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SUMMARY

Many large-scale systems are formed by the interconnection of several subsys-

tems, whose different spatial and temporal characteristics make them significantly

heterogeneous. The optimal management of such systems must generally deal not

only with issues related to large dimensionality, but also with the presence of sev-

eral interactions between the subsystems, which have a significant influence on the

local control decisions and the overall system optimality. For such large-scale sys-

tems, model predictive control (MPC) is an attractive control strategy that can

be implemented in centralized or decentralized configurations. It has been shown

that, to achieve a flexible and reliable control structure with optimum overall sys-

tem performance, individual decentralized controllers have to be coordinated and

driven towards the performance of a centralized controller. In this work, based

on three coordination strategies that have been reported in the literature, viz.,

(1) communication-based coordination, (2) cooperation-based coordination, and (3)

price driven coordination, we have reformulated and evaluated different methods

for coordinating multiple linear MPCs. These strategies have been evaluated on

benchmark chemical engineering systems (via simulations), on the basis of their ro-

bustness, stability, and performance in comparison to that of a centralized MPC

implementation. The ability to deal with a variety of model uncertainties and vary-

ing intensities of interactions are important aspects that have been investigated.

Based on the analysis of the different MPC coordination strategies, cooperation-

based coordination has been selected as a robust and efficient control strategy and

methods to improves its performance have been analyzed.

The number of interactions between subsystems in large-scale systems increases

exponentially with the number of subsystems, making coordinated MPC (C-MPC)

architecture effective but not computationally efficient. Hence, it is desirable to re-

duce the computational load of the coordination architecture without significantly

compromising the overall performance. In order to achieve this, a genetic algorithm

(GA) based optimizer is utilized to identify the trade-off between various optimal

interaction topologies and the associated performance deterioration. To enhance the

efficiency of the GA optimizer, the relative normalized gain array (RNGA) is used

xiii



to identify the most critical interactions and this knowledge is incorporated into

the GA optimizer, significantly reducing the search space leading to faster conver-

gence. A common problem involving large-scale control networks is the disruption

of communication. Delay or losses in the information exchange could lead to local

control decisions that destabilize the overall system. In order to tackle the prob-

lem of communication disruptions, the utility of the GA optimizer as a useful and

effective tool to handle communication disruptions has also been highlighted. The

catalog of pareto optimal solutions generated by the GA optimizer can be utilized

as an easy-to-use look up table to identify alternate communication protocols in the

presence of disruptions.

Finally, multi-reservoir management has been identified as a large-scale system

where the application of coordinated control strategies could have substantial ben-

efits. The application of the C-MPC architecture for real world water management

systems is evaluated through the analysis of a two reservoir test case and a high

fidelity model of the Alqueva multi-reservoir system in Portugal.
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Chapter 1 Introduction

Chapter 1

INTRODUCTION

1.1 Background and Motivation

A particular class of large-scale systems are characterized by the presence of a

network of several interconnected subsystems. The varying dynamics of the individ-

ual subsystems and the presence of several interactions between these subsystems

make these large-scale systems significantly heterogeneous with local control deci-

sions having a significant effect on the overall system optimality. Thus, the optimal

management of such systems is a challenging endeavor. Real-time management in

the form of Model Predictive Control (MPC) is one of the most popular techniques

implemented for such systems due to its ability to use real-time data and fore-

casts to predict future outcomes. MPC has now evolved into a successful control

strategy for the integrated control of large-scale multi-variable processes that are

subject to operational constraints. Two common paradigms for the implementation

of MPC are the centralized and decentralized control implementation. In a central-

ized MPC implementation, a single monolithic controller is designed and such an

implementation is plant-wide optimum. However the centralized implementation is

computationally intensive, relatively difficult to implement, tune and maintain, and

is characterized by poor fault tolerance (Venkat et al. (2007)). On the other hand,

a decentralized MPC implementation involves the design of multiple independent

1



1.1 Background and Motivation

controllers to manage individual subsystems. While such a strategy is flexible, reli-

able and easy to implement and maintain, it leads to performance deviations from

plant-wide optimum. Centralized and decentralized controllers define the limiting

extremes of plant-wide multivariable constrained controller design. The performance

deterioration of decentralized control as compared to centralized control is due to

the controllers ignoring or inadequately modeling subsystem interactions.

The failure of the North East American power system in August 2003 is an apt

example of a large-scale system where a centralized controller was not a practically

viable option (due to the size of the system) and the implementation of a com-

pletely decentralized control scheme resulted in disaster when one of the subsystems

(power plants) failed and the failure systematically cascaded across the neighboring

subsystems causing a blackout across 8 states in 2 countries. A total of 256 power

stations failed in less than 7 minutes affecting 55 million people. Estimates of the

cost of damages due to this blackout were between 4 billion and 10 billion USD 1.

Such examples motivate the need to improve the management of large-scale systems,

through the development of better control structures.

An alternative to these traditional control paradigms would be to develop a con-

trol algorithm that works towards combining the advantages of both the centralized

and decentralized control strategies while addressing their drawbacks i.e., the decen-

tralized structure of the system is maintained but the performance is driven towards

that of a centralized scheme. This calls for the design of coordinators to provide

1https://reports.energy.gov/BlackoutFinal-Web.pdf
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Chapter 1 Introduction

a dynamic performance equal to that of a centralized control scheme while main-

taining the existing decentralized structure and current research is oriented towards

designing robust and computationally feasible controller coordinators.

The coordinator facilitates the communication of information such as states,

predicted output trajectory information and calculated control action at each time

step between the individual model predictive controllers. This communicated infor-

mation along with the interaction models and a modified objective function enable

every individual model predictive controller to calculate an improved set of control

actions directed towards plant-wide optimality. However, most of the research on

coordinated model predictive control has been derived based on the assumption that

all subsystem interactions are equally important. A coordinator designed in such a

manner is computationally intensive and can coordinate the individual MPCs only

when information from every one of the subsystems is available. Coordinators that

prioritize the various interactions and coordinate the individual MPCs based on the

relative significance of interactions would be able to lead to near plant-wide optimal

performance with significantly lower computational burden. Current literature is

sparse in methods to design coordinated model predictive control algorithms with

minimum information exchange between the local controllers such that the degree of

decentralization is maximized while at the same time the performance degradation

is minimized. In this sense, the controller topology (interaction structure) is first

optimized and the local controllers are then selectively coordinated. Also, in model

predictive control of processes, the quality and fidelity of the model is imperative

for the performance of the controller. The accuracy and validity of the models will

3



1.1 Background and Motivation

change over time and result in a deteriorated controller performance. This neces-

sitates the challenging task of designing coordinated model predictive controllers

that are robust to parameter variations, disturbances, mismatches in the models

and inaccuracies in the forecasts.

The advantages of coordinated MPC algorithms are not limited to process en-

gineering problems, but would also greatly benefit other systems such as multi-

reservoir management systems. These systems of interconnected reservoirs are used

not only for supplying drinking water but also for a wide variety of purposes in-

cluding hydro-power generation, controlling floods and lifestyle attractions. The

utilization of reservoirs for a variety of purposes provides the reservoir operators

with multiple and often conflicting water quantity and quality objectives. The large

dimensionality of these systems, as well as the strong nonlinearities in the various

subsystems, can prevent the utilization of integrated and centralized control strate-

gies. Also, the presence of different regulation authorities, each one governing one

or a few subsystems, can provide a strong resistance towards adopting centralized

controllers, even when these methods are technically viable and hence results in the

adoption of decentralized control strategies, which neglect the interactions between

the subsystems, leading to suboptimal performances that often result in economic

as well as social losses such displacement of populations. The drawbacks of both the

centralized and decentralized control paradigms provides a window of opportunity

for developing and implementing a physically and computationally feasible coordi-

nated model predictive control strategies for multi-reservoir management.

4



Chapter 1 Introduction

Centralized controllers are plagued with computational and organizational hur-

dles and to our knowledge there are no centralized control systems in operation

for the management of large-scale industrial systems. Most large-scale systems are

managed through a network of independent decentralized controllers. This work

explores the potential of utilizing existing decentralized architecture and improv-

ing the overall system performance without performing a complete control system

redesign. Despite not being implemented in real world systems, the centralized con-

trol architecture is used as a theoretical benchmark (performance wise) to compare

and assess the performance of a minimum information exchange based coordinated

model predictive control architecture that we have developed. The outcome of this

research is a novel methodology that combines interaction analysis and coordinated

control strategies for an improved optimal management of large-scale systems.

1.2 Objectives

The overall objective of this research is to develop a novel coordinated model

predictive control strategy that can be implemented in real-time for the control

of large-scale systems. Of particular interest is the multi-objective multi-reservoir

management problem. To achieve our objective, the work has been sub-divided into

a number of specific objectives:

1. To analyze the existing state-of-the-art techniques in coordinated model pre-

dictive control critically. A comprehensive review and evaluation of the exist-

ing techniques will help identify opportunities for improvement and provide a

base for developing a new strategy.
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2. Develop a novel coordinated model predictive control strategy that can be

implemented in real-time for the control of large-scale systems. The existing

coordination techniques are computationally intensive and there are very few

studies on the robustness of these algorithms and their performance in the

presence of model-plant mismatch and uncertainties in forecasts has not been

studied before. The algorithm that is developed in this work will be designed

to address these shortcomings.

3. Develop a methodology to lower the computational requirements of coordi-

nated model predictive control strategy without compromising the overall per-

formance of the system. This can be achieved by reducing the communication

demands in the developed coordinated MPC scheme.

4. Identify an interaction measure that can be used to prioritize the interactions

between subsystems in a large-scale systems and utilize the interaction quan-

tifier to reduce the communication load on the coordinator, making it faster

and more reliable.

5. Implement the developed novel coordinated control strategies on a large-scale,

realistic simulated system.

1.3 Thesis Organization

In the second chapter, the current state-of-the-art real-time control strategies

used for the optimal management of large-scale systems has been reviewed. Re-

cent advances in the area of coordinated control and their applications has been
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presented and discussed in this chapter. In the third chapter, three popular coor-

dination techniques viz. communication based, cooperation based and price driven

coordination are described in detail and their drawbacks and advantages are dis-

cussed. The development of the coordination strategies forms the methodological

framework that is employed for all subsequent analyses. A comparison of the dif-

ferent coordinated MPC techniques on popular chemical engineering benchmark

problems has also been provided in the third chapter. The third chapter also anal-

yses the effect of model-plant mismatch on the performance of the coordinator and

the merits and limitations of the various strategies and their field of application

has been discussed. In the fourth chapter, a novel minimum information exchange

based coordinated MPC framework is presented. The formulation of the minimum

information exchange problem is defined using the MPC coordination technique

selected from the analyses in the previous chapter. The model-based interaction

analyses and the mathematical formulation of the optimal controller topology with

minimum information exchange are described in detail. Also, the utility of the inter-

action topology optimization to deal with communication disruptions was described

in this chapter. The key conclusions and empirical evaluations derived from this

work are summarized in the last section of the fourth chapter. In the fifth chapter,

the coordination algorithms were implemented on two cases studies to highlight the

utility of coordinated model predictive controllers for multi-reservoir management.

In the first case study, a two-reservoir network with disturbance uncertainties was

considered. In the second case study, the coordinated MPC strategy was imple-

mented on a high fidelity model of the Alqueva multi-reservoir system in Portugal,

a large network consisting of a number of interconnected reservoirs with multiple

7
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management objectives. A comparison of the performance of the coordination-based

algorithm with the traditional centralized and decentralized strategies is provided

and the scope to improve the existing operations of real world systems is brought

forth. In the final chapter, the key conclusions of this dissertation are summarized

along with recommendations for future research work.
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Chapter 2

LITERATURE REVIEW

2.1 Control Architectures for Large-scale Systems

Many large-scale systems that are formed by a network of interconnected subsys-

tems has been investigated in this thesis. The varied spatial and temporal charac-

teristics of the individual subsystems make them significantly heterogeneous. Such

large-scale systems could be spread across cities and the timescale of individual pro-

cesses could vary from a few seconds to a few weeks. Moreover, the dynamics of

the individual subsystems as well the interconnections between subsystems could by

highly nonlinear making them hard to model and control. Also, the presupposition of

centrality fails to hold for such systems due to the lack of centralized computational

capabilities and/or centralized information management (Sandell et al. (1978)). A

few typical large-scale systems that can be described by these attributes are chemi-

cal process plants, flood and water management systems, traffic flow control in road

and railway networks, power generation and distribution networks, etc.

The escalating importance of the economic efficiency of systems has necessi-

tated the design of large-scale systems with ever increasing complexity. The control

systems for such large-scale systems are often designed with a hierarchical struc-

ture (Scattolini (2009)) and usually, a multi-tiered hierarchy is considered (Lygeros
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(1996) and Fucai et al. (2001)). At the lowest regulatory layer, PID-type controllers

are employed to regulate the individual process variables (control loops). In the next

layer, local model predictive controllers (MPC) are designed using detailed models

(which could be nonlinear) of different sub-systems (units). A short time horizon

is considered to predict and control the operating conditions of the system (Pappas

et al. (2000)). This layer is succeeded by an MPC Coordinator where, information

in the form of states, predicted input and output trajectories, etc. are transmitted

between the various subsystems (Stewart et al. (2010)). The coordinator ensures

that the goals of the higher level are attained and also manages information flow

within the immediate lower layer (a layer containing local MPCs). At the top of

the hierarchy, optimal plant performance is coupled with economic objectives and

Real Time Optimization (RTO) is performed over a long time horizon (Zanin et al.

(2002)). A simple and abstract model of the system is used in this layer of the

hierarchy to obtain targets for the lower levels. Since a simplified and steady state

model of the process is being used at this level, the model needs to be periodically

updated. At the topmost layer scheduling of the various processes within the system

and plant wide decision making is carried out over a long planning horizon generally

in the order of weeks or months. This hierarchy is depicted in Fig. 2.1. Studies in

the literature (Scattolini (2009)) have shown that there needs to be a certain level

of integrity between the models used at the different levels of the control hierarchy.

In the third level of the hierarchy, the coordinator works toward integrating the

local model predictive controllers at the lower level. The coordinator incorporates

the goals derived by the layers above in its objective function and uses the informa-

tion from the individual model predictive controllers at the lower level to drive the
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plant performance towards the overall optima. Information such as states, predicted

trajectory information and calculated control action at each time step are relayed

between the local model predictive controllers to decide the best set of control ac-

tions.

There has already been a lot of research on the design of multi-tiered hierar-

chies for the control of large-scale systems (Tatjewski (2008) and references therein).

Methodologies for the design of the lower level regulatory controllers and the layer

of supervisory MPC controllers as well as the integration of decisions between these

layers has also been well documented (De Souza et al. (2010)). Current research is

oriented towards designing the MPC coordination layer and the RTO layer and de-

veloping a robust methodology to integrate the decisions of these layers to improve

the overall system-wide performance (Yip & Marlin (2004)). While most layers of

the hierarchy have been well researched, the MPC coordination layer is a new addi-

tion to the traditional hierarchical structure and algorithms to coordinate the lower

level MPCs have not been conclusively established.

2.2 Model Predictive Control and its Application

MPC is one of the most attractive real-time control strategies (Allgower & Zheng

(2000), Qin & Badgwell (2003)) for control of large-scale integrated systems. MPC,

which originated in the 1970s, has evolved and developed into a successful strategy

to control multivariable processes that are subject to operational constraints (Ca-

macho & Bordons (2003)). MPC controllers work by utilizing a process model to
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Fig. 2.1. Hierarchical Control Structure.

predict future system behavior. At each time instant, past and current measure-

ments and inputs are used to estimate the state of the system. The future trajectory

of inputs are optimized over a control horizon to ensure that the evolution of the

outputs and states over a prediction horizon track a desired setpoint. The first

input move is implemented and at the next time instant, the input trajectory is

re-optimized with the additional available measurements included in the problem as
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depicted in Fig. 2.2 (adapted from Seborg et al. (2010)). These MPC controllers

can be implemented in either a centralized or decentralized fashion. In a centralized

strategy, a single monolithic controller is employed to manage the entire network of

interconnected subsystems. While centralized MPC leads to plant wide optimum,

the centralized optimization problem is computationally intensive, relatively diffi-

cult to implement, tune and maintain, and is characterized by poor fault tolerance

(Ho (2005)). Also, along with the computational difficulties, a centralized strategy

is often plagued with organizational and operational issues. A significant amount

of effort is required to collect, handle and process data in centralized fashion. On

the other hand, the MPC controllers can be implemented in a decentralized fashion

(Sandell et al. (1978)) with individual controllers defined for every subsystem or

a smaller network of subsystems. While this makes the controllers more flexible,

reliable and easier to implement and maintain, it also leads to solutions that are not

plant-wide optimum (Kariwala (2007)). Centralized and decentralized controllers

define the limiting extremes of controller design.

MPC technology has been implemented on large-scale industrial applications

since the 1980s. Qin et al presented a survey of industrial applications of the MPC

technology based on linear models (Qin & Badgwell (1997)) and nonlinear models

(Qin & Badgwell (2000)). According to their survey, More than 90% of industrial

implementations of multivariable control solutions employed some form of MPC.

Morari & H Lee (1999) presented a review on the application of MPC for industrial

processes with a detailed analysis on the future directions in which industrial re-

search needed to progress. A vendor’s perspective was put forth by Kulhavỳ et al.
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(2001) through oil refining and heating network case studies. Seki et al. (2001)

and Young et al. (2002) investigated the application of MPC to industrial processes

such a polymerization and blending processes. Application bottlenecks and im-

plementation issues were described in detail by Ohshima et al. (1995). Finally, a

comparative study of the commercially available MPC technologies was presented

by Qin & Badgwell (2003).

All large-scale networked systems are characterized by a large number of in-

teractions between the individual subsystems and these interactions have an in-

fluence on the local control decisions and overall plant-wide optimality. In most

systems/plants, neglecting these interactions or inadequately coordinating the sub-

systems will, in general, lead to suboptimal performance and even instability of the

process. The performance deterioration of decentralized control (Cui & Jacobsen

(2002)) as compared to centralized control is due to the interaction between sub-

systems being inadequately modeled in the decentralized control algorithms. Over

the past few years, with the necessity to control large-scale systems efficiently and

optimally, distributed and coordinated control structures have been developed to

address the shortcomings of both the control paradigms (Siljak & Zecevic (2005)).

