T
o
p
o
lo

g
y
 S

2

Zero Penalty Q
2
 on |x

i
-x

j
| - Topology S

2

area 1

area 2

area 3

area 4

area 5

area 6

Fig. 8.19 Total power inflow deviation ∆Ptie,i response for i = 1, . . . ,6, topology S2, control
tuning with Q2 = 0, uncertain parameters.
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Fig. 8.20 Total power inflow deviation ∆Ptie,i response for i = 1, . . . ,6, topology S2, control
tuning with Q2 = 200Q1, uncertain parameters.
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8.4.3 Case study 3

In this simulation study, the linear model of each area is augmented with a saturation hard
constraint on the total control signal as well as a generation rate constraint (GRC). The first is
formulated as hard input constraint and is taken equal to this considered in the first case study,
−220 [MW] ≤ ∆utot,i ≤ 220 [MW], i = 1, . . . ,6. The second constraint (GRC) can be cast
as state constraint imposed on the state variable ∆PG,i, = 1, . . . ,6. Here, we consider GRC
equal to 10% of the power base of each area per minute (i.e., 3.4 [MW/s]). The augmented
block diagram of each area is depicted in Fig. 8.21.
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Fig. 8.21 Single block representation of the i-th interconnected area with saturation hard
constraint on the total input signal and nonlinear turbine model with GRC.

Areas’ power load profiles are modeled as step disturbances as shown in Fig. 8.6.
The three tie-line interconnection schemes depicted in Fig. 8.5 are also considered in the
present example. In this case study, in order to construct the proposed LFC controller, the
weighting matrices of the LQR performance index have been chosen according to Bryson’s
rule [79]. For a standard LQR problem with weights (Q, R), this rule specifies that Q and R
are taken diagonal with diagonal entries defined as:

Qii =
1

(xi,max)2 and Rii =
1

(ui,max)2 , (8.38)

where |xi,max| and |ui,max| represent the maximum required values of the state and control
variables, respectively. Here, the matrices (Q1, Q2, R) are selected as:

Q1 = diag(
1

0.0012 ,
1

4502 ,
1

2002 ,
1

1002 ), (8.39)

Q2 = diag(
1

0.12 ,
1

502 ,
1

4002 ,
1

50002 ), (8.40)

R =
10000
3502 . (8.41)
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The frequency transient of the closed-loop system of each area is illustrated in Fig. 8.22.

Fig. 8.22 Frequency transients of the six-area power system for three tie-line interconnection
schemes (S1,S2,S3). Input and state constraints are included in the model of each area
(Fig. 8.21). Selection of weighting matrices according to Bryson’s rule.

As it can be seen, the same LFC controller stabilizes the network for topology S1, S2,
S3, while the nominal frequency is recovered for all areas. The frequency transient in this
case has become considerably slower than in previous studies due to the state constraint
GRC, which significantly limits the rate of power generation (3.4 [MW/s]). Despite the
strong nonlinearities introduced by the input and state constraints, the closed-loop stability is
maintained via the proposed LFC controller.

8.5 Conclusions

A stabilizing distributed LQR-based controller for LFC problems of multi-area power systems
is proposed based on the solution of a large-scale LQR optimal problem under the assumption
that areas have identical dynamics. The proposed distributed LFC method relies on the results
of Chapter 7 illustrating the applicability of the proposed distributed control scheme via
various simulation studies. Motivated by the work of [17], we follow a top-down technique
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to define a fully centralized controller which is subsequently substituted by a distributed
state-feedback configuration with sparse structure. The control scheme is obtained by
optimizing an LQR performance index with a tuning parameter utilized to emphasize/de-
emphasize relative state difference between interconnected areas. We show that this parameter
controls the magnitude of tie-line power exchange and frequency synchronization between
interconnected areas. Extensive simulations presented in this chapter support our conjecture
that this stabilization criterion can be extended to more general power systems LFC problems.
The assumption of identical dynamics is clearly restrictive but simplifies the design problem
considerably and leads to the derivation of a stability condition which can easily be verified.
Effort to eliminate or relax this assumption will be the topic of future work attempting
to adapt the model-matching methods presented in previous chapters to the present setup.
The simulation results in Section 8.4.2 carried out under considerable perturbations suggest
that this hypothesis is valid and that our results can be extended to the non-identical case.





Chapter 9

Distributed model predictive control
design

9.1 Introduction

In this chapter, we investigate receding horizon control (RHC) problems and present dis-
tributed model predictive control (DMPC) methods for stabilizing networks of multiple
dynamic agents. The basic idea of model predictive control (MPC) is to predict a number of
finite forward movements of a system based on a concrete model and a sequence of future
control inputs. At each instant t of a discrete-time domain, a receding horizon performance
index is optimized over the set of sequences of future control actions subject to a set of
constraints. The first component of such an optimal sequence is used as control input at time
t. The next instant t +1, a new optimization is carried out for a receding horizon shifted by
one step ahead yielding a new control input applied at t +1.

Large-scale regulation problems associated with networks of multiple dynamic agents are
considered in the presence of local state and input constraints as well as coupling constraints.
We use a graph representation to denote the topology of a network. In this regard, a labeled
node is assigned to a distinct dynamic agent and an oriented arc between two nodes indicates
information exchange, a specific control objective involving the two nodes, as well as a
potential dynamical coupling between the neighboring agents.

We first focus on stabilization problems of networks composed of dynamically decou-
pled systems. We propose a distributed network control scheme whereby each local MPC
controller optimizes a local performance index which couples the dynamic behavior of
neighboring agents. Sufficient conditions for local stability are explicitly derived using local
value functions as Lyapunov functions. It is shown that in the presence of nonidentical agents,
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the implementation of a distributed MPC scheme requires that a local control unit, in order
to predict the future evolution of neighboring agents, have knowledge of model parameters
of its neighbors. This requirement is made in many methods proposed for DMPC design (see
for example the work in [99–101]).

Our objective is to relax this stringent condition which obliges agents to share private
information across a possibly vulnerable communication scheme. We propose a model-
matching feedback technique whereby agents are mapped to a target system recursively only
by sharing their estimates of a global decision vector. The model-matching controller is
performed in a distributed fashion and is in concert with the MPC implementation.

In the second part of the chapter, we address the problem of distributed model predictive
control of dynamically coupled systems from an application point of view. In particular, we
consider the load frequency control (LFC) problem examined in Chapter 8, and propose
a distributed MPC method for distributed LFC design. Finally, a simulation study of a
three-area power system illustrates the applicability of the proposed method.

9.2 Model predictive control for networks of dynamically
decoupled systems

We investigate a receding horizon optimal control problem of a network of interconnected
dynamically decoupled systems. We consider dynamic systems evolving over a discrete-time
domain. We note that, although the methods proposed in the section, are compatible with
a continuous-time setting, the discretization of the time interval and the system equations
makes the subsequent analysis simpler and more meaningful.

9.2.1 Notation and network setup

We consider a set of M dynamically decoupled agents, their future evolution being described
by the following linear difference equations:

xi
t+1 = Aixi

t +Biui
t , i = 1, . . . ,M, (9.1)

where xi
t ∈ Rn, ui

t ∈ Rm denote the state and input vectors of the i-th agent, respectively, and
Ai ∈ Rn×n, Bi ∈ Rn×m. Let X i ⊆ Rn and U i ⊆ Rm be known polytopes denoting the set of
feasible states and inputs of the i-th agent, respectively, i.e.,

xi
t ∈ X i, ui

t ∈ U i, ∀t ≥ 0. (9.2)
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We use the following notation. Letting

x̂t = Col(x1
t , . . . ,x

M
t ), (9.3)

ût = Col(u1
t , . . . ,u

M
t ), (9.4)

denote aggregate state and input vectors of the overall system at instant t, respectively, we
represent the set of M agents as an aggregate system as follows:

x̂t+1 = Âx̂t + B̂ût , (9.5)

where

Â = diag(A1, . . . ,AM), (9.6)

B̂ = diag(B1, . . . ,BM), (9.7)

x̂t ∈ X , ût ∈ U , and X , U represent the Cartesian products×M
i=1 X i,×M

i=1 U i, respec-
tively.

In order to formulate an optimal control problem with a cost function which couples the
dynamic behavior of the individual agents, we consider the overall system as a multi-agent
network the topology of which is modeled by a graph. In particular, we define a connected
graph G = (V ,E ), where V = {1, . . . ,M} is the set of nodes and E ⊆ V ×V is the set of
edges (i, j) with i, j ∈ V and i ̸= j. Matrix L represents the in-degree Laplacian of G . We
assign the i-th node of G to the i-th labeled equation in (9.1) and consider the following
interaction scheme. If edge (i, j) is present then agent-i is aware of the state x j

t of agent- j
at time t. Analogously, if ( j, i) ∈ E , then agent- j receives state information of agent-i.
Obviously, if an edge is undirected then the associated nodes are assumed to exchange their
state information at each time instant. We call N i ⊆ V the set of all neighboring nodes to
vertex i, i.e., j ∈ N i if (i, j) ∈ E , and denote as

x̃i
t = Col(. . . ,xp

t , . . . ,x
r
t , . . .) ∈ RMin, (9.8)

ũi
t = Col(. . . ,up

t , . . . ,u
r
t , . . .) ∈ RMim, (9.9)

aggregate vectors stacking the states and the inputs, respectively, of all neighbors of agent-i,
with p,r ∈ N i, Mi = ∑ j∈N i 1.

In summary, hat notation (x̂t , ût) pertains to aggregate variables of the overall system
while tilde notation (x̃i

t , ũi
t) refers to local variables known to an individual agent.
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In the following section we formulate a large-scale receding horizon optimal control
problem with a cost function which couples the agents’ dynamics. We show that the stability
of a centralized scheme is subject to the existence of a feasible centralized solution. A
distributed version of this problem is treated later in Section 9.2.4.

9.2.2 Centralized model predictive control

Consider a discrete-time domain compatible with the aggregate system

x̂t+1 = Âx̂t + B̂ût . (9.10)

Assume that system (9.10) is actuated over a finite future horizon of N steps ahead of instant
t by an open-loop control sequence given by

Ût ≜ [û0,t , û1,t , . . . , ûN−1,t ], (9.11)

with ûk,t ∈ U for k = 0, . . . ,N −1. In the following, we denote by ûk,t the computed control
input at time t to be applied to system (9.10) at time t + k. Similarly, we denote by

X̂t ≜ [x̂0,t , x̂1,t , . . . , x̂N,t ], (9.12)

where x̂k,t ∈ X for k = 0, . . . ,N, the predicted state trajectory of system (9.10) initialized
from x̂t and actuated by the control sequence Ût in (9.11).

Let
lt(x̂t , ût) : RNn ×RNn → R, (9.13)

be a positive function, with lt(0,0) = 0, assigning a cost to the control action ût given the
aggregate state x̂t at time t. lt is a function of the state and input vectors of all agents and
may contain terms which couples the dynamic behavior of individual agents.
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Given a specific cost function lt , we consider that a central control unit (CCU) solves the
following optimal control problem associated with an optimal value function J∗t (x̂t):

P : minimize
Ût

N−1

∑
k=0

lt(x̂k,t , ûk,t)+ lN(x̂N,t) (9.14a)

subject to x̂k+1,t = Âx̂k,t + B̂ûk,t , k = 0, . . . ,N −1, (9.14b)

x̂k,t ∈ X , ûk,t ∈ U , k = 0, . . . ,N −1, (9.14c)

x̂N,t ∈ X f , (9.14d)

x̂0,t = x̂t , (9.14e)

where N is the prediction horizon, lt and lN are positive functions representing the running
and terminal costs, respectively, associated with the predicted variables (x̂k,t , ûk,t), and (x̂N,t).
X f ⊆ RNn denotes a terminal set in the sense that the last component x̂N,t of the predicted
trajectory X̂t needs to belong to X f . We denote by

Û∗
t = [û0,t , û1,t , . . . , ûN−1,t ], (9.15)

the minimizer of problem P . P as formulated in (9.14) is an optimal control problem of
system (9.5) which is solved in a centralized manner. In other words, we assume that there
is CCU that collects global information from all individual subsystems (9.1), and solves
problem P at each time-instant t. Once the optimal control sequence Û∗

t is obtained, the
CCU maintains the first component û0,t which is decomposed into:

û0,t = Col(u1
0,t ,u

2
0,t , . . . ,u

M
0,t), (9.16)

while discarding the remaining components of Û∗
t . Then, ui

0,t represents a feasible optimal
control input assigned to system-i at time t. The next time step t + 1, the CCU iterates
the above procedure, collecting states from all individual agents and predicting a new state
trajectory and optimal control sequence of each individual system. We say that the control
policy (9.16) is a centralized model predictive control (CMPC) law. In the next section,
we show that the CMPC policy (9.16) results in a stable centralized scheme subject to the
existence of a feasible solution to problem (9.14) at each time t. We summarize the CMPC
scheme in the following procedure:

Procedure 9.2.1. At time t:

(C1) A central control unit collects measurements of states of all subsystems and computes
the minimizer Û∗

t of problem P .



272 Distributed model predictive control design

(C2) The last N −1 components of Û∗
t are discarded and the first one is decomposed into

the control inputs of each individual system. The i-th system implements

ui
t = ui

0,t . (9.17)

(C3) At time t + 1, the central unit recollects the new state information x̂t+1 and repeats
steps (C1), (C2).

Procedure 9.2.1 yields an optimal control law calculated in a centralized fashion using
the aggregate state vector x̂t . Thus, the local control law ui

t obtained in (9.17) is a feedback
function

ui
t = K i(x̂t), (9.18)

of the aggregate state vector x̂t , implicitly defined by solving the receding horizon optimal
control problem (9.14). Analogously, the global control law

ût = K (x̂t), (9.19)

is an implicit state-feedback function. We denote by

x̂t+1 = f (x̂t , ût), (9.20)

the closed-loop dynamics of the overall system, with f (x̂t , ût) = Âx̂t + B̂K (x̂t).

