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1 INTRODUCTION  

“Creativity, as has been said, consists largely of rearranging what we know in 
order to find out what we do not know. Hence, to think creatively, we must be 
able to look afresh at what we normally take for granted.” — George Kneller 

eHealth is a relatively new terminology that represents the integration of 
electronics and communication in health systems. Moreover, mHealth (or mobile-
health) is a more specific term to represent the applications of mobile devices (e.g. 
mobile phone) as a tool for communication, data processing, and positioning of 
health systems. However, eHealth is more general than mHealth.    

eHealth has been one of the hottest topics of biotechnology research areas. It is 
multidisciplinary type of research that includes information and communication 
technology (ICT), medical science, electrical engineering, computer science, 
embedded systems, etc. The field has been growing slowly but surely over the past 
two decades following the technology closely. This research looks back at the 
history of eHealth with a critical eye, the focus is particularly put on emergency 
healthcare. The decision to focus on emergency healthcare comes from the 
situation of the world nowadays, catastrophes are not rare anymore! The criticism 
is observed to identify the drawbacks of eHealth solutions for emergency 
healthcare. 

This research will highlight limitations in current solutions that affect their 
practicality in catastrophic situations. Namely, the design assumptions that stand 
between small-scale experiments of current eHealth solutions and their wide-scale 
applicability.  The research then challenges these limitations utilizing a case study 
of cardiovascular system diagnosis. Having worked with cardiovascular system in 
master’s degree research, this case study was a clear choice.  

Challenging the limitations that are forced by design assumptions increases the 
chances of practicality of any of the eHealth solutions, this means more reliable 
solutions for emergency healthcare during catastrophes. The first step is very 
simple; while designing eHealth solutions, assume worst case scenario. And that 
is exactly what this research does.  

The research develops a method to diagnose heart conditions using noisy, 
corrupted, low quality and low power heart acoustic signals. It utilises signal 
estimation techniques to equalize the channel and restore as much as possible of 
the information held in the received heart sound signal. It will, potentially, lower 
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the demands on the quality of biomedical signals and the processing energy, which 
will open the door for more realistic designs for emergency mHealth solutions. 
Although the focus here is on the quality of the data, but there are more design 
assumptions that should be addressed, such as: energy consumption, size of 
equipment, and many more that could be the focus of future research. 

In the rest of this chapter, the motive behind this research is revealed along with 
the scientific contributions and the method adopted to achieve the objectives. The 
chapter ends with thesis structure details. 

1.1 Motivation 

With the tremendous growth of technology and the fast pace of life, the need for 
instant information has become an everyday necessity. One of the affected life 
aspects is health; the world is obsessed with monitoring vital signs and sharing 
results instantly not just with their doctors but also with their relatives. The doors 
were opened in the early 90s for repurposing Information and Communication 
Technology (ICT) for health, but the progress has been very slow due to the nature 
of the field and the sensitivity of the data (see chapter 2 for more details). 

My journey with ICT for health (also known as eHealth) started 8 years ago when 
I started researching wireless monitoring systems and hoped to build one myself, 
one that I called “The Vital Transmitter”. My goal was to build this system for my 
diabetic father. Mostly for me, to know his blood sugar level at any given time. For 
practical reasons the focus had to be shifted from reading blood sugar to heart rate, 
but the concept remained intact. The vital transmitter was built as part of my 
master’s degree research in 2012. It served its purpose; feature phones (non-
smart) that triggers an SMS when the heart rate goes above a pre-calculated 
threshold or drops below another. This came from an Android app that compared 
the received heart rate to personal thresholds. The heart rate is received via low 
energy Bluetooth from a heart rate sensor and the thresholds were calculated using 
an algorithm that factors in age, gender, activity level, and accounts for sleep 
values. The algorithm was approved by a licensed cardiologist in Prince Sultan 
Cardiac Centre, Riyadh, Saudi Arabia. (Abdelmageed, 2012). Researching in this 
area has elucidated that, previously most of the ICT applications and systems built 
for health sector (eHealth), particularly eHealth solutions for emergency 
healthcare, assume perfect conditions.  

The system usually expects to deal with high quality data, and they are mostly 
designed with large, if not, multiple central processing units, which in turn 
consumes large amount of energy. Such systems fail to meet expectations when 
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put to practice, especially in catastrophic situations. When data quality drops due 
to network status. 

The question that motivated this research is very simple; in case of catastrophes, 
when conditions are far from perfect, would these systems function? This question 
enticed the investigation and assessing the possibilities to making sense of low-
quality data with low processing energy. However, this thesis is more focused on 
processing low quality data. 

1.2 Objectives and contributions 

Listening to the heart sound using stethoscope is probably the oldest and fastest 
method to check the heart functionality (Health essentials, 2014). As many heart 
problems affect the way the heart beats in some manner, and since the heart 
acoustic is a result of the heart beating; it should hold valuable information about 
the causing problem. However, the human ear might not be able to distinguish 
small differences in the heart sound that indicate a disease, due to its low frequency 
that falls out of the spectrum range of human hearing or due its small power. 
Therefore, heart diagnosis using the conventional sound listening is not effective 
in most heart diseases (Health essentials, 2014). Thus, traditionally more 
sophisticated diagnostics and investigation methods are needed to fully report the 
heart condition, such as Electrocardiogram (ECG) and Echocardiogram. 
Nevertheless, most of these advanced methods require large devices and large 
power and cannot be implemented in small equipment’s like wearable watches or 
mobile phones.   Consequently, this thesis proposes the application of advanced 
machine learning technologies to extract useful diagnostic information from the 
heart sound data.  In this process, the entire sound spectrum should be used, 
including the bands outside of the human hearing range, and this process of data 
collection and processing should be performed with limited processing energy and 
limited capabilities, the likes of which mobile devices are capable of performing.  
The success of this concept will open the door for tremendous changes to the game 
of heart monitoring and diagnosis using wearable small devices like watches. Its 
task is to process low quality signals to obtain health diagnosis with acceptable 
error margin. The focus is alarming diagnostics and the goal is to save precious 
time at emergencies in less than perfect conditions (such conditions that are 
usually experienced in catastrophes). During the first couple years of research the 
following questions have emerged: 

In health diagnostics, how low could the quality of the data get before it is 
declared useless?  
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Could signal classification techniques help make sense of 
distorted/corrupted biomedical signal?  

How reliable are the diagnostics that are based on processed data? 

And while this research responds to these questions, it had also raised few more 
that would leave the door open for future work. This thesis documents the process 
of going through the history of mHealth, focusing on emergency healthcare, and 
why it lacks practicality in catastrophes. Moreover, it explains in detail the 
experiment that answer the research questions. The key tasks and contributions of 
this research are:  

• To study the reliability of the pre-diagnosis found in low quality acoustic 
signal of the heart after processing, using different techniques (i.e. simple 
and advanced Machine Learning techniques and Neural Networks) to 
identify the information held in the signal.   

To study eHealth history and, specifically, mHealth tele-cardiology 
solutions that were discussed in recent years (2006 – 2018). 

To, potentially, lower the demands on the quality of the data for medical 
diagnostics, after proving the concept using the heart acoustic signals. 

To allow performing offsite diagnostics (during catastrophes/ in accident 
locations) despite tough circumstances that could include bad connections, 
small processing units and low/limited energy (mobile devices) in the 
future. 

To start the wave of measuring vital signals from unpredictable spots, 
which opens the door for new generation of mHealth products. 

The contributions of this thesis have been published/accepted/drafted in/by the 
following journals; 

- Abdelmageed, S. and Elmusrati, M. (2018). Phonocardiogram Based 
Diagnosis using Machine Learning: Parametric Estimation with 
Multivariant Classification. Bioscience & Engineering: An International 
Journal, Oct 30, vol. 5, no. 1/2/3/4, pp. 1-6 Available from: 
http://dx.doi.org/10.5121/bioej.2018.5401. (Published) 
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- Abdelmageed, S. and Elmusrati, M. Machine Learning and Wearable 
Devices for Phonocardiogram-Based Diagnosis. 6th International 
Conference on Bioinformatics and Bioscience, May 2019.  (Accepted) 

The following journal has been drafted to be submitted this year to a suitable 
journal in the field; 

- Abdelmageed, S. and Elmusrati, M. Wrist-based Phonocadiogram 
Diagnosis Leveraging Machine Learning (Drafted) 

1.3 Methods 

Critical review was essential to identify the problems in current mHealth solutions 
for emergency healthcare. It was important to assess a large number of 
applications dedicated to emergency healthcare, to understand the proposed 
systems and challenge the described characteristics. This was the adopted method 
that led to defining the research problems. 

To stress the focus on alarming diagnostics, cardiovascular system was chosen as 
a case study. It was also the clear choice as a continuation after the master’s degree 
research (Abdelmageed, 2012). The experiment is performed on 
MATLAB/SIMULINK. The research is studying the reliability of the health 
diagnosis that is based on processed biomedical signal. This was achieved in six 
steps: 

STEP 1. Heart sound signal, also known as Phono-Cardio-Gram (PCG) was used. 
A healthy heart sound signal was used as a reference, this signal is called (S) in this 
section. This was used to bypass the difficulties of obtaining human heart sound 
signals; as this study takes a pure engineering approach, no ethical approval was 
required. 

STEP 2. A model of the cardiovascular acoustic wave propagation system was 
deduced from existing literature.  

The model should represent the propagation system (signal channel) from the 
heart (chest area) to the wrist. The wrist was chosen to leave room for future work 
related to wearable wrist bands that could carry out the task of diagnosing. Not to 
mention, that it is reasonably distant from the heart/chest area. 

STEP 3. The reference sound signal with added noise have been applied to the 
model from STEP 2. The received signal was then compared with the original 
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signal to measure the effect of propagation system. The resultant signal is given by 
the equation 

Where  is the received signal measured from the wrist,  is the original signal (  
measured from the chest) after the effect of the acoustic propagation system 
model, and  is the added noise. It should be mentioned here that the channel 
model can be very complicated. For the following reasons: 

1. The heart acoustic wave propagates over and through different matters, such as 
bones, blood, flesh, etc. Each one has different wave speed, propagation constant, 
and other characteristics that has a distinctive effect on the propagation. 

2. The band of interest can vary in frequency from a fraction of one Hertz (e.g., 0.1 
Hz) to several tens (e.g., 100 Hz). Within this band the wavelength can vary from 
3 meters to 3000 meters. Hence, the propagation model characteristics may 
change considerably between different frequencies. However, since the modelling 
process is not the main topic of this thesis work, the chosen model was selected 
after studying several models that were proposed in the literature. However, it 
became evident that there is room for further studies in this topic of modelling.      

Depending on the level of distortion in the received signal, STEP 4 of the 
experiment will be decided according to the following routes. A clarification of this 
decision is shown in Figure 1. 

If the received signal is highly distorted and has low to no correlation 
with the original signal 

STEP 4. The received signal will be weak and highly distorted version of the 
original signal. Hence, the received signal ( ) should be used to restore the original 
signal ( ). This is called equalization process, which is common in different 
applications of wireless communications to equalize the channel impacts on the 
signal. There are many well-known equalization techniques. However, most of the 
conventional equalization methods might not work easily in this case because of 
the large nonlinearity caused by the large changes in the wavelength. Therefore, 
feed-forward neural network with backpropagation was used to retrieve the 
information held in the original signal, the resultant signal is denoted ( ). The 
error margin given by Equation (2) is calculated and kept as small as possible 
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This process is repeated for every sound signal, where the resultant ( ) represents 
a hypothesis of a heart condition. For example, the healthy heart signal ( ) 
represents ( ) that is “healthy heart”. These hypotheses are used as references 
throughout the experiment. The plan is to define at least five hypotheses. 

Else, if the received signal correlates with the original signal 

STEP 4. The received signal ( ) is declared as hypothesis H0 as is, without 
restoration. Hypothesis H0 represents health heart condition. 

 

Figure 1. Decision making after receiving the signal 

Four more hypotheses are defined using different transfer functions, all are based 
on the original signal ( ), all used transfer functions are unique. More details on 
this in chapter 7. 

STEP 5. A number of cases are generated under every hypothesis, using different 
noise characteristics. Each case is then classified using the following techniques: 

Machine Learning; Parametric Estimation using Multivariate 
classification. This is explored at length, with different number of signal 
descriptive features. 
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Artificial Neural Networks; Pattern Recognition Neural using MATLAB 
Toolbox. 

STEP 6. Artificial Neural Networks are used again to automate the diagnosing 
process. The ANN is trained to recognise the defined hypotheses from STEP 4, and 
accordingly every ( ) is put into the network to find the most probable diagnosis. 

This was a summary of the methods used in this research to achieve the discussed 
objectives. In Figure 2, the experiment steps are summarised and visualised. In the 
figure, the number of hypotheses is kept undefined to leave room for future growth 
and increased accuracy. 

 

 

Figure 2. Experiment steps 

Where  is the original heart sound signal, in this case recorded at the chest, and 
 is the heart sound signal as received at the wrist. Noise has different sources 

which can be internal; like lungs and respiratory sound, digestive system and 
specifically stomach sound. Or external sounds from outside the body that fall in 
the same frequency band of interest. Moreover, the noise generated by the sound 
recording sensor itself and the electronic devices used in measurements.   is the 
received heart sound signal after restoring missed information, and last 

 represent the resultant hypotheses of heart diagnosis.  

1.4 Why focus on heart condition? 

The focus on the heart condition was because the heart beat is the first vital sign to 
check in emergencies. Detecting a heart pulse indicates that the emergency victim 
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is alive whether it is a catastrophic situation or not. The next step is to diagnose 
the heart condition to determine the need for further cardiology treatment. A 
paramedic, or the medical personnel attending to an emergency, spends the most 
of their time eliminating life threats. Once they know the heart condition, they can 
find the proper way to restore its functionality to as normal as possible for the 
patient in question. Clearing the airway is just as important, however, having 
oxygen in the body will not help if the hear is not beating. Heart condition could 
have subtle symptoms to the patient, which makes it harder to identify and that 
adds to the necessity of cardiac diagnostic systems or at least systems that takes us 
closer to diagnosis. Not to mention that, early detection of heart diseases could 
tremendously reduce the mortality rate. 

1.5 Thesis structure 

This thesis consists of eight chapters, each of which documents a part of the 
research and serves as a step towards the conclusion.  

Chapter one is an introduction to this research stating background and 
motivations that have driven interest towards this topic. Followed by the novelty 
of this research presented in the objectives and contributions. The research 
method is also presented in this chapter and then the structure of the thesis to help 
the reader keep up.  

In the next chapter, three years’ worth of literature review is laid out. Starting with 
defining Information and Communications Technology (ICT) for health and the 
story behind of the term “eHealth” and “mHealth”. The chapter then goes on to 
give an overview of the history of eHealth. Then, moves a step closer to the topic 
of interest by discussing eHealth solutions for emergency healthcare and stating 
the problems with current solutions, the goal here is to build a background for the 
next chapter and help the reader follow the train of thoughts that led to this work. 

The chapter continues to investigate tele-cardiology solutions presented in the 
current decade (since 2010). Tracing published papers that aimed to advance tele-
cardiology; remote monitoring, heart signal analysis (ECG and sound), heart 
disease detection, heart disease diagnosis, and the list goes on. The selected papers 
were chosen based on relevance and date of publication. 

Chapter three is dedicated to Artificial Neural Networks (ANN); what it is and how 
it works and more about what it is used for in this research. This will be revisited 
in the experiment. 
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Chapter four discuss wavelet transform and then focuses on filter banks and how 
they are used to extract features of the signal. These techniques will be revisited in 
the experiment.  

