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Abstract 

The way in which electricity networks operate is going through a period of significant change. 

Renewable generation technologies are having a growing presence and increasing penetrations 

of generation that are being connected at distribution level. Unfortunately, a renewable energy 

source is most of the time intermittent and needs to be forecasted. 

Current trends in Smart grids foresee the accommodation of a variety of distributed generation 

sources including intermittent renewable sources. It is also expected that smart grids will 

include demand management resources, widespread communications and control technologies 

required to use demand response are needed to help the maintenance in supply-demand balance 

in electricity systems. Consequently, smart household appliances with controllable loads will be 

likely a common presence in our homes. Thus, new control techniques are requested to manage 

the loads and achieve all the potential energy present in intermittent energy sources. 

This thesis is focused on the development of a demand side management control method in a 

distributed network, aiming the creation of greater flexibility in demand and better ease the 

integration of renewable technologies. In particular, this work presents a novel multi-agent 

model-based predictive control method to manage distributed energy systems from the demand 

side, in presence of limited energy sources with fluctuating output and with energy storage in 

house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which 

manages a limited shared energy resource via a demand side management perspective, using an 

integrated approach which also involves a power price auction and an appliance loads allocation 

scheme. 

The control is applied individually to a set of Thermal Control Areas, demand units, where the 

objective is to minimize the energy usage and not exceed the limited and shared energy 

resource, while simultaneously indoor temperatures are maintained within a comfort frame. 

Thermal Control Areas are overall thermodynamically connected in the distributed environment 

and also coupled by energy related constraints. The energy split is performed based on a fixed 

sequential order established from a previous completed auction wherein the bids are made by 

each Thermal Control Area, acting as demand side management agents, based on the daily 

energy price. The developed solutions are explained with algorithms and are applied to different 

scenarios, being the results explanatory of the benefits of the proposed approaches. 

Keywords: DMPC, MAS, intermittent energy resource, DSM, energy auction, thermal control 

areas, shifting loads, energy efficiency; 
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Resumo 

A forma como as redes elétricas operam está a atravessar um período de transformação 

significativa. As tecnologias de geração renováveis possuem uma presença crescente e a 

penetração desta geração ao nível da distribuição está a aumentar. Infelizmente, uma fonte de 

energia renovável é na maioria do tempo intermitente e necessita de algum tipo de previsão e 

antecipação de comportamento. 

As têndencia actuais redes elétricas inteligentes preveêm que estas irão acomodar de uma forma 

integrada, formas de armazenamento de energia e uma variedade de fontes de geração 

distribuídas incluindo fontes renováveis intermitentes. É também expectável que as redes 

inteligentes irão incluir sistemas de gestão da procura e a difusão da comunicações e tecnologias 

de controlo necessários para que a resposta à procura auxilie no equilíbrio entre oferta e 

demanda em sistemas de energia elétrica. Eletrodomésticos inteligentes serão provavelmente 

uma presença comum nos nossos lares. 

Desta forma, são necessárias novas técnicas de controlo para gerir as cargas por forma a 

aproveitar todo o potencial energético existente em fontes de energia intermitentes. 

Esta tese foca uma metodologia de controlo para gestão da procura em redes distribuídas, para 

criar maior flexibilidade do lado da procura e facilitar a integração de tecnologias renováveis. 

Em particular, o trabalho apresenta um novo método de controlo predictivo multi-agente para 

gestão sistemas de redes de energia distribuídas do lado da procura, quando na presença de 

recursos energéticos limitados e flutuantes, e com armazenamento de energia em baterias 

domésticas ou de veículos. Especificamente, é aqui apresentada uma solução para conforto 

térmico que gere um recurso energético limitado e partilhado numa perspetiva de gestão da 

procura, utilizando uma abordagem integrada que envolve um leilão de preço de energia e um 

esquema de alocação de cargas domésticas. 

O controlo é aplicado individualmente a um conjunto de Áreas de Controlo Térmico, unidades 

de demanda (consumidores), onde o objetivo é minimizar a utilização de energia sem exceder o 

recurso partilhado e limitado enquanto, simultaneamente, a temperatura interior é mantida 

dentro da zona de conforto. Em ambiente distribuído, as Áreas de Controlo Térmico estão 

geralmente termodinamicamente ligadas e também acopladas pela restrição energética. A 

distribuição da energia é efetuada com base numa ordem sequencial fixa estabelecida por um 

leilão onde cada uma das Áreas de Controlo Térmico, atuando como agentes de gestão da 

procura, faz as suas licitações com base no preço diário da energia. A solução desenvolvida é 
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explicada por algoritmos e aplicada a diferentes cenários onde os resultados obtidos ilustram os 

benefícios da abordagem proposta. 

Palavras chave: Controlo Predictivo Distribuído, Sistemas Multi-Agente, recurso de energia 

intermitente, gestão da procura, leilão de energia, áreas de controlo térmico, alocação de cargas, 

eficiência energética; 
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Chapter 1 

1 Introduction 

1.1 Introduction 

Traditional electric power systems consist of large power generating plants, interconnected via a 

high-voltage transmission lines, loading serving entities which deliver power to end users at 

lower voltages using local distribution networks. 

Importance of distributed generators (DGs) has increased significantly over the past few years 

due to its potential for increasing reliability and lowering the cost of power through the use of 

on-site generation. Development of small modular generation technologies, such as 

photovoltaic, wind turbines and fuel cells has also contributed to this trend. However, novel 

operational and control concepts are needed to make a proper integration into the power grid 

system. Control strategies must be further developed to achieve the targeted benefits while 

avoiding negative effects on system reliability and safety. The current power distribution system 

was not designed to support distribution generation and storage devices at the distribution level; 

compatibility, reliability, power quality, system protection and many other issues must also be 

considered before the benefits of DGs can be fully obtained (Al-Hinai & Feliachi 2009). 

A new emerging type of grid will soon be a reality. Smart Grids (SGs) are planned to include 

decentralized generation, active network management for generation and storage, where the 

actions of all connected agents to the electricity system can be intelligently integrated aiming for 

a sustainable, efficient and secure energy supply system. Future SGs are anticipated to support a 

variety of DG, including intermittent renewable sources (James & Jones, 2010). 

Smart Grid concept is built on many of the technologies already used by electric utilities but 

adds additional communication and control capabilities optimizing the operation of the entire 
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electrical grid. Smart Grid is also positioned to take advantage of new technologies, such as 

hybrid plug-in electric vehicles (PEV), various forms of distributed generation, solar energy, 

smart metering, lighting management systems, distribution automation and many more. 

In a scenario with strong presence of intermittent renewable energy sources (RES) that supply a 

set of houses, the new techniques must developed to deal with smart devices, energy 

management systems (EMS) such as programmable controllable thermostats and/or PEV 

charge, and be capable of making intelligent decisions based on smart prices and users comfort. 

Therefore, it is crucial to take into account a global solution that is able to take advantage of 

these features. 

1.2 Background 

Since the beginning of electricity grids, demand has fluctuated and supply has been provided to 

follow along. The intermittency of RES, such as wind or solar generation, stills nowadays the 

major challenge for the integration of these resources. The present trend in power systems is to 

connect more and more RES increasing significantly the security and the quality of supply. 

One of the most common solutions to mitigate the problem is operating energy sources, such as 

gas turbines or hydro power plants, balancing the variations. But, when the variations are 

significant and change rapidly, the backup source needs to be higher and faster, leading to 

increased carbon emissions. Also, widely used the frequency regulation is the direct measure of 

the balance between generation and system demand at any one instant, and must be maintained 

continuously within narrow statutory limits. 

Another solution is the energy storage (Ribeiro et al. 2001; Koeppel & Korpas, 2006), if there is 

a surplus in energy produced it is fed into the storage. Energy storage is especially critical when 

managing the output of intermittent renewable resources, ensuring their generation capacity is 

available when needed most, maximising their value, but presently technology available does 

only provide answers in low generation time intervals. For example, depending on the size of 

the battery pack, electric cars may store enough electricity to power a house for a few hours, and 

with small modifications, car batteries can deliver stored power to a home and to the power grid. 

As showed there are several solutions to overcome the issue of intermittency but all have 

problems to be overcome. The desirable approach is that the demand should follow the source, 

passing the control to the demand side, having demand side management (DSM) (Callaway, 

2009; Hamidi, 2007). Due its benefits to consumers, enterprises, utilities and society, in the last 

decades, many efforts have been made to having demand play a more active role in balancing 

the system. DSM benefits are related with customer energy bills and peak power prices 
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decrease, reduction in the need for new power plants, transmission and distribution, reduction in 

air pollution and with a significantly increased in energy efficiency. With the growing interest in 

intermittent RES use, new opportunities and challenges are triggering and obliging these efforts 

to come true. Because of technology barriers and lack of automation, the traditional way of 

implementing DSM is via price incentives, i.e. by lowering tariffs at times when the aggregated 

demand is expected to be below average, so as to encourage the end user to shift flexible loads 

towards these periods (Saffre, 2010). But, with the new technologic advances and world trends 

around the SGs concept (Chebbo, 2007; Commission, 2006), and requiring this kind of grid 

intelligent control and management based on advanced communication, monitoring solutions, 

automation and metering, novel opportunities and challenges to DSM are emerging. 

In the smart world, simple household appliances like dishwashers, clothes dryers, simple 

electric heaters or heating ventilation or air conditioning (HVAC) systems are planned to be 

fully controllable to achieve the network maximum efficiency. Renewable energy sources are 

expected to be a common presence and all kWh provided by these technologies should be 

efficiently applied. Active demand side management provide solutions to control the loads, 

adapting them to the current RES. 

Being an actual theme, and despite the present trends and R&D efforts, SGs are still in the 

“implementation phase”. More research is needed to provide solid solutions to overcome all the 

constraints and turn into reality this ambitious vision. Smart Grids involve a mix of concepts: 

distributed generation, DSM, intelligent control, energy efficiency, intermittent RES, thermal 

comfort, load control and energy saving are some of them which are interconnected and should 

be integrated into solutions. Smart Grids are, therefore, the most efficient approach to integrate 

DG and RES in a coordinated way with demand management in a sustainable system (Blanquet 

et al., 2009). To take advantage from the innovative technology characteristics provided by 

future smart grid, it is necessary the development of new models and control techniques which 

can support and manage all the mentioned concepts and, at the same time, deal with the network 

complexity and its distributed nature (Werbos, 2011). 

1.3 Motivation 

Currently buildings account for 40% of the world’s energy consumption and almost half of the 

today’s greenhouse gas emissions. This means buildings contribute to more greenhouse gases 

emissions than traffic; which is estimated at 31%. Industry is estimated at 28%. When we 

breakdown and analyse building’s energy consumptions, the most worrying aspect is that most 

of this energy is used for heating or cooling (StorePET, 2014). 
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In Europe, the energy use in buildings has overall seen a rising trend over the past 20 years. For 

example, in 2009, households were responsible for 68% of the total final energy use in 

buildings, mainly due to space heating responsible for around 70% (Nolte, 2011). This 

increasing energy consumption is mainly to fulfil the demand for thermal comfort, being 

presently the HVAC systems the principal energy end use in buildings (Korolija et al., 2011). 

By these facts, it is socially, environmentally and economically imperative to decrease the 

energy consumption by increasing the buildings efficiency. A viable choice to achieve the 

reduction of energy consumption in the building sector is the application of demand response 

(DR) mechanisms. Demand Response program, is an efficient load management strategy for 

customer side, it is nowadays mostly used with the encouragement of customers to shift their 

habits wisely according to electricity price variation during daytime (Siano et al., 2014). The 

DR potential it is not sufficiently explored, being the two key challenges to work with diverse 

heterogeneous loads and with the distributed nature of renewable sources. New technology 

advances in communication are providing solutions to overcome the current electricity demand 

requirements. This new development has accelerated devising various industrial programs for 

scheduling utilization of residential appliances (Wang et al., 2015). This DR mechanisms 

combined with DSM methodologies will be relevant in the future distributed SGs (Mahmood et 

al., 2014), and provide solutions that allow buildings to be fully integrated and prepared to 

efficiently coexist in an dynamic and inconstant environment typically supported by renewable 

resources (Figueiredo et al, 2010). Nowadays the production of electricity system follows the 

load. However, the renewable sources of electricity are essentially intermittent and it is vital to 

provide flexibility to the grid to absorb the variations from these sources. In the intelligent 

energy system (Smart Grid) the production controls the consumption. For example, when the 

wind blows or the sun shines, buildings consumption must be automatically adjusted and 

consumers will go from being passive participants to be active players in the electricity system. 

Several solutions are emerging to deal with the variability, flexibility and poor controllability of 

the green sources and consequently on the ability to maintain the balance between demand and 

supply. Remark that, DSM strategies must have into account the control of many kinds of 

appliances, for instance, HVAC systems, lighting or electric vehicles charging. 

The methodology here presented seeks a solution to respond to this variability, implementing, 

with the technological and advanced environment that SGs are projected to provide (Paul et al., 

2014), pursuing new technologies and solutions that will allow simple home appliances to be 

entirely controllable. Also, this active DSM is able manage the loads to obtain harmony in 

demand supply ratio. 
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1.4 Research Questions 

With SGs, domestic customers will pass from static consumers into active participants in the 

production process. Final user’s participation can be achieved due to the development of new 

domestic appliances with controllable load. Shifting their electricity consumption in time or, by 

changing their work conditions, these devices can be controllable, adjusting the demand to the 

desired intermittent source without decreased the comfort of the residents. In distributed 

networks, aggregated to an intermittent source, an unlimited number of this kind of loads can 

exist, representing a control problem to achieve the network efficiencies, involving 

stakeholder’s satisfaction. To incorporate this in system design and analysis, demand response 

needs to be supported by scientific methodology based on analysis and models verifiable by 

experiment. How to improve energy efficiency using this domestic potential is still not well 

studied and needs to be a research topic. 

Considering the mentioned above, this work aims providing solutions to answer the following 

research questions: 

Q.1 How, in a distributed network, can the demand be adjusted to an intermittent source to 

maximize the energy efficiency? 

Q.2 How to improve energy efficiency using the domestic potential in a distributed network? 

Q.3 Which control methods should be applied in a distributed network with demand side 

management to obtain all the existing energy potential from intermittent energy sources? 

The adopted work hypothesis to address the research question is defined below: 

Using an integrated approach, that in a distributed environment, considers multi-agent 

control scheme and an optimization MPC multi-objective approach with anticipative effect, 

capable to deal in a DSM perspective, with fluctuating energy sources, smart load control, 

thermal comfort and real-time price negotiation. 

1.5 Aimed Contributions 

The work here presented is distinct and has the advantage of providing a solution that integrates 

set features and concepts that are also the smart grid bases, such as intelligent control, 

distributed generation, energy efficiency, energy saving, DSM, fluctuating energy sources, 

smart load control, thermal comfort, real-time price negotiation and energy auction markets 

mechanisms. These characteristics deliver a unique structure where the grid connected entities 

actions can be intelligently combined, aiming for a more efficient, secure and sustainable energy 

system. So, the work intends to provide an innovative solution involving an integrated 
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Distributed Model Predictive Control (DMPC) to manage networks that is able to efficiently 

adapt the consumption to an intermittent renewable source. It provides news developments in 

DSM with renewable energy sources and backup fossil energy using an hourly auction 

mechanism access and a load allocation scheme that allows managing the loads in order to 

balance demand and supply. The proposed sequential multi-agent DMPC scheme for thermal 

house comfort and energy savings provides robustness, adjustment and flexibility to the global 

system. Also the work presents an energy usage optimization scheme with DSM in which the 

consumer as the flexibility to choose by the hour between comfort or energy savings. 

The proposed integrated solution provides several scientific contributions that have been 

developed under the framework of this thesis: 

 C.1 New developments in DSM, for different thermal areas, exploit an integrated 

optimization approach able to cope with intermittent renewable energy sources 

and backup fossil energy using an hourly auction mechanism access - the obtained 

solution allows managing the loads in order to balance demand and supply. The DSM 

optimization process uses a routine that finds a constrained minimum of a quadratic cost 

function that penalizes the sum of several objectives, which based on energy forecasts 

and several other inputs, is able to adjust the energy consumption to an intermittent 

renewable resource or even restrict it to this type of resource in detriment of fossil 

sources. An auction mechanism allows stablishing an access order to the renewable 

source based on an hourly energy bid. Sequentially, the controllers transmit between 

them the information about the available energy; 

 C.2 TCA dynamic model with multi-zone dynamically coupled areas is developed - 

the developed model is built for infrastructures composed by several adjacent areas that 

may thermally interact among them. The dynamical model allows each room to be 

treated independently, with its own construction features, thermal disturbances, comfort 

requirements, energy costs and consumption needs. When distinct divisions thermally 

interact the information about the predicted indoor temperature is transmitted between 

them. This change of information allows to each controller a greater understanding 

about the surrounding environment and consequently improving the decision-making 

ability; 

 C.3 A novel sequential scheme for DSM based on multi-agent DMPC for thermal 

house comfort and energy savings is reported - the proposed sequential scheme 

provides robustness, adjustment and flexibility to the global system. The sequence is 

built based on an energy bid where the highest biddings are placed first in the access 

order. After consume, each agent predicts its consumption profile and pass throw the 

next, the information about the predicted available renewable energy. At each hour, the 
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sequence is established and the energy price depends from the offered bid, amount and 

type (renewable or grid) of energy consumed; 

 C.4 Shifting load algorithm for loads allocation - customer sets features of flexible 

loads and the algorithm fits them in the most favourable time interval gap. Each 

customer select for each division, the characteristics of the loads, the load value, its 

duration, the turned on time and the “sliding level” of the “shifted loads”. With this 

information the algorithm finds all the possible load combinations and from these 

selects only the feasible ones. The feasibility of the loads is related to the predicted 

hourly available power, so, at each instant the look forward and tries fitting the loads in 

gaps that privileges the consumption of renewable energy. Thus, in a distributed 

environment with energy and comfort constraints, the algorithm is able to find the best 

hour to turn on the loads; 

  C.5 Energy usage optimization scheme with DSM adjustable parameters - with the 

developed optimization scheme the consumer has the flexibility to choose hourly 

between comfort or energy savings. Each controller provides to the consumer a set of 

parameterizations which according to his consumption perspective, space occupancy 

schedule, indoor temperature preferences and energy cost, provides to the user the 

ability to be hourly in his most convenient state. 

1.6 Outline 

This dissertation is structured as follows: 

Chapter 1 – Introduction, here is performing a brief introduction with a background analysis, 

followed by the research problem. The chapter also states the main original contributions of the 

work and in the end the outline of the thesis is presented. 

Chapter 2 – Literature Review and Model Based Predictive Control, the focus of this chapter 

is to perform a background analysis on the main topics of the thesis, Demand Side Management, 

Multi-Agent-Systems and Model Based Predictive Control. The chapter also includes general 

review on distributed model predictive control formalization for complex large-scale dynamical 

systems. 

Chapter 3 – Dynamic Models and Scenarios Description, the main ideas and models that 

support the research developed are presented. The chapter starts by presenting the general 

abstract problem, the conceptual scenarios and describe the system architecture. Finally, the 

developed dynamic model is addressed using a line state-space model approach. 
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The elaboration of this chapter provided relevant matter that was originally included in part in 

the following publications (Barata et al., 2014a; Barata et al., 2014b). 

Chapter 4 – MPC and PI control in thermal comfort systems chapter presents the fundamental 

approach towards the final developed structure. Is the first seed which allowed us to understand 

the problem, its dynamics and to verify that the MPC control strategy is suitable for the 

objective that is intended to be achieved. The methodologies are based on a predictive control 

structure associated to a PI controller and applied to the thermal house comfort in an 

environment with limited energy sources. The predictive control is compared with the 

traditional control methods used in thermal systems. Also, it was created a temperature “comfort 

zone” to weight only the temperatures outside the gap, instead of traditional system were all 

deviations are weight. Simulation results and analysis also complement two distinct situations 

where the system reacts differently if the indoor temperature is inside or outside the “comfort 

zone”. 

The elaboration of this chapter provided relevant matter that was originally included in part in 

the following publications (Barata et al., 2012a). 

Chapter 5 – Thermal Comfort with Demand Side Management Using Distributed MPC, this 

chapter presents a DMPC methodology for indoor thermal comfort which simultaneously 

optimizes the consumption of a limited shared energy resource. Firstly, the global scenario and 

all the made assumptions that support the thesis are described. Also, the implemented sequential 

architecture scheme is pictured. Secondly, the control objective is defined and the tailored 

DMPC optimization problem is detailed, formalized and exemplified. 

The Algorithm I which describe implemented sequential scheme is presented. This algorithm 

represents the basic structure for more complex schemes. 

Chapter 6 – DMPC for Thermal House Comfort with Sequential Access Auction, this chapter 

presents the obtained results achieved with the developed integrative methodology to manage 

energy networks from the demand side with strong presence of intermittent energy sources and 

with energy storage in house-hold or car batteries. 

The results are pictured with and without batteries support and two different approaches are 

considered, the energy split based on a fixed sequential order, and with the energy split varying 

hourly based on a bid value directly related with the consumption profile behaviour. The 

Algorithm II, which describes implemented sequential scheme with variable hourly sequence 

and energy storage, is also presented. 

The elaboration of this chapter provided relevant matter that was originally included in part in 

the following publications (Barata et al., 2012b; Barata et al., 2013a). 
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Chapter 7 – DMPC for Thermal House Comfort with Sliding Load chapter presents the 

developed DMPC integrative solution which is able to, in a distributed network with multiple 

TCAs, adjust the demand to an intermittent limited energy source, using load shift and 

maintaining the indoor comfort. The Algorithm III which describes the implemented shifting 

and loads allocation scheme is presented followed by the results and its analysis. The 

elaboration of this chapter provided relevant information that was included in the following 

publications (Barata et al., 2013c) and more detailed in (Barata et al., 2014c). 

Chapter 8 – Conclusions and Future Work Directions, in this last chapter, discusses the main 

conclusions of this work, detailing the problems found along the way and pointing out potential 

solutions for them. Additionally, the main results and contributions are summarised, and some 

possible directions for further research are mentioned. 
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Chapter 2 

2 Literature Review and Model Based 

Predictive Control 

2.1 Introduction 

Future SGs are expected to include distributed generation, demand side management, intelligent 

control, energy efficiency, intermittent RES, thermal comfort, load control, real-time price 

negotiation and energy saving (IEA, 2011). These concepts are the smart grid bases, where the 

actions of all agents connected to the electricity system can be intelligently integrated aiming for 

a sustainable, efficient and secure energy supply system. 

Being an actual theme, and despite the present trends and R&D efforts, SGs are now giving the 

firsts steps in the implementation phase, Figure 2.1, with small projects and grid prototypes all 

over the world (EcoGrid, 2014; DOE, 2014). More research is needed to offer solid solutions to 

overcome all the constraints and turn real this ambitious vision. 

In a scenario with strong presence of intermittent RES that supply a set of houses, it is possible 

to manage several loads in each house in order to: 1) adjust the demand to the supply; 2) 

maintain indoor thermal comfort; 3) achieve lower energy costs 4) reduce CO2 emissions. Using 

a demand side management approach, the distributed loads can be manage by negotiating in real 

time the energy price and the consumer comfort in order to guarantee the balance between 

demand and the intermittent source. The main goal is to develop new control methods and 

methodologies to manage future SGs with demand side management with high penetration of 

intermittent resources. 
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Figure 2.1. Smart Grid Roadmap (Bsria, 2014) 

The method uses the match results between demand and supply to decide the control actions to 

be implemented on the demand side. It is considered environmental and pre-establish variables 

as a decision-making factor. By using this active DSM control, the optimal control strategies for 

various appliances can be generated whilst maximum utilisation of energy supplied from 

intermittent systems is guaranteed. In a distributed network, with several loads at different 

locations control actions applied for solving a local energy problem can create lack of energy at 

a different location in the network. Therefore, coordination control strategies are required to 

make sure that all available control actions serve the same objective. To support the idea, it is 

consider multi-agent control schemes in which each agent will employ a model-based predictive 

control approach. The agents communicate and negotiate in a distributed network environment, 

to improve decision making, and, by adjusting the demand to the source, the maximum energy 

potential existent in the intermittent source can be achieved.  

 

Figure 2.2. Venn diagram with implemented technologies. 

MBPC

DSMMAS
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At the same time, as referred, is also desirable no or negligible impact on end users/occupiers. 

Thus, this literature review intend to show what are the main research trends related with the 

three main support ideas that interact in this work, DSM, Multi-Agent Systems (MAS) and 

Model Based Predictive Control (MBPC), Figure 2.2. 

2.2 Demand Side Management for Distribution Networks 

To reach important reduction in CO2 emissions, the RES will be the main contributors to the 

electricity generation systems. Presently, the solar and wind power, are the renewable energy 

technologies that are commercially available with sufficient scalable. Although the expected 

growth of these sources through to 2020 target is envisioned, there are real concerns about the 

variability, flexibility and poor controllability of the sources and consequently on the ability to 

maintain the balance between demand and supply. The growing uncertainty in power systems 

coupled with the introduction of power markets calls for the development of new tools for 

planning, operations and market-based decision-making. To deal with this uncertainty due to the 

dissemination of renewables, the systems will need, for example, to apply bigger amounts of 

reserve that is generally provided by a combination of synchronised and standing reserve. 

Besides to synchronise reserve provided by part-loaded plant, the balancing task will also be 

supported by standing reserve, which is supplied by a plant with higher fuel and environmental 

costs, such as Open Cycle Gas Turbine (OCGT), or through more desirable techniques such as 

storage facilities or DSM. 

Demand Side Management was introduced in USA by Electric Power Research Institute (EPRI) 

in the 1980s (Balijepalli et al., 2011) and has been traditionally seen as a means of reducing 

peak electricity demand so that energy suppliers could diminish the construction of new 

capacity. Therefore, to decrease peak load, DSM is mainly applied via price incentives, with the 

existence of lowering tariffs at times when the aggregate demand is expected to be below 

average to encourage the end user to shift flexible loads towards those periods. By reducing the 

overall load on an electricity network, DSM provides numerous benefits: increasing system 

reliability, reducing of the dependency on energy importation, reducing energy prices, 

stimulates energy markets competitively, reducing harmful emissions to the environment and in 

avoiding high investments in generation, transmission and distribution networks. Thus DSM 

applied to electricity systems provides significant financial, reliability and ecological benefits. 

With the power markets development, new emerging technologies and the new power grid 

concepts (microgrid, smart grid), innovative solutions are giving more relevance to DSM 

strategy. Generally, DSM programs are separate in these four categories: 
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 Energy efficiency, the user decreases the demand for energy without sacrificing the 

benefits received from energy (e.g. installing building insulation, purchasing more 

efficient appliances); 

 Conservation, the consumer decreases his energy demand by reducing their energy 

usage (e.g. adequate thermostat temperatures, turning off lights); 

 Load management, the energy demand is reduced during periods of peak demand 

when capacity is limited and the cost of energy provision is high; 

 Public information, which encourages customer participation in energy efficiency, 

conservation, and/or load management activities through public campaigns, direct to 

customer communication, or increasing customer access to information about their 

consumption of energy services. 

DSM directly benefits utilities in the following ways: 

 Distribution - only utilities avoid having to purchase additional peaking and base-load 

energy resources. From the volatile wholesale energy market; 

 Electricity generating utilities avoid the cost of securing fuel and pollution abatement 

for peaking and base-load power plants, while deferring expensive investments in new 

power plants and their associated compliance costs; 

 Both kinds of utilities avoid costly investments in new transmission and distribution 

infrastructure. 

Utilities may in turn pass these savings on to consumers, resulting in lower utility bills. In 

addition, DSM directly benefits utility customers in the following ways: 

 Many DSM programs provide financial incentives (such as rebates, bill credits, lower 

rates, or low interest financing) to encourage customers to make choices that reduce 

their energy consumption overall or during periods of peak demand; 

 By encouraging customers to reduce their energy usage or to consume energy during 

times when energy services are less costly, DSM programs help customers to reduce 

their monthly utility bill. 

Demand response is a class of DSM programs in which electricity companies offer incentives to 

clients to reduce their demand for electricity during periods of critical system conditions or 

periods of high market power costs. DR programs are normally classified according to the 

customer motivation method and the criteria with which load reduction “events” are triggered or 

initiated. So, when the utility offers customers payments for reduction of demand during 

specified periods, the program is called load response. But, when customers voluntarily reduce 

their demand in response to forward market prices, the program is called price response. 

Customers reduce load during those periods when the cost to reduce load is less than the cost to 
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generate or buy the energy. In this context, brief descriptions of these DR techniques that are 

presently worldwide being applied and studied are now described. 

Load-Response Programs 

In load-response programs, utilities offer customers payments for reducing their electricity 

demand for specified periods of time. 

 Direct load control 

Direct load control is applied to domestic appliances that can be switched on and off during 

periods of time using remote appliance controllers. The most common applications are the ones 

that account for the most significant portion of energy demand, HVAC systems and water 

heaters; 

 Load limiters 

Load limiters have the intent to limit the power that can be used by consumers. This approach 

temporarily disconnects parts of the installation, most often the HVAC or electrical heating 

during power peaks. This scheme can also provide some flexibility to users to decide which 

appliances to use now and what can be delayed; 

 Interruptible and Curtailable Load (I&C) 

Interruptible and Curtailable-load programs are relatively simple to implement, the customers 

agree to decrease or turn off pre-established loads for a period of time when notified by the 

utility. Clients can switch off loads or adjust settings. Utilities must notify customers before an 

interruptible/curtailable load event. As reward, participants receive lower electricity bills during 

normal operation, as well as additional incentives for each event; 

 Frequency regulation 

System frequency is the direct measure of the balance between generation and system demand 

at any one instant and must be maintained continuously within narrow statutory limits. 

Recently, there have been initiatives to investigate a technology that can be incorporated into 

electrical appliances to provide frequency regulation (Dynamic Demand, 2014); 

 Scheduled Load 

Scheduled load reductions are pre-planned between the utility and customer. Clients receive bill 

reductions, as well as significant advance notification, since contractual agreements are set 

months ahead. The advantage of this program is that customers can plan to reduce load on pre-

determined days; 
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Price-Response Programs 

These programs allow customers to voluntarily reduce their demand in response to economic 

signals. 

 Time of use pricing 

Time of use (TOU) tariffs are designed to more closely reflect the production and investment 

cost structure, where rates are higher during peak periods and lower during off-peak periods. 

Basically, instead of a single flat tariff for energy use, TOU tariffs are plan to be higher when 

electric demand is higher, meaning that when you use energy is as important as how much you 

use. These programmes are commonly practiced in a large number of countries, particularly for 

households with electric heating; 

 Dynamic/Real Time Pricing (RTP) 

The dynamic imposed by the existing deregulated market is based on real time system of supply 

and demand. Prices change time to time and hour to hour depending upon these two factors. By 

exposing customers to RTP i.e. time-varying prices, they can have a better view of the 

prevailing market and the information and incentive to reduce their demand at peak times or 

critical peak prices (CPP) and by this way provide a financial incentive for participants to shift 

optional activities, such as clothes washing and drying and dishwashing, to times other than 

critical peak periods; 

 Demand bidding 

Demand bidding programmes are available when the customer is willing to negotiate is 

consumption needs in detriment of cost reductions. So, the client is disposed to decrease or 

sacrifice his consumption of electricity at a certain predetermined price. For example, this 

technology can be applied to a smart thermostat which controls the indoor comfort equipment’s. 