9.2.3 Stability analysis of CMPC

In order to proceed with the stability analysis of (9.20), we assume the following.

Assumption 9.2.1. The cost term in (9.14a) is

lt(x̂t , ût) = ∥(IM ⊗Q)x̂t∥2 + γ∥(Lc ⊗Q)x̂t∥2 +∥(IM ⊗R)ût∥2, (9.21)

where Q = Q′ > 0, R = R′ > 0, γ > 0, and Lc is the symmetric version of the Laplacian
matrix of graph G (cf. (4.71)-(4.72)).

Assumption 9.2.2. The terminal set X f in (9.14d) coincides with the origin, i.e., x̂N,t = 0.

Assumption 9.2.3. The feasible sets X ⊆ RMn and U ⊆ RMm contain the origin in their
interior.
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Remark 9.2.4. The cost function (9.21) is positive and convex with lt(0,0) = 0. With
Assumption 9.2.1 in force, problem P admits a solution for some finite receding horizon of
N steps given that X , U and X f represent convex compact sets.

Under Assumption 9.2.1 and 9.2.2 above, we wish to show that the Procedure 9.2.1
results in a stable centralized control scheme in the sense that

lim
t→∞

x̂t = 0, (9.22)

lim
t→∞

ût = 0. (9.23)

We prove stability of the CMPC scheme by using the value function of problem P as a
Lyapunov function. Specifically, let

Û∗
0 = [û0,0, û1,0, . . . , ûN−1,0], (9.24)

be a minimizer of problem P for t = 0, initial state x̂0, and let also

X̂0 = [x̂0,0, x̂1,0, . . . , x̂N,0], (9.25)

be the predicted state trajectory of the overall system, associated with control sequence Û∗
0 .

Note that x̂0,0 = x̂0 above. Let also J∗(x̂0) be the optimal value function of P at t = 0,
evaluated as follows

J∗(x̂0) =
N−1

∑
k=0

∥(IM ⊗Q)x̂k,0∥2 + γ

N−1

∑
k=0

∥(Lc ⊗Q)x̂k,0∥2 +
N−1

∑
k=0

∥(IM ⊗R)ûk,0∥2. (9.26)

Consider now that the shifted control sequence

Û1 = [û1,0, . . . , ûN−1,0,0], (9.27)

is implemented at t = 1. Since the predicted state x̂1,0 is identical to the actual state of the
system at t = 1, Û1 is a feasible control sequence in the sense that x̂N−1,1 = x̂N,0 = 0. The
value function associated with Û1 is

J(x̂1) =
N−1

∑
k=0

∥(IM ⊗Q)x̂k,1∥2 + γ

N−1

∑
k=0

∥(Lc ⊗Q)x̂k,1∥2 +
N−1

∑
k=0

∥(IM ⊗R)ûk,1∥2. (9.28)
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Since

x̂k,1 = x̂k+1,0, k = 0, . . . ,N −1, (9.29)

ûk,1 = ûk+1,0, k = 0, . . . ,N −2, (9.30)

and ûN−1,1 = 0, we may write

J(x̂1) =
N−1

∑
k=1

∥(IM ⊗Q)x̂k,0∥2 + γ

N−1

∑
k=1

∥(Lc ⊗Q)x̂k,0∥2 +
N−1

∑
k=1

∥(IM ⊗R)ûk,0∥2. (9.31)

An upper bound of the optimal value function J∗(x̂1) can be defined as follows. In view of
(9.26) and (9.31), we have

J(x̂1) = J∗(x̂0)−∥(IM ⊗Q)x̂0∥2 − γ∥(Lc ⊗Q)x̂0∥2 −∥(IM ⊗R)û0∥2, (9.32)

which implies that
J(x̂1)≤ J∗(x̂0). (9.33)

Also, by definition of an optimal value function,

J∗(x̂1)≤ J(x̂1). (9.34)

Then, from (9.32)-(9.34),
J∗(x̂1)≤ J∗(x̂0), (9.35)

which implies that J∗(x̂1) is a non-increasing function along the closed-loop trajectories
and can be used as a Lyapunov function. In a similar fashion we can prove that J∗(x̂t) is a
Lyapunov function for t ≥ 2.

In summary, Assumptions 9.2.1, 9.2.2 are sufficient conditions for the state trajectories
of the closed-loop system (9.20) to converge to zero as t → ∞, i.e.,

lim
t→∞

x̂t = 0, lim
t→∞

ût = 0. (9.36)

9.2.4 Distributed model predictive control

In the previous two sections, we assumed that the dynamic models of all agents as well
as their state information at each time instant, are known to a central control unit which
implements a CMPC policy optimizing a receding horizon performance index. Proving
that the optimal value function at each iteration of the MPC controller is an upper-bounded
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non-increasing function, we showed that the closed-loop trajectory x̂t of the overall system
converges to the origin as t → ∞.

In the present section, we wish to design a distributed MPC (DMPC) policy which
approximates the CMPC scheme in the absence of a central control unit. In particular, we
assume that the i-th individual agent representing a dynamic system with state equation as in
(9.1), i) has a local control unit, ii) is aware of its own state at each time t, and iii) is aware
of the model of its neighbors as well as their state information at each time instant.

Let
li
t(x

i
t , x̃

i
t ,ut , ũi

t) : Rn ×RMin ×Rm ×RMim → R, (9.37)

be a positive local cost function with li
t(0,0,0,0) = 0 assigning a cost to control actions ui

t ,
ũi

t given the local state vectors xi
t , x̃i

t at time t. li
t is a function of state and input vectors of

agent-i and its neighbors. We recall vectors x̃i
t , ũi

t are defined in (9.8) and (9.9), respectively.
Given a specific cost function li

t , the i-th control unit solves the following optimal control
problem associated with an optimal value function Ji∗

t (xi
t , x̃

i
t):

P i : minimize
Ũ i

t

N−1

∑
k=0

li
t(x

i
k,t , x̃

i
k,t ,u

i
k,t , ũ

i
k,t)+ lN(xk,t , x̃i

N,t) (9.38a)

subject to xi
k+1,t = Aixi

k,t +Biui
k,t , k = 0, . . . ,N −1, (9.38b)

xi
k,t ∈ X i, ui

k,t ∈ U i, k = 0, . . . ,N −1, (9.38c)

xi
N,t ∈ X i

f , (9.38d)

xi
0,t = xi

t , , (9.38e)

x j
k+1,t = A jx

j
k,t +B ju

j
k,t , j ∈ N i k = 0, . . . ,N −1, (9.38f)

x j
k,t ∈ X j, u j

k,t ∈ U j, j ∈ N i k = 0, . . . ,N −1, (9.38g)

x j
N,t ∈ X j

f , (9.38h)

x j
0,t = x j

t , (9.38i)

where
Ũ i

t ≜ [ui
0,t , ũ

i
0,t , . . . ,u

i
N−1,t , ũ

i
N−1,t ] ∈ RN(Mi+1)m, (9.39)

is the decision vector, xi
k,t represents the prediction made by agent-i at time t about its own

state vector at time t + k by assuming that system (9.1) is driven by a control sequence
ui

0,t , . . . ,u
i
N−1,t starting from initial condition xi

t . Similarly, vectors x̃i
k,t , ũi

k,t in (9.38a) denote
predictions made by agent-i about its neighbors. We denote by

Ũ i∗
t = [ui

0,t , ũ
i
0,t , . . . ,u

i
N−1,t , ũ

i
N−1,t ], (9.40)



276 Distributed model predictive control design

a minimizer of problem P i.
Problem P i is solved locally by the control unit of agent-i. The following procedure

defines the iterative implementation of a distributed MPC scheme based on the solution of
problem P i.

Procedure 9.2.2. At time t:

(D1) The i-th control unit measures the state of agent-i and collects measurements of states of
all neighboring subsystems. Based on this local information, it computes the minimizer
Ũ i∗

t of P i.

(D2) The local control unit maintains the first component of Ũ i∗
t and implements:

ui
t = ui

0,t . (9.41)

(D3) At time t +1, the i-th control unit recollects the new state information xi
t+1, x̃i

t+1 and
repeats steps (D1), (D2).

Since problem P i as formulated in (9.38) is time-invariant, minimizer Ũ i∗
t is a time-

invariant function of the local state and the state of neighboring agents. Thus, the control
policy ui

t as defined in (9.41) is a time-invariant feedback control law implicitly derived from
the solution of P i. In this regard, we may write

ui
t = K i(xi

t , x̃
i
t), (9.42)

where K i : Rn ×RMin → Rm.
In contrast to Procedure 9.2.1 (C1-C2-C3), Procedure 9.2.2 (D1-D2-D3) above is based

on local information exchange between neighboring agents. It is clear that different control
units being neighboring to each other or not, solve generically different problems. This
is also evident since the structure of problem P i directly depends on the topology of the
associated interaction graph. Thus, it is reasonable to expect that the distributed MPC scheme
described in Procedure 9.2.2, does not necessarily guarantee global feasibility and stability.
Stability analysis of the DMPC scheme defined by (9.38)-(9.41) is investigated in the next
section using value functions of problem P i as Lyapunov functions.

9.2.5 Stability analysis of DMPC

Similarly to the stability analysis of the CMPC shown in Section 9.2.3, we assume the
following.
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Assumption 9.2.5. The cost term in (9.38a) is

li
t(x

i
t , x̃

i
t ,u

i
t , ũ

i
t) = ∥Qxi

t∥2 + ∑
j∈N i

∥Qx j
t ∥2 + γ ∑

j∈N i

∥Q(xi
t − x j

t )∥2 +∥Rui
t∥2 + ∑

j∈N i

∥Ru j
t ∥2,

(9.43)

with Q = Q′ > 0, R = R′ > 0 and γ > 0. Note that x̃i
t , ũi

t appearing in the left-hand side
of (9.43) denote the aggregate vectors stacking state and input vectors, respectively, of
neighboring agents, appearing in the right-hand side of (9.43) as x j

t , u j
t , j ∈ N i.

Assumption 9.2.6. The terminal sets X i
f and X j

f , j ∈ N i, in (9.38d) and (9.38h), respec-

tively, coincide with the origin, i.e., xi
N,t = x j

N,t = 0, j ∈ N i.

Assumption 9.2.7. The feasible sets X i,X j ⊆ Rn and U i,U j ⊆ Rm contain the origin in
their interior, with j ∈ N i.

To simplify the subsequent analysis, we introduce the following notation: a particular
variable denoted as φ

j,i
k,t will represent a k-step ahead prediction on variable φ

j
t+k made by

agent-i at time t. For instance, x j,i
k,t (u j,i

k,t) denotes the state (input) of agent- j at time t + k as
predicted by agent-i at time t via the solution of problem P i. In view of this notation, cost
function (9.43) can be written as

li
t(x

i,i
t , x̃i,i

t ,ui,i
t , ũi,i

t ) = ∥Qxi,i
t ∥2 + ∑

j∈N i

∥Qx j,i
t ∥2 + γ ∑

j∈N i

∥Q(xi,i
t − x j,i

t )∥2

+∥Rui,i
t ∥2 + ∑

j∈N i

∥Ru j,i
t ∥2. (9.44)

According to Procedure 9.2.2 and under the assumptions mentioned above, suppose that
agent-i solves problem P i, i = 1, . . . ,M at each time instant yielding the feedback law (9.42)
denoted here as ui,i

0,t . Collecting now the control policies of all agents in an aggregate input
vector as

ûx̂t = Col(u1,1
0,t , . . . ,u

M,M
0,t ), (9.45)

we define the closed-loop dynamics of the overall system as

x̂t+1 = f (x̂t , ûx̂t ), (9.46)

where f (x̂t , ûx̂t ) = Âx̂t + B̂ûx̂t . In the following theorem, for a particular choice of the cost
term li

t in (9.43), we derive sufficient conditions for local stability leading to stability of the
overall system (9.46). A similar result can be found in [100].
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Theorem 9.2.8. Let M agents with dynamics defined as in (9.1) communicate with each
other exchanging their state-information according to a connected-graph topology. Suppose
that each agent represented by a node i = {1, . . . ,M} implements control policy (9.38)-(9.41)
following Procedure 9.2.2 at each time instant t. Suppose that the cost term li

t in (9.43) is
given by (9.44) and assume the following:

(A1) Q = Q′ > 0, R = R′ > 0 and γ > 0.

(A2) The terminal sets X i
f and X j

f , j ∈ N i, in (9.38d) and (9.38h), respectively, coincide

with the origin, i.e., xi
N,t = x j

N,t = 0, j ∈ N i.

(A3) The feasible sets X i,X j ⊆ Rn and U i,U j ⊆ Rm contain the origin in their interior,
with j ∈ N i.

(A4) The following inequality:
ε

i − J̄i ≤ 0, (9.47)

is satisfied ∀i = {1, . . . ,M} and for all xi
t ∈ X i, where

ε
i = (1+ γ) ∑

j∈N i

N−1

∑
k=1

(∥Q(x j, j
k,t − x j,i

k,t)∥2 +∥R(u j, j
k,t −u j,i

k,t)∥2), (9.48)

J̄i = ∥Qxi
t∥2 +∥Rui

t∥2 + ∑
j∈N i

∥Qx j
t ∥2 + γ ∑

j∈N i

∥Q(xi
t − x j

t )∥2 + ∑
j∈N i

∥Ru j,i
0,t∥2.

(9.49)

Then, the origin of the closed-loop system (9.46) is asymptotically stable.