Chapter five discusses modelling the cardiovascular system. Starting with the 
mathematical model of the electrocardiogram (ECG) to explain the cardiovascular 
system function and circulation, this chapter summarises the essential learnings 
to understand the cardiovascular system in preparation for this research. Followed 
by the mathematical model of the phonocardiogram (PCG) as the focus of this 
research. 

Chapter six is where the heart acoustic wave propagation system is modelled. Few 
models are presented, and each model is discussed using MATLAB/SIMULINK 
custom designs to prove practicality.   

In chapter seven, the experiment is detailed, where the proposal is validated. The 
results are discussed and analysed at the end of every approach, with total of three 
approaches.  

This thesis is concluded in chapter eight, where the results are summarised. The 
eighth and final chapter presents an overview of the future work and next possible 
steps to expand this research. 
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2 LITERATURE REVIEW 

This chapter summarises the available literature in the field of eHealth and 
specifically in the field of mHealth. The focus then shifts to eHealth/mHealth 
emergency medical solutions; because it is more relevant to the topic of this 
research. Extra attention is lent to heart related studies; as the main case study.  

2.1 About eHealth and mHealth 

In the world of academics, eHealth is just another word for Information 
Communication Technology (ICT) for health. The term “eHealth” is relatively new; 
it was barely used before 1999. The term has been used to refer to Internet 
Medicine as well as any form of computer use in medicine. And just like most of 
the buzzwords (e.g. ecommerce, ebusiness) it was industry leaders and marketing 
people who first introduced the term “eHealth” rather than academics. 
(Eysenbach, 2001) It is rather late to try avoiding this term in the academic papers 
with more than 170 scientific journals already having it in their titles. Some of these 
journals are dated back to 1999, as referenced in MEDLINE index of biomedical 
journal literature.  

With all that, the need to scholarly define the term “eHealth” became urgent, yet 
almost impossible due to the nature of the science behind it. One JMIR Editorial 
Board member said  

“Stamping a definition on something like eHealth is somewhat like stamping a 
definition on 'the Internet': It is defined how it is used - the definition cannot be 
pinned down, as it is a dynamic environment, constantly moving.”  

However, one of the editors, named Gunther Eysenbach, had attempted a broad 
definition that hopefully encompasses eHealth dynamism 

“eHealth is an emerging field in the intersection of medical informatics, public 
health and business, referring to health services and information delivered or 
enhanced through the Internet and related technologies. In a broader sense, the 
term characterizes not only a technical development, but also a state-of-mind, a 
way of thinking, an attitude, and a commitment for networked, global thinking, 
to improve health care locally, regionally, and worldwide by using information 
and communication technology.”  

The referenced dynamism is evident through the history and progression of 
eHealth. This chapter traces the history of eHealth through the years discussing 
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the reasons behind the slow adoption, then it sheds more light on eHealth 
solutions for emergency healthcare and at the end of this chapter a statement of 
the problems in current solutions is presented. These problems, in fact, are generic 
to all eHealth solutions, however, the focus here is emergency healthcare in 
catastrophic situations.  

mHealth is a more recent term, it is a component of eHealth that has not been 
standardly defined yet. In 2013, Global Observatory for eHealth (GOe) defined 
mHealth (mobile health) as  

“medical and public health practice supported by mobile devices, such as mobile 
phones, patient monitoring devices, personal digital assistants (PDAs), and other 
wireless devices”. 

mHealth employs the mobile phone’s core utility; voice and short messaging 
service (SMS) in addition to the more complex functionalities and application. This 
includes but is not limited to; third and fourth generation mobile 
telecommunications (3G and 4G systems), global positioning system (GPS), and 
Bluetooth technology (World Health Organization, 2013). 

2.2 History of eHealth/mHealth 

The first thought of eHealth was in 1960s when the idea of electronic health 
records (eHR) were discussed, but that idea was not considered seriously until 
1991 in the United States. Many recommendations were given to implement this 
system, but the lack of standards required for full interoperability increased the 
anticipated complexity of such system and led to the delay.  

eHR discussion rekindled in 1999 when the United States Institute of Medicine 
(IOM) reported that prescription and medication errors could be prevented 
through computerized order systems. Since then, standards’ developments and 
technological advances have driven substantial progress in the eHR (Miller, 2006). 
The same idea was implemented in Canada in the early 80s (Canada & Canada, 
2003). However, it was less advanced. They were known in Canada as, Electronic 
medical records (EMRs) that was defined as digitalizing medical records. 

The 90s witnessed slow start in eHealth adoption and development, although 
many countries showed interest and all the findings indicated growing momentum 
for eHealth uptake (Meireles et al., 2013). 



Acta Wasaensia     13 

The millennium brought strong growth to the field with ICT slowly but steadily 
getting integrated into health systems and services worldwide. In 2008, WHO ran 
another survey to study the progress of eHealth in Europe and the findings showed 
strong political will for eHealth across the European region. It also showed solid 
progress in implementing foundation actions towards the adoption and actual 
implementation of enabling actions (Miller, 2008). 

Looking back at the history of eHealth it is fair to say that its adoption is very slow. 
Despite the progress achieved in the millennial, eHealth took 20 years to reach 
where it is right now. And here is why it took so long: (Miller, 2008)  

The fragmented funding and governance of healthcare services. 

Resistance of professions to changes in existing models of care. 

Lack of rigorous research evidence on the benefits that might drive change. 

Reluctance of politicians to be seen to be tampering with a politically-
sensitive service.  

Concerns about the costs and complexities associated with eHealth 
implementation. 

Concerns about how it will affect practitioners and consumers. 

There is a determined relationship between the progresses of eHealth and 
the country income group. Countries in the high-end and upper-middle 
income groups are more advanced in their eHealth development than those 
in the lower-middle- and low-end-income group countries. This explain 
why there is steady progress in European Union since 2002 and great 
success in Denmark since 1996 and Australia. Similar success would be 
expected in UK and US, but they had different reasons behind the slow 
adoption there: bureaucracy in UK and privacy concerns in the United 
States. 

2.3 mHealth for emergency healthcare 

“Time is the most valuable thing to me.” — A family physician.  

Saving time is one of the major reasons why eHealth, and specifically mHealth, is 
appreciated by physicians and medical teams in emergency departments (ED). 
When the queue of patients in the Emergency Room (ER) grows, it is customary 
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for the medical team to quickly assess the cases to prioritise and treat them 
efficiently. This assessment process is called triage, which refers to quick 
assessment of a patient in the Emergency Room (ER) with a view to define urgency 
of care and priorities in management. Triage evaluation can be completed in an 
organized and systematic manner relying on immediate visual and auditory 
assessment of appearance, breathing and circulation (Jayashree & Singhi, 2011).  

Triage process has evolved with the emerging technology, until eTriage came to 
light in 2008.  It was presented as a new electronic triage application at The 
Scarborough Hospital (TSH), Ontario, Canada.  This led to cutting triage time in 
half at the hospital and giving its multicultural patients the chance for more control 
over their reassessment while in the waiting room. This was part of the “Enhancing 
Emergency Services” project that combines an electronic application at the initial 
stage of triage process, with ongoing patient-controlled reassessment using kiosks 
located in the waiting room (Jones, 2008) . Before that and since 1998 (Jones, 
2008)  the same hospital has been tracking their patients’ case electronically at the 
emergency department.   

Another take at the eTriage was presented at the 7th International Conference on 
emerging Networking Experiments and Technologies (CoNEXT) that was held in 
December 2011 in Tokyo, Japan. The students proposed an eTriage system to 
handle mass casualty incidents (MCIs) such as earthquakes.  

The proposed solution was a wireless communication service platform consisting 
of electronic triage tags that combine a small vital sensor with a wireless device. 
The tag is attached to the casualty and their vital signs are gathered via the sensor 
and transmitted wirelessly via the ad hoc networks constructed by the electronic 
tag. The ad hoc networks were also used for localisation and local map generation 
to ease finding patients/casualties while monitoring vital signs (Jentsch et al., 
2013). 

In 2012, a team in Norway presented eTriage under the umbrella of BRIDGE 
project that was funded by European Union’s Seventh Framework Program 
(SINTEF ICT, 2012). BRIDGE eTriage assists in marking and monitoring victims 
and in creating real-time situation awareness. 

It aims to ease the trigger’s task and bridge the process from triage to hospital 
admission. The system consists of 1) Triage Bracelet that is augmented with 
microelectronic components and various sensors. 2) a small device called Triage 
Relay that is intended to gather data from the incident field and transmit them to 
the in-charge person in the ER. 3) Triage Tablet that is used to visualise the triage 
data with localisation and local map. 4) more clip-on sensors to the patient’s body 
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are added on-demand, such as heart rate, breathing rate, blood pressure, etc. 
Saving time could actually start before arriving at the ER! It has been proven that 
the first assessment of the patient/emergency case is crucial to their survival and 
that was the motive behind smart ambulances. 

The work on ambulance intelligence has started in 1996, when group of 
researchers at the National Technical University of Athens have successfully 
demonstrated real-time transmission of ECG data from a moving ambulance 
vehicle using GSM data links (Pavlopoulos et al., 1996). Soon after, a group of 
researchers at the University of Maryland Hospital have developed a wireless 
ambulance telemedicine system for stroke victims. However, applications were 
limited to storing and forwarding obtained bio signals although, in many 
emergency applications, real-time bio signal monitoring is needed (Pavlopoulos et 
al., 1998). 

In 1998, the ambulance project started in Athens University. The team developed 
a portable emergency telemedicine device that supports real-time transmission of 
critical bio signals as well as still images of the patients. The system allows a 
specialised physician to review critical bio signals and images of the patient and 
thus perform remote diagnosis and in return, provide specialized prehospital care. 
The transmission was all done over GSM networks, and it assumed a data rate of 
9600 bps, which was the maximum at the time of the project (Pavlopoulos et al., 
1998). 

In 2001, a team of two introduced a cost-effective portable tele-trauma system that 
assists healthcare centres in providing prehospital trauma care. They developed a 
software architecture with intelligent modules such as transcoding, 
differentiation, and congestion control to significantly improve the system 
transmission efficiency. The team claimed their system can accommodate much 
higher frame rates than the ones reported in previously proposed systems. They 
avoided high cost by using standard the available 3G wireless cellular data services, 
specifically, code-division multiple-access (CDMA)]. This tele-trauma system 
provides simultaneous transfer of video, still medical images, and ECG (Chu & 
Ganz, 2004). 

In 2013, a team of three developed a multifunctional telemedicine system for 
prehospital emergency medical services (Thelen et al., 2013). The system, like the 
others, allowed paramedics on the emergency scene to get a physician consult on 
the patient’s case and send the patient’s bio-signals along with still images to the 
hospital unit over GSM cellular network. The system was designed with user 
participation to assure practicality, and although built by engineers, the 
involvement of emergency physicians was significant. Inside the ambulance 
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they’ve put a video camera, printer, and transceiver. Paramedics can take a 
monitor, defibrillator, headset and a portable transceiver outside of the 
ambulance. On the hospital side, where the tele-consultation centre is, they have a 
desktop application for displaying the scene and its data, they have touch-control 
panel and of course a headset to carry conversations with the paramedics. 
Transmission Control Protocol/Internet Protocol (TCP/IP) network traffic is 
established between the ambulance and the centre, where the transceiver is the 
gateway. All devices inside the ambulance are connected to the transceiver over 
the ambulance Local Area Network (LAN), while devices outside of the ambulance 
are connected via Bluetooth.  

Then wearables came to the picture, ranging from micro sensors that are 
seamlessly integrated in textiles through consumer electronics, like sensors that 
are embedded in fashionable clothes and computerized watches to belt-worn 
personal computers (PCs) with display units. This technology made it possible to 
detect and alert unobtrusively.  In 2003, an advanced care and alert portable tele-
medical monitor (AMON) was developed. It is a wearable medical monitoring and 
alert system that targets high-risk cardiac and/or respiratory attacks. It includes 
continuous collection and evaluation of multiple vital signs and it is equipped with 
intelligent multi-parameter medical emergency detection that is connected over 
the cellular network to a medical centre. The system was integrated into a wrist-
worn device. This wrist band was designed with low-power techniques, which 
made continuous long-term monitoring possible and less restricting to the 
patients’ mobility (Anliker et al., 2004). Following that, another solution for 
prehospital assessment was delivered. The system is a third-generation universal 
mobile telecommunications system (UMTS) based and it delivers biomedical 
information from an ambulance to a hospital. This system transmitted voice, real-
time video, electrocardiogram signals, and medical scans in a realistic cellular 
multiuser simulation environment (Gallego et al., 2005). 

Recently, the need for emergency solutions have been on the rise due to the world 
population and the life pace that causes more accidents than it solves. This is 
evident in the number of researches focusing on building smart ambulance and 
improving on emergency response rates and the like. Another group developed a 
smart ambulance system, although their motive was to improve the emergency 
response rate in India their solution is applicable globally. They (Gupta et al., 2016) 
explored advancing ambulance systems over Internet of Things (IoT), by collecting 
location coordinates via Global Positioning System (GPS) and using Google Maps 
Application Programming Interface (API) to plot the locations of ambulance cars, 
which could also be done for hospitals, in a way, they built an Uber-like service for 
ambulances. Patient’s health data is collected via medical equipment available on 
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the ambulance and is sent to the hospital. The communications between the 
Android app and the database server at the hospital uses Representational State 
Transfer Application Programming Interface (REST API). Their idea is not new, 
however, they focused mostly on the mobile application rather than stationary 
system on the ambulance car. 

In early 2016, Hooman Samani and Rongbo Zhu developed a robotic automated 
external defibrillator (AED) to address cardiac arrest emergencies (Samani & Zhu, 
2016).  To survive such cases of cardiac arrests, patients need supervised AED 
within minutes of the occurrence. The robot (Ambubot) gets dispatched to the 
victim of a cardiac arrest as soon as detected via a sensor attached to the patient or 
active call via the mobile app. Both means send the GPS location to the robot, along 
with more information about the patient. The system also informs the family and 
calls for an actual ambulance.   

Later in 2016, a team of three (Kumar et al., 2016) have focused their efforts to 
develop a system that monitors the condition of elderly people using micro-electro 
mechanical system (MEMS) connected wirelessly to heart beat, body temperature, 
and vibration sensors.  The parameters that describe the condition of the person 
are sent to an Android app via Bluetooth protocol. When emergency hits, the 
system sends a message to the server via GSM that includes the GPS location of 
the user. The novelty of the system is that it searches for the nearest ambulance 
and sends it to the address of the user, it also sends an SMS to a predefined relative.  

One research is worth mentioning as it focused on handling emergencies during 
disasters (Khoumbati et al. 2010). They developed a scheme called Medical Data 
Transmission Over Cellular Networks (MEDTOC), they transfer patients’ vital 
signs from the ambulance to the hospital over UMTS. The novelty is that they are 
aggregating the data of multiple patients; using special packet format that orders 
the data.    

After reviewing these trials, projects, and studies, it is obvious that the research to 
utilise eHealth for emergency healthcare and prehospital care operations is not 
near done. However, some of these solid trials are still in progress and yet to 
encourage full adoption.  

2.4 Problems with current emergency solutions 

It is evident in the history of eHealth for emergency healthcare, particularly, the 
projects and trials dedicated to this field that many systems fail wide-scale 
practicality. Because in the design stage, most of these systems made big 
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assumptions that were never matched back to reality. And while, assumptions are 
quite important at early stages of design, it is customary in design tasks to 
generalize and/or address assumptions at the end of trials. One could use 
assumptions to put the system in context, define use-cases, and build test-cases. 
However, these assumptions might force limitations on applicability, which might 
lead to impracticality in worst cases. These systems have failed to address their 
assumptions and, unfortunately, will end up being a liability instead of being a 
reliable system during catastrophes. 