So, depending from real time electricity price levels, the thermostat can be programed to allow 

different sceneries in different schedules. 

In buildings, novel solutions that integrate occupant behaviour within the building in relation to 

energy consumption are emerging (Virote & Neves-Silva, 2012). 

Only with smart metering and smart appliances technology the mentioned programs are viable. 

With smart meters consumer can see exactly what power loads are driving up their energy use 

and make specific changes, (Navetas, 2014). This information combined with time flexible 

smart electrical appliances (HVAC systems, water heaters, refrigeration, lighting, etc.) can lead 

to much better energy efficiency. 
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As showed, DSM will have an important role in the future smart grids architecture (Chen et al., 

2010; Luo et al., 2010) and by this reason many studies are being performed involving the 

mentioned DSM techniques to provide future implementation solutions. 

Callaway (2009), with the goal of delivering services such as regulation and load following, 

developed new methods to model and control the aggregated power demand from a population 

of thermostatically controlled loads (TCLs). The researcher manipulates the temperature set 

point in order to control the demand curve and adapt it to a wind plant power source. The work 

showed that it is possible the demand to follow the source with small changes in the nominal 

thermostat temperature set point. With similar objective, Jun (2009), developed an algorithm 

capable of controlling loads based on the available supply at certain time. The objective of the 

algorithm is to minimize the impact on users and at the same time maximize the match between 

demand and supply through identifying the best combinations of different demand side control 

options such as load shifting, load control (on/off control and proportional control) and load 

recover for various demand loads. 

A potential application for controllable domestic heat loads, and flexible distributed generation 

in power systems with significant capacities of uncertain wind generation is described in 

(Savage et al, 2008). Heat load is effectively controlled by remote adjustment of thermostat set 

points. The system transmit a signal to reduce heating load set points when net demand is 

greater than the forecast value and a reserve shortfall was imminent. Zaidi et al., (2010) follows 

a DSM approach, where unessential loads get selectively disconnected from the grid in an 

under-generation scenario. In order to automatically detect unessential loads, load recognition 

on the basis of measured consumption data can be performed. With the same objective of peak 

shaving and balance between demand and supply, (Molderink et al., 2010), shows that with the 

use of good predictions, in advance planning and real-time control of domestic appliances, 

better matching of demand and supply can be achieved. With a similar approach, several other 

studies can be found (James & Jones, 2010; Krishnappa, 2008). 

As presented, several methods are focus in the development of load control manipulation 

models, however, DSM is also been studied via models that use electricity incentive prices to 

promote load management (Yang et al., 2006; Hamidi et al., 2008; Aalami et al., 2008; Yu & 

Yu 2006; Shaikh & Dharme, 2009).  

The desire DSM methodology that is intended to be achieved is a mix of these two solutions. It 

intends to take advantage from the innovative technology characteristics provided by future 

smart grids. It is expected that every electric house appliance will be controllable and the 

communication infrastructures will allow RTP arrangement. At the same time, is desirable to 

maximize the efficiency of renewable energy resources and minimize the consumer energy 
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costs. New models and control techniques must be developed to be capable of not only to 

manage loads based on the available supply at a certain time, but also by negotiating in real time 

the energy price and the consumer comfort (without significantly compromising the user 

satisfaction) in order to guarantee the balance between demand and the intermittent source. 

In a scenario with strong presence of intermittent RES that supply a set of houses, the new 

solution must include smart devices, energy management systems (EMS) such as programmable 

controllable thermostats and/or PEV charge, capable of making intelligent decisions based on 

smart prices and users comfort. 

2.3 Model Based Predictive Control 

The firsts predictive controllers concepts were born from optimal control methodologies, such 

as the Linear Quadratic (LQ) or the Linear Quadratic Gaussian (LQG) controllers in the 

early’70s (Anderson and Moore, 1971). Only in late 70's that the first two truly MPC control 

laws arise, the Identification-command (IDCOM) and the Dynamic Matrix Control (DMC), 

which are acknowledged as the roots of MPC. These two methods share some common features 

which established the basis of MPC. 

The predictive control based on model MBPC is nowadays as one of the most popular and 

efficient control strategies in industry. So, during the last two decades a growing interest has 

been granted to model predictive control (MPC) due to its ability to handle constraints in an 

optimal control environment (Moros ̧an et al., 2010; Mosca, 1995). It is expected that soon MPC 

may substitute the majority of the classic controllers that are becoming inefficient in complex 

environments. 

MPC is a form of control in which the current control action is obtained by solving on-line, at 

each sampling instant, a finite horizon open-loop optimal control problem, using the current 

state of the plant as the initial state, the optimization yields an optimal control sequence and the 

first control in this sequence is applied to the plant. The major advantages that have contributed 

for the success of this method are (Orukpe 2005; Jimenez 2000): 

 It handles multivariable control problems naturally, Single-Input/Single-Output SISO) 

and Multiple-input/Multiple-Output (MIMO) formulations are similar; 

 Difficult dynamics such as dead-times, unstable or non-minimum phase systems can be 

easily handled; 

 Feedforward compensation of measurable disturbances can be introduced in a natural 

way exploiting the model-based and predictive features of the MPC methodology by 

using disturbance models;  
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 It can take account of actuator limitations The incorporation of constraints in the 

manipulated and controlled variables and/or states is a simple task. Constraints can be 

considered at the controller design stage and the resulting optimisation problem can 

often be solved using standard Linear Programming (LP) or Quadratic Programming 

(QP) tools. It also allows operation closer to constraints, hence increased profit; 

 MPC controllers have been developed either for linear or non-linear models; 

 Methods which guarantee the stability of the closed-loop system are available; 

 Robustness features can be enhanced through tuning parameters or optimisation 

methods. Constraint handling is, indeed, one of the most appealing properties of MPC, 

since limits of several kinds always occur in practice. 

 

Constraints can be used to describe several security limits, physical restrictions, technological 

requirements and so on. These requirements must be handled at the controller design stage to 

avoid undesirable performance. Constraints have two main objectives. They can be used to 

increase the accuracy of the model, incorporating on it the actuator and plant limits and also be 

used as tuning knobs to describe control requirements or specifications. Typically, optimal 

operating point lies close to (or on) one or several limits and therefore, representing an 

advantage from an economical point of view when it operate as close to the constraint boundary 

as possible. Constraints can be classified according to different criteria. The following 

classification of constraints, according to practical considerations, is due to Álvarez and de 

Prada (1997):  

 Physical constraints. These limits, which must never be surpassed, are determined by 

the physical limitations of the system; 

 Operating constraints. These bounds are fixed by the plant operators to specify the 

optimal operating region. The operation constraints are more restrictive than he physical 

limits;  

 Optimization or set point conditioning constraints. These limits, more restrictive than 

the operating constraints, are used only if the set point conditioning technique is 

applied; 

 Working constraints. These are the actual constraints considered by the controller to 

determine the feasible region. The working constraints are obtained by choosing the 

most restrictive among the physical, the operating and the optimization limits. Apart 

from constraint handling, the relevant issues of stability and robustness have been 

successfully tackled in the last decade. 

The MPC block diagram is present in Figure 2.3 where the main blocks represent: 
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Reference Trajectory - represents the desire signal to future outputs. The previous knowledge 

of this trajectory provides the anticipative effect of this controller; 

Model - the mathematical model, linear or nonlinear, that represents the process must be 

capable to describe its dynamic behavior with sufficient accuracy; 

Predictor- trough the mathematical model provides the future outputs based on the actual plant 

information; 

Optimizer - minimizes the cost function at every time sample to obtain the control action that 

guaranties the system performance. When linear models are used and the problem is 

unconstraint, the quadratic cost function presents a analytical solution, otherwise, some numeric 

optimization methods must be used. 

As can be seen, the presence of the plant model is a necessary condition for the development of 

the predictive control. The success of MPC depends on the degree of accuracy of the plant 

model (Zheng 2010). 

 

Figure 2.3. Basic block diagram of MPC 

Predictive control uses the receding horizon principle. This means that after computation of the 

optimal control sequence, only the first control sample will be implemented, subsequently the 

horizon is shifted one sample and the optimization is restarted with new information of the 

measurements. The prediction horizon remains the same length despite the repetition of the 

optimization at future instants. Since the state prediction x and hence the optimal sequence u* 

depend on the current state measurements 𝑥(𝑘), this procedure introduces feedback into the 

MPC law, providing a degree of robustness to modelling errors and uncertainty. Figure 2.4 

explains the idea of receding horizon. 
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Figure 2.4. Conceptual picture of the moving horizon in predictive control (Boom & 

Stoorvogel, 2010). 

In Figure 2.4 Nm, NC and HP represents is the minimum cost horizon, the control horizon and 

prediction horizon respectively. At time k the future control sequence {𝑢(𝑘|𝑘), . . . , 𝑢(𝑘 + 𝑁𝑐 −

1|𝑘)} is optimized such that the performance-index J(u, k) is minimized subject to constraints. 

At time k the first element of the optimal sequence (𝑢(𝑘) = 𝑢(𝑘|𝑘)) is applied to the real 

process. At the next time instant the horizon is shifted and a new optimization at time k+1 is 

solved. 

The goal of MPC is to minimize a cost function over a given prediction horizon period. This 

cost function should give an indication for the performance of the system. The control signal 

contains the setting for the control measures that are able to influence the system, and the 

constraints may contain the upper and lower bounds on the control signal, but also linear or non-

linear equality and inequality constraints on the control inputs and the states of the system. 

In MPC, control decisions, system inputs, u(k) are made at discrete time instants k = 0,1,2,..., 

which usually represent equally spaced time intervals. At decision instant k, the controller 

samples the state of the system x(k) and then solves an linear optimization problem of the 

following form to find the control action: 

 𝑚𝑖𝑛
𝑢
 𝐽(𝑥, 𝑢; 𝑥(𝑘)), 

(2.1) 

𝑠. 𝑡. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (2.2) 

𝑢 ∈  𝒰,  

where x(k)  ℝn and u(k)  ℝm, and A  ℝn×n, B  ℝn×m, are known matrices with constant 

entries of corresponding entries. The cost function J(k) is linear quadratic, Linear Quadratic 

Predictive Control (LQPC), with symmetric weighting matrices Q and R, where Q ≥ 0, R > 0, 

and 𝒰 is an admissible control set. 

HP 
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𝑚𝑖𝑛
𝑢0,…,𝑢𝐻𝑃−1

= ∑ 𝑥(𝑘)𝑇𝑄𝑥(𝑘) + 𝑢(𝑘)𝑇𝑅𝑢(𝑘)

𝐻𝑃−1

𝑘=0

, (2.3) 

𝑠. 𝑡. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), 𝑘 = 0,…𝐻𝑃 − 1, (2.4) 

𝑢(𝑘)  ∈  𝒰, 𝑥(𝑘 + 1)  ∈  𝒳,              𝑘 = 0,… , 𝐻𝑃 − 1,  

𝑥0 = 𝑥(𝑡) ≡ 𝑥(𝑘).  

The future states are described as, 

�̂�(k) = 𝐺𝛥𝑈(𝑘) + 𝛤𝑥(𝑘), (2.5) 

�̂�(𝑘) = [
𝑥 (𝑘 + 1)
⋮
𝑥 (𝑘 + 𝐻𝑃)

] = [
𝐴
⋮
𝐴𝐻𝑃

]
⏟  
𝛤

𝑥(𝑘) + [
𝐵 ⋯ 0
⋮ ⋱ ⋮
𝐴𝐻𝑃−1𝐵 ⋯ 𝐵

]
⏟            

𝐺

[
𝛥𝑢(𝑘)
⋮
𝛥𝑢(𝑘 + 𝐻𝑃 − 1)

]

⏟            
𝛥𝑈

, 
(2.6) 

�̂�0 = 𝛤𝑥 (𝑘). (2.7) 

For regulation proposes, and considering the general case which intent to lead the state to zero, 

the linear MPC without constraints solution of (2.3) is given by: 

𝛥𝑈∗ = −𝐾𝑐𝑥 (𝑘) = −(𝐺
𝑇𝑄𝐺 + 𝑅)−1𝐺𝑇𝑄�̂�0  (2.8) 

and implementing the first element of the optimal prediction at each sampling instant k defines a 

receding horizon control law  

𝑢(𝑘) = 𝛥𝑈∗(1). (2.9) 

Remark that if 𝒰 and 𝒳 are polyhedral (a finite intersection of half-space), this is a Quadratic 

Program, that can be can be solve fast, efficiently and reliably, using modern solver tools. 

2.3.1 Linear Plant Model 

For linear systems, the dependence of predictions x(k) on u(k) is linear. A quadratic 

minimization cost function as (2.3) is therefore a quadratic function of the input sequence vector 

u. Thus J(k) can be expressed as a function of u in the form, 

𝐽(𝑘) = 𝒖𝑇(𝑘)𝐻𝒖(𝑘) + 2𝑓𝑇𝒖(𝑘) + 𝑔, (2.10) 

where H is a constant positive definite (or possibly positive semi-definite) matrix, and f, g are 

respectively a vector and scalar which depend on x(k). The online MPC optimization therefore 

comprises the minimization over u of a quadratic objective:  
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 𝑚𝑖𝑛
𝑢
 𝒖𝑇(𝑘)𝐻𝒖(𝑘) + 2𝑓𝑇𝒖(𝑘). (2.11) 

In the absence of constraints, unconstrained MPC, the optimization u*(k) = 𝑚𝑖𝑛
𝐮
 𝐽(𝑘) has a 

closed-form solution which can be derived by considering the gradient of J with respect to u: 

 𝛻𝑢 𝐽 = 2𝐻𝒖 + 2𝐹𝑥(𝑘). (2.12) 

Clearly 𝛻u𝐽 =0  must be satisfied at a minimum point of J, and since H is positive definite (or 

positive semidefinite), any u such that 𝛻u𝐽 =0 is necessarily a minimum point. Therefore the 

optimal u* is unique only if H is non-singular and is then given by, 

𝒖∗(𝑘) = −𝐻−1𝐹𝑥(𝑘). (2.13) 

Remark that, sufficient conditions for H to be non-singular are for example that R > 0 or Q, �̅� >

0 and the pair (A,B) is controllable. 

If H is singular (i.e. positive semi-definite rather than positive definite), then the optimal u* is 

non-unique, and a particular solution of 𝛻u𝐽 =0 has to be defined as, 

𝑢(𝑘) = −𝐻†𝐹𝑥(𝑘), (2.14) 

where H† is a left inverse of H (so that H†H = I). 

Implementing the first element of the optimal prediction u*(k) at each sampling instant k defines 

a receding horizon control law. Since H and F are constant, this is a linear time-invariant 

feedback controller u(k) = KC x(k), where the gain matrix KC is the first row of −H−1F for the 

single-input case (or the first nu rows for the case that u has dimension nu), i.e.  

𝑢(𝑘) = 𝑢∗(𝑘|𝑘) = 𝐾𝐶𝑥(𝑘), (2.15) 

𝐾𝐶 = −[𝐼𝑛𝑢    0  …    0]𝐻
−1𝐹. (2.16) 

Constrained MPC is used when structural limitations of the system to be controlled usually 

leads to control restrictions and avoiding such limitations may cause harmful effects as unstable 

cycle. However, for performance purpose, the control system should try to use the system as 

close to those limits as possible, without crossing them. Therefore, MPC uses a more direct 

approach by finding the optimal control in such a way that constraints are not violated.  

Most typically, linear input and state constraints likewise imply linear constraints on u(k) which 

can be expressed 

𝐴𝑐𝒖(𝑘) ≤ 𝑏𝑐 , (2.17) 
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where Ac is a constant matrix and, depending on the form of the constraints, the vector bc may 

be a function of x(k). So, considering the optimization function (2.11) but now subject to linear 

constraints: 

 𝑚𝑖𝑛
𝑢
 𝒖𝑇(𝑘)𝐻𝒖(𝑘) + 2𝑓𝑇𝒖(𝑘), 

(2.18) 

𝑠. 𝑡.  𝐴𝑐𝒖(𝑘) ≤ 𝑏𝑐 . (2.19) 

This class of optimization problem is known as a quadratic programming (QP) problem, and 

given that H is a positive definite matrix and the constraints are linear, it is easy to show that 

(2.18) and (2.19) are a convex problem (i.e. both the objective (2.18) and constraints (2.19) are 

convex functions of the optimization variable u. This kind of problem can be solved efficiently 

and reliably using commercial solver and specialized algorithms. 

Generally, the constraints which are applied on control input, state or output assume the 

following form: 

𝑢 ≤ 𝑢(𝑘) ≤ 𝑢, (2.20) 

𝑥 ≤ 𝑥(𝑘) ≤ 𝑥, (2.21) 

𝑦 ≤ 𝑦(𝑘) ≤ 𝑦, (2.22) 

or even rate constraints: 

∆𝑢 ≤ 𝑢(𝑘) − 𝑢(𝑘 − 1) ≤ ∆𝑢. (2.23) 

Input constraints commonly arise as a result of actuator limits, e.g. torque saturation in d.c. 

motors and flow saturation in valves and the state constraints may be active during transients, 

e.g. aircraft stall speed, or in steady-state operation as a result of e.g. economic constraints on 

process operation. In addition to the obvious equality constraints that the state and input should 

satisfy the model dynamics, inequality constraints on input and state variables are encountered 

in every control problem. While the equality constraints are usually handled implicitly (i.e. the 

plant model is used to write predicted state trajectories as functions of initial conditions and 

input trajectories), the inequality constraints are imposed as explicit constraints within the 

online optimization problem. 

However, constraints are classified as hard or soft. The hard constraints, must always be 

satisfied, and when is not possible, the problem is becomes infeasible. 
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Figure 2.5. Hard constraint representation (Adapted from Froisy, 1994). 

On the other hand, soft constraints may be violated if necessary to avoid infeasibility, generally 

with a penalization in the cost function.  

 

Figure 2.6. Soft constraint representation (Adapted from Froisy, 1994). 

Chapter 4 shows an example of hard constraints application and in Chapter 6 and 7 soft 

constraints. Thus, constraints will be here generically described and exemplified. 

To implement a soft constraint, allowing for example that the output variable exceeds the 

constraint value in a specified value 𝜖 ≥ 0, 

𝑦(𝑡 + 𝑗) ≤ 𝑦 + 𝜖(𝑡 + 𝑗),  

𝜖(𝑡 + 𝑗) ≥ 0,   1 ≤ 𝑗 ≤ 𝑁𝑠𝑜𝑓𝑡 .  

with 𝑁𝑠𝑜𝑓𝑡 representing the horizon where the soft constraint is considered. 

Thus a new term is included in the cost function (2.18), 

 𝑚𝑖𝑛
𝑢
 
𝟏

𝟐
𝒗𝑇𝑯𝒗 + 𝒃

𝑇
𝒗, (2.24) 

with 

time 

time 

Maximum 

constraint value 

Maximum 

constraint value 
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𝑯𝒖 = −𝑏, (2.25) 

𝒗𝑇 = [𝒖𝑇 𝜖𝑇], 𝑯 = [
𝑯 0
0 𝜆𝑟𝑰

],  

𝒃
𝑇
= [𝒃𝑇 0], 𝜖 = [𝜖(𝑡 + 1) ⋯ 𝜖(𝑡 + 𝑁𝑠𝑜𝑓𝑡)].  

Where λ𝑟 > 0 is the ponderation factor and 𝐇 the Hessian matrix. The optimization problem 

must also include,  

𝑦(𝑡 + 𝑗) − 𝜖(𝑡 + 𝑗) ≤ 𝑦, 𝜖 ≥ 0. (2.26) 

Now, to be able to be solved as a quadratic optimization problem the constraints must be 

expressed as inequalities constraints, assuming the following form:  

 𝑚𝑖𝑛
𝑢
 
𝟏

𝟐
𝒗𝑇𝑯𝒗 + 𝒃

𝑇
𝒗, (2.27) 

𝑠. 𝑡. 𝐴𝒖 ≤ 𝑐. (2.28) 

In a systematic way other soft constraints can be considered in the output value, 

𝑦(𝑡 + 𝑗) − 𝜖(𝑡 + 𝑗) ≤ 𝑦(𝑡 + 𝑗) ≤ 𝑦(𝑡 + 𝑗) + 𝜖(𝑡 + 𝑗), 𝑁𝑚 ≤ 𝑗 ≤ 𝐻𝑃 , (2.29) 

And expressing the constraints as manipulated variables 

𝑮𝒖 − 𝜖 ≤ 𝟏𝑦, (2.30) 

−𝑮𝒖 − 𝜖 ≤ −𝟏𝑦, 𝜖 ≥ 0.  

With 1 representing a (HP-Nm) matrix with unitary values, and G the dynamic matrix and the 

incremental control vector. 

To implement hard constraints on U, I 

𝑈 ≤ 𝑢(𝑡 + 𝑗) ≤ 𝑈, 𝑁𝑚 ≤ 𝑗 ≤ 𝐻𝑃. (2.31) 

Expressing the constraints as manipulated variables,  

𝑻𝒖 ≤ 𝟏𝑈 − 1𝑢(𝑡 − 1), (2.32) 

−𝑻𝒖 ≤ −𝟏𝑈 + 1𝑢(𝑡 − 1).  

Where T is an upper triangular matrix with (NC×NC). Considering also hard constraints in y, the 

output is written as, 
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𝑦(𝑡 + 𝑗) ≤ 𝑦(𝑡 + 𝑗) ≤ 𝑦(𝑡 + 𝑗), 𝑁𝑚 ≤ 𝑗 ≤ 𝐻𝑃 , (2.33) 

and once again, 

𝑮𝒖 ≤ 𝟏𝑦, (2.34) 

−𝑮𝒖 ≤ −𝟏𝑦.  

Supposing a set of constraints acting over a process, where the control signal U amplitude, the 

actuator slew rate u and output signal y are limited. These constraints can be expressed as, 

𝑈 ≤ 𝑢(𝑡) ≤ 𝑈   ∀ 𝑡,  

𝑢 ≤ 𝑢(𝑡) − 𝑢(𝑡 − 1) ≤ 𝑢  ∀ 𝑡, (2.35) 

𝑦 ≤ 𝑦(𝑡) ≤ 𝑦  ∀ 𝑡,  

Considering that the process has m inputs and n outputs with constraints acting along a horizon 

HP, (2.35) can be reformulated 

𝟏𝑈 ≤ 𝑻𝒖 + 𝑢(𝑡 − 1) ≤ 𝟏𝑈   ∀ 𝑡,  

𝟏𝑢 ≤ 𝒖 ≤ 𝟏𝑢  ∀ 𝑡, (2.36) 

𝟏𝑦 ≤ 𝑮𝒖 ≤ 𝟏𝑦  ∀ 𝑡,  

where 1 is a matrix (HP×n)×m with HPm×m identity matrices, and T is a lower triangular matrix 

where the non-null inputs are identity matrices with (m×m), and writing the constraints in a 

condensed form, results in,  

 𝐴𝒖 ≤ 𝑐,  

with, 

𝑨 =

[
 
 
 
 
 

𝑻
−𝑻

𝑰𝐻𝑃×𝐻𝑃
−𝑰𝐻𝑃×𝐻𝑃

𝑮
−𝑮 ]

 
 
 
 
 

;         𝒄 =

[
 
 
 
 
 
 𝟏𝑈 − 𝟏𝑢(𝑡 − 1)
−𝟏𝑈 + 𝟏𝑢(𝑡 − 1)

𝟏𝑢
−𝟏𝑢

𝟏𝑈
−𝟏𝑈 ]

 
 
 
 
 
 

. (2.37) 

The QP solution can be obtained using a modified Lemke’s method (Camacho, 1993; Igreja and 

Cruces, 2002). 
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2.3.2 Nonlinear Plant Model 

Although the majority of processes are inherently nonlinear, most of the applications use linear 

dynamic models. Several reasons are behind this fact, or because empirical linear models can be 

easily identified because mostly process work nearby a desire operation point, or because linear 

models may present sufficient precision when in presence of high quality the feedback 

measures. Linear models may use quadratic objective functions that are simply solve with LQ 

convex programming which provide a solution that should converge to the optimal criterion. 

The use of nonlinear models in MPC is motivated by the need to improve the control of 

processes with robust linearity’s through by improving the prediction quality. 

Thus, MPC has a large population of potential applications even for nonlinear systems, 

according to (Allgöwer et al., 2004), the key characteristics and properties of NMPC are: 

 NMPC allows the direct use of nonlinear models for prediction; 

 NMPC allows the explicit consideration of state and input constraints; 

 In NMPC a specified time domain performance criteria is minimized on-line; 

 In NMPC the predicted behaviour is in general different from the closed-loop 

behaviour; 

 For the application of NMPC typically a real-time solution of an open-loop optimal 

control problem is necessary; 

 To perform the prediction the system states must be measured or estimated; 

 The optimization problem is nonconvex, more difficult to solve than QP; 

 The computation time increases because the difficulty to find the solution of the 

optimisation problem; 

If a nonlinear prediction model is employed, then due to the nonlinear dependence of the state 

predictions x(k) on u(k), the MPC optimization problem is significantly harder than for the 

linear model case. This is because the cost in equation (2.3), which can be written as J(u(k), 

𝑥(𝑘)), and the constraints, g(u(k), x(k)) ≤ 0, are in general nonconvex functions of u(k), so that 

the (2.3) optimization problem, 

𝑚𝑖𝑛
𝒖
 𝐽(𝒖; 𝑥(𝑘)), 

(2.38) 

𝑠. 𝑡.  𝑔(𝒖; 𝑥(𝑘)), (2.39) 

becomes a nonconvex nonlinear programming (NLP) problem. As a result there will in general 

be no guarantee that a solver will converge to a global minimum of (2.38) and the times 

required to find even a local solution are typically orders of magnitude greater than for QP 
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problems of similar size. Unlike QP solvers, the computational loads of solvers for nonlinear 

programming problems are strongly problem-dependent. 

2.3.3 Generalized Predictive Control 

Another similar MPC strategy that will be used in Chapter 4, is Generalized Predictive Control. 

(GPC). GPC was developed by (Clarke et al., 1987) and is a popular form of MPC. In the 

original version of GPC, stability was not guaranteed because of using finite horizon. New 

versions of GPC were based on the idea that the stability of GPC could be guaranteed if in the 

last part of the prediction horizon the future outputs are constrained at the desired set point, and 

also the prediction horizon is properly selected. The well-known example for this category is 

Stabilizing Input/Output Receding Horizon Control (SIORHC). The GPC controller uses a 

Controlled Auto-Regressive Integrated Moving Average (CARIMA) model as presented in the 

next difference equation, 

𝐴(𝑞−1)𝛥𝑦(𝑡) = 𝑞−𝑑𝐵(𝑞−1)𝛥𝑢(𝑡) + 𝐶(𝑞−1)𝜉(𝑡), (2.40) 

where y(t) is the process output, u(t) is the control variable, d is the delay, (t) is the measure 

noise (perturbations, model errors). The GPC control law is obtained with the minimization of 

the following equation, 

𝐽𝐺𝑃𝐶 = ∑ [𝑦(𝑡 + 𝑗) − 𝑦𝑟(𝑡 + 𝑗)]
2

𝐻𝑃

𝑗=𝑁𝑚

+∑𝑅𝛥𝑢2(𝑡 + 𝑗 − 1),

𝑁𝐶

𝑗=1

 (2.41) 

where R is the control weight, Nm is the minimum horizon, specifying the beginning of the 

horizon in the cost function from which point the output error is taken into account, and HP 

represents the prediction horizon, specifying the last output error that is taken into account. NC 

is the control horizon, y(t+j) and yr(t+j) are the output and reference signal, u(t+j–1) is the 

control signal increment at (t+j–1). The control weight and control horizon are the main two 

tunings GPC parameters that allows obtaining different predictive controllers in order to adjust 

them to the desire control plant (Clarke et al., 1987). Remark that, the control action affects the 

process output only after the delay, it is reasonable to choose the minimum horizon higher or 

equal to the process delay. If the process delay is unknown then, the delay can be set to one and 

the minimum horizon to zero without the loss of stability. The choice of the minimum horizon 

can be interesting in case of non-minimum phase processes.  

Consider the polynomial, 

𝐶(𝑞−1) = 𝐴(𝑞−1)𝛥𝐸𝑗(𝑞
−1) + 𝑞−𝑗𝐹𝑗(𝑞

−1), (2.42) 
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where,  

𝐸𝑗(𝑞
−1) = 1 + 𝑒1𝑞

−1+ . . . +𝑒𝑛𝑒𝑞
−𝑛𝑒 , 

𝐹𝑗(𝑞
−1) = 𝑓0 + 𝑓1𝑞

−1+ . . . +𝑓𝑛𝑓𝑞
−𝑛𝑓 , 

(2.43) 

ne = j –1; nf  = max(na, nc – j),  

are stablished knowing j and A(q–1) e C(q–1). 

By manipulating the model equation (2.40) and (2.42), equation (2.46) can be obtained, 

𝑦(𝑡 + 𝑗) =
𝐹𝑗(𝑞

−1)

𝐶(𝑞−1)
𝑦(𝑡) +

𝐺𝑗
′(𝑞−1)

𝐶(𝑞−1)
𝛥𝑢(𝑡 + 𝑗 − 𝑑) + 𝐸𝑗(𝑞

−1)𝜉(𝑡 + 𝑗), (2.44) 

with,  

𝐺𝑗
′(𝑞−1) = 𝐸𝑗(𝑞

−1)𝐵(𝑞−1). (2.45) 

The noise is uncorrelated from the measurable signals in instant t, so the output prediction can 

be written for (t + j) as, 

𝑦 (𝑡 + 𝑗) =
𝐹𝑗(𝑞

−1)

𝐶(𝑞−1)
𝑦(𝑡) +

𝐺𝑗
′(𝑞−1)

𝐶(𝑞−1)
𝛥𝑢(𝑡 + 𝑗 − 𝑑), (2.46) 

with, 

𝐺𝑗
′(𝑞−1) = 𝐶(𝑞−1)𝐺𝑗(𝑞

−1) + 𝑞−𝑗�̅�𝑗(𝑞
−1), (2.47) 

and substituting in (2.44),  

𝑦 (𝑡 + 𝑗) =
𝐹𝑗(𝑞

−1)

𝐶(𝑞−1)
𝑦(𝑡) +

�̅�𝑗(𝑞
−1)

𝐶(𝑞−1)
𝛥𝑢(𝑡 − 𝑑)

⏟                      
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑡  𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑡

+ 𝐺𝑗(𝑞
−1)𝛥𝑢(𝑡 + 𝑗 − 𝑑).⏟              

𝑓𝑢𝑡𝑢𝑟𝑒

 
(2.48) 

From (2.48) the effect of the past and future control actions, can be separated,  

𝑦 (𝑡 + 𝑗/𝑡) =
𝐹𝑗(𝑞

−1)

𝐶(𝑞−1)
𝑦(𝑡) +

�̅�𝑗(𝑞
−1)

𝐶(𝑞−1)
𝛥𝑢(𝑡 − 𝑑) (2.49) 

Equation (2.46) can be represented in vectorial form, 

�̂� = 𝐺𝛥𝑈 + 𝑓 (2.50) 

With f formed with the free responses, 

𝑓 = [𝑦 (𝑡 +
𝑁𝑚
𝑡
) 𝑦 (𝑡 + 𝑁𝑚 +

1

𝑡
… 𝑦 (𝑡 +

𝐻𝑃
𝑡
)]
𝑇

, (2.51) 

and  
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𝛥𝑼 = [𝛥𝑢(𝑡) 𝛥𝑢(𝑡 + 1) … 𝛥𝑢(𝑡 + 𝑁𝐶 − 1)]
𝑇 , (2.52) 

where, 

�̂� = [𝑦 (𝑡 + 𝑁𝑚) 𝑦 (𝑡 + 𝑁𝑚 + 1) … 𝑦 (𝑡 + 𝐻𝑃)]
𝑇 , (2.53) 

G =

[
 
 
 
 
 
 
𝑔𝑁𝑚−𝑑 … 𝑔0 0 0 ⋯ 0

𝑔𝑁𝑚−𝑑+1 … 𝑔1 𝑔0 0 ⋯ 0

⋮ ⋱ ⋱ ⋮
⋮ ⋱ 𝑔0
⋮ … ⋮
𝑔𝐻𝑃−𝑑 𝑔𝐻𝑃−𝑑−1 … 𝑔𝐻𝑃−𝑁𝐶−𝑑+1]

 
 
 
 
 
 

, (2.54) 

with G (𝐻𝑃  – Nm + 1)× NC dimension. 