Proof. We prove the theorem for the i-th agent using the value function of problem P i. Let

Ũ i∗
t = [ui,i

0,t , ũ
i,i
0,t , . . . ,u

i,i
N−1,t , ũ

i,i
N−1,t ], (9.50)

be the minimizer of problem P i at time t and

Ji∗
t (xi

t , x̃
i
t) =

N−1

∑
k=0

∥Qxi,i
k,t∥2 + ∑

j∈N i

N−1

∑
k=0

∥Qx j,i
k,t∥2 + γ ∑

j∈N i

N−1

∑
k=0

∥Q(xi,i
k,t − x j,i

k,t)∥2

+
N−1

∑
k=0

∥Rui,i
k,t∥2 + ∑

j∈N i

N−1

∑
k=0

∥Ru j,i
k,t∥2, (9.51)
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be the associated optimal value function. We denote by

U i,i∗
t = [ui,i

0,t , . . . ,u
i,i
N−1,t ], (9.52)

U j,i∗
t = [u j,i

0,t , . . . ,u
j,i
N−1,t ], (9.53)

the optimal control sequence of agent-i and agent- j as predicted by agent-i at time t, with
i, j = 1, . . . ,M, j ̸= i and j ∈ N i. The shifted control sequences

U i,i
t+1 = [ui,i

1,t , . . . ,u
i,i
N−1,t ,0], (9.54)

U j,i
t+1 = [u j,i

1,t , . . . ,u
j,i
N−1,t ,0], (9.55)

with j ∈ N i, are not necessarily feasible at the next time-step t +1 since there is a possible
mismatch between the predicted state x j,i

0,t+1 and the actual state x j
t+1. Clearly, x j, j

0,t+1 = x j
t+1

which implies that the following shifted control sequences are feasible at time t + 1 for
agent-i:

U i,i
t+1 = [ui,i

1,t , . . . ,u
i,i
N−1,t ,0], (9.56)

U j, j
t+1 = [u j, j

1,t , . . . ,u
j, j
N−1,t ,0], (9.57)

with j ∈ N i. Let now

Ji
t+1(x

i
t+1, x̃

i
t+1) =

N−1

∑
k=0

∥Qxi,i
k,t+1∥2 + ∑

j∈N i

N−1

∑
k=0

∥Qx j,i
k,t+1∥2 + γ ∑

j∈N i

N−1

∑
k=0

∥Q(xi,i
k,t+1 − x j,i

k,t+1)∥2

+
N−1

∑
k=0

∥Rui,i
k,t+1∥2 + ∑

j∈N i

N−1

∑
k=0

∥Ru j,i
k,t+1∥2, (9.58)

be the value function of P i associated with control sequences U i,i
t+1, U j, j

t+1, j ∈N i as defined
in (9.56), (9.57), respectively. Substituting

xi,i
k,t+1 = xi,i

k+1,t , 0 ≤ k ≤ N −1, (9.59)

x j,i
k,t+1 = x j, j

k+1,t , 0 ≤ k ≤ N −1, (9.60)

and

ui,i
k,t+1 = ui,i

k+1,t , 0 ≤ k ≤ N −2, (9.61)

u j,i
k,t+1 = u j, j

k+1,t , 0 ≤ k ≤ N −2, (9.62)
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in (9.58), yields

Ji
t+1(x

i
t+1, x̃

i
t+1) =

N−1

∑
k=1

∥Qxi,i
k,t∥2 + ∑

j∈N i

N−1

∑
k=1

∥Qx j, j
k,t ∥2 + γ ∑

j∈N i

N−1

∑
k=1

∥Q(xi,i
k,t − x j, j

k,t )∥2

+
N−1

∑
k=1

∥Rui,i
k,t∥2 + ∑

j∈N i

N−1

∑
k=1

∥Ru j, j
k,t ∥2, (9.63)

which is also consistent with xi,i
N,t = 0, x j, j

N,t = 0 due to feasibility of control sequences (9.56),
(9.57). In view of (9.51) and (9.63), we may write

Ji
t+1(x

i
t+1, x̃

i
t+1) = Ji∗

t (xi
t , x̃

i
t)

−∥Qxi
t∥2 −∥Rui

t∥2 − ∑
j∈N i

∥Qx j
t ∥2 − γ ∑

j∈N i

∥Q(xi
t − x j

t )∥2 − ∑
j∈N i

∥Ru j,i
t ∥2

+ ∑
j∈N i

N−1

∑
k=1

(∥Qx j, j
k,t ∥2 −∥Qx j,i

k,t∥2)+ ∑
j∈N i

N−1

∑
k=1

(∥R(u j, j
k,t ∥2 −∥Ru j,i

k,t)∥2)

+ γ ∑
j∈N i

N−1

∑
k=1

(∥Q(xi,i
k,t − x j, j

k,t )∥2 − γ ∑
j∈N i

N−1

∑
k=1

(∥Q(xi,i
k,t − x j,i

k,t)∥2. (9.64)

Using a variation of the triangle inequality axiom of norms:

∥a−b∥ ≥ ∥a∥−∥b∥, (9.65)

we have

∑
j∈N i

N−1

∑
k=1

(∥Qx j, j
k,t ∥2 −∥Qx j,i

k,t∥2)≤ ∑
j∈N i

N−1

∑
k=1

(∥Qx j, j
k,t −Qx j,i

k,t∥2), (9.66)

∑
j∈N i

N−1

∑
k=1

(∥R(u j, j
k,t ∥2 −∥Ru j,i

k,t)∥2)≤ ∑
j∈N i

N−1

∑
k=1

(∥R(u j, j
k,t −Ru j,i

k,t)∥2) (9.67)

+ γ ∑
j∈N i

(
N−1

∑
k=1

∥Q(xi,i
k,t − x j, j

k,t )∥2 −
N−1

∑
k=1

∥Q(xi,i
k,t − x j,i

k,t)∥2)≤ γ ∑
j∈N i

N−1

∑
k=1

(∥Q(x j, j
k,t − x j,i

k,t)∥2,

(9.68)

where the sum of the right side of the inequalities above equals ε i as given in (9.48). Then,
from (9.64), (9.66)-(9.68), we have

Ji
t+1(x

i
t+1, x̃

i
t+1)≤ Ji∗

t (xi
t , x̃

i
t)− J̄i + ε

i, (9.69)
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where ε i, J̄i, are given in (9.48), (9.49), respectively. Letting Ji∗
t+1(x

i
t+1, x̃

i
t+1) be the optimal

value function of problem P i at time t +1, we have

Ji∗
t+1(x

i
t+1, x̃

i
t+1)≤ Ji

t+1(x
i
t+1, x̃

i
t+1), (9.70)

while due to Assumption (A4), we may write

Ji
t+1(x

i
t+1, x̃

i
t+1)≤ Ji∗

t (xi
t , x̃

i
t). (9.71)

From (9.70) and (9.71), we have

Ji∗
t+1(x

i
t+1, x̃

i
t+1)≤ Ji∗

t (xi
t , x̃

i
t), (9.72)

which further implies that the optimal value function of P i is positive and non-increasing
along the closed-loop trajectories and thus, can be used as Lyapunov function for agent-i. In
view of the positive definiteness of weighting matrices Q, R, inequality (9.47) is sufficient to
guarantee that

lim
t→∞

xi
t = 0, lim

t→∞
ui

t = 0. (9.73)

Overall stability for the aggregate system is established by proving the same arguments for
i = 1, . . . ,M.

The main implications of Theorem 9.2.8 are listed below.

(i) The term ε i appearing in (9.47) and defined in (9.48), can be cast as a mismatch
measure between predictions of state trajectories obtained by different (neighboring)
nodes. Theorem 9.2.8 emphasizes that this prediction error is crucial for the stability
of the DMPC scheme (9.38)-(9.41) which may lead to instability phenomena if the
error is excessive. The larger the error, the smaller the set of state trajectories along
which the value function of problem P i decreases.

(ii) Since the mismatch between predicted and actual system variables are fundamental
for the stability of a distributed MPC policy, it is sensible to expect that enabling
further information exchange between neighboring agents may lead to more restrictive
conditions for stability. More specifically, allowing the exchange of optimal solutions
between interconnected subsystems may reduce the mismatch size ε i thereby relaxing
condition (9.47).
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(iii) Viewing (9.49), the term J̄i in (9.47) starts to diminish as state trajectories approach
the origin, leading to more tight restrictions on the admissible prediction mismatch
indicated by ε i in (9.47).

(iv) The effect of prediction horizon length on the performance and stability of the DMPC
scheme (9.38)-(9.41) is especially hard to identify analytically and in general may
differ from typical centralized model predictive control results. For instance, based on
the stability condition (9.47), it is readily observed that the terms in ε i grow redundant
by extending the prediction horizon. Therefore, if the prediction horizon length is too
long, ε i may increase excessively thereby leading to violation of inequality (9.47).

DMPC policy (9.38)-(9.41) in order to be implementable, requires each individual agent
be aware of the model parameters of its neighbors. Although this information can either be
shared offline or in one go, sharing fundamental parameters across a possibly vulnerable
communication scheme may be unacceptable or undesirable in some circumstances. In the
following section, in order to bypass the peculiarity of transmitting confidential information
between agents, we consider the class of linear systems with identical sets of controllability
indices and propose a hybrid method which incorporates the model-matching concept studied
in Chapter 5, into a distributed model predictive control setting. Next, we briefly review
some basic results of Chapter 5 which will help us extend the model-matching method to the
discrete-time case.

9.2.6 Model-matching control for discrete-time linear systems

We define the following class of linear systems corresponding to families of systems with
identical sets of controllability indices.

Definition 9.2.1. Let (Ād, B̄d) ∈ Rn×n ×Rn×m, with rank(B̄d) = m. Define the set:

S(Ād, B̄d) = {P(Ād + B̄dZ)P−1, PB̄dG−1) : P ∈ Rn×n with det(P) ̸= 0,

Z ∈ Rm×n,

G ∈ Rm×m with det(G) ̸= 0}. (9.74)

Let (Ai, Bi) ∈ S(Ād, B̄d) with i = 1, . . . ,M. By Definition 9.2.1, there exist a state-space
transformation Pi, a state-feedback gain Fi, and an input scaling matrix Gi such that

Pi(Ai +BiFi)P−1
i = Ād,

PiBiGi = B̄d,
(9.75)
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for all i = 1, . . . ,M. We say that systems (Ai, Bi), i = 1, . . . ,M, are feedback equivalent and
can match their dynamics via the model-matching operations (9.75). We recall that for the
family of controllable continuous-time systems with identical sets of controllability indices,
the existence of (Pi, Fi, Gi) is guaranteed as proved in Theorem 5.2.3, Chapter 5. Since
the set of controllability indices of a controllable discrete-time system, say (A, B), can be
obtained by constructing matrices C , C̄ in a similar manner as in (5.8), (5.9), respectively,
Theorem 5.2.3 as well as Definition 9.2.1 are compatible with controllable discrete-time
systems.

We now focus on sets of controllable discrete-time models that are derived from continu-
ous time systems with identical sets of controllability indices, via a discretization method
with identical sampling periods.

Consider M continuous-time LTI systems with dynamics described by the following
state-space equations:

ẋi = Aixi +Biui, xi(0) = xi
0, i = 1, . . . ,M, (9.76)

where xi ∈ X i, ui ∈ U i represent the state and input vectors of the i-th system, respectively,
and pairs (Ai, Bi), i = 1, . . . ,M, have identical sets of controllability indices denoted by
µ1, . . . ,µm. For simplicity, assume that X i ≡ Rn, U i ≡ Rm, and that the state variables of
(9.76) are selected such that all systems (Ai, Bi), i = 1, . . . ,M, are in controllable canonical
form. Under these assumptions, as shown in Chapter 5, we may express matrices Ai, Bi as:

Ai = Āc + B̄cAm,i, (9.77)

Bi = B̄cBm,i, (9.78)

where (Āc, B̄c) denotes the Brunovsky canonical form associated with controllability indices
µ1, . . . ,µm, and Am,i ∈ Rm×n, Bm,i ∈ Rm×m for i = 1, . . . ,M.

Let now ts be an appropriate sampling period such that the following equations

xi(t + ts)− xi(t)
ts

= Aixi(t)+Biui(t), i = 1, . . . ,M, (9.79)
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are good approximations to (9.76), and define matrices

Ad,i = ts (Āc + B̄cAm,i)︸ ︷︷ ︸
Ai

+In, (9.80)

Bd,i = ts B̄cBm,i︸ ︷︷ ︸
Bi

, (9.81)

for i = 1, . . . ,M. The discrete-time approximate models to continuous-time systems (9.76)
can then be written as:

xi
t+1 = Ad,ixi

t +Bd,iui
t , (9.82)

where xi
t = xi(t), ui

t = ui(t) and the distance between time instants t +1 and t is selected as
ts. Defining

Ād = tsĀc + In, (9.83)

B̄d = tsB̄c, (9.84)

matrices Ad,i, Bd,i above, are expressed as

Ad,i = Ād + B̄dAm,i, (9.85)

Bd,i = B̄dBm,i. (9.86)

Clearly, the pair (Ād, B̄d) only depends on the set of controllability indices µ1, . . . ,µm and
the sampling interval ts. We write systems (9.82) as:

xi
t+1 = (Ād + B̄dAm,i)xi

t + B̄dBm,iui
t , (9.87)

with i = 1, . . . ,M. Setting now

ui
t = B−1

m,i(−Am,ixi
t + vi

t), (9.88)

with vi
t ∈ Rm, systems (9.82) are written as

xi
t+1 = (Ād + B̄dAm,i)xi

t + B̄dBm,i[B−1
m,i(−Am,ixi

t + vi
t)], (9.89)

or
xi

t+1 = Ādxi
t + B̄dvi

t , (9.90)
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with i = 1, . . . ,M. We note that under control law (9.88), systems (9.82) acquire identical
dynamics denoted by the pair (Ād, B̄d). We refer to (Ād, B̄d) as a target system and to (9.88)
as the associated model-matching controller. Similarly, setting

ui
t = F ixi

t +B−1
m,iw

i
t , (9.91)

in (9.88), with wi
t ∈ Rm,

F i = B−1
m,i(Ξ−Am,i), (9.92)

and Ξ ∈ Rm×n, for i = 1, . . . ,M, yields a new target system described by (Ād + B̄dΞ, B̄d). In
the following, we adopt the zero-order-hold method for discretizing continuous-time systems.
We firstly describe the discretization method for a single system and then, we consider
the zero-order-hold method for discretizing continuous-time systems with identical sets of
controllability indices.