This is axiomatic in eHealth solutions for emergency healthcare. One crucial 
limitation in such systems is assuming perfect conditions. For instance, large 
processing units, full coverage of wireless service, high speed Internet connections, 
low to no noise. In short, it presumes perfect transmission and perfect reception, 
where the message is preserved throughout the process.  Unfortunately, this is 
seldom the case in many developing countries and rarely is the case in developed 
countries.  

Having any of the perfect condition characteristics is a luxury when in catastrophes 
and chaotic environments. And it is during catastrophes that people rely on 
emergency healthcare systems the most. That is why this assumption is dangerous; 
the result is building impractical systems that fail at the very first test. This is the 
problem that this research is trying to address; in less than perfect conditions, how 
reliable can mHealth solutions for emergency healthcare be?  

2.5 Studies About Heart Conditions  

Due to the importance of the heart condition, many researches were dedicated to 
build monitoring systems, find measuring methods and analysis techniques. The 
goal of these researches is to speed up the process of diagnosing the heart 
condition, the difference is mostly in the degree of dependence on the doctor or 
the medical personnel. This area of eHealth is known as “Tele-cardiology”.  

In this chapter, some of the work that was published in the current decade is 
traced; in such fast-growing field of research looking beyond this decade would not 
be of worth. The papers discussed here were selected based on relevance to this 
research and are presented chronologically. 

In 2010, Tovar et al. presented their work of diagnosing heart murmurs by 
analysing phono-cardio-graphic (PCG) signal by proposing joint time-frequency 
distribution and present it in time-frequency map. Although, the team used a 
simulated signal to build and test the method, they applied their method to real 
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patients’ signal obtained from a hospital (Tovar et al., 2010). The three patients in 
question had different condition severity; one healthy and two with medium-
severe and severe, respectively. The results were satisfactory.  

In the same year, Sufi et al. proposed a mobile phone tele-cardiology system. They 
used five sample points of the QRS Complex, specifically the centroid and four 
extreme points on the cardioid of the QRS Complex (Sufi et al., 2010) to identify 
cardiac abnormalities instead of the usual hundreds, this has led to a faster and 
more efficient mechanism of cardiovascular disease (CVD) detection from ECG 
signal. The mechanism causes less computational burden that known mechanisms 
at the time, which made it suitable for wireless mobile phone based tele-cardiology 
applications.  

Also, that year, Tang et al. developed a method to separate heart sound signal from 
noise utilizing joint cycle frequency–time–frequency domains. In practice, they 
decomposed the heart sound signal into small components by means of a Gaussian 
modulation model, these components were characterized by time delay, frequency, 
amplitude, time width, and phase. These components assemble in the joint 
domains (Tang et al., 2010), while the noise component disseminated and with 
that, they managed to separate the heart sound signal components from noise 
based on fuzzy detection. The noise was simulated as non-Gaussian, 
nonstationary, and coloured noise. 

In 2011, Ding et al. took over the task of lowering the power consumption required 
for sensing the heart signal (ECG), this was done by introducing a novel method, 
compressed sensing (CS), to wearable ECG sensor (WES). In practice, the team 
sampled the analogue signals at sub-Nyquist rate at the analogue-digital 
converters (ADCs). The task was to classify the compressed measurement into 
normal and abnormal state rather than an actual diagnosis of the heart 
arrhythmia, they used wavelet transform for anomaly detection. When a cardiac 
anomaly was detected (Ding et al., 2011), the signal is stored in a memory and is 
then transferred to a cardiologist for further diagnosis of cardiac arrhythmias 
using the reconstructed signals from the compressed measurements, this step is 
done off-line and out of the system. The results showed that the method reduced 
the power consumption with 34% (Ding et al., 2011). 

In the same year, Su et al. developed an ECG analysis algorithm based on wavelet 
transform. To diagnose the heart condition, the algorithm locates the position of 
Q, R, and S wave in an ECG signal (Su et al., 2011) QRS waves hold great 
information about the heart condition; such as identifying cardiac arrhythmias by 
counting the number of QRS in a minute. The team have declared this as a noise 
regardless, effective and efficient process.  
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Also, in that year, Nasrabadi and Kani developed a low budget phone-based ECG 
acquisition, analysis, and visualising system. It consists of microcontroller that 
mimics Holter device to read the ECG signal; electrodes in the chest area. The 
signal is then transmitted to mobile phone via Bluetooth protocol for display and 
analysis, for that they built a J2ME app. The analysis is based on locating the 
position of the QRS waves (Nasrabadi & Kani, 2011). 

In 2012, Mandal et al. developed a system that acquires the heart sound signal 
from the chest area, the signal goes directly to the connected PC where they deploy 
discrete wavelet transform to remove internal noise and reconstruct the de-noised 
heart sound signal. The system then uses a novel algorithm “end point detection” 
to detect nature of heart sound components M1, T1 of S1 and A2, P2 of S2, their 
locations, durations, frequencies present, length of cardiac cycle (Mandal et al., 
2012).  

In the same year, Kumar et al. proposed a method to de-noise ECG signals using a 
hybrid technique. In practice, they combined Empirical Mode Decomposition 
(EMD) with wavelet thresholding (Kumar et al., 2012). They used EMD to 
decompose the signal and soft wavelet thresholding to remove the noise from the 
decomposed signal. The de-noised signal is then reconstructed from the series of 
intrinsic mode functions (result of decomposing).  

And, in the same year, Uslu & Biglin used local discrete Fourier transform to 
extract ECG signal features that help diagnosing the heart condition (Uslu & Bilgin, 
2012). The locality based DFT is, in fact, deploying DFT after partitioning the 
signal into smaller frames, each frame consists of some samples, and then obtain 
the sequence in question by shifting window structure iteratively (Uslu & Bilgin, 
2012). 

In 2013, Meireles et al. investigated new technique for heart diagnosing based on 
spatial recording of electrical heart activity, known as Vector-cardiogram (VCG) 
(Meireles et al., 2013). The idea is presented as a portable solution that records 
VCG and use digital signal processing for diagnosing the heart condition, 
particularly, Myocardial Infarction. They also study the possibility of converting 
VCG to 12-lead ECG. They used classical Finite Impulse Response (FIR) and 
Infinite Impulse Response (IIR) for noise cancellation.  

In the same year, Ishanka et al. developed a software tool to detect cardiac 
anomalies using heart sound (Perera et al.,2013). The heart sound signal is 
recorded from four locations in the chest area using electronic stethoscope. The 
signal is then de-noised using wavelet and decomposition. The detection is done 
by deploying few different algorithms (Perera et al., 2013). 
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Moreover, in that year, another team realised the necessity for ECG classification 
systems and proposed a method for classifying ECG arrhythmias (Sarma et al., 
2013). The proposed system uses artificial neural networks. In practice, they used 
fast Fourier transform for pre-processing the signal followed by linear prediction 
coefficients (LPC) and principal component analysis (PCA) for extracting the 
signal features. The actual classification is done using multilayer perceptron 
(MLP) artificial neural networks.  

Another research group did similar work, in the same year (Patel & Joshi, 2013), 
they developed an artificial neural network-based system for heart disease 
classification. They focused on stroke stage classification using multilayer feed 
forward network with back propagation learning algorithm. 

In 2014, group of researchers (Sani et al., Dec 2014)  aimed to reduce the number 
of heart attack victims by proposing a framework for remote monitoring of heart 
attack diagnosis system for ambulatory patient. The system continuously monitors 
the cardiac markers of the patient and generates an alarm (SMS or call) when it 
reaches a predefined threshold. In practice, they used biosensors to detect the 
markers from the blood. The detected values are transmitted wirelessly utilising 
mobile phones/PDAs (over cellular networks) to the hospital system for storage 
and analysis. 

In the same year, Jabbar et al. hoped to make a difference in India and reduce the 
adverse reactions caused by not diagnosing heart diseases early enough. They 
developed alternating decision tree (ADTree) for early diagnosis of heart disease 
(Jabbar et al., 2014), this approach was a new type of classification rule at the time. 
It is based on decision tree; a data mining technique usually used for decision 
support process and machine learning. The team used principal component 
analysis (PCA) to gather features of the disease.   

In that same year, Alsalama and her supervisors tried using radial basis function 
networks (RBFN) with Gaussian function to classify heart diseases (Alsalamah et 
al., 2014), which is a learning system that reuses training datasets to reduce false 
classifications.  

And in the same year, group of researchers (Thiyagaraja et al., 2014) took over the 
task of developing a smart phone application to detect, monitory and analyse the 
split (delay between its two components) in second heart sound (S2). The 
heartbeat is recorded using a stethoscope. The team used fast Fourier transform to 
convert the sound signal to frequency domain and detect the first and second heart 
sound (S1, S2). They then use discrete wavelet transform to extract S2 and 
continuous wavelet transform to detect the characteristics of the heart sound 
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signal; Aortic (A2) and the Pulmonic (P2). Those characteristics are used to 
calculate the split in S2. The application offered continuous monitoring and low-
cost detection tool. 

Another group of researchers in the same year built a diagnostic system for heart 
diseases using fuzzy classifications technique (Krishnaiah et al., 2014). They 
modified uncertain unstructured data into “fuzzified” structured data using 
minimum Euclidean distance fuzzy K-NN classifier embedded with Symbolic 
approach and then classified the data. 

A team in Indonesia in that same year, built extreme learning Machine (ELM) 
based neural networks to diagnose heart disease (Fathurachman et al., 2014).  This 
system is meant to overcome the long process of training neural networks, it is 
thought to be fast and require simple tuning.  

In the same year, group of researchers focused on diagnosing rheumatic heart 
disease using a mobile phone connected to stethoscope for auscultation, hoping 
for a cost-effective detection with no need for expert training (Springer et al., 
2014). They used signal quality estimation techniques to overcome the limitation 
of the device primitiveness. Particularly, they used support vector machine (SVM) 
classifier with Gaussian kernel as a binary classification algorithm (good and bad 
quality). For sound segmentation, they used modified hidden semi-Markov 
models.  

Cabral and Oliveira worked on their own heart disease classification tool in that 
same year (Cabral et al., 2014). At the time, machine learning techniques have 
proven to be important tools for diagnosing several diseases and they aimed to find 
patients who are prone to cardiac disease before they show symptoms. They 
analysed medical data for cardiac diseases using five methods based on one-class 
classification (OCC) paradigm; kernel principal component analysis, feature 
boundaries detection, support vector machine, support vector data description, 
and Gaussian process OCC. For optimisation, they used particle swarm (PSO). 

In 2015, Jabbar et al. gave another try to heart disease diagnostic systems, this 
time using computational intelligence technique (Jabbar et al., 2015). They used 
discretisation method and genetic search to remove redundant features and 
optimisation, it is an enhancement to Naïve Bayes classification. Naïve Bayes is 
linear and probabilistic classifier that is based on Bayes theorem; all features are 
independent, and presence or absence of a disease depends on a feature itself 
(Jabbar et al., 2015). 
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In the same year, another group of researchers tried to help physicians avoid 
misdiagnosing heart patients with an intelligent system (Olaniyi et al., 2015). It is 
modelled on multilayer neural network trained with backpropagation and 
simulated on feedforward neural network. They normalised the data before 
inputting it to the system; dividing each sample of a feature by the corresponding 
highest sample value. 

Another team used extreme learning machine (ELM) algorithm in that same year 
to model the independent factors leading to the diagnosis of a heart disease 
(Ismaeel et al., 2015). It is a warning system for probable presence of heart disease 
based on collected information about the patient; age, sex, serum cholesterol, 
blood sugar and more.   

In 2016, a team combined Naïve Bayes classifier with temporal association rules 
for coronary heart disease diagnosis (Orphanou et al., 2016). The features of the 
heart signal were temporal association rules annotated with the possible 
recurrence patterns of those features. They relied on several temporal data mining 
methods to analyse the signal; periodic temporal association rules (periodic 
TARs). 

In the same year, Kalaiselvi diagnosed heart disease using average K-nearest 
neighbour algorithm of data mining in a solo research (Kalaiselvi, 2016). The 
proposed algorithm is used to predict the heart disease with reduced number of 
attributes that are relevant to the disease. 

Moreover, in the same year, a team attempted developing a real-time automatic 
assessment of cardiac function in echocardiography (Storve et al., 2016). The 
system focused on estimating mitral annular excursion (MAE) and tissue Doppler 
parameters on cardiac ultrasound recordings to assess the heart condition. 

In the same year, a team proposed genetic algorithm based fuzzy decision support 
system (FDSS) for predicting the risk level of a heart disease (Paul et al., 2016). 
They pre-process the dataset, then use different methods to select effective 
attributes, these attributes help generating the fuzzy rules using genetic algorithm, 
which are used to build the FDSS that predicts the heart disease. 

Also, in that year, Feshki and Shijani worked on improving the heart disease 
diagnosis by using machine learning; particle swarm optimisation (PSO) and 
feedforward neural networks backpropagation (FFNNBP) (Feshki & Shijani, 
2016). In practice, they used feature ranking on effective factors of disease by PSO 
and FFNN backpropagation.  
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In the same year, Shi et al. developed a wireless stethoscope for recording heart 
and lung sounds (Shi et al., 2016). The goal is to ease continuous monitoring using 
stethoscopes. In practice, they developed a new method for analysing acoustic 
properties of the heart and lung sounds. After digitising the sound signal, they 
extract cardiac action parameters for analysis, combining this with lung sounds 
they got good insight into the cardiac and respiratory function. The signal was 
transmitted wirelessly to a receiver module that digitally filters the data and 
normalise the amplitude scaling. On the receiver side, they performed analysis 
over the acoustic properties of S1 and S2.  

In 2017, an attempt was made to reduce the time required to diagnose a heart 
failure (Manikandan, 2017) . This heart attack prediction system used a dataset 
from UCI Machine Learning Database, pre-processed the dataset using Rapid 
Miner and then investigated several algorithms to build the classifier, such as; 
Naïve Bayer, Decision Trees, K-Nearest Neighbour and Random Forest. It 
concluded that Naïve Bayer is the most fitting, where it resulted in 81.25% accuracy 
for the prediction.  The system used 14 features to predict the failure.  

In the same year, a team proposed a Support Vector Machine (SVM)-based heart 
rhythm classifier. The system uses features like; timing, morphology, and spectral 
characteristics of the ECG to perform multi-source features and SVM for Atrial 
Fibrillation (AF) (Liu et al., 2017) . 

Also, in 2017, a novel method was proposed for heart sound classification without 
segmentation using Convolutional Neural Network (CNN) (Zhang & Han, 2017), 
where the different positions of the heart cycles are intercepted from the heart 
sound signals during the training phase. The spectrograms of the intercepted heart 
cycles are then scaled to a fixed size and input into the designed CNN architecture 
to generate features of different start positions in the testing phase. This has 
reduced the importance of the sound segmentation for prediction, the method was 
proven to be competitive when evaluated using public datasets. 

In 2018, the even detection approach based on deep recurrent neural networks was 
used to detect the position of state-sequence in a segmented heart sound (Messner 
et al., 2018) . Using this method, the researcher managed to detect the position of 
the first and second heart sounds (S1, S2) in heart sound recordings without 
incorporating a priori information of the state duration, which was also applicable 
to recordings with cardiac arrhythmias and extendable to detect extra heart sounds 
(S3, S4). 