GPC cost function can also be presented in vectorial form, 

𝐽𝐺𝑃𝐶 = [�̂� − 𝑌𝑟]
𝑇
[�̂� − 𝑌𝑟] + 𝑅𝛥𝑈

𝑇𝛥𝑈, (2.55) 

where 

𝑌𝑟 = [𝑦𝑟(𝑡 + 𝑁𝑚) 𝑦𝑟(𝑡 + 𝑁𝑚 + 1) … 𝑦𝑟(𝑡 + 𝐻𝑃)]
𝑇. (2.56) 

Thus, (2.55) is minimized obtaining the follow control law, 

𝛥𝑈 = [𝐺𝑇𝐺 + 𝑅𝐼]−1𝐺𝑇[𝑌𝑟 − 𝑓]. (2.57) 

Being GPC a receding horizon controller, only the first element of the calculated control signal 

sequence is to be applied on the process. The procedure of minimization of the cost function is 

repeated in the next sampling instant. The applied control signal is: 

𝑢(𝑡) = 𝑢(𝑡 − 1) + ∆𝑢(𝑡). (2.58) 

So, GPC allows threating process with unknown or varying delays, constrained systems, 

nonlinearities, non-minimum phase processes as well open-loop unstable plants (Clarke et al., 

1987b). The GPC control structure is presented in Figure 2.7. 

 

Figure 2.7. GPC control structure. 
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With M  

𝑀 = [1 0 … 0][(𝐺𝑇𝐺 + 𝛬𝐼)−1𝐺𝑇], (2.59) 

where 𝑀 = [𝑚𝑁𝑚 𝑚𝑁𝑚+1 … 𝑚𝐻𝑃]. 

So, the control applied to the process can be written as, 

𝛥𝑢(𝑡) = 𝑀[𝑌𝑟 − 𝑓]. (2.60) 

According Figure 2.7, the control law is given by, 

𝑅(𝑞−1)𝛥𝑢(𝑡) = 𝑇(𝑞−1)𝑦𝑟(𝑡 + 𝐻𝑃) − 𝑆(𝑞
−1)𝑦(𝑡), (2.61) 

where 

𝑅(𝑞−1) = 𝐶(𝑞−1) + 𝑞−𝑑 ∑ 𝑚𝑗�̅�𝑗

𝐻𝑃

𝑗=𝑁𝑚

(𝑞−1), (2.62) 

𝑆(𝑞−1) = ∑ 𝑚𝑗

𝐻𝑃

𝑗=𝑁𝑚

𝐹𝑗(𝑞
−1), (2.63) 

𝑇(𝑞−1) = 𝐶(𝑞−1) ∑ 𝑚𝐻𝑃+𝑁𝑚−𝑗

𝐻𝑃

𝑗=𝑁𝑚

𝑞−(𝑗−𝑁𝑚), (2.64) 

nr = 𝐻𝑃 – Nm; ns = max(na, nc – 𝐻𝑃) and nt = max(nc, nb). 

Substituting (2.61) in (2.40),  

𝑦(𝑡) =
[𝑞−𝑑𝐵(𝑞−1)𝑇(𝑞−1)]𝑦𝑟(𝑡 + 𝑁2)

[𝐴(𝑞−1)𝛥𝑅(𝑞−1) + 𝑞−𝑑𝐵(𝑞−1)𝑆(𝑞−1)]
+

𝐶(𝑞−1)𝑅(𝑞−1)𝜉(𝑡)

[𝐴(𝑞−1)𝛥𝑅(𝑞−1) + 𝑞−𝑑𝐵(𝑞−1)𝑆(𝑞−1)]
 (2.65) 

With (2.65), the closed loop characteristic polynomial is calculated by, 

𝑃𝑚𝑓(𝑞
−1) = 𝐴(𝑞−1)𝛥𝑅(𝑞−1) + 𝑞−𝑑𝐵(𝑞−1)𝑆(𝑞−1). (2.66) 

As mentioned, the first generation in the MPC family, such as DMC, IDCOM and GPC used a 

finite prediction horizon. This feature made it possible to incorporate constraints in the control 

strategy, a capability that is not supported by infinite horizon LQ control. Initially in GPC, 

because of using finite horizon, stability was not guaranteed in his original version. But later, 

this issue was overcome with the idea that the stability of GPC could be guaranteed if in the last 

part of the prediction horizon the future outputs are constrained at the desired set point and the 

prediction horizon is properly selected. So, the stability weaknesses of the first generation were 

overcome with the second generation with these two methods that are the most popular in this 

category, the SIORHC (Mosca et. al 1990), or Constrained Receding Horizon Predictive 
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Control (CRHPC) and Stable Generalised Predictive Control (SGPC). SIORCH optimize a 

quadratic function over a prediction horizon subject to the condition that the output matches the 

reference value over a further constraint range. 

Another kind of adaptive predictive controller algorithm is Multistep Multivariable Adaptive 

Regulator, MUSMAR (Greco et al., 1984) is a data driven algorithm designed for the adaptive 

regulation of linear Autoregressive–Moving-Average Model with exogenous inputs model 

(ARMAX) plants. This algorithm combines several features, the optimization of a receding 

horizon quadratic cost, it assumes a constant feedback over the prediction horizon, the cost 

function is minimized based on predictive models for both plant input and output signals and the 

estimation of the predictors and the data are separate. 

This algorithm possesses attractive local self-optimizing properties and was extendedly studied 

during the eighties and nineties years of the last century (Mosca at al., 1989; Rato et al., 1997) 

and successfully applied in recent years in many areas (Nunes, et al., 2007). 

2.3.4 Stability and Feasibility 

In this work, feedback stability is provided by choosing a sufficiently long predictive horizon 

and proven by results. Feasibility is achieved by the use of soft constraints (5.1) in the 

optimization problem formulation. 

Table 2.1. Simulation parameters for the several prediction horizons 

Parameter A1 Units 

𝛯 1  

 5000  

Φ 200  

 1  

Req 50 ºC/kW 

Ceq 9.2103 kJ/ºC 

To exemplify, several predictive horizons were chosen to demonstrate the influence of this 

parameter. The simulation time was also counted to evaluate the system performance under the 

several HP chosen, 1, 6, 12 and 24h. The simulations were made for one house in the same 

conditions used in Chapter 5, using optimization problem (5.1) and the dynamical model (3.1). 

The used parameters are described in Table 2.1 and the obtained results in Figure 2.9 to Figure 

2.11. It is considered that the system knows the existence of load disturbances, Figure 2.8, 

inside the selected HP. Simulations were made in an Intel Core 1.59GHz, 2,0GB of RAM 

machine. 
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Figure 2.8. Disturbance load profile in the several prediction horizons. 

 

Figure 2.9. Indoor temperature profile for the several prediction horizons. 

 

Figure 2.10. Power profile for the several prediction horizons. 
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Figure 2.11. Consumption profile for several prediction horizons. 

As can be seen in Figure 2.9, with HP=1 the system becomes instable, the indoor temperature 

diverge from the chosen comfort zone because with this horizon the power consumption is 

almost null. The indoor temperature and power profiles are similar with the others HP, but 

remark that, with HP=24, the system is able to anticipate sooner all the disturbances and 

constraints and by that reason the power consumption is higher in order to also maintain the 

temperature inside bounds. It can be seen that the compromise between comfort and 

consumption is notorious, the controllers are always attempting to accomplish both constraints, 

but when is not possible, it compensates with one inside range and the other outside. The 

application of soft constraints allows this behaviour and the problem feasibility. 

As expected, Table 2.2 shows that higher prediction horizons has the drawback of higher 

computational efforts, the compromise between anticipation, feasibility and computational 

efforts must be taken in account when the parameters are chosen. 

Table 2.2. Computational efforts under several prediction horizons 

HP (h) Computational effort (s) 

1 2,8 

6 4,4 

12 52,5 

24 289,5 

2.3.5 Centralized MPC 

The continuous instrumentation development associated to the need of improvements in 

processes and environmentally conscious solutions has made the process control become even 
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more complex. With this, the implementation and maintenance of centralized MPC algorithms 

have become an important issue and often complicated to treat. Some of the major obstacles 

encountered in the use of advanced control techniques, such as MPC, are the difficulty of 

communication between sensors and processing units in geographically distributed systems and 

computational limitations for some optimization problems. Although, for large and 

geographically distributed systems, the two mostly used control strategies are centralized or 

decentralized. Centralized control can coordinate subsystems but may suffer from the curse of 

dimensionality and failures in the central control unit. In general, in most of the applications, 

MPC is implemented in a centralized scheme, where the complete system is modelled and all 

the control inputs are computed in one optimization problem, Figure 2.12. 

 

Figure 2.12. Centralized MPC architecture (Scattolini, 2009). 

The overall system model can be represented as a discrete, linear time invariant (LTI) model 

with the form, 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘),  (2.67) 

𝑦(𝑘) = 𝐶𝑥(𝑘) ,  

in which, 

𝐴 =

[
 
 
 
 
𝐴11 𝐴12 … 𝐴1𝑁𝑠
⋮ ⋮ ⋱ ⋮
𝐴𝑖1 𝐴𝑖2 … 𝐴𝑖𝑁𝑠
⋮ ⋮ ⋱ ⋮

𝐴𝑁𝑠1 𝐴𝑛𝑠2 … 𝐴𝑁𝑠𝑁𝑠]
 
 
 
 

, 𝐵 =

[
 
 
 
 
𝐵11 𝐵12 … 𝐵1𝑁𝑠
⋮ ⋮ ⋱ ⋮
𝐵𝑖1 𝐵𝑖2 … 𝐵𝑖𝑁𝑠
⋮ ⋮ ⋱ ⋮

𝐵𝑁𝑠1 𝐵𝑁𝑠2 … 𝐵𝑁𝑠𝑁𝑠]
 
 
 
 

 ,  

𝐶 = [

𝐶11 0 … 0
0 𝐶22 ⋱ 0
⋮ ⋮ ⋱ ⋮
0 … … 𝐶𝑁𝑠𝑁𝑠

], 

(2.68) 

𝑢 = [𝑢1
′ … 𝑢𝑁𝑠

′ ]′ ∈  ℝ𝑚,   

𝑥 = [𝑥1
′ … 𝑥𝑁𝑠

′ ]′ ∈  ℝ𝑛, (2.69) 
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Subsystem 

1

Subsystem 

2

u1

u2

System
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y2

x1 x2
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𝑦 = [𝑦1
′ … 𝑦𝑁𝑠

′ ]′ ∈  ℝ𝓏 .  

For each subsystem i= 1, 2,…, Ns, the (ui, xi,, yi) represents the subsystem input, state and 

output vector respectively. Thus, in the centralized MPC framework, the following optimization 

problem is solved, 

𝑚𝑖𝑛
𝑥,𝑢

 𝐽(𝒙, 𝒖; 𝑥(𝑘)) =∑𝑤𝑖
𝑖

𝐽𝑖(𝒙𝑖 , 𝒖𝑖; 𝑥𝑖(𝑘)), (2.70) 

𝑠. 𝑡.          𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘),   (2.71) 

𝑢𝑖(𝑘) ∈ 𝒰𝑖           𝑖 = 1, … , 𝑁𝑆,  

𝐽𝑖 =∑𝐿𝑖

𝑁

𝑗=1

(𝑥𝑖(𝑘 + 𝑗), 𝑢𝑖(𝑘 + 𝑗 − 1)),  

𝐿𝑖 =
1

2
[𝑥𝑖
𝑇𝑄𝑖𝑥𝑖 + 𝑢𝑖

𝑇𝑅𝑖𝑢𝑖].  

Where 𝑤𝑖 > 0,∑𝑤𝑖 = 1, 𝑄𝑖 ≥ 0  ,    𝑅𝑖 > 0 and (𝐴𝑖, √𝑄𝑖)  detectable and  𝑥𝑖(𝑘) given. 

For any system, centralized MPC achieves the best attainable performance (Pareto optimal) as 

the effect of interconnections among subsystems are accounted for exactly. Additionally, 

existent conflicts among controller objectives are solved optimally (Venkat et al., 2008). 

Normally, centralized MPC can be used in the form of a supervisory controller that have access 

to all variables in the network and that determines actions for all actuators. Due to practical and 

computational issues the implementing a centralized controller may not be feasible. Individual 

hubs may not want to give access to their sensors and actuators to a centralized authority and 

even if they would allow a centralized authority to take over control of their hubs, this 

centralized authority could have computational problems with respect to required time when 

solving the resulting centralized control problem. This approach is ideal for small scale systems, 

but when the control and optimization problem involves a large scale system the conventional 

approach requires the decomposition of the global system into smaller subsystems. 

2.3.6 Decentralized MPC 

Alternatively, decentralized control uses a distributed approach that decomposes a large 

optimization problem in small ones that can be solve by agents, preserving or even improving 

the final performance (Camponogara et al., 2002). Each agent solves its sub-problem and 

computes its own control actions, taking in to account possible mutual influences between other 
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neighbouring agents. Thus, decentralized control is desirable for being scalable and robust but 

fails to account for the mutual influence among neighbouring sub- systems that can have long-

range effects. The key feature of a decentralized control framework is that there is no 

communication between the different local controllers. While there are some important reviews 

on decentralized control see (Christofides et al., 2013) for a tutorial review. A schematic for 

decentralized MPC architecture, with two subsystems with state coupling, is shown in Figure 

2.13. 

 

Figure 2.13. Decentralized MPC architecture (Scattolini, 2009). 

Note that strong interactions between different subsystems may prevent one from achieving 

stability and desired performance with decentralized control. So, in order to achieve closed-loop 

stability as well as performance in the development of decentralized MPC algorithms, the 

interconnections between different subsystems are assumed to be weak or negligible, and are 

considered as disturbances which can be compensated through feedback so they are not 

involved in the controller formulation explicitly. Thus, the effect of external subsystems on the 

local subsystem is omitted in this modelling framework. Remark that, when the above 

assumption is not valid it may lead to a reduced control performance. Assuming a block 

diagonal structure for the overall dynamic system, each subsystem is modelled by 

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑘),   (2.72) 

𝑦𝑖(𝑘) = 𝐶𝑖𝑖𝑥𝑖(𝑘)         𝑖 = 0, … , 𝑁𝑆.  

In the decentralized MPC framework, each subsystem MPC solves the following optimization 

problem, 

𝑚𝑖𝑛
𝑥,𝑢

𝐽𝑖(𝒙𝑖 , 𝒖𝑖; 𝑥𝑖(𝑘)), (2.73) 

𝑠. 𝑡.  𝑥𝑖(𝑙 + 1|𝑘) = 𝐴𝑖𝑖𝑥𝑖(𝑙|𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑙|𝑘), 𝑘 ≤ 𝑙, (2.74) 

𝑢𝑖  ∈  𝒰𝑖 , 𝑘 ≤ 𝑙.   

MPC 1

MPC 2

Subsystem 

1

Subsystem 

2

u1

u2

System

y1

y2

x2 x1



LITERATURE REVIEW 

 39 

Each decentralized MPC solves an optimization problem to minimize its local cost function. 

2.3.7 Distributed Model Predictive Control 

The MPC have also evolved as a distributed systems control methodology (Negenborn, et al., 

2006; Scattolini, 2009; Igreja et al., 2012). Distributed or decentralised Model Predictive 

Control allows the distribution of decision-making while handling constraints in a systematic 

way. DMPC algorithms, offers the same features of MPC but have the advantage of supporting 

the distribution of sensing and control using local controllers/agents that cooperate by 

exchanging information to decide their control actions. This is the reason why it was the chosen 

method to deal with this kind of system. These DMPC infrastructures are suitable to use in a 

MAS (see Chapter 2.4) framework where, in a distributed environment, several agents 

employing individually a MPC control strategy are able to interact and receive influence from 

neighbour subsystems, exchange predictions on their future state and incorporate this 

information into their local MPC problems.  

Large scale interconnected systems, such as power systems, water distribution, traffic systems, 

etc, require control techniques adjusted to the distributed nature of the system, as, decentralized 

or distributed control (Krogh, 2001). However, in decentralized MPC approach, the information 

exchange between subsystems is ignored and each subsystem is constructed with its individual 

control system forming a traditional centralized control scheme. This decentralized control 

architecture may result in poor system-wide control performance if the subsystems interact 

significantly (Venkat, et al., 2006). In distributed MPC, there is not a single MPC controller but 

instead there are multiple MPC controllers, each for a particular system. Typically, there is 

dynamical interaction among the systems that the individual controllers consider. Each of the 

controllers adopts the MPC strategy as outlined above for controlling its system but now not 

only considering dynamics, constraints, objectives, and disturbances of the subsystem under 

consideration but also considers the interactions among the systems. Each local controller solves 

an MPC problem based on local information and may hereby share information with the other 

controllers to improve the overall performance. 

Figure 2.14 represent a simple distributed control system where it is assume that local regulators 

interact between them, obtaining by this way some information on the behaviour of the others. 

This information is normally related with future predicted control or state variables computed 

locally, so that any local regulator can predict the interaction effects over the considered 

prediction horizon. 
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Figure 2.14. Distributed MPC architecture (Scattolini, 2009). 

The generalized optimal state-input trajectory for (𝒙𝑖
𝑝
, 𝒖𝑖
𝑝
) for subsystem i (i=1,2,…Ns) at 

iteration p is obtained as the solution to the optimization problem, 

𝑚𝑖𝑛
𝒙𝒊,𝒖𝒊

𝐽𝑖(𝒙𝑖 , 𝒖𝑖; 𝑥𝑖(𝑘)), (2.75) 

𝑠. 𝑡.  𝑥𝑖(𝑙 + 1|𝑘) = 𝐴𝑖𝑖𝑥𝑖(𝑙|𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑙|𝑘) +∑[𝐴𝑖𝑗𝑥𝑗
𝑝−1(𝑙|𝑘) + 𝐵𝑖𝑗𝑢𝑗

𝑝−1(𝑙|𝑘)]

𝑗≠𝑖

, 𝑘 ≤ 𝑙 
(2.76) 

𝑢𝑖  ∈  𝒰𝑖 , 𝑘 ≤ 𝑙,              𝑖 = 0, … , 𝑁𝑆.  

When moving from a centralized MPC to a distributed MPC setting, several key concepts 

become relevant. In a distributed MPC setting, a system or subsystem refers to the entity being 

controlled by the controller. The overall system is the combination of all systems or subsystems 

under control merged into one large-scale system. The notions of global versus local distinguish 

between the overall system and the system or subsystem under control by a particular controller. 

Hence, frequently appearing concepts are local objectives, local dynamics, local constraints, and 

local disturbances. The terms interconnecting and shared are often used in combination with the 

terms variables and constraints to denote explicitly those components that represent the 

connections or couplings between different systems. In a distributed setting, a particular 

controller has neighbours, or neighbouring controllers. The neighbours are those controllers that 

control systems that are coupled or influence the system under control by this particular 

controller. Communication takes places among the controllers, which can exchange 

information, for example, regarding local states, local objectives, and/or local constraints. 

Information can then be taken into account by the controllers to implement a coordination or 

negotiation process. The controllers can be structured in control layers or levels, leading to a 

hierarchical control structure. Here, typically at higher levels, controllers consider slower time 

scales and larger systems in a more abstract way, whereas at lower levels, controllers consider 

faster time scales and smaller systems in a more detailed way. The potential of distributed MPC 

lies in the unique combination of the strengths of MPC (namely, feedback with feed-forward 
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control in a receding horizon fashion, multi-objective optimization, and explicitly handling of 

constraints) with the negotiation and coordination possibilities provided by communication. The 

role played by communication in this context is essential. For example, the distinction between 

decentralized and distributed MPC lies in whether or not the controllers actively communicate 

with one another to determine actions. In decentralized control architecture, there is no direct 

communication between controllers; controllers take into account the influence of neighbouring 

systems only by responding to the dynamics of the systems they are controlling. This constraint 

typically limits the performance that the decentralized MPC control scheme can achieve. In fact, 

in a decentralized MPC scheme, controllers may be opposing one another’s actions, even 

though they may not have the intention to do so. In a distributed MPC setting, such a situation 

can be prevented because the controllers can communicate about what actions they are going to 

take when and obtain agreement on an optimal timing. 

In summary, DMPC is an evolving technology that advocates the distribution of sensing and 

control while preserving the same features of standard MPC, namely, the use of a prediction 

model and the explicit handling of constraints (Saluje et al., 2011). 

As mentioned DMPC strategies can be characterized by the type of couplings or interactions 

assumed between constituent subsystems (Trodden & Richards 2010), (Keviczky, et al., 2006). 

For example, dynamically coupled systems can be seen in several contributions (Doan, et al., 

2009; Camponogara et al. 2002; Ling, et al., 2005; Dunbar 2007; Giovanini, et al., 2007; 

Venkat, et al., 2008, Alessio, et al., 2011). 

Another common application of DMPC is on subsystems where the states are not dynamically 

coupled but are coupled in their objective functions. A DMPC coupling via the cost function 

(Wang, et al., 2010), considers the DMPC of systems with interacting subsystems having 

decoupled dynamics and constraints but coupled costs. Works with similar approaches can be 

seen in literature (Raffard, et al., 2004; Franco, et al. 2007). 

Other different strategy involves subsystems sharing coupled constraints and many approaches 

have been presented in the literature. In Riggs, et al., 2010 is establish an algorithm where an 

optimization problem is performed by different subsystems with their own objective functions 

and local constraints, but share a common coupled constraint which limits the behaviour of the 

independent systems. 

Biegel, et al.,(2014) presents a dual decomposition as a means to coordinate a number of 

subsystems coupled by state and input constraints where each subsystem have a model 

predictive controller while, a centralized entity manages the subsystems via prices associated 

with the coupling constraints. This system allows coordination of all the subsystems without the 

need of sharing local dynamics, objectives and constraints. 



LITERATURE REVIEW 

42 

Another approach (Müller, et al., 2012) presents a framework for DMPC of discrete-time 

nonlinear systems with decoupled dynamics, but subject to coupled constraints and a common, 

cooperative task. Each system exchange information about is predicted trajectories with its 

neighbours in order to be able to achieve the common objective and to satisfy the coupling 

constraints. Systems coupled by constraints can be seen in (Waslander, et al., 2004; Keviczky, 

et al., 2006; Richards & How 2007; Kuwata et al., 2007). 

Due to its features, DMPC (Camponogara, et al., 2002) has been developed for application to 

large-scale systems, namely as process control (Borrelli, et al., 2005), chemical plants (Venkat, 

et al., 2004) and or teams of vehicles (Riggs, et al., 2010) (Kuwata, et al., 2007), in which 

control by a single centralised agent would require excessive communication, computation and 

reliance on a single processor. 

Due the characteristics mentioned above DMPC, are been applied in many distributed 

applications, and several approaches and architectures to this control scheme are emerging. 

Some studies are applying MPC to reduce and optimize the energy consumption in the 

residential sector, namely, to deal with temperature set points regulations (Morosan, et al., 2010; 

Bălan, et al., 2009; Freire, et al., 2008). In particular Freire, et al., (2008), with a DMPC control 

algorithm based a modified version of Benders’ decomposition the control problem objective is 

to minimize the heating energy bills while maintaining a certain indoor thermal comfort. 

A DMPC scheme with stability constraint (DMPC-SC), where controllers to obtain coordination 

with each other, spread information about their predictions and their local state measurements 

and use them in their local computations, is described in (Krogh, 2001). 

For serially connected processes, (Zhang & Li, 2007), proposed a networked MPC scheme with 

neighbourhood optimization where each MPC unit receives information about the foreseeable 

action for its neighbour sub-processes. Therefore, the exchange information allows cooperation 

between subsystems and the optimizer to generate a suitable control decision for each sub-

process. 

Bendtsen et al., (2010), proposed hierarchical approach, consisting of a three-level structure 

with a high level MPC controller, a second level of so-called aggregators, controlled by an 

online MPC-like algorithm, and a lower level of autonomous units. The approach is motivated 

by smart-grid electric power production and consumption systems, being the goal to 

accommodate load variations on the grid, arising from varying consumption and natural 

variations in power production, e.g. from wind turbines. 

Stewart et al., (2010) also proposed a hierchical cooperative distributed MPC without requiring 

additional coordinating controllers. The head of each subsystem performs a small additional 
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calculation at each pack of information exchange to reduce the volume of communication and to 

hide input trajectories between neighbours. 

Negenborn, (2007), develop a multi-agent MPC control structure with applications to control 

problems in power networks. The control agent uses the prediction model to predict the 

behaviour of the system under various manners, and establish the actions that optimize the 

behaviour of the system and minimize the costs existing in the objective function. 

Ventak (2006), proposed, a cooperative distributed MPC framework, where the objective 

functions of the local MPCs  are modified to achieve global control objectives. 

Besides the advantages above mentioned, DMPC seems to be the right approach to deal with 

complex distributed systems, they can take into account all available information and that it can 

therefore anticipate undesirable situations in the future at an early stage. 

As mentioned, for the control problem of large-scale systems, centralized model predictive 

control is impractical due to a number of limitations, including the computational efforts and 

limited communication, and due this fact, more research is needed in distributed and 

hierarchical model predictive control methods in order to develop new methods and algorithms 

to implement in large-scale systems. Smart grids are characterized by complex dynamics and 

mutual influences between all the involved identities and the algorithms should be able to deal 

with couplings in the dynamics and the constraints between subsystems, and guarantee 

feasibility and stability of the closed-loop system. 

Instead, DMPC distributes control decision-making among agents corresponding to the different 

subsystems making up the whole. The challenge is then how to coordinate efforts to ensure that 

the distributed decisions lead to constraint satisfaction, feasibility and stability of the overall 

closed-loop system. Several strategies for DMPC have been presented in the literature, and 

many theoretical results exist, including those for feasibility and stability; see Scattolini (2009) 

for a comprehensive survey. The approaches are broadly divisible by the type of couplings or 

interactions assumed between constituent subsystems. The degree of coupling among the 

subsystems varies. In the most complex situation, the dynamics or/and constraints of 

subsystems are coupled. The method presented assumes the latter type of coupling, and has 

agents update their plans one at a time, with iteration, to ensure coupled constraint satisfaction; 

however, unlike other methods, it also permits a flexible order of updating. 

Robustness to disturbances is a key challenge in the development of MPC (Mayne et al., 2000), 

and is harder still when control decision-making is decentralised; few DMPC schemes in the 

literature offer robustness. In Richards and How (2007), robust feasibility and stability are 

guaranteed by updating each subsystem’s plan in a sequence, subject to tightened constraints, 

and while ‘freezing’ the plans of others. Alternative approaches include treatment of 
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interconnected subsystems’ state trajectories as bounded uncertainties, and using min-max 

optimization (Jia & Krogh 2002) – though the complexity issues with such an optimisation 

method are well documented (Mayne et al., 2000). Using the comparison model approach to 

robustness (Fukushima & Bitmead 2005), another distributed method (Kim & Sugie 2005) uses 

worst-case predictions of state errors, determined based on a robust control Lyapunov function, 

and tightens constraints accordingly. Magni & Scattolini (2006) propose a robust stable 

decentralised algorithm for non-linear dynamically coupled systems, with no information 

exchange between agents, although for an asymptotically decaying disturbance. 

The new algorithm in this thesis exploits this feature to achieve flexibility in communication. 

An additional advantage of this approach is that the optimisation involves only the nominal 

system dynamics, avoiding the large increase in computational complexity associated with the 

inclusion of uncertainty in the optimisation as mentioned in (Scokaert & Mayne 1998). Many 

distributed methods proposed in the literature (e.g. Du et al., (2001), (Kim & Sugie 2005), 

(Dunbar & Murray 2006), (Alessio & Bemporad 2007), (Richards & How 2007), (Venkat et al., 

2008) do not consider the implications that the scheduling of local optimisations has on the time 

required for communications. For example, the constraint-tightening DMPC approach proposed 

by (Richards & How, 2007), also for dynamically decoupled systems with coupled constraints, 

assumes repeated instantaneous exchanges during each sampling period. 

2.4 Multi-Agents systems (MAS) 

There are several ways to define an agent. Despite all the definitions, the most common view 

describes agents like been a high-level software abstraction, which efficiently describes a 

complex software entity, or, intelligent entities with three main characteristics: 

 Pro-Activeness (they react to external events and they are driven to their objectives); 

 Social ability (they can cooperate or compete between them); 

 Autonomy (they can decide in order to archive their objectives); 

 Multi-agent systems can be seen as a group of distributed, autonomous and intelligent 

agents within an environment, where they can act and react in order to work together to 

achieve a global goal. 

Large interconnected networks can hardly be controlled in a traditional way due to its 

distributed characteristics and considerable control capabilities over the network operation. 

Multi-agent systems have characteristics that meet these requirements, they are able to model 

complex systems introducing the possibility of agents having common or conflicting goals. 

They may decide cooperating for mutual benefit or may compete to serve their own interests 

(Xu et al., 2010). Thus, from the single agent concept to the group of agent’s concept, MAS are 
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a powerful means to represent systems in a natural way. A system is traditionally defined as a 

group of components interacting together to achieve an overall objective or a number of 

objectives known as the system level objective(s). Each component in a system can be seen as 

an agent if it possesses the characteristic of agency, i.e. if it performs computations and its 

action is being feedback into the environment (Abbass et al., 2011). Distributed infrastructures 

are interconnected and maintain communication between each other is suitable for MAS 

technology (Raza et al., 2005) due the follow characteristics: 

 Agents assess situation on the basis of measurements from sensing devices or that 

received from other entities; 

 Agents cast their influence on performance of networks via commands to actuators and 

other identities; 

 The agents differ in complexity from trivial threshold detectors that merely decide 

based upon a single measurement to highly intelligent systems; 

 Agents have to make real time decisions from local, rather than global state 

information; 

 Agents including controllers for individual devices are designed with simple decision 

rules based upon response thresholds that are expected to give most appropriate 

responses to a collection of situations generated. 