Let the controllable continuous-time system

ẋ = Ax+Bu, (9.93)

with A ∈ Rn×n, B ∈ Rn×m, be in controllable canonical form, i.e.,

A = Āc + B̄cAm, B = B̄cBm, (9.94)

where (Āc, B̄c) represents the Brunovsky form associated with the set of controllability
indices of (A, B). Using (9.94), we may write system (9.93) as

ẋ = (Āc + B̄cAm)x+ B̄cBmu, (9.95)

or

ẋ = Ācx+
[
B̄cAm B̄cBm

][x
u

]
. (9.96)

A discrete-time (zero-order-hold) equivalent to system (9.96) can be written as

xt+1 = Ādxt +
[
B̄dAm B̄dBm

][xt

ut

]
, (9.97)
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where

Ād = eĀcts, (9.98)

B̄d =

(∫ ts

0
eĀctdt

)
B̄c, (9.99)

with ts denoting the sampling period. Writing now system (9.97) in a compact form, yields

xt+1 = (Ād + B̄dAm)xt + B̄dBmut . (9.100)

Note that allowing Am ∈ Rm×n, Bm ∈ Rm×m to be any real m×n, m×m matrix, respectively,
system (9.100) defines a parametric family of discrete-time models derived from the canonical
form of continuous-time systems with identical sets of controllability indices via the zero-
order-hold method with identical sampling periods ts. This is highlighted in the following
definition.

Definition 9.2.2. Let (Āc, B̄c) ∈ Rn×n ×Rn×m be the Brunovsky form associated with the
set of controllability indices: {µ1, . . . ,µm}. Let also

Ād = eĀcts, B̄d =

(∫ ts

0
eĀctdt

)
B̄c, (9.101)

with ts > 0, and define the set:

S(Āc, B̄c) = {(Ād + B̄dAm, B̄dBm) : Am ∈Rm×n, Bm ∈Rm×m with det(Bm) ̸= 0}. (9.102)

The model-matching procedure is summarized as follows. Consider the following set of
controllable continuous-time systems:

ẋi = Aixi +Biui, i = 1, . . . ,M, (9.103)

where xi ∈ Rn, ui ∈ Rm represent the state and input vectors of the i-th system. Assume that
the sets of controllability indices of (Ai, Bi), i = 1, . . . ,M, coincide, and that pairs (Ai, Bi),
i = 1, . . . ,M, are in controllable canonical form, i.e.,

Ai = Āc + B̄cAm,i, Bi = B̄cBm,i, (9.104)
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where (Āc, B̄c) is the Brunovsky form associated with the controllability indices of the pairs
(Ai, Bi), i = 1, . . . ,M, and Am,i ∈ Rm×n, Bm,i ∈ Rm×m, det(Bm,i) ̸= 0. Let

xi
t+1 = (Ād + B̄dAm,i)xi

t + B̄dBm,iui
t , i = 1, . . . ,M, (9.105)

with Ād , B̄d given in (9.101), be the zero-order-hold equivalent models to systems (9.103)
with sampling period ts. Then,

ui
t = F ixi

t +B−1
m,iw

i
t , (9.106)

with
F i = B−1

m,i(Ξ−Am,i), (9.107)

Ξ ∈ Rm×n, vi
t ∈ Rm, for i = 1, . . . ,M, is a model-matching control law whereby dynamics of

(9.105) become identical:
xi

t+1 = (Ād + B̄dΞ)xi
t + B̄dwi

t . (9.108)

In other words, the model-matching control protocol (9.106)-(9.107) yields a zero-order-hold
target model denoted by the pair (Ād + B̄dΞ, B̄d). In the following, we recall how to select
an optimal target model.

Let the joint model-matching control effort produced by the application of control
protocol (9.106)-(9.107) be expressed as a function of the individual state-feedback gains
F i given in (9.107). In this regard, an optimal target system can be defined by solving the
following least-squares problem:

minimize
Ξ ∈ Rm×n

M

∑
i=1

∥F i∥2
F = ∥B−1

m,i(Ξ−Am,i)∥2
F . (9.109)

As shown in Chapter 5, problem (9.109) can be transformed to

minimize
ξ ∈ Rnm

M

∑
i=1

∥Hiξ − ci∥2
2, (9.110)

using the isometric embedding of the Frobenius norm of B−1
m,i(Ξ−Am,i) into the Euclidean

norm of vector Hiξ − ci, where Hi = I′n ⊗B−1
m,i, ξ = vec(Ξ), ci = vec(Ci) with Ci = B−1

m,iAm,i.
Due to convexity of ∥Hiξ − ci∥2

2, the unique minimizer of (9.110), denoted here as ξ ∗, can
be found analytically. Then, the unique minimizer Ξ∗ of (9.109) is obtained from

Ξ
∗ = vec−1(ξ ∗). (9.111)
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We emphasize that problem (9.110) is a centralized least-squares task which is solved
analytically using global information. In the following, we wish to address problem (9.110)
by a cooperative process which is carried out locally. Specifically, we show that using a
distributed optimization algorithm performed at individual-system level, an optimal target
system can be attained recursively. In the following paragraph, we describe a distributed
gradient descent algorithm.

9.2.6.1 Distributed gradient descent algorithm

Let the least-squares problem

minimize
ξ ∈ Rp

M

∑
i=1

f i(ξ ), (9.112)

defined on a connected graph G = (V ,E ), be solved cooperatively by M agents, over a com-
mon decision variable ξ ∈ Rp. We assume that fi : Rp → R is a continuously differentiable
convex function privately known by agent-i only. We present the following distributed gradi-
ent descent (DGD) algorithm which solves (9.112) locally. DGD carries out the following
iteration:

ξ
i
t+1 = wiiξ

i
t + ∑

j∈N i

wi jξ
j

t −αt∇ f i(ξ i
t ), for i = 1, . . . ,M, (9.113)

where ξt ∈ Rp represents a local copy (estimate) of the global decision vector ξ , held by
agent-i at iteration t. Values wi j, with i, j ∈ V , represent the entries of a symmetric mixing
matrix W = [wi j] ∈ RM×M which satisfies the following:

null(I −W ) = span{1}, (9.114)

σmax(W − 1
M

11′)< 1. (9.115)

Parameter αt > 0 is the step size for the t-th iteration, and ∇ f i(ξ i
t ) denotes the gradient of

f i at ξ i
t . Methods for how to select a step-size αt as well as variations of the DGD method

can be found in [239, 92] and [151, 192], respectively. Detailed description of the algorithm
along with convergence results are beyond the scope of this section. A list of important
results on (sub)gradient methods for distributed optimization can be found in Section 2.4.
Next, we adopt DGD algorithm (9.113) for solving the centralized least-squares problem
(9.110) in a distributed fashion.
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9.2.6.2 Cooperative model-matching

Problem (9.110) is in the form of problem (9.112) and thus is compatible with the DGD
algorithm (9.113). In particular, we may write

f i(ξ i) = ∥Hiξ
i − ci∥2

2 = (ξ i′H ′
i − c′i)(Hiξ

i − ci) = ξ
i′(H ′

i Hi)ξ
i −2ξ

i′(H ′
i ci)+ c′ici,

(9.116)

which is a quadratic function of ξ i and thus

∇ f i(ξ i) = 2H ′
i Hiξ

i −2H ′
i ci, (9.117)

is an affine function of ξ i. In view of (9.117), a distributed optimization algorithm performed
by agent-i for solving problem (9.110) locally, is written as

ξ
i
t+1 = wiiξ

i
t + ∑

j∈N i

wi jξ
j

t −αt (2H ′
i Hiξ

i
t −2H ′

i ci)︸ ︷︷ ︸
∇ f i(ξ i

t )

, (9.118)

with i = 1, . . . ,M. Assuming undirected communication between neighboring agents and
denoting by L the Laplacian matrix of graph G , a Laplacian-based mixing matrix W can be
selected as W = I − 1

ρ
L where ρ is a scaling parameter with ρ > 1

2λmax(L ), λmax ∈ S(L ),
[192]. Also, the update rule

αt =
1

(t)
1
2
, (9.119)

allows for diminishing step size selection ensuring exact convergence with a maximum
convergence rate of O( ln t√

t ), [192].
Suppose now that ξ i

t is an estimate of the unique minimizer ξ ∗ of problem (9.110)
computed by agent-i at time t and let

Ξ
i
t = vec−1(ξ i

t ), (9.120)

represent an estimate of the unique minimizer Ξ∗ of problem (9.109) maintained by agent-i.
Then, adopting the feedback policy (9.106)-(9.107) in the present setting, the i-th model-
matching controller can be defined as

ui
t = F i

t xi
t +B−1

m,iw
i
t , (9.121)

where wi
t ∈ Rm and

F i
t = B−1

m,i(Ξ
i
t −Am,i), (9.122)
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is an estimate of the optimal model-matching state-feedback gain F i∗ = B−1
m,i(Ξ

∗−Am,i)

obtained at time t. Since F i
t is completely computed using local information only, the

model-matching policy (9.121)-(9.122) is a distributed control protocol. We summarize the
distributed model-matching task in the following procedure.

Procedure 9.2.3. At time t, agent-i

(M1) collects estimates ξ
j

t−1, j ∈ N i, received from neighboring agents at time t −1 and
obtains an updated estimate ξ i

t by performing (9.118),

(M2) sends the new estimate ξ i
t to neighbors and receives their updates,

(M3) computes Ξi
t = vec−1(ξ i

t ),

(M4) constructs state feedback gain F i
t by (9.122).

We also emphasize the following remarks.

Remark 9.2.9. In view of step (M2) of Procedure 9.2.3, agent-i receives neighboring updates
ξ

j
t , j ∈ N i thereby being able to construct matrix Ξ

j
t by

Ξ
j
t = vec−1(ξ

j
t ). (9.123)

This allows agent-i to predict the state evolution of neighboring agent- j using the state-space
equation

x j,i
t+1 = (Ād + B̄dΞ

j
t )x

j,i
t + B̄dw j,i

t , (9.124)

in a model-predictive setup. Note also that system (Ād + B̄dΞ
j
t , B̄d) represents an estimate of

the optimal target system maintained by agent- j at time t.

Remark 9.2.10. The model-matching control protocol (9.121)-(9.122) combined with DGD
algorithm (9.118) enables agents to match their dynamics with an optimal target system
without any requirement of sharing their model parameters. This absence of transmitting
systems’ significant information across a possibly vulnerable communication network may be
beneficial for multi-agent cyber-physical control schemes prone to malicious cyber activities.

In the following section, we adapt the model-matching control protocol (9.121)-(9.122)
to a model predictive control setting.
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9.2.7 Distributed model-matching based MPC protocols

Throughout the thesis, it has been highlighted that the information exchange between agents
enables multi-agent distributed control problems to be addressed at individual level. Further,
in Section 9.2.4, it is shown that receding horizon optimal control problems over networks
of multiple systems can be solved locally provided that each individual system is aware
of the model parameters of its neighbors. In the present section, we focus on a particular
class of linear systems with identical sets of controllability indices, and propose a distributed
network control protocol which allows individual systems to 1) exchange state-information
locally, 2) map their dynamics to a target system using local information, 3) keep their model
parameters private, 4) predict the state evolution of their neighbors, and 5) solve a receding
horizon control problem. The solution of the latter yields an implicit stabilizing feedback
controller that couples the dynamic behavior of interconnected systems.

In particular, we wish to develop a distributed model-matching based MPC protocol for
networks composed of multiple agents whose dynamics are described by linear systems with
identical sets of controllability indices. For control design purposes, we focus on discretized
models obtained as the zero-order-hold equivalent to continuous-time systems characterized
by identical sets of controllability indices. We represent a network of M agents as a connected
graph G = (V ,E ) of M nodes as described in Section 9.2.1. In this regard, node-i, i ∈ V , is
assigned to agent-i and the presence of an edge (i, j) ∈ E indicates that agent- j is a neighbor
of agent-i. In other words, agent-i is able to receive information from agent- j with j ∈ N i.
The dynamics of agent-i in the continuous-time domain are described by the following
continuous-time state-space equation:

żi = Aizi +Biui, (9.125)

with zi ∈ Z i, ui ∈ U i representing the state and input vectors of agent-i, respectively. We
assume that each agent is aware of a state-space transformation zi → xi = Pizi under which

PiAiP−1
i = Āc + B̄cAm,i, (9.126)

PiBi = B̄cBm,i, (9.127)

where Am,i ∈ Rm×n, Bm,i ∈ Rm×m, and Āc ∈ Rn×n, B̄c ∈ Rn×m are in concert with Definition
9.2.2. Then, the discretized state-space form of the i-th agent in the transformed coordinates
is written as

xi
t+1 = (Ād + B̄dAm,i)xi

t + B̄dBm,iui
t , (9.128)
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where xi
t ∈ X i, for i = 1, . . . ,M. In the following, we require that the control function ui

t

is designed on the coordinate system xi = Pizi. Note that, systems (9.128) are compatible
with the model-matching control protocol (9.121)-(9.122) whereby each individual system is
mapped to a local target model. The matching protocol is rewritten as follows:

ui
t = F i

t xi
t +B−1

m,iw
i
t ,

F i
t = B−1

m,i(Ξ
i
t −Am,i),

(MP)

where Ξi
t is defined in (9.120), for i = 1, . . . ,M. We define the following sets associated with

feasible control input wi
t shown in (MP) as follows:

W i
t = {wi

t = Bm,iui
t − (Ξi

t −Am,i)xi
t : ui

t ∈ U i and xi
t ∈ X i}. (9.129)

In order to formulate a receding horizon optimal control problem for deriving the control
input wi

t with respect to (MP), we define the following function. Let

li
t(x

i
t , x̃

i
t ,wt , w̃i

t) : Rn ×RMin ×Rm ×RMim → R, (9.130)

be a positive local cost function with li
t(0,0,0,0) = 0 assigning a cost to control actions wi

t ,
w̃i

t , respectively, given the local state vectors xi
t , x̃i

t at time instant t, for i = 1, . . . ,M. Recall
that the aggregate vector x̃i

t is defined in (9.8) while the aggregate vector w̃i
t is in agreement

with (9.9).
Given now a specific cost function (9.130), the control input wi

t in (MP) is derived from
the solution of the following receding horizon optimal control problem associated with an
optimal value function Ji∗

t (xi
t , x̃

i
t):
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P i
t : minimize

W̃ i
t

N−1

∑
k=0

li
t(xk,t , x̃k,t ,ui

k,t , ũ
i
k,t)+ lN(xk,t , x̃i

N,t) (9.131a)

subject to xi
k+1,t = (Ād + B̄dΞ

i
t)x

i
t + B̄dwi

t , k = 0, . . . ,N −1, (9.131b)

xi
k,t ∈ X i, wi

k,t ∈ W i
t , k = 0, . . . ,N −1, (9.131c)

xi
N,t ∈ X i

f , (9.131d)

xi
0,t = xi

t , (9.131e)

x j
k+1,t = (Ād + B̄dΞ

j
t )x

j
t + B̄dw j

t , j ∈ N i k = 0, . . . ,N −1, (9.131f)

x j
k,t ∈ X j, w j

k,t ∈ W j
t , j ∈ N i k = 0, . . . ,N −1, (9.131g)

x j
N,t ∈ X j

f , (9.131h)

x j
0,t = x j

t , (9.131i)

where
W̃ i

t ≜ [wi
0,t , w̃

i
0,t , . . . ,w

i
N−1,t , w̃

i
N−1,t ] ∈ RN(Mi+1)m, (9.132)

is the decision vector. We denote by

W i∗
t = [wi

0,t , w̃
i
0,t , . . . ,w

i
N−1,t , w̃

i
N−1,t , ], (9.133)

a minimizer of problem P i
t . Then, the control input wi

t in (MP) is defined as

wi
t = wi

0,t . (9.134)

The following procedure describes the iterative implementation of a distributed network
control policy based on the matching protocol (MP) and the solution of problem P i

t .