To achieve optimum plant operation, decentralized controllers have to be coordi-

nated and driven towards achieving the performance of a centralized controller (Jia

& Krogh (2001)). This calls for the design of robust coordinators (Aske et al.

(2008)) that provide a dynamic performance equivalent to that of a centralized con-

trol scheme while maintaining the existing decentralized structure. While each layer

of the control architecture should be carefully designed, current research is oriented

towards designing robust and computationally feasible coordination layers.
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Fig. 2.2. Model Predictive Control

2.3 Coordinating Multiple Model Predictive Controllers

Coordinated MPC (C-MPC) works toward combining the advantages of both

the centralized and decentralized control strategies while addressing their respec-

tive drawbacks (Venkat et al. (2007)). The decentralized structure of the system

is maintained but the performance is driven towards that of a centralized scheme

(Negenborn, van Overloop, Keviczky & Schutter (2009), Negenborn et al. (2010)).

The coordinator (which is sandwiched between the RTO and the distributed MPC

layer) coordinates the actions of the individual MPCs relaying information between

the various individual controllers to account for the interaction effects that exist

between the different subsystems of the complex large-scale process (Anand et al.

(2012)). The coordinator uses information such as states, predicted output trajec-
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tory information and calculated control action at each time step to decide the best

set of control actions for each individual controller (Camponogara et al. (2002)).

There have been a few studies on designing the MPC coordinator originating from

different schools of thought (Richards & How (2007), Christofides et al. (2012) and

references therein).

Broadly, the coordinated MPC schemes can be categorized as hierarchical, coop-

erative and non-cooperative coordination strategies. The hierarchical coordination

of multiple controllers is one of the earliest coordination methodologies and is de-

scribed by Mesarovic et al. (1970). In his work, he describes the importance of ex-

plicitly accounting for subsystem interactions and coordinating controllers based on

predicting the effect of the interactions and balancing out their effects. Based on the

principles of interaction balance and interaction prediction, Cheng et al. (2007) and

Marcos et al. (2009a) developed a methodology to split a centralized control problem

dynamically into multiple independent subproblems and coordinated the individual

subproblems using the Augmented Lagrangian principle. Mesarovic (1970) describes

a hierarchical architecture to control large-scale systems with multiple time scale

processes. The upper layer of the control architecture functions on the time scale of

the system with the slowest dynamics and the lower layer controllers (working on the

systems with fast dynamics) work towards satisfying the long term objectives of the

upper layer. Negenborn et al. (2008) described a two layer multi-agent coordination

strategy where independent agents negotiated via a negotiator till consensus on the

control decision was reached. The application of these algorithms for discrete time

system and the efficiency of serial and parallel implementations were described and
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the utility of multi-agent coordination for transportation and power networks was

described in Negenborn et al. (2006) and Negenborn et al. (2007).

An alternative to hierarchical control is the coordination of independent de-

centralized controllers working in parallel. The coordination algorithm aims to

utilize the interaction models that decentralized controllers ignore and enable ef-

ficient communication between controllers to achieve plant-wide optimality. The

coordinated control algorithms are classified as cooperative and non-cooperative

algorithms based on the objective function used by the individual controllers as de-

scribed by Venkat et al. (2006). The cooperative and non-cooperative coordination

algorithms are further classified into iterative and non-iterative strategies based on

the communication scheme being implemented. If information between controllers

is exchanged only once at every time step, the algorithm is said to be non-iterative.

Most of the non-cooperative algorithms are non-iterative, with only a single com-

munication exchange at each time step.

Other works on non-cooperative coordination include Camponogara et al. (2002),

which studied the coordination of discrete time linear systems with stability con-

straints. Richards & How (2007) proposed a sequential non-cooperative coordina-

tion method. In his work, each controller waited for the control decision from the

previous controller and only once it received the set of input trajectories did it

calculate its own control sequence. Jia & Krogh (2001) developed a coordinated

control scheme for linear systems coupled only through the state. This work was

extended by Dunbar (2007) to dynamically coupled and decoupled systems. This
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non-cooperative control scheme guarantees stability by including compatibility con-

straints to ensure deviations from communicated control trajectories is minimized.

Keviczky et al. (2006) developed a non-cooperative coordination algorithm for dy-

namically decoupled systems with only constraint and cost function coupling. In

this work, local controllers communicate only with a few neighboring controllers and

not the entire network of controllers and this methodology finds application in the

coordination of autonomous vehicle swarms. Non-cooperative coordination schemes

guarantee closed-loop stability only for systems with weak interactions.

Venkat et al. (2006) describes an iterative procedure to communicate calculated

control trajectories between controllers in order to coordinate them. However, each

individual controller has a well-defined model and cost function that governs its

functioning. However the individual objectives of each subsystem are often in con-

flict. Since each controller aims to achieve its local goals, the controllers compete

with one another resulting in a Nash equilibrium and the converged solution could

compromise the closed loop stability of the system. In order to avoid the com-

petition between controllers and to ensure cooperation among them, the authors

proposed a modification of the local objectives into a single unified objective. In

the cooperative coordination, each controller explicitly accounts for the effects of its

inputs on the entire system through the use of a common global cost function. At

each iteration, each controller optimizes its own set of inputs based on the control

trajectory inputs from the other controllers in the network and the iterative ex-

change is continued till convergence. The developed coordination algorithm has the

advantage of computing a feasible and closed-loop stable solution at every iterate.
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Since a feasible solution is computed at every iterate, it enables control practi-

tioners to terminate the coordination algorithm at any iteration based on available

computational resources. Irrespective of the limit on the number of iterations, the

resulting performance is always better than a decentralized control strategy. It was

also proved that the cooperative coordination algorithm would iteratively converge

to the centralized controller performance. This work was extended by Stewart et al.

(2011) to nonlinear systems, and properties such as feasibility, closed-loop stabil-

ity and convergence were theoretically proved. Zhang & Li (2007) developed an

iterative cooperation-based coordination algorithm for unconstrained systems with

communication delays. Liu et al. (2009) and Liu et al. (2010) described a sequential

and iterative, cooperative coordination algorithms for nonlinear systems. However,

the lyapunov based methodology does not guarantee convergence to the centralized

MPC performance due to the non-convexity of the optimization problem.

2.4 Minimum Information Exchange Based Coordinated Model

Predictive Control

There have been a few studies on C-MPC strategies originating from different

schools of thought and in the last few years there have been few comprehensive

comparisons between the various C-MPC strategies (Alvarado et al. (2011) and

Christofides et al. (2012)). However, most of the literature on C-MPC has been

derived based on the assumption that all subsystem interactions are equally impor-

tant. A coordinator designed in such a manner is computationally very intensive and
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can coordinate the individual MPCs only when information from every one of the

subsystems is available. There have been a few studies on the selective coordination

of subsystems with their neighbors rather than the entire network (Keviczky et al.

(2008)). Farina & Scattolini (2011) developed a non-cooperative coordinated control

scheme with only neighbor-to-neighbor communication and established convergence

properties under mild assumptions on the existence of a suitable decentralized aux-

iliary control law. Maestre et al. (2009) developed a distributed control architecture

for the coordination of multiple controllers with limited information regarding the

states and models being exchanged. A game theory based approach was used to en-

sure cooperation between controllers and the robustness of the developed algorithm

was illustrated through the extensive simulations. Schuler et al. (2010) developed a

methodological framework to improve the performance of decentralized controllers

by selectively including a few interaction models in each of the local control prob-

lems. However, there is a dearth of literature on the design of MPC coordinators

that prioritize the various interactions and coordinates the individual MPCs based

on the relative significance of interactions. Such a strategy, will be able to lead to

near plant-wide optimal performance with a significantly lesser computational bur-

den. The need of the hour is to design C-MPC algorithms with minimum information

exchange between the local controllers such that the degree of decentralization is

maximized while at the same time the performance degradation is minimized. In

this sense, the controller topology (interaction structure) is first optimized and then

the local controllers are selectively coordinated.
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Many methods have been proposed in the literature for analyzing and quantify-

ing the interactions between subsystems in a large-scale system. One of the earliest

developed interaction index was the relative gain array (RGA, Bristol (1966)) which

utilized the steady state gains of a system to quantify interactions between input-

output pairs. Since the introduction of RGA, several modifications of the RGA such

as the effective relative gain array (ERGA, Xiong et al. (2006)), dynamic relative

gain array (DRGA, Jiang et al. (2012)), dynamic block relative gain array (DBRGA,

Kariwala et al. (2003)), relative normalized gain array (RNGA, He et al. (2009)),

performance relative gain array (PRGA, Hovd & Skogestad (1992)), etc. These

modified interaction indices were developed to address the short comings of the

RGA which was based on the steady state properties of the system. These methods

presented a more generalized interaction quantifier as they were capable of exploiting

the system dynamics and closed loop properties. Apart from the RGA based inter-

action indices, grammian based interaction quantifiers such as the hankel interaction

index array (HIIA, Birk & Medvedev (2003)) and passivity based indices (Bao et al.

(2007)) have also been developed. The numerous interaction analyses methods have

been designed for various purposes such as control loop pairing, controllability mea-

sure, uncertainty analyses, etc. While these interaction measures and their utility

have been well established, there have very few studies on the relation between these

interaction measures and the performance of coordinated control algorithms. More-

over, the utilization of interaction measures for minimizing the information exchange

has not been established and the identification of interaction quantifiers that enable

the a priori selection of optimal communication architectures would significantly

improve the efficiency of C-MPC architectures with iterative communication.
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2.5 Coordinating Multiple Model Predictive Controllers for

Multi-Reservoir Management

Water is not as bountiful as it was in the last century and is rapidly becoming

a scarce commodity. The growing world population is leading to a greater demand

for the already depleting natural resources (Zoppou (2001)) and the current cli-

mate change scenario is making this worse (Brown et al. (2011)). Droughts, storms

and mismanagement of available water supplies are adversely affecting the drink-

ing and irrigation water supply. Moreover, with the sharply increasing oil prices,

hydroelectricity is becoming a very lucrative alternative. Water reservoirs are be-

ing constructed worldwide to form integrated networks that can provide water for

irrigation, consumption and also be used to generate energy (van de Meene et al.

(2011)). These large multipurpose reservoirs are generally spread across vast areas

and developed as systems of connected reservoirs. The optimal operation of these

systems is a challenging task, because of their large dimensionality, the simultaneous

presence of multiple and conflicting water users, the non-linearities in the model of

the system, and the uncertainties associated to the inflow processes. The need of

the hour is thus the development of integrated operational strategies for large, water

reservoir networks.

Despite being largely adopted in the process engineering community (Rantzer

(2009)), coordination algorithms have not been extensively studied or utilized in

the water resources management (Niewiadomska-Szynkiewicz et al. (1996)) field.

The use of coordinated control schemes is limited to the management of irrigation
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canals (Cardona et al. (1997), Negenborn, van Overloop & De Schutter (2009) and

Negenborn, van Overloop, Keviczky & Schutter (2009)), while only Niewiadomska-

Szynkiewicz et al. (1996) has considered the problem of coordinating multiple con-

trollers for water reservoir networks operation. The control of multi-objective multi-

reservoirs are plagued by the large dimensionality of these systems. Also, the strong

nonlinearities in the models of the various subsystems, prevent the adoption of an

integrated centralized control strategy (Castelletti et al. (2008)). Furthermore, the

large water networks are often spread across multiple states and countries with dif-

ferent regulation authorities governing the individual subsystems. This is also one

of the main hindrances preventing the adoption of centralized controllers (Pianosi

& Galelli (2010)) and consequently results in the adoption of decentralized control

strategies, which neglect the interactions between the sub-systems and can easily

lead to a sub-optimal performance (Pianosi & Soncini-Sessa (2009) and Schwanen-

berg et al. (2011)). These large networks consisting of a number of interconnected

reservoirs with multiple control objectives, makes the implementation of coordinated

MPC strategies a challenging task. However, the implementation of coordinated

MPC provides a solution for improving the existing operational procedures, thus

providing better in-demand delivery of water and also simultaneously optimizing

the pump schedule resulting in significant cost savings. The current state-of-the-

art in multi-objective multi-reservoir management systems has been discussed by

(Labadie 2004) and the lack of literature on coordinating multiple controllers for

water management systems is well documented.
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2.6 Summary

Large-scale systems that are formed by a network of interconnected heteroge-

neous subsystems are quite hard to control and various methodologies have been

proposed and investigated over the last few decades. Over the last decade, the

control systems for such large-scale systems are often designed as a hierarchical

structure with different objectives being addressed at each level of the hierarchy.

While most of the layers have been well researched, the current focus is oriented

towards designing the MPC coordination layer and developing a robust methodol-

ogy to integrate the decisions between layers. MPC is a popular supervisory control

method which has found large-scale application in the chemical and process engi-

neering industry since the 1980s. There has also been a lot of research on both the

theoretical as well as the application oriented development of MPC strategies for

large-scale industrial systems. Over the past few years, with the necessity to control

large-scale systems efficiently and optimally, research has been focused on develop-

ing distributed and coordinated control structures. This has led to the development

of MPC coordination schemes stemming from different schools of thought and the

current research is oriented towards investigating the applicability of the developed

control schemes for real world systems. One such area that has recently received

a lot interest is the optimization of communication topologies in coordinated MPC

schemes. Despite being largely investigated in process engineering problems, coordi-

nated MPC schemes have been poorly adopted in the water resources management

systems. Theses large-scale systems would greatly benefit from the application of a

coordinated MPC strategy.
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COORDINATING MULTIPLE MODEL PREDICTIVE

CONTROLLERS

3.1 Introduction

Early formulations of coordinated MPC in literature are based on the assumption

that exchange (communication) of predicted trajectory information between subsys-

tems is sufficient to account for interactions. It has been demonstrated that exchang-

ing only interaction information among the subsystem controllers is not adequate to

guarantee closed loop stability (Rawlings & Stewart (2008)). This instability arises

due to the contest between the local controllers as will be seen in the subsequent

subsection. In addition to the communication of information, there needs to be

cooperation between the controllers (Liu et al. (2009)). A need to modify the objec-

tive functions as well as to incorporate interaction models into the local subsystem

model arises. Such observations are the basis of coordination strategies. The main

tasks of the coordinator are to provide information (such as states, predicted output

trajectory and calculated control action at each time step) to controllers enabling

them to derive interaction factors (the effect of one subsystem on the other) and also

to modify the local optimization problem such that the coordinated performance of

the local optimization problems is driven towards the performance of the central-
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ized global optimization problem (Goal Coordination) (Scheu & Marquardt (2009)).

Two common strategies used for coordinator design are (Mesarovic et al. (1970)):

1. Interaction Prediction Principle

2. Interaction Balance Principle

The Interaction Balance Principle includes the interaction variables in addition

to the input variables in the manipulated variable set of the local controllers and

then the coordinator works towards balancing the error between the desired (calcu-

lated) and real interaction variables. On the other hand, the Interaction Prediction

Principle considers only the input variables in the manipulated variable set and

then the coordinator works towards calculating the correct input variables after

predicting and accounting for the effects of the interactions. These principles are

fundamental to developing a coordinator for multiple MPCs and these form the basis

of all coordination techniques derived in literature. In our work, the popular coor-

dination techniques that have been evaluated are the Communication Based MPC

Coordination, Cooperation Based MPC Coordination (Rawlings & Stewart (2008))

and Price Driven MPC Coordination (Cheng et al. (2007)). The work presented in

this chapter is based on the techniques developed in literature, but the algorithms

have been reformulated extensively to make them applicable to systems described

by transfer functions (the original works are based on state-space formulations).
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3.2 Coordinated Model Predictive Control

Consider a large scale MIMO system comprised of M individual subsystems.

The discrete transfer function matrix formulation of the system, where ỹ denotes

the output variable vector and ũ denotes the manipulated variable vector and d̃

denotes the measured disturbance vector (the dimensions of which are (1xM)) is as

follows:

ỹ = G̃pũ+ G̃dd̃ (3.1)

where the process transfer function matrix G̃p is defined as,

G̃p =



G11(z) G12(z) . . G1M(z)

G21(z) G22(z) . . G2M(z)

. . . . .

. . . . .

GM1(z) GM2(z) . . GMM(z)


(3.2)

and the disturbance transfer function matrix G̃d is defined as,

G̃d =



Gd1(z) 0 . . 0

0 Gd2(z) . . 0

. . . . .

. . . . .

0 0 . . GdM(z)


(3.3)

27



Chapter 3 Coordinating Multiple Model Predictive Controllers

also,

ỹ =

[
y1(z) y2(z) . . yM(z)

]
(3.4)

ũ =

[
u1(z) u2(z) . . uM(z)

]
(3.5)

d̃ =

[
d1(z) d2(z) . . dM(z)

]
(3.6)

In the process transfer function matrix G̃p, the off-diagonal transfer functions

represent the interaction models in the system. Each interaction model represents

the effect of the input of one subsystem on the output of a different subsystem. For

example, G̃ij(z) is a transfer function model between the input to i-th subsystem

and the output of the j-th subsystem.

Without loss of generality, it can be assumed that each subsystem is a SISO

system with one measured disturbance each. Each transfer function G̃ij(z) is equiv-

alent to Np number of step response coefficients and each G̃di(z) is equivalent to Nd

step response coefficients.

Gij(z) ≡
[

gij1 gij2 . . gijNp

]
(3.7)

Gdi(z) ≡
[

gdi1 gdi2
. . gdiNd

]
(3.8)
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Let P be the prediction horizon and C the control horizon. The prediction

equation for the i-th subsystem will then take the form:

Yi =

(
Gi1∆u1 + Gi2∆u2 + . . + GiM∆uM

)
+

(
Fi1x1 + Fi2x2 + . . + FiMxM

)
+ (Fdixi) + YiM

(3.9)

where,

Yi =

[
yi(t+ 1) yi(t+ 2) . . . yi(t+ P )

]T
(3.10)

∆ui =

[
∆ui(t) ∆ui(t+ 1) . . . ∆ui(t+ C − 1)

]T
(3.11)

xi =

[
∆ui(t− 1) ∆ui(t− 2) . . . ∆ui(t−N)

]T
(3.12)

xdi =

[
∆di(t− 1) ∆di(t− 2) . . . ∆di(t− Ñ)

]T
(3.13)

Based on the prediction horizon and the model horizon, the number of step

response coefficients are,

Np = N + P (3.14)

Nd = Ñ + P (3.15)
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The current measurements of the controlled variables are given as:

YiM =

[
yiM(t) yiM(t) . . . yiM(t)

]T
(3.16)

The step response coefficient matrices are as follows:

Gij =



gij1 0 0 . 0

gij2 gij1 0 . 0

. . . . .