Smart grids can be seen as an environment where a set of simple entities called agents can play 

the role of source, load, or any other component integrated in the environment. With the agents 

interaction, some collective intelligent can be achieved, they cooperate or compete in other to 

reach their objective. 

MAS architectures have also others advantages, they are not dependent on a particular 

technology, with proper messaging tools, different programming languages can be used and 

interact together (Roche et al., 2010), and, due the agents autonomy, they can leave or enter in 

the environment without any perturbation. 

2.4.1 MAS architectures 

Researchers are still attempting to categorize the different types of MAS and agents within 

MAS. They are trying to identify characteristics and features that an agent must possess and also 

by defining categories of agents and MAS. In (Ferber, 1999) is presented a number of 

categorizations of MAS and one of the most accepted formal definitions of as: MAS= {E, O, A, 

R, Or, Op} where: 
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 E is the environment, a space in which objects (including objects O and agents A) are 

located; 

 O is a set of objects in the environment other than the agents; 

 A is the set of agents in the environment; 

 R is an assembly of relations; 

 Or is an assembly of operators; and, 

 Op is an assembly of operations. 

Due to the flexibility of MAS, several control architectures can be also found in order to 

respond to the variety of power systems, such as, voltage control, microgrid management, 

distributed network control and restoration, to manage and obtain the desire degree of 

intelligence. However, some general types of control structures can be identified and they are 

commonly encountered in theory and practice, single-agent, multi-agent single-layer and multi-

layer. A single-agent control structure,  

Figure 2.15 occurs when it is assumed that there is only one control agent that has access to all 

actuators and sensors of the network and thus directly controls the physical network. This 

control structure is referred to as an ideal, since in principle such a control structure can 

determine actions that give optimal performance. 

Control 
Agent

Measurements Actions

Control structure

 

Figure 2.15. Single-agent control structure. (Adapted from Negenborn 2007). 

When there are multiple control agents, each of them considering only its own part of the 

network and being able to access only sensors and actuators in that particular part of the 

network, then the control structure is referred to as a multi-agent single-layer control structure,  

Figure 2.16. If in addition the agents in the control structure do not communicate with each 

other, the control structure is decentralized. If the agents do communicate with each other (dot 

line), the control structure is distributed. 
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Figure 2.16. Multi-agent single layer control structure. (Adapted from Negenborn 2007). 

A multi-layer control structure can be defined when there are multiple control agents and some 

of these control agents have authority over other control agents, in the sense that they can force 

or direct other control agents,  

Figure 2.17. A multi-layer control structure typically is present when one control agent 

determines set-points to a group of other control agents working in a decentralized or distributed 

way. Due to the authority relationship between agents or groups of agents, this structure can 

also be referred to as a supervisory control structure, or a hierarchical control structure. 

Control 
Agent 1

Measurements Actions

Control 
Agent 3

Actions Measurements

Control 
Agent 2

Measurements Actions

Control 
Agent 4

Control structure

ActionsMeasurements  

Figure 2.17. Multi-layer control structure. (Adapted from Negenborn 2007). 

Single-agent control structures in general, have the advantage of deliver the best performance 

possible, and that they have been studied extensively in the literature, in particular for small-

scale systems. Although, in large scale systems, there are several issues related with, robustness, 

reliability, scalability, responsiveness and communication delays that complicate the use of this 

structure.  

Multi-agent control structures can deal or at least reduce these issues, but typically, they have a 

lower performance comparatively with single-agent. 

Decentralized multi-agent single-layer control structures have the advantage, over the 

distributed, of lower computational requirements and faster control, because the inexistence of 
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communication between the controllers. However, this advantage will typically be at the price 

of decreased overall performance. The advantage of a distributed multi-agent single layer 

control structure is therefore that improved performance can be obtained, although at the price 

of increased computation time due to cooperation, communication, and perhaps negotiation 

among control agents. The multi-agent multi-layer control structure, despite of been more 

complex, provides the possibility to obtain a trade-off between system performance and 

computational complexity (Negenborn 2007). 

Although all the existing diversity, to respond to the several challenges mentioned above, most 

of the authors use a hierarchical layered structure (Zeng et al., 2009; Dimeas et al., 2005; Li et 

al., 2010; Aung et al., 2008) to archive different objectives. 

With the joint goal of achieving cost and energy savings Ab et al., (1996), shows how 

decentralized power load management at the customer side, automatically carried out by a 

‘society’ of intelligent household, industrial and utility equipment, can be modelled in terms of 

independent hierarchical decentralized intelligent agents that communicate and negotiate in a 

computational market economy. 

Lu & Chen (2009) proposes new a system-level scheme, a three layered MAS architecture, 

where the bottom layer is called physical layer, in which each agent correspond to one energy 

source (RE or traditionally), the middle layer is named application layer, which is composed of 

coordinator agent, fault diagnosis agent, and recover agent etc., which provides service to the 

physical layer. The top layer is the user interface layer, which enables the interaction between 

human and MAS. 

Also with a hierarchical layered structure, the MAS main target present by Jian et al., (2009), is 

to maximize the efficiency of renewable energy resources. 

Pipattanasomporn et al., (2009), describes the design and implementation of the multi-agent 

system for use in a microgrid. The proposed multi-agent system consists of a control agent, a 

DER agent and a user agent in multi-layer distributed architecture where all agents interact 

between them. The proposed design also includes a database agent that is responsible for storing 

system information, as well as recording the messages and data shared among agents. 

In order to negotiate available energy quantities and needs on behalf of consumers and producer 

groups, Wedde et al., (2006 and 2008) developed a multi-level bottom-up solution with 

autonomous software agents. 

Negenborn, (2007), develop a multi-agent control structure with applications to control 

problems in power networks, and compare the obtained results with the single-agent approach. 
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As showed, to respond to the several issues related with distributed nature of the future smart 

grids, the MAS structure demonstrate to be the best solution. The existent MAS designs mostly 

use layered and subsystems models were a group of agents is controlled by a superior control 

agent. However, large distributed systems may have innumerable identities, and due the 

necessary communication between agents, it is needed a high computational effort. Besides this 

fact, the increase of agents also increases the possibility of internal and external conflicts, 

leading to a possible performance reduction. 

In order to solve these problems, it is necessary to develop new algorithms, control system 

designs, and MAS architectures that can provide the benefits of cooperation, communication 

and negotiation among control agents to increase the performance, but with lowest 

computational efforts, and also to reduce the complexities to obtain an optimal operation in a 

large-scale distributed environment. 
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Chapter 3 

3 Dynamical Models and Scenarios 

Description 

3.1 Introduction 

The energy consumption optimization in future SGs will be based on grid-integrated near-real-

time communications between various grid elements in generation, transmission, distribution 

and loads. 

 

Figure 3.1. Typical smart grid architecture. 
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Figure 3.1 shows a typical smart metering architecture that is being reflected in the European 

standards development process (Fan et al., 2013). 

Smart Grid is a concept for transforming the electric power grid using advanced automatic 

control and communications techniques and other forms of information technology. It integrates 

innovative tools and technologies from generation, transmission and distribution all the way to 

consumer appliances and equipment. This concept integrates energy infrastructure, processes, 

devices, information and markets into a coordinated and collaborative process that allows 

energy to be generated, distributed and consumed more effectively and efficiently. Costumers 

will have the chance to decrease their electricity bills by changing consumption from higher-

priced hours to lower priced hours and smart metering will produce a market for new SG 

costumer products. 

Thus, the scenario here described intends to be a realistic solution to take advantage of these 

SG’s features. 

3.2 Scenarios overview 

A SG generally involves the application of smart meters, sometimes called advanced metering 

infrastructure (AMI), which usually include control and monitoring devices and appliances. 

Smart metering technology will be at the foundation of any SG design (Cecati et al., 2010). The 

most viable communication’s technologies for the AMI are wireless and power line 

communication (PLC). SG’s communication’s infrastructure will also provide IP/Ethernet 

connectivity between most components, guiding the communication’s interfaces and products 

towards TCP/IP-based networks. Power distribution companies are mostly interested in PLC 

because it represents the most cost effective solution and does not require additional investment 

in the communication’s infrastructure. For these communication’s requirements, companies like 

Siemens are offering customized communications network solutions for optic fibre, power line, 

and wireless infrastructures based on the accepted standards of the energy industry, Figure 3.2. 

 

Figure 3.2. Typical energy distribution communication architecture for smart grids (Adapted 

from Siemens, 2014). 
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Because renewable energies are nowadays significantly expanded, electricity is being fed into 

both the medium- voltage and low-voltage grids, depending on changing external conditions 

(e.g., weather, time of day, etc.). These fluctuating energy resources can severely impair the 

stability of the distribution grid. One of the key challenges of a smart grid is therefore to quick 

balance out the energy supply and energy consumption in the distribution grid. 

Thus, the scenario here presented has in consideration this challenge, intend to provide a 

solution to it based on, and taking advantage of all the AMI and communication technologies 

that SG provide. 

The conceptual scenario involves a set of buildings with an electricity source provided by their 

own renewable energy park and energy storage as presented in Figure 3.3. Henceforward, the 

term house will be applied to classify any type of structure for habitation (houses), office 

buildings or other kind of analogous constructions. The set 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑁𝑆} defines the 

Thermal Control Areas TCA’s/house and the different spaces are described by 𝐷ℎ =

{𝑑h1, 𝑑h2, … , 𝑑ℎ𝑁𝑑} and  h = 1,…𝑁𝑆 . 

 

Figure 3.3. Implemented scheme. 

Due the existing division diversity in houses, each area may vary in: construction materials, sun 

exposure, occupancy, indoor temperature set-points. This variety involves many different 

energy needs to weatherize the spaces, and for this a TCA is considered. Figure 3.4 presents a 

conceptual TCA smart thermostat which can be used as an interface for DSM. In the left side of 

the display the user is able to choose between three operating modes related with the control 

features. At the centre the user is able to program the division’s comfort range and the particular 

time periods. On the right the cost, the green and red consumption are shown, allowing the user 

to access more specific other menus. 
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Figure 3.4. Thermal Control Area (TCA) smart thermostat controller vision. 

Each division may have different thermal loads, thermal characteristics, occupancy and comfort 

temperature bounds and consequent  different energy needs for heating/cooling the spaces, for 

this a Thermal Control Area (TCA) is considered. As mentioned, one TCA represents an 

autonomous thermal control entity within an environment where the actions and reactions are 

made in order to achieve a common goal. Therefore, as Figure 3.5 shows, depending from the 

desired infrastructure intent to be implemented, a set of buildings or a simple division may 

represent a TCA. 

 

 

Figure 3.5. Thermal Control Area concept. 

The idea is to use a MPC control law to adjust the indoor temperature set-point in each TCA. 

Taking advantage of the MPC characteristics, the system receives information on the outdoor’s 

temperature forecasts, the future occupation, the indoor temperature frame and the thermal 

disturbances profile. The control action is conditioned by two constraints; thermal comfort and 

available energy. Using a DSM approach, the trade-off between the energy price and comfort 

limitations are system assured. The scenario considers the existence of two resources, the red, 

from the grid provided by fossil source and the green, from renewable or clean source. The first 
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is always available with a kWh price always higher than the green. On the contrary the green is 

limited, intermittent and must be consumed, stored or grid delivered. Remark that if the clean 

source becomes insufficient the fossil is consumed increasing the energy costs. 

So, the scenario considers that the traded electricity comes from a wholesale market which is 

priced in real time, where the market operators (MO) provide the green resource auction and the 

agents/TCA set a day-ahead their bids. The agents (one by each TCA) must bid in an auction, 

the price that they are willing to pay to consume the green resource. The bid value establishes a 

sequential order by which the TCA’s can access to green energy. After consuming, each TCA 

sends to the next the information about how much of clean resource is still available. As 

mentioned, when the green resource becomes insufficient to satisfy all the demand, the red is 

available. The red resource consumption implies a penalty in the final cost function (5.1) due to 

the soft constraint violation imposed by the maximum available green resource. Notice that the 

divisions that interact thermally pass to each other information about future temperatures.  

Each TCA receives several external inputs; the outdoor temperature, available renewable power 

forecasts, the MO kWh price, access order to the renewable resource and, when applied, the 

neighbour’s indoor temperature forecasts. Figure 3.6 presents an example of the implemented 

TCA framework.. 

 

Figure 3.6. Example of a TCA conceptual framework. 

The example depicted in Figure 3.6 shows the implemented system dependent from weather and 

power forecasts. Being wind and solar power not dispatched the production levels need to be 

predictable. Lower prediction errors help to balance the supply of wind energy with other 

sources, avoid consequences for incorrect estimation, as well as reducing the risk of having to 

buy energy from elsewhere. For wind power, the 24 hours ahead prediction average absolute 

error can be between 10–20% of installed capacity for one single zone. When aggregation of 
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zones is made, the value may drop to 5-8% (VTT Technology 95, 2014; NREL, 2014). This can 

be partly due to the different accuracy for different types of sites, like different orography and 

roughness and how homogenous the grid cell for the numerical weather prediction model is. 

Prediction errors in low wind situations can still be higher relative to yearly energy. The forecast 

error is significantly lowered for the first six hours. The physical reason behind this is that wind 

itself has an auto-correlated nature and the model takes this into account by last measured power 

value when making forecasts into the future. As the forecast horizon increases the variation 

range seems to increase quite linearly. 

The forecasting of solar energy production faces issues similar to those of wind. However, solar 

forecasting has significant predictability because the sun’s path through the sky is known. 

Accurate outdoor temperature forecasts are particularly valuable for electric or gas utilities. 

Nowadays, temperature forecasts are particularly reliable and accurate, with more than 92% 

accuracy with one day ahead (ForecastWacth, 2014). 

Thus, in a scenario that privileges the renewable energy usage, the used demand side 

management approach allows the management of distributed loads, aiming the adjustment of the 

demand to the supply, providing thermal comfort, lower energy costs and lowering 

CO2.emissons. By using this active DSM control, the optimal control strategies for various 

appliances can be generated whilst maximum utilisation of energy supplied from intermittent 

systems is guaranteed. The used DSM strategy is described in Chapter 3.3. 

3.3 Demand side management approach 

It is widely accepted that some form of real-time pricing arrangements is required to efficiently 

allocate DSM resources and fully inform users about the value of electricity at each point in 

time and location. Combination of ICT and business processes will be significant tools in the 

real time management of active networks, customers and commercial systems. Deregulated 

markets will let consumers to exploit information to move between competing energy suppliers 

based on energy cost, greenhouse gas emissions and social goals. A SG vision for the market 

has been developed in recent years through the work of a consortium of utilities. One option is 

an “eBay for electricity”, where continual electronic sales match energy consumers with energy 

producers. Soon customers will be able to bond the electricity pricing into their energy 

management system. High gap in price differentials between cost periods could result in greater 

shifts of energy usage. This needs to be accompanied by the application of intelligent appliances 

that would facilitate the implementation of DSM. In order to simplify such trading of energy 

among a very large number of smaller domestic participants, an electronic energy market 



SELECTION AND IDENTIFICATION SCENARIOS AND MODELS 

 57 

system, supported for example by the internet, would need to be developed (an extension of 

power-exchange-type markets). 

Thus, the developed system intends to provide a solution to be implemented in these future 

energy markets. It considers that the MO offers a green resource auction where each TCA sets a 

day-ahead their bids. The agents (one by each TCA) must bid in an auction, the price that they 

are willing to pay to consume the green resource according to their own consumption forecasts.  

Utilities are able to see what power loads are creating bigger demand on their side, allowing 

them to more effectively implement DR programs for heating and cooling. Although, before 

demand–response systems can be effectively deployed on a wide scale in the residential sector, 

a number of technical challenges need to be resolved (infrastructure of communications, 

metering infrastructure, demand–response thermostats, etc.). This is likely to include some form 

of house energy management system that may rely on wireless technology that would 

automatically respond to price signals while taking into consideration the homeowner's 

preferences for cost versus comfort. Furthermore, the thermostat can be programmed to change 

settings with seasons. The thermostats can also have a notification feature to alert residents for 

calls for action, as well as an override feature, in case the customer chooses not to participate in 

the particular event. The customer main obtain information on buy-back rates via internet 

connections and takes appropriate action to manage peak loads. A key issue in these 

programmes is how sophisticated or complex they need to be to make the price signals. There is 

also the issue of verification to confirm that some benefit was obtained when the thermostat and 

air-conditioning system responded. Thermostats can also be pre-programmed to receive weather 

forecasts, to optimize both a consumer's energy savings and grid performance. The system uses 

weather forecasts and, when applied, neighbours indoor temperature forecasts, to anticipate 

major changes in the surrounding temperature and manage heating and cooling needs in 

advance, in the most energy-efficient way. 

3.4 TCA Dynamical Models 

The dynamics of temperature evolution in a building is one of the most important aspects of the 

overall building dynamics. The complexity in the dynamics of temperature evolution comes 

from the thermal interaction among rooms (and the outside). This interaction can either be 

through conduction across the walls, or through convective air exchanging among rooms. 

Consumption of energy is predominantly determined from a selection of materials and 

architectural solutions. It can be further reduced with efficient management of heating or 

cooling. 
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The building geometry constitutes the basic input for energy simulation. It is crucial to 

understand the differences between a building model created by an architect and a building 

model needed for energy simulation. For example, energy simulations spaces need to be defined 

by space boundaries, which are not necessarily the same as walls in an architectural model. 

Thermal building simulation engines like, EnergyPlus or DOE-2 (Maile et al., 2007), predict the 

energy performance of a given building and thermal comfort for its occupants. In general, they 

support the understanding of how a given building operates according to certain criteria and 

enable comparisons of different design alternatives. This kind of software allows designing and 

characterizing in detail all the major features of a building architecture. Most of them also 

require a set of inputs which mainly consist in building geometry, internal loads, HVAC 

systems and components, weather data, operating strategies and schedules and simulation of 

specific parameters. However, these tools are only used for thermal simulation with predicted 

scenarios and previously established data, not working with real time inputs and data, which 

allow instant action over devices with control and decision mechanisms. 

 

 

Figure 3.7. Energy modelling and building design process example with EnergyPlus. 

Every energy simulation is based on thermodynamic equations, principles and assumptions. 

Since thermal processes in buildings are today complex and not totally understood, energy 

simulation programs estimate their predictions with qualified equations and methods. Therefore, 

results can be arbitrarily incorrect, if certain assumptions are not satisfied or matched in the 

simulation in real life. While two or three dimensional heat transfer would increase the accuracy 

of simulation results, geometry input and simulation running at real time is likely to become 

more complex. As mentioned earlier, the input, especially weather data and internal loads, for 

energy simulation is already based on assumptions, as are the thermodynamic concepts. For that 
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matter, any simulation is based on assumptions; therefore complex interrelations can be 

simplified and managed. Users need to be aware of these assumptions and be able to decide 

whether they are reasonable for their specific simulation or not. Thus, the idea here presented is 

to apply the principle of analogy between two different physical domains that can be described 

by the same mathematical equations. Consequently, a linear electrical circuit represents the 

building, the state-space equations are obtained by solving the circuit. Here, the temperature is 

equivalent to voltage and the heat flux to current. Heat transmission resistance is represented by 

electrical resistance and thermal capacity by electrical capacity. The building equivalent circuit 

is obtained by assembling models of the walls, windows, internal mass, etc. For single-zone 

buildings, interior walls are part of the internal thermal mass, while exterior walls form the 

building envelope. Several approaches are seen in (Zong et al., 2012; Hazyuk et al. 2011) where 

is shown that building models can be simple or more complex depending on the objective. 

Therefore, the first order energy balance model (3.1)-(3.3) that describes the dominant dynamics 

of a generic division, is considered suitable for control purposes (Barata et al., 2014b). Note that 

these are basic equations for edifice thermal modelling which can be described by several 

divisions and floors thermally interacting between them. For complete thermal models see 

(Hazyuk et al. 2011). 

𝑑𝑇𝑙
𝑖

𝑑𝑡
=

1

𝐶𝑙𝑒𝑞
𝑖
(𝑄𝑙

𝑖
ℎ𝑒𝑎𝑡

− 𝑄𝑙𝑙𝑜𝑠𝑠𝑒𝑠
𝑖 + 𝑄𝑙𝑃𝑑

𝑖 ), (3.1) 

𝑄𝑙𝑙𝑜𝑠𝑠𝑒𝑠
𝑖 =

𝑇𝑜𝑢𝑡 − 𝑇𝑙
𝑖

𝑅𝑙𝑒𝑞
𝑖

+ ∑
𝑇𝑔
𝑖 − 𝑇𝑙

𝑖

𝑅𝑙𝑔𝑒𝑞
𝑖 𝐶𝑙𝑒𝑞

𝑖
𝛥𝑡

𝑁𝑑𝑖

𝑔=1
(𝑔≠𝑙)

+ ∑ ∑
𝑇𝑚
ℎ − 𝑇𝑙

𝑖

𝑅𝑙𝑚𝑒𝑞
𝑖ℎ 𝐶𝑙𝑒𝑞

𝑖

𝑁𝑑ℎ

𝑚=1

𝑁𝑠

ℎ=1
(ℎ≠𝑖)

,
 (3.2) 

𝑅𝑙𝑒𝑞
𝑖 = 𝑅𝑙𝑟𝑜𝑜𝑓

𝑖 //𝑅𝑙𝑤𝑖𝑛𝑑𝑜𝑤𝑠
𝑖 //𝑅𝑙𝑤𝑎𝑙𝑙𝑠

𝑖 //𝑅𝑙𝑡ℎ
𝑖 , (3.3) 

𝑅𝑙𝑤𝑖𝑛𝑑𝑜𝑤𝑠
𝑖 =∑𝑅𝑤𝑖𝑛𝑑𝑜𝑤𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 , (3.3a) 

𝑅𝑙𝑟𝑜𝑜𝑓
𝑖 =∑𝑅𝑟𝑜𝑜𝑓𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 , (3.3b) 

𝑅𝑙𝑤𝑎𝑙𝑙𝑠
𝑖 =∑𝑅𝑤𝑎𝑙𝑙𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 , (3.3c) 

where in (3.1), 𝑄𝑙𝑙𝑜𝑠𝑠𝑒𝑠
𝑖 is heat and cooling losses (kW) from division (l), 𝑇𝑙

𝑖 the inside 

temperature (ºC), 𝐶𝑙𝑒𝑞
𝑖  the equivalent thermal capacitance (kJ/ºC), and 𝑄𝑙

𝑖
ℎ𝑒𝑎𝑡

the heat and 

cooling power (kW) and 𝑄𝑙𝑃𝑑
𝑖  the external thermal disturbances (kW) (e.g. load generated by 

occupants, direct sunlight, electrical devices or doors and windows aperture to recycle the 
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indoor air). In (3.2) 𝑇out is the outdoor temperature (ºC), 𝑅𝑙𝑔𝑒𝑞
𝑖  the thermal resistance between 

division (l) and the adjacent zone (g), 𝑅𝑙𝑒𝑞
𝑖 the equivalent thermal resistance (C/kW), and 𝑅𝑙𝑡ℎ

𝑖  the 

air thermal resistance to bulk of division.  

Figure 3.8 and Figure 3.9 present a simplified schematic representation of thermal-electrical 

modular analogy described by (3.1)-(3.3). 𝑇1
𝑖…𝑇𝑁𝑑𝑖

𝑖 are the inside temperature of adjacent 

spaces inside the same house, and 𝑅1
𝑖 …𝑅𝑁𝑑𝑖

𝑖  the equivalent thermal resistance between the 

division and that adjacent areas. 

 

 

Figure 3.8. Schematic representation of thermal-electrical modular analogy for one division. 

 

        

 

Figure 3.9. Generic schematic representation of thermal-electrical modular analogy for several 

divisions (Barata et al., 2014b). 
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As described in (Barata, et al., 2013b), a first order energy balance model is used to define the 

dominant dynamics of a generic division. Remark that these are the basic equations for structure 

thermal modelling and can be described by several divisions and floors interacting between 

them. In literature there are several degrees of complexity for house modelling techniques 

(Thavlov, 2008). The model used is linear and considers control purposes suitability, 

𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘) + 𝒗(𝑘), (3.4) 

where x  ℝn is the state variable, indoor temperatures, vector containing all the divisions 

temperatures (ºC), u  ℝm is the input vector containing all the heating and cooling power 

sources (W) to weatherize each division, and v  ℝn includes all the disturbances (W), 

including load generated by occupants, solar radiation, any other heat/cooling sources or doors 

and windows aperture to recycle the indoor air, k is an integer number that denotes discrete time 

and A  ℝn×n, B  ℝn×m, are matrices. 

Generically, using Euler discretization (Bequette, 2003) with a sampling time of , the discrete 

model space-state representation of (3.4) can be written, for the Ns TCAs and for each division 

(l) as, 

𝑇𝑙
𝑖(𝑘 + 1) = 𝐴𝑙𝑙

𝑖𝑖𝑇𝑙
𝑖(𝑘) + 𝐵𝑙

𝑖𝑢𝑙
𝑖(𝑘) + ∑ (𝐴𝑙𝑔

𝑖𝑖 𝑇𝑔
𝑖(𝑘))

𝑁𝑑𝑖

𝑔=1
(𝑔≠𝑙)⏟          

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 
𝑓𝑟𝑜𝑚 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑎𝑟𝑒𝑎𝑠 
𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 ℎ𝑜𝑢𝑠𝑒

+ ∑ ∑ (𝐴𝑙𝑚
𝑖ℎ 𝑇𝑚

ℎ(𝑘))

𝑁𝑑ℎ

𝑚=1

𝑁𝑠

ℎ=1
(ℎ≠𝑖)⏟              
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 
𝑓𝑟𝑜𝑚 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑎𝑟𝑒𝑎𝑠 
𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 ℎ𝑜𝑢𝑠𝑒𝑠

+ 𝑣𝑙
𝑖(𝑘), 

(3.5) 

where 

𝐴𝑙𝑙
𝑖𝑖 = (1 −

𝛥𝑡

𝑅𝑙𝑒𝑞
𝑖 𝐶𝑙𝑒𝑞

𝑖
) , 𝐵𝑙

𝑖 =
𝛥𝑡

𝐶𝑙𝑒𝑞
𝑖
, 𝐷𝑙

𝑖 = ∑
𝑇𝑔
𝑖 − 𝑇𝑙

𝑖

𝑅𝑙𝑔𝑒𝑞
𝑖 𝐶𝑙𝑒𝑞

𝑖
𝛥𝑡

𝑁𝑑𝑖

𝑔=1
(𝑔≠𝑙)

+ ∑ ∑
𝑇𝑚
ℎ − 𝑇𝑙

𝑖

𝑅𝑙𝑚𝑒𝑞
𝑖 𝐶𝑙𝑒𝑞

𝑖
𝛥𝑡

𝑁𝑑ℎ

𝑚=1

𝑁𝑠

ℎ=1
(ℎ≠𝑖)

, 

𝑣𝑙
𝑖 =

𝑃𝑙𝑃𝑑
𝑖 𝛥𝑡

𝐶𝑙𝑒𝑞
𝑖

+
𝑇𝑜𝑎𝛥𝑡

𝑅𝑙𝑒𝑞
𝑖 𝐶𝑙𝑒𝑞

𝑖
. 

(3.6) 

where Ns is number of TCA’s, Ndi is number of divisions inside subsystem (i), 𝑥𝑙
𝑖 is the indoor 

temperature in TCA/subsystem (i) inside division (l), 𝑢𝑙
𝑖 is the used power to provide comfort in 

TCA/subsystem (i) inside division (l), 𝐴𝑙𝑚
𝑖ℎ  is an element from the state matrix A that relates the 

state (indoor temperature) in division (m) from TCA/subsystem (h), with the state from division 

(l) in TCA (i) and 𝑣𝑙
𝑖 is the thermal disturbance in TCA/subsystem (i) inside division (l) e(g. 

load generated by occupants, direct sunlight, electrical devices or doors and windows aperture 

to recycle the indoor air), and Toa, the temperature of outside air (ºC). Remark that the number 

of states variables in general model (3.4) is 
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𝑛 =∑ 𝑁𝑑𝑖
𝑁𝑠

𝑖=1
. 

To exemplify, Figure 3.10 illustrates a house/TCA with six divisions that thermally interact 

between them. 

 

 

Figure 3.10. TCA divisions interaction simplified scheme; 

So, for each division, (3.4) can be written as:  

𝑥1
1(𝑘 + 1) = 𝐴11

11𝑥1
1(𝑘) + 𝐴12

11𝑥2
1(𝑘) + 𝐵1

1𝑢1
1(𝑘) + 𝑣1

1(𝑘),  

𝑥2
1(𝑘 + 1) = 𝐴22

11𝑥2
1(𝑘) + 𝐴21

11𝑥1
1(𝑘) + 𝐴23

11𝑥3
1(𝑘) + 𝐴24

11𝑥4
1(𝑘) + 𝐴26

11𝑥6
1(𝑘) + 𝐵2

1𝑢2
1(𝑘) + 𝑣2

1(𝑘),  

𝑥3
1(𝑘 + 1) = 𝐴33

11𝑥3
1(𝑘) + 𝐴32

11𝑥2
1(𝑘) + 𝐴35

11𝑥5
1(𝑘) + 𝐴36

11𝑥6
1(𝑘) + 𝐵3

1𝑢3
1(𝑘) + 𝑣3

1(𝑘), (3.7) 

𝑥4
1(𝑘 + 1) = 𝐴44

11𝑥4
1(𝑘) + 𝐴42

11𝑥2
1(𝑘) + 𝐴45

11𝑥5
1(𝑘) + 𝐴46

11𝑥6
1(𝑘) + 𝐵4

1𝑢4
1(𝑘) + 𝑣4

1(𝑘),  

𝑥5
1(𝑘 + 1) = 𝐴55

11𝑥5
1(𝑘) + 𝐴53

11𝑥3
1(𝑘) + 𝐴54

11𝑥4
1(𝑘) + 𝐴56

11𝑥6
1(𝑘) + 𝐵5

1𝑢5
1(𝑘) + 𝑣5

1(𝑘),  

𝑥6
1(𝑘 + 1) = 𝐴66

11𝑥6
1(𝑘) + 𝐴62

11𝑥2
1(𝑘) + 𝐴63

11𝑥3
1(𝑘) + 𝐴64

11𝑥4
1(𝑘) + 𝐴65

11𝑥5
1(𝑘) + 𝐵6

1𝑢6
1(𝑘) + 𝑣6

1(𝑘),  

dl1 dl2 

dl4 
dl3 

dl5 

dl6 
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[
 
 
 
 
 
 
𝑥1
1(𝑘 + 1)

𝑥2
1(𝑘 + 1)

𝑥3
1(𝑘 + 1)

𝑥4
1(𝑘 + 1)

𝑥5
1(𝑘 + 1)

𝑥6
1(𝑘 + 1)]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐴11
11 0 0 0 0 0

0 𝐴22
11 0 0 0 0

0 0 𝐴33
11 0 0 0

0 0 0 𝐴44
11 0 0

0 0 0 0 𝐴55
11 0

0 0 0 0 0 𝐴66
11]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑥1
1(𝑘)

𝑥2
1(𝑘)

𝑥3
1(𝑘)

𝑥4
1(𝑘)

𝑥5
1(𝑘)

𝑥6
1(𝑘)]

 
 
 
 
 
 

+

[
 
 
 
 
 
 
0 𝐴12

11 0 0 0 0

𝐴21
11 0 𝐴23

11 𝐴24
11 0 𝐴26

11

0 𝐴32
11 0 0 𝐴35

11 𝐴36
11

0 𝐴42
11 0 0 𝐴45

11 𝐴46
11

0 0 𝐴53
11 𝐴54

11 0 𝐴56
11

0 𝐴62
11 𝐴63

11 𝐴64
11 𝐴65

11 0 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑥1
1(𝑘)

𝑥2
1(𝑘)

𝑥3
1(𝑘)

𝑥4
1(𝑘)

𝑥5
1(𝑘)

𝑥6
1(𝑘)]

 
 
 
 
 
 

+

[
 
 
 
 
 
 
𝐵1
1 0 0 0 0 0

0 𝐵2
1 0 0 0 0

0 0 𝐵3
1 0 0 0

0 0 0 𝐵4
1 0 0

0 0 0 0 𝐵5
1 0

0 0 0 0 0 𝐵6
1]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑢1
1(𝑘)

𝑢2
1(𝑘)

𝑢3
1(𝑘)

𝑢4
1(𝑘)

𝑢5
1(𝑘)

𝑢6
1(𝑘)]

 
 
 
 
 
 

+

[
 
 
 
 
 
 
𝑣1
1(𝑘)

𝑣2
1(𝑘)

𝑣3
1(𝑘)

𝑣4
1(𝑘)

𝑣5
1(𝑘)

𝑣6
1(𝑘)]

 
 
 
 
 
 

.