Procedure 9.2.4. At time t:

(N1) The control unit of agent-i maintains an estimate of an optimal target system via
Procedure 9.2.3 and receives target estimates from its neighbors.

(N2) It measures the local state and collects measurements of states of all neighboring
subsystems.

(N3) Based on the local states, as well as the local and neighboring estimates of the optimal
target system, it computes the minimizer W̃ i∗

t of P i
t .
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(N4) The local control unit maintains the first component of W̃ i∗
t and implements:

ui
t = B−1

m,i(Ξ
i
t −Am,i)xi

t +B−1
m,1wi

0,t . (9.135)

(N5) At time t +1, the i-th control unit updates the local and neighboring estimates of the
optimal target systems, recollects the new state information xi

t+1, x̃i
t+1 and repeats steps

(N3), (N4).

Problem P i
t as formulated in (9.131) is time-varying and as a result, minimizer W̃ i∗

t is
a time-varying function of the local and neighboring states. In this respect, the distributed
model-matching based control policy ui

t as defined in (9.135) represents a time-varying
feedback control law implicitly derived from the solution of P i

t . In this regard, we may write

ui
t = K i

t (x
i
t , x̃

i
t ; t), (9.136)

where K i
t : Rn×RMin×R→Rm. Stability properties of the distributed controller ui

t defined
in (9.135) are discussed in the following section.

9.2.8 Stability analysis of model-matching based MPC

In order to derive sufficient conditions for stability of the network control policy (MP)-
(9.131)-(9.135) we assume the following.

Assumption 9.2.11. The cost term in (9.131a) is

li
t(x

i
t , x̃

i
t ,w

i
t , w̃

i
t) = ∥Qxi

t∥2 + ∑
j∈N i

∥Qx j
t ∥2 + γ ∑

j∈N i

∥Q(xi
t − x j

t )∥2 +∥Rwi
t∥2 + ∑

j∈N i

∥Rw j
t ∥2,

(9.137)

with Q = Q′ > 0, R = R′ > 0 and γ > 0.

Assumption 9.2.12. The terminal sets X i
f and X j

f , j ∈ N i, in (9.131d) and (9.131h),

respectively, coincide with the origin, i.e., xi
N,t = x j

N,t = 0, j ∈ N i.

Assumption 9.2.13. The feasible sets X i,X j ⊆ Rn and W i,W j ⊆ Rm contain the origin
in their interior, with j ∈ N i.

Letting
x̂t+1 = ft(x̂t , ûx̂t ), (9.138)
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denote the closed-loop dynamics of the entire system, where

ft(x̂t , ûx̂t ) = Âx̂t + B̂ûx̂t , (9.139)

x̂t = Col(x1
t , . . . ,x

M
t ), (9.140)

ût = Col(u1
t , . . . ,u

M
t ), (9.141)

with

Â = diag(Ād + B̄dAm,1, . . . , Ād + B̄dAm,M), (9.142)

B̂ = diag(B̄dBm,1, . . . , B̄dBm,M), (9.143)

and ui
t , i = 1, . . . ,M, as given in (9.135). Sufficient conditions for asymptotic stability of the

closed-loop system (9.138) are given in the following theorem.

Theorem 9.2.14. Let M agents with dynamics described by the discrete-time equations
(9.128) exchange information with each other over a communication scheme modeled as
a connected graph. Suppose that each agent is assigned to a node i = {1, . . . ,M}, and
implements network control policy (MP)-(9.131)-(9.135) summarized in Procedure 9.2.4 at
each time instant t. Suppose that the cost term li

t in (9.131a) is given by (9.137) and assume
the following:

(A1) Q = Q′ > 0, R = R′ > 0 and γ > 0.

(A2) The terminal sets X i
f and X j

f , j ∈ N i, in (9.131d) and (9.131h), respectively, coin-

cide with the origin, i.e., xi
N,t = x j

N,t = 0, j ∈ N i.

(A3) The feasible sets X i,X j ⊆ Rn and W i,W j ⊆ Rm contain the origin in their interior,
with j ∈ N i.

(A4) The following inequality:
ε

i − J̄i ≤ 0, (9.144)
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is satisfied ∀i = {1, . . . ,M} and for all xi
t ∈ X i, where

ε
i =

N−1

∑
k=1

∥R(Ξi
t+1 −Ξ

i
t)x

i,i
k,t∥2 +(1+ γ) ∑

j∈N i

N−1

∑
k=1

∥Q(x j, j
k,t − x j,i

k,t)∥2+

∑
j∈N i

N−1

∑
k=1

∥R(w j, j
k,t −w j,i

k,t)−R(Ξ j
t+1 −Ξ

j
t )x

j, j
k,t ∥2, (9.145)

J̄i =∥Qxi
t∥2 +∥Rwi

t∥2 + ∑
j∈N i

∥Qx j
t ∥2 + γ ∑

j∈N i

∥Q(xi
t − x j

t )∥2 + ∑
j∈N i

∥Rw j,i
0,t∥2.

(9.146)

Then, the origin of the closed-loop system (9.138) is asymptotically stable.

Proof. We prove the theorem for the i-th agent using the value function of problem P i
t . Let

W̃ i∗
t = [wi,i

0,t , w̃
i,i
0,t , . . . ,w

i,i
N−1,t , w̃

i,i
N−1,t ], (9.147)

be the minimizer of problem P i
t at time t and

Ji∗
t (xi

t , x̃
i
t) =

N−1

∑
k=0

∥Qxi,i
k,t∥2 + ∑

j∈N i

N−1

∑
k=0

∥Qx j,i
k,t∥2 + γ ∑

j∈N i

N−1

∑
k=0

∥Q(xi,i
k,t − x j,i

k,t)∥2

+
N−1

∑
k=0

∥Rwi,i
k,t∥2 + ∑

j∈N i

N−1

∑
k=0

∥Rw j,i
k,t∥2, (9.148)

be the associated optimal value function. We denote by

W i,i∗
t = [wi,i

0,t , . . . ,w
i,i
N−1,t ], (9.149)

W j,i∗
t = [w j,i

0,t , . . . ,w
j,i
N−1,t ], (9.150)

the optimal control sequence of agent-i and agent- j as predicted by agent-i at time t, with
i, j = 1, . . . ,M, j ̸= i and j ∈ N i. However, the shifted control sequences

W i,i
t+1 = [wi,i

1,t , . . . ,w
i,i
N−1,t ,0], (9.151)

W j,i
t+1 = [w j,i

1,t , . . . ,w
j,i
N−1,t ,0], (9.152)

with j ∈ N i, are not necessarily feasible at the next time-step t +1 since problem P i
t is not

time-invariant. The shifted control sequences above also fail to be feasible due to a possible
mismatch between the predicted state x j,i

0,t+1 and the actual state x j
t+1. In contrast, since

x j, j
0,t+1 = x j

t+1 we may consider the following shifted control sequences which are feasible at
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time t +1 for agent-i:

W i,i
t+1 = [wi,i

1,t −Ξ
i
t+1xi

0,t+1 +Ξ
i
tx

i
1,t , . . . ,w

i,i
N−1,t −Ξ

i
t+1xi

N−2,t+1 +Ξ
i
tx

i
N−1,t ,0], (9.153)

W j, j
t+1 = [w j, j

1,t −Ξ
j
t+1x j

0,t+1 +Ξ
j
t x j

1,t , . . . ,w
j, j
N−1,t −Ξ

j
t+1x j

N−2,t+1 +Ξ
j
t x j

N−1,t ,0], (9.154)

with j ∈ N i. Note that letting (9.153), (9.154) be in force, we have

xi
k,t+1 = xi

k+1,t , 0 ≤ k ≤ N −1, (9.155)

x j
k,t+1 = x j

k+1,t , 0 ≤ k ≤ N −1, (9.156)

which implies that

W i,i
t+1 = [wi,i

1,t − (Ξi
t+1 −Ξ

i
t)x

i
1,t , . . . ,w

i,i
N−1,t − (Ξi

t+1 −Ξ
i
t)x

i
N−1,t ,0], (9.157)

W j, j
t+1 = [w j, j

1,t − (Ξ
j
t+1 −Ξ

j
t )x

j
1,t , . . . ,w

j, j
N−1,t − (Ξ

j
t+1 −Ξ

j
t )x

j
N−1,t ,0]. (9.158)

Let now

Ji
t+1(x

i
t+1, x̃

i
t+1) =

N−1

∑
k=0

∥Qxi,i
k,t+1∥2 + ∑

j∈N i

N−1

∑
k=0

∥Qx j,i
k,t+1∥2 + γ ∑

j∈N i

N−1

∑
k=0

∥Q(xi,i
k,t+1 − x j,i

k,t+1)∥2

+
N−1

∑
k=0

∥Rwi,i
k,t+1∥2 + ∑

j∈N i

N−1

∑
k=0

∥Rw j,i
k,t+1∥2, (9.159)

be the value function of P i
t+1 associated with control sequences W i,i

t+1, W j, j
t+1, j ∈ N i as

defined in (9.157), (9.158), respectively. Substituting

xi,i
k,t+1 = xi,i

k+1,t , 0 ≤ k ≤ N −1, (9.160)

x j,i
k,t+1 = x j, j

k+1,t , 0 ≤ k ≤ N −1, (9.161)

and

wi,i
k,t+1 = wi,i

k+1,t − (Ξi
t+1 −Ξ

i
t)x

i
k+1,t , 0 ≤ k ≤ N −2, (9.162)

w j,i
k,t+1 = w j, j

k+1,t − (Ξ
j
t+1 −Ξ

j
t )x

j
k+1,t , 0 ≤ k ≤ N −2, (9.163)
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in (9.159), yields

Ji
t+1(x

i
t+1, x̃

i
t+1) =

N−1

∑
k=1

∥Qxi,i
k,t∥2 + ∑

j∈N i

N−1

∑
k=1

∥Qx j, j
k,t ∥2 + γ ∑

j∈N i

N−1

∑
k=1

∥Q(xi,i
k,t − x j, j

k,t )∥2

+
N−1

∑
k=1

∥Rwi,i
k,t −R(Ξi

t+1 −Ξ
i
t)x

i
k,t∥2 + ∑

j∈N i

N−1

∑
k=1

∥Rw j, j
k,t −R(Ξ j

t+1 −Ξ
j
t )x

j
k,t∥2,

(9.164)

which is also consistent with xi,i
N,t = 0, x j, j

N,t = 0 due to feasibility of control sequences (9.157),
(9.158). In view of (9.148) and (9.164), we may write

Ji
t+1(x

i
t+1, x̃

i
t+1) = Ji∗

t (xi
t , x̃

i
t)

−∥Qxi
t∥2 −∥Rwi

t∥2 − ∑
j∈N i

∥Qx j
t ∥2 − γ ∑

j∈N i

∥Q(xi
t − x j

t )∥2 − ∑
j∈N i

∥Rw j,i
t ∥2︸ ︷︷ ︸

−J̄i

(9.165)

+
N−1

∑
k=1

(∥Rwi,i
k,t −R(Ξi

t+1 −Ξ
i
t)x

i,i
k,t∥2 −∥Rwi,i

k,t∥2)︸ ︷︷ ︸
ρ i

1

(9.166)

+
N−1

∑
k=1

(∥Qx j, j
k,t ∥2 −∥Qx j,i

k,t∥2)︸ ︷︷ ︸
ρ i

2

(9.167)

+ γ

N−1

∑
k=1

(∥Q(xi,i
k,t − x j,i

k,t∥2 −∥Q(xi,i
k,t − x j, j

k,t ∥2)︸ ︷︷ ︸
ρ i

3

(9.168)

+
N−1

∑
k=1

(∥Rw j, j
k,t −R(Ξ j

t+1 −Ξ
j
t )x

j, j
k,t ∥2 −∥Rw j,i

k,t∥2)︸ ︷︷ ︸
ρ i

4

, (9.169)

or
Ji

t+1(x
i
t+1, x̃

i
t+1) = Ji∗

t (xi
t , x̃

i
t)− J̄i +ρ

i, (9.170)

where ρ i = ρ i
1 +ρ i

2 +ρ i
3 +ρ i

4. Using now a variation of the triangle inequality axiom of
norms:

∥a−b∥ ≥ ∥a∥−∥b∥, (9.171)
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and letting
ε

i = ε
i
1 + ε

i
2 + ε

i
3 + ε

i
4, (9.172)

with

ε
i
1 =

N−1

∑
k=1

∥R(Ξi
t+1 −Ξ

i
t)x

i,i
k,t∥2 ≥ ρ

i
1, (9.173)