. . . . .

gijP gijP−1 gijP−2 . gijP−C+1


(3.17)

Fij =



(gij2 − g
ij
1 ) (gij3 − g

ij
2 ) . . (gijN+1 − g

ij
N)

(gij3 − g
ij
1 ) (gij4 − g

ij
2 ) . . (gijN+2 − g

ij
N)

. . . . .

. . . . .

(gijP+1 − g
ij
1 ) (gijP+2 − g

ij
2 ) . . (gijN+P − g

ij
N)


(3.18)

Fdi =



(gdi2 − gdi1 ) (gdi3 − gdi2 ) . . (gdi
Ñ+1
− gdi

Ñ
)

(gdi3 − gdi1 ) (gdi4 − gdi2 ) . . (gdi
Ñ+2
− gdi

Ñ
)

. . . . .

. . . . .

(gdiP+1 − gdi1 ) (gdiP+2 − gdi2 ) . . (gdi
Ñ+P
− gdi

Ñ
)


(3.19)

The prediction equation may be written as,
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Yi(t) = Gii∆ui(t) + hi(t) + li(t) (3.20)

where,

hi(t) =
M∑
j=1
j 6=i

Gij∆uj(t) (3.21)

hi(t) denotes the effect of future inputs of other subsystems on the i-th subsystem

output.

li(t) =
M∑
j=1

Fijxj(t) + Fdixdi(t) + YiM(t) (3.22)

In the above equation, li(t) is obtained by summing up the effect of past inputs

of all M subsystems (first term), effect of measured disturbances (second term) and

current measurements (third term). The prediction equation 3.20 forms the basis

of all control calculations.

For each subsystem i, the cost function Fi to be minimized by the local MPC is

written in the form:

Fi =
M∑
r=1

wrJr(∆ui) (3.23)

M∑
r=1

wr = 1 (3.24)
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Fi = wiJi(∆ui) +
M∑
r=1
r 6=i

wrJr(∆ui) (3.25)

Here the cost function Fi for the i-th subsystem is the weighted sum of the cost

functions Jj of all the M subsystems. For the i-th subsystem the cost function Ji is

of the form,

Ji = (Ri
S − Yi)T Q̃i(R

i
S − Yi) + ∆uTi R̃i∆ui (3.26)

where Ri
S is a vector of individual subsystem set point RSi defined as:

Ri
S =

[
1 1 . . 1

]T
RSi (P terms) (3.27)

with,

Q̃i = qiIPxP

(
i = 1, 2, . . ., M

)
(3.28)

and,

R̃i = riICxC

(
i = 1, 2, . . ., M

)
(3.29)

qi and ri are tunable weights and are selected depending on the system dynamics.

For calculating hi, ∆uj (j 6= i) values, which are the control decisions calculated

by the individual MPCs, are assumed to be known. So Ji can be written as,
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Ji =
1

2
∆uTi Qi∆ui − ∆uTi Ci (3.30)

Qi = GT
iiQ̃iGii + R̃i (3.31)

Ci = GT
iiQ̃i(R

i
S − li − hi) (3.32)

The cost function Jr(∆ui) (r 6= i) can be calculated as follows:

Jr = (Rr
S − Yr)T Q̃r(R

r
S − Yr) + ∆uTr R̃r∆ur (3.33)

Yr = Grr∆ur + hr + lr (3.34)

hr =
M∑
j=1
j 6=r

Grj∆uj (3.35)

lr =
M∑
j=1

Frjxj + Fdrxdr + YrM (3.36)

Rewriting hr as,

hr(t) = Gri∆ui(t) +
M∑
j=1
j 6=r
j 6=i

Grj∆uj (t) (3.37)
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hri(t) =
M∑
j=1
j 6=r
j 6=i

Grj∆uj (t) (3.38)

⇒ hr(t) = Gri∆ui(t) + hri(t) (3.39)

This may be substituted in the cost function 3.33 and Jr(∆ui) is rewritten in

the standard form as,

Jr =
1

2
∆uTi Qr∆ui − ∆uTi Cr (3.40)

Qr = GT
riQ̃rGri (3.41)

Cr = GT
riQ̃r(R

r
S −Grr∆ur − lr − hri) (3.42)

Writing the cost function Fi

Fi = wiJi +
M∑
r=1
r 6=i

wrJr (3.43)

In the standard form the cost function is written as

Fi =
1

2
∆uTi Q̄i∆ui − ∆uTi C̄i (3.44)

Substituting Eqs. (3.30)-(3.32) and Eqs. (3.40)-(3.42) in Eq. (3.44), we get
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Q̄i = wi(G
T
iiQ̃iGii + R̃i) +

M∑
r=1
r 6=1

wr(G
T
riQ̃rGri) (3.45)

C̄i = wiG
T
iiQ̃i(R

i
S − li − hi) +

M∑
r=1
r 6=1

wrG
T
riQ̃r(R

r
S −Grr∆ur − lr − hri) (3.46)

The input rate, input and output constraints for the i-th subsystem are written

in the form:

∆umin
i ≤ ∆ui ≤ ∆umax

i (3.47a)

umin
i ≤ ui ≤ umax

i (3.47b)

ymin
i ≤ yi ≤ ymax

i (3.47c)

for, i = 1, 2, . . ., M

The input rate constraint Eq. (3.47a) may be rewritten in the form:

 −ICxC
ICxC

∆ui ≤

 −∆umin
i

∆umax
i

 (3.48)

i.e.

M i
1∆ui ≤ N i

1 , i = 1, 2, . . ., M (3.49)

where,
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M i
1 =

 −ICxC
ICxC

 ; N i
1 =

 −∆umin
i

∆umax
i

 (3.50)

Similarly the input constraint Eq. (3.47b) may be reformulated as described

below:



ui(t)

ui(t+ 1)

.

.

.

ui(t+ c− 1)



=



1

1

.

.

.

1



ui(t− 1) +



1 0 0 . . 0

1 1 0 . . 0

. . 1 . . 0

. . . 1 . .

. . . . 1 .

1 1 1 1 1 1





∆ui(t)

∆ui(t+ 1)

.

.

.

∆ui(t+ c− 1)


(3.51)

i.e.

ui = c1ui(t− 1) + c2∆ui (3.52)

where,
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c1 =



1

1

.

.

.

1



and c2 =



1 0 0 . . 0

1 1 0 . . 0

. . 1 . . 0

. . . 1 . .

. . . . 1 .

1 1 1 1 1 1



(3.53)

⇒ M i
2∆ui ≤ N i

2 (3.54)

M i
2 =

 −c2

c2

 ; N i
2 =

 −umin
i + c1ui(t− 1)

umax
i − c1ui(t− 1)

 (3.55)

Finally, the output constraint Eq. (3.47c) may be expressed as:

M i
3∆ui ≤ N i

3 (3.56)

where,

M i
3 =

 −Gii

Gii

 ; N i
3 =

 −ymin
i + li + hi

ymax
i − li − hi

 (3.57)

Combining all the three constraints Eqs. (47a, 47b and 47c) for the i-th subsys-

tem, we may write

Mi∆ui ≤ Ni (3.58)
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Mi =


M i

1

M i
2

M i
3

 ; Ni =


N i

1

N i
2

N i
3

 (3.59)

Method of Quadratic Programming (QP) is used by each local MPC to minimize

the cost function defined by Eq. (3.44) subject to the constraints defined by equation

Eq. (3.58).

3.2.1 Communication Based Coordination

Every networked system comprises of a number of individual subsystems subject

to individual objectives and constraints. Generally, the control algorithms for these

subsystems are implemented independently in an iterative manner. In the communi-

cation based coordination (Venkat (2006)) strategy, subsystem controllers exchange

interaction information at every iteration. Since an MPC optimization scheme is

being employed, trajectories for the input variables are available at each iteration

and this information is exchanged between the subsystem controllers as illustrated

in Fig. 3.1.

Each communication-based MPC transmits the current state and input trajec-

tory information to all interconnected subsystems MPCs through the coordinator.

However, each individual controller has no knowledge of the cost functions of other

controllers. The objectives of each subsystems MPC controller are frequently in

conflict with the objectives of the controllers (MPCs) that control the other inter-

acting subsystems. The equilibrium of such a strategy is driven to a non cooperative
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equilibrium or Nash equilibrium (Liu et al. (2010)). Due to the non-cooperative and

competing effect, such a strategy is usually suboptimal and when interactions are

strong, closed loop stability is not guaranteed.

In the communication based coordination strategy, we substitute wi = 1 and

wr = 0 ∀ r 6= i in Eqs. (3.43), (3.45) and (3.46) as each local MPC optimizes its

own independent objective. This leads to:

Q̄i = GT
iiQ̃iGii + R̃i (3.60)

C̄i = GT
iiQ̃i(R

i
S − li − hi) (3.61)

where,

hi =
M∑
j=1
j 6=i

Gij∆uj (3.62)

and

li =
M∑
j=1

Fijxj + Fdixdi + YiM (3.63)

The controllers now solve the optimization problem defined in Eqs. (3.43) and

(3.58) using the values derived for Q̄i and C̄i in Eqs. (3.60) and (3.61).

The local controllers are exchanging interaction information through the modi-

fied prediction equation (Eqs. (3.62) and (3.63)) but, they optimize different indi-
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vidual objective functions and these independent objective functions may often be

conflicting in nature. As a result, despite having knowledge of the local control deci-

sions, the individual controllers try to achieve their own individual optima. In other

words, the controllers are working with the same resources (control variables) but

towards satisfying different objectives leading to a contest between the individual

controllers. As a result, when the interactions are strong, the individual controllers

fail to converge to a single optimal control decision. This drives the equilibrium of

such a strategy towards a non-cooperative equilibrium (Anand et al. (2010, 2011),

Venkat (2006)).

3.2.2 Cooperation Based Coordination

The cooperation based coordination strategy works toward improving the per-

formance of an existing decentralized control structure by allowing the subsystem

controllers exchange interaction information and also support each other in driving

the performance towards that of a centralized controller (Stewart et al. (2011)). To

overcome the drawbacks associated with communication based coordination strate-

gies (non-cooperative and competing controllers), the following modification has

been incorporated in the cooperation based coordination strategy:

• The local objective functions of each subsystem MPC controller are converted

to a common global objective function. This is achieved by using a weighted

convex sum of the individual objective functions as the new objective function

as indicated in Eqs. (3.64), (3.65) and (3.66) and also illustrated in Fig. 3.1.
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Fi =
M∑
r=1

wrJr(∆ui) (3.64)

M∑
r=1

wr = 1 (3.65)

Fi = wiJi(∆ui) +
M∑
r=1
r 6=i

wrJr(∆ui) (3.66)

Weights wr and wi are assigned to the various objectives heuristically based on

the physical or economic significance of the variables being optimized/controlled at

each subsystem. Subsystems or output variables that have a more significant ef-

fect on the overall plant operations as designated by the process engineer would be

weighed more significantly than the others. In our studies, we have weighed all ob-

jectives equally in the cooperation based coordination strategy. The control problem

derived in Eqs. (3.23) to (3.59) are solved to determine the optimal control profile.

Since all the local MPC controllers are solving an optimization problem with the

same objective function, the optimal control profile generated at all iterates of the

cooperative based coordination is plant-wide feasible and closed loop stable (Pareto

Optimal) (Maestre et al. (2010)). To improve the rate of convergence, Wegstein’s

Method (Wegstein (1958)) is employed during the iterative communication process.
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In the iterative cooperative cooordination architecture, at any iteration i, a set

of control moves (over the control horizon) is available for each local controller k:

∆uki. In order to accelerate the convergence, the control moves from the current and

previous iteration are used to calculate an approximation of the next set of control

moves and this leads to accelerated convergence (see Appendix A for details).

Fig. 3.1. Schematic of Communication and Cooperation Based MPC
Coordination.

3.2.3 Price Driven Coordination

One other technique used for coordinating multiple MPC controllers is based

on separating the centralized optimization problem into a number of disjoint, inde-

pendent sub problems (Cheng et al. (2007, 2008)). This is brought about by the

addition of auxiliary variable to the decision variable set. The objective functions
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are rewritten in terms of the Lagrange multipliers and the Lagrange multipliers are

iteratively adjusted to satisfy the constraints. In the price driven coordination strat-

egy (Marcos et al. (2009a,b)), the large-scale system is decomposed into a number

of subsystems based on the principle of separability. Fig. 3.2 illustrates the price

driven coordination scheme. Auxiliary variables (ei) in the form of price vectors (vi)

and resource constraints Eq. (3.68) are introduced to the existing control problem.

The optimum plant performance is obtained by equating the total demand from all

subsystems to overall resource availability (Lasdon (1968), Rantzer (2009)). The

price vector is iteratively adjusted till the constraints are satisfied. Newton′s algo-

rithm is used to adjust the price vector iteratively.

Fig. 3.2. Schematic of Price Driven MPC Coordination.
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By introducing an auxiliary variable ei, the prediction equation, Eq. (3.20) is

rewritten as:

Yi(t) = Gii∆ui(t) + ei(t) + li(t) (3.67)

The ′linking constraint′ or the ′resource constraint′ is given by Eq. (3.68)

ei(t)−
M∑
j=1
j 6=i

Gij∆uj = 0 (3.68)

Next we define an auxiliary vector vi as

vi =

[
∆uTi eTi

]T
=

[
∆ui(t) . . ∆ui(t+ C − 1) ei(t+ 1) . . ei(t+ P )

]T (3.69)

Now,

Yi(t) = G̃iivi + li (3.70)

where,

G̃ii =

[
Gii IPxP

]
(3.71)

Now the global objective function is written as a sum of M disjoint objective

functions corresponding to the individual subsystems.
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J =
M∑
i=1

Ji(vi) (3.72)

Ji(vi) = (Ri
S − Yi)T Q̃i(R

i
S − Yi) + vTi R̄ivi (3.73)

where,

R̄i =

 R̃i 0

0 RiIPxP

 (3.74)

Now,

Ji(vi) =
1

2
vTi Qivi − viCi (3.75)

where,

Qi = G̃T
iiQ̃iG̃ii + R̄i (3.76)

Ci = G̃T
iiQ̃i(R

i
S − li) (3.77)

Rewriting the resource constraint,

ei −
M∑
j=1
j 6=i

Gij∆uj = Ō (3.78)

where,

Ō =

[
0 0 . . 0

]T
P times

(3.79)
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Expanding 3.78, we may write

e1 −G12∆u2 −G13∆u3 − . . .− G1M∆uM = 0

e2 −G22∆u2 −G23∆u3 − . . .− G2M∆uM = 0

e3 −G32∆u2 −G33∆u3 − . . .− G3M∆uM = 0

.

.

.

eM −GM2∆u2 −GM3∆u3 − . . .− GMM∆uM = 0

(3.80)

Eq. (3.80) may be regrouped as,
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OPxC IPxP

−G21 OPxP

−G31 OPxP

. .

. .

. .

−GM1 OPxP



 ∆u1

e1

+



−G12 OPxP

OPxC IPxP

−G32 OPxP

. .

. .

. .

−GM2 OPxP



 ∆u2

e2

 + . .

. . +



−G1M OPxP

−G2M OPxP

−G3M OPxP

. .

. .

. .

OPxC IPxP



 ∆uM

eM

 =



ŌPx1

ŌPx1

ŌPx1

.

.

.

ŌPx1


(3.81)

which may be written as,

M∑
i=1

Aivi = Ō (3.82)

The constraints are,

∆umin
i ≤ ∆ui ≤ ∆umax

i (3.83a)

umin
i ≤ ui ≤ umax

i (3.83b)
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for, i = i, 2, . . ., M

−A ≤ ei ≤ A ; i = 1, 2, ...., P (3.84)

In terms of vi,

M ivi ≤ N i (3.85)

where,

M i =



M i
1 02CxP

M i
2 02CxP

0PxC −IPxP

0PxC IPxP


; N i =



N i
1

N i
2

αPx1

αPx1


(3.86)

M i
1 =

 −I
I

 ; N i
1 =

 −∆umin
i

∆umax
i

 (3.87)

M i
2 =

 −c2

c2

 ; N i
1 =

 −umin
i + c1ui(t− 1)

umax
i − c1ui(t− 1)

 (3.88)

In summary, the optimization problem is posed as,
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Min J(v) =
M∑
i=1

Ji(vi)

Subject to

M ivi ≤ N i

and

M∑
i=1

Aivi = Ō

(3.89)

Using Lagrange multipliers (price vectors), the optimization problem is solved

for the i-th subsystem,

gi(λ) = min 1
2
vTi Qivi − vTi C̃i

subject to M ivi ≤ N i ; i = 1, 2, ...., M

(3.90)

where,

Qi =
[
G̃T
iiQ̃iG̃ii + R̄i

]
(3.91)

C̃i = Ci − ATi λ (3.92)

Ci =
[
G̃T
iiQ̃i(R

i
S − li)

]
(3.93)

λ (in Eq. (3.90)) is adjusted using Newton′s algorithm till convergence (gk = 0),

λk+1 = λk − αkgk (3.94)
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where, gk is the gradient of
M∑
i=1

Aivi and k is the iteration number.

Note that IAxA is used to denote an identity matrix of dimension AxA and OAxB

is used to denote a matrix of zeros of dimension AxB.

3.3 Case Studies

In order to analyze and evaluate the performance of the coordination strategies,

the results from two systems (a generic benchmark system and a quadruple tank sys-

tem) which exemplify the nature of the coordination strategies and bring out their

uniqueness are provided here. The cases studies described in this work are popular

systems developed to benchmark new control strategies. A tuning strategy derived

by Shridhar & Cooper (1997) was used to tune the individual multivariable model

predictive controllers. The performances of the various control algorithms were in-

vestigated and the results are provided and discussed. The performance metric is

measured in terms of deviations from set point (sum of squared errors (SSE)). Model

predictive controllers based on transfer function models (convolution models) were

derived and implemented in MATLAB version 7.8.0.347.