Towards middle of 2018, a team attempted to automate the detection of 
abnormality in the heart sounds (Karaca et al., 2018). The processed 
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phonocardiogram signals were classified to normal and abnormal using K-nearest 
neighbour method, with high accuracy that reached 98.2%. 

If there is anything in common between these researchers aside from their area of 
interest, it is the advancement of tele-cardiology as a result of their work. However, 
the level of advancement differs from one to another. Majority of these papers 
focused on heart disease diagnosis, whether by analysing ECG signal (electrical 
reflection of the heart) or the heart sound signal. Analysing ECG signal has been 
the core of tele-cardiology as the simplest form of representation as opposed to 
heart sound signal, which is far from being an easy interpretation. In fact, heart 
sounds interpretation is very subjective to the cardiologist’s experience and 
hearing ability (Health essentials, 2014). 

The researchers focused on reducing the time required for diagnosing heart 
conditions; by reducing the number of attributes to characterise a disease. Or 
optimising the extraction process of the rules around that disease. Or removing 
irrelevant attributes from the process. However, few researchers payed attention 
to the need to address noisy data, although noisy signal, whether ECG or sound, 
would hinder the diagnostic process massively. 

Noise that is caused by stethoscope friction against the skin and/or lungs’ 
respiration function is one thing but there is also the noise added once the signal 
is transmitted wirelessly. By now (see chapter 2) it has been established that 
perfect conditions are very rare, especially during catastrophic epidemics. And 
although none of the presented papers considered the practicality of their solutions 
during such circumstances, majority have presented mechanisms and algorithm 
optimisation rather than full systems compared to few who attempted developing 
an end-to-end solution. Furthermore, when a full system is developed, perfect 
conditions are assumed throughout the processes except for the case when a new 
device is proposed; researchers seem to avoid assumptions to maintain credibility 
of newly designed devices. However, the focus is usually put on removing noise 
more so than any other factor.  

 The missing piece of the puzzle is clearly in addressing the conditions of the whole 
process; signal acquiring, signal analysis, signal transmission, and signal 
diagnosis. Each of these steps is a factor in the data quality (completeness, 
precision, validity, accuracy, consistency, timeliness, reasonableness, conformity, 
and integrity). They also factor in the power consumption (amount of energy 
consumed in every process), power consumption should be addressed in case of 
AC adapter sources and more so when it is battery-based. Not to mention, Speed 
and quality of the Internet connection used to transfer data between stations of the 
system.   
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This research attempts to break the limitations rather than ignore them, by finding 
the sweet spot of low-quality data. Instead of assuming perfect conditions and 
highest quality, this research simulates low-quality signal and proposes methods 
and techniques to compensate the impact of the chaotic conditions. 
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3 ARTIFICIAL NEURAL NETWORKS 

“Artificial Neural Networks (ANN) in the most general form is a machine that is 
designed to model the way in which the brain performs a particular task or 
function of interest” (Haykin, 1999) 

Modelling the heart acoustic propagation system is not an easy task, due to the 
complexity of the heart acoustic signal and the nature of the cardiovascular system. 
Moreover, understanding the impact of the organs in the human body on the sound 
and how the quality of the sound could affect the interpretation of the resultant 
sound signal, is all adding to this complexity. Therefore, the ICT applications in 
this field have been quite modest and mostly used machine learning and neural 
networks to approach the level of the advanced human brain that can be taught to 
interpret these complex signals. This is why it is important to study Artificial 
Neural Networks, and specifically their applications in heart diagnostics and heart 
health in general; neural networks will be used in this research to recognise 
patterns found in the heart acoustic signal to be able to classify each sound signal 
into a hypothetical disease. Hence, it is important to understand what is 
classification? And how could neural networks be used to classify a signal? And 
what are its applications? 

Classification is simply grouping things (in this case signals) based on similarity in 
their features and characteristics. Classifying objects is a survival instinct, animals 
must distinguish between threats, food, and potential mates. The brain often 
learns by association, quickly finding features that resembles known experiences 
and that is how it adds new objects to existing classes. Consequently, a neural 
network has to do the same job using neurons, their connections and arrangement.  

Next, the discussion goes into architecture of neural networks then will continue 
with the learning tasks focusing mostly on classification and pattern recognition. 

3.1 Network Architecture 

The learning algorithm used to train a neural network is strongly connected to the 
structure of which the network that connects the neurons is like. There are 
different network structures that could be adopted, and the following is a summary 
of the classifications of these architectures (Haykin, 2009).  
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3.1.1 Single-Layer Feedforward Networks  

In this architecture, the neurons are structured to form layers. This network is 
rigorously a feedforward (acyclic) type. For instance, an input layer of source nodes 
projecting onto an output layer of neurons as computation nodes, but not vice 
versa. The term “single-layer” refers to the output layer of the neurons 
(computation nodes), input layers of source nodes are not counted since no 
computation is carried out there. Figure 3 shows an example of single-layer 
feedforward network with four nodes on input and output layers. 

 

 

Figure 3. Single-Layer Feedforward Network 

3.1.2 Multilayer Feedforward Networks  

This architecture has hidden layers. The corresponding computation nodes 
(neurons) are called hidden neurons/units. The purpose of hidden neurons is to 
usefully interfere between external input and the network output. When a hidden 
layer or more is added to the network, it can extract higher-order statistics. Such 
network is considered fully connected, because each node in every layer in the 
network is connected to every node in every adjacent forward layer. If any synaptic 
connection is missing, the network is considered partially connected. Figure 4 
shows an example of this type of architecture. The middle layer is hidden neurons. 
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Figure 4. Fully connected Multilayer feedforward network 

Therefore, Multi-layer Feedforward Neural Networks are very suitable for complex 
classification such as heart signals, where the hidden layers compensate for the 
intermediate interconnected layers of the human brain and that made this 
architecture commonly used in pattern recognition (Fine, 1999) (Haykin, 2009). 

3.1.3 Recurrent Networks 

This architecture has at least one feedback loop as opposed to only forward 
feedback in the previous architectures, which might have hidden layer or not. The 
feedback loop could be called self-feedback when the neuron feeds back into its 
own input. The feedback loops have a direct impact on the learning capability of 
the network, in addition, it implicates unit-delay elements that may lead to a 
nonlinear dynamical behaviour when the network contains nonlinear units. Figure 
5 shows an example of this type of network. 

 

Figure 5. Simple Recurrent network (SRN) 

RNNs were developed in the 80s, and later many variations were developed to 
serve different purposes. Among which is Long Short-Term Memory (LSTM) that 
was proposed in the late 90s by Hochreiter and Schmidhuber. In 2018, a recurrent 
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network was used to detect the position of the first heart sound (S1), also known 
as systole, and the second heart sound (S2), also known as diastole without using 
any a priori information about the state duration (Messner et al., 2018). 

3.2 Learning Tasks 

The choice of a learning algorithm from the above is swayed by the learning task 
that the neural network is built to perform. There are at least six learning tasks that 
could be the purpose of neural networks, in this research the focus is put on pattern 
recognition (Haykin, 2009) . 

3.2.1 Pattern Association 

This task expects the neural network to learn by association, more like the human 
memory. This could be auto-association, where a neural network is required to 
store set of patterns by repetitively showing them to the network using 
unsupervised learning. Or hetero-association, where an arbitrary set of patterns is 
paired with another arbitrary output patterns using supervised learning. 

3.2.2 Pattern Recognition 

This task expects the neural network to assign a predefined classification or 
categorisation to a received pattern. This is done by enduring a training session, 
where sets of inputs along with their categorisation is presented to the network 
repetitively.  

Pattern recognition requires removing unwanted data/information from the input 
as much as possible, to reduce the error margin. This is known as denoising the 
signal, which is done by filtering. The filtering algorithm or method depends on 
the application, for instance for heart acoustic signals this could be, and most 
commonly is, Kalman Filter (Welch & Bishop, 2006) (Salleh et al., 2012). In rare 
cases when the signal-to-noise ratio is acceptable, this step is skipped. Next, the 
signal should be processed to identify unique features that distinguish one signal 
from another; this process is known as feature extraction. In the case of heart 
acoustic signals, this is about deriving the features of the disease.  There are several 
methods and algorithms to extract features from signals; for example, Filter Banks 
and application of wavelet transform (Liung & Hartimo, 2002) (Tovar et al., 2010)  
, more about this topic in next chapter. 
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The final stage of the pattern recognition is the classification, where the inputs are 
matched to particular category/class. The feedforward neural network is used 
widely in classification of signals, especially biological signals. There are many 
applications of this, for example, using deep feedforward neural networks, also 
known as convolutional neural networks, to classify heart sounds (Patel & Joshi, 
2013) (Zhang & Han, 2017). 

3.3 More Neural Networks Applications in Tele-
cardiology 

The following applications show the impact of neural networks on tele-cardiology, 
and more specifically. And more so, the importance of feedforward neural 
networks in the field of classifying heart conditions. This section sheds light on 
relevant applications in the past three years. 

In 2016, feedforward neural network was used to predict the heart rate of a cyclist 
based on cycling cadence (Mutijarsa et al., 2016). The goal was to overcome the 
limitation of wearable sensors that do not read at regular intervals (e.g. 1 second, 
2 seconds) by predicting the heart rate and complete the missing data. This should 
allow the cyclist to control the intensity of cycling and help them avoid risks of 
overtraining and heart attack.  The feedforward neural network is used to model 
the mathematical relationship between the heart rate and cycling cadence. It 
expected the heart rate, the cadence on the second as input and gave the predictive 
value of the heart rate on the next second as output.  They used large dataset for 
training and only 1% of the dataset size for testing, the experiment resulted in close 
prediction to measured heart rate values, with mean absolute error is 2.43 and 
3.02 of training and test data, respectively. 

In 2017, two-layered perceptron neural network was used to analyse time-
frequency cardio-rhythm-o-gram signal parameters using real-time heart rate 
value (Melnik et al., 2017). 

In another research in the same year Electrocardiogram (ECG) was used to detect 
several heart abnormalities, the accuracy of the ECG was improved using an 
artificial neural network with self-learning algorithm (Rastgar-Jazi et al., 2017). 
They used Main Lead II for extracting the features of the abnormalities in the ECG 
signals, which is known for feature extraction from ECG. Learning algorithms were 
not discussed in this research as they are out of scope, however, this does not 
reduce the relevance of this research. 
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In 2018, a team analysed the spectral and statistical features of the Heart Rate 
Variability (HRV) signal to diagnose Obstructive Sleep Apnea (OSA) (Ali & 
Hossen, 2018) . HRV is a relatively new way to track well-being; it is a simple 
measurement of the variation in time between heartbeats (Campos, 2017).  They 
used multiple artificial neural networks, including; single perceptron network, 
feedforward network with back-propagation, and the probabilistic neural network. 
The highest performance was achieved by feedforward network with back-
propagation using wavelet-based frequency domain features with specificity, 
sensitivity, and accuracy of 90%, 100%, and 96.7%, respectively (Ali & Hossen, 
2018). 

Another research in the same year, worked on classifying the fetal heart rate using 
convolutional neural network (Li et al., 2018).  In their work, they divided the fetal 
heart rate into three classes; normal, suspicious, and abnormal. Then, they 
obtained records for each category from the hospital, and segmented each record 
into ten d-window segments and used convolutional neural network to process the 
data in parallel. And at the end, they used the voting method to determine the class 
of the record. Additionally, and to conduct a comparative study, they repeated the 
experiment using basic statistics feature extraction method and input the features 
into Support Vector Machine and Multi-layer perceptron to classify. Ultimately, 
the results had higher accuracy when using convolutional neural networks (Li et 
al., 2018). 

3.4 Deep Learning 

Deep learning is new area of Machine Learning that was introduced as a step 
towards Artificial Intelligence (AI), it uses data to learn what was only thought to 
be possible for humans. This includes, perception; content recognition, prediction, 
and classification. It goes beyond simple learning algorithms to understand 
natural language and written documents, which makes it capable of making new 
discoveries. It is thought to be world changing science, especially for healthcare. It 
is not a separate science from Artificial Neural Networks; Deep Learning is a set of 
techniques that were discovered as an improvement to Neural Networks’ learning 
techniques. Table 1 below shows a simple comparison between Shallow and Deep 
Neural Networks (EDUCBA, 2018), although it is oversimplified, it gives a clear 
distinction between the two. Nonetheless, both are a class of machine learning 
algorithms where the artificial neuron forms the basic computational unit and 
networks are used to describe the interconnectivity among each other and can have 
units in multiple layers for feature transformation and extraction.  
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Table 1. Shallow vs. Deep Neural Networks 

However, there is a known problem in deep neural networks that is Steepest 
Descent, also known as vanishing gradient problem, which was limiting the depth 
of Neural Network severely. Neural Networks are trained using backpropagation 
gradient descent, that relies on updating the weights of each layer as a function of 
the derivative of the previous layer. However, the update signal was lost as the 
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depth is increased and that is a problem, which causes two issues; local minima 
and saddle point. Local Minima can be explained as follows, during the iterative 
optimisation algorithm to minimise the loss function (i.e. how far is the 
performance of the network from being perfect) the Network finds a local minima 
and it stops optimising, while in fact the optimal performance (real minima of the 
loss function) has not been reached yet. Local minima problem is visualised in 
Figure 6.  

Saddle Points is a similar concept with local maxima in the other direction of the 
local minima. The network also has a learning rate that dictates the size of the step 
taken from one iteration to another when seeking optimal performance. 

 

Figure 6. Steepest Descent Problem (local minima) 

To mitigate this, Neural Networks were limited to smaller number of hidden layers 
and in some cases, they were preferred to have no loops; they were either 
feedforward or recurrent; because the more hidden layers you add to the network 
the worse the steepest descent problem becomes. However, in 2006 unsupervised 
pre-training before starting the gradient descent was suggested as a new mitigation 
method (Hinton et al., 2006).  Stochastic Gradient Descent and Batch Gradient 
Descent have also been used to mitigate this problem. The basic equation to update 
gradient descent (optimise the network in every iteration), is 

Where  is the weight vector, which is used to subtract the gradient of the loss 
function with respect to the weights multiplied by the learning rate ( ), since the 
steepest descent is the opposite to the gradient. The gradient is a vector that gives 
the direction of the loss function’s steepest ascent.   is the number of the 
iteration, and  is the learning of the iteration. Now to improve the vanishing 
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gradient problem using the techniques discussed above, Equation 3 is revised in 
Equation 4; 

This means that the gradient of the loss function is taken at every step, which 
differs from the actual loss function that is summation of loss of every learning 
iteration. This gives one-iteration-loss, while Equation 3 gives all-iterations-loss 
which in turn may lead to a local minima or a saddle point.  

The depth of the Neural Network is measured with the number of hidden layers; 
at the beginning two or more hidden layers counted as deep network but this 
number had been increasing over the years, Figure 7 shows a simple deep neural 
network in comparison to a shallow neural network, this was adopted from 
(Nielsen, 2015). In 2014, GoogLeNet was release, which had 22 layers and 1024 
weights, it had won Image-Net Large Scale Visual Recognition Competition 
(ILSVRC’14) that year (Szegedy et al., 2014). 

 

Figure 7. Simple Comparison between Shallow and Deep Neural Networks 

Apple uses deep learning for face recognition in its iPhone X as a biometric 
authentication method (YML, 2017). The phone is equipped with “neural engine” 
that is two processing cores to handle machine learning algorithms, such as face 
recognition and augmented reality apps. This could open the door for massive 
improvements to mHealth. 