ε
i
2 =

N−1

∑
k=1

∥Q(x j, j
k,t − x j,i

k,t)∥2 ≥ ρ
i
2, (9.174)

ε
i
3 = γ

N−1

∑
k=1

∥Q(x j, j
k,t − x j,i

k,t)∥2 ≥ ρ
i
3, (9.175)

ε
i
4 =

N−1

∑
k=1

∥R(w j, j
k,t −w j,i

k,t)−R(Ξ j
t+1 −Ξ

j
t )x

j, j
k,t ∥2 ≥ ρ

i
1, (9.176)

yields
ε

i ≥ ρ
i. (9.177)

From (9.170) and (9.177), we have

Ji
t+1(x

i
t+1, x̃

i
t+1)≤ Ji∗

t (xi
t , x̃

i
t)− J̄i + ε

i, (9.178)

where ε i is given in (9.172) and is consistent with (9.145). From Assumption (A4), (9.178)
implies that

Ji
t+1(x

i
t+1, x̃

i
t+1)≤ Ji∗

t (xi
t , x̃

i
t). (9.179)

Also, by definition of an optimal value function, we have

Ji∗
t+1(x

i
t+1, x̃

i
t+1)≤ Ji

t+1(x
i
t+1, x̃

i
t+1). (9.180)

Then, from (9.179), (9.180), we conclude that

Ji∗
t+1(x

i
t+1, x̃

i
t+1)≤ Ji∗

t (xi
t , x̃

i
t), (9.181)

which further implies that the optimal value function of P i
t is positive and non-increasing

along the closed-loop trajectories and thus, can be used as Lyapunov function for agent-i. In
view of the positive definiteness of weighting matrices Q, R, inequality (9.144) is sufficient
to guarantee that

lim
t→∞

xi
t = 0, lim

t→∞
wi

t = 0. (9.182)
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Overall stability for the entire system is established by proving (9.181) for i = 1, . . . ,M.

We note that inequality (9.144) coincides with (9.47) when Ξi
t+1 = Ξi

t and Ξ
j
t+1 = Ξ

j
t ,

j ∈ N i. This means that as soon as the matching protocol (MP) has achieved consensus,
problem P i

t becomes time-invariant and sufficient conditions for closed-loop stability can be
derived from Theorem 9.2.8.

9.3 Distributed MPC for dynamically coupled systems

In this section, we address the problem of distributed model predictive control of dynamically
coupled systems from an application point of view. In particular, we consider the load
frequency control (LFC) problem examined in Chapter 8, and propose a distributed MPC
method for LFC design. Our method depends on a decoupling technique which allows for
a control solution with a distributed architecture. Treating the total power inflows of each
area as input variables, we derive a decoupled linearized model for each area of a multi-area
network. This allows for the solution of a model predictive control problem with a quadratic
performance index and input saturating constraints on the individual tie-line power flows,
along with an overall equality constraint to address the energy balance of the network. We
present the problem in a descriptive way and as a result certain lines involving the model
description as well as the problem formulation may overlap with lines in Chapter 8. In the
end of the chapter, we illustrate the effectiveness of the method via a simulation study of a
three-area power network.

9.3.1 Two-area power system modelling

We consider a standard linearized model [13] of a two area power system the block diagram
of which is depicted in Fig. 9.1. The analysis provided next is extended to the multi-area
power system design later in the chapter. Neglecting saturator dynamics appearing in Fig.
9.1, we write the linear state-space model of a two-area system as follows:

ẋ = Ax+Buu+Bww, x(0) = x0, (9.183)
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Fig. 9.1 Block-diagram of two-area power system.

where

x =
[
∆ f1 ∆ f2 ∆PG1 ∆PG2 ∆Ptie,1

]′
, (9.184)

u =
[
∆PC,1 ∆PC,2

]′
, (9.185)

w =
[
∆PL,1 ∆PL,2

]′
(9.186)

denote the state, input and disturbance vectors, respectively and

A =



− 1
Tp1

0 Kp1
Tp1

0 −Kp1
Tp1

0 − 1
Tp2

0 Kp2
Tp2

+
Kp2
Tp2

− Kt1
R1Tt1

0 − 1
Tt1

0 0
0 − Kt2

R2Tt2
0 − 1

Tt2
0

Ktie1,2 −Ktie1,2 0 0 0


, (9.187)

Bu =

[
0 0 Kt,1

Tt,1
0 0

0 0 0 Kt,2
Tt,2

0

]′
, (9.188)

Bw =

[
−Kp,1

Tp,1
0 0 0 0

0 −Kp,1
Tp,2

0 0 0

]′
. (9.189)

The notation ∆ in x, u, w above, indicates deviation from steady-state operation conditions;
∆ fi is the frequency deviation from the common nominal value and ∆PG,i is the deviation
from the equilibrium value of the electrical power generated by the lumped alternators of
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each area. Here, the electrical power is taken equal to the mechanical power produced in the
output of the turbines. ∆Ptie,1 denotes the total power inflow of the area-1 with dynamics
described by

∆Ptie,1 = Ktie,1,2

∫ t

0
(∆ f1(τ)−∆ f2(τ))dτ, (9.190)

where Ktie,1,2 = 2πT1,2 is the synchronization coefficient between areas 1 and 2. Since power
inflow to the area-1 corresponds to equal power outflow from area-2, i.e., ∆Ptie,2 =−∆Ptie,1,
∆Ptie,2 is a redundant variable and is neglected from eq. (9.183). All parameters involved
in (9.183) are summarized in Table 9.1. The disturbance signal ∆PL,i is associated with a
time-varying demand of the consumers of the i-th area which is assumed to be unknown,
piece-wise constant and bounded with known upper and lower values. We study the case
where

∆PL,i,min ≤ ∆PL,i ≤ ∆PL,i,max, i = 1,2. (9.191)

Table 9.1 Parameters and power system terminology.

Parameter,Symbol Area 2 / Area 1,3 Units
Nominal Frequency, f o 50/50 Hz

Power Base, PB,i 2000/1500 MW
Load Dependency Factor, Di 16.66/10.50 MW/Hz

Speed Droop, Ri 1.2×10−3/1.3×10−3 Hz/MW
Generator Inertia Gain, Hi 5 /4 s
Turbine Static Gain, Kt,i 1 /1 MW/MW

Turbine Time Constant, Tt,i 0.3 /0.25 s
Area Static Gain, Kp,i 0.06 /0.0952 Hz/MW

Area Time Constant, Tp,i 24 /22.8571 s
Tie-Line Coefficient, Ktie,i 1090/1090 MW/Hz

The total control signal of the i-th control area is the sum of two components: ∆utot,i =

∆Pf ,i +∆PC,i, namely, the primary frequency control action, defined as ∆Pf ,i =− 1
Ri

∆ fi, and
the automatic generation control (AGC) ∆PC,i to be designed. The first is a fixed static
linear control law performed by the speed governor which is a regulating unit attached on
the prime mover. Detailed description of this topic can be found in [106]. The static gain
Ri is commonly referred to as speed droop or speed regulation. Signal ∆utot,i is subject to
component-wise saturation hard constraints of the form

∆utot,i,min ≤ ∆utot,i ≤ ∆utot,i,max, i = 1,2, (9.192)



9.3 Distributed MPC for dynamically coupled systems 303

where saturation limits are assumed to be symmetric in the sense that ∆utot,i,max =−∆utot,i,min.
Also, ∆utot,i,max is assumed to be greater than the maximum expected load deviation ∆PL,i,max,
otherwise, zero frequency deviation error is not guaranteed. Negative values of ∆utot,i,min

allow for handling negative values of ∆PL,i, that is, in case of load reduction.
Since hard constraints apply to the total input signal of each area it makes sense to

formulate the state-space (9.183) such that ∆utot,i appears in the input vector u. We have[
∆PC,1

∆PC,2

]
=

[
∆utot,1

∆utot,2

]
−

[
∆Pf ,1

∆Pf ,2

]
, (9.193)

which can equivalently be written as

[
∆PC,1

∆PC,2

]
=

[
∆utot,1

∆utot,2

]
+

[
1/R1 0 0 0 0

0 1/R2 0 0 0

]
︸ ︷︷ ︸

B f


∆ f1

∆ f2

∆PG,1

∆PG,2

∆Ptie,1


︸ ︷︷ ︸

x

. (9.194)

Then, adding BuB f x to (9.187) with B f given in (9.194) changes the input vector u in (9.183)

to u =
[
∆utot,1 ∆utot,2

]′
and eliminates the primary frequency control from the dynamical

equation. The matrix (9.187) is now altered to:

A =


−1/Tp,1 0 Kp,1/Tp,1 0 −Kp,1/Tp,1

0 −1/Tp,2 0 Kp,2/Tp,2 +Kp,2/Tp,2

0 0 −1/Tt,1 0 0
0 0 0 −1/Tt,2 0

Ktie,1,2 −Ktie,1,2 0 0 0

 , (9.195)

while matrices Bu and Bw in (9.188) and (9.189), respectively, are unaffected. Essentially,
once ∆utot,i has been designed, the AGC signal of each area can be generated by:

∆PC,i = ∆utot,i +
1
Ri

∆ fi, i = 1,2, (9.196)

since the primary frequency control law ∆Pf ,i is pre-specified.
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9.3.2 State-augmentation for integral action

A well-established technique for tackling step-disturbances with zero steady-state error
is to include integral action into the state-space model. For the i-th area, we consider a
performance variable expressed as a summation of the frequency deviation ∆ fi multiplied
by a bias factor Bi and the tie-line power exchange ∆Ptie,i, i.e., zi = Bi∆ fi +∆Ptie,i. This
quantity is referred to as “Area Control Error” (ACE) and a usual choice for Bi is Di +

1
Ri

,
[13]. Parameters Di and Ri are defined in Table 9.1. Specifically, constant Di represents the
rate at which system load changes with frequency evaluated at nominal frequency [66]. Let

now z =
[
z1 z2

]′
=Czx with x given in (9.184) and

Cz =

[
B1 0 0 0 1
0 B2 0 0 −1

]
, (9.197)

and consider the augmented state-vector

xa(t) =
[
x(t)′

∫ t
0 z1(τ)dτ

∫ t
0 z2(τ)dτ

]′
. (9.198)

Then the augmented state-space form of the two-area power system is written as:

ẋa = Aaxa +Bu,au+Bw,aw, (9.199)

with

Aa =

[
A 05×2

Cz 02×2

]
, Bu,a =

[
Bu

02×2

]
, Bw,a =

[
Bw

02×2

]
, (9.200)

where A, Cz, Bu and Bw are given in (9.195), (9.197), (9.188) and (9.189), respectively. Due
to state-augmentation with the integral of the ACE signal of each area, designing a stabilizing
controller u for (9.199) leads to zero steady-state frequency and tie-line power exchange
deviations, ∆ fi, ∆Ptie,i, respectively, provided that disturbances ∆PL,i, i = 1,2 are piece-wise
constant.

We now propose an equivalent representation of the state-space form of the two-area
system which leads to a pseudo-decoupled model for each area thereby facilitating the multi-
area power system design. This becomes evident in the distributed control design studied
later. In the sequel, all state-space representations are given in the augmented form.
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9.3.3 Decoupled state-space model and multi-area design

By viewing eq. (9.183) we remark that the two areas are governed by differential equations
of the same structure differing only in parameters. Also the coupling between the dynamics
is due to ∆Ptie,1 variable pertaining to the power exchange deviation between the two areas.
By introducing the variable ∆Ptie,2 =−∆Ptie,1 defined as

∆Ptie,2 = Ktie,2,1

∫ t

0
(∆ f2(τ)−∆ f1(τ))dτ, (9.201)

where Ktie,2,1 = Ktie,1,2 the state-space form of each area in a two-area system can be written
as:

∆ ḟi

∆ṖG,i

∆Ṗtie,i

zi

=


− 1

Tp,i

Kp,i
Tp,i

−Kp,i
Tp,i

0

0 − 1
Tt,i

0 0

Ktie 0 0 0
Bi 0 1 0




∆ fi

∆PG,i

∆Ptie,i∫
zidτ

+


0
0

−Ktie

0

∆ f j +


0 −Kp,i

Tp,i
Kt,i
Tt,i

0

0 0
0 0


[

∆utot,i

∆PL,i

]
,

(9.202)

where Ktie = Ktie,1,2 = Ktie,2,1, and i = 1,2.
Consider now a multi-area power grid composed of M areas (generically non-identical)

interconnected through tie-lines the topology of which is modelled by an undirected graph
G = (V ,E ). Node i ∈ V represents the i-th interconnected area while (i, j) ∈ E stands for
the corresponding link between area i and j. We assume that the graph is not necessarily
complete which implies that the topology of tie-lines is sparse. The set of areas connected
to the i-th node through tie-lines is denoted by Ni ⊆ V . Let now ∆Ptie,i represent the total
power inflow to the i-th area with dynamics described by

∆Ptie,i = ∑
j∈Ni

Ktie,i, j

∫ t

0
(∆ fi(τ)−∆ f j(τ))dτ, (9.203)

with i = 1, · · · ,M. A decoupled state-space equation of the i-th interconnected area can take
the following form: ∆ ḟi

∆ṖG,i

zi

=


− 1

Tp,i

Kp,i
Tp,i

0

0 − 1
Tt,i

0

Bi 0 0


︸ ︷︷ ︸

Ai

 ∆ fi

∆PG,i∫
zidτ


︸ ︷︷ ︸

xi

+


0 −Kp,i

Tp,i
Kt,i
Tt,i

0

0 1


︸ ︷︷ ︸

Bu,i

[
∆utot,i

∆Ptie,i

]
︸ ︷︷ ︸

ui

+

−
Kp,i
Tp,i

0
0


︸ ︷︷ ︸

Bw,i

∆PL,i︸︷︷︸
wi

,

(9.204)
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where ∆utot,i = ∆PC,i +∆Pf ,i, i = 1, · · · ,M. Note that ∆Ptie,i has been eliminated from the
state-vector and instead is included in the input vector of the i-th area. This technical
manipulation results in a decoupled state-space form thereby facilitating the design of LFC
controllers with distributed structure. A schematic representation of (9.204) is shown in Fig.
9.2. Since ∆Ptie,i is defined by (9.203), to avoid any dynamical discrepancy in the model of
the i-th area, the exact value of this pseudo control variable will be fixed by including hard
equality constraints in the control design.