The Total SSE which is the sum of the SSE′s of all response variables is given

as:

SSE =
M∑
i=1

(Yi −Ri
S)2 (3.95)

50



3.3 Case Studies

3.3.1 Shell Benchmark Problem

The Shell benchmark problem was originally designed as a benchmark for con-

trol studies. It is model of a heavy oil fractionator characterized by three side

circulating loops and three product draws. The output variables are the composi-

tions at the top and side draws and the reflux temperature while the manipulated

variables are the top and side draw rates and also the reflux heat duty. The main

objective of this control problem is to maintain the draw compositions at a desired

setpoint. The generic benchmark developed by Prett & Garćıa (1988) has been used

by many researchers for the evaluation of new control strategies. In this work, the

model presented by Li et al. (2005) has been utilized and a schematic of the process

adapted from Maciejowski (1999) is shown in Fig. 3.3. While the system used in this

work has previously been utilized for evaluating various control strategies including

MPC, this is one of the first works that has utilized this system for evaluating the

performance of a coordinate control strategy. The shell benchmark problem is a

multivariable and constrained process with a high level of interactions between the

subsystems. This problem is also characterized by input, input rate and output

constraints.

The model of the process is: y = G(s)u + Gd(s)d with the transfer function

matrices:

G(s) =


4.05e−27s

50s+1
1.77e−28s

60s+1
5.88e−27s

50s+1

5.39e−18s

50s+1
5.72e−14s

60s+1
6.90e−15s

40s+1

4.38e−20s

33s+1
4.42e−22s

44s+1
7.20

19s+1

 and Gd(s) =


1.44e−27s

40s+1

1.83e−15s

20s+1

1.26
32s+1
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Fig. 3.3. Shell Heavy Oil Fractionator (Adapted from Maciejowski (1999))

The constraints include,

|yi| ≤ 0.5, |ui| ≤ 0.5, |∆ui| ≤ 0.5 for i = 1, 2, 3

The interactions are quantified using the relative gain array (RGA). The RGA

for this system is


2.0757 −0.7289 −0.3468

3.4242 0.9343 −3.3585

−4.499 0.7946 4.7053


The presence of significant off-diagonal terms indicates the severe interaction

that exists in the system. Simulations indicated that the effect of these interac-

tions were strong and though the decentralized control strategy yielded a closed

loop stable solution its performance was significantly degraded as compared to the
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centralized performance.

The tuned parameters were as follows: prediction horizon = 24, control horizon

= 6 and move suppression vector = [15 15 20]. A set point change of magnitude

0.1 was introduced to the three subsystems at sampling instants 10, 20 and 30 re-

spectively. Also, step disturbances of magnitude 0.1 were introduced in the three

sub-systems at sampling instants 200, 250 and 300.

In this system, all the coordination strategies were able to provide stable closed

loop responses but, with significantly differing performances as shown in Table 3.1

and also seen in Fig. 3.4. The cooperation based coordination algorithm was com-

putationally intensive due to the iterative process involved, but was observed to

asymptotically converge to the centralized controller performance as seen in Fig.

3.5. On the other hand, the price driven coordination was able to converge much

faster to an improved solution. In Table 3.1, the average number of optimization

calls per controller has been provided. Since the simulations were not optimized for

computational time, the number of optimization calls is used as a measure of com-

putational intensity. While the centralized MPC invokes the optimization routine

only 500 times, the size of the optimization problem is much larger. Whereas all

other controller strategies solve optimization problems of the same dimension, mak-

ing the number of optimization calls a reliable metric for gauging the computational

requirements of the different coordination algorithms. As seen, the price driven

coordinator requires considerably less computational effort as compared to the co-

operation based coordinator and outperforms the other coordination algorithms on
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a performance per computational effort basis. On the other hand, the cooperation

based coordination algorithm produces a feasible solution at every iteration, and

hence the number of iterations can be limited as desired. The performance was

quantified by the Total SSE which is the sum of the SSE′s of all response variables.

Table 3.1
Performance Indices for Shell benchmark case study

Control Algorithm Total SSE Average # Optimiza-
tion Calls per MPC

Centralized MPC 0.097 500
Decentralized MPC 0.604 500
Comm. Based MPC 0.524 2644
Coop. Based MPC (200 iterations) 0.391 9565
Coop. Based MPC (1000 iterations ) 0.103 10373
Price Driven MPC 0.183 3290

The main task of the coordinator is to derive the effects of interactions between

subsystems. The quantification of these interactions are not straightforward and the

exact interaction models may not be estimated accurately in the real world. It is of

prime importance to gauge the effect of the mismatches in the interaction models on

the performance of the coordinators. This would aid the selection and design of the

most robust coordinator for real world applications. This study is more important

in a distributed setting as the existing distributed decentralized control configura-

tion would be designed by explicitly ignoring these interaction effects. So the task

of estimating the interaction effects to be utilized by the coordinator becomes even

more challenging. The robustness of the coordinated control algorithms was studied

by introducing model-plant mismatches (Badwe et al. (2009, 2010)) in the inter-

action models. The communication based strategy does not guarantee stability as
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Fig. 3.4. Comparison of the shell oil system output variables’ re-
sponse under different control configurations.

discussed in Section 3.2.1 due to the competition between individual controllers.

In order to overcome this drawback, the cooperation based coordination algorithm

was developed, and is an extension of the communication based coordination algo-

rithm. The individual objective functions in the communication based coordination

strategy were modified into a single unified objective in the cooperation based coor-

dination strategy in order to guarantee stability and convergence. Hence, all further

comparisons are only between the cooperation based coordination and price driven

coordination strategies. The models used by the MPC controller were modified by

varying the gain, dead time and time constants of the off-diagonal terms (interac-

tion models) in the transfer function matrix G(s) utilized by the controllers. The
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Fig. 3.5. Convergence of Cooperation Based Coordinated MPC to
Centralized Performance.

number of interaction models varies polynomially with the number of subsystems in

a large-scale system. Also, the effect of the individual interactions could vary quite

drastically with some interactions having a significant effect, while the effect of the

other interactions could be inconsequential. In order to assess the performance of

the coordinator in the presence of model-plant mismatches, a few interaction models

were randomly chosen and the transfer function properties were altered. It should be

noted that the model-plant mismatches will only affect the performance of the cen-

tralized and coordinated MPC control strategies. The decentralized control strategy

which doesn’t utilize the interaction models will be unaffected by the mismatches.

The aim of this study is to quantify the performance deterioration of the C-MPC

control strategy in the presence of model-plant mismatches. In the simulation results
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provided below, mismatches were introduced in the transfer functions G12, G23 and

G31 in G(s). In the presence of mismatches, the performances of the coordination

algorithms were quantified based on the ′percent deviation′ which is an indication

of how much the uncertainty in the process models affects the performance of any

coordination algorithm compared to its performance when there is no mismatch.

Higher percent deviation values indicate that the particular coordination algorithm

is more sensitive to model-plant mismatches.

% Deviation =

(
SSENoMismatch − SSEWith Mismatch

SSENoMismatch

)
x100 (3.96)

Price driven coordination was found to be more robust and deviated less from

the base value (no mismatch performance) as seen in Table 3.3, Table 3.4 and Table

3.5. The direction of mismatch, especially in the gain was found to have a significant

effect on the controller performance and cooperation based coordination was unable

to handle large positive mismatches (overestimated gain values) as seen in Table 3.3.

Though the performance of price driven coordination deteriorated in the presence

of overestimated gain values, it was still able to converge to a feasible solution and

resulted in a stable response. Underestimation of the gains in the interaction mod-

els did not have very significant effects on the coordination algorithms performances

and price driven coordination was found to deviate less than cooperation based co-

ordination. The trends were seen to be similar for mismatches in gain, dead time

and time constants and similar studies were carried out for mismatches in different
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transfer function models resulting in similar trends.

The applicability of the coordination algorithm for MIMO systems were verified

by reconfiguring the Shell Benchmark case study with MIMO controllers. The same

system which was previously decomposed into 3 SISO subsystems was now decom-

posed into a MIMO subsystem and SISO subsystem as depicted below. The upper

block matrix represents the first 2 input - 2 output subsystem and the lower block

matrix represent the second 1 input - 1 output subsystem.



 4.05e−27s

50s+1
1.77e−28s

60s+1

5.39e−18s

50s+1
5.72e−14s

60s+1

 5.88e−27s

50s+1

6.90e−15s

40s+1

4.38e−20s

33s+1
4.42e−22s

44s+1

[
7.20

19s+1

]



Two MPC controllers were designed for the system and the simulation results are

provided in Table 3.2. It was seen that while the performances of all the algorithms

are better than the previously reported SISO control configuration, the relative

performance trends of the different coordination algorithms remain the same. The

performance improvement over the SISO control configuration is due to the fact that

the MIMO subsystem includes two of the previously mentioned interaction models

in the system model. As two of the interaction effects are implicitly modeled into

the subsystem, the overall performance improves.
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Table 3.2
Performance Indices for shell benchmark case study (MIMO Configuration)

Control Algorithm Total SSE

Centralized MPC 0.097
Decentralized MPC 0.416
Comm. Based MPC 0.377

Coop. Based MPC (200 iterations) 0.231
Coop. Based MPC (1000 iterations ) 0.1034

Price Driven MPC 0.163
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Table 3.3
Performance Indices in the presence of model-plant mismatch (Gain Mismatch)

Gain Mismatch SSE for Central-
ized

% Deviation SSE for Coop.
Based MPC (200
iterations)

% Deviation SSE for Price
Driven MPC

% Deviation

+50% Unstable Unstable Unstable Unstable 0.782 327.32
+10% 0.138 42.26 0.731 86.95 0.201 9.83
0% (No Mismatch) 0.097 - 0.391 - 0.183 -
-10% 0.102 5.15 0.429 9.72 0.188 2.73
-50% 0.105 8.25 0.443 13.30 0.203 10.93

Table 3.4
Performance Indices in the presence of model-plant mismatch (Dead Time Mismatch)

Dead Time Mismatch SSE for Central-
ized

% Deviation SSE for Coop.
Based MPC (200
iterations)

% Deviation SSE for Price
Driven MPC

% Deviation

+50% 0.106 9.27 0.467 19.43 0.207 13.11
+10% 0.099 2.06 0.413 5.63 0.187 2.19
0% (No Mismatch) 0.097 - 0.391 - 0.183 -
-10% 0.099 2.06 0.397 1.53 0.185 1.09
-50% 0.101 4.12 0.416 6.39 0.187 2.19
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Table 3.5
Performance Indices in the presence of model-plant mismatch (Time Constant Mismatch)

Time Constant Mismatch SSE for Central-
ized

% Deviation SSE for Coop.
Based MPC (200
iterations)

% Deviation SSE for Price
Driven MPC

% Deviation

+50% 0.112 15.46 0.499 27.62 0.216 18.03
+10% 0.101 4.12 0.432 10.49 0.195 6.56
0% (No Mismatch) 0.097 - 0.391 - 0.183 -
-10% 0.099 2.06 0.418 6.91 0.191 4.37
-50% 0.104 7.21 0.457 16.88 0.211 15.30
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3.3.2 Quadruple Tank System

The quadruple tank system described in the literature by Alvarado et al. (2011)

and Rosinova & Markech (2008) was employed as a simulated test bed for evaluating

different coordination strategies. This system is a popular benchmark case study

used for the evaluation of new control strategies including MPC and distributed

MPC. Alvarado et al. (2011) provides an overview of the experimental performance

and the properties of several state-of-the-art distributed predictive controllers on

this case study. In this system, it is desired to control the level of water in the lower

two tanks (tank 1 and tank 2) using two pumps. The flows from pumps 1 and 2

(v1 and v2) are manipulated to control the water levels in the lower tanks 1 and 2

respectively (y1 and y2). The outflows from tanks 3 and 4 are the disturbances. γ1

and γ2 represent the valve positions that distributes the flow of water between the

lower and upper tanks and can be tuned to change the dynamics of the system as

seen in 3.6.

In this work, we employ the model of the quadruple tank systemJohansson (2000)

in the form: y = G(s)u+Gd(s)d with the transfer function matrices:

G(s) =

 3.7∗γ1
62s+1

3.7∗(1−γ2)
(62s+1)(23s+1)

4.7∗(1−γ1)
(30s+1)(90s+1)

4.7∗γ2
90s+1

 and Gd(s) =

 1
20s+1

0.5
30s+1


The constraints are: |yi| ≤ 5, |ui| ≤ 10, |∆ui| ≤ 1 for i = 1, 2
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Fig. 3.6. Quadruple Tank System

The RGA for the quadruple tank system is

 1.0667 −0.0667

−0.0667 1.0667

 or

 −0.2250 1.2250

1.2250 −0.2250


depending on the value of γ1 and γ2 (the former for γ1 = γ2 = 0.8 or and the

latter for γ1 = γ2 = 0.3). This indicates the presence of interacting subsystems and

depending on the valve positions (value of γ1 and γ2), the interaction effects (off-

diagonal terms) become significant and ignoring them leads to severe instabilities.

With a valve opening of 0.8 (γ1 = γ2 = 0.8), the system exhibits minimum phase

characteristics and with a valve opening of 0.3 (γ1 = γ2 = 0.3) the system exhibits

non-minimum phase characteristics. The system was simulated under both mini-

mum and non-minimum phase characteristics by manipulating the position of the

external valve and the different controller coordination algorithms were compared
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under both the minimum and non-minimum phase scenarios.

The tuned parameters were as follows: prediction horizon = 15, control horizon

= 5 and move suppression vector = [0.01 0.01]. The desired water level set points of

the two lower tanks were increased by 1 unit at sampling instants 4 and 100. Also,

disturbances (Gd) in the form of inflows to the upper level tanks were introduced

at sampling instants 150 and 200.

Under minimum phase behavior, all coordination algorithms were able to pro-

vide a closed loop stable solution with performances better than a decentralized

controller and also close to the centralized controller performance as seen in Ta-

ble 3.6 and also in Table 3.7. Again, on a performance per computational effort

basis, the price driven coordinator was seen to outperform the other coordination

algorithms as seen in Table 3.6. This was not the case with a non-minimum phase

behavior which was seen to deteriorate the performance of the controllers, making

the system harder to control. A non-minimum phase behavior resulted in severe

interactions between subsystems and only the cooperation based coordination re-

sulted in a closed loop stable solution while all other coordination strategies failed.

The details are summarized in Table 3.7.

Similar to the previous case study, model plant mismatches were introduced to

the interaction models to analyze the robustness of the coordination algorithms.

The mismatches were introduced to the system when a minimum phase behavior

was exhibited. Though all the coordination algorithms were able to result in stable
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Table 3.6
Performance Indices for the quadruple tank case study (Minimum
Phase Configuration)

Control Algorithm Total SSE Average # Optimiza-
tion Calls per MPC

Centralized MPC 1.346 500
Decentralized MPC 1.460 500
Comm. Based MPC 1.437 560
Coop. Based MPC (2 iterations) 1.457 687
Coop. Based MPC (10 iterations) 1.348 938
Price Driven MPC 1.387 668

Table 3.7
Performance Indices for the quadruple tank case study (Non-
Minimum Phase Configuration)

Control Algorithm Total SSE

Centralized MPC 8.328
Decentralized MPC Unstable
Comm. Based MPC Unstable

Coop. Based MPC (2 iterations) 9.088
Coop. Based MPC (10 iterations) 8.461

Price Driven MPC Unstable

closed loop responses, it was observed that the coordination algorithms were most

sensitive to gain overestimates as compared to the other mismatches. Once again,

price driven coordination was found to be more robust than cooperation based coor-

dination and deviated less from the base values as seen in Table 3.8, Table 3.9, and

Table 3.10. In the case of severe overestimates of the process gains, the price driven

coordination was seen to significantly outperform cooperation based coordination

with a 14.54% lesser deviation.
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Fig. 3.7. Comparison of the four tank system output variables’ re-
sponse under different control configurations.
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Table 3.8
Performance Indices for the quadruple tank case study (Minimum Phase Configuration) in the presence of Model-Plant Mismatch

Gain Mismatch SSE for Central-
ized

% Deviation SSE for Coop.
Based MPC (2
iterations)

% Deviation SSE for Price
Driven MPC

% Deviation

+50% 1.401 4.08 1.736 19.15 1.451 4.61
+10% 1.366 1.48 1.491 2.33 1.415 2.02
0% (No Mismatch) 1.346 - 1.457 - 1.387 -
-10% 1.352 0.45 1.472 1.03 1.401 1.01
-50% 1.363 1.26 1.501 3.02 1.426 2.81

Table 3.9
Performance Indices for the quadruple tank case study (Minimum Phase Configuration) in the presence of Model-Plant Mismatch

Dead Time Mismatch SSE for Central-
ized

% Deviation SSE for Coop.
Based MPC (2
iterations)

% Deviation SSE for Price
Driven MPC

% Deviation

+50% 1.372 1.93 1.639 12.49 1.436 3.53
+10% 1.353 0.52 1.478 1.44 1.401 1.01
0% (No Mismatch) 1.346 - 1.457 - 1.387 -
-10% 1.349 0.22 1.467 0.69 1.395 0.58
-50% 1.356 0.74 1.491 2.33 1.409 1.59
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Table 3.10
Performance Indices for the quadruple tank case study (Minimum Phase Configuration) in the presence of Model-Plant Mismatch

Time Constant Mismatch SSE for Central-
ized

% Deviation SSE for Coop.
Based MPC (2
iterations)

% Deviation SSE for Price
Driven MPC

% Deviation

+50% 1.381 2.60 1.651 13.31 1.444 4.11
+10% 1.357 0.82 1.484 1.85 1.407 1.44
0% (No Mismatch) 1.346 - 1.457 - 1.387 -
-10% 1.351 0.37 1.469 0.82 1.398 0.79
-50% 1.360 1.04 1.498 2.81 1.413 1.87
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3.4 Conclusions

Coordinating multiple model predictive controllers has been shown to signifi-

cantly improve the performance of decentralized control strategies, driving them

towards the control performance of the centralized controller. Communication of

information between controllers was seen to be insufficient to guarantee closed loop

stability in the case of the quadruple tank system and even in the shell benchmark

problem where it yielded a closed loop stable response; its performance was signif-

icantly poorer as compared to the other coordination strategies. To overcome this

drawback, objective functions of the local controllers had to be modified to enable

the subsystems to cooperate towards a pareto optimal solution. The price driven

coordination was also seen to coordinate the local controllers effectively with a sig-

nificantly lower computational demand.