It has been used largely in the medical field; to form diagnosis using images or 
sounds. When using images, it is referred to as “computer vision”, which is used 
by Microsoft’s InnerEye Initiative that started in 2010 (Microsoft, 2010). 
Currently working on image diagnostic tools for tumour detection, this went on to 
be used for automatic segmentation of aggressive brain tumours and overall 
simplification of otherwise delicate surgeries.  
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It is doing an even better job at suggesting treatment ideas and options leaning 
from previous patients and finding what worked best on similar conditions. This 
was the result of the collaboration between the Oncology department at the 
Memorial Sloan Kettering with IBM Watson; the result an intelligence-
augmenting tool that helps doctors deal with unique cancer cases (Memorial Sloan 
Kettering Cancer Center, 2018). 

Deep Learning has opened the door for insightful medical research and 
tremendous chances for improvements and simplification of difficult decision-
making processes in the healthcare world. However, the core source of Deep 
Learning power is data; the bigger and relevant the data, the better the learning. 
Therefore, crowdsourced medical data collection is now important. It is simply, 
pooling data from mobile devices to aggregate health data; this is what Apple’s 
HealthKit, Samsung Health, FitBit, and the likes are doing.   

In fact, Apple is aiming to use the data collected through their devices to find 
treatment for Parkinson’s disease and Asperger’s syndrome. They have built 
interactive apps that patients can use to assess their conditions over time, of course 
the data collected through the apps are anonymised and fed into the data pool for 
future research into a possible treatment. Not only that, they actually have multiple 
apps; for autism, seizures, concussion, melanoma, and more (Apple, 2017). They 
have recently introduced a new model of Apple Watch that is equipped with three 
sensors to perform electrocardiogram that results an ECG signal of the heart. 
Traditionally, electrocardiogram is performed using electrodes on the skin; about 
six on the chest and in some cases one on every limb (Cables & Sensors, 2018). 
Therefore, Apple Watch is a practical step in the same direction of this research; 
performing diagnostics on the go. It is also equipped with an accelerometer and 
gyroscope to detect falls. The watch is expected to monitor the heart rate 
continuously and use a software application to “diagnose” the user’s condition 
based on this data that may result in contacting the emergency centre (Apple, 
2018). The accuracy of this decision is now challenged by cardiologists who are 
emphasising the importance of having multiple electrodes and their placement 
around the body to obtain an ECG signal, however, until the date of this writing, 
there have not been concluding tests of this capability.  

Deep Learning is expected to change the future of cardiac imaging, especially 
segmentation. Segmentation is used to identify the pixels of interest in the cardiac 
image, it isolates the outline of the particular organ/area of interest from a 
Magnetic Resonance Imaging (MRI). It provides quantitative metrics of the 
segmented area of interest, and when combined with deep learning, it could be 
very insightful. For instance, for a cardiologist it would show the percentage of 
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blood that is pumped out of the left ventricle during each heartbeat, this is known 
as Ejection Fraction (EF) (American Heart Association, 2017). It is usually 
performed manually, and it takes 30 minutes on average. When the quantitative 
metrics are fed into Convolutional Neural Networks (CNN) as a Deep Learning 
method, EF measurement is done in fraction of the time (Wetstone, 2018). The 
measurement of EF is quite essential to diagnose heart failure; heart’s ability to 
pump blood. This is measured in percentage; how much of the blood amount in 
the chamber is pumped out to the rest of the body. On average, a healthy human 
heart is expected to pump out 50 – 70% of the blood, this way the body can carry 
out biological processes as normal. 41 – 49% EF is called borderline EF, where the 
human body is expected to have shortness of breath during regular activities due 
to lack of oxygen. Less than 40% EF is called reduced EF, where shortness of 
breath can occur at rest. With such simple quantification designing a monitoring 
system with a built-in warnings mechanism will not be difficult, convolutional 
neural networks with deep learning algorithm is already in research to measure 
EF, the rest of about coding the warning mechanism. This would be very similar to 
the concept used in The Vital Transmitter that was developed by the author as part 
of the master’s thesis (Abdelmageed, 2012). 



38     Acta Wasaensia 

4 WAVELET TRANSFORMS 

As discussed in the previous chapter, the acoustic heart signal is very complex and 
requires advanced processing. Before inputting the signal into a feedforward 
neural network for classification with purpose of pattern recognition, the signal 
characteristics and features in time-frequency space should be extracted; and that 
is where wavelet transform comes to the picture. This chapter starts with overview 
of Wavelet Transform and then dives into Filter Banks as the technique that will 
be used later in the experiment for decompose the acoustic signal into single 
frequency sub-bands and ease the process of feature extraction.  

So, why wavelet transforms? 

In general, signals often have slowly changing trends or oscillations punctuated 
with transients, while images have smooth regions interrupted by edges and 
abrupt changes in contrast. These abrupt changes are frequently realised as the 
most interesting part of the data specially in terms of the information they provide. 
Fourier Transform is a powerful tool for data analysis, however, it does not 
represent abrupt changes efficiently. This is understandable, since Fourier 
Transform averages the signal over all time span, hence, information about when 
an abrupt change had occurred will disappear. Such abrupt changes can be 
observed in terms of frequency components, but it is not possible to determine at 
what time that had occurred.  That is when the need for a representation that are 
well localised in time and frequency, something like short-time Fourier transom 
or wavelets (Devleker & MathWorks, 2016). 

In 1996, a group of engineers and physicians joined forces to analyse the heart 
sounds using wavelet transform (El-Asir et al., 1996). At the time and since 1979 
(Blinowska et al., 1979), most of the computerised heart sound analysis was 
performed in the frequency domain and such applications were developed using 
Fourier transform or autoregressive spectral estimation techniques.  

As the case with Fourier Transform, Wavelet Transform is either Continuous 
(CWT) or Discrete (DWT). Where CWT is efficient for characterising oscillator 
behaviour in signals, while DWT is ideal for de-noising and compressing signals 
and images; as it represents many signals and images with fewer coefficients, this 
enables sparser representation. DWT process is equivalent to comparing a signal 
with discrete multi-rate filter banks  (Devleker & MathWorks, 2016). 

The following example explains how DWT works; a signal S is first filtered with 
low-pass and high-pass filters A1 and D1, respectively. Half of the samples are 
discarded upon filtering as per Nyquist criterion. The filters, typically, have small 
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number of coefficients and result in good computational performance, they also 
have the ability to reconstruct the sub-bands while cancelling any aliasing that 
occurs due to down-sampling. For the next level of decomposition, the low pass 
sub-band A1 is iteratively filtered by the same technique to yield narrower sub-
bands A2, D2 and so on. The length of the coefficients in each sub-band is half of 
the number of coefficients in the proceeding stage. With this technique, the signal 
of interest can be captured with few large magnitude DWT coefficients while the 
noise in the signal results in smaller DWT coefficients, which helps analyse signals 
at progressively narrower sub-bands at different resolution along with de-noising 
and compressing signals (Devleker & MathWorks, 2016). In simple words, DWT is 
an operation that takes an input signal and decomposes it into its frequential 
components, a lot like Discrete Fourier Transform (DFT), and this operation is 
efficiently implemented by Filter Banks. 

Generally, Wavelet Transform is calculated using the following equation; 

Where  is the time-series signal being processed,   (a>0) is a scaling factor,  
is a shift factor, and  is the daughter wavelet which is a scaled and 
shifted version of the mother wavelet . in principle, the daughter wavelet is 
formed by scaling the mother wavelet by  which relates to frequency and 
shifting it along  by , then the similarity of the daughter wavelet to the 
original signal is calculated and recorded in the WT coefficient . This 
process is repeated for all  until the entire time-series signal and frequencies 
of interest are covered to obtain the coefficient matrix, which provides the spectral 
information through scaling while preserving the time domain information via 
shifting the wavelet across the signal.  

4.1 Filter Banks 

A filter bank is an array of band-pass filters that separate the input signal into 
multiple components, where every component carries a single frequency sub-band 
of the original signal. Since Filter Banks involve various sampling rates, they are 
also referred to as multi-rate systems. They are widely used for multi-band 
equalization and in image and audio content analysis (Mertins, 1999). They are 
used to equalise graphics, and in digital signal processing at the receiver to down 
convert sub-bands to a low centre frequency that could be resampled at a lower 
rate. It is also used for signal compression, when some frequencies are more 
relevant than others. The Filter Bank of interest to this research is 
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Multidimensional Filter Bank, which can be used to implement Wavelet 
Transform, and specifically DWT.   

For example, in an M-channel filter bank (see Figure 8), an input signal is 
decomposed into M sub-band signals by applying M analysis filters with different 
pass-bands. Each of the sub-band signals carry information on the input signal in 
a particular frequency band. 

 

 

Figure 8. M-channel filter bank (Mertins, 1999)  

The blocks with downward arrows indicate down-sampling (subsampling) by 
factor N, and the blocks with upwards arrows indicate up-sampling by factor N. 
Subsampling by N means that only the Nth sample is taken, which serves to reduce 
redundancies in the M sub-band signals. While up-sampling by N means insertion 
of N-1 consecutive zeros between the samples, which allows the original sampling 
rate to be recovered. Up-samplers are usually followed by filters that replace the 
inserted zeros with meaningful values. When M = N, the system represents critical 
subsampling, because that is when the maximum down-sampling factor of perfect 
reconstruction (the output signal is a copy of the input signal with no further 
distortion than a time shift and amplitude scaling) can be achieved (Mertins, 
1999). Mathematically, a filter bank is a series expansion, where the sub-band 
signals are the coefficients and the time-shifted variants form the basis. The time-
shifted variants represented in Equation 6 are of synthesis filter impulse response 

. 
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4.1.1 Two-Channel Filter Bank 

Considering the two-channel filter bank in Figure 9, the signals can be represented 
as follow 

From that, the input-output relation can be interpreted as 

Where the first term represents the transmission of signal  through the 
system, and the second term represents the aliasing component at the output of 
the filter bank. 

 

 

Figure 9. Two-channel filter bank 

The Perfect Reconstruction (PR) condition is achieved when the output signal is 
just a delayed version of the input signal. This is true when the transfer function 
for the signal component, , satisfy 

and the transfer function for the aliasing component, , satisfy 
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If Equation 10 is satisfied, the output signal does not contain aliasing. However, 
amplitude distortions may appear. If both Equation 9 and 10 are satisfied, then 
amplitude distortion does not exist either. Such filter bank is known as 
biorthogonal filter bank, and there are few methods to help satisfy these 
conditions, but they are out of the scope of this research (Mertins, 1999). 

4.1.2 Tree-Structured Filter Bank 

The most common case of filter bank applications requires the signal to be 
decomposed into M frequency bands. This can be designed easily by using a 
cascade of two-channel filter banks, which could be a regular tree or an octave-
band tree structure. There are, also, signal-adaptive concepts that can be used so 
that the tree best matches the problem.  Regardless of the tree structure, Perfect 
Reconstruction (PR) is obtained if the two-channel filter banks provide one, as the 
basic building block. 

The function of such system of cascade filters, shown in Figure 10, with sampling 
rate changes are described in Equation 11 

For the system , it is described by 

 

 

Figure 10. Tree-structured filter banks equivalent system. 

As will be shown in later chapters, the experiment will use tree structure filter bank 
to decompose the heart acoustic signal into sub-bands. 
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4.2 Applications of Wavelet Transform in Tele-
Cardiology 

The following applications demonstrate the impact of wavelet transform on tele-
cardiology, more specifically, the importance of filter banks in this field. The focus 
here is on relevant applications in the past three years. 

In 2016, a system was built to monitor and analyse ECG signal. The system 
comprises of electrodes connected to the user’s forearm and ECG amplifier module 
to record the signal, where the module sends that amplified signal to an Android 
smartphone via Bluetooth (Amri et al., 2016). The signal is then sent online to a 
cloud server where it is processed using discrete wavelet transform (DWT) to 
denoise the recorded ECG signal. Using multiple filter banks and special wavelet 
filters for analysis and reconstruction of the signals, the result is a neat 
representation of the signal in efficiently calculated time and frequency. 

Another research was done in the same application in that same year, where ECG 
signal was denoised using discrete wavelet transform and further analysed to 
detect abnormalities (Shemi & Shareena, 2016). They compared the performance 
of denoising the ECG signals using different discrete wavelet transform 
techniques, including; double-density DWT, dual-tree DWT, double-density dual-
tree DWT using thresholding algorithm. All ECG signals were taken from the MIT-
BIH arrhythmia database and corrupted with different noise types. The 
SIMULINK result shows that double-density dual-tree DWT was more effective in 
denoising, it resulted in better SNR and Root Mean Square Error (RMSE).  

In 2017, dual down-sampling DWT was implemented using convolution method 
to perform feature extraction on heart sound signal to extra systole heart disorder, 
this was a step toward classification (Coskun et al., 2017). The coefficients were 
approximated and compared to the coefficients obtained using MATLAB 
regression analysis and the RMSE was 2.5x10-5. 

In the same year, WT was used to diagnose heartbeats into normal and abnormal 
(Saravanan et al., 2017). WT divided the heartbeat into four sub-bands and 
provides time and frequency domain information. This work hypothesised that the 
parameters; mean, mode, range, entropy, and histogram determine the 
abnormalities of the heartbeat. They are computed using DWT and Wavelet Packet 
Transform. 

Also, in 2017, wavelet transform, and a neural network were used to process and 
identify the heart condition using the heart sound signal obtained from a novel 
digital stethoscope (Suseno & Burhanudin, 2017).  Digital stethoscope is an 
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advancement in the field of heart sound diagnosis, because it overcomes the 
limitation of the acoustic stethoscope, such as; its reliance on the physician’s 
hearing sensitivity and the impossibility of saving its sound into the patients’ 
record. The novel stethoscope converts the analogue audio into digital signal, 
amplify, and low-pass filter the signal to produce an audible digital signal. The 
signal was decomposed using filter bank with 10-decomposition level, then a 
simple neural network with two layers and 75 neurons each, was used to identify 
the heart condition in question, the accuracy level varied 70% - 100% depending 
on the heart condition at hand, the research considered six conditions. 

In 2018, wavelet transform was used to detect fast heart rate (HR) (Li & Lin, 2018). 
Fast detection of the heart rate was commonly performed using noncontact 
continuous-wave doppler radar, but that is challenging due to the three sources of 
harmonics issue in CW doppler radar and the heart rate acquisition speed (Li & 
Lin, 2018). That is why they introduced wavelet transform based data-length-
variation technique, to achieve fast detection of HR. in fact, they managed to detect 
HR with 3-5 second data length and distinguish the respiratory harmonics from 
the main signal.  

Also, in 2018, CWT was used to classify heart sound recordings (Karaca et al., 
2018). They built an automatic detecting system of the anomalies in the heart 
sounds, to get objective classification away from the subjectivity of the physician’s 
hearing sensitivity. The phonocardiogram (discussed more in next chapter) 
obtained from Physionet database was processed to extract features using adoptive 
segmentation, the features are then used along with k-nearest neighbour method 
to classify the heart sounds as normal and abnormal. Their results had high 
sensitivity, specificity, and accuracy. 