∆PC,i

∆Pf ,i

Σ
∆U tot

i

min

max
∆PG,i

Σ

−∆Ptie,i

−∆PL,i

Kp,i
sTp,i+1 ∆ fi

− 1
Ri

Fig. 9.2 Single block representation of the i-th interconnected area.

In a multi-area power system, the power generation rate of each area should not exceed a
specified upper bound. This can be considered as a state constraint by the control of each
area with typical maximum value for thermal units being 0.0017 p.u.MW/s. Comprehensive
treatment of this topic can be found in [124]. To avoid unnecessary complications, in this
study, we only consider saturation input constraints. The load frequency control problem of
a distributed multi-area power system is described in the following paragraph.

9.3.3.1 Problem statement

Possible power load change in the i-th area of a power system of multiple interconnected
control areas causes the electrical frequency fi to deviate from its nominal value. Due to
interconnections among the areas through power transmission tie-lines and the dependence of
the power exchange between the i-th and j-th area upon the associated difference ∆ fi −∆ f j,
any power load deviation occurring in the i-th area will affect also the linked j-th area causing
transients in its frequency f j. We formulate the LFC problem of a multi-area power system
as a disturbance rejection problem in the presence of input constraints. We assume that each
area can produce LFC signals independently and can exchange state information with its
neighboring areas. Typically, we consider that the topology of physical links (tie-lines) and
the topology of information exchange among areas coincide and are described by the same
graph. A distributed model-predictive based LFC controller is proposed in the following
section.
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9.3.4 Model predictive control formulation

Consider a multi-area power system formed of M areas interconnected by tie-lines, and let
the dynamics of each area be described by (9.204) written here in a compact form as

ẋi = Aixi +
[
Bu,i Bw,i

][ui

wi

]
, xi(0) = xi

0, (9.205)

with i = 1, · · · ,M. To formulate a model predictive control problem we assume the following.
The actual power system evolves in real time while the control subsystem of each area
predicts local states within a finite future horizon utilizing the system model. All variables
involved in (9.205) are discretized using the zero-order-hold method. Representation of
predicted variables is in agreement with the notation utilized earlier in the chapter. We
assume that the local state can be measured while an estimate of the disturbance signal wi is
obtained by an appropriate observer.

We select a predicted horizon of N time-steps. The discrete-time model of the i-th area
obtained as the zero-order-hold equivalent to (9.205), is written as:

xi
t+1 = Ad,ixi

t +
[
Bd,u,i Bd,w,i

][ui
t

wi
t

]
, xi(0) = xi

0. (9.206)

In the following, we denote by xi
k,t the predicted state of the i-th area after k sampling intervals

starting from t and driven by a sequence of input functions ui
0,t , . . . ,u

i
N−1,t . For the i-th area

let
X i

t = Φixi
t +Ψi,1U i

t +Ψi,2W i
t , (9.207)
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be an aggregate vector which stacks N consecutive predicted states from time instant t, where

X i
t =

[
xi′

1,t xi′
2,t · · · xi′

N,t

]′
, (9.208)

U i
t =

[
ui′

0,t ui′
1,t · · · ui′

N−1,t

]′
, (9.209)

W i
t =

[
wi′

0,t wi′
1,t · · · wi′

N−1,t

]′
, (9.210)

Φi =
[
A′

d,i A2′
d,i · · · AN′

d,i

]′
(9.211)

Ψi,1 =


Bd,u,i 0 . . . 0

Ad,iBd,u,i Bd,u,i . . . 0
...

...
. . .

...

AN−1
d,i Bd,u,i AN−2

d,i Bd,u,i . . . Bd,u,i

 , (9.212)

Ψi,2 =


Bd,w,i 0 . . . 0

Ad,iBd,w,i Bd,w,i . . . 0
...

...
. . .

...

AN−1
d,i Bd,w,i AN−2

d,i Bd,w,i . . . Bd,w,i

 . (9.213)

Typically, vector X i
t contains all the local state predictions over a future horizon of N steps.

These are computed by the controller which employs the actual state xi
t to initialize the

prediction. In the extreme case where the actual value xi
t is not available at the t-th instant

the controller may perform the prediction starting from the last available state, e.g. xi
t−1,

adjusting the prediction horizon accordingly.
The receding horizon optimal control problem of area-i at time t is formulated as follows:

P i : minimize
U i

t

X i′
t Q̃iX i

t +U i′
t R̃iU i

t (9.214a)

subject to X i
t = Φixi

t +Ψi,1U i
t +Ψi,2W i

t , (9.214b)

H1U i
t = Ωi, (9.214c)

H2U i
t ≤ Γi, (9.214d)

xi
N,t = 0, (9.214e)
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where

H1 =
[
IN ⊗

[
0 1

]]
, (9.215a)

Ωi =



∆Ptie,i
t

∆Ptie,i
t+1

∆Ptie,i
3,t−1
...

∆Ptie,i
N,t−1


, (9.215b)

H2 =

 IN ⊗
[
1 0

]
−IN ⊗

[
1 0

] , (9.215c)

Γi =

[
IN ⊗ γi

IN ⊗ γi

]
, (9.215d)

Q̃i = IN ⊗Qi, with Qi = Q′
i > 0, (9.215e)

R̃i = IN ⊗Ri, with Ri = R′
i > 0, (9.215f)

γi = |∆utot,i,max|= |∆utot,i,min|. (9.215g)

Matrices Qi, Ri weigh predicted states and inputs, respectively, at each iteration of the
predicted horizon. They are tuning parameters of the MPC controller the choice of which can
be guided by simulations. The parameter γi in (9.214d) represents saturation hard constraint
of each area. We denote by

U i∗
t = [ui

0,t ,u
i
1,t , . . . ,u

i
N−1,t ], (9.216)

the minimizer of problem (9.214). If problem (9.214) is feasible, the control unit of the i-th
area generates the AGC signal by the following control law:

∆PC,i
t =

[
1 0

]
ui

0,t +∆Pf ,i, (9.217)

where ui
0,t is the first component of minimizer U i∗

t and ∆Pf ,i is the fixed droop controller.
We note that the first two equality constraints (pertaining to the first two instants of the

prediction horizon) in (9.214c) is given by the actual values of ∆Ptie,i
t and ∆Ptie,i

t+1 which are
known signals at time t. Specifically, at time t, the value of ∆Ptie,i

t can be measured by the
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i-th control unit, while the actual value of ∆Ptie,i
t+1 can be computed at time t by

∆Ptie,i
t+1 = ∆Ptie,i

t + ts ∑
j∈Ni

Ktie,i, j(∆ f i
t −∆ f j

t ), (9.218)

with ts representing the sampling period of the discretization. Note that ∆Ptie,i
t , ∆ f i

t and ∆ f j
t

in (9.218) are actual and known signals to the controller at time instant t. The difference
equation (9.218) can be considered as the zero-order-hold equivalent to the continuous model
(9.203). This implies that the proposed MPC controller does not violate the dynamics of the
actual model at real time while performs state predictions depending on actual values at t
and t +1 instants. The remaining equality constraints in (9.214c) pertaining to the following
N −2 time-steps of the prediction, are computed by the predictions of the previous step as
follows:

∆P̂tie,i,i
µ+1,t−1 = ∆Ptie,i,i

µ,t−1 + ts ∑
j∈Ni

Ktie,i, j(∆ f i,i
µ,t−1 −∆ f j, j

µ,t−1), (9.219)

where µ = 2, . . . ,N −1.
At each iteration, the control unit of the i-th area measures the local state xi

t and estimates
the disturbance signal wi

t which is taken constant along the prediction horizon. At the same
time, the control unit receives the current and the predicted states from its neighboring areas
and transmits its own information to them. The distributed MPC scheme (9.214)-(9.217) is
summarized in the following procedure.

Procedure 9.3.1. At time t, the control unit of area-i

(1) measures xi
t and estimates wi

t ,

(2) sends xi
t and X i

t−1 to neighboring controllers and receives x j
t , X j

t−1, j ∈ Ni,

(3) initializes the state prediction starting from xi
t ,

(4) solves quadratic program (9.214),

(5) if (9.214) is feasible, generates the AGC signal by (9.217), otherwise from

∆PC,i
t =

[
1 0

]
ui,i

1,t−1 +∆Pf ,i, (9.220)

(6) constructs X i
t ,

(7) iterates starting form (1).
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Remark 9.3.1. The optimal control problem (9.214) requires data transmission among
coupled areas. This implies that the communication topology should coincide with the
physical topology of the power network in order for the model predictive control policy
(9.214)-(9.217) to be implemented. However, interconnected areas only need to exchange
their frequency information (actual and future predictions) while variables associated with
the remaining state-vector are not communicated. Hence, in sparse networks with limited
interconnections the communication will not be excessive.

9.3.5 Case study: MPC design for multi-area power system

We consider a power system of three nonidentical control areas interconnected via tie-lines.
The physical links (solid lines) and the communication topology (dashed lines) are depicted
in Fig. 9.3.

Area-2

Area-1 Area-3

MPC-2MPC-1 MPC-3

Fig. 9.3 Topology of physical links (tie-lines) and communication scheme.

The dynamics of each area are given by (9.204). Table 9.1 summarizes the parameters
considered in the three areas. We consider the following simulation scenario. Power demand
deviations from the equilibrium operation of each area appear as unknown piece-wise constant
disturbances in the model of each subsystem. We consider three disturbances one for each
area. The disturbance in area-1 is taken as ∆PL,1 = 150 [MW ] and occurs at the first second
of the simulation while the disturbances in area-2 and area-3 are taken as ∆PL,2 = 200 [MW ]

and ∆PL,3 = 150 [MW ] and occur at the 11-th and 21-th second, respectively. The control unit
of each area implements the distributed MPC scheme (9.214)-(9.217) to generate the AGC
signal. The predictive controller iterates every ts = 0.1 [sec] and predicts control sequences
over a prediction horizon of N = 15 steps. In the simulation, we tune the MPC controllers of
the three areas identically. We choose weighting matrices: Qi = diag(500,0,500) penalizing
local states and Ri = 100I2 penalizing inputs. The hard constraint γi has been taken 10%
greater than the magnitude of the respective disturbances of each area.
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Fig. 9.7 AGC signal of each area.

Fig. 9.4 and 9.5 show the deviations of the frequency and the total power-flow of each
area, respectively, from their equilibrium values. The generated AGC signal is shown in Fig.
9.7. This is derived from the control law (9.217). The total control signal as computed by the
solution of problem (9.214) is depicted in Fig. 9.6. Clearly, the proposed distributed MPC
scheme respects the hard saturation limits and maintains the stability of the power network.

9.4 Conclusions

In this chapter, we focus on large-scale receding horizon control problems and address the
stabilization problem of multi-agent networks from a model predictive control perspective.
We first present a distributed network control scheme whereby each local MPC controller
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optimizes a local performance index that couples the dynamic behavior of neighboring
agents. Sufficient conditions for local stability are explicitly derived using local value
functions as Lyapunov functions. It is shown that in the presence of nonidentical agents, the
implementation of a distributed MPC scheme requires that a local control unit, in order to
predict the future evolution of neighboring agents, have access to model parameters of its
neighbors. In an attempt to relax this stringent requirement, we propose a distributed model-
matching time-varying feedback technique whereby agents are mapped to an optimal target
system recursively only by sharing their estimates of a global decision vector that minimizes
a least-squares optimization problem. The proposed model-matching control protocol is
then combined with a distributed MPC scheme which couples the dynamic behavior of
interconnected agents and stabilizes the entire system. Sufficient conditions for stability of
the combined control scheme are derived using Lyapunov functions.

In the second part of the chapter, we study the problem of distributed model predictive
control of dynamically coupled systems from an application point of view. In particular, we
consider the load frequency control (LFC) problem examined in Chapter 8, and propose a
distributed MPC method for distributed LFC design based on a decoupling technique which
allows for control design with distributed architecture. Manipulating the total power inflows
to each area as input variables, a decoupled linearized model for each area is derived. This
design strategy allows for the formulation and solution of a model predictive control problem
with a quadratic performance index, input saturating constraints on the individual tie-line
power flows and an overall equality constraint to address the energy balance of the network.





Chapter 10

Conclusions and future work

This thesis deals with regulation problems of large-scale networked systems and focuses
on the stabilization of networks of multiple interconnected agents. Our interpretation of
multi-agent systems emerges from the abundance of applications involving networks of
multiple independently actuated systems demanding network control design with distributed
architecture.

In a descriptive way, the problem of distributed control of multi-agent networks is
formulated as follows. A network is composed of (or decomposed into) distinct dynamical
subsystems that can independently generate their decision variables. The subsystems are
represented as dynamic agents with joint objectives, which typically couple their dynamic
behavior as well as are in concert with certain dynamic interconnections. Local interactions
are represented by a connected graph (digraph), where the vertices denote subsystems-agents,
and the edges between vertices represent dynamical couplings or coupling terms in control
objectives corresponding to the associated vertices. It is assumed that the interaction graph
(digraph) also represents a communication scheme according to which subsystems exchange
state-information with their neighboring peers. In the presence of dynamical couplings
between agents, we assume that the entire system is expressed in a state-space form, which is
consistent with the associated communication topology. Overall, a network is represented as
a large-scale distributed control scheme composed of multiple local controllers, each defined
using local information only.