Cooperation based coordination is the only strategy that asymptotically con-

verges to the centralized controller performance. Also, since at every iteration a

closed loop stable and feasible solution is produced, it has the added advantage that

it can be stopped at any arbitrary iteration depending on the available computa-

tional resources and desired level of performance enhancement. On the other hand,

it was also observed that price driven coordination was able to produce the same

level of performance as the cooperation based controller at a lower computational

effort.
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While studying the robustness of the coordination algorithms, price driven co-

ordination was found to be a more robust control strategy as it deviated less from

its base performance in the presence of mismatches. As the different algorithms

are derived from fundamentally different methodologies, the interaction factors are

utilized differently in the various algorithms. This resulted in some algorithms being

more sensitive to the accuracy of the interaction models. In the presence of large

mismatches where the cooperation based coordination failed, the price driven coor-

dination was still able to come out with a feasible and stable solution.

The system dynamics and level of interaction was also found to have a signifi-

cant effect on the performance of the coordination algorithms. For the quadruple

tank system with non-minimum phase system behavior, only the cooperation based

coordination strategy was found to be closed loop stable. This necessitates a good

understanding of the system dynamics before choosing an appropriate coordination

algorithm, especially for systems with multivariable process zeros, like the quadru-

ple tank system. This will help control practitioners to select the best coordination

algorithm based on a priori knowledge of the system behavior and the extent of

parametric uncertainties.

The implementation of the C-MPC schemes comes with an increased computa-

tional load due to the presence of a communication network and the iterative nature

of the algorithms. The size of the communication network increases polynomially

with the number of subsystems. However, the dimensionality of the individual op-

timization problems doesn’t change compared to the decentralized control scheme.
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The increased computational demands to the communication requirements could im-

pede the scalability of the C-MPC algorithms. In order to overcome this drawback

and address the issue of scalability, the next chapter explores a novel methodology

that minimizes the communication requirements without impeding the overall per-

formance.

Though coordinating multiple controllers improves the closed loop performances

significantly, they come at the cost of increased communications between the con-

trollers and a higher computational effort. Through the analyses of multiple case

studies, the advantages and drawbacks of both the coordination algorithms was

brought forth. While the price driven coordination algorithm seemed to be more

robust in terms of model-plant mismatch, it did not always converge to the per-

formance of the centralized controller and closed loop stability was not guaranteed

(unlike the cooperation-based coordination). However, in the next phase of this re-

search we have selected the cooperation-based coordination algorithm and developed

strategies to improve its performance. The selection of cooperation-based coordina-

tion was mainly motivated by the fact that it was an iterative algorithm that could

be stopped at any iteration depending on the available resources making it practi-

cally very convenient. Also, the very nature of the formulation made it convenient

for the next phase of studies on minimum information exchange.

Though coordinating multiple controllers improves the closed loop performances

significantly, they come at the cost of increased communications between the con-

trollers and a higher computational effort due to the communication exchange be-

tween the controllers. Through the analyses of multiple case studies, the advantages

71



Chapter 3 Coordinating Multiple Model Predictive Controllers

and drawbacks of both the coordination algorithms was brought forth. While the

price driven coordination algorithm seemed to be more robust in terms of model-

plant mismatch, it had issues with the convergence to the centralized performance

and closed loop stability both of which are not guaranteed (unlike the cooperation-

based coordination). However, in the next phase of this research we have selected

the cooperation-based coordination algorithm and developed strategies to improve

its performance. The selection of cooperation-based coordination was mainly moti-

vated by the fact that it was an iterative algorithm that could be stopped at any

iteration depending on the available resources making it practically very convenient.

Also, the very nature of the formulation made it convenient for the next phase of

studies on minimum information exchange.
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Chapter 4

MINIMUM INFORMATION EXCHANGE BASED

C-MPC ARCHITECTURES

4.1 Introduction

Most formulations of coordinated and distributed control strategies in literature

are hinged on the assumption that every controller communicates with every other

controller. This assumption creates a tremendous load on the communication net-

work, resulting in an overly complex coordination algorithm. Methods to reduce

the communication load through algorithms that permit only partial cooperation is

the direction in which current research is progressing and a few methods that try to

tackle this problem has been presented in recent literature (Schuler et al. (2011)). In

Schuler’s work, the authors designed decentralized controllers that utilize both the

output of its own subsystem as well as selected outputs of other subsystems. They

then addressed the problem of minimizing the number of additional outputs utilized

by each controller while guaranteeing a stable performance. In our work, a robust

methodology that could utilize most existing coordinated MPC (C-MPC) schemes

to identify a partial communication architecture that does not significantly affect

the overall optimality of the system is developed. We have developed and analyzed

a simulation-based optimization (Law & McComas (2000)) method to reduce the

73



Chapter 4 Minimum Information Exchange Based C-MPC Architectures

communication load without compromising the closed-loop stability, or the overall

system performance significantly. A framework to achieve the same is described in

the next section.

4.2 Minimum Information Exchange Based Coordination

The problem of simultaneously designing both the controller topology and the

controller itself has been introduced very recently (Negenborn & Maestre (2014)) and

is one of the main contributions of this research. In our work, we have first designed

the C-MPC control strategy with complete information exchange (as described in

Chapter 3) and then we have optimized the communication topology within the

C-MPC architecture. We now formulate the problem of minimizing the information

exchange and optimizing the topology of the C-MPC architecture. Mathematically

this problem translates into maximizing the sparsity of G̃p (defined in eq. 3.2) which

in turn increases the degree of decentralization which is quantified through an In-

teraction Matrix.

The Interaction Matrix is defined as,

IM =



1 im12 . . im1M

im21 1 . . im2M

. . . . .

. . . . .

imM1 imM2 . . 1


(4.1)
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where

imij = 0, if interaction model Gij is ignored

imij = 1, if interaction model Gij is utilized

and the interaction index (II) of the control topology is defined as:

II =
M∑
i=1

M∑
j=1

imij (4.2)

It is desired to minimize the number of interaction models used in the control

architecture. However, as the number of utilized interaction models are reduced, the

system performance also deteriorates due to the reduction in information, which is

undesired, and hence a multi-objective optimization (MOO) problem is formulated.

In this case we have two conflicting objectives, the number of interaction models

(II) and the performance deterioration of the system (quantified through the SSE).

Traditionally, multi-objective optimization problems are solved using the min-

max formulation, method of distance functions, or the method of weighted objectives

(Marler & Arora (2004)) where the multiple objectives are converted into a single

objective. The greatest drawback of these methods is the resulting single solution

rather than a pareto optimal solution set. Also, the conversion of multiple objectives

into a single objectives depends on an a priori requirement of system knowledge.

Moreover, these methods involve weighing of objectives, and the tuning of these

weights plays a significant role in the overall optimality of the solutions. These short-

comings render the single-objective formulation based methods inadequate and and

of little practical significance. In order to provide a more pragmatic set of solutions
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that enable the decision maker to choose the most appropriate decision based on cur-

rent requirements, algorithms that explicitly handle multiple objectives are available

- they yield a set of solutions known as pareto optimal solutions (Rangaiah (2008)).

Each of these solutions in the pareto optimal set is better than every other solution

in the search space when all the objectives are considered together. Many methods

have been developed to find Pareto optimal solutions to MOO problems such as the

weighted sum method, ε-constraint method, evolutionary algorithms (Tamaki et al.

(1996)), etc. In this work, we have utilized a multi-objective evolutionary algorithm

in the form of the non-dominated sorting genetic algorithm (NSGA-II) implemented

in MATLAB. As described in Deb et al. (2000) this particular algorithm performs

better than other MOO algorithms (Pareto-archived evolution strategy (PAES) and

strength Pareto evolutionary algorithm (SPEA)), in terms of elitism and computa-

tional complexity.

The schematic representation of non-dominated sorting genetic algorithm is

shown in Fig. 4.1 and the algorithm is set up as follows. The first step is to

define the population size and the stopping criteria (in this case the number of gen-

erations was constrained). Next, within the constraints of the decision variables,

a random initial population is defined. The initialized population is sorted into

different fronts, based on the non-domination criteria. From the initial population,

parents are selected based on two metrics namely rank and crowding distance. The

members of the first front belong completely to the non-dominated set while the

second front members are dominated only by the first front and so on. Each indi-

vidual of the population is assigned a rank (fitness) based on the their presence in
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a particular front. Crowding distance is a metric that measures the closeness of the

individuals to their neighbors and a larger crowding distance is preferred to ensure

diversity within the population. Individuals are selected as parents based on the

rank value and crowding distance. The parent population then undergoes genetic

operations such as crossover and mutation to generate the next generation of the

population known as children. The children population is then combined with the

current parent population in a step called recombination. These steps are repeated

iteratively till the stopping criteria are achieved. Elitism of the algorithm is as-

sured, since the best individuals from both the previous and current population are

utilized. The parameters involved in setting up the NSGA-II algorithm are the num-

ber of generations and the probabilities for the crossover and mutation processes.

One of the challenges associated with this algorithm is the decision of the initial

population size and maximum permissible number of iterations. Though a larger

population and number of iterations are preferred, they significantly increase the

computational cost and need to be limited yet sufficient. However, the optimization

problem described in this work is a design problem and is performed to select the

optimal communication topology that needs to be implemented within the C-MPC

framework. This permits a large number of generations to be utilized in order to

allow the GA algorithm to converge. In this work, a modified version of the program

developed at the Illinois Genetic Algorithms Laboratory (Sastry (2007)) was used

and the parameters used in the setting up of the NSGA-II algorithm are specified

for the various case studies in Table 4.1.
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Fig. 4.1. A schema of the implemented NSGA method

The GA optimization is computationally intensive and the computational time

required to optimize the control architecture increases significantly with the number

of subsystems. The number of interactions increases polynomially (O(n2)) with

the number of subsystems and the number of possible communication topologies

increases exponentially (O(2n
2
) with the number of subsystems. This indicates that

even a moderately large system comprising of 5 subsystems could result in a search
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Table 4.1
NSGA Parameters

Fixed Parameters
Objective 1 Minimize SSE (eq. 11)
Objective 2 Minimize II (eq. 13)
Decision Variables Binary Variables
Replacement Proportion 0.9
Selection Method Roulette Wheel
Crossover Method One Point Crossover
Crossover Probability 0.9
Mutation Method Selective Mutation
Mutation Probability 0.1
Stopping Criteria Maximum Number of Generations

Variable Parameters
Population Size Case Study 1: 36

Case Study 2: 36
Case Study 3: 200

Maximum Number of Generations Case Study 1: 200
Case Study 2: 200
Case Study 3: 500

space of over 1 million possible communication topologies (as seen in Fig. 4.2 and

Fig. 4.3). This necessitates the need to improve the convergence rate of the GA

algorithm. One way in which this can be achieved, is by reducing the search space

and any method that reduces the search space significantly would greatly benefit

practical applications of this methodology. In order to decrease the computational

requirements we investigated the utility of many well known interaction indices

(Grosdidier & Morari (1986), Lee et al. (1998), Salgado & Conley (2004), etc.) as

an a priori qualitative interaction quantifier that can be utilized to reduce the GA

search space by identifying the most significant interactions and ensuring that these

interactions are always accounted for.
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Fig. 4.2. Relation between number of subsystems and the corre-
sponding number of interactions

Fig. 4.3. Relation between the number of subsystems and the pos-
sible number of communication topologies
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Various methods have been proposed in literature to quantify the interaction

effects for loop pairing to design the control loop configuration. Beginning with

the relative gain array (RGA) which utilizes only the steady state gain, researchers

have proposed various variations like dynamic relative gain array (DRGA, McAvoy

(1983)), normalized relative gain array (NRGA, Fatehi (2011)), effective relative

gain array (ERGA, Monshizadeh-Naini et al. (2009)), etc. to overcome its draw-

backs. One such criterion is the RNGA, which utilizes both the steady state as well

as dynamic information of a process to achieve a more comprehensive quantification

of the interactions in a system. In this method, instead of utilizing only the steady

state gain matrix, the entire transfer function model of the process is utilized to

ensure that the process dynamics are well captured.

As defined by He et al. (2009) , The normalized gain for a transfer function is

given by,

kN,ij =
Gij(j0)

τar,ij
(4.3)

where, τar,ij is the average residence time of the system. The steady state gain

captures the sensitivity of the controlled variable on the manipulated variable and

the average residence time accounts for the response speed of the controlled variable

to changes in the manipulated variable. Hence, a large normalized gain would mean

either a large steady state gain or a low residence time implying that the controlled
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variable is highly sensitive to the manipulated variable. Now, the normalized gain

matrix of the system is given by,

KN = G(j0)� Γar (4.4)

The larger the value of an element in the normalized gain matrix, the larger will

the dominance of that particular control pairing. The relative normalized gain is

calculated for all input-output combinations and the RNGA is given by,

Φ = KN ⊗K−TN (4.5)

where the value of φij is a measure of the effective interaction. A large positive φij

indicates that the manipulated variable (uj) has a significant effect on the control

variable (yi) and its response speed, which signifies a strong interaction. Through

the analyses of multiple case studies, it was seen that the values in the RNGA

matrix had a strong correlation with the interaction selection optimized by the

GA algorithm. This strong correlation lead to the possibility of incorporating the

RNGA results into the GA optimizer in order to reduce the search space. In this

work, to incorporate the RNGA results with the GA optimizer, positive off-diagonal

RNGA values were deemed to significantly affect the overall C-MPC performance

and the corresponding interaction models were fixed (imij = 1) and not included in

the decision variable set while optimizing the controller topology. The GA-RNGA
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based communication topology optimizer was then evaluated on a few independent

case studies.

4.3 Case Studies

In order to analyze and evaluate the performance of the C-MPC architecture with

minimum information exchange the results from three popular benchmark systems

which exemplify the nature of the novel control scheme and elucidates its efficacy,

are presented here. A tuning strategy derived by Shridhar & Cooper (1997) was

used to tune the individual multivariable MPCs. Model based controllers based

on transfer function models were derived and implemented in MATLAB version

7.11.0.584. In order to assess the robustness of the developed control algorithm, set

point changes as well as step disturbances were introduced to all the subsystems at

different sampling instants.

4.3.1 Shell Benchmark Problem

The Shell benchmark problem described in Section 3.3.1 is once again used as a

test case to study the efficiency of the minimum information exchange based C-MPC

scheme.

The interactions are quantified using the relative normalized gain array (RNGA).

The RNGA for the system is


2.3324 −1.6519 0.3194

−0.9069 2.7975 −0.8905

−0.4254 −0.1456 1.5711
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The presence of significant off-diagonal terms indicates the existence of sub-

system interactions that exist in the system. The simulation results (Fig. 4.4),

indicated that the effect of these interactions were strong and though the decen-

tralized control strategy (0 interactions) yielded a closed loop stable solution, its

performance was significantly degraded as compared to the centralized controller

performance (6 interactions). In order to assess the effectiveness of the C-MPC con-

trol architecture, the GA-RNGA algorithm was implemented. The most significant

interaction model as indicated by the RNGA, was im13 with a φ13 = 0.3194 which

is also the only positive off-diagonal RNGA value. Since this was the single most

significant interaction model, its value was fixed as 1 in the interaction matrix and

only the remaining 5 decision variables (interaction models) were optimized while

configuring the communication topologies.

The results as seen in Fig. 4.4, highlight the utility of the GA-RNGA optimiza-

tion algorithm in selecting communication architectures with varying topologies of

different complexities. While the top panel of the figure depicts the performance of

the controller while utilizing different number of interaction models, the lower panel

shows the corresponding optimal interaction models that were selected to achieve

the depicted performance. It is seen that including a single interaction model (im13),

if selected optimally can improve the decentralized performance by nearly 50% as

seen in Table 4.2. Also, it is seen that, by increasing the number of interactions,

the performance improves (SSE decreases) and asymptotically converges to the per-

formance of a centralized controller. Through utilizing the GA-RNGA optimization

algorithm, the importance of the individual interactions as well as the selection of
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Fig. 4.4. Performance comparison of the shell benchmark problem
for various optimal interaction topologies (im31 = 1)

an optimal control topology with limited communication (as desired by plant oper-

ators) can be achieved. When more interaction models are included in the control

topology, the required computational time would also increases. The increase in

time can be attributed to the increase in communication and the exchange of in-

formation between a larger number of controllers. However, this would provide the

plant operators with a trade-off option between desired performance improvement

and available computational resources. For example, if the time constraints permit

only the selection of 3 then the interaction models im13, im31 and im32 need to
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selected and a performance enhancement of 65.6% can be achieved. Conversely, if

a performance enhancement of 50% is sufficient, only 2 interaction models need to

be utilized.