4.3 Filter banks and Neural Networks 

Filter banks and neural networks have been adopted as feature extraction for 
classification duo since 1997 (Sveinsson et al., 1997), where tree structured filter 
banks were used to extract features from multisource remote sensing and 
geographic data for neural network classifier. The results were compared to the 
same process using translation-invariant wavelet transformation for feature 
extraction. In their experiment, they increased the number of features gradually 
and tested the corresponding classification’s accuracy. The results showed small 
improvement (1.43% – 2.4%) when using Filter Bank over Translation-invariant 
Wavelet with the same number of features. 
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Another research used the duo in 1999 to classify electrogastrogram (EGG) (Wang 
et al., 1999). EGG is the electrical signals that travel through the stomach muscles 
and control their contractions, it is used to study the gastro system. In their 
research EGG was used to noninvasively measure gastric myoelectrical activity, 
which represents muscle contractions. Using Filter Bank for feature extraction and 
Neural Network-based classification, they were able to automate the classification 
of EGG with 97 – 100% accuracy levels. 

In 2004, the duo of feature extraction and classification was used to detect 
ventricular premature contraction (VPC) from the Holter device’s out ECG (Shyu 
et al., 2004). In the process, they used the filter bank property of quadratic spline 
wavelet transform and Fuzzy Neural Network to analyse the ECG signal obtained 
from Holter device and particularly detect VPC with a success rate of 99.79%. This 
research was built on multiple researches using Wavelet Transform to detect ECG 
characteristics including; QPS (Kadambe et al., 1999), ventricular late potentials.  
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5 MODELLING THE CARDIOVASCULAR SYSTEM 

Interpreting the cardiovascular system in mathematics has been under focus since 
the last decade; it is fundamental to understand the circulatory system 
functionality. Due to the increasing demand for more robust eHealth solutions that 
focuses on cardiovascular system, a rigorous scientific and quantitative 
understanding of the system became inescapable. It is essential to model this 
system from an engineering point of view to build such solutions that diagnose 
heart diseases. After all, such solutions are built by engineers, with what is 
considered as limited knowledge of the medical field. A large number of attempts 
have been registered, varying from rather simple approaches to highly 
sophisticated numerical techniques. Before discussing any, let us start with 
describing the cardiovascular system. The cardiovascular system is responsible for 
keeping the body alive. Its main function is to circulate the blood through the 
arteries and veins and the goal of this circulation is to oxygenate the blood that 
reach all body organs. This circulation also distributes heat, hormones, nutrients 
and other vital substances besides ridding the blood of carbon dioxide. The heart 
runs this show. This happens in two cycles; the large circulation takes the 
oxygenated blood from left ventricle via the aorta (largest and main artery) to the 
body organs through arterial system. The small circulation is between the heart 
and the lungs; the right ventricle pumps the blood via the pulmonary artery to the 
lungs. Then the blood that runs in veins (venous blood) comes to the pulmonary 
system where it gets oxygenated and then goes to the left atrium of the heart and 
that is when the large circulation starts again. The referenced arteries and heart 
rooms are shown in Figure 10. The whole process is significantly rhythmic and 
completely synchronised, the large and small circulations are not independent 
functionally, in fact they are closely connected via concurrent hemodynamic 
interactions (Mossa, 2008). Roughly speaking, this system could be mapped to the 
electrical system, where the heart is the engine, oxygenated blood is the electrical 
current and the pulmonary system is the power source. Think about it, the heart 
starts the activity, which in turn causes the atrial and ventricular contractions and 
that forces the blood to flow between the chambers of the heart and around the 
body, the pulmonary system refreshes the blood that goes into the heart. 
Equivalently, the engine passes the current between pair of magnets and the power 
source feeds the charged current into the engine. 

The cardiovascular system is very complex, it does not just keep the body alive, but 
a healthy heart could regulate itself as and when needed. This is manifested in the 
following: when the blood pressure decreases the smaller arteries contract and the 
heart rate increase. Whereas when the blood pressure increases, the arteries relax 
and the heart rate decreases (Quarteroni, 2006).  
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Figure 11. Diagram of the human heart (Creative Commons) 

Here is a deeper dive into the contraction and relaxation of the heart muscles in 
the four chambers, see Figure 11 for better understanding of the chambers. These 
movements cause the heart valves; mitral and aortic to open and close according 
to the pressure difference. Thus, four phases of the cardiac cycle can be 
distinguished (Guyton, 1992): 

- (Systole) Isovolumic contraction phase; mitral and aortic valves are closed. 
The pressure is yet to build up in the left ventricular for the aortic valve to 
open. 

- (Systole) Ejection phase; mitral valve is closed, and aortic valve is open. 
This is when the blood flows from the chamber to the aorta. 

- (diastole) Isovolumic relaxation phase; mitral and aortic valves are closed 
again. This happens when the pressure inside the chamber drops down and 
it continues to drop until the next phase. 

- (diastole) Filling phase; mitral valve is open and aortic valve is closed. This 
happens when the pressure inside the chamber is low enough and that is 
when the blood flows into the chamber and the cycle repeats. 
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This mechanical movement of the heart (contractions and relaxations) can be 
characterised using its electrical activity; known as electrocardiogram signal 
(ECG). Equivalently, it can be studied using the dynamic pressure that this 
movement generates in form of acoustic waves, that is known as phonocardiogram 
signal (PCG). In this chapter, both signals will be studied and modelled, however, 
the focus of this research is the PCG. 

5.1 Electrocardiogram (ECG) Signal 

The ECG signal of the heart is quite complex and usually related computations are 
complex and time consuming, in other words, require large processing units and 
consumes large amount of energy. Therefore, many researchers tried to model the 
signal mathematically to reduce the complexity and consequently lower the 
computation requirement. One of those tries was published in 2011 by a team of 
three researchers (Abdul Awal et al., 2011). They used Gaussian wave-based model 
that simulates ECG signal and it is constituting waves; P, Q, R, S, and T 
individually. This model is quite useful since each of these waves has its own 
indication to the heart health. This model is also preferable because, among other 
reasons, it is simpler than other models due to the number of parameters it 
requires to simulate realistic ECG signal and identify characteristics of known 
heart diseases.  

ECG signal consists of bell curve-like P, Q, R, S and T waves (see Figure 12); the 
wave falls towards both sides which matches the characteristics of a Gaussian 
wave. The only difference is that Gaussian wave do not cross the zero line, while 
ECG waves do. This was solved by adding 0.05 to the ECG signal before calculating 
the coefficients, which enforced the baseline to lie on the zero line (Abdul Awal et 
al., 2011). 
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Figure 12. P, Q, R, S, and T waves of ECG (Creative Commons) 

Since it matches the Gaussian wave characteristics, if  then 
Gaussian wave component of ECG wave have the following parameters; as the 
height of curves peak,  as the centre position of the peak, and  to control the 
width.  

5.1.1 Mapping the ECG Signal to Electrical Circuits 

In 2008, Left Mossa modelled the human cardiovascular system (Mossa, 2008), 
he directly mapped it to electrical system with more details than the high-level 
explanation given earlier. According to Mossa, the system can be described in 
terms of its hemodynamic variables; the blood pressure, volume and other 
parameters like compliances and resistance in the corresponding compartments. 
One of the simplest and effective approaches to mathematically interpret this 
complex system is lumped parameter modelling method, and it is what Mossa 
used. In this method, the hemodynamic parameters; blood pressure, flow and 
resistance are mapped to the corresponding electrical elements; voltage, current, 
diode, resistor, inductor and capacitor. This analogy was first used in (Pater & Jw., 
1964). Before mapping the two systems, few terms must be explained: 

Blood Flow: blood flows linearly (Einav & Elad, 2009) through vessels, it 
flows due to pressure difference between the two ends of the containing 
vessel. 
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Vessel Resistance: the blood flowing in vessels faces resistance that 
depends on the blood viscosity and the vessel diameter. 

Vessel Compliance: the vessel’s ability to accumulate and release blood, 
which depends on the vessel elasticity. 

Blood Inertia: blood is inert. The cardiac cycle causes pressure difference 
between the ends of a vessel, the blood resists the urge (caused by this 
pressure difference) to move. That is what blood inertia is. 

Keep in mind that blood volume is modelled by electrical charge and the difference 
in pressure and flow rate is modelled by electrical charge difference. Now the 
modelling of the other components would make perfect sense. This direct mapping 
to the electrical circuit makes it possible to apply Kirchhoff’s laws for current and 
potential differences to cardiovascular system equations.  

total current or charge entering a junction or node is exactly equal to the 
charge leaving the node as it has no other place to go except to leave, as no 
charge is lost within the node 

in any closed loop network, the total voltage around the loop is equal to the 
sum of all the voltage drops within the same loop 

5.1.1.1 Vessel Resistance 

While flowing from arteries with large diameters into smaller arterioles, blood 
encounters some resistance. This resistance in this analogy is represented by 
resistors.  

Since the blood flow is linear (see Equation 10), this flow represents the relation 
between the resistance and the proportionality constant , the pressure 
difference , and the flow . Which is equivalent to a resister (an electronic 
component that resists electrical current by producing potential difference 
between its ends) in Ohm’s law  is linearly related to potential difference  and 
the current . 

5.1.1.2 Vessel Compliance 

The human body encompasses bones covered with muscles and different organs, 
some of these organs constitutes systems; such as cardiovascular system. The 
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muscles surround every organ, including blood vessels. The contraction of the 
muscles causes the pressure and the volume of these vessels to change, which 
would’ve been harmful if the vessels were not elastic. The rate of change of blood 
volume in the vessel could be calculated as the difference between the flow into the 
vessel and the flow out of it . Since this is related to the change of pressure 
inside the vessel, the linear relation between the two could be 

where  is a vessel compliance constant.  

This is directly mapped to the capacitor (an electrical device that stores energy 
between a pair of closely spaced conducting plates). Capacitors are electrically 
charged with equal magnitude of opposite polarity on each plate when potential 
difference is applied. The potential difference  is directly proportionate to the 
amount of separated charge . This charge is forced onto the capacitor with an 
equal rate to the current  through it. is electrical capacitance of the capacitor. 

5.1.1.3 Blood Inertia 

The relation between the change of the blood flow  and the pressure 
difference  can be assumed to be linear as well, and can be represented by 

This is, in fact, the hydraulic equivalent of Newton’s law. Since the current in a coil 
(inductor) cannot change instantaneously, it can be used to model blood inertia. 
This fact affects potential difference  if the coil with inductance constant  and 
the current  that pass through it. 

5.1.1.4 Valves 

The importance of valves resides in forcing the unidirectional flow of the blood. 
They allow the flow when critical pressure  (otherwise assumed zero) with small 
resistance . 

Which is equivalent to diodes (an electronic component that allows an electric 
current to flow in one direction). Diodes allows the current  to flow when the 
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critical potential difference  with small resistance . Consequently, the valves 
can be seen as the nonlinear component in this emulated system. 

5.1.1.5 The Windkessel Model 

The previous electrical models are used in different version of models of the heart 
and its functions, for instance, the arterial system can be modelled by the 
Windkessel model. This one is based on the physical characteristics of blood 
vessels, it describes the pulse-wave propagation of the blood. Large vessels like the 
aorta and its branches have high elasticity and so they are called Windkessel 
vessels. Windkessel is a German term for air chamber (Åstrand & Rodahl, 1977), 
which stores air and affect the velocity and pressure of the fluid flowing through 
the system pipes. These vessels mimic the air chamber by storing a volume of the 
blood, which also affect the velocity and pressure of the blood flowing through 
them. In practice, this comprises of capacitor to represent compliant aorta and a 
resistor to represent stiffer peripheral vessels connected in parallel.  

5.1.1.6 Mossa’s engineering model 

It is a generalisation of the Ursino model (Ursino, 1998) , except that in this model 
the heart is considered a pulsatile pump. This amend makes it possible to simulate 
the task of the ventricles by an elastance variable model. The hydraulic analogue 
of the cardiovascular system is represented in Figure 13. Where the vascular 
system is divided into eight compartments, five of which replicate the systemic 
circulation. They represent the systemic arteries (sa), splanchnic peripheral (sp), 
and the venous (sv) circulations. While the remaining three replicate the arterial 
(pa), peripheral (pp), and venous pulmonary (pv) circulation.  
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Figure 13. Hydraulic analogue of the cardiovascular system 

C and R refer to capacitor and resistor, respectively. The subscripts next to each 
refers to the compartment it represents (refer to previous paragraph). The 
subscripts la, lv, ra, and rv refer to the left atrium, left ventricle, right atrium, and 
right ventricle, respectively.  

Rj is the hydraulic resistance that represents the pressure energy losses in the jth 

compartment. While Cj is the compliance that represents the amount of stressed 
blood volume stored at a given pressure  and flow , unstressed blood volume 
Vu, j. According to (Ursino, 1998), the inertia effect could be ignored anywhere 
except for the large artery compartment where the blood acceleration is significant 
enough.  Now for the equations; they were written by Mossa assuming few things: 

1. Preservation of mass at the capacities in Figure 13. 

2. Equilibrium of forces at inertances (is a measure of the pressure difference 
in a fluid required to cause a change in flow-rate with time) Lj. 

3. Total amount of blood contained initially in the vascular system is 5,300 
ml (Ursino et al., 1994). 

To make this easier, Figure 13 is redrawn with electrical components only. Figure 
14 represents nonlinear closed-loop lumped parameter model of the intact 
pulsatile heart and its circulations. Left and right sides of the heart have the same 
model while the parameters’ values vary. The constant value of the compliance is 
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used to characterize the linear capacity, which describes the atrium; the contractile 
activity of the atrium is neglected. Since the arteries and veins width vary through 
the human body, the representing capacitance and resistance for blood flow are 
dependent on that. The pressure generated by the hear movement is time-varying, 
which is indicated by the capacitors with arrow through them in Figure 14. To 
represent a reference pressure based on other pressure differences, electrical earth 
is used as an indication of zero voltage. As known, the blood goes from the atrium 
to the ventricle via the atrioventricular valve, simulated as the series arrangement 
of an ideal unidirectional valve in series with a constant resistance (Mossa, 2008).  

Following the assumptions listed above, conserving of mass and balance of forces 
across the different compartments in Figure 13 

The shapes used in the closed-loop lumped parameter model of the cardio system 
are numbered on the side and explained below: 

(1) Electrical resistance used here as vessel resistance 

(2) Electrical capacitance used here as vessel compliance 

(3) Magnetic inductance used here as blood inertia 

(4) Diode used here as valve. 

 

 

Figure 14. Closed-loop lumped model of the cardiovascular system. 



Acta Wasaensia     55 

The upper circuit of Figure 14 gives the pulmonary arteries. When the cardiac 
muscles are relaxed (diastole), the ventricle fills through an exponential 
pressure/volume function. This reflect elasticity on both the relaxed muscle and 
the external constraints related to it, which is mainly the pericardium. While on 
systole, the ventricle fills through a linear pressure/volume function with adopted 
slope. This is called elastance at the instant of maximal contraction, and it is 
demoted by E(max). The constants k (r and E) refer to the ventricle resistance and 
the end-diastolic pressure-volume relationship for the heart. Vu is the unstressed 
ventricle volume (Mossa, 2008).  

To move from end-diastolic to end-systolic the relationship is controlled by a 
pulsating activation function that is , with period T equal to the basal cardiac 
cycle that is 0.833 seconds. This period steers P(max, lv) the isometric left ventricle 
pressure. The controlling function is controlled by baroreflex control system, 
known as a highly complex function of the sinus nerves. As a try to simplify the 
process an approximation of the ventricle activation function is used, it is found 
with a simple sine function with  = 1.25 radian, and the signal frequency 
corresponds to the cardiac cycle.  

Finally, the blood flow. It leaves the ventricle only when the aortic valve is open, it 
also depends on the difference between the isometric ventricle pressure and 
arterial pressure (afterload).  To solve these functions, Mossa came up with a 
strategy of two steps: 

1. Desired average pressure and volume distribution and cardiac output 
determine the parameter values of compliance and resistance. 