Several results on distributed control over networks of dynamic agents rely on specific
assumptions, such as undirected information exchange, identical agent dynamics, linear
dynamics, open-loop decoupled dynamics. Our main objective is to relax a number of
simplifying factors appearing in the relevant literature and propose systematic methods for
tackling stabilization problems over multi-agent networks of various settings. We briefly
review the main results of the thesis as follows.
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Chapter 3 concisely reviews the regulation problem and LQR control theory and intro-
duces the concept of regulation over networks of multiple dynamic agents. In this introductory
chapter, two results of distributed LQR control established for networks with undirected topol-
ogy are also reviewed. Focusing on undirected connected graphs, in the first part of Chapter
4, we follow a two-step design procedure and propose an LQR-based distributed control
scheme which combines the main features of the top-down and bottom-up methods reviewed
in Chapter 3. In the second part of Chapter 4, emphasis is placed on multi-agent networks
with directed topology. We show that the strict limitation of bidirectional communication
between interconnected agents, postulated in [17, 46], can be removed. Specifically, we show
that this useful relaxation relies on two independent results: 1) the gain-margin property of
the LQR control holds for complex multiplicative perturbations (see Theorem 3.2.8), and 2)
the potentially non-simple structure of the Laplacian matrix can be neglected for stability
analysis and control design. A top-down distributed LQR control method extending the
results of [17] to directed graphs, is summarized in Theorem 4.3.4.

In Chapter 5, we adapt the two distributed LQR-based techniques [17, 46] to a more
general agent-model setup. Specifically, rather than assuming identical system dynamics, we
consider that agent models belong to a class of systems that share a minimal set of structural
properties. In particular, we define the class of systems with identical sets of controllability
indices and propose a model-matching feedback protocol that allows the stabilization problem
of networks of heterogeneous dynamically decoupled agents to be tackled via distributed
LQR-based techniques initially proposed for network of identical systems. Typically, agents
are mapped to a common target model via a local state-feedback control scheme combined
with a change of coordinates and an input-scaling matrix transformation. Under this setup,
network stability is guaranteed by a distributed state-feedback controller designed on the
target dynamics. Further, to enhance the optimality of the overall distributed feedback
scheme, we propose an optimal target system the selection of which minimizes a certain
measure of the joint model-matching control effort.

In Chapter 6, we extend the proposed model-matching control scheme to the nonlin-
ear dynamics case thereby allowing regulation problems over networks of heterogeneous
nonlinear agents to be solved via distributed LQR control. Particularly, using Lie algebra
and differential geometry tools, we present an analytic procedure for how to derive a set of
controllability indices (c.i.) from the state-space of a nonlinear system. Typically, a set of c.i.
defines a specific class of nonlinear systems that can match the model of all target systems
with identical sets of c.i., via the input-to-state linearization method. Existence conditions
for the proposed nonlinear model-matching feedback scheme are identified. Similarly to
the linear case, we show that the target dynamics can either selected without any optimality
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criterion or by minimizing a certain cost function defined as the energy loss produced by the
nonlinear model-matching feedback scheme.

Chapter 7 is devoted to the stabilization problem of networks of dynamically coupled
agents. Focusing on linear dynamical agents, we assume that coupling terms between
interconnected agents are expressed in a state-space form of a certain structure. We follow a
top-down approach, which results in a distributed scheme whose stability is verified via a
stability test involving a convex combination of two Hurwitz matrices. In Chapter 8, a case
study of load frequency control (LFC) problem over a six-area power network illustrates the
applicability of the results proposed in Chapter 7. We propose a novel LQR-based distributed
LFC algorithm for large-scale multi-area power networks. The control scheme is obtained
by optimizing an LQR performance index with a tuning parameter which can be used to
emphasize/de-emphasize relative state differences between interconnected areas. We show
that this parameter can be used to control the magnitude of tie-line power exchange and
frequency synchronization between interconnected areas. Our approach enhances power
system modularity and leads to a simple and verifiable stabilizability condition for a class of
network topologies. Extensive simulations presented in the chapter support our conjecture
that this stabilization criterion can be extended to more general multi-area power systems
LFC problems.

Finally, in Chapter 9, we examine receding horizon control problems over networks
of multiple dynamic agents. For a network setup composed of non-identical dynamically
decoupled systems, we propose a distributed model predictive control scheme and derive
sufficient conditions for convergence and stability of the overall distributed control system. It
is shown that the proposed distributed network control protocol requires that each individual
system be aware of the model parameters of its neighbors. Subsequently, we focus on a
particular class of discrete-time linear systems and propose a distributed model-matching-
based MPC protocol which let individual systems map their dynamics to a common target
model using local information only, keep their model parameters private, and construct
an implicit stabilizing feedback controller that couples their dynamic behavior with their
neighboring systems. In the second part of the chapter, we address the problem of distributed
model predictive control of dynamically coupled systems from an application point of view.
In particular, we consider the load frequency control (LFC) problem examined in Chapter
8, and propose a distributed MPC method for distributed LFC design. Our method depends
on a novel decoupling technique which enables the design of an MPC-based LFC controller
with a distributed architecture.
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10.1 Future work

The research of this thesis has attempted to address important problems arising in multi-agent
systems and begets new directions for future work on distributed network control. We list a
number of open problems and propose important topics for further study.

1) The distributed LQR-based techniques proposed in the thesis rely on the assumption
that the system state is perfectly measured by the control unit. An important topic for
research is the extension of the methods to the output-feedback case.

2) The model-matching method proposed for tackling regulation problems of networks of
nonidentical dynamics proves powerful for a certain class of heterogeneous systems.
Approximate model-matching and extension of the method to a more general frame-
work represent topics for future work. In particular, the approximate model-matching
can be expressed as follows. Assume that the dynamics of agents are uncertain and are
described by parametric families. Is it possible to apply local state-feedback control
and input scaling transformations so that the uncertainty radius of the resulting target
system is minimized facilitating the network stabilization task?

3) The stabilization problem of dynamically coupled systems is a hard problem to solve
due to the presence of coupling terms. For the case of identical dynamics, we have
proposed a distributed LQR-based feedback controller which is stabilizing subject to
sufficient conditions. Future work will attempt to relax this condition based on the
optimality and robust stability margins of LQR control.

4) The optimality criterion that has been employed throughout the thesis is based on
quadratic optimal control. It would be interesting to investigate the applicability of
robust control methods such as H∞ control which is insensitive to model parameter
variations.

5) We have proposed a cooperative model-matching method carried out over a network
of linear systems in a fully distributed manner. The method has been adapted to an
MPC setting enhancing the privacy of local agents. Extension of the method to the
nonlinear dynamics case as well as derivation of sufficient conditions for convergence
and stability of the overall distributed nonlinear control scheme is a definite challenge
for further research.

6) Network control lies in the intersection of control and communication theories. Prob-
lems associated with the communication scheme of a multi-agent network, such as
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delays, quantized information exchange and varying interaction topologies are very
important issues and represent directions for future research.
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[94] Jovanović, M. R. and Bamieh, B. (2005). On the ill-posedness of certain vehicular
platoon control problems. IEEE Trans. Automat. Contr., 50(9):1307–1321.
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[197] Stipanović, D. M., Hokayem, P. F., Spong, M. W., and Šiljak, D. D. (2007). Coopera-
tive avoidance control for multiagent systems. J. Dyn. Syst. Meas. Control. Trans. ASME,
129(5):699–707.
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[241] Žertek, A., Verbič, G., and Pantoš, M. (2012). A novel strategy for variable-speed
wind turbines’ participation in primary frequency control. IEEE Trans. Sustain. Energy,
3(4):791–799.

[242] Zhan, J. and Li, X. (2013). Flocking of multi-agent systems via model predictive
control based on position-only measurements. IEEE Trans. Ind. Informatics, 9(1):377–
385.

[243] Zhang, L., Shi, Y., Chen, T., and Huang, B. (2005). A new method for stabilization of
networked control systems with random delays. IEEE Trans. Automat. Contr., 50(8):1177–
1181.

[244] Zhang, Y., Ravier, R. J., Zavlanos, M. M., and Tarokh, V. (2019). A Distributed Online
Convex Optimization Algorithm with Improved Dynamic Regret. In 2019 IEEE Conf.
Decis. Control, number 1, pages 2449–2454.

[245] Zhongkui Li, Zhisheng Duan, Guanrong Chen, and Lin Huang (2009). Consensus of
Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint.
IEEE Trans on Circuits Syst. I: Regular Papers, 57(1):213–224.

[246] Zhu, M. and Martinez, S. (2012). On distributed convex optimization under inequality
and equality constraints. IEEE Trans. Automat. Contr., 57(1):151–164.




	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Aims and objectives
	1.2 Contributions and novelties
	1.3 List of publications
	1.4 Structure of the thesis

	2 Literature survey
	2.1 Distributed feedback control
	2.2 Agreement control problems
	2.2.1 Consensus problems
	2.2.2 Formation problems

	2.3 Optimization based control methods
	2.3.1 Distributed model predictive control methods

	2.4 Distributed optimization
	2.5 Literature gaps - conclusions

	3 Regulator Problem
	3.1 Introduction
	3.2 Linear quadratic regulator
	3.2.1 Finite-time optimal regulator problem
	3.2.2 Infinite-time optimal regulator problem
	3.2.3 Stability of linear quadratic regulator (LQR)
	3.2.4 Stability margins of LQR controller

	3.3 Regulator problems in multi-agent networks
	3.3.1 Notation and preliminaries
	3.3.2 Graph theory preliminaries - Undirected graphs
	3.3.3 LQR properties of identical decoupled systems
	3.3.4 Distributed LQR design of multi-agent networks
	3.3.5 Top-down method
	3.3.6 Bottom-up method
	3.3.7 Measure of suboptimality

	3.4 Conclusion

	4 Stabilization of multi-agent networks with undirected and directed topology
	4.1 Introduction
	4.2 Distributed control for undirected networks
	4.3 Networks with directed topology
	4.3.1 Directed graphs, digraphs
	4.3.2 Agreement protocol for agents with single-integrator dynamics
	4.3.3 Regulator problem of directed networks
	4.3.4 Top-down design for directed networks
	4.3.5 Bottom-up design for directed networks
	4.3.6 Hybrid method for directed networks
	4.3.7 Cascaded networks
	4.3.8 Numerical example: regulation of interconnected agents

	4.4 Conclusion

	5 Model-matching and regulation of interconnected heterogeneous linear agents
	5.1 Introduction
	5.2 Model-matching control
	5.2.1 Problem definition
	5.2.2 Controllability indices of multi-input systems
	5.2.3 Model-matching existence
	5.2.4 Model-matching control synthesis
	5.2.5 Approximate model-matching
	5.2.6 Approximate model-matching with LMI stability constraints

	5.3 Optimal selection of target system
	5.3.1 Preliminaries on minimax theory
	5.3.2 State-feedback design for optimal target system
	5.3.2.1 Minimum worst-case control
	5.3.2.2 Least-squares control

	5.3.3 Model-matching of single-input systems
	5.3.3.1 Single-input optimal target system selection
	5.3.3.2 Single-input conversion of multi-input systems


	5.4 Distributed LQR-based control design
	5.5 Numerical example: stabilization of network of non-identical oscillators
	5.6 Conclusion

	6 Feedback linearization and model-matching of nonlinear systems
	6.1 Introduction
	6.2 Basic results of differential geometry
	6.2.1 Lie algebra
	6.2.2 Distributions and the Frobenius theorem
	6.2.3 Reachability of nonlinear systems

	6.3 Feedback linearization of nonlinear systems
	6.3.1 Single-input systems
	6.3.2 Multi-input case

	6.4 Model-matching problems
	6.4.1 Model-matching of single-input nonlinear systems
	6.4.2 Target selection (single-input case)
	6.4.2.1 Minimum worst-case control
	6.4.2.2 Least-squares control

	6.4.3 Model-matching of multi-input nonlinear systems
	6.4.4 Target selection (multi-input case)
	6.4.4.1 Minimum worst-case control
	6.4.4.2 Least-squares control


	6.5 Regulation problem of networks formed of heterogeneous nonlinear agents
	6.5.1 Numerical example: stabilization of network of planar two-link robot arms

	6.6 Conclusion

	7 Distributed LQR for coupled LTI systems
	7.1 LQR for dynamically coupled systems
	7.2 Distributed LQR design for dynamically coupled systems
	7.3 Conclusion

	8 Distributed LQR-based load frequency control of multi-area power networks
	8.1 Introduction
	8.2 Multi-area power system design
	8.2.1 Modeling
	8.2.2 State-augmentation for integral action
	8.2.3 Problem statement

	8.3 Large-scale LQR for load frequency control
	8.3.1 Distributed LQR-based LFC

	8.4 Simulation case studies
	8.4.1 Case study 1
	8.4.2 Case study 2
	8.4.3 Case study 3

	8.5 Conclusions

	9 Distributed model predictive control design
	9.1 Introduction
	9.2 Model predictive control for networks of dynamically decoupled systems
	9.2.1 Notation and network setup
	9.2.2 Centralized model predictive control
	9.2.3 Stability analysis of CMPC
	9.2.4 Distributed model predictive control
	9.2.5 Stability analysis of DMPC
	9.2.6 Model-matching control for discrete-time linear systems
	9.2.6.1 Distributed gradient descent algorithm
	9.2.6.2 Cooperative model-matching

	9.2.7 Distributed model-matching based MPC protocols
	9.2.8 Stability analysis of model-matching based MPC

	9.3 Distributed MPC for dynamically coupled systems
	9.3.1 Two-area power system modelling
	9.3.2 State-augmentation for integral action
	9.3.3 Decoupled state-space model and multi-area design
	9.3.3.1 Problem statement

	9.3.4 Model predictive control formulation
	9.3.5 Case study: MPC design for multi-area power system

	9.4 Conclusions

	10 Conclusions and future work
	10.1 Future work

	References