Table 4.2
Performance comparison of the various optimal control topologies
for the shell benchmark problem

No. of Interactions
SSE with respect to
Decentralized MPC

Decentralized MPC 1.000
1 0.528
2 0.421
3 0.344
4 0.288
5 0.235
6 0.171

Centralized MPC 0.161

4.3.2 Distillation Column Control

Ogunnaike and Ray (Ogunnaike et al. (1983)) developed a multi-product pilot

plant distillation column (Fig. 4.5) to evaluate the efficiency of their multivari-

able control strategy. This has since become a benchmark test case to evaluate

the efficiency of new control strategies. The multiproduct ethanol-water distillation

column is a multivariable system having multiple time delays making it hard to con-

trol. The controlled variables of the binary ethanol-water system are the overhead

ethanol mole fraction, side stream ethanol mole fraction and temperature of the 19th

tray. The manipulated variables for this system, are the reflux flow rate, side stream

product flow rate and the reboiler stream pressure. The tuned parameters were as
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follows: prediction horizon = 60, control horizon = 5 and move suppression vector

= [1 10 10]. The distillation column was modeled as the following transfer function,

The model of the process is: y = G(s)u+Gd(s)d with the transfer function matrices:

Fig. 4.5. Distillation column control schematic (Adapted from Ogun-
naike et al. (1983))

G(s) =


0.66e−2.6s

6.7s+1
−0.61e−3.5s

8.64s+1
−0.0049e−1.0s

9.06s+1

1.11e−6.5s

3.25s+1
−2.36e−3s

5s+1
−0.01e−1.2s

7.09s+1

−34.68e−9.2s

8.15s+1
46.2e−9.4s

10.9s+1
0.87(11.61s+1)e−1s

(3.89s+1)(18.8s+1)

 and Gd(s) =


0.14e−0.2s

6.2s+1

0.53e−0.5s

6.9s+1

−11.54e−0.6s

7.01s+1


The constraints include,

|yi| ≤ 10, |ui| ≤ 10, |∆ui| ≤ 5 for i = 1, 2, 3

The interactions are quantified using the relative normalized gain array (RNGA).
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The RNGA for the system is


1.4827 −0.3485 −0.1342

−0.3443 1.407 −0.0614

−0.1384 −0.0572 1.1956


The presence of significant off-diagonal terms indicated the severe interaction

that exists in the system. Also, through simulations it was seen that the differ-

ence in performance between a centralized and decentralized control architecture

was quite high (i.e.) a decentralized control architecture while closed loop stable

was performing significantly worse than a centralized controller. This performance

gap motivates the requirement of a C-MPC control strategy that is able to identify

the most significant interactions and develop a control topology that utilizes only a

few of the interactions while substantially driving the performance towards that of

a centralized controller. In order to assess the effectiveness of the C-MPC control

architecture with varying topologies of different complexities, the GA-RNGA opti-

mization algorithm was implemented. However, in this case, while the interactions

were strong, there were no positive RNGA off-diagonal elements and hence the GA-

RNGA algorithm was implemented without any textita priori modifications and the

results are seen in Fig. 4.6. Again, it is clearly evident that, by increasing the

number of interactions, the performance improves (SSE decreases) and converges to

the performance of a monolithic centralized controller.

Through utilizing the GA-RNGA optimization algorithm, the importance of the

individual interactions as well as the selection of an optimal control topology with

limited communication can be achieved. It was seen that im31, im32 and im21 are
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Fig. 4.6. Performance comparison of the distillation column case
study for various optimal interaction topologies

the most significant interactions and need to utilized to improve the performance

significantly. As shown in Table 4.3, selecting three interactions optimally can im-

prove the decentralized performance by nearly 98%. This indicates that the three

most significant interactions if selected optimally can result in near global optima

and the computational requirements of utilizing 3 interactions are definitely less

than the complete communication architecture where all 6 interactions are utilized.
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Table 4.3
Performance comparison of the various optimal control topologies
for the distillation column case study

No. of Interactions
SSE with respect to
Decentralized MPC

Decentralized MPC 1.000
1 0.349
2 0.174
3 0.023
4 0.021
5 0.019
6 0.019

Centralized MPC 0.018

4.3.3 Complex Sidestream Column/Stripper Distillation Control

Alatiqi (Alatiqi & Luyben (1986)) studied the dynamics and control of a com-

plex, multivariable sidestream column/stripper distillation configuration with mul-

tiple feeds and products. These systems are highly interacting and quite hard to

control. The system design is seen in Fig. 4.7, and the process modeled was the

separation of benzene and toluene from a ternary mixture of benzene, toluene and

xylene. The controlled variables of this system are the benzene composition in the

distillate, toluene composition in the sidestream, bottom composition of xylene and

the temperature difference between the trays above and below the sidedraw tray.

In order to ensure product purity and minimize energy consumption, the manip-

ulated variables selected were the liquid side draw rate from the main column to

the stripper, main column reboiler heat duty, stripper reboiler heat duty and the

reflux flow rate. The tuned parameters were as follows: prediction horizon = 37,

control horizon = 6 and move suppression vector = [15 15 20 25]. In our work we

have modeled this system and evaluated the efficiency of the coordinated control
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architecture on this popular 4x4 multivariable benchmark system. The 4x4 system

significantly increases the complexity over the previous 3x3 case studies by increas-

ing the possible interaction topologies (search space), which is related exponentially

to the number of subsystems as shown previously.

The model of the process is: y = G(s)u+Gd(s)d with the transfer function matrices:

Fig. 4.7. Complex Sidestream Column/Stripper Distillation Control
Schematic (Adapted from Alatiqi & Luyben (1985))

G(s) =



4.09e−1.3s

(33s+1)(8.3s+1)
−6.36e−0.2s

(31.6s+1)(20s+1)
−0.25e−0.4s

21s+1
−0.49e−5s

(22s+1)2

−4.17e−4s

45s+1
6.93e−1.01s

44.6s+1
−0.05e−5s

(34.5s+1)2
1.53e−2.8s

48s+1

−1.73e−17s

(13s+1)2
5.11e−11s

(13.3s+1)2
4.61e−1.02s

18.5s+1
−5.48e−0.5s

15s+1

−11.18e−2.6s

(43s+1)(6.5s+1)
14.04e−0.02s

(45s+1)(10s+1)
−0.1e−0.05s

(31.6s+1)(5s+1)
−4.49e−0.6s

(48s+1)(6.3s+1)
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and Gd(s) =



1.44e−27s

40s+1

1.83e−15s

20s+1

1.26
32s+1

2
20s+1


The interactions are quantified using the relative normalized gain array (RNGA).

The RNGA for the system is



1.8033 −0.4423 −0.1774 −0.1836

−1.0320 2.2582 0.0291 −0.2553

−0.0212 0.0246 1.2330 −0.2364

0.2498 −0.8405 −0.0847 1.6754


The presence of significant off-diagonal terms indicates the strong interactions ex-

ist in the system. The GA-RNGA optimization algorithm was implemented and the

effectiveness of the C-MPC control architecture with varying topologies of different

complexities was analyzed. While there were three off-diagonal RNGA with positive

values, im41 was significantly larger than im32 and im23. In Fig. 4.8, the results

from setting im41=1 are shown. Once again the performance improvement through

utilizing more interaction models and the convergence to the centralized controller

performance are seen in Table 4.4. Also, the computation time-performance im-

provement trade-off indicated that selecting 3 interactions were sufficient to signifi-

cantly improve the performance (over 50%).

The results from fixing all three interactions with a positive RNGA value (im41,

im32 and im23) 1 in the IM matrix and optimizing only the remaining 9 decision

variables are shown in Fig. 4.9. The difference between including and not including
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Fig. 4.8. Performance comparison of the complex sidestream stripper
case study for various optimal interaction topologies (im41 = 1)
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the models with small RNGA values are seen in the controller topologies with 3,

4, 5 and 6 interactions. The controller topologies with less than 3 or more than 6

interactions are selected identically by both optimization schemes. As mentioned

previously, im32 and im23 are not significantly strong interactions and fixing them as

1 in the interaction matrix results in a few suboptimal solutions. However, even in

the four cases where the solution differed (from the simulation with only im41 = 1),

the solution set was better than the decentralized control architecture, resulted in a

stable response and was able to converge to the centralized controller performance.

This indicated that it is still possible to improve overall controller performance sig-

nificantly through utilizing the RNGA as a interaction quantifier and lowering the

decision variable set from 12 to 9 which reduced the GA search space by one order

of magnitude as seen in Fig. 4.3.

From the tabulated computational times per controller (Table 4.4), it is seen

that a 50-60% performance improvement is possible by selecting 3 or 4 interactions

optimally without significantly increasing the computational costs. For greater per-

formance improvement, if more computational resources is available, 9 or 10 inter-

actions can be selected to enhance the performance by nearly 75%.

4.4 Communication Disruption

The aim of designing the minimum information exchange based coordinated

MPC scheme was to try and achieve a performance as close to the centralized MPC

performance with minimum communication between the controllers. Such a strategy
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Fig. 4.9. Performance comparison of the complex sidestream stripper
case study for various optimal interaction topologies (im41 = im32 =
im23 = 1)

not only reduces the required computational effort but also increases the robustness

of the system. One of the common problems that most large-scale systems encounter

is communication disruptions where data being transmitted between controllers is

either delayed, corrupted or lost. In the C-MPC architecture described in this work,

the subsystems exchange information such as states, predicted output trajectory

and calculated control moves. These information are paramount to coordinating

the controllers and disruptions or corruption in data could result in the individual

controllers destabilizing the entire system. In order to avoid this, one possible fail-
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Table 4.4
Performance comparison of the various optimal control topologies
for the complex sidestream stripper case study

No. of Interactions
SSE with respect to
Decentralized MPC

Decentralized MPC 1.000
1 0.791
2 0.635
3 0.488
4 0.337
5 0.331
6 0.309
7 0.299
8 0.299
9 0.267
10 0.239
11 0.209
12 0.174

Centralized MPC 0.110

safe strategy is to revert back to the original decentralized control scheme that does

not involve the communication and exchange of information. There are studies in

literature that develop strategies to tackle communication disruption in networks

from an information technology perspective (Imer et al. (2006) and Casavola et al.

(2006)). In this section, we have explored the potential of utilizing the results of the

GA-RNGA based communication topology optimizer to provide backup communi-

cation strategies in the event of communication disruptions.

In systems where coordinated MPC schemes are implemented based on a full

communication topology, the GA-RNGA based minimum information exchange

strategy can help reduce the amount of communication by selecting an optimal

communication topology. The system can now be run with only a few selected sub-

systems exchanging information while the remaining communication links can be
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taken offline. Since a genetic algorithm based optimizer was utilized, a set of pareto

optimal solutions are obtained. Also, the genetic algorithm is an iterative proce-

dure, with the solutions improving as each generation evolves. This leads to a set

of progressively improving pareto fronts being available for every generation from

start till termination. This information can now be used to select alternate com-

munication topologies in the event of communication disruptions. The application

of the GA-RNGA based optimization results to tackle communication disruptions

is illustrated through an example.

In case study 4.3.3, there were 12 interaction models and an optimal pareto front

for selecting communication topologies for varying complexities was provided in Fig.

4.8 and Fig. 4.9. Assuming that the communication topology involving 6 interac-

tion models was selected from Fig. 4.8, based on desired performance improvement

and permissible computational effort. The 6 selected interaction models are im12,

im31, im32, im34, im41 and im42 and the information exchange scheme is presented

in Table 4.5. As seen in the table, the information regarding the calculated control

trajectories are exchanged between a few of the susbystems only. In the event of a

communication disruption where subsystem 2 is not being able to transmit informa-

tion to subsystem 3, one option would be for the coordinator to only coordinate the

subsystems with the 5 remaining interaction models. However, the studies in the

previous section showed that while using selecting 5 interactions, if the 5 interactions

are not chosen optimally, the performance could deteriorate significantly. In order to

identify an alternate communication topology with a performance equivalent to the

existing control architecture, the catalog of pareto fronts generated by the GA opti-
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mizer can be searched with constraints on the availability of information to ensure

that the disrupted communication link is explicitly accounted for. An additional

constraint can be employed to ensure that utilization of existing communication

links is maximized. This is quantified through the similarity index that calculates

the percentage of interaction models common between the communication topologies

before and after disruption of communication. In this case, we ensured that im32

was not utilized and also that the similarity index was at least 60%. The possible

alternate communication topologies that the search came up with are shown in Fig.

4.10. Panel (a) depicts the existing system before communication disruption; panels

(b) and (c) depict communication topologies utilizing only 5 interaction models and

panels (d) and (e) depict alternate communication topologies utilizing 6 interaction

models. The performance of the selected alternate communication topologies are

shown in table 4.6. It is seen that it is possible to select alternate communication

topologies without requiring to revert to the decentralized control architecture. Also,

most of the subsystem communications present before the disruption are retained,

making quite easy to switch to an alternate communication topology.

Table 4.5
Information exchange scheme for 6 interactions topology of the com-
plex sidestream stripper case study

Information Exchange
Information From Information To

Subsystem 2 Subsystem 1
Subsystem 1 Subsystem 3
Subsystem 2 Subsystem 3
Subsystem 4 Subsystem 3
Subsystem 1 Subsystem 4
Subsystem 2 Subsystem 4
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Fig. 4.10. Alternate communication topologies in the presence of
communication disruption

Table 4.6
Comparison of alternate communication topologies in the presence
of communication disruption

Communication Topology SSE Similarity Index (%)
Fig. 0.155 -
Fig 0.173 83.33
Fig. 0.169 66.66
Fig. 0.171 83.33
Fig. 0.167 66.66

4.5 Conclusions

The main bottleneck in the computational demands of the coordinated MPC

algorithm is the iterative communication of information between local controllers.

It is the communication overhead, that increases the overall computational demand

of the C-MPC strategy. Reducing the number of communications would signifi-

cantly improve the speed of convergence of the C-MPC architecture and make it
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quite beneficial for real world applications.The novel GA-RNGA based communi-

cation topology optimization and the implementation of the minimum information

exchange based C-MPC controllers presented in this work has been shown to sig-

nificantly alleviate the bottleneck in traditional coordinated control architectures.

It has been shown that the demands of enabling communication between each and

every local MPC can be lessened through optimizing the communication network

and utilizing only those interaction models that significantly affect the overall per-

formance of the system. This methodology is shown to significantly improve the

performance of decentralized control strategies with minimal increase in computa-

tional demands (minimal communications).

The GA optimization problem is computationally intensive due to the simulation-

optimization methodology followed in this work. Evaluation of each candidate in the

GA optimization routine involved simulating a process over 500 time steps in order

to evaluate the objective functions. The computational effort required to optimize

the communication topology for the three case studies varied from 12 to 36 hours.

However, as the communication structure optimization is a design problem and is

performed before the implementation of the real-time C-MPC control strategy, the

long computational times are permissible.

Through the analyses of multiple case studies, it is seen that the performance

could usually be improved significantly (more than 50%) by selecting only a few

interaction models. However, the selection of the interaction models needs to be

optimized in order to ensure maximum performance enhancement with minimal in-

crease in computational resources. Also, the communication topology optimization
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significantly improves the scalability of the C-MPC architecture for large-scale ap-

plications. The algorithm developed in this work has been used to prioritize the

interactions and configure communication topologies of varying complexities suc-

cessfully. The results of this work can be used to design control architectures for

large-scale systems as well as provide alternate control architecture to existing sys-

tems in the presence of communication disruptions.

The results of this work provide the operator with an easy to understand trade-off

chart depicting the achievable performance enhancement and the associated com-

putational demands. Based on operational demands, the desired complexity in the

communication topology is selected and the corresponding optimized interaction

configuration is implemented. Since GA was used to solve the designed multi-

objective optimization problem; a set of pareto optimal solutions was developed,

providing additional flexibility to the operator. Moreover, The GA based selection

algorithm, though globally optimal is computationally intensive. In this work, the

utility of an a priori interaction quantifier namely RNGA has been shown to reduce

the GA search space exponentially without compromising excessively on the con-

troller performance.
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Chapter 5

APPLICATION OF COORDINATED MODEL

PREDICTIVE CONTROL FOR MULTI-RESERVOIR

MANAGEMENT SYSTEMS

5.1 Introduction

Mulit-reservoir networks are large-scale systems spread across vast geographical

areas and are made up of a number of smaller, heterogeneous, interacting subsys-

tems. The presence of different multiple authorities, each one governing one or

few sub-systems, can provide a strong resistance towards adopting centralized con-

trollers, even when they can be technically adopted. Currently, decentralized control

strategies are widely implemented for the optimal management of multi-reservoir

networks. Despite being widely researched and utilized in the field of process and

systems engineering, the coordination of multiple model predictive controllers has

not been adopted for water resources management. The use of coordinated control

schemes is limited to the management of irrigation canals (Cardona et al. (1997)

and Negenborn, van Overloop & De Schutter (2009)), and there have been very

few theoretical studies like Niewiadomska-Szynkiewicz et al. (1996) which consid-

ered the problem of coordinated multiple for controllers for water reservoir networks

operation. With the purpose of exploring the potential of the coordinated control
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approach for the operation of multi-reservoir networks, numerical experiments on a

two reservoir network and a larger real world case study were performed and the ap-

plicability and utility of a coordinated control algorithm for the operation of water

reservoir networks is explored.

5.2 Multi-Objective Two Reservoir System

The potential of the developed coordination algorithm is evaluated on a simple

water system composed of two multi-purpose reservoirs in cascade and developed

from a single-reservoir system first presented in Castelletti et al. (2011). The reser-

voirs are assumed to be cylindrical with unit surface area. The dynamics of the

storage and s1
t and s2

t [m3] in the upstream and downstream reservoir is modeled

with the following mass balance equations

s1
t+1 = s1

t + (a1
t+1 − u1

t ).∆ (5.1)

s2
t+1 = s2

t + (qt+1 − u2
t ).∆ (5.2)

where u1
t and u2

t [m3/s] are the release decisions (controls), both belonging to the

interval [0, 60] m3/s, and ∆ is the integration time-step. The inflow a1
t+1 [m3/s] in

the interval [t, t+1) to the upstream reservoir comes from an uncontrolled catchment

whose behaviour is modelled with a simplified Thomas-Fiering model (Loucks et al.

(1981)), namely

a1
t+1 = µ1 + ρflow.(a

1
t − µ1) +

√
1− ρ2

flow.(µ
1Cvδ) (5.3)

104



5.2 Multi-Objective Two Reservoir System

where the parameters are the mean µ1, coefficient of variation Cv and the corre-

lation coefficient of the streamflow ρflow (respectively equal to 40, 0.10 and 0.40),

while δ is a standard normal random number. The total inflow qt+1 [m3/s] in the

interval [t, t + 1) to the downstream reservoir is given by the contribution a2
t+1 of

an uncontrolled catchment, generated with the Thomas-Fiering model (eq. 5.3 with

the mean µ1 = 20) and the release from the upstream reservoir.

The reservoirs are controlled with the purpose of satisfying two objectives each,

water supply (for hydropower production upstream and irrigation downstream) and

flooding along the lake shores. The step-costs associated to the upstream reservoir

control are thus the deficit of hydropower production, i.e.

g1,u
t = max(4.36− Pt, 0) (5.4)

where 4.36 kWh/day is the installed capacity and Pt is the energy production,

which depends on the release u1
t and h1

ton the reservoir level (given by the ratio

between the storage s1
t and the surface S, assumed to be unity); and the squared

deviation from the flooding threshold h̄1 = 50m, i.e.

g2,u
t = max(h1

t − h̄1, 0)2 (5.5)

The step-costs associated to the downstream reservoir are the squared deficit of

irrigation supply, i.e.

g1,d
t = max(̄i− u2

t , 0)2 (5.6)
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where the demand ī corresponds to 60m3/s; and the squared deviation from the

flooding threshold h̄2 = 50m, i.e.

g2,d
t = max(h2

t − h̄2, 0)2 (5.7)

where h2
t is the reservoir level.

