84 research outputs found

    Data-Driven Understanding of Smart Service Systems Through Text Mining

    Get PDF
    Smart service systems are everywhere, in homes and in the transportation, energy, and healthcare sectors. However, such systems have yet to be fully understood in the literature. Given the widespread applications of and research on smart service systems, we used text mining to develop a unified understanding of such systems in a data-driven way. Specifically, we used a combination of metrics and machine learning algorithms to preprocess and analyze text data related to smart service systems, including text from the scientific literature and news articles. By analyzing 5,378 scientific articles and 1,234 news articles, we identify important keywords, 16 research topics, 4 technology factors, and 13 application areas. We define ???smart service system??? based on the analytics results. Furthermore, we discuss the theoretical and methodological implications of our work, such as the 5Cs (connection, collection, computation, and communications for co-creation) of smart service systems and the text mining approach to understand service research topics. We believe this work, which aims to establish common ground for understanding these systems across multiple disciplinary perspectives, will encourage further research and development of modern service systems

    Connected healthcare: Improving patient care using digital health technologies

    Get PDF
    Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 being increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are currently being investigated for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and scopes for clinical adoption

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    Heart failure patients monitoring using IoT-based remote monitoring system

    Get PDF
    Intelligent health monitoring systems are becoming more important and popular as technology advances. Nowadays, online services are replacing physical infrastructure in several domains including medical services as well. The COVID-19 pandemic has also changed the way medical services are delivered. Intelligent appliances, smart homes, and smart medical systems are some of the emerging concepts. The Internet of Things (IoT) has changed the way communication occurs alongside data collection sources aided by smart sensors. It also has deployed artificial intelligence (AI) methods for better decision-making provided by efficient data collection, storage, retrieval, and data management. This research employs health monitoring systems for heart patients using IoT and AI-based solutions. Activities of heart patients are monitored and reported using the IoT system. For heart disease prediction, an ensemble model ET-CNN is presented which provides an accuracy score of 0.9524. The investigative data related to this system is very encouraging in real-time reporting and classifying heart patients with great accuracy

    Development of a Drone-Supported Emergency Medical Service

    Get PDF
    There is a scientific consensus that the delivery of prompt emergency medical services (EMSs) guarantees a higher survival rate. An EMS is generally able to respond to 90% of higher priority calls in less than 9 minutes, with the best chance of survival being with a response time of 4–5 minutes. The major obstacle here is that a shorter response time would require the needed resources not to pass a certain threshold in a cost/benefit analysis. This paper aims to investigate the use of drones in as an EMS to improve response times. Although the literature already provides many examples of drones used for this purpose, they have all been developed as a prototype. This confirms the technical feasibility of a drone-based solution, but there is no evidence of the economic viability for such a service. The answer to this comes by analyzing the performance of an integrated-with-drones service as a whole. For this reason, we have redesigned the entire EMS model by including drones, and we have addressed the main issues, such as which types of service can be provided from drones, in which case, what the technical requirements for drones would be, and so on. Furthermore, we developed a specific procedure to keep the number of drones at a minimum level under the constraint of the minimum intervention time. The proposed model has been applied to a real EMS case for a city in the south of Italy. The outcome was that 96 drones were able to cover an area of 2,800 km2, providing an intervention time of 4.5 minutes on average at an annual cost of less than €300,000. These results highlight that an integrated-with-drones service drastically improves the response time when compared with the traditional service, doing so at a viable cost