2. Inductance and elastance functions are assigned values that generate 
representative pressure and flow pulses. 

The cardiovascular parameters must be selected following guidance provided by 
data rescaled for a patient with 70KG body weight. The average pressure level 
should be realistic and so is the volume distribution. From there the computed 
ventricular pressure, root aortic pressure, and outflow curves should look as close 
as possible to the corresponding human values. In basal condition the following 
values characterise the cardiovascular system.  

5.2 Phonocardiogram signal (PCG)  

Before discussing the mathematical models of the heart acoustic signal, it is 
important to discuss the heart sound signal and review the literature available in 
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that area. The first step any physician does when checking on a patient is to listen 
to their heart and lungs using stethoscope. Whether the patient is here for an 
emergency or a regular check-up, this step is essential. That is because the heart 
movement generates a sound and so does the pulmonary system. This sound holds 
significant information about the health of the patient, specifically about their 
cardiovascular and pulmonary systems.  The information held in the heart sound 
does not only indicate heart healthiness, but vessels and blood health as well. 
However, the heart sound signal that is heard by human ear is not informative, due 
to the subjectivity of its interpretation that even experienced cardiologist might 
misinterpret clear indications. 

Although the phonocardiogram signal does map directly to the ECG; where every 
pressure change in the heart is translated into electrical change that shows in the 
ECG signal, the limitation comes from the human hearing range.  The human 
hearing range cover 20 Hz to 20k Hz, while the heart sound signal may contain 
other frequencies out of this range. However, some parts of the signal tend to be 
very weak to be captured by the standard analogue stethoscope. Moreover, the 
heart signal is considered quasi-periodic; with a period-time of about one second 
for adults (infants have a smaller period-time). Thus, the spectrum of the heart 
acoustic signal is discrete with large number of frequency components and the 
frequency resolution of the spectrum is around 1 Hz. Consequently, if the 
maximum frequency of the heart sound is considered to be 500 Hz, then the 
spectrum will have 500 frequency components. It is assumed that each frequency 
component along with the time information (information extracted by using for 
example Wavelet transform), may carry insightful information about the heart 
condition. However, to the best of the author’s knowledge, there has not been a 
study that claims or proves this yet in the literature. Furthermore, a direct mapping 
of the mathematical relation between each heart frequency component and all 
possible heart diseases is cumbersome if at all possible. Therefore, machine 
learning seems to be the optimal solution in this case. 

If the heart sound signal is obtained, it has marvellous potentials to diagnose heart 
conditions in timely fashion or even at an early stage. This is what sparked the idea 
of simplifying the acquisition and analysis of the heart sound by finding a new 
possible spot in the human body besides the chest area to capture the sound wave. 
The hardware realisation is not the focus of the research, however, the modelling 
of such system and the analysis of the acoustic signal for diagnosing purposes is. 
In this chapter, different approaches to model the acoustic wave propagation is 
studied to find the suitable approach for our experiment. 
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5.2.1 Definitions and Descriptions 

To recap the cardiac cycle; the heart generates an electrical activity, which causes 
atrial and ventricular contractions. These contractions force the blood between the 
chambers of the heart and around the body. The blood accelerates and decelerate 
following the opening and closure of the heart valves, which in turn increases the 
vibrations of the entire cardiac structure (the heart sound and murmurs) 
(Leatham, 1975). Heart murmur is an unusual sound heard between heartbeats. 
Murmurs sometimes sound like a whooshing or swishing noise. Murmurs may be 
harmless, also called innocent, or abnormal (NHLBI, 2016). In other words, the 
heart sound reflects the turbulence created when the heart valves close. The 
vibrations are audible at the chest wall, that is where the physicians place the 
stethoscope. The physician moves the stethoscope in the chest area while the 
patient is sitting up or reclined about 45 degrees. The stethoscope is placed in four 
areas (Tidy, 2015); 

• Mitral area: at the apex beat, that is when the left ventricle is closest to the 
thoracic cage. The stethoscope is placed on the left side of the body at the 
end of the chest muscle, below the areolas to be. 

• Tricuspid area: inferior right sternal margin is the point closest to the valve. 
The stethoscope is placed on the level of the left areolas towards the middle 
of the chest.  

• Pulmonary area: left second intercostal space close to the sternum is where 
the infundibulum is closest to the thoracic cage. The stethoscope is placed 
on the on the same vertical line of the tricuspid area upwards, about 4 
inches below the collar bone. 

• Aortic area: right second intercostal space close to the sternum, that is 
when the ascending aorta is nearest to the thoracic cage. The stethoscope 
is placed on the same level of the pulmonary area to the right. 

The stethoscope bell is used to hear the lower-frequency sounds, while the 
diaphragm is used for higher frequencies. However, if the physician suspects 
anything further, they call for an echocardiogram. The fundamental heart sounds 
(FHSs) give an indication of the health of the heart as said before. The graphical 
representation of the heart sound recording is called phonocardiogram (PCG). And 
it consists of the following: 

• S1 this is the first heart sound; it forms the “lub” in the “lub-dub”. Caused 
by the closure of the atrioventricular valves; tricuspid and mitral. It 
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consists of the mitral valve closure M1 and the tricuspid valve closure T1, 
they normally come in this order.  

• S2 is the second heart sound, it forms the “dub” in the “lub-dub”. Caused 
by the closure of the semilunar valves; aortic and pulmonary. It consists of 
the aortic valve closure A2 and the pulmonary valve closure P2, they 
normally come in this order. 

In some cases, the heart has more sounds than first and second, those are rare 
cases, but they do not necessarily reflect any abnormality. Such as: 

• S3 which is called a proto-diastolic gallop, occurs at the beginning of 
diastole after S2 with lower pitch than S1. The heart sounds more like “lub-
dub-ta” instead of the usual “lub-dub”. 

• S4 which is called the atrial gallop, it is produced by the sound of blood 
being forced info hypertrophic ventricle. The heart sounds more like “ta-
lub-dub” instead of the usual “lub-dub”.  

A normal heart would have short sound wave at the end of the diastole phase and 
again at the end of the systole phases. Shorter and less significant waves during the 
second diastole and then it repeats. Figure 15 shows the signal with more details 
about the pressure caused by every valve closure. 

To analyse the FHSs, the first step is to segment the signal. It is essential to localise 
the FHSs correctly to identify the systolic and diastolic regions. Many 
segmentation methods have been developed before, first published algorithm was 
in 1997 (Liang et al., 1997), it was based on Heart Sound Envelogram. The latest 
was in 2015 (Springer et al., 2016) and it was based on hidden semi Markov model 
(HSMM), what makes this work special is that it segments the first and second 
heart sounds within noisy real-world PCG using HSMM extended with the use of 
logistic regression for emission probability estimation. 
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Figure 15. Heart sound signal (Creative Commons). 

Classifying heart sound recordings is not a new science, there are about 50 years 
old trials, however, it is still considered a challenging task. The first try was in 1963 
attempted by (Gerbarg et al., 1963), their focus was to identify children with 
rheumatic heart disease using threshold-based method. Looking at the history of 
heart sound classification, the most widely used method is Artificial Neural 
Networks (ANNs), as a machine learning approach for this classification. Some 
researchers used wavelet transform to extract features held in the frequency 
component (Liung & Hartimo, 2002), (Schmidt et al., 2011), and other use it to 
extract time-frequency features (de Vos & Blanckenberg, 2007). In more recent 
work, some have also used support vector machines (SVM). As a feature extraction 
method, in practice, some researchers used wavelet (Ari et al., 2010), time-
frequency feature-based classifier (Maglogiannis et al., 2009) and in recent work, 
some used Hidden Markov Models (HMM) (Wang et al., 2007) (Saraçoğlu, 2012). 
Others used clustering-based classification; k-nearest neighbours (kNN) 
algorithm (Bentley et al., 1998) (Martínez-Vargas et al., 2012) .  

Although some of these tries demonstrated potential for accurate detect of 
pathology in PCG recordings, unfortunately, they all share the following flaws: 

Good performance is limited to carefully selected data. 
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Lack of separate test dataset. 

Failure to use a variety of PCG recordings. 

Validation on only clean recordings. 

5.2.2 Characteristics of the Heart Acoustic Wave 

It is important to remember that the cardiovascular system, the system that 
generates the acoustic wave in study is nonstationary; it changes with time. It is 
also semi-periodic and non-ergodic. On average, the human heart takes about 0.6 
– 1 seconds to complete a cardiac cycle, which is described in Figure 15. The 
acoustic signal has information in both domains; time and frequency. Since it is 
semi-periodic in Time Domain and discrete pens in Frequency Domain.  

Figure 15 is a part of the Wiggers Diagram that was developed by dr. Carl J. 
Wiggers to explain the cardiac cycle. It is a single grid that shows; 
Electrocardiogram, Aortic Pressure, Ventricular Pressure, Atrial Pressure, 
Phonocardiogram, and Ventricular Volume. The complete Wiggers Diagram is 
shown in Figure 16; the X-axis represents time while the y-axis represents 
pressure, volume, or amplitude depending on the type of signal at hand. 
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Figure 16. Wiggers Diagram (Creative Commons). 

Each of the signals shown in Figure 16 give insights into the cardiac cycle. In fact, 
every signal can be studied separately or in conjunction with another signal to 
diagnose the cardiovascular system and the heart condition. 

The heart acoustic wave has low intensity and low frequency, first sound (S1) has 
components spanning the band of 10 Hz – 140 Hz and second sound (S2) has 
components that span the band of 10 Hz – 400 Hz. Despite the low frequency, the 
energy content in the heart vibrations is much higher than that of a high frequency 
one. While the third and fourth sounds (S3, S4) have very low frequency.  
Moreover, heart sounds have short duration, they are transient for 50 – 100 
milliseconds. Additionally, the properties of the frequency of heart sounds vary 
with time, which makes them non-stationary. Due to the complexity of the heart 
activity that generates these sounds, the components overlap. The heart acoustic 
wave velocity in human body is approximately 1540 m/s, and the velocity is high 
when the wave goes through solid/stiff medium, such as bones. While it is slower 
through fluid, such as blood and even slower through gas, such as air. Due to the 
medium impedance the velocity change. Table 2 below, shows different velocity 
values that corresponds to different media (Azhari, 2010). 
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Table 2.  Sound velocity in different media 

Having discussed this, it is important to realise that every medium in the body that 
the blood travels through or passes by has an impact on the quality of the signal. 
This is not limited to the velocity of flowing that is discussed above, but also the 
power of the signal. From physics point of view, each medium/organ has its own 
absorption rate that corresponds to its density. Furthermore, every organ in the 
propagation path causes the signal to bounce in different direction (scatter) and be 
absorbed by different organs in these new paths. Nonetheless, the sound waves of 
low frequency will not experience this effect; since the dimensions of the organ is 
smaller than the wavelength of the sound signal in this case. Not to mention that 
organs comprise of extremely small cells compared to the wavelength of the sound 
wave, which adds extremely small effect to low frequency sounds passing through, 
such effects are very difficult to measure and can be ignored for practical reasons 
(Skille & Nielsen, 2017).   



Acta Wasaensia     63 

6 MODELLING HEART ACOUSTIC WAVE PROPAGATION 

The research in this area have been dominated by two approaches; deterministic 
and stochastic. The stochastic approach considers the uncertainties and noise in 
the model. However, both approaches are valid and have satisfactory results. One 
may interpret the deterministic approach as an averaging of the stochastic one. In 
this chapter, both approaches are briefly discussed to choose the model that will 
be used in the experiment. The term “Analytical approach” is used here to express 
the deterministic approach.  

6.1 Analytical Approach: Attenuation 

This approach is popular for studying ultrasonic intra-body communications (IBC) 
and sensors. However, the frequency band does not force any limitation on the 
application of this model, in fact it could be equally applied to any other frequency 
band, such as low frequency. This assumption was made because the same 
approach was used to model ultrasonic communications (Galluccio et al., 2012) 
and to model opto-ultrasonic communications (Santagati et al., 2013).  Where the 
first research limited the maximum frequency to 1GHz to be able to operate with 
small devices and limited maximum attenuation, and the second one discussed 
frequency band up to 1THz. Furthermore, the assumption was confirmed in 2016, 
when the same approach was used to model heart acoustic signals (Shi & Chiao, 
2016). 

In this approach, the heart acoustic wave propagation system is straightforward, it 
is modelled in Figure 17 as an attenuation block function that transfer the heart 
sound into the recorded sound at the measuring spot. 

 

 

Figure 17. Propagation Model of heart acoustic wave (Analytical) 

when an acoustic wave propagates through the human body, the signal experiences 
exponential decay in its amplitude. This loss is known as “attenuation” and it 
happens due to the absorption, scattering, and reflection caused by the human 
tissue; bone, muscle, blood, fat, other organs, etc. Multipath is not discussed here 
because when heart acoustic wave propagates in the human body, it comes across 
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irregular shaped organs that are small in relation to the wavelength of the acoustic 
wave ( , these organs are weak reflectors, because of that, scattered 
reflection is discussed instead. The amplitude decay is modelled as (Kinahan, 
2006) ; 

Where is the amplitude attenuation factor, measured in . The amplitude 
loss is measured in decibel as 

The attenuation coefficient  of a material, also known as the absorption 
coefficient, is a variable of the tissue acoustic properties ( ) and the frequency 
( ) of the acoustic wave, modelled in Equation 19 as: 

  is measured in ,  is often roughly estimated as 1, while  can be 
measured as  in . The attenuation can also be defined as  

With that, Equation (16) can be reformulated as 

Table 3. Acoustic attenuation ( ) of human body tissues

In Table 3, the acoustic attenuation of the human body tissue is presented (Bryn 
A. Lloyd, 2010). On the propagation path between the heart and the wrist there is
blood, blood vessels, muscle and bone tissues, fat cells and water. Each tissue
causes different attenuation depending on the frequency of the acoustic wave.
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This can be mapped directly to heart acoustic wave propagating through human 
body, but since the entire heart mechanism is based on pressure changes (refer to 
chapter 4), the equation should be rewritten for pressure instead of amplitude, it 
is the initial pressure experiences exponential decay (Santagati & Melodia, 2013) 
(Santagati et al., 2013) (Galluccio et al., 2012). 

While ( ) represents the distance travelled by the acoustic wave. Agitation of the 
molecules of these tissues cause thermal noise (Galluccio et al., 2012). Moreover, 
there are many sources of noises and uncertainties at the band of wave 
propagation. Hence, and based on the central limit theorem, this noise can be 
expressed as additive Gaussian. The power spectral density (PSD) of this noise in 
dB can be given as (Santagati & Melodia, 2013) (Santagati et al., 2013) (Galluccio 
et al., 2012) 

μ

And consequently, the signal-to-noise-ratio (SNR) is calculated as 

Where  is the transmitted power,  is the PSD of the thermal noise,  is 
the total attenuation experienced by the transmitted pressure signal. 

Towards the end of this research a team of two attempted building heart sound 
monitor using wearable wrist sensor (Shi & Chiao, 2016). Although they focused 
on the hardware, the mathematical model of the heart acoustic system was based 
on the analytical approach discussed here. The wrist sensor was designed to detect 
heart pulses by measuring pressure changes to calculate the heartbeats. As 
previously discussed in this research, the sound wave changes with the change of 
blood pressure, which is inevitable when the sound wave propagates through the 
blood vessels (following the blood flow), this applies to pulse wave as well. In (Shi 
& Chiao, 2016), they worked on finding the inverse function for the pulse wave 
between two locations along the same artery; chest and wrist and used that to 
estimate the recorded pulse wave at the chest from the one recorded at the wrist. 
Figure 18 shows the model that was presented in (Shi & Chiao, 2016), it represents 
the travel of the pulse wave sound in blood vessels. The job is now about inversing 
the effect of the blocks in this model, once the pulse wave was captured at the chest 
and the wrist, the two were compared to find the relation between them. The delay 
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correlates with the distance travelled from the heart to the wrist; they relied on the 
pulse peaks in time domain to estimate the delay using Short-Time Fourier 
Transform (STFT). They then trained a two-layer feed-forward backpropagation 
neural networks to find the inverse attenuation function. The main task here was 
to validate the recorded pulse wave at the wrist and consequently validate the 
proposed hardware. 