 (3.8) 

For a more complex scenario, Figure 3.11 shows a distributed environment with five houses 

with different plans and with different zones that may thermally interact. Remark that as 

described in the sequel, adjacent areas can be doubly coupled, thermally and by the power 

constraint. In Figure 3.11, ui represents the input (heat/cooling power) and yi is the output vector 

containing the temperatures/states inside the several divisions of house (i) 

 

Figure 3.11. Generalized house/TCA scheme example. 

Thus, (3.4) can be generalized and presented as:  

 

𝑥1
1(𝑘 + 1) = 𝐴11

11𝑥1
1(𝑘) + 𝐴12

11𝑥2
1(𝑘) + 𝐴13

11𝑥3
1(𝑘) + 𝐴11

12𝑥1
2(𝑘)+𝐴12

12𝑥2
2(𝑘)+𝐵1

1𝑢1
1(𝑘) + 𝑣1

1(𝑘),  

𝑥2
1(𝑘 + 1) = 𝐴22

11𝑥2
1(𝑘) + 𝐴21

11𝑥1
1(𝑘) + 𝐴23

11𝑥3
1(𝑘)+𝐵2

1𝑢2
1(𝑘) + 𝑣(𝑘),  

𝑥3
1(𝑘 + 1) = 𝐴33

11𝑥3
1(𝑘) + 𝐴32

11𝑥2
1(𝑘) + 𝐴31

11𝑥1
1(𝑘) + 𝐴32

12𝑥2
2(𝑘)+𝐵3

1𝑢3
1(𝑘) + 𝑣3

1(𝑘),  

𝑥1
2(𝑘 + 1) = 𝐴11

22𝑥1
2(𝑘) + 𝐴12

22𝑥2
2(𝑘) + 𝐴11

21𝑥1
1(𝑘)+𝐵1

2𝑢1
2(𝑘) + 𝑣1

2(𝑘),  

𝑥2
2(𝑘 + 1) = 𝐴22

22𝑥2
2(𝑘) + 𝐴21

22𝑥1
2(𝑘) + 𝐴21

21𝑥1
1(𝑘) + 

                𝐴23
21𝑥3

1(𝑘)+𝐴22
23𝑥2

3(𝑘) + 𝐴21
24𝑥1

4(𝑘) + 𝐵2
2𝑢2

2(𝑘) + 𝑣2
2(𝑘), 

(3.9) 

1

2

4
3

1u

1y

2u

2y

3u

3y
4u

4y

5
5u

5y
d11

d12

d13

d22d31

d32

d41

d21w3

w2

w1

w4
d51

w5
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𝑥1
3(𝑘 + 1) = 𝐴11

33𝑥1
3(𝑘) + 𝐴12

33𝑥2
3(𝑘) + 𝐴11

34𝑥1
4(𝑘)+𝐵1

3𝑢1
3(𝑘) + 𝑣1

3(𝑘),  

𝑥2
3(𝑘 + 1) = 𝐴22

33𝑥2
3(𝑘) + 𝐴21

33𝑥1
3(𝑘) + 𝐴21

34𝑥1
4(𝑘)𝐴21

32𝑥1
2(𝑘)+𝐴22

32𝑥2
2(𝑘) + 𝐵2

3𝑢2
3(𝑘) + 𝑣2

3(𝑘),  

𝑥1
4(𝑘 + 1) = 𝐴11

44𝑥1
4(𝑘) + 𝐴11

43𝑥1
3(𝑘) + 𝐴12

43𝑥2
3(𝑘)𝐴12

42𝑥2
2(𝑘) + 𝐵1

4𝑢1
4(𝑘) + 𝑣1

4(𝑘),  

𝑥1
5(𝑘 + 1) = 𝐴11

55𝑥1
5(𝑘)+𝐵1

5𝑢1
5(𝑘) + 𝑣1

5(𝑘),  

[
 
 
 
 
 
 
 
 
 
 
𝑥1
1(𝑘 + 1)

𝑥2
1(𝑘 + 1)

𝑥3
1(𝑘 + 1)

𝑥1
2(𝑘 + 1)

𝑥2
2(𝑘 + 1)

𝑥1
3(𝑘 + 1)

𝑥2
3(𝑘 + 1)

𝑥1
4(𝑘 + 1)

𝑥1
5(𝑘 + 1)]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
𝐴11
11 𝐴12

11 𝐴13
11 𝐴11

12 𝐴12
12 0 0 0 0

𝐴21
11 𝐴22

11 𝐴23
11 0 0 0 0 0 0

𝐴31
11 𝐴31

11 𝐴33
11 𝐴32

12 0 0 0 0 0

𝐴11
21 0 0 𝐴11

22 𝐴12
22 0 0 0 0

𝐴21
21 0 𝐴23

21 𝐴21
21 𝐴22

22 0 𝐴22
23 𝐴21

24 0

0 0 0 0 0 𝐴11
33 𝐴12

33 𝐴11
34 0

0 0 0 𝐴21
32 𝐴22

32 𝐴21
33 𝐴22

33 𝐴21
34 0

0 0 0 𝐴12
42 0 𝐴11

43 𝐴12
43 𝐴11

44 0

0 0 0 0 0 0 0 0 𝐴11
55]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑥1
1(𝑘)

𝑥2
1(𝑘)

𝑥3
1(𝑘)

𝑥1
2(𝑘)

𝑥2
2(𝑘)

𝑥1
3(𝑘)

𝑥2
3(𝑘)

𝑥1
4(𝑘)

𝑥1
5(𝑘)]

 
 
 
 
 
 
 
 
 
 

+

+

[
 
 
 
 
 
 
 
 
 
 
𝐵1
1 0 0 0 0 0 0 0 0

0 𝐵2
1 0 0 0 0 0 0 0

0 0 𝐵3
1 0 0 0 0 0 0

0 0 0 𝐵1
2 0 0 0 0 0

0 0 0 0 𝐵2
2 0 0 0 0

0 0 0 0 0 𝐵1
3 0 0 0

0 0 0 0 0 0 𝐵2
3 0 0

0 0 0 0 0 0 0 𝐵1
4 0

0 0 0 0 0 0 0 0 𝐵1
5]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑢1
1(𝑘)

𝑢2
1(𝑘)

𝑢3
1(𝑘)

𝑢1
2(𝑘)

𝑢2
2(𝑘)

𝑢1
3(𝑘)

𝑢2
3(𝑘)

𝑢1
4(𝑘)

𝑢1
5(𝑘)]

 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
𝑣1
1(𝑘)

𝑣2
1(𝑘)

𝑣3
1(𝑘)

𝑣1
2(𝑘)

𝑣2
2(𝑘)

𝑣1
3(𝑘)

𝑣2
3(𝑘)

𝑣1
4(𝑘)

𝑣1
5(𝑘)]

 
 
 
 
 
 
 
 
 
 

.
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Chapter 4 

4 MPC and PI control in thermal 

comfort systems 

4.1 Introduction 

The chapter presents the first approach towards the final developed control structure. It allowed 

us to understand the problem, its dynamics and to verify that the MPC control strategy is 

suitable for the objective that is intent to be achieved. So, it considers one house/TCA and no 

communication with neighbouring is taking into account (Barata et al., 2012a). 

The methodologies are based on a predictive control structure associated to a PI controller and 

applied to the thermal house comfort in an environment with limited energy sources. Thus, the 

available and necessary power to cool and heat the house within the desire “comfort zone” is 

partially available and, consequently constrained. The system also uses the house thermal inertia 

to “accommodate thermal energy” within the selected temperature range, maintaining the 

comfort when no energy is available and reducing the energy consumption without loss of the 

thermal comfort. The simulation results obtained with traditional PI and with MPC are 

presented and it can be seen that the system is able to provide high-energy conservation and 

reliable comfort. The house temperature variations are calculated and are taking into account the 

necessary heat and cooling needs and heat losses to the environment. The indoor temperature 

time derivative is expressed as follows, 

𝑑𝑇𝑙
𝑖

𝑑𝑡
=

1

𝐶𝑙𝑒𝑞
𝑖
(𝑄𝑙

𝑖
ℎ𝑒𝑎𝑡

− 𝑄𝑙𝑙𝑜𝑠𝑠𝑒𝑠
𝑖 + 𝑄𝑙𝑃𝑑

𝑖 ). (4.1) 
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Actually (4.1) is not an accurate model of the house. Nevertheless, it reflects well enough the 

dominant model of a real house to be used for designing the MPC controller.  

The heat loss is mainly a function of outdoor air temperature. By taking the outdoor temperature 

as a primary influencing factor for the weather, the heat loss is given by, 

𝑄𝑙𝑙𝑜𝑠𝑠𝑒𝑠
𝑖 =

𝑇𝑜𝑢𝑡 − 𝑇𝑙
𝑖

𝑅𝑙𝑒𝑞
𝑖

. (4.2) 

The parameter 𝑅𝑙𝑒𝑞
𝑖  describes the equivalent thermal resistance of all walls (including roof and 

ceiling) and windows that isolate the house from outside, and can be describe as a electrical 

parallel resistance circuit (Gulley and Chistol, 2006; Ma, et al., 2012). 

𝑅𝑙𝑒𝑞
𝑖 = 𝑅𝑙𝑤𝑎𝑙𝑙𝑠

𝑖 //𝑅𝑙𝑤𝑖𝑛𝑑𝑜𝑤𝑠
𝑖 . (4.3) 

As also used in (Löhnberg, 1999; Mendes, et al., 2001), the external temperature disturbance 

variation, Tout, can be approximated represented by a sine (with a given amplitude) where is 

added a constant temperature value. Other disturbances can be reflected in (4.1), like heat flux 

from solar radiation, inside loads generated by occupancy, lights or other electrical devices (Ma, 

et al., 2012).  

The plant model representation (4.1) can be rewritten and changed into a discrete model. 

𝑦(𝑘 + 1) = 𝑎𝑦(𝑘) + 𝑏𝑢(𝑘) + 𝑐𝑣(𝑘), (4.4) 

where, 𝑎 = (1 −
Δt

𝑅𝑙𝑒𝑞
𝑖 𝐶𝑙𝑒𝑞

𝑖 ) , 𝑏 =
Δt

𝐶𝑙𝑒𝑞
𝑖 , c=

Δt

𝑅𝑙𝑒𝑞
𝑖 𝐶𝑙𝑒𝑞

𝑖 , u(k) is the necessary heat/cooling power, v(k) 

are the disturbances and y(k) is the indoor temperature. Note that the space is cooled when u(k) 

< 0 and heated when u(k) > 0. 

4.2 System description 

As a first approach towards developing a control structures it is considered an individual house, 

Figure 4.1. As mentioned, this approach does not take into account the possibility of 

communication with neighbouring houses. 
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PI

+

HVAC
MPC

-
+

r0(k) u(k) y(k)

v(k)

Disturbances forecasts

Environment temperature, 

solar loads
Environment temperature, 

solar loads

Disturbances

Avaiable power

 

Figure 4.1. Block diagram of the implemented system. 

The following discrete equations describe the implemented system showed in Figure 4.1. 

𝑌(𝑧) =
𝑏

𝑧 − 𝑎
𝑈(𝑧) +

𝑐

𝑧 − 𝑎
𝑉(𝑧). (4.5) 

With the controller described by, 

𝑃𝐼 = 𝑘𝑝 +
𝑘𝑖𝑧

𝑧 − 1
=
𝑧(𝑘𝑝 + 𝑘𝑖) − 𝑘𝑝

𝑧 − 1
. (4.6) 

Being  

𝑈(𝑧) = 𝑘
𝑧 − 𝛽

𝑧 − 1
𝐸(𝑧), (4.7) 

and 

𝐸(𝑧) = 𝑅0(𝑧) − 𝑌(𝑧). (4.8) 

Figure 4.1 can also be characterized by the following discrete equations, where (4.9) and (4.10) 

describe the system and (4.11) and (4.12) the controller. 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑣(𝑘), (4.9) 

𝑦(𝑘) = 𝐶𝑥(𝑘), (4.10) 

𝜉(𝑘 + 1) = 𝐴𝑐𝜉(𝑘) + 𝐵𝑐[𝑟(𝑘) − 𝑦(𝑘)], (4.11) 

𝑢(𝑘) = 𝐶𝑐𝜉(𝑘). (4.12) 

Substituting (4.12) in (4.9) and (4.10) in (4.11) results in (4.13) and (4.14), respectively that 

describe the close-loop system in u(k). 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝐶𝑐𝜉(𝑘) + 𝐸𝑣(𝑘), (4.13) 
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𝜉(𝑘 + 1) = 𝐴𝑐𝜉(𝑘) + 𝐵𝑐[𝑟(𝑘) − 𝐶𝑥(𝑘)], (4.14) 

[
𝑥(𝑘 + 1)

𝜉(𝑘 + 1)
] = [

𝐴 𝐵𝐶𝑐
−𝐵𝑐𝐶 𝐴𝑐

] [
𝑥(𝑘)

𝜉(𝑘)
] + [

0
𝐵𝑐
] 𝑟(𝑘) + [

𝐸
0
] 𝑣(𝑘). (4.15) 

The following equations describe the close-loop system ∆r(k) 

𝑟(𝑘) = 𝛥𝑟(𝑘) + 𝑟(𝑘 − 1), (4.16) 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝐶𝑐𝜉(𝑘) + 𝐸𝑣(𝑘). (4.17) 

Equation (4.18) results from substituting (4.16) in (4.14). 

𝜉(𝑘 + 1) = 𝐴𝑐𝜉(𝑘) − 𝐵𝑐𝐶𝑥(𝑘) + 𝐵𝑐[𝛥𝑟(𝑘) − 𝑟(𝑘 − 1)], (4.18) 

with 

 𝛾(𝑘) = 𝑟(𝑘 − 1), (4.19) 

𝛾(𝑘 + 1) = 𝛾(𝑘) + 𝛥𝑟(𝑘), (4.20) 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝐶𝑐𝜉(𝑘) + 𝐸𝑣(𝑘). (4.21) 

Substituting (4.20) in (4.18) results in  

𝜉(𝑘 + 1) = −𝐵𝑐𝐶𝑥(𝑘) + 𝐴𝑐𝜉(𝑘) + 𝐵𝑐𝛾(𝑘) + 𝐵𝑐𝛥𝑟(𝑘), (4.22) 

[

𝑥(𝑘 + 1)

𝜉(𝑘 + 1)

𝛾(𝑘 + 1)
] = [

𝐴 𝐵𝐶𝑐 0
−𝐵𝑐𝐶 𝐴𝑐 𝐵𝐶
 0 0 𝐼

]

⏞            
𝐴1

[

𝑥(𝑘)
𝜉(𝑘)

𝛾(𝑘)
]

⏞    
𝜁(𝑘)

+ [
0 𝐸
𝐵𝐶 0
𝐼 0

]

⏞    
[𝐵1 𝐵2]

[
𝛥𝑟0(𝑘)
𝑣(𝑘)

], (4.23) 

𝑦(𝑘) = [𝐶 0 0⏟      
𝐶𝑦

] [

𝑥(𝑘)

𝜉(𝑘)

𝛾(𝑘)
], (4.24) 

𝑢(𝑘) = [0 𝐶𝑐 0⏟      
𝐶𝑢

] [

𝑥(𝑘)
𝜉(𝑘)

𝛾(𝑘)
], (4.25) 

𝑟 = [0 0 𝐼] [

𝑥(𝑘)

𝜉(𝑘)

𝛾(𝑘)
], (4.26) 

Or, 

𝜉(𝑘 + 1) = 𝐴1𝜁(𝑘) + 𝐵1𝛥𝑟0(𝑘) + 𝐵2𝑣(𝑘), (4.27) 



MPC AND PI CONTROL IN THERMAL COMFORT SYSTEMS 

  69 

𝑦(𝑘) = 𝐶𝑦𝜁(𝑘)      𝑢(𝑘) = 𝐶𝑢𝜁(𝑘). (4.28) 

As mentioned in Chapter 2.3 predictive control is based on the receding horizon principle in 

which, at each sample interval, the current controller output is obtained by solving an optimal 

control problem of finite horizon. The input to the controller is current output/state information 

and the output is a sequence of future control actions where usually the first element in the 

sequence is applied to the plant.  

Predictive control belongs to the class of model-based designs where a model of the plant is 

used to predict the behaviour of the plant and calculate the controller output such that a given 

control criterion is minimized. 

The criterion must be selected such that the performance and robustness specifications are 

accomplished. The GPC criterion introduced in (Clarke et al., 1987) is of the form: 

 

𝐽 = ∑[∑‖𝑦𝑖(𝑘 + 𝑙) − 𝑦𝑖
𝑑(𝑘 + 𝑙)‖

𝑄𝑖

2
+

𝐻𝑃

𝑙=1

∑‖𝛥𝑢𝑖(𝑘 + 𝑙 − 1)‖𝑅𝑖
2

𝑁𝐶

𝑙=1

]

𝑛

𝑖=1

, (4.29) 

where Qi and Ri are weight matrices, HP, NC  are predictive horizon and control horizon, 

respectively, and HP ≥ M, yi
d is the set-point of subsystem Si , Δui(k) = ui(k) − Δui(k − 1) is 

the input increment vector of subsystem Si . 

Considering Figure 4.1, (4.29) can be rewritten, 

 

𝐽 =∑[∑‖𝑦𝑖(𝑘 + 𝑙) − 𝑟𝑖
𝑑(𝑘 + 𝑙)‖

𝑄𝑖

2
+

𝐻𝑃

𝑙=1

∑‖𝛥𝑟𝑜𝑖(𝑘 + 𝑙 − 1)‖𝑅𝑖
2

𝑁𝐶

𝑙=1

]

𝑛

𝑖=1

. (4.30) 

Then the model outputs in future sample intervals are given as follows: 

𝑦 = [

𝑦 (𝑘 + 1)

𝑦 (𝑘 + 2)
⋮

𝑦 (𝑘 + 𝐻𝑃)

] = [

𝑦 𝑜(𝑘 + 1)

𝑦 𝑜(𝑘 + 2)
⋮

𝑦 𝑜(𝑘 + 𝐻𝑃)

] + [

𝑔1 0 … 0
𝑔2 𝑔1 ⋱ ⋮
⋮ ⋮ ⋱ 0
𝑔𝐻𝑃 𝑔𝐻𝑃−1 … 𝑔𝐻𝑃−𝑁𝐶−1

] 

× [

∆𝑟𝑜(𝑘)

∆𝑟𝑜(𝑘 + 1)
⋮

∆𝑟𝑜(𝑘 + 𝑁𝐶 − 1)

]. 

(4.31) 

Where,  
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[

𝑦 𝑜(𝑘 + 1)

𝑦 𝑜(𝑘 + 2)
⋮

𝑦 𝑜(𝑘 + 𝐻𝑃)

] =

[
 
 
 
𝐶1𝐴1 𝐶2𝐴2 … 𝐶𝑛𝐴𝑛
𝐶1𝐴1

2 𝐶2𝐴2
2 ⋱ 𝐶𝑛𝐴𝑛

2

⋮ ⋮ ⋱ ⋮
𝐶1𝐴1

𝐻𝑃 𝐶2𝐴2
𝐻𝑃 … 𝐶𝑛𝐴𝑛

𝐻𝑃]
 
 
 
[

𝑥𝑜(𝑘)

𝑥𝑜(𝑘 + 1)
⋮

𝑥𝑜(𝑘 + 𝑁𝐶 − 1)

] + 

                  [

𝑤1 0 … 0
𝑤1 𝑤1 ⋱ ⋮
⋮ ⋮ ⋱ 0
𝑤𝐻𝑃 𝑤𝐻𝑃−1 … 𝑤𝐻𝑃−𝑁𝐶−1

] [

𝑣(𝑘)

𝑣(𝑘 + 1)
⋮

𝑣(𝑘 + 𝑁𝐶 − 1)

]. 

(4.32) 

In compact form, (4.31) and (4.32) can be written as the following relations: 

�̂� = �̂�𝑜 + 𝐺∆𝑅𝑜, (4.33) 

�̂�0 = 𝐶𝐴𝑥0 +𝑊𝑣. (4.34) 

Being the prediction error e determined using the following equation, 

𝑒 = 𝑦 − 𝑟𝑑 , (4.35) 

where rd is the set-point. Substituting (4.33) in (4.35), and the result in (4.30), the objective 

function can be presented in the form, 

𝐽(∆𝑅𝑜) = (𝑌�̂� + 𝐺∆𝑅𝑜 − 𝑅𝑑)
𝑇
𝑄(�̂�𝑜 + 𝐺∆𝑅𝑜 − 𝑅𝑑) + ∆𝑅𝑜

𝑇𝑅∆𝑅𝑜. (4.36) 

The solution minimising J to give the optimal suggested control increment 𝑅𝑜
∗, in the absence of 

constrains, is given by 
𝜕𝐽

𝜕Δ𝑅𝑜
, resulting, 

∆𝑅𝑜
∗ = (𝐺𝑇𝑄𝐺 + 𝑅)−1𝐺𝑇𝑄(𝑅𝑑 − 𝑌�̂�). (4.37) 

To simulate the system it was considered, that the house dynamics is represented by (4.38) and 

the PI controller by (4.39), respectively. 

𝐾𝑃𝑙𝑎𝑛𝑡
𝜏𝑃𝑙𝑎𝑛𝑡 𝑠 + 1

, (4.38) 

𝐾𝑃𝐼 (1 +
1

𝜏𝑃𝐼 𝑠
). (4.39) 

With 𝐾𝑃𝑙𝑎𝑛𝑡 and τ𝑃𝑙𝑎𝑛𝑡 are the house and 𝐾𝑃𝐼 and 𝜏𝑃𝐼the controller parameters. Applying the 

above FT’s in Figure 4.1, and analysing in separated each one of the entries, with and without 

perturbation, results the in next equations (4.40) and (4.41), respectivly. 

 

𝐾𝑃𝑙𝑎𝑛𝑡𝜏𝑃𝐼 𝑠

𝜏𝑃𝐼 𝜏𝑃𝑙𝑎𝑛𝑡 𝑠
2 + 𝜏𝑃𝐼 𝑠(1 + 𝐾𝑃𝑙𝑎𝑛𝑡𝐾𝑃𝐼) + 𝐾𝑃𝑙𝑎𝑛𝑡𝐾𝑃𝐼

, (4.40) 
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𝐾𝑃𝑙𝑎𝑛𝑡𝐾𝑃𝐼(1 + 𝜏𝑃𝐼 𝑠)

𝜏𝑃𝐼 𝜏𝑃𝑙𝑎𝑛𝑡 𝑠
2 + 𝜏𝑃𝐼 𝑠(1 + 𝐾𝑃𝑙𝑎𝑛𝑡𝐾𝑃𝐼) + 𝐾𝑃𝑙𝑎𝑛𝑡𝐾𝑃𝐼

. (4.41) 

Converting the system to discrete space–state model, the augmented space-state model is given 

by Ai , Bi and Ci. resulting matrixes are presented in the following format. 

[
𝑥(𝑘 + 1)
𝑢(𝑘)

] = [
𝐴 𝐵
0 𝐼

] [
𝑥(𝑘)

𝑢(𝑘 − 1)
] + [

𝐵
𝐼
] ∆𝑢(𝑘), (4.42) 

𝑦(𝑘) = [𝐶 0] [
𝑥(𝑘)

𝑢(𝑘 − 1)
], (4.43) 

where A, B and C results from continuous to discrete space-state transformation using Zero 

Order Hold (ZOH) (Rugh, 1996). 

According to the above showed, the equations (4.33) and (4.34) parameters can assume now the 

final form and can be written as follow. 

𝐶𝐴 =

[
 
 
 
𝐶𝑖𝐴𝑖 𝐶𝑖𝐴𝑖 … 𝐶𝑖𝐴𝑖
𝐶𝑖𝐴𝑖

2 𝐶𝑖2𝐴𝑖
2 ⋱ 𝐶𝑖𝐴𝑖

2

⋮ ⋮ ⋱ ⋮
𝐶𝑖𝐴𝑖

𝐻𝑃 𝐶𝑖𝐴𝑖
𝐻𝑃 … 𝐶𝑖𝐴𝑖

𝐻𝑃]
 
 
 
 , (4.44) 

𝐺 =

[
 
 
 
 
 
 

𝐶𝑖1𝐵1𝑖 0 0 … … 0
𝐶𝑖𝐴𝑖𝐵1𝑖 𝐶𝑖1𝐵1𝑖 0 … … 0

𝐶𝑖𝐴𝑖
2𝐵1𝑖 𝐶𝑖𝐴𝑖𝐵1𝑖 𝐶𝑖1𝐵1𝑖 0 … ⋮
⋮ ⋮ ⋮ … … ⋮

𝐶𝑖𝐴𝑖
𝐻𝑃−2𝐵1𝑖 𝐶𝑖𝐴𝑖

𝐻𝑃−3𝐵1𝑖 𝐶𝑖𝐴𝑖
𝐻𝑃−4𝐵1𝑖 … 0 0

𝐶𝑖𝐴𝑖
𝐻𝑃−1𝐵1𝑖 𝐶𝑖𝐴𝑖

𝐻𝑃−2𝐵1𝑖 𝐶𝑖𝐴𝑖
𝐻𝑃−3𝐵1𝑖 … 𝐶𝑖𝐴𝑖𝐵1𝑖 𝐶𝑖1𝐵1𝑖]

 
 
 
 
 
 

,  (4.45) 

𝑊 =

[
 
 
 
 
 
 

𝐶𝑖1𝐵2𝑖 0 0 … … 0
𝐶𝑖𝐴𝑖𝐵2𝑖 𝐶𝑖1𝐵2𝑖 0 … … 0

𝐶𝑖𝐴𝑖
2𝐵2𝑖 𝐶𝑖𝐴𝑖𝐵2𝑖 𝐶𝑖1𝐵2𝑖 0 … ⋮
⋮ ⋮ ⋮ … … ⋮

𝐶𝑖𝐴𝑖
𝐻𝑃−2𝐵2𝑖 𝐶𝑖𝐴𝑖

𝐻𝑃−3𝐵2𝑖 𝐶𝑖𝐴𝑖
𝐻𝑃−4𝐵2𝑖 … 0 0

𝐶𝑖𝐴𝑖
𝐻𝑃−1𝐵2𝑖 𝐶𝑖𝐴𝑖

𝐻𝑃−2𝐵2𝑖 𝐶𝑖𝐴𝑖
𝐻𝑃−3𝐵2𝑖 … 𝐶𝑖𝐴𝑖𝐵2𝑖 𝐶𝑖1𝐵2𝑖]

 
 
 
 
 
 

, (4.46) 

where B1i and B2i emerge from matrix Bi corresponding each one to one of the system inputs. 

Rewriting (4.33) and (4.34) results in, 

�̂� = 𝑌�̂� + 𝐺∆𝑅0 , (4.47) 

𝑌�̂� = 𝛤𝑦𝜁(𝑘) +𝑊𝑦𝑣. (4.48) 

From matrices T(C̃, �̃�) and L(C̃, �̃�, �̃�) below, 
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𝑻(�̃�, �̃�) = [

�̃��̃�
�̃��̃�2

⋮
�̃��̃�𝐻𝑃

], (4.49) 

ℒ(�̃�, �̃�, �̃�)=

[
 
 
 
 
 

�̃��̃� 0 … 0
�̃��̃��̃� �̃��̃� … 0
�̃��̃�2�̃� �̃��̃��̃� 0 ⋮
⋮ ⋮ … ⋮

�̃��̃�𝐻𝑃−2�̃� �̃��̃�𝐻𝑃−3�̃� … 0
�̃��̃�𝐻𝑃−1�̃� �̃��̃�𝐻𝑃−2�̃� … �̃��̃�]

 
 
 
 
 

. (4.50) 

The matrices G, Wy and Γy can be obtained and formalized as: 

 𝛤𝑦 = T(𝐶𝑦, 𝐴1), 𝛤𝑢 = T(𝐶𝑢 , 𝐴1), (4.51) 

𝑊𝑦 = ℒ(𝐶𝑦 , 𝐴1, 𝐵2) and 𝑊𝑢 = ℒ(𝐶𝑢, 𝐴1, 𝐵2), (4.52) 

𝐺 = ℒ(𝐶𝑦 , 𝐴1, 𝐵1), 𝐺𝑢 = ℒ(𝐶𝑢 , 𝐴1, 𝐵1). (4.53) 

As mentioned above, the control is now made with constrains to find the r0(k) that minimize 

the cost function presented in (4.54). Assuming that the available energy is conditioned, the 

control method intent to restrict the value of the heating/cooling user power demanding, u. The 

designed, Figure 4.2 system also includes constrains in upper and lower value of r0 and r0.  

1B(q-1)1
+ + y(k)

v(k)

A(q-1)AC(q-1)

B2C(q-1)

B1C(q-1)RG

r(k) r0(k)

+

-

u(k)

+

Home
Home 

Controller

Governor 1

 

Figure 4.2. MPC with constraints, system block diagram. 