The rationale behind the choice of this case study is that its relative simplicity

permits to calculate the optimal solution with the centralized approach thus allowing

to evaluate the effectiveness of the proposed coordination algorithm in approximat-

ing the true solutions.

Consider a water system composed by M interconnected water reservoirs, fed by

C uncontrolled catchments. A network of natural and artificial canals connects the

reservoirs to each other and with different water users, such as irrigation districts,

hydropower plants and drinking water treatment plants. The global model, obtained

by aggregating the models of the different sub-systems, is a discrete-time, nonlinear,

stochastic model of the following form (Castelletti et al. (2008)):

xt+1 = ft(xt,ut, εt+1) (5.8)

where xt ∈ Rnx , ut ∈ Rnu and εt+1 ∈ Rnε are the state, control and disturbance

vectors. The state xt is composed of the state variables (the storages) of the M

reservoirs and the state variables of the C catchments; the control ut is composed
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of the M release decisions (controls) from the M reservoirs; the disturbance εt+1 is

composed of the C random disturbances of the uncontrolled catchments models.

If a real-time centralized control strategy is adopted, the global model is em-

ployed to design a unique controller that satisfies all the control objectives associ-

ated to the M reservoirs. This means that at each time-step t, a forecast of the

inflow realization from the uncontrolled catchments is provided over the finite hori-

zon [t, t+h], and the corresponding sequence of optimal decisions ut, ., ., ., .,ut+h for

the whole water system is provided by solving an open-loop optimization problem.

The control algorithms for the state-space formulation was modified as given below

Centralized Formulation:

J = min
ut, . . . , ut+h−1

[
t+h−1∑
τ=t

gτ (xτ , uτ , ετ+1) + ḡt+h(xt+h)]subject to

xτ+1 = fτ (xτ , uτ , ετ+1)

0 ≤ uτ ≤ umax

xt given

(5.9)

for each τ in the time horizon [t, t+h]; where gτ (.) is a normalized step-cost function

accounting for the costs associated to the state transitions, ḡt+h(.) is a penalty

function related to the final state xt+h , and umax the maximum feasible values for

the control variables. Since the problem accounts for all the control objectives, the
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step-cost gτ (.) is defined by determining a convex combination of all the normalized

step-costs in the water system (weighting method), i.e.

gτ (.) =
M∗n∑
i=1

wigiτ (.) , with
M∗n∑
i=1

wi = 1 (5.10)

where M is the number of reservoirs in the water system, and n the number (assumed

to be equal) of objectives for each reservoir. When this control strategy cannot be

adopted, the control problem is often defined with a decentralized strategy, which

aims at defining for each single reservoir in the water system a specific real-time

control problem with the purpose of satisfying only the n control objectives. For

the jth reservoir this problem takes the following form:

Decentralized Formulation:

J j = min
ujt , . . . , u

j
t+h−1

[
t+h−1∑
τ=t

gjτ (x
j
τ , u

j
τ , ε

j
τ+1) + ḡjt+h(x

j
t+h)]

subject to

xjτ+1 = fτ (x
j
τ
, ujτ , ε

j
τ+1)

0 ≤ uj
τ
≤ umax, j

xjt given

(5.11)

where the penalty ḡjt+h accounts only for the final state xjt+h and the normalized

step-cost gjτ is now given by the convex combination of the n step-costs of the jth

reservoir, i.e.

gjτ (.) =
M∗n∑
i=1

wigj, iτ (.) , with
M∗n∑
i=1

wi = 1 (5.12)
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The resolution of this problem is significantly smaller than the centralized prob-

lem, but is likely to lead to sub-optimal solutions, when considering the performance

of the overall system. To maintain the existing decentralized structure but at the

same time drive the controller performance towards a global optimum, a coordina-

tion strategy can be adopted. The coordination algorithm works towards combining

the advantaged of both the centralized and decentralized control strategies while

at the same time addressing their drawbacks. A decentralized control structure is

maintained, but the performance is driven towards the centralized control scheme

by a coordinator which enables communication and cooperation between the indi-

vidual local controllers. Communication is accounted for by modifying the state

transition equations to include the states and controls of all the M reservoirs in the

water system, while cooperation is guaranteed by the objective function, which is

modified as a convex sum of the objective functions of the individual decentralized

controllers (Anand et al. (2011)). For the jth reservoir the coordination problem

109



Chapter 5 Applications of C-MPC

takes the following form

Coordinated Formulation:

J j = min
ujt , . . . , u

j
t+h−1

M∑
j=1

λj[
t+h−1∑
τ=t

gjτ (x
j
τ , u

j
τ , ε

j
τ+1) + ḡjt+h(x

j
t+h)]

subject to

xτ+1 = fτ (xτ , uτ , ε
j
τ+1)

0 ≤ ujτ ≤ umax, j

xt given

where,

M∑
j=1

λj = 1, with λj > 0

(5.13)

With these modifications, each controller now solves an optimization problem with

the same objective function. Though the optimization problem is the same, the

resulting sequence of optimal decisions ujt , . . . , u
j
t+h−1 from each controller is sub-

optimal, because each controller employs a different state transition equation. To

make the different controllers converge to a globally optimal solution ut, . . . , ut+h−1

, the coordinator employs a direct substitution algorithm iteratively and coordinates

the local controllers to convergence or a predefined maximum number of iterations.

Real-time control in the form of MPC is implemented on the two reservoirs test

case to evaluate the performance of the coordination algorithm vs. the centralized

and decentralized strategy. To this purpose, a Monte Carlo simulation analysis is

adopted, with 100 different combinations of initial storage conditions and inflow

realizations (over an horizon of 100 days) from the two uncontrolled catchments.
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The value of the objective function is computed as the average (normalized) value

of the step-costs on the simulation horizon, with the same weight adopted for all the

control objectives: with the centralized strategy the i-th weight wi is thus equal to

0.25, while with the decentralized and coordinated strategy a weight equal to 0.50

is adopted for the control objectives in the upstream and downstream reservoir.

5.2.1 Comparison of performance with perfect and non-perfect inflow

forecast

In the first numerical experiment, the controllers are tested with a three steps

ahead perfect forecast (i.e. the inflow predictions employed by the controllers are

assumed to be without errors on the prediction horizon). As shown in the upper

panel of Fig. 5.1, the decentralized MPC performance is suboptimal as compared

to the centralized strategy, while the coordination algorithm is able to improve the

performance of the controllers, driving it closer to the global optimum. The perfor-

mance of the coordinated control algorithm improves with an increase in the number

of iterations and in the case study presented, the maximum number of iterations

was limited to 50. This was seen to significantly improve the decentralized con-

troller performance, resulting in a performance very close to that of a centralized

controller with an acceptable increase in computational cost. A non-perfect forecast

of the inflow realizations, obtained by adding to these a randomly-generated noise

(Sivapragasam et al. (2007)), is further employed to assess the robustness of the con-

trol algorithms. The performance, though degraded from the previous experiments,

are seen to follow the same trends, with coordinated MPC improving the existing
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decentralized controller performance (upper panel in Fig. 5.1).

Fig. 5.1. Performance comparison (mean and variance) of total,
upstream and downstream costs (upper, middle and lower panel) of
centralized (blue), coordinated-50 iterations (green), coordinated-5
iterations (yellow) and decentralized (red) MPC (with perfect and
non-perfect inflow forecast).

5.2.2 Comparison of costs at individual reservoirs

Fig. 5.1 (middle and lower panels) shows the total costs at the upstream and

downstream reservoirs obtained with the different control strategies (perfect and

non-perfect forecast). It can be noticed that the centralized control strategy pro-

vides a worse performance than the decentralized controller in the upstream reser-

voir. This is because the centralized controller optimizes the total cost of both the

reservoirs in the system, with the risk of not guaranteeing the best performance

in each sub-system, while the decentralized strategy seeks only the local optimum.
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The decentralized controller ignores the effect of the upstream reservoir on the down-

stream reservoir and by optimizing the upstream performance locally; a high cost

is incurred at the downstream reservoir. The centralized controller exploits the re-

sources not employed by the upstream controller, improving the overall performance

at the cost of the upstream reservoir. On the other hand the decentralized controller

ignores the effect of the upstream reservoir on the downstream reservoir and by op-

timizing the upstream performance locally, a high cost is consequentially incurred

at the downstream reservoir.

In this context, the coordinated control algorithm is able to significantly improve

the controller performance in the upstream reservoir by explicitly accounting for the

linking variables between the two reservoirs. Fig. 5.1 (middle and lower panels) also

shows that the downstream reservoir contributes more to the overall costs, and the

coordinated control strategy is able to improve the overall controller performances

by compromising between the upstream and downstream costs.

The total costs at the upstream and downstream reservoirs obtained with the

different control strategies (perfect and non-perfect forecast) as well as the overall

costs are tabulated in Table 5.1 and 5.2. As seen, the decentralized MPC perfor-

mance is suboptimal as compared to the centralized strategy, while the coordination

algorithm is able to improve the performance of the controllers, driving it closer to

the global optimum. The performance of the coordinated control algorithm improves

with an increase in the number of iterations and in the case study presented, the

maximum number of iterations was limited to 50. This was seen to significantly im-
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prove the decentralized controller performance, resulting in a performance very close

to that of a centralized controller with an acceptable increase in computational cost.

In the presence of forecast inaccuracies, the performance though degraded from

the previous experiments, are seen to follow the same trends, with coordinated MPC

improving the existing decentralized controller performance.

Table 5.1
Performance Indices for the two reservoir system with a perfect inflow

Control Algortithm
Upstream
Cost

Downstream
Cost

Total Cost

Centralized MPC 0.091 0.121 0.212
Coop Based MPC (5 itera-
tion)

0.102 0.135 0.237

Coop Based MPC (50 itera-
tion)

0.098 0.131 0.229

Decentralized MPC 0.007 0.328 0.335

Table 5.2
Performance Indices for the two reservoir system with a perfect inflow

Control Algorithm
Upstream
Cost

Downstream
Cost

Total Cost

Centralized MPC 0.102 0.130 0.232
Coop Based MPC (5 itera-
tion)

0.108 0.141 0.249

Coop Based MPC (50 itera-
tion)

0.105 0.136 0.241

Decentralized MPC 0.025 0.335 0.360

5.3 Alqueva Multi-Reservoir System

The Alqueva reservoir network is located in the southeast of Portugal in the

Alentejo region (Fig. 5.2). The design of the Alqueva project started during the
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early 1950s and studies and designs have been continuously developed until the po-

litical decision for the construction of the main dam (Alqueva) began in 1997. Even

after this decision, the design has suffered several modifications mainly in what

concerns irrigation areas, associated water volumes and crop needs. Topography is

mainly plains with sparse vegetation and the region has a Mediterranean climate.

The main objectives of this water system are: (i) irrigation of about 110,000 ha, (ii)

drinking water supply to 170,000 inhabitants and (iii) hydropower generation, with

the main dam presenting two reversible groups of 129.6 MW . The Alqueva dam is

responsible for the creation of the largest reservoir in Western Europe with a surface

area of about 250 km2 and a maximum storage capacity of 4150 hm3. Its primary

inflow is the river Guadiana that flows North-South in Portuguese territory. The

Guadiana river flow has strong seasonal variations: typical wet season river flows

can reach 500 m3/s or more, whereas dry season flows usually drops to values below

20m3/s.

The irrigation network has three different sub-systems: the longer one (Alqueva

sub-system, corresponding to about 62,000 ha of irrigation area) with its water in-

take in the Alqueva reservoir and the other two in the downstream reservoir. In this

work, the implementation of the coordination-based real-time controller is designed

for the reservoirs located upstream of the Alvito reservoir (Figure 1) in the Alqueva

sub-system. It starts at the Alamos pumping station having an installed capacity

of 42 m3/s for pumping water from Alqueva reservoir to Alamos reservoir located

79.50 m higher. An 11 km long gravity canal links this reservoir to Loureiro reservoir

where a diversion for two other canals is considered: the Loureiro-Monte Novo canal
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(24 km length) and the Loureiro-Alvito canal (11 km length). The first one ends

in a small reservoir and the water is then pumped to Monte Novo reservoir where

the principal water intake for water supply is located. During its course several

water intakes for irrigation are considered. The second one, partially constructed in

a tunnel delivers water to the Alvito reservoir. Water at this reservoir will be used

for irrigation (it will be distributed by the downstream reservoirs of the Alqueva

sub-system) and water supply.

Fig. 5.2. Alqueva multi-reservoir: location and schema of the system
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5.3.1 Controller Set-up

The reservoir system in the MPC is represented by a number of pool routing

models with time delay operators for modeling the time lag between release from

the upstream reservoir and arrival in the downstream one. The objectives on water

delivery and combined energy and cost savings are translated into an objective

function of the following form:

J =
M∑
t=1

wsp(ht − hsp)2 + wup max(ht − hup, 0)2 + wdown min(ht − hdown, 0)2

+wptQt + w∆p(∆Qt)
2 + w∆z(∆dgt)

2

(5.14)

where the first term penalizes deviations of the water level h from set point hsp,

the next two terms put an extra penalty on the level leaving an acceptable range

[hdown, hup] , the fourth term implements a time-depending penalty wpt on pumping

Qt in relation with current energy costs (gate releases are not penalized and there-

fore preferred), and the last two terms take care of smoothing the control trajectory

by penalizing ∆Qt = Qt −Qt−1 and ∆dgt = dgt − dgt−1.

The control horizon of the MPC is 5 days with a time step of 1 hour resulting

in 120 time steps. The MPC includes a total number of 4 aggregated structures,

namely one pumping station and 3 outlet gate complexes, which leads to an opti-

mization problem of 480 dimensions for the centralized control or 4 optimization

problems with 120 dimensions for the coordinated control.
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The MPC runs in closed loop with a detailed one-dimensional hydraulic model in

SOBEK (Deltares (2010)) using a receding horizon of 6 hours. We assume forecasts

of water demands in this study for focusing on the performance of the coordinated

MPC approach. The only uncertainty considered is the inaccuracy of the internal

model of the MPC compared to the more detailed schematization of the hydraulic

model which served as a real world replacement. Hence, the controller performance

in this case study is evaluated in the presence of model-plant mismatches similar to

those encountered in real world applications.

SOBEK is a modeling and simulation tool used in the fields of hydrology and hy-

drodynamics. It is based on robust numerical methods that can be utilized for even

the most complex simulations. The 1D hydraulic model is based on the equation of

continuity,

∂Af
∂t

+ ∂Q
∂x

= qlat (5.15)

and the conservation of momentum,

∂Q
∂t

+ ∂
∂x

(
Q2

Af

)
+ gAf

∂h
∂x

+ gQ|Q|
C2RAf

− wf τwindρw
(5.16)

where,

Q is the flow rate [m3/s]

t is the time [s]

x is the one-dimensional coordinate [m]

qlat is the unit side flow rate [m2/s]
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Af is the wetted section area [m2]

g is the acceleration due to gravity [m/s2]

h is the flow depth [m]

C is the Chezy coefficient [m0.5/s]

R is the hydraulic radius [m]

Wf is the surface width [m]

τwind is the shear stress due to wind [N/m2]

ρw is the density of water [kg/m3]

The controlled hydraulic structures are represented by a simplified structure

formula with the general form (Schwanenberg & Becker (2009))

Q = f(hup, hdown, dg) (5.17)

in which dg = gate setting.

The hydraulic structures are modeled by the following formulas for a weir and

an orifice with fully opened gates

Q =


2
3
ws

√
2
3
g(hup−zs)

3/2, if hup−zs>
3
2
(hdown−zs)

ws(hdown − zs)
√

2g(hup−hdown), otherwise

(5.18)
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in which ws = width of the structure, zs = crest level. In the case of a partially or

fully closed gate (hup − zs ≥ 3
2
dg), we apply

Q =


wsµ dg

√
2g(hup − zs − µ dg), if hdown<zs+dg

wsµ dg
√

2g(hup − hdown), otherwise

(5.19)

in which dg = gate setting, µ = contraction coefficient.

5.3.2 Results and Discussion

Real-time control in the form of MPC was implemented on the Alqueva reservoir

system to evaluate the performance of the coordination-based algorithm against the

traditional centralized strategy. When the controllers were setup in a decentralized

configuration with no communication or cooperation between the controllers, the

performance deteriorated significantly from that of the centralized MPC (see Table

5.3). This performance deterioration was quantified in terms of the Root Mean

Square Error (RMSE), defined as the deviations of the decentralized/coordination-

based control algorithms’ performance (in terms of state transitions and control

variables) from that of the centralized MPC. It was seen that the cooperation-based

MPC algorithm was able to provide a performance similar to that of a centralized

MPC strategy and by increasing the number of iterations the performance improved

and asymptotically converged to the global optima (see Fig. 5.3).

In 5.3, the simulation results of the centralized MPC and 5 iterations of the coor-

dinated MPC scheme are presented. The pump discharges at the Alamos Reservoir
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Table 5.3
RMSE (with respect to the centralized MPC configuration) for the
decentralized and coordination-based MPC (with different number
of iterations).