    Wrist-based Phonocardiogram Diagnosis Leveraging Machine Learning

    Get PDF
    With the tremendous growth of technology and the fast pace of life, the need for instant information has become an everyday necessity, more so in emergency cases when every minute counts towards saving lives. mHealth has been the adopted approach for quick diagnosis using mobile devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this research is to diagnose the heart condition based on phonocardiogram (PCG) analysis using Machine Learning techniques assuming limited processing power, in order to be encapsulated later in a mobile device. The diagnosis of PCG is performed using two techniques; 1. parametric estimation with multivariate classification, particularly discriminant function. Which will be explored at length using different number of descriptive features. The feature extraction will be performed using Wavelet Transform (Filter Bank). 2. Artificial Neural Networks, and specifically Pattern Recognition. This will also use decomposed version of PCG using Wavelet Transform (Filter Bank). The results showed 97.33% successful diagnosis using the first technique using PCG with a 19 dB Signal-to-Noise-Ratio. When the signal was decomposed into four sub-bands using a Filter Bank of the second order. Each sub-band was described using two features; the signal’s mean and covariance. Additionally, different Filter Bank orders and number of features are explored and compared. Using the second technique the diagnosis resulted in a 100% successful classification with 83.3% trust level. The results are assessed, and new improvements are recommended and discussed as part of future work.Teknologian valtavan kehittymisen ja nopean elämänrytmin myötä välittömästi saatu tieto on noussut jokapäiväiseksi välttämättömyydeksi, erityisesti hätätapauksissa, joissa jokainen säästetty minuutti on tärkeää ihmishenkien pelastamiseksi. Mobiiliterveys, eli mHealth, on yleisesti valjastettu käyttöön nopeaksi diagnoosimenetelmäksi mobiililaitteiden avulla. Käyttö on kuitenkin ollut haastavaa korkean datan laatuvaatimuksen ja suurten tiedonkäsittelyvaatimuksien, nopean laskentatehon ja sekä suuren virrankulutuksen vuoksi. Tämän tutkimuksen tavoitteena oli diagnosoida sydänsairauksia fonokardiogrammianalyysin (PCG) perusteella käyttämällä koneoppimistekniikoita niin, että käytettävä laskentateho rajoitetaan vastaamaan mobiililaitteiden kapasiteettia. PCG-diagnoosi tehtiin käyttäen kahta tekniikkaa 1. Parametrinen estimointi käyttäen moniulotteista luokitusta, erityisesti signaalien erotteluanalyysin avulla. Tätä asiaa tutkittiin syvällisesti käyttäen erilaisia tilastotieteellisesti kuvailevia piirteitä. Piirteiden irrotus suoritettiin käyttäen Wavelet-muunnosta ja suodatinpankkia. 2. Keinotekoisia neuroverkkoja ja erityisesti hahmontunnistusta. Tässä menetelmässä käytetään myös PCG-signaalin hajoitusta ja Wavelet-muunnos -suodatinpankkia. Tulokset osoittivat, että PCG 19dB:n signaali-kohina-suhteella voi johtaa 97,33% onnistuneeseen diagnoosiin käytettäessä ensimmäistä tekniikkaa. Signaalin hajottaminen neljään alikaistaan suoritettiin käyttämällä toisen asteen suodatinpankkia. Jokainen alikaista kuvattiin käyttäen kahta piirrettä: signaalin keskiarvoa ja kovarianssia, näin saatiin yhteensä kahdeksan ominaisuutta kuvaamaan noin yhden minuutin näytettä PCG-signaalista. Lisäksi tutkittiin ja verrattiin eriasteisia suodattimia ja piirteitä. Toista tekniikkaa käyttäen diagnoosi johti 100% onnistuneeseen luokitteluun 83,3% luotettavuustasolla. Tuloksia käsitellään ja pohditaan, sekä tehdään niistä johtopäätöksiä. Lopuksi ehdotetaan ja suositellaan käytettyihin menetelmiin uusia parannuksia jatkotutkimuskohteiksi.fi=vertaisarvioitu|en=peerReviewed

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Methodological proposals for the development of services in a smart city: A literature review

    Get PDF
    Indexación ScopusThis literature review analyzes and classifies methodological contributions that answer the different challenges faced by smart cities. This study identifies city services that require the use of artificial intelligence (AI); which they refer to as areas of application of A. These areas are classified and evaluated, taking into account the five proposed domains (government, environment, urban settlements, social assistance, and economy). In this review, 168 relevant studies were identified that make methodological contributions to the development of smart cities and 66 areas of application of AI, along with the main challenges associated with their implementation. The review methodology was content analysis of scientific literature published between 2013 and 2020. The basic terminology of this study corresponds to AI, the internet of things, and smart cities. In total, 196 references were used. Finally, the methodologies that propose optimization frameworks and analytical frameworks, the type of conceptual research, the literature published in 2018, the urban settlement macro-categories, and the group city monitoring–smart electric grid, make the greater contributions. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/2071-1050/12/24/1024

    Tactile Sensing for Assistive Robotics

    Get PDF
    corecore