The predictive controller can be posed as a quadratic programming problem, where,  

𝑚𝑖𝑛
∆𝑅0

 𝐽(𝑘) = (𝑌�̂� + 𝐺∆𝑅0 − 𝑅𝑑)
𝑇
𝑄𝑒(𝑌�̂� + 𝐺∆𝑅0 − 𝑅𝑑) + ∆𝑅0

𝑇𝑅𝑒∆𝑅0, (4.54) 
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is to be optimized, subject to the constraints (4.55)-(4.59): 

𝑦(𝑘) = 𝐴(𝑞−1)𝑦(𝑘 − 1) + 𝐵(𝑞−1)𝑢(𝑘 − 1) + 𝐶(𝑞−1)𝑣(𝑘 − 1), (4.55) 

𝑢(𝑘) = 𝐴𝑐(𝑞
−1)𝑢(𝑘 − 1) + 𝐵1𝑐(𝑞

−1)𝑟0(𝑘) − 𝐵2𝑐(𝑞
−1)𝑦(𝑘), (4.56) 

𝑟𝑜(𝑘) ≤  𝑟𝑜(𝑘) ≤ 𝑟𝑜(𝑘), (4.57) 

∆𝑟𝑜(𝑘) ≤ ∆𝑟𝑜(𝑘) ≤ ∆𝑟𝑜(𝑘), (4.58) 

𝑢(𝑘) ≤  𝑢(𝑘) ≤ 𝑢(𝑘). (4.59) 

Developing (4.54), the new cost function can be written as (Igreja and Cruces, 2002) 

𝑚𝑖𝑛
∆𝑅0

𝐽 = (
1

2
∆𝑅0

𝑇𝑄𝑢∆𝑅0) + 𝐶𝑢
𝑇∆𝑅0, (4.60) 

with  

𝑄𝑢 = 2(𝐺
𝑇𝑄𝑒𝐺 + 𝑅𝑒), (4.61) 

And 

𝐶𝑢
𝑇 = −2(𝑅𝑑 − 𝑌�̂�)

𝑇
𝑄𝑒 . 𝐺. (4.62) 

The constrains can be expressed in terms of control movements resulting, 

𝑅0 ≤ 𝑇𝑙∆𝑅0 + [𝐼𝑚 … 𝐼𝑚]𝑟𝑜(𝑡 − 1) ≤ 𝑅0 , (4.63) 

∆𝑅0 ≤ ∆𝑅 ≤ ∆𝑅0, (4.64) 

𝑈 ≤  𝐺∆𝑅0 + 𝑈�̂� ≤ 𝑈, (4.65) 

where Tl is a lower triangular matrix whose non null submatrices are Im the identity matrix. 

Introducing the new variable, 

𝑋 =  𝑇𝑙∆𝑅𝑜 + 𝛱 . (4.66) 

𝛱 = [𝐼𝑚 …𝐼𝑚]𝑟𝑜(𝑘 − 1) − 𝑅0. (4.67) 

∆Ro becomes, 

∆𝑅𝑜 = 𝑉(𝑋 − 𝛱), (4.68) 
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𝑉 = 𝑇𝑙
−1. (4.69) 

And consequently (4.60) becomes, 

𝑚𝑖𝑛
∆𝑅0

𝐽 = (
1

2
𝑋𝑇𝑄𝑋𝑋) + 𝐶𝑋

𝑇𝑋, (4.70) 

𝑄𝑥 = 𝑉
𝑇𝑄𝑢𝑉 = 2𝑉

𝑇(𝐺𝑇𝑄𝑒𝐺 + 𝑅𝑒)𝑉, (4.71) 

and 

𝐶𝑥
𝑇 = 𝐶𝑢

𝑇 − 𝛱𝑇𝑉𝑇𝑄𝑢𝑉 = −2𝛱
𝑇𝑉𝑇(𝐺𝑇𝑄𝑒𝐺 + 𝑅𝑒)𝑉. (4.72) 

Finally, the constrains can be expressed as, 

[
 
 
 
 
𝐼
−𝑉
𝑉

−𝐺𝑢𝑉
𝐺𝑢𝑉 ]

 
 
 
 

𝑋 ≤

[
 
 
 
 
 𝑅0 − 𝑅0

−∆𝑅0 − 𝑉𝛱

∆𝑅0 + 𝑉𝛱

−𝑈 − 𝐺𝑢𝑉𝛱 + �̂�𝑂

𝑈 + 𝐺𝑢𝑉𝛱 − �̂�𝑂 ]
 
 
 
 
 

. (4.73) 

The QP solution can be obtained using a modified Lemke’s method (Camacho, 1993; Igreja and 

Cruces, 2002). 

Remark: the predicted needed power is given by (4.74). 

�̂�𝑂 = 𝛤𝑢𝜁(𝑘) +𝑊𝑢𝑣, (4.74) 

where, the only active state in 𝛤𝑢  is the one that corresponds to u in ζ(𝑘). Matrices Wu and Γu 

are showed in annex. With this formalization, constrains can be directly applied taking into 

account the limited power variation along time.  

4.3 Results 

As mentioned, it was created a temperature “comfort zone”. This approach allows to weight 

only the temperatures outside the gap, instead of traditional system were all deviations are 

weight, and consequently, more resources are needed. Also, in order to reduce the energy needs, 

it was defined that u(k)=0 inside the temperature bound. It is considered a comfort zone if the 

indoor reference is eT relatively to the reference temperature. Two situations are here presented 

and the obtained results can be seen in Chapter 4.3.2. In the first situation is considered that 

outside the comfort zone, the system calculates u(k) and the cost function J, and, inside the 

comfort zone both u and J are null. The second situation it is distinguished from the first one 
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because it considers that inside the comfort zone, the cost function J can always assume the 

optimal value. 

The generalised cost function can be written as (4.75).  

𝐽(𝑘) =∑‖𝑒(𝑘 + 𝑙)‖𝑄𝑒
2 +

𝐻𝑃

𝑙=1

∑‖𝛥𝑟0(𝑘 + 𝑙 − 1)‖𝑅𝑒
2

𝑁𝐶

𝑙=1

], (4.75) 

where Qe ≥0 and Re >0 are weight matrices and depend from eT., HP, NC  are predictive 

horizon and control horizon, respectively, with HP ≥ M and, Δr0(k) is the input increment 

vector. 

As mentioned, Qe and Re depend on eT value.  

𝑄𝑒 {
0      ‖𝑒‖ ≤ 𝑒𝑇
𝑄       ‖𝑒‖ > 𝑒𝑇

 (4.76) 

    𝑅𝑒 {
0      ‖𝑒‖ ≤ 𝑒𝑇
𝑅       ‖𝑒‖ > 𝑒𝑇

. (4.77) 

In the simulated system it is considered that the house is exposed to an additional perturbation, 

solar incidence, which elevates the outside temperature in more 7 ºC between 15 and 19 hours, 

Figure 4.3. 

 

Figure 4.3. Outdoor temperature. 

The simulation period is 48 hours and the several approaches are compared. The results are 

showed in the next subsections and the used parameters are in the table below. 
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Table 4.1.Simulation parameters for PIvsMPC 

Parameter Value Units 

HP 24 - 

NC 48 - 

∆t 0.5 h 

KPlant 1 - 

Plant 130  - 

R 0.1 - 

Q 1 - 

PI gain (KPI) 200 - 

PI time const (PI) 130 s 

eT 0.5 ºC 

 

4.3.1 PI versus MPC. 

The results and performance with PI controller and with MPC+PI are here analysed, compared 

and showed in Figure 4.4 to Figure 4.6. 

 

 

Figure 4.4. Indoor temperature. 
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Figure 4.5. Power and energy consumption. 

 

Figure 4.6. Temperature error with and without (MPC). 

As can been seen in Figure 4.5 the total energy consumption is very similar, but, the MPC 

provides the anticipative effect, Figure 4.4, that maintains the indoor temperature always in line 

with the reference minimizing the error, Figure 4.6, comparatively with the PI solution. 

4.3.2 MPC with “comfort zone” 

As mentioned, here are present the obtained results of two distinguish situations. The “Case 1” 

considered that outside the comfort zone u and the cost function are calculated and inside 

comfort zone both u and J are null.  

The second approach, “Case 2”, is similar to the first but the cost function J is always 

calculated. 
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The next table summarize the actions that distinguish both approaches. 

Table 4.2. Simplified algorithm for MPC with “comfort zone”. 

Case 1 Case 2 

if ‖𝑒‖ > 𝑒𝑇(0.5º𝐶) then 
         compute u and J 

else 

           u=0 and J=0 

end if 

if ‖𝑒‖ > 𝑒𝑇(0.5º𝐶) then 
         compute u and J 

else 

           u=0  

            compute J 

end if 

 

Figure 4.7 and Figure 4.9 show the results 

 

Figure 4.7. Case 1 - Indoor temperature with “comfort zone”. 

 

Figure 4.8. Case 2 - Indoor temperature with “comfort zone”. 
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Figure 4.7 shows that the generated reference “Case 1” is constant (no optimal increment is 

calculated) when the difference between temperatures is within the range, and, due this fact, the 

MPC anticipative effect is lost. 

 

Figure 4.9. Power and energy consumption with “comfort zone”. 

On the other hand in Figure 4.7 the anticipative effect is maintain in “Case 2”, and 

consequently, Figure 4.9 reveals better results with less power “peaks” and also with less energy 

expended comparatively with “Case 1”. 

4.3.3 MPC with “comfort zone” and constrained available power 

The results presented in this item consider that the available power is limited and variable. 

 

Figure 4.10. Indoor temperature evolution with limited power. 
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Figure 4.11. Power and energy consumption with limited power.  

In Figure 4.10 can be seen that due the constrained power, Figure 4.11, the indoor temperature 

cannot always follow the reference. The amount of energy expended grows a bit comparatively 

with Figure 4.9. 

4.3.4 Conclusions 

In this chapter, in order to provide thermal house comfort, a MPC control technique associated 

with a inner loop PI was presented. 

It could be observed through the simulations and analysis results that good performances were 

obtain by both approaches (with and without MPC). In general the error and the energy 

consumption were considerably reduced with the MPC implementation. 

In particular, results show that in the “comfort zone” MPC controller reduces considerably the 

energy consumption with less power “peaks”. 

The MPC power constrained shows that the approach can find a fair trade-off due to the 

combination of the anticipative effect with available power, in order to maintain the temperature 

near to the comfort zone, even when indoor temperature cannot follow the desire reference. 
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Chapter 5 

5 Thermal Comfort with Demand Side 

Management Using Distributed MPC 

5.1 Introduction 

Emerging new technologies like distributed generation, distributed storage, and demand-side 

load management will change the way we consume and produce energy. These techniques 

enable the possibility to reduce the greenhouse effects and improve grid stability, balancing the 

demand and supply. Also, the reduction in CO2 emissions and the introduction of renewable 

sources based generation have become important topics today. However, these renewable 

resources are mainly given by very fluctuating and uncontrollable sun, water, and wind power. 

The work here presented intends to support the expected introduction of a large penetration 

level of renewable sources, in particularly providing a solution for implementation in an 

environment where buildings are mainly supplied by this type of resource. Especially because, 

reducing energy consumption in buildings is a trend in the world today due to economic aspects 

or environmental reasons. This chapter presents a DMPC for indoor thermal comfort which 

simultaneously optimizes the consumption of a limited shared energy resource. The control 

objective of each subsystem is to minimize the heating/cooling energy cost while maintaining 

the indoor temperature and consumed power inside bounds. In a distributed coordinated 

environment, the control uses multiple dynamically coupled agents (one for each 

subsystem/house) aiming to achieve satisfaction of coupling constraints. In accordance with the 

hourly power demand profile, each house assigns a priority level indicating how much is willing 

to bid in auction for consumption of limited clean resource. This procedure allows the hourly 

variation of bidding values and, consequently, agent’s orders for accessing clean energy also 
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varies. Despite of power constraints, all houses also have thermal comfort constraints that must 

be fulfilled. The system is simulated with several houses in a distributed environment. 

5.2 Implemented global scenario 

The scenario considers two types of available energy resources, the green and the red. The 

green or clean resource must always be consumed (it is not disposable), it is limited to a 

maximum available value and it is considered a time variable resource. In opposition, the red is 

always available and it is considered a dirty resource, more expensive than the green. Therefore, 

if the green resource is insufficient to satisfy the house’s required demand, the red must be 

consumed with an increase in the total energy cost. To encourage clean resource consumption, it 

is considered that green energy price per kWh has a maximum auction value and it is always 

cheaper than the red energy price. The agents (one by each house) must bid in an auction 

(provided by the MO), the price that they are willing to pay to consume the green resource. The 

agents make their bid in the auction with one day ahead to show how much is intended to pay 

per kWh to consume green resource in each one of the next 24 hours. The next dots summarize 

all assumptions made: 

 Divisions must share a limited predictable renewable green resource; 

 The green or clean resource must always be consumed or stored and it is limited to 

a maximum available that varies in time. 

 Agents make their bid in the auction with one day ahead to show how much is 

intended to pay per kWh for consumption of  green resource, in each one of the 

next 24 hours; 

 Access to green resource is done hourly in accordance to the made bid value. The 

one that is able to pay more uses the needed stock first, and the second can use only 

the remaining energy, and so on; 

 Outside temperatures, disturbances and daily comfort temperature bounds are 

known by each system inside the predictive horizon (HP); 

 If the green resource is insufficient to satisfy the demand required by the 

houses/divisions, the red resource (from grid) must be consumed;  

 The red resource has a fixed kW price that is always higher than the green to 

promote the renewable energy consumption; 
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 The consumed red resource for comfort purposes implies a penalty in the final cost 

function (5.1) due to the soft constraint violation, which is imposed by the 

maximum available green resource if exceeded. 

The MPC optimization is solved by each TCA at each time step according to the sequential 

DMPC scheme depicted in Figure 5.1. The green available power forecast is received by the 

agent who made the highest bid (first in the sequential access scheme) and this information is 

used as power constraint value in (5.10). The agent optimization problem predicts the 

consumption, subtracts it to the initially received available maximum and passes the information 

to the next on the sequence list. 

MPC 1

MPC 2

TCA 1

TCA 2

MPC NW -1 TCA NS -1

MPC NW TCA NS

uTgreen

*1
2 1TgreenU u u 

*1
1 1
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Figure 5.1. Implemented sequential architecture scheme. 

In Figure 5.1, 𝑢𝑇𝑔𝑟𝑒𝑒𝑛 represents the green resource forecasts, 𝑈𝑖 the maximum available 

expected green resource for TCA (i), 𝑇𝑖 and 𝑇𝑖
∗ are the indoor temperature and indoor 

temperature prediction, 𝑢𝑖 and 𝑢𝑖
∗ are the optimal power generated by the MPC controller and 

the predicted consumption and 𝑣𝑖 represents the disturbances. 
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5.3 MPC formalization 

At each time step, each one of the agents must solve his MPC problem. The objectives are: 

minimize the energy consumption to heating and cooling; minimize the peak power 

consumption; maintain the zones within a desired temperature range and maintain the used 

power within the green available bounds. Feedback stability is provided by choosing a 

sufficiently long predictive horizon and proven by results presented in next shapters. Feasibility 

is achieved by the use of soft constraints in the optimization problem formulation as explained 

in the sequel. 

The generic optimization problem to be solved by each agent at each instant, assumes the 

following form: 

𝑚𝑖𝑛
𝑈,�̅�,𝜀,�̅�,𝛾

𝐽𝑖(𝑘) = ∑ [∑𝑢𝑙
𝑖(𝑘 + 𝑗)𝑇𝜑𝑙

𝑖𝑢𝑙
𝑖(𝑘 + 𝑗)⏟              

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑁𝑑𝑖

𝑙=1

]

𝐻𝑝−1

𝑗=0

+∑𝜙𝑖𝑚𝑎𝑥 {𝑢𝑙
𝑖2(𝑘), . . . . , 𝑢𝑙

𝑖2(𝑘 + 𝐻𝑝 − 1)}⏟                        
𝑃𝑜𝑤𝑒𝑟 𝑝𝑒𝑎𝑘𝑠

𝑁𝑑𝑖

𝑙=1

+∑[∑(𝜀𝑙
𝑖(𝑘 + 𝑗)𝑇𝛯𝑙

𝑖𝜀𝑙
𝑖(𝑘 + 𝑗⏟            

𝐶𝑜𝑚𝑓𝑜𝑟𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

) +  𝛾𝑙
𝑖(𝑘 + 𝑗)𝑇𝛹𝑙

𝑖𝛾𝑙
𝑖(𝑘 + 𝑗)⏟              

𝑃𝑜𝑤𝑒𝑟 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

)

𝑁𝑑𝑖

𝑙=1

]

𝐻𝑝

𝑗=1

,

 (5.1) 

𝑚𝑖𝑛
𝑈𝑖,𝜀𝑖,𝛾𝑖

𝐽𝑖(𝑘) = 𝜀𝑖
𝑇(𝑘)𝛯𝑖𝜀𝑖(𝑘) + 𝛾𝑖

𝑇(𝑘)𝛹𝑖𝛾𝑖(𝑘) + 𝑈𝑖
𝑇(𝑘)𝑅𝑖𝑈𝑖(𝑘)

                      +∑𝜙𝑖𝑚𝑎𝑥 {𝑢𝑙
𝑖2(𝑘), . . . . , 𝑢𝑙

𝑖2(𝑘 + 𝐻𝑝 − 1)}

𝑁𝑑𝑖

𝑙=1

,
 (5.2) 

with, 

𝑈𝑖(𝑘) =

[
 
 
 
𝑈𝑖
1(𝑘)

𝑈𝑖
2(𝑘)
⋮
𝑈𝑖
𝑁𝑑(𝑘)]

 
 
 

, (5.3) 

𝜀𝑖(𝑘) =

[
 
 
 
 
 
 
 
 
 𝜀𝑖
1
(𝑘)

𝜀𝑖
2
(𝑘)

⋮

𝜀𝑖
𝑁𝑑
(𝑘)

𝜀𝑖
1(𝑘)

𝜀𝑖
2(𝑘)

⋮
𝜀𝑖
𝑁𝑑(𝑘)]

 
 
 
 
 
 
 
 
 

, 𝜀𝑖
𝑙
(𝑘) =

[
 
 
 
 𝜀𝑖
𝑙
(𝑘 + 1)

𝜀𝑖
𝑙
(𝑘 + 2)

⋮

𝜀𝑖
𝑙
(𝑘 + 𝐻𝑃)]

 
 
 
 

, 𝜀𝑖
𝑙(𝑘) =

[
 
 
 
 
𝜀𝑖
𝑙(𝑘 + 1)

𝜀𝑖
𝑙(𝑘 + 2)

⋮
𝜀𝑖
𝑙(𝑘 + 𝐻𝑃)]

 
 
 
 

, (5.4) 

𝛾𝑖(𝑘) = [
𝛾
𝑖
(𝑘)

𝛾𝑖(𝑘)
], 𝛾

𝑖
(𝑘) =

[
 
 
 
 
𝛾
𝑖
(𝑘 + 1)

𝛾
𝑖
(𝑘 + 2)

⋮
𝛾
𝑖
(𝑘 + 𝐻𝑃)]

 
 
 
 

, 𝛾𝑖(𝑘) =

[
 
 
 
 
𝛾𝑖(𝑘 + 1)

𝛾𝑖(𝑘 + 2)

⋮
𝛾𝑖(𝑘 + 𝐻𝑃)]

 
 
 
 

. (5.5) 
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Resulting in quadratic optimization problem in the compact form 

𝑚𝑖𝑛 
𝑍𝑖
𝐽𝑖(𝑘) = 𝑍𝑖

𝑇𝛩𝑍𝑖 +∑𝜙𝑖𝑙𝑚𝑎𝑥 {𝑢𝑙
𝑖2(𝑘), . . . . , 𝑢𝑙

𝑖2(𝑘 + 𝐻𝑝 − 1)}

𝑁𝑑𝑖

𝑙=1

. (5.6) 

With 

𝑍𝑖 = [
𝑈𝑖
𝜀𝑖
𝛾𝑖

], 𝛩 = [

𝜑𝑖 0 0
0 𝛯𝑖 0
0 0 𝛹𝑖

], (5.7) 

and subject to the following constraints, 

𝑥𝑙
𝑖(𝑘 + 𝑗 + 1) = 𝐴𝑙𝑙

𝑖𝑖𝑥𝑙
𝑖(𝑘 + 𝑗) + 𝐵𝑙

𝑖𝑢𝑙
𝑖(𝑘 + 𝑗) + ∑ (𝐴𝑙𝑔

𝑖𝑖 �̃�𝑙
𝑖(𝑘 + 𝑗))

𝑁𝑑𝑖

𝑔=1
(𝑔≠𝑙)⏟            
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 
𝑓𝑟𝑜𝑚 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑎𝑟𝑒𝑎𝑠

 
𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 ℎ𝑜𝑢𝑠𝑒 

+ ∑ ∑ (𝐴𝑙𝑚
𝑖ℎ �̃�𝑚

ℎ (𝑘 + 𝑗))

𝑁𝑑ℎ

𝑚=1

𝑁𝑠

ℎ=1
(ℎ≠𝑖)⏟                
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 
𝑓𝑟𝑜𝑚 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑎𝑟𝑒𝑎𝑠

 
𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 ℎ𝑜𝑢𝑠𝑒𝑠 

+ 𝑣𝑙
𝑖(𝑘 + 𝑗), 

, 𝑗 = 1. . . 𝐻𝑃 

(5.8) 

𝑇𝑙
𝑖(𝑘 + 𝑗) − 𝜀𝑙

𝑖(𝑘 + 𝑗) ≤ 𝑥𝑙
𝑖(𝑘 + 𝑗) ≤ �̅�𝑙

𝑖(𝑘 + 𝑗) + 𝜀�̅�
𝑖(𝑘 + 𝑗), (5.9) 

𝑈𝑖(𝑘 + 𝑗 − 1) − 𝛾𝑖(𝑘 + 𝑗 − 1) ≤∑𝑢𝑙
𝑖(𝑘 + 𝑗 − 1)

𝑁𝑑𝑖

𝑙=1

≤ 𝑈𝑖(𝑘 + 𝑗 − 1) + �̅�𝑖(𝑘 + 𝑗 − 1), (5.10) 

𝛾𝑖 , �̅�𝑖 , 𝜀𝑙
𝑖, 𝜀�̅�

𝑖 ≥ 0. (5.11) 

In (5.1) 𝑁𝑑𝑖is the number of divisions of house (i), 𝑢𝑖
𝑙 represents the power control inputs from 

house (i) division (l), 𝜙𝑖is the penalty on peak power consumption, 𝛯𝑖 is the penalty on the 

comfort constraint violation, Ψithe penalty on the power constraint violation and HP is the 

length of the prediction horizon. In (5.9), 𝜀�̅�
𝑖  and 𝜀𝑙

𝑖 are the vectors of temperature violations that 

are above and below the desired comfort zone defined by �̅�𝑙
𝑖 and 𝑇𝑙

𝑖. In (5.10), the coupled 

power constraint, 𝛾𝑖 and 𝛾𝑖are the power violations that are above or lower the maximum,𝑈𝑖, 

and minimum, 𝑈𝑖, available green power for heating/cooling the house, with 𝑈𝑖 = −𝑈𝑖. Remark 

that, in each TCA (i), the power sum in all divisions cannot exceed 𝑈𝑖  and that in (5.8) 𝑥𝑙
𝑖∗and 

𝑢𝑙
𝑖∗represent the predicted temperature and power consumption within the prediction horizon. 

With this approach each TCA can have different hourly penalties, allowing the consumer to 

choose between more/less comfort and cost during the day as Figure 5.2 exemplify. This 

procedure was implemented in Algorithm II. 
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Figure 5.2. Daily consumer profile. 

An example of formulization is made for and distributed situation where two distinct TCA’s are 

dynamically and constraints coupled. 

1 2

1u

1y
2u

2y

 

Figure 5.3. Thermally coupled TCA’s. 

For TCA1 and TCA2 it can be written 

{
 
 

 
 𝐶1𝑒𝑞

1 �̇�1
1 = 𝑢1

1 +
𝑇𝑜𝑎 − 𝑇1

1

𝑅1𝑒𝑞
1 +

𝑇1
2 − 𝑇1

1

𝑅11𝑒𝑞
12 + 𝑃1𝑃𝑑

1 ,

𝐶1𝑒𝑞
2 �̇�1

2 = 𝑢1
2 +

𝑇𝑜𝑎 − 𝑇1
2

𝑅1𝑒𝑞
2 +

𝑇1
1 − 𝑇1

2

𝑅11𝑒𝑞
12 + 𝑃1𝑃𝑑

2

 (5.12) 

{
 
 

 
 𝐶1𝑒𝑞

1 �̇�1
1 = 𝑢1

1 − (
1

𝑅1𝑒𝑞
1 +

1

𝑅11𝑒𝑞
12 )𝑇1

1 +
𝑇𝑜𝑎 − 𝑇1

1

𝑅1𝑒𝑞
1 +

𝑇1
2

𝑅11𝑒𝑞
12 +

𝑇𝑜𝑎

𝑅1𝑒𝑞
1 +𝑃1𝑃𝑑

1

𝐶1𝑒𝑞
2 �̇�1

2 = 𝑢1
2 − (

1

𝑅1𝑒𝑞
2 +

1

𝑅11𝑒𝑞
12 )𝑇1

2 +
𝑇𝑜𝑎 − 𝑇1

2

𝑅1𝑒𝑞
2 +

𝑇1
1

𝑅11𝑒𝑞
12 +

𝑇𝑜𝑎

𝑅1𝑒𝑞
2 +𝑃1𝑃𝑑

2

 

 

(5.13) 

[
�̇�1
1

�̇�1
2
] =

[
 
 
 
 
 −

𝑅1𝑒𝑞
1 + 𝑅11𝑒𝑞

12

𝑅1𝑒𝑞
1 𝐶1𝑒𝑞

1 𝑅11𝑒𝑞
12

1

𝐶1𝑒𝑞
1 𝑅11𝑒𝑞

12

1

𝐶1𝑒𝑞
2 𝑅11𝑒𝑞

12 −
𝑅1𝑒𝑞
2 + 𝑅11𝑒𝑞

12

𝑅1𝑒𝑞
2 𝐶1𝑒𝑞

2 𝑅11𝑒𝑞
12

]
 
 
 
 
 

[
𝑇1
1

𝑇1
2] +

[
 
 
 
 
1

𝐶1𝑒𝑞
1 0

0
1

𝐶1𝑒𝑞
2
]
 
 
 
 

[
𝑢1
1

𝑢1
2] +

[
 
 
 
 
𝑇𝑜𝑎

𝐶1𝑒𝑞
1 𝑅1𝑒𝑞

1 +
𝑃1𝑃𝑑
1

𝐶1𝑒𝑞
1

𝑇𝑜𝑎

𝐶1𝑒𝑞
2 𝑅1𝑒𝑞

2 +
𝑃1𝑃𝑑
2

𝐶1𝑒𝑞
2
]
 
 
 
 

. (5.14) 

For TCA 1 the plant model representation (5.14) can be rewritten and changed into a discrete 

model using Euler discretization with a sampling time of Δt. 

�̇�1
1 =

𝑇(𝑘 + 1) − 𝑇(𝑘)

∆𝑡
, (5.15) 

 

00:00 23:00
01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

ComfortConsumption Consumption Comfort Consumption Comfort

MAX - 23 ºC

MIN - 21 ºC

MAX - 22 ºC

MIN - 20 ºC

MAX - 21 ºC

MIN - 20 ºC
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𝑇(𝑘 + 1) − 𝑇(𝑘)

∆𝑡
= −

𝑅1𝑒𝑞
1 + 𝑅11𝑒𝑞

12

𝑅1𝑒𝑞
1 𝐶1𝑒𝑞

1 𝑅11𝑒𝑞
12 �̇�1

1(𝑘) −
1

𝐶1𝑒𝑞
1 𝑅11𝑒𝑞

12 𝑇1
2(𝑘) +

1

𝐶1𝑒𝑞
1 𝑢1

1(𝑘) +
1

𝐶1𝑒𝑞
1 𝑅1𝑒𝑞

1 𝑇𝑜𝑎(𝑘)

+
1

𝐶1𝑒𝑞
1 𝑃1𝑃𝑑

1 (𝑘), 
(5.16) 

𝑇1
1(𝑘 + 1) = 𝐴11

11𝑇1
1(𝑘) + 𝐵1

1𝑢1
1(𝑘) + 𝐴11

12𝑇1
2(𝑘) + 𝑣1

1(𝑘), (5.17) 

 

where 

𝐴1 = 𝐴11
11 = (1 −

𝑅1𝑒𝑞
1 + 𝑅11𝑒𝑞

12

𝐶1𝑒𝑞
1 𝑅1𝑒𝑞

1 𝑅11𝑒𝑞
12 ∆𝑡), (5.18) 

𝐷1 = 𝑣1
1 =

𝑃1𝑃𝑑
1

𝐶1𝑒𝑞
1 Δt +

Toa

𝑅1𝑒𝑞
1 𝐶1𝑒𝑞

1 Δt,  

𝐵1 = 𝐵1
1 =

1

𝐶1𝑒𝑞
1 𝛥𝑡, 

 

𝐶1 = 𝐴11
12 =

1

𝑅11𝑒𝑞
12 𝐶1𝑒𝑞

1 Δt.  

For several instants, (5.17) can be written as follows, 

𝑇1
1(1) = 𝐴1𝑇1

1(0) + 𝐵1𝑢1
1(0) + 𝐶1𝑇1

2(0) + 𝐷1(0), (5.19) 

𝑇1
1(2) = (𝐴1)

2𝑇1
1(0) + 𝐴1𝐵1𝑢1

1(0) + 𝐴1𝐶1𝑇1
2(0) + 𝐴1𝐷1(0) + 𝐵1𝑢1

1(1) + 𝐶1𝑇1
2(1) + 𝐷1(1), (5.20) 

𝑇1
1(3) = (𝐴1)

3𝑇1
1(0) + (𝐴1)

2𝐵1𝑢1
1(0) + (𝐴1)

2𝐶1𝑇1
2(0) + (𝐴1)

2𝐷1(0) + 𝐴1𝐵1𝑢1
1(1)

+ 𝐴1𝐶1𝑇1
2(1) + 𝐴1𝐷1(1) + 𝐵1𝑢1

1(2) + 𝐶1𝑇1
2(2) + 𝐷1(2), (5.21) 

Therefore,  

 

𝑀𝑎𝑡𝑈 =

[
 
 
 
 
 
 
𝐵1 0 ⋯ ⋯ ⋯ 0
𝐴1𝐵1 𝐵1 ⋱ ⋯ ⋯ ⋮

𝐴1
2𝐵1 𝐴1𝐵 𝐵1 ⋱ ⋯ ⋮

𝐴1
3𝐵1 𝐴1

2𝐵1 𝐴1𝐵1 𝐵1 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 𝐵1 0

𝐴1
𝐻𝑃𝐵1 𝐴1

𝐻𝑃−1𝐵1 ⋯ ⋯ 𝐴1𝐵1 𝐵1]
 
 
 
 
 
 

,
 (5.22) 
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𝑀𝑎𝑡𝑇𝑥 =

[
 
 
 
 
 
 
𝐶1 0 ⋯ ⋯ ⋯ 0
𝐴1𝐶1 𝐶1 ⋱ ⋯ ⋯ ⋮

𝐴1
2𝐶1 𝐴1𝐶1 𝐶1 ⋱ ⋯ ⋮

𝐴1
3𝐶1 𝐴1

2𝐶1 𝐴1𝐶1 𝐶1 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 𝐶1 0

𝐴1
𝐻𝑃𝐶1 𝐴1

𝐻𝑃−1𝐶1 ⋯ ⋯ 𝐴1𝐶1 𝐶1]
 
 
 
 
 
 

, (5.23) 

𝑀𝑎𝑡𝐷 =

[
 
 
 
 
 
 
1 0 ⋯ ⋯ ⋯ 0
𝐴1 1 ⋱ ⋯ ⋯ ⋮

𝐴1
2 𝐴1 1 ⋱ ⋯ ⋮

𝐴1
3 𝐴1

2 𝐴1 1 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 1 0
𝐴1

𝐻𝑃 𝐴1
𝐻𝑃−1 ⋯ ⋯ 𝐴1 1]

 
 
 
 
 
 

,
 (5.24) 

𝑀𝑎𝑡𝑇 = [𝐴1 𝐴1
2 𝐴1

3 ⋯ 𝐴1
𝐻𝑃].