Control Algorithm
RMSE with respect to Centralized MPC
Water Level Pump Discharge

Decentralized MPC 0.206 2.562
Coord-MPC (1 iteration) 0.029 0.091
Coord-MPC (3 iterations) 0.023 0.068
Coord-MPC (5 iterations) 0.016 0.042

and the Loureiro Reservoir are compared across a period of 17 days. It can be ob-

served that, the difference in schedules is not very different and the the coordinated

MPC scheme is able to trace the performance of the centralized MPC (centralized

MPC and coordination-based MPC trajectories overlap in most parts). By making

explicit use of the linking variables between the reservoirs, the coordination-based

controller is able to utilize resources ignored by the decentralized controller and ap-

proach global optimality. The dimension of the coordinated MPC is significantly

smaller than that of the coordinated MPC and the communication overhead caused

by the 5 iterations can be assumed to be insignificant. This shows the coordinated

algorithm’s applicability and effectiveness for multi-reservoir management and the

results have shown that the proposed control strategy is able to provide a globally

optimal solution while still retaining a decentralized structure. This would signifi-

cantly reduce the computational requirements of the individual controllers and at

the same time increase the reliability and robustness of the overall system.
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Fig. 5.3. Comparison of pump discharges of Centralized MPC
(Green) and 5 Iterations of Coordinated MPC (Blue)

5.4 Conclusions

With the purpose of exploring the potential of coordination techniques for the

management of large-scale water systems, we have evaluated the C-MPC algorithm

on two different water management case studies. The coordination of multiple MPCs

is shown to significantly improve the performance of decentralized control strate-

gies, driving them towards the control performance of a centralized controller. The

C-MPC strategy is seen to asymptotically converge to the centralized controller per-

formance and also provide a closed-loop stable solution at each iteration. The main

advantage is that it can thus be stopped at any arbitrary iteration depending on the

available computational resources and desired level of performance enhancement.
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In the two reservoir network, the coordinated control algorithm is able to signifi-

cantly improve the controller performance in the upstream reservoir by explicitly

accounting for the linking variables between the two reservoirs. It is also shown that

the downstream reservoir contributes more to the overall costs, and the coordinated

control strategy is able to improve the overall controller performances by compro-

mising between the upstream and downstream costs to achieve the overall optimum.

The algorithm’s applicability and effectiveness has been evaluated on a high fi-

delity simulator of the Alqueva reservoir system and the results have shown that

the proposed control strategy is able to provide a globally optimal solution while

still retaining a decentralized structure. This would significantly reduce the com-

putational requirements of the individual controllers and at the same time increase

the reliability and robustness of the overall system. Also, the inherent model-plant

mismatch in the high fidelity simulator exemplifies the applicability of the C-MPC

for real world systems.

While minimum information exchange is very relevant for large-scale multi-

reservoir applications, the applications studied in this chapter have been explicitly

used for highlighting the benefits of implementing a C-MPC control architecture.

Moreover, the potential benefits of utilizing C-MPC for multi-reservoir management

systems are quite evident. In the high fidelity simulator of Alqueva reservoir sys-

tem, computational efforts required for coordinating the four individual controllers

are practically viable. However, for larger networks, minimizing the information

exchange could provide additional benefits that go beyond reducing the computa-
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tional burden. The network of reservoirs are spread across cities and even countries

in some cases. In these situations, the presence of different regulation authorities,

each one governing one or few reservoirs, can provide a strong resistance towards

adopting a centralized policy or sharing information between reservoirs. In such

cases, the minimum information exchange can be used to come up with innovative

solutions that exclude certain sensitive communication links and can also be used

for trade-off analyses by policy makers.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH WORK

6.1 Conclusions

The focus of this research was to develop a novel coordinated model predictive

control strategy that can be implemented in real-time for the control of large-scale

systems. In order to achieve this, we began with a critical analysis of the existing

state-of-the-art techniques in coordinated model predictive control. A comprehen-

sive review and evaluation of the existing techniques helped identify opportunities

for improvement and provided a basis for developing a new strategy.

In this research, we selected two MPC coordination strategies derived from two

different schools of thought. The cooperation based coordination is based on utiliz-

ing the interaction models to enhance the performance of the decentralized control

strategy. The price driven coordination strategy is based on separating the central-

ized control problem into a number of independent sub problems. In Chapter 3, we

formulated the above mentioned coordination schemes and evaluated their perfor-

mance under various scenarios.
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Coordinating multiple model predictive controllers has been shown to signifi-

cantly improve the performance of decentralized control strategies, driving them

towards the control performance of the centralized controller. Communication of

information between controllers was seen to be insufficient to guarantee closed loop

stability and even in the case studies where it yielded a closed loop stable response;

its performance was significantly poorer as compared to the other coordination

strategies. To overcome this drawback, objective functions of the local controllers

had to be modified to enable the subsystems to cooperate towards a pareto optimal

solution. The price driven coordination was also seen to effectively coordinate the

local controllers.

Cooperation based coordination is the only strategy that asymptotically con-

verges to the centralized controller performance. Also, since at every iteration a

closed loop stable and feasible solution is produced, it has the added advantage that

it can be stopped at any arbitrary iteration depending on the available computa-

tional resources and desired level of performance enhancement. On the other hand,

it was also observed that price driven coordination was able to produce the same

level of performance as the cooperation based controller at a lower computational

effort. While studying the robustness of the coordination algorithms, price driven

coordination was found to be a more robust control strategy as it deviated less from

its base performance in the presence of model-plant mismatches. In the presence of

large mismatches where the cooperation based coordination failed, the price driven

coordination was still able to provide a feasible and stable solution.
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The system dynamics and level of interaction was also found to have a significant

effect on the performance of the coordination algorithms. For systems with non-

minimum phase system behavior, only the cooperation based coordination strategy

was found to be closed loop stable. This necessitates a good understanding of the

system dynamics before choosing an appropriate coordination algorithm, especially

for systems with multivariable process zeros. This will help control practitioners to

select the best coordination algorithm based on a priori knowledge of the system

behavior and the extent of parametric uncertainties. The validity of all the empirical

results described have been evaluated on both single-input single-output (SISO) and

multiple-input multiple-output (MIMO) systems and it was shown that coordinated

controllers were able to handle both systems efficiently. While both coordination

algorithms had their advantages and drawbacks, in this work, the cooperation based

coordination selected and utilized. The main advantages of utilizing the cooperation

based coordination strategy was the guaranteed stability and feasibility. Also, the

iterative procedure utilized in the cooperation based coordination could be termi-

nated at any iteration and still result in a solution that was closed-loop stable and

feasible. Moreover, the formulation of this coordination strategy was very flexible

and facilitated the implementation of minimum information exchange based com-

munication topologies.

While coordinating multiple controllers improves the closed loop performances

of decentralized controllers significantly, it comes at the cost of increased communi-

cation between the controllers and a higher computational effort. In order to tackle

this drawback, a novel GA based communication topology optimization was formu-
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lated and the implementation of the minimum information exchange based C-MPC

controllers demonstrated in Chapter 4. It has been shown that the demands of en-

abling communication between each and every local MPC can be lessened through

optimizing the communication network and utilizing only those interaction models

that significantly affect the overall performance of the system. This methodology

was shown to significantly improve the performance and robustness of decentralized

control strategies.

The multiple case studies considered in Chapter 4 showed that the performance

can often be improved significantly (more than 50%) by selecting only a few inter-

action models and coordinating the MPC controllers with this limited information

exchange. However, the selection of the interaction models needs to be optimized

in order to ensure maximum performance enhancement with minimal increase in

computational resources. The GA algorithm utilized in this work helps to prioritize

the interactions and configure communication topologies of varying complexities to

design control architectures for large-scale systems. The results of this work can be

also be used to assess the effect of communication errors and disruptions.

Since GA was used to solve the designed multi-objective optimization problem;

the set of pareto optimal solutions obtained, provides additional flexibility to the

control engineer. In the event of communication disruptions, the control engineer

has the option of selecting the next best communication architecture from the pareto

optimal solution catalog that does not utilize the disrupted communication chan-

nel. In this manner even in the event of communication delays, errors or losses; the
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coordinated MPC scheme would be able to utilize an appropriate communication

architecture to provide a closed loop stable solution.

In addition, the computationally intensive GA based algorithm is aided by the

use of an a priori interaction measure, RNGA, to effectively reduce the search space

and facilitate quick solutions of the optimization problem without compromising ex-

cessively on the overall controller performance. The RNGA helps in identifying a

set of interaction models that have a significant effect on the overall performance

of the system and this information is integrated into the GA search problem. The

combined GA-RNGA based topology optimization of the C-MPC architectures has

shown to improve the closed loop performance significantly with minimum informa-

tion exchange between controllers.

The results of this work provide the control engineer with an easy to under-

stand trade-off chart depicting the achievable performance enhancement and the

associated computational demands. Based on operational demands, the desired

complexity in the communication topology can be selected and the corresponding

optimized interaction configuration implemented.

The applicability of the MPC coordination algorithms for real world systems

is evaluated through two case studies that explore the potential of the coordina-

tion techniques for the real-time management of large-scale water systems (Chapter

5). A numerical case study involving two reservoirs was simulated under different

scenarios of the inflow realizations and the results showed that the proposed con-
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trol strategy can outperform existing decentralized real-time controllers. In the two

reservoirs network, the coordinated control algorithm was able to significantly im-

prove the controller performance in the upstream reservoir by explicitly accounting

for the linking variables between the two reservoirs. It is also shown that when the

downstream reservoir contributed more to the overall costs, the coordinated control

strategy was able to improve the overall controller performances by compromis-

ing between the upstream and downstream costs to achieve the global optimality.

Through the numerical simulation studies, it is also observed that the increase in

computational demand required for communication and cooperation is significantly

lower than a centralized control strategy, making the application of such a strategy

a very attractive prospect.

In the final phase of this work, the coordinated MPC algorithm was implemented

and evaluated on a model of the Alqueva reservoir system in Portugal. A detailed,

high fidelity hydraulic model of the multi-reservoir system was developed in SOBEK

and served as a proxy for the real world system. When the controllers were setup

in a decentralized configuration with no communication or cooperation between the

controllers, the performance deteriorated significantly from that of the centralized

MPC. It was seen that the cooperation based MPC algorithm was able to provide

a performance similar to that of a centralized MPC strategy and by increasing the

number of iterations the performance improved and asymptotically converged to

the global optima. It can be observed that, while there is a marked difference be-

tween the pump schedules of the centralized and decentralized control schemes, the

coordination-based controller is able to provide a solution very similar to that of
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the centralized controller. By making explicit use of the linking variables between

the reservoirs, the coordination-based controller is able to utilize resources ignored

by the decentralized controller and approach global optimality. The proposed con-

trol strategy is able to provide a globally optimal solution while still retaining a

decentralized structure.

6.2 Contributions of this thesis

The key contributions of this dissertation are summarized below:

• Three MPC coordination strategies derived from different schools of thought,

namely the ’Communication-based Coordination’, ’Cooperation-based Coor-

dination’ and the ’Price Driven Coordination’ have been reformulated for sys-

tems represented by transfer functions and are presented in this work.

• The three coordination strategies were comprehensively evaluated and their

benefits and drawbacks have been discussed in detail.

• The applicability of MPC coordination strategies on both SISO and MIMO

systems has been demonstrated.

• The effect of model-plant mismatch on the performance of the different coor-

dination strategies has been assessed.

• The cooperation-based coordination has been proposed as a useful algorithm

to coordinate multiple model predictive controllers and the theoretical devel-

opments have been supported by simulation studies.
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• The problem of alleviating the computational bottleneck caused by the C-MPC

communication architecture has been addressed by developing a novel genetic

algorithm based communication topology optimization that minimizes the in-

formation exchange in C-MPC controllers without significantly compromising

on the overall performance.

• In order to decrease the computational load of the GA search algorithm, an

a priori interaction quantifier was identified. RNGA was found to be an apt

interaction indicator that enabled the reduction of the GA search space.

• It is also shown that the catalog of pareto optimal solutions produced by

the GA-RNGA scheme can also be used to tackle communication errors and

disruptions.

• The applicability of the C-MPC schemes on water management systems has

been demonstrated through the implementation of the developed control ar-

chitecture on a high fidelity multi-reservoir simulator.

6.3 Recommendations for Future Work

As with any research, while several questions have been posed and answered, new

questions also do arise. A few possible directions for future research are highlighted

below.
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6.3.1 Handling Coupled Input Constraints

In the current work, the MPC coordination algorithm guarantees convergence to

global optima only when the input constraints between subsystems are uncoupled.

In the presence of coupled constraints, each controller provides a closed loop stable

response; however the performance deteriorates and does not converge to the perfor-

mance of the centralized controller. Moreover, in real world systems, the presence of

severe dynamic coupling and hard bounds on the controlled variables are common.

In such cases, one possible alternative would be for each controller to modify its local

optimization problem and increase the decision variable set to include all coupled

variables. However this will increase the dimensionality of the local optimization

problems and in the case of a completely coupled system, each local MPC would

need to solve the centralized MPC problem. This would increase the computational

load on the local MPCs tremendously making them practically infeasible. Further

research is required to assess and quantify the performance deterioration caused

by coupled constraints. Also, optimization schemes that can modify the local ob-

jectives without increasing the dimensionality of the problem and yet converge to

global optima need to be investigated.

6.3.2 Data-based Interaction Analysis and Adaptive Minimum Informa-

tion Exchange Schemes

When the coordinated control algorithms are implemented in large-scale net-

worked systems, the coordinator will have to process a large amount of data. Along

with the tremendous computational effort required for this, the reliability of the
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coordinator could also be compromised. To reduce the communication load on the

coordinator, a minimum information exchange based design has been developed

using interaction models. In addition to the model-based interaction analysis, data-

based interaction analysis which will utilize real-time process data to dynamically

quantify the interaction effects and use these measures to develop a minimal in-

formation exchange based coordinated control algorithm would be valuable. The

initially developed models for most systems are valid only around the modeled op-

erating conditions and the models may become invalid because of changes such as

catalyst deactivation, fouling of surfaces and product grade transitions. In this

work, the effect of model-plant mismatch has been studied and it is seen that over

certain mismatch thresholds, coordination is not possible. One alternative would

be to develop a catalog of models for different operating conditions (based on real-

time data and closed loop identification techniques) and enable the local MPCs to

switch models based on the operating conditions. Another option would be develop

data-based real time interaction measures which can be used to switch between and

change the information exchange topology in real time to improve the performance.

The efficacy of such an adaptive minimum information exchange based coordination

scheme needs to be investigated in detail.

6.3.3 Coordinating Model Predictive Controllers for Multi-rate Systems

Many large scale systems comprise of multiple process occurring at different time

scales. For example, in most reservoirs the water quantity dynamics is in the order

of minutes while the water quality dynamics is in the order of hours or days. This

makes the coordination problem even more challenging as the integration of multi-
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ple communication and optimization time scales are required if one were concerned

with both water quantity and quality objectives. There has already been research

on the implementation of coordination MPC schemes on multi-rate systems. Past

studies evaluated the MPC operation at the slowest computational rate and also

the effect of implementing the control move optimized by the fast MPC while hold-

ing the decision of the slow MPC constant. However, the effect of such schemes

on the minimum information exchange based communication topology optimization

needs to be investigated. There could be a significant difference in the optimized

communication topology due to asynchronous feedback between controllers. While

coordination may be possible, the sensitivity of the communication topology to in-

formation availability could be significant. Future work needs to be directed towards

partitioning the plant optimally based on the time scales of the different processes

and coordinating the different controllers that are operating at different time scales

with minimum information exchange.
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Appendix A
Wegstein’s Method

Wegstein’s method (Wegstein (1958)) is technique popularly used for accelerating
the rate of convergence of iterative procedures. The major advantage of employing
this algorithm is that, even in cases where the solution iteratively diverges, Weg-
stein’s algorithm will be able to induce convergence. Also, an added advantage of
this method is that it requires a single initial point and does not involve calculating
derivatives.

From one-dimensional successive substitution it is know that ,by starting at an
initial value xi we get

xi+1 = f(xi) (6.1)

An estimate of the function f(x) can be obtained by a fitting a line through
(xi, f(xi)) and (xi+1, f(xi+1)) and the slope s is given by,

s =
f(xi+1)− f(xi)

xi+1 − xi
(6.2)

A linear interpolation of the straight line will give the value of the function at
the next point (xi+2)

f(xi+2) = f(xi+1) + s.(xi+2 − xi+1) (6.3)

At convergence, xi+2 = f(xi+2), i.e.

xi+2 = f(xi+1) + s.(xi+2 − xi+1) (6.4)

Therfore,

xi+2 = f(xi+1)(1− s

s− 1
) + xi+1 s

s− 1
(6.5)

More generally,

xi+1 =
xi−1f(xi)− xif(xi−1)

(xi−1 − f(xi−1))− (xi − f(xi))
(6.6)
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Prett, D. M. & Garćıa, C. E. (1988), ‘Fundamental process control’.

Qin, S. & Badgwell, T. (2003), ‘A survey of industrial model predictive control
technology’, Control Engineering Practice 11(7), 733–764.

Qin, S. J. & Badgwell, T. A. (1997), An overview of industrial model predictive con-
trol technology, in ‘AIChE Symposium Series’, Vol. 93, New York, NY: American
Institute of Chemical Engineers, 1971-c2002., pp. 232–256.

Qin, S. J. & Badgwell, T. A. (2000), An overview of nonlinear model predictive
control applications, in ‘Nonlinear model predictive control’, Springer, pp. 369–
392.

Rangaiah, G. P. (2008), Multi-objective optimization: techniques and applications
in chemical engineering, Vol. 1, World Scientific.

Rantzer, A. (2009), ‘Dynamic dual decomposition for distributed control’, Proceed-
ings of the American Control Conference .

Rawlings, J. & Stewart, B. (2008), ‘Coordinating optimization based controllers:
New opportunities and challenges’, Journal of Process Control 18(9), 839–845.

Richards, A. & How, J. (2007), ‘Robust distributed model predictive control’, In-
ternational Journal of Control 80(9), 1517–1531.

Rosinova, D. & Markech, M. (2008), ‘Robust control of a quadruple tank process’,
ICIC Express Letters 2(3), 231–238.

Salgado, M. E. & Conley, A. (2004), ‘Mimo interaction measure and controller
structure selection’, International Journal of Control 77(4), 367–383.

Sandell, N., Varaiya, P., Athans, M. & Safonov, M. (1978), ‘Survey of decentralized
control methods for large scale systems’, Automatic Control, IEEE Transactions
on 23(2), 108–128.

144



References Bibliography

Sastry, K. (2007), ‘Single and multiobjective genetic algorithm toolbox for matlab
in c++’, IlliGAL Report (2007017).

Scattolini, R. (2009), ‘Architectures for distributed and hierarchical model predictive
control - a review’, Journal of Process Engineering 19, 723–731.

Scheu, H. & Marquardt, W. (2009), Literature survey on hierarchical and distributed
nonlinear mpc, including analysis and comparison, and description of the resulting
methodological framework, Technical report, Hierarchical and Distributed Model
Predictive Control of Large-Scale Systems.
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