 (5.25) 

It is considered that the constraints (5.9) and (5.10) must assume the form of Ax<B with, 

𝑥 = [𝑢1
1; 𝜀1; 𝜀1̅; 𝛾1; �̅�1]

𝑇

,
 

(5.26)
 

where, ε
1
 and ε̅1 are the vectors of temperature violations that are above and below the desired 

comfort zone defined by 𝑇1
1 and 𝑇1

1
, and 𝛾1 and 𝛾1 are the power violations that are above or 

lower the maximum. 

Temperature constraints:  𝑇1
1(𝑘 + 1) = 𝐴1𝑇1

1(𝑘) + 𝐵1𝑢1
1(𝑘) + 𝐶1𝑇1

2(𝑘) + 𝐷1(𝑘), 

𝑇1
1 − 𝜀1 ≤ 𝑇1

1 ≤  𝑇1
1
, +𝜀1̅, 

(5.27) 

𝑇1
1 −

[
 
 
 
 
 
𝜀1(1)

𝜀1(2)

⋮
⋮
⋮
𝜀1(𝐻𝑃)]

 
 
 
 
 

≤

[
 
 
 
 
 
 
𝐴1
𝐴1

2

𝐴1
3

⋮
⋮
𝐴1

𝐻𝑃]
 
 
 
 
 
 

𝑇1
1(0)

[
 
 
 
 
 
 
𝐵1 0 ⋯ ⋯ ⋯ 0
𝐴1𝐵1 𝐵1 ⋱ ⋯ ⋯ ⋮

𝐴1
2𝐵1 𝐴1𝐵 𝐵1 ⋱ ⋯ ⋮

𝐴1
3𝐵1 𝐴1

2𝐵1 𝐴1𝐵1 𝐵1 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 𝐵1 0

𝐴1
𝐻𝑃𝐵1 𝐴1

𝐻𝑃−1𝐵1 ⋯ ⋯ 𝐴1𝐵1 𝐵1]
 
 
 
 
 
 

[
 
 
 
 
 
𝑢1
1(0)

𝑢1
1(1)
⋮
⋮
⋮
𝑢1
1(𝐻𝑃 − 1)]

 
 
 
 
 

+

[
 
 
 
 
 
 
𝐶1 0 ⋯ ⋯ ⋯ 0
𝐴1𝐶1 𝐶1 ⋱ ⋯ ⋯ ⋮

𝐴1
2𝐶1 𝐴1𝐶1 𝐶1 ⋱ ⋯ ⋮

𝐴1
3𝐶1 𝐴1

2𝐶1 𝐴1𝐶1 𝐶1 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 𝐶1 0

𝐴1
𝐻𝑃𝐶1 𝐴1

𝐻𝑃−1𝐶1 ⋯ ⋯ 𝐴1𝐶1 𝐶1]
 
 
 
 
 
 

[
 
 
 
 
 
𝑇1
2(0)

𝑇1
2(1)
⋮
⋮
⋮
𝑇1
2(𝐻𝑃 − 1)]

 
 
 
 
 

+ 

 

(5.28) 

[
 
 
 
 
 
 
1 0 ⋯ ⋯ ⋯ 0
𝐴1 1 ⋱ ⋯ ⋯ ⋮

𝐴1
2 𝐴1 1 ⋱ ⋯ ⋮

𝐴1
3 𝐴1

2 𝐴1 1 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 1 0
𝐴1

𝐻𝑃 𝐴1
𝐻𝑃−1 ⋯ ⋯ 𝐴1 1]

 
 
 
 
 
 

[
 
 
 
 
 
𝐷1(0)

𝐷1(1)
⋮
⋮
⋮
𝐷1(𝐻𝑃 − 1)]

 
 
 
 
 

≤  𝑇1
1
, +

[
 
 
 
 
 
𝜀1̅(1)

𝜀1̅(2)
⋮
⋮
⋮
𝜀1̅(𝐻𝑃)]

 
 
 
 
 

. 
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Lower temperature constraint bound 

𝑇1
1 − 𝜀1 ≤ 𝑇1

1,
 (5.29)

 

𝑇1
1 − 𝜀1 ≤ 𝑀𝑎𝑡𝑇 × 𝑇1

1 +𝑀𝑎𝑡𝑈 × 𝑢1
1 +𝑀𝑎𝑡𝑇𝑥 × 𝑇1

2 +𝑀𝑎𝑡𝐷 × 𝐷1, (5.30) 

−(𝜀 +𝑀𝑎𝑡𝑈 × 𝑢1
1

⏟          
𝐴1

) ≤ −(𝑇1
1 −𝑀𝑎𝑡𝑇 × 𝑇1

1 +𝑀𝑎𝑡𝑇𝑥 × 𝑇1
2 +𝑀𝑎𝑡𝐷 × 𝐷1⏟                              

𝐵1

), (5.31)

 

𝐴1 = [𝑀𝑎𝑡𝑈𝐻𝑃×𝐻𝑃   𝐼𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃  0𝐻𝑃×𝐻𝑃]. (5.32) 

Similarly, for the upper temperature bound can be written 

𝑇1
1 ≤ 𝑇1

1
+ 𝜀1̅, (5.33) 

𝑀𝑎𝑡𝑇 × 𝑇1
1 +𝑀𝑎𝑡𝑈 × 𝑢1

1 +𝑀𝑎𝑡𝑇𝑥 × 𝑇1
2 +𝑀𝑎𝑡𝐷 × 𝐷1 ≤ 𝑇1

1
+ 𝜀1̅, (5.34) 

(𝜀1̅ +𝑀𝑎𝑡𝑈 × 𝑢1
1⏟          

𝐴2

) ≤ −(𝑇1
1
+𝑀𝑎𝑡𝑇 × 𝑇1

1 +𝑀𝑎𝑡𝑇𝑥 × 𝑇1
2 +𝑀𝑎𝑡𝐷 × 𝐷1⏟                              

𝐵2

), (5.35)

 

𝐴2 = [𝑀𝑎𝑡𝑈𝐻𝑃×𝐻𝑃  0𝐻𝑃×𝐻𝑃  − 𝐼𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃]. (5.36) 

Power constraints also assume the form Ax<B, so to the lower bound, 

𝑈1 − 𝛾1 ≤ 𝑈1, (5.37) 

−𝛾1 − 𝑈1⏟      
𝐴3

≤ −𝑈1⏟
𝐵3

, (5.38) 

𝐴3 = [−𝐼𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃 − 𝐼𝐻𝑃×𝐻𝑃  0𝐻𝑃×𝐻𝑃]. (5.39) 

Upper power constraint bound 

𝑈1 ≤ �̅�1 + γ̅1, 
(5.40)

 

𝑈1 − γ̅1⏟    
𝐴4

≤ �̅�1⏟
𝐵4

, (5.41)

 

A4 = [𝐼𝐻𝑃 ×𝐻𝑃   0𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃   0𝐻𝑃×𝐻𝑃   − 𝐼𝐻𝑃×𝐻𝑃]. (5.42) 

 

Finally for all soft constrains in the form of Ax<B results in, 

[

−A1
A2
A3
A4

] [𝑢1
1; ε1; ε̅1; γ1; γ̅1]

𝑇
= [

−𝐵1𝑇

𝐵2𝑇

𝐵3𝑇

𝐵4𝑇

]. 

(5.43)
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5.3.1 Algorithm I - Implemented sequential scheme 

After the methodology description, the algorithm is described. As mentioned it is considered 

that the sequence order was already stablished by a previous auction. The hourly access 

sequence is storage in AO(NS×HP). Remark that, only the divisions that thermally interact pass to 

each other the information about future indoor temperatures prevision. 

Algorithm I - DSM-DMPC Implemented sequential scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

Required for all TCA’s: Thermal disturbances, comfort temperature gap, hourly constraints    

parameters and auction bid. 

For all TCA’s Wi initialize: 

BV bid value inside the HP  PH1  

 

for k=1 to NC 

     for i=1 to NS(the number of TCA’s)   

              Apply to all TCA 𝑢𝑙
𝑖  (𝑘 − 1: 𝑘 − 1 + 𝐻𝑃) from k-1 instant to obtain 𝑇𝑙

𝑖(𝑘: 𝑘 +𝐻𝑃) 

              Communicate temperature predictions to adjacent TCA’s 

              Update available green resource 

              Calculate the optimal control sequence 𝑢𝑙
𝑖(1:HP) solving OPi (5.1)-(5.11) with power constraints     

(5.10) given by 𝑈𝑖 and �̅�𝑖  

              Update available green resource values for next TCA 

�̅�𝑖+1(𝑘: 𝑘 + 𝐻𝑃) = �̅�𝑖(𝑘: 𝑘 + 𝐻𝑃) −∑𝑢𝑙
𝑖(𝑘: 𝑘 + 𝐻𝑃)

𝑁𝑑𝑖

𝑙=1

 

      end for 

end for 

 

Remark: generically, 𝑋(𝑘: 𝑘 + 𝐻𝑃) represents a line vector (1 × 𝐻𝑃) containing values from 

𝑥(𝑘) to 𝑥(𝑘 + 𝐻𝑃), and 𝑌(𝑝, 𝑘: 𝑘 + 𝐻𝑃), represents the line p of a matrix (𝑃 × 𝐻𝑃)  containing 

values from y(𝑝, 𝑘) to y(𝑝, 𝑘 + 𝐻𝑃). 
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Chapter 6 

6 DMPC for Thermal House Comfort 

with Sequential Access Auction 

6.1 Introduction 

This chapter presents, in a model predictive control multi-agent systems context, an integrative 

methodology to manage energy networks from the demand side with strong presence of 

intermittent energy sources and with energy storage in house-hold or car batteries. In particular 

is presented a distributed model predictive control solution for indoor comfort that 

simultaneously optimizes the usage of a limited shared energy resource via a demand side 

management perspective (Barata et al., 2012b). The control is applied individually to a set of 

Thermal Control Areas, demand units, where the objective is to minimize the energy cost while 

maintaining the indoor temperature inside a comfort zone, without exceeding the limited and 

shared energy resource. The Thermal Control Areas are generally thermodynamically connected 

in the distributed environment and also are coupled by energy related constraints. The overall 

system predicts indoor environmental conditions in buildings with different plans which are 

modelled using an electro-thermal modular scheme (Chapter 3.4). For control purposes, this 

modular scheme allows an easy modelling of buildings with different plans where adjacent 

areas can thermally interact. 

The results are presented with two different approaches. In Chapter 6.2, the energy split 

performance is based on a fixed sequential order, established from a previously done auction 

wherein the bids are made by each Thermal Control Area, acting as demand side management 

agents and based on the energy daily price. In Chapter 6.3, bids can be made in accordance to 
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the consumption needs. Each TCA has an hourly known consumption profile and the bid value 

is directly related to that consumption behaviour. Thus, to the assumptions made in Chaper 5.2  

the next dots are added, stipulating the incremented specificities made in this chapter: 

 Green resource which is not consumed at the final of a certain instant is stored in 

batteries up to capacity value (BcV). When BcV is reached it is considered that the 

remaining green resource is delivered to the grid; 

 The access order to green resource varies hourly; 

 Each TCA has a known fixed 24 hours consumption profile, 𝐶𝑤𝑙
𝑖(𝑘: 𝑘 + 𝐻𝑃) and it 

is established a priority level from 1 (low) to 3 (high) for each hour indicating how 

important it is to have available resource to supply the load;  

 The bid value of each house is made in accordance with the chosen priority level, 

the hours with higher priority levels indicate high consumption and consequently a 

higher bid value; 

 The access to green resource is done hourly in accordance with the made bid value. 

The one that is able to pay more uses the needed stock first and the second can use 

only the remaining energy, and so on. 

 The cost function penalty values may hourly vary; 

The developed solutions are explained by Algorithm II and are applied to different scenarios 

wherein the results illustrate the benefits of the proposed approach. 

6.2 Access order with fixed stablished sequence 

To explain and prove the concept, simulation results were made in accordance with the scheme 

presented in Figure 6.2. 

 

Figure 6.1: Heat transfer between divisions example. 
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Figure 6.2: System implementation scheme block diagram. 

Three houses are considered, two of them thermally interacting (with a thermal resistance 

between them of R12=30ºC/kW as shown in Figure 6.1 and the third is isolated. 

6.2.1 Results 

It is considered that all TCA´s have the same outdoor temperature presented in Figure 6.3. 

 

Figure 6.3. Outdoor temperature forecasting. 

The thermal characteristics and prices for all agents and scenarios are presented in Table 6.1. 
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Table 6.1. Distributed parameters 

Parameter A1 A2 A3 Units 

Req 50 50 75 ºC/kW 

Ceq 9.2103 9.2103 9.2103 kJ/ºC 

Green Price (per kWh) 0.09 0.08 0.07 € 

Red Price(per kWh) 0.18 € 

As mentioned, agents can also have distinct penalties on power and temperature constraints 

violations, they can hourly privilege comfort or cost according to consumer choice. Therefore, 

to explore the concept several scenarios are here presented.  

6.2.1.1 Scenario I - Balanced parameterization 

The first, it is considered a balanced scenario, with no energy storage and no explicit preference 

between comfort or consumption. Table 6.2 shows the penalty values that are used in the first 

scenario. 

Table 6.2. Scenario I - Penalty values 

Parameter A1 A2 A3 

𝛯 50 50 50 

 100 100 30 

ϕ 2 2 2 

 1 1 1 

The thermal disturbances forecasts and the indoor temperature with its constraints for the TCA, 

A1, A2 and A3 have the profile presented in Figure 6.4, Figure 6.5 and Figure 6.6 respectively. 

 

Figure 6.4. Scenario I - Disturbance forecasting and indoor temperature A1. 
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Figure 6.5. Scenario I - Disturbance forecasting and indoor temperature A2. 

 

Figure 6.6. Scenario I - Disturbance forecasting and indoor temperature A3. 

 

Figure 6.7. Scenario I - A1 power profile. 
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Despite the thermal disturbances, it can be seen in that the indoor temperatures are 

predominantly inside their narrow bounds. The Figure 6.7, Figure 6.8 and Figure 6.9 show, for 

TCA, A1, A2 and A3 respectively, the used power to acclimatize the spaces and the available 

green resource to do it. The figures also show the amount and the type of the consumed power. 

 

Figure 6.8. Scenario I - A2 power profile. 

 

Figure 6.9. Scenario I - A3 power profile. 
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Figure 6.10. Scenario I - Global consumption characterization. 

 

Figure 6.11. Scenario I - Power profile. 

 

Figure 6.12. Scenario I - Heating/cooling total cost. 
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Being the last in the sequence, A3 receives merely the remainder resource, which in several 

periods is null obliging to a major consumption of red resource. Due this situation, despite A3 

having the lowest consumption, Figure 6.11, is the one that have the highest cost Figure 6.12. 

6.2.1.2 Scenario II - Balanced parameterization with storage 

The second scenario intends to show the benefit of having energy storage, been the only 

difference with Scenario I the increment of a set of batteries with 1.5 kWh of capacity, Figure 

6.22. The thermal disturbances forecasts and the indoor temperature with its constraints for the 

TCA, A1, A2 and A3  in this Scenario II, have the profile presented in Figure 6.13, Figure 6.14 

and Figure 6.15 respectively. 

 

 

Figure 6.13. Scenario II - Disturbance forecasting and indoor temperature A1. 

 

Figure 6.14. Scenario II - Disturbance forecasting and indoor temperature A2. 
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Figure 6.15. Scenario II - Disturbance forecasting and indoor temperature A3. 

 

Figure 6.16. Scenario II – A1 power profile. 

 

Figure 6.17. Scenario II – A2 power profile. 
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Figure 6.18. Scenario II – A3 power profile. 

Despite the thermal disturbances, it can be seen in that the indoor temperatures are 

predominantly inside their narrow bounds. 

As expected, with this energy supplement the power constraint of all TCA’s was respected, 

exceptionally in the interval between 12-15h in A3, where a small amount of red resource was 

consumed. 

 

Figure 6.19. Scenario II - Global consumption characterization. 

Comparatively with Figure 6.10, Figure 6.19 shows that the red resource consumption was 

significantly reduced. The agent that most benefit with this modification was A3, the energy 

surplus allows it to consume almost exclusively green resource bought at lower bid price , and 

thus, is the one that presents lesser costs, Figure 6.21. 
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Figure 6.20. Scenario II - Power profile.  

 

Figure 6.21. Scenario II - Heating/cooling total cost. 

 

Figure 6.22. Scenario II - Batteries profile. 
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6.2.1.3 Scenario III - Parameterization for cost benefits 

In the third scenario the penalty values of the parameters related with consumption were 

increased. The comfort issues are now less important, with the agents mainly concerned with 

lower consumptions and in satisfy the power constraint. With this variation, the soft power 

constraint was transformed in a hard constraint.  

Table 6.3. Scenario III - Penalty values 

 

Due the scarcity of green resource and the obligation to respect the power limits, A3 was the one 

that presented lower consumptions, Figure 6.30, and consequently minor costs, but on the other 

hand, the indoor temperature was the most penalized with the highest deviation from the chosen 

comfort range. With this parameterization, the consumption profile always maintained inside 

bounds, for all TCA’s, Figure 6.26, Figure 6.27 and Figure 6.28. Consequently, in Figure 6.29 

can be seen that any or negligible red resource was consumed. 

 

Figure 6.23. Scenario III - Disturbance forecasting and indoor temperature A1. 
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Figure 6.24. Scenario III - Disturbance forecasting and indoor temperature A2. 

 

Figure 6.25. Scenario III - Disturbance forecasting and indoor temperature A3. 

 

Figure 6.26. Scenario III – A1 power profile. 
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Figure 6.27. Scenario III – A2 power profile. 

 

Figure 6.28. Scenario III – A3 power profile. 

 

Figure 6.29. Scenario III - Global consumption characterization. 
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Figure 6.30. Scenario III - Power profile. 

 

Figure 6.31. Scenario III - Heating/cooling total cost. 

Therefore the energy costs, Figure 6.31, decreased in all agents, namely 8%, 9% and 54% 

comparatively with Scenario I, and 9%, 45% and 25% when compared with Scenario II, as 

summarized in Table 6.4. 

Table 6.4. Scenario III - Cost comparisons 

Scenario A1 A2 A3 

I 1,27 1,09 1,27 

II 1,39 1,52 0,92 
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6.2.1.4 Scenario IV - Parameterization for comfort benefits 

The fourth scenario is focused in maintaining the indoor comfort, all agents want to respect the 

established temperature gap regardless the required consumption. To accomplish this goal, the 

temperature penalty was significantly increased, and the consumption parameters decreased, 

Table 6.5. 

Table 6.5. Scenario IV - Penalty values 

Parameter A1 A2 A3 

𝛯 50000 50000 50000 

 1 1 3 

ϕ 0.2 0.2 0.2 

 0.1 0.1 0.1 

 

 

Figure 6.32. Scenario IV - Disturbance forecasting and indoor temperature A1. 
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Figure 6.33. Scenario IV - Disturbance forecasting and indoor temperature A2 

 

Figure 6.34. Scenario IV - Disturbance forecasting and indoor temperature A3 

 

Figure 6.35. Scenario IV – A1 power profile. 
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Figure 6.36. Scenario IV - A2 power profile. 

 

Figure 6.37. Scenario IV - A3 power profile. 

 

Figure 6.38. Scenario IV - Global consumption characterization. 
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As can be seen in Figure 6.32, Figure 6.33 and Figure 6.34 in all the indoor temperatures are 

mostly maintained inside the comfort gap. 

As consequence, the power constraints, Figure 6.35, Figure 6.36 and Figure 6.37, are violated 

and the red resource consumption increased significantly,  

Figure 6.38. 

 

Figure 6.39. Scenario IV - Power profile.  

 

Figure 6.40. Scenario IV - Heating/cooling total cost. 

Being now the comfort a priority it’s quite clear that the controller tries to accomplished the pre-

defined comfort range leading to a consumption and cost surplus. 

As expected, distinct results were obtained in the several proposed scenarios. Figure 6.41 

summarize the obtained costs results for the 24hours simulation. 
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Figure 6.41. Daily heating/cooling total cost. 

Comparing the economic differences between scenarios, the third scenario has shown to be the 

most economical; the parameters penalizing the consumption were significantly increased, 

leading to a situation of less energy usage. However, this decreased consumption led to a higher 

indoor temperature deviation from the established boundaries. On the other hand, Scenario IV 

was the most expensive. In this scenario the penalty value in the temperature constraint was 

increased, showing that the consumers were only concerned in maintaining the temperature 

inside the boundaries. Thus, all the necessary resources were consumed, leading to higher costs, 

in order to respect the comfort limits. The possibility of obtaining comfort in detriment of the 

cost may be important in various situations. For example: To acclimatize rooms with children or 

areas in laboratories and/or hospitals. Remark that, despite this comfort preference, the cost 

function (in due proportion given by the parameters) also minimizes all the other terms. 

The parameterizations from the first and second scenarios have shown to be the most balanced, 

with a compromise between comfort and costs. 

6.3 Access order with variable hourly sequence 

In this chapter it is considered that the sequence access order may vary hourly (Barata et al., 

2013a). The TCA bids are made according to the consumption needs. Each TCA is isolated (no 

thermal interactions are considered), has a known fixed 24 hours consumption profile and it is 

established a priority level from 1 (low) to 3 (high), that indicates how important that hour is in 

terms of consumption. Thus, the hours with high priority levels indicates high consumption and 

consequently a higher bid value, Table 6.7. 
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6.3.1 Algorithm II - Implemented sequential scheme with variable 

hourly sequence 

As mentioned it is considered that the sequence order was already stablished by a previous 

auction, but in this chapter, the access sequence order vary hourly. The hourly access sequence 

is storage in AO(NS×HP) as exemplified in Table 6.6 for NS=5 and HP=24. Each agent predicts 

the consumption and subtracted it to maximum available communicates that information to the 

next on the sequence list. Remark that, only the divisions that thermally interact pass to each 

other the information about future indoor temperatures. 

Table 6.6. Example of hourly access order sequence to green energy 

Access 

order 

Time (h) 

1 2 3 4 … 23 24 

TCA 1 TCA 3 TCA 5 TCA 1 … TCA 4 TCA 1 

TCA 2 TCA 1 TCA 1 TCA 2 … TCA 5 TCA 2 

TCA 5 TCA 2 TCA 3 TCA 5 … TCA 3 TCA 3 

TCA 4 TCA 4 TCA 2 TCA 4 … TCA 2 TCA 4 

TCA 3 TCA 5 TCA 4 TCA 3 … TCA 1 TCA 5 
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Algorithm II - DSM-DMPC Implemented sequential scheme with variable hourly sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

Required for all TCA’s: Thermal disturbances, comfort temperature gap, hourly constraints    

parameters and hourly auction bid. 

For all TCA’s Wi initialize: 

𝐶𝑤𝑙
𝑖 fixed consumption within HP (1 × 𝐻𝑃) 

BV bid value by hour inside the HP (1 × 𝐻𝑃) 

AO access order to green resource is established within the HP (𝑁𝑆 × 𝐻𝑃). 
 

for k=1 to NC 

     for i=1 to NS(the number of TCA’s)   

               Get the access order at current instant, AO(k) 

               Apply to all TCA 𝑢𝑙
𝑖(𝑘 − 1: 𝑘 − 1 + 𝐻𝑃)from k-1 instant to obtain 𝑇𝑙

𝑖(𝑘: 𝑘 + 𝐻𝑃) 

               Communicate temperature predictions to adjacent TCA’s 

                Update available green resource 

�̅�𝑖(𝑘: 𝑘 + 𝐻𝑃) = �̅�𝑖(𝑘: 𝑘 + 𝐻𝑃) −∑𝐶𝑤𝑙
𝑖(𝑘: 𝑘 + 𝐻𝑃)

𝑁𝑑𝑖

𝑙=1

 

               Calculate the optimal control sequence 𝑢𝑙
𝑖(1:𝐻𝑃) solving OPi (5.1)-(5.11) with power 

constraints     given by 𝑈𝑖 and �̅�𝑖  

                Update available green resource values for next TCA  

�̅�𝑖+1(𝑘: 𝑘 + 𝐻𝑃) = �̅�𝑖(𝑘: 𝑘 + 𝐻𝑃) −∑𝑢𝑙
𝑖(𝑘: 𝑘 + 𝐻𝑃)

𝑁𝑑𝑖

𝑙=1

 

      end for 

              Update batteries available energy 

end for 

Remark: generically, 𝑋(𝑘: 𝑘 + 𝐻𝑃) represents a line vector (1 × 𝐻𝑃) containing values from 

𝑥(𝑘) to 𝑥(𝑘 + 𝐻𝑃), and 𝑌(𝑝, 𝑘: 𝑘 + 𝐻𝑃), represents the line p of a matrix (𝑃 × 𝐻𝑃) containing 

values from y(𝑝, 𝑘) to y(𝑝, 𝑘 + 𝐻𝑃). 

6.3.2 Results 

Figure 6.42 presents the outdoor temperature and Figure 6.43 to Figure 6.45, presents the 

known fixed 24 hours consumption profile and priority level from the three TCA’s. 
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Figure 6.42. Outdoor temperature forecasting (Toa). 

 

Figure 6.43. Fixed consumption profile 𝐶𝑤1
1, and priority level of TCA1. 

 

Figure 6.44. Fixed consumption profile 𝐶𝑤1
2, and priority level of TCA2. 
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Figure 6.45. Fixed consumption profile 𝐶𝑤1
3, and priority level of TCA3. 

As mentioned, the priority level presented is stablished according the consumption needs. Thus, 

higher consumption represents higher priority levels, and consequently higher bid values, as 

presented in Table 6.7. 

Table 6.7. Bid value for each consumption level by agent. 

Consumption Priority Level House 1 House 2 House 3 

0-1 kW 1 2/50.09 3/50.09 1/20.09 

1-2 kW 2 7/100.09 4/50.09 2/30.09 

>2 kW 3 8.5/100.09 9/100.09 3/40.09 

The bid value establishes an order to access to the resource, being the green resource 

consumption made by the agents sequentially by that order. The first agent consumes and the 

remainder green resource is passed to the next agent as the maximum green available resource. 

As mentioned, when the green resource becomes insufficient to satisfy all the demand, the red 

is available. The red resource consumption implies a penalty in the final cost function (5.1) due 

to the soft constraint violation imposed by the maximum available green resource is exceeded. 

A scheme of the system implemented is shown in the next picture. 
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Figure 6.46. Implemented system. 

0 5 10 15 20
0

1

2

3

4

5

P
o
w

e
r 

(k
W

)

 

 

0 5 10 15 20
1

1.5

2

2.5

3

Time (h)

L
e
v
e
l

 

 

Priority Level

Fixed consumption A3(kW)



DMPC FOR THERMAL HOUSE COMFORT WITH SEQUENTIAL ACCESS AUCTION 

  115 

𝐶𝑤𝑙
𝑖 = [𝑐𝑤𝑙

𝑖(𝑘), … , 𝑐𝑤𝑙
𝑖(𝑘 + 𝐻𝑃)]

𝑇
 (6.1) 

𝑈𝑇𝑔𝑟𝑒𝑒𝑛 = [|𝑢𝑇𝑔𝑟𝑒𝑒𝑛(𝑘)|, … , |𝑢𝑇𝑔𝑟𝑒𝑒𝑛(𝑘 + 𝐻𝑃)|]
𝑇
 (6.2) 

𝑢𝑙
𝑖 = [|𝑢𝑙

𝑖(𝑘)|, … , |𝑢𝑙
𝑖(𝑘 + 𝐻𝑃)|]

𝑇
 (6.3) 

where, for a generic TCA i at the control horizon, �̅�𝑖   represents the green available resource for 

indoor comfort , UTgreen represents the green available total resource, 𝐶𝑤𝑙
𝑖
 the fixed consumption 

profile from TCA i division l and 𝑢𝑙
𝑖 the used power to heating/cooling the division l inside 

TCA i, that results from the optimization program. 

It is considered that all houses have the same outdoor temperature presented in Figure 6.42. The 

thermal characteristics, load disturbances profile and comfort temperature bounds are different 

for all houses. Agents can also have distinct penalties on power and temperature constraints 

violations, they can hourly privilege comfort or cost according to consumer choice. Here, is 

assumed that the penalty values of each agent are always the same. Table 6.8, shows the used 

parameters. 

Table 6.8. Scenario parameters. 

Parameter A1 A2 A3 Units 

Req 50 25 75 ºC/kW 

Ceq 9.2103 4.6103 11103 kJ/ºC 

𝛯 100 100 300 - 

 500 200 300 - 

ϕ 2 2 2 - 

 1 1 1 - 

t 1 1 1 h 

HP 24 24 24 - 

T(0) 24 23 24 ºC 

 

As a result from the hourly variation of the priority levels, the bid values also vary hourly 

yielding distinguish access orders as showed in Figure 6.47. 
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Figure 6.47. Access order. 

 

Figure 6.48. Disturbance forecasting and indoor temperature A1. 

 

Figure 6.49. Disturbance forecasting and indoor temperature A2. 
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Figure 6.50. Disturbance forecasting and indoor temperature A3. 

The thermal disturbances forecasts and the indoor temperature with its constraints for the TCA, 

A1, A2 and A3 have the profile presented in, Figure 6.48, Figure 6.49 and Figure 6.50 

respectively, and despite it and the access order variability, it can be seen in that the indoor 

temperatures are always inside their narrow bounds. Taking advantage of the predictive 

knowledge of the disturbance and making use of the space thermal storage, it can also be seen 

that the MPC treats the indoor temperature before the disturbance beginning. 

The Figure 6.51, Figure 6.52 and Figure 6.53 show for TCA, A1, A2 and A3 respectively, the 

used power to acclimatize the spaces and the available green resource to do it. Remark that to 

the green resource value must be subtracted the fixed consumption and then, the remainder 

represents the maximum available power to provide comfort. Thus, in these figures the “Power 

Max” represents the power constraint, �̅�𝑖 = �̅�𝑖−1 − 𝑢𝑖−1
𝑙 − 𝐶𝑤𝑙

𝑖, “Green resource” �̅�𝑖−1 −

𝑢𝑖−1
𝑙 , and ”Consumption” represents 𝑢𝑖

𝑙. 

 

Figure 6.51. Consumption and constraints to heat/cool A1. 
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Figure 6.52. Consumption and constraints to heat/cool A2. 

 

Figure 6.53. Consumption and constraints to heat/cool A3. 

 

Figure 6.54. Global consumption. 
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resource is null the consumption is also null. Figure 6.54 shows the global used power and 

characterized it in terms of type of consumed power. 

𝑈𝑢𝑠𝑒𝑑(𝑘) =∑[|𝑢𝑙
𝑖(𝑘)| + 𝐶𝑤𝑙

𝑖]. 

It can be seen in Figure 6.54, that in the most demanding periods, the maximum green available 

resource is exceeded and the red resource must be consumed. 

 

Figure 6.55. Heating/cooling total cost. 

Figure 6.55 illustrates the effectiveness of the approach and demonstrates the advantage of the 

auction. For each one of the agents it can be seen that the “Real Cost” is much lower than the 

cost of not to bid in auction and only consume the red resource “Red Cost”. 

6.4 Conclusions 

In this chapter, a distributed MPC control technique was presented in order to provide thermal 

house comfort. The solution obtained solves the problem of controlling multiple subsystems 

dynamically coupled and also exposed to a coupled constraint. Each subsystem solves its own 

problem by involving its own state predictions or from neighbourhoods and the shared 

constraints. It could be observed through the simulations and result’s analysis that suitable 

dynamic performances were obtained. The built system is flexible in two ways. It allows in each 

auction the agents to bid higher or lower in accordance with their needs and, by changing the 

penalty values during the day, consumers can shift hourly between indoor comfort and lower 

costs.  Knowing in advance the disturbance forecasts allows agents to make their bid and 

achieve significant savings at the end of the day. 

The distributed MPC control technique, along with a thermal-electrical modular scheme, was 

validated in order to provide thermal house comfort, with strong presence of intermittent/limited 
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RES environments. The approach spots a control problem of multiple subsystems dynamically 

coupled and exposed to coupled constraint. Each subsystem solves its own problem by 

involving its own state predictions and the state predictions of adjacent rooms, available with 

communication interchange and shared constraints. The changing in penalty values allows 

consumer to pick between indoor comfort and lower costs. 
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Chapter 7 

7 DMPC for Thermal House Comfort 

with Sliding Load 

7.1 Introduction 

The desired approach here presented intends to take advantage from the innovative technology 

characteristics provided by future SGs (Korolija et al., 2011). In the smart world, simple 

household appliances, like dishwashers, clothes dryers, heaters or air conditioners are assumed 

to be fully controllable in order to achieve the network maximum efficiency. Renewable 

energies will be a common presence and any kWh provided by these technologies should not be 

wasted. Active Demand-Side Management will control the loads in order to adapt them to the 

available renewable energy source. As mentioned in Chapter 2.2, DSM studies are focused in 

the development of load control manipulation models (EIA, 2014; Favre-Perrod et al., 2009) 

and electricity incentive prices to promote load management (Kosek et al., 2013; Chen, 2010). 

In buildings, DSM is based on an effective reduction of the energy needs by changing the shape 

and amplitude consumer’s load diagrams. So, DSM can involve a combination of several 

strategies; pricing, load management curves and energy conservation are implemented for a 

more energy efficient use.  

Load shifting is considered a common practice in the management of electricity supply and 

demand, where the peak energy use is shifted to less busy periods. Properly done, load shifting 

helps meeting the goals of improving energy efficiency and reducing emissions, smoothing the 

daily peaks and valleys of energy use and optimising existing generation assets. With new 

technological advances, DR programmes may shift loads by controlling the function of air 
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conditioners, refrigerators, water heaters, heat pumps and other similar electric loads at 

maximum demand times. The work here presented is distinct because provides an integrative 

solution which is able to, in a distributed network with multiple TCAs, adjust the demand to an 

intermittent limited energy source, using load shift and maintaining the indoor comfort, (Barata 

et al., 2013c) and more detailed in (Barata et al., 2014c). Figure 7.1, exemplifies a shifting load 

communication infrastructure. 

 

Figure 7.1. Shifting load communication infrastructure. 

Thus, due the specificities made in this chapter, the following assumptions are added to the ones 

made in Chapter 6.1: 

 Each division selects the load value (LV), the duration (LVd), the turned on time (ToT) 

and the “sliding level” (SL) of the “shifted loads”. The SL indicates that the load can 

be turned on SL hours before and after the chosen ToT; 

The next picture illustrates the shifting load characteristics. 

 

Figure 7.2. Implemented shifting load scheme. 
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satisfaction of all constraints. The global system includes an auction (provided by the MO) that, 

in accordance with the bid value made by the houses/agents, defines an order to access the 

green resource. The green resource consumption is made by the agents sequentially by the 

auction order and the information about the remaining green resource is passed to the next agent 

as the maximum green available resource. As mentioned, when green resource becomes 

insufficient to satisfy all the demand, the red is available. 

7.2 Algorithm III – Implemented shifting and loads allocation 

scheme 

Each one of the systems starts by choosing their loads characteristics, LV, LVd, ToT and SL. With 

this data, all the possible loads schedule combinations (PLSCS) are establish (see Figure 7.7 

e.g.). At each time step, it’s verified if inside the predictive horizon, any PLSCS exceeds the 

maximum available green energy iU max . The sequences that are at any instant above the 

iU max  limit are removed, and the remaining are the feasible load schedule combinations 

(FLSCS). The FLSCS are subtracted to iLU , and the resulting in a set of combinations iU  that 

are tested in the minimization problem as maximum available green resource for comfort (5.1). 

The hypothesis that provided less consumption is chosen. Once one sequence is started, all the 

others that are different until the current step time are eliminated until the final load sequence is 

chosen, FLSeq. The total consumption by division and house at any instant can be written as 

(7.1) and (7.2) respectively, and is pictured in Figure 7.4.  

 

Figure 7.3. Total consumption characterization. 

Remark that the total available for comfort for each house (7.3) is used as constraint in the 

optimization problem. The equations assume the following form, 

𝑃𝑙
𝑖(𝑘) = |𝑢𝑙

𝑖(𝑘)| + 𝐶𝑤𝑙
𝑖(𝑘) + 𝐹𝐿𝑆𝑒𝑞𝑙

𝑖(𝑘), (7.1) 

𝑃𝑖(𝑘) =∑𝑃𝑙
𝑖(𝑘)

𝑁𝑑𝑖

𝑙=1

 , (7.2) 
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𝑈𝑖(𝑘) = 𝑢 𝑇𝑔𝑟𝑒𝑒𝑛(𝑘) −∑(𝐶𝑤𝑙
𝑖(𝑘) − 𝐹𝐿𝑆𝑒𝑞𝑙

𝑖(𝑘))

𝑁𝑑𝑖

𝑙=1

−∑𝑃𝑗(𝑘)

𝑁𝑆

𝑗=1
𝑖≠𝑗

.  
(7.3) 

A simplified scheme of the implemented optimization problem is shown in the next picture, 

Figure 7.4, followed by the implemented DSM-DMPC algorithm. 
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Figure 7.4. Implemented power distribution scheme starting in the Optimization Problem 1 

(OPi) to OPNS. 
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Algorithm III - DSM-DMPC pseudocode prototype algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

For all houses Wi initialize: 

LV load value 

LVd the duration 

ToT the turned on time 

SL sliding level 

iPSLC  
possible schedule loads combinations (𝑛𝑃𝐶 ×𝐻𝑃) with nPC the number of possible 

combinations 

𝐶𝑤𝑙
𝑖 fixed consumption within HP (1 × 𝐻𝑃) 

BV bid value by hour inside the HP (1 × 𝐻𝑃) 

AO access order to green resource is established within the HP (𝑁𝑆 × 𝐻𝑃). 
 

for k=1 to NC 

     for i=1 to NS(the number of TCA’s) 

            Get the access order at current instant, AO(k) 

             Apply to all TCA 𝑢𝑙
𝑖(𝑘 − 1: 𝑘 − 1 + 𝐻𝑃)from k-1 instant to obtain 𝑇𝑙

𝑖(𝑘: 𝑘 + 𝐻𝑃) 

             Communicate temperature predictions to adjacent TCA’s 

             Update available green resource  

�̅�𝐿𝑖(𝑘: 𝑘 + 𝐻𝑃) ← �̅�𝑚𝑎𝑥𝑖(𝑘: 𝑘 + 𝐻𝑃) −∑𝐶𝑤𝑙
𝑖(𝑘: 𝑘 + 𝐻𝑃)

𝑁𝑑𝑖

𝑙=1

 

             Built table with all FSLCS  

             𝐹𝐿𝑆𝐶𝑖(𝑛𝐹𝐶 , 𝑘: 𝑘 + 𝐻𝑃) ← 𝑃𝐿𝑆𝐶𝑖(𝑛𝐹𝐶 , 𝑘: 𝑘 + 𝐻𝑃) − �̅�𝐿𝑖(𝑘: 𝑘 + 𝐻𝑃) ≥ 0 

            for t=1 to nFC (number of feasible combinations) 

                      Calculate the optimal control sequence ui(1:HP) solving OPi (5.1)-(5.11) with power 

constraint given by �̅�𝑖(𝑘: 𝑘 + 𝐻𝑃) ← 𝐹𝐿𝑆𝐶𝑖(𝑡, 𝑘: 𝑘 + 𝐻𝑃) 

                       𝑈𝑝𝑟𝑒𝑑𝑖(𝑡) ← ∑𝑢𝑖(1:𝐻𝑃) 

                       if  𝑈𝑝𝑟𝑒𝑑𝑖(𝑡) < 𝑈𝑝𝑟𝑒𝑑𝑖(𝑡 − 1) then 

                                 𝐹𝐿𝑆𝑒𝑞𝑖(1: 𝑘) ←  𝐹𝑆𝐿𝐶𝑖(𝑡, 𝑘: 𝑘 + 𝐻𝑃) 

                       end if 

            end for          

              Eliminate from 𝑃𝐿𝑆𝐶𝑖 all the sequences that are different from 𝐹𝐿𝑆𝑒𝑞𝑖(1: 𝑘) 

             Update available green resource values for next TCA  

�̅�𝑖+1(𝑘: 𝑘 + 𝐻𝑃) = �̅�𝑖(𝑘: 𝑘 + 𝐻𝑃) −∑𝑢𝑙
𝑖(𝑘: 𝑘 + 𝐻𝑃)

𝑁𝑑𝑖

𝑙=1

 

      end for 

      Update batteries available energy 

end for 
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As mentioned the algorithm is sequential, and for a better understanding of the implemented 

power distribution scheme, the access order is W1, W2 and so on. Therefore, for a certain instant, 

is considered that W1 was the one that made the highest bid, W2 made the second highest, always 

sequentially until 𝑊𝑁𝑆 . In Figure 7.4, the available power for W1 is given by the predicted green 

total available resource 𝑈𝑚𝑎𝑥1 = 𝑈𝑇𝑔𝑟𝑒𝑒𝑛 at the control horizon (7.5), and them the fixed 

consumption (7.4) is subtracted resulting in 𝑈𝐿𝑖. As mentioned, the PLSCS are compared inside 

the predictive horizon with 𝑈𝐿𝑖, and the ones that exceeds at any instant   limit are removed, 

and the remaining are FLSCS. The FLSCS are subtracted to , and the resulting in a set of 

combinations 𝑈𝑖.. These combinations are the power constraint (5.10) and are tested in the OPi 

(5.1). The combination that generate lower consumption, ui , is chosen. Then, the information 

about the available green energy is passed for the next house, 𝑈𝑚𝑎𝑥𝑖. 

For a generic Agent i at the control horizon 𝑈𝑇𝑔𝑟𝑒𝑒𝑛 represent the green available total resource, 

𝐶𝑤𝑙
𝑖 the fixed consumption profile and 𝑢𝑙

𝑖the used power to heating/cooling the space that 

results from the optimization program. These parameters are express by the vectors (7.4)-(7.6), 

𝐶𝑤𝑙
𝑖 = [𝑐𝑤𝑙

𝑖(𝑘), . . . , 𝑐𝑤𝑙
𝑖(𝑘 + 𝐻𝑃)]

𝑇
, (7.4) 

𝑈𝑇𝑔𝑟𝑒𝑒𝑛 = [|𝑢𝑇𝑔𝑟𝑒𝑒𝑛(𝑘)|, . . . , |𝑢𝑇𝑔𝑟𝑒𝑒𝑛(𝑘 + 𝐻𝑃)|]
𝑇
, (7.5) 

𝑢𝑙
𝑖 = [|𝑢𝑙

𝑖(𝑘)|, . . . , |𝑢𝑙
𝑖(𝑘 + 𝐻𝑃)|]

𝑇
. (7.6) 

In the built algorithm it is considered that the access order to the green resource is established 

hourly according to bid value made in auction by each agent, and therefore, at each instant the 

defined access sequence must be applied. Another feature provided by the implemented system 

is that each house can have different hourly penalties, allowing the consumer to choose between 

more/less comfort and cost during the day. 

7.3 Results 

The presented results were obtained with an optimization MATLAB® routine that finds a 

constrained minimum of a quadratic cost function that penalizes the sum of the several 

objectives (5.1). 
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7.3.1 One house scenario 

To simplify better understand the used approach, the first results here present show only the 

shifting loads procedure for one house represented by one division with thermal disturbance 

(QPd), Figure 7.6 (no fixed consumption profile and storage are considered). Table 7.1 shows the 

used scenario parameters. The outdoor temperature forecast, Figure 7.5, considers 90% 

accuracy to within +/- 2°C on the next day. 

 

Figure 7.5.Outdoor temperature forecasting (Toa). 

Table 7.1.Scenario parameters 

Req(ºC/kW) Ceq(kJ/ºC) Ξ Ψ ϕ 𝜑 t(h) HP NC T(0) (ºC) 

50 9.2103 500 500 2 1 1 24 24 21 

 

 

Figure 7.6. Thermal disturbance forecasting. 
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The Loads that can be daily shifted have the characteristics present in the next Table 7.2, and 

Figure 7.7 shows all the possible 56 loads combinations in the 24hours period. 

Table 7.2. Shifted loads characteristics 

Loads LV (kW) LVd (h) ToT (h) SL (h) 

Load 1 3 2 8 3 

Load 2 2 3 18 4 

 

 

Figure 7.7. Possible loads schedule combinations (PLSCs). 

The system tests all combinations present in Figure 7.7, and as mentioned above, the hypotheses 

that do not respect the maximum predicted green resource are initially discharge, and the 

remaining ones the FLSCS, Table 7.3, are tested in (5.1).  

The sequence FLSeq, where mostly green energy is consumed, the costs are lower and the 

indoor comfort range is respected is found. 
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Table 7.3. Feasible Loads Sequence Combinations 

F
L

S
C

 Time (h) 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 0 0 0 0 0 0 3 3 3 0 

2 0 0 0 0 0 0 0 0 3 3 3 0 

3 0 0 0 0 0 0 0 0 3 3 3 0 

4 0 0 0 0 0 0 0 0 3 3 3 0 

F
L

S
C

 Time (h) 

13 14 15 16 17 18 19 20 21 22 23 24 

1 0 2 2 2 2 0 0 0 0 0 0 0 

2 0 0 2 2 2 2 0 0 0 0 0 0 

3 0 0 0 2 2 2 2 0 0 0 0 0 

4 0 0 0 0 2 2 2 2 0 0 0 0 

 

In Figure 7.8 are the total energy costs of the FLSCS shown in Table 7.3, and can be seen that 

the chosen sequence is the less expensive. 

 

Figure 7.8. Total energy costs of FLSCS. 

Figure 7.9, show the chosen load sequence, FLSeq, and the available green energy to allocate 

the loads. 
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Figure 7.9. Maximum available green energy and chosen sequence. 

In order to minimize the energy costs by consuming only green resource, the implemented 

algorithm chooses the gaps that fit properly in the maximum available green energy. 

 

Figure 7.10. Indoor temperature. 

The comfort limits varies during the 24h period, and Figure 7.10 shows that the indoor 

temperature is always maintained inside the comfort limits being the optimization problem able 

to respect the temperature and power constraint Figure 7.11. 

The periods between 9-11h and 15-18h are extremely demanding, all green energy is consumed 

by the shifted loads, with no remaining one for comfort proposes. 

Although, Figure 7.10 shows that in that periods the algorithm choose to not use the red 

resource and, taking advantage of the prediction horizon, pre-heat or pre-cool the spaces when 

only renewable resource is available. 
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Figure 7.11. Used power to heat/cool the space and the maximum green resource available for 

comfort. 

7.3.2 Distributed scenario 

It is considered that all houses are represented by one division and have the same outdoor 

temperature presented in Figure 7.5. The used parameters are presented in Table 7.4. 

Table 7.4. Distributed scenario parameters 

Parameter A1 A2 A3 Units 

Req 50 25 75 ºC/kW 

Ceq 9.2103 4.6103 11103 kJ/ºC 

𝛯 100 100 300 - 

𝝍 500 200 300 - 

𝝓 2 2 2 - 

𝝋 1 1 1 - 

t 1 1 1 h 

HP 24 24 24 - 

T(0) 21 23 24 ºC 
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The batteries capacity is 3kWh. To incentive the clean resource consumption, it is considered 

that the green energy price per kWh has a maximum auction value (0.09€/kWh) always cheaper 

than the red energy price (0.17€/kWh). Table 7.5 shows the bid value for each one of the 

priority levels that, as mentioned, are established according the fixed consumption profile. 

Table 7.5. Bid value for each consumption level by TCA 

Consumption Priority Level TCA 1 TCA 2 TCA 3 

0-1 kW 1 2/50.09 3/50.09 1/20.09 

1-2 kW 2 7/100.09 4/50.09 2/30.09 

>2 kW 3 8.5/100.09 9/100.09 3/40.09 

The load disturbances profile, comfort temperature bounds and shifted loads characteristics are 

different for all houses, Table 7.6. 

Table 7.6. Shifted loads characteristics for distributed scenario 

TCA Loads LV (kW) LVd (h) ToT (h) SL (h) 

1 
Load 1 1 2 7 1 

Load 2 2 4 18 2 

2 
Load 1 2 3 9 1 

Load 2 2 2 21 2 

3 
Load 1 3 3 8 1 

Load 2 3 3 13 1 

In all houses, the fixed consumption profile, 𝐶𝑤1
1, 𝐶𝑤1

2 and 𝐶𝑤1
3 and its priority level, are 

known within a 24h period and are depicted in Figure 7.12, Figure 7.13 and Figure 7.14. 

 

Figure 7.12. Fixed consumption profile 𝐶𝑤1
1, and priority level of TCA1. 

1 3 5 7 9 11 13 15 17 19 21 23 24
0

0.5

1

1.5

2

2.5

3

P
ow

er
 (

kW
)

 

 

1 3 5 7 9 11 13 15 17 19 21 23 24
1

1.5

2

2.5

3

Time (h)

Le
ve

l

 

 

Fixed consumption A1(kW)

Priority Level



CONTROL FOR THERMAL HOUSE COMFORT WITH SLIDING LOAD 

  133 

 

Figure 7.13. Fixed consumption profile 𝐶𝑤1
2, and priority level of TCA2. 

 

Figure 7.14. Fixed consumption profile 𝐶𝑤1
3, and priority level of TCA3. 

 

Figure 7.15. Access order. 
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As a result from the hourly variation of the priority levels, the bid values also vary hourly 

yielding distinguish access orders as showed in Figure 7.15. 

The thermal disturbance profile is known within a 24 hour period, and is related with thermal 

loads generated by occupants, direct sunlight, electrical devices or doors and windows aperture 

to recycle the indoor air. 

 

Figure 7.16. Disturbance forecasting and indoor temperature A1. 

 

Figure 7.17. Disturbance forecasting and indoor temperature A2. 
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Figure 7.18. Disturbance forecasting and indoor temperature A3. 

In Figure 7.16, Figure 7.17 and Figure 7.18, it can be seen that the comfort constraints are 

respected, the indoor temperature is always inside the comfort zone in all houses. Taking 

advantage of the predictive knowledge of the thermal disturbance and making use of the space 

thermal storage, it can also be seen that in all houses the MPC treats the indoor temperature 

before the thermal disturbance beginning. In Figure 7.19 it can be seen that the shifted loads 

were located in zones with mostly green energy available. Note that when the used power is 

above the daily maximum green available resource, means that the red resource was consumed. 

The used power to heat/cool the space is maintained inside the constrained bounds and when the 

green energy is null the used power is also null, Figure 7.20, Figure 7.22 and Figure 7.24 for 

TCA1, TCA2 and TCA3 respectively.  

Remark that the fixed consumption, 𝐶𝑤1
1, 𝐶𝑤1

2 and 𝐶𝑤1
3 represent the base in the power profile 

in Figure 7.19, Figure 7.21 and Figure 7.23. 

 

Figure 7.19. Power profile A1. 
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Remark that, for example, at time instant t=7, three different types of energy utilization are 

used. The base, in dark grey, is fulfil with the fixed consumption, above is the shifted load and 

on top is the used power for comfort. In this instant the total consumption is maintained within 

the power constraint. On the other hand, at instant t=9, with no available green power, all the 

fixed consumption of 2kW is made with red resource. 

 

Figure 7.20. Control input profile A1 

In Figure 7.21, it can be seen that the shifted loads of house 2 were located in zones with mostly 

green energy available. 

 

Figure 7.21. Power profile A2. 
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Figure 7.22. Control input profile A2. 

Figure 7.23 shows that the chosen FLSeq3 is located here the consumption of red resource is 

obliged. Due the access order imposed by the auction, the maximum available energy may 
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The power constrained bounds are respected been the consumed made only when the clean 

resource is available, Figure 7.24. 

 

Figure 7.23. Power profile A3. 
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Figure 7.24. Control input profile A3. 

 

Figure 7.25. Batteries profile. 

.  

Figure 7.26. Consumption costs. 

2 4 6 8 10 12 14 16 18 20 22 24

-6

-4

-2

0

2

4

6

Time (h)

P
o
w

e
r 

(k
W

)

 

 

Power Max (kW) Power Min (kW) Consumption (kW)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3

Time (h)

P
o
w

e
r 

(k
W

)

 

 

Batteries Available Power

2 4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (h)

C
o

s
t 

(€
)

 

 

Red Cost A3 Red Cost A1 Red Cost A2 Real Cost A1 Real Cost A3 Real cost A2



CONTROL FOR THERMAL HOUSE COMFORT WITH SLIDING LOAD 

  139 

The batteries profile during the 24h period is show in Figure 7.25. It can be seen that in the most 

demanding periods, the energy available in the batteries provide a useful energy support. Figure 

7.26 demonstrates the advantage of the auction. For each one of the houses it can be seen that 

the “Real Cost” is much lower than the cost of not to bid in auction and only consume the red 

resource “Red Cost” at a higher fixed price. 

7.4 Conclusions 

In this chapter, a distributed MPC control integrative solution was validated in order to provide 

thermal house comfort in an environment with strong presence of intermittent/limited RES. The 

approach spots a control problem of multiple subsystems (multi-agent) subjected to coupled 

constraint solved as a sequence of QP optimization problems for each instant in time. 

The approach shows that distributed predictive control is able to provide house comfort within a 

DSM policy, based in a price auction and the rescheduling of appliance loads. It is a valid 

methodology to achieve reduction in consumption and price. The approach is more effective 

with wider periods where the loads are allowed to slide and consequently allocate the most 

favourable zone. 
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Chapter 8 

8 Conclusions and Future Work 

Directions 

8.1 Conclusion and Summary of Achievements 

It is widely accepted that in a nearby future Smart Grids will be a part of our daily life’s. Smart 

grids will most likely include decentralized generation, active network generation management, 

energy storage and demand management resources, where the actions of all agents connected to 

the electricity system can be intelligently integrated aiming for a sustainable, efficient and 

secure energy supply system. Widespread communications and control technologies required to 

use DR help maintain the supply-demand balance in electricity systems. Smart household 

appliances with controllable loads will soon be a common presence in our homes. This active 

DSM is able to manage the loads to obtain harmony in demand supply ratio, they also include 

load control manipulation models, pricing, with distinct electricity tariffs along the day, 

encouraging load management and other approaches which promote energy efficiency and 

conservation. Many energy consumers are already able to tie the electricity pricing into their 

energy management system, resulting in greater shifts of energy usage. This needs to be 

convoyed by the application of intelligent appliances that would facilitate the implementation of 

DSM. 

Therefore, this work intends to be a solution which is able to respond to all this requirements. 

The work has considered environmental issues and pre-establishes variables as a decision-maker 

factor. In particular, the work presented a novel multi-agent model-based predictive control 

method to manage distributed energy resources (DER) systems from the demand side, when in 
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presence of limited energy sources with fluctuating output and with energy storage in house-

hold or car batteries. Specifically, the work has presented a solution for thermal comfort which 

is able to manage a limited shared energy resource via a demand side management perspective, 

using an integrated approach also involving a power price auction and an appliance load 

allocation scheme. The control technique has shown to be capable of controlling loads based on 

the available supply at a certain time, without significantly compromising the user satisfaction. 

The developed building’s energy management system and smart thermostat feature a lot of 

programmable settings that allow users and their utilities to maximize energy savings. It is 

based on a consumer's schedule or peak time’s energy demand for the utility; and in a 

thermostat that pre-programs itself based on weather forecasts to optimize both consumer's 

energy savings and grid performance. The system uses, weather conditions forecasts and the 

MPC features to anticipate major changes in weather and manages heating and cooling needs in 

advance, in the most energy-efficient way. 

The term Thermal Control Area (TCA) was presented and described as an entity that is 

embedded in a distributed environment, where several others TCA’s are working individually to 

achieve their own goal and sharing their information to accomplish a global objective. 

An electro-thermal modular scheme was developed to allow an easy building’s modelling with 

different plans where adjacent areas with distinct construction features may thermally interact. 

The global scenario described in Chapter 5 present all the basic assumptions in which the work 

was developed. Also in this chapter the DMPC optimization problem and the Algorithm I which 

define the implemented basic sequential scheme, were detailed, formalized and exemplified. 

The obtained results showed its suitability.  

In Chapter 6 was presented a solution that solves the problem of control of multiple subsystems 

dynamically coupled and also stringed to a coupled constraint. Each subsystem solves its own 

problem by involving its own state predictions, or from neighbourhoods, and the shared 

constraints. It can be observed throughout the simulations and results analysis that suitable 

dynamic performances were obtained. The system built in Algorithm II is flexible in two ways. 

It allows in each auction the agents bid higher or lower in accordance with their needs and, by 

changing the penalty values during the day, the consumer is able to hourly shift between indoor 

comfort and lower costs. By knowing in advance the disturbance forecasts, the TCA’s are able 

to make their bid and achieve significant savings at the end of the day. 

In Chapter 7, a distributed MPC control integrative solution has been validated in order to 

provide thermal house comfort in an environment with strong presence of intermittent/limited 

RES. The developed Algorithm III has shown that distributed predictive control combined with 

a DSM policy is a tool able to provide thermal comfort, based in a price auction and the 
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rescheduling of appliance loads. It is a valid methodology to achieve less energy consumption 

and price reductions. The approach has shown to be more effective with wider periods where 

the loads are allowed to slide and consequently allocate the most favourable zone. 

The followed table summarize the implemented features which characterises the developed 

algorithms. 

Table 8.1. Developed algorithm characteristics 

Features Algorithm I Algorithm II Algorithm III 

Access to green energy Fixed Variable (hourly) Variable (hourly) 

Distributed nature Yes Yes Yes 

Thermal coupling Yes Yes Yes 

Information interchange 

between TCA’s  
Yes Yes Yes 

Thermal disturbances Yes Yes Yes 

Hourly penalties 

variability 
No Yes Yes 

Battery storage No Yes Yes 

Fixed load allocation No Yes Yes 

Priority consumption 

level 
No Yes Yes 

Sliding load allocation No No Yes 

 

8.2 Recommendations for Future Work Directions  

In order to efficiently allocate resources to facilitate balancing of both electricity and heat it 

would be critical to establish some form of RTP arrangement so users could be fully informed 

about the value of heat and electricity at each point in time (and location). This would also 

encourage development of appropriate demand side solutions. This will require introduction of 

much more sophisticated energy metering (e.g. half hourly metering) and trading functions and 

would lead to deployment of information and communication systems to ease control of 

generators and loads. The philosophy of liberal markets assumes economic optimums can only 

be achieved through negotiations in a free market environment. Because energy is a complex 
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commodity, a sophisticated commercial structure is necessary to make possible the trading 

between each generator or consumer and purchasers of energy and adjuvant services. 

A market with hundreds of thousands or even millions of active participants is clearly a major 

challenge. All participants will need to access various markets to set up long and short term 

energy transactions, secure access to the network and provide ancillary services to operate the 

system in a satisfactory manner (if this is to be done in heat energy, heat networks which would 

facilitate operation of markets for heat would be required). In order to smooth trading of energy 

among a very large number of distributed generators and loads, an electronic energy market 

system, supported by the internet, would be needed to be developed. 

RES forecasts of long-term power variation should be considered for a future task. As a rational 

assumption, it is presumed that RES forecasts are within a short error band, negligible for 

predicting horizons of 24 hours, but should be estimated for the effect of power variation during 

longer periods. 

Typically, distributed RES fluctuations are counter-balanced by the use of battery storage 

systems. However, battery systems not only increase the size and cost of RES power systems 

but also power fluctuations have the effect of reducing the useful life-time of the battery storage 

system. The use of the battery storage system can, therefore, be fully optimised, minimising 

storage requirements, avoiding damage to the battery bank and reducing power fluctuations with 

the consequent useful life of the battery extent . These issues are key topics for future work. 

Grid losses were also not considered in this work, they depend on the specific conductors, the 

current flowing and the length of the transmission line. However, this work has considered 

distributed resources that, when compared with typical grid framework, reduce the required net 

inflow from the grid, reduce grid current and hence the grid losses. Thus, in future works grid 

losses should be considered. To account for actual grid capacities and losses, larger-scale 

simulations based on the grid network models should be applied to enable an effective analysis 

of grid stability. 

Recent software applications like Google Now (Google Now, 2012) provides an mechanism 

that is able to inference about the users habits and suggest what is best at the right time, the 

technology proactively delivers to users information that it predicts (based on their search 

habits) they may want. Thus, based on the consumer habits, a future approach should take in 

consideration this type of tool, to advice, in real time the user about consumption measures that 

can be taken in to account to increased efficiency and reduce energy costs. 
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