 

 

Figure 18. Travel model of pulse wave sounds in blood vessels. 

6.1.1 Discussion 

Assume the analytical approach is used to model the heart acoustic system 
propagating from the heart to the left wrist, now apply Equation 21. To do so, and 
to apply the proposed model along with the mathematical equations, few variables 
must be found first, starting with the known facts.  

• The tissues found in the path between the heart and the wrist are; bone, 
muscle, blood, blood vessels, and in some cases fat 

• The typical frequencies of the heart sounds; , , 
, .  

• The attenuation coefficient  of every tissue in every frequency is found in 
Table 3 

• Tissue acoustic properties ( ) 

o For simplicity, let us assume . This is the common case  

o Find  for every  and every , see Table 4 for values 

• Now to find  of the recorded heart sound wave using MATLAB 

o The heart sound used in this test is an mp3 audio file recorded with 
two stereo channels, total of 2383872 samples recorded with 
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sample rate of 44.1 kHz and bit rate of 33.8140 bps, this 
information was found using the function audioinfo() in MATLAB 

o Initial pressure ( ) is the pressure of the recorded heart sound 
wave. It can be found using Sound Pressure Level calculator (SPL) 
function in MATLAB, this function was defined by Chad Greene 
(Chad Greene, 2012)  

o  gives the sound pressure in dB and it takes into consideration 
pressure reference of the medium (in this case, blood) 

o The average blood pressure of an adult is 105/70 mmHg, which is 
equivalent to 1.5 mmHg, this is equal to 0.01125 Pascal 

o  in dB, spl (sound_wave_vector, pressure_reference), which was 
found to be 21.6937 dB 

o left channel sound was used here, this was found using the function 
sound_wave_vector = sound_wave(:,1) in MATLAB   

Table 4. Acoustic properties for human tissue between heart and wrist 

 

• And finally, to calculate  using Equation (22) 

o Distance from the heart to the left wrist is approximately 0.78 m  

o  

o  will have different values for every frequency and tissue, 
following the acoustic properties of each. See Table 5 for all values 

The results shown in Table 5 indicate that the pressure of the measured sound 
wave at the wrist is almost the same as the initial pressure. However, this does not 
reflect the real case scenario (heart-wrist system) accurately because it is a known 
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fact that the pressure is not uniform throughout the human body. This happens 
because the heart pumps the blood to the entire body, and it circulates back against 
gravity. The pressure drops as the distance from the heart increases (Luiz et al., 
2006). In conclusion, this approach is simple to use, and it gives relatively good 
results, nevertheless, it might be more suitable for practical applications where the 
output signal can be measured rather than simulated as is the case here, which 
makes (Shi & Chiao, 2016) a valid use case. 

Table 5. Calculating P(d) for S1 and S2 frequencies in different tissues 

 

Allthough the heart sound spans through great number of frequencies depending 
on its condition, in this discussion the minimum and maximum values are used to 
simplify the concept. Technically, every frequency component of this signal is 
affected by an attenuation corresponding to its frequency value.  

6.2 Stochastic Approach 

This approach has been adopted by Dr. Durand in 1989 (Durand et al., 1990). It is 
interested in studying the properties of the signal in frequency domain. Ideally, 
this would be achieved using Probability Density Function (PDF), however, it is 
not feasible to find PDF of semi-period signal such as the heart signal, and that is 
why this approach settled for Power Spectral Density (PSD).  

Durand’s work in analysing heart acoustic wave in dogs started early 80s, he and 
his team published series of papers documenting the modelling of the heart-thorax 
acoustic system followed by analysing the effects of different conditions using M1 
(one of the major components of S1, the other is T1) and A2 (one of the major 
components of S2, the other is P2) from the first heart sound S1 and its second S2, 
respectively. Their work has been highly appreciated and has been since cited 
nonstop around heart sound wave modelling and analysis. Figure 19 shows the 
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complete model that Durand had started in 1985 (Durand et al., 1985) with the 
additional  and  as the instrumental noise. 

 

 

Figure 19. Durand’s basic model of the heart/thorax acoustic system 

Where; 

• PCG represented by  

• the instrumental noise of the recording system at the input is represented 
by  

•  represents the PCG measured at the system input (sum of  and 
) 

•  is background noise at the output 

•  is the PCG measured at the recording system at the output 

•  is the contribution of the input to the measured PCG at the output 

• and   is the time-varying impulse response of the system (transfer 
function). 

The mathematical formulation of this model is based on the time-frequency 
representation of digital signals and systems that was introduced in early 80s 
(Portnoff, 1980). In this model, Durand chose to calculate the time-varying Fourier 
transform  of the PCG  on a single cardiac cycle basis, represented as 
follow 
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Where r is the index of the cardiac cycle,  is a real window sequence of 
duration  centred on the time index ,  emphasises a portion of the PCG at a 
specific instant of the cardiac cycle.  

The time-varying Fourier transform  of the PCG output signal  on a 
cardiac cycle basis is calculated as follow 

Thus, the cross spectral density between PCGs is estimated by 

And  is the number of cardiac cycles averaged, and  is the energy of the 
windowing function. Now, the auto spectral density function becomes 

Referring to Figure 19, the instrumental noise of the recording system at the input 
can be neglected, because it is very small compared to the recorded signal. Hence, 
the system transfer function can be estimated using 

Where  is the transfer function that represents the heart-thorax acoustic 
system that describes the characteristics of the sound transmission in terms of the 
amplitude and phase (Durand et al., 1985) . The system time-varying coherence 
function is interpreted as the frequency distribution of the squared correlation 
function between the input and output signals of the system, it can be computed 
by 

Where , the coherence function value indicates the validity of the 
transfer function for different frequency spectrums; 

• if  the system is noise-free, and the estimate of the transfer 
function is exact 
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• and if  the system output is pure noise and the system transfer 
function is practically meaningless. 

For example, this could happen if the sensor is faulty. For any value between 0 and 
1, the system might suffer from large noise, or its linearity might be questionable, 
or then the input signal is not only what’s indicated in Figure 17. 

If the instrumental noise is not negligible, it can be reflected in the transfer 
function as follow 

Where  is the auto spectral density function of the instrumental noise 
m(t) in Figure 19. This instrumental noise could cause negative bias that 
underestimates the real gain of the transfer function, which can be estimated and 
corrected using corrective function corresponding to the inverse ratio of Equation 
(34). 

Where  is the auto spectral density function of the PCG monitored by the 
input recording system.  At and the coherence function between the instrumental 
noise and the output PCG is 

This means that . 

Durand and his team (Durand et al., 1985) and many others after their work have 
adopted this approach with success. It is worth to mention that a large portion of 
the work was practical; Durand and his team recorded the heart sound surgically 
from inside the heart and compared that to the recording they got from the apex.  

6.2.1 Discussion (Realisation of Durand’s Research) 

This stochastic approach relies on the measurement to estimate the transfer 
function. It is a non-parametric approach as has been shown in the previous 
section. However, in this study, we have not performed similar measurements on 
living animals nor humans. This is due to the restrictions around such 
experiments; it requires ethical approval and medical doctor’s involvement, which 
was not seen necessary for this pure engineering research. Therefore, the analytical 
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derived approach “analytical approach” was preferred to this. However, it is still 
relevant to realise Durand’s method from human PCG, for future reference when 
real data can be obtained. 

Using the same heart sound that was used in the discussion of the analytical 
approach, let us find the variables required for the stochastic approach. 

• Fourier Transform of the audio signal must be found. 

• Hanning window function is used here, and it can be found using the 
function, with alpha set to 0.5 

• Equation 26 can be constructed now. 

• Using , the energy of the window function  can be calculated using 
Equation 29. 

• Number of cardiac cycles ( ) in the heart sound, this was found by counting 
the peaks of the sound signal plotted in MATLAB; which was found to be 
48 cycles in this case. The number of cycles is subjective and cannot be 
generalised.  

• And now the cross- and auto- spectral density functions can be constructed.  

The problem with applying Durand’s model as-is is that there is lack of 
representation of the distance between the heart and the measuring point (wrist in 
this case). Due to that, it is cumbersome to reflect the difference between the 
output measured at the chest and the wrist. Durand’s direct measurements have 
replaced the need for this representation. Therefore, Durand’s model must be 
modified to accommodate the attenuation experienced by the heart sound wave 
after travelling the distance to the wrist. This is what will be simulated in this 
discussion. 
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Figure 20. Heart acoustic signal measured at the chest (input) 

The realisation of Durand’s Model could be achieved in the simplest form using 
Fast Fourier Transform and Power Spectral Density (PSD) calculations. The 
process starts by converting the heart acoustic signal in Figure 20 into frequency-
domain using Fast Fourier Transform (FFT), to calculate PSD. The signal’s 
frequency is then scaled to find the corresponding frequency values of every point 
for the entire signal. The absolute result is then multiplied into the FFT of the 
signal element-by-element (dot product), this can be seen in Figure 21. The 
received signal is calculated using Inverse Fast Fourier Transform (IFFT), this 
gives an estimate of the received heart sound signal at the wrist using Durand’s 
Model, and can be seen in Figure 22. The signal seems to be distorted and have 
missed some information when compared to Figure 20, however, there is no direct 
relation between the signal characteristics and where it was measured (how far it 
had travelled from the heart). 
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Figure 21. Realisation of Durand’s Model (1) 

 

 

Figure 22. Realisation of Durand’s Model (2) 

As discussed earlier, Durand’s Model does not account for the travelled distance 
from the heart to reach the measurement point of the acoustic signal. Therefore, 
there is a need for a hybrid model that combines the two approaches; analytical 



Acta Wasaensia     75 

and Stochastic. To reflect the attenuation caused by the travelled journey by the 
PCG signal, this will be called the Hybrid Model. Below are two attempts to design 
the analytical model as well as the hybrid model. 

A. Method 1  

From the discussion about the analytical approach, the heart sound wave 
experiences attenuation , which is a function of frequency and acoustic properties 
of the medium, . Let us assume that  and ignore the frequency effect 
for simplicity, which leads to a uniform attenuation that is equal to . To even 
simplify the attenuation further, let us use the average value of  from Table 4. 
Consequently, . The model used to demonstrate this method is 
shown in Figure 23. 

 

 

Figure 23. Simulation model of the stochastic approach – simplified method 

B. Method 2 

This method is a hybrid between the analytical and the stochastic approach. The 
output signal is the sum of outputs that were found using the analytical approach. 
This method factors in the frequency effect on the attenuation. Figure 24 shows 
the model used to demonstrate this method.  

The calculated output following the analytical approach is shown in Table 5, the 
average value is calculated here 

• Average value of the acoustic property,  

• Frequency bands should remain the same; 10Hz, 140 Hz, 10 Hz, 400 Hz. 

• Averaged output is the sum of attenuated input signal in each frequency 
band divided by 4. 
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Figure 24    Simulation model of the stochastic approach - hybrid method 

6.3 Summary 

In this chapter, the analytical and stochastic models of the heart acoustic wave 
propagation were investigated.  The focus point was the wrist, what does the heart 
acoustic wave propagation model look like between the heart and the wrist? And 
most importantly, which model is more realistic? The realism was measured by 
answering three questions: 

• Does the model account for the distance between the focus points? 

• Does the model account for the attenuation imposed by the organs on the 
propagation path? 

• Does the model preserve the human body characteristics? 

The analytical approach does account for the distance between the heart and the 
measuring point and it does account for the attenuation imposed by other organs 
on the propagation path, but it does not reflect real human body characteristics; it 
assumes uniform pressure throughout the propagation path. 

The stochastic approach (Durand’s model) relies on the measurements of living 
animals to get the system transfer function, which nullify the need to explicitly 
represent the distance between the focus points and the attenuation caused by 
other organs on the path. Since this approach is using the measurements to find 
the transfer function rather than studying the propagation path. However, this 
model can easily be modified to account for the missing measures; distance and 
another organs’ attenuation. As opposed to the analytical approach where there is 
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no room for modification without over complicating the model. That is how the 
hybrid model was created.  

The Hybrid Model gives realistic realization of the heart acoustic wave propagation 
from the heart to the wrist accounting for human body characteristics; distance, 
effect of other organs, and frequency differences in the acoustic signal itself. 
However, the result of the realisation reveals that the Hybrid Model is not realistic 
enough to account for the distance travelled by the PCG signal nor is it descriptive 
enough for the impact of this distance. 
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7 THE EXPERIMENT 

The experiment here refers to modelling the heart-wrist acoustic wave propagation 
system using SIMULINK MATLAB, see Figure 25 for the model. The transfer 
function [ ] was found using the analytical approach, where  

in Equation 22 is a function in frequency, [ ]. This ensures the 
applicability of this model to the entire frequency range. By calculating the Laplace 
Transform of this equation, the model transfer function was found. Since the 
values in table 5 are general and applicable to adults, this model is assumed 
objective. The rest of the model shown in Figure 25 shows, a healthy heart acoustic 
signal is used as a reference, a random noise is added to account for measurement 
noise, the total signal is used as an input to the model. The resultant signal at 
output of the model is a distorted version of the input. This is when the actual 
experiment starts, and the discussion gets interesting. See Figure 26 and Figure 27 
for the original and received signals, respectively.  

 

 

Figure 25. Heart-wrist acoustic propagation model (analytical approach) 

The reason behind choosing the analytical approach for carrying out the analysis 
is the lack of real measurements. Since the research is done by an engineer and 
despite having studied the cardiovascular system there is still need for medical 
supervision to acquire real human or animal measurements. In addition to the 
ethical approval requirements, the experiment had to be simulated and the 
analytical approach was most suitable for that. It, also, paints a clear picture of the 
propagation path effect on the heart acoustic signal. Figure 26 and Figure 27 show 
the healthy heart signal that is used as reference throughout this experiment 
(original and as received at the wrist).  

The same healthy signal referenced in chapter 6 (44100 sample/second) was down 
sampled by 100 sample/second to reduce the computation load and speed up the 
processing time. This sampling rate was used throughout the experiment. It should 
be noted that down sampling acts as a filter that removes the high frequencies, 
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which works well in the case of low frequencies like the one at hand. The new 
resultant signal has slower sample rate than the original signal. This could affect 
the accuracy of the experiment negatively, since the down sampling of the signal 
could lose some of the disease’s indications that are held in high frequencies. All 
information and indications held beyond 200 Hz are lost, because the down 
sampled signal shows only 200 frequency components. Not to mention that it 
would limit the number of levels that can be in the Filter Bank, since some sub 
bands would show only noise. However, the purpose of this research is to diagnose 
the phonocardiogram signal (PCG) with machine learning with limited 
computation load and processing power (mobile devices), down sampling serves 
this purpose.  

At this stage, the main point is to prove that the received heart acoustic signal at 
the wrist is viable and informative. From Figure 27, the received signal does hold 
information and despite the distortion caused by the noise and the system, the 
signal is still comparable to the original signal measured at the chest. To prove this, 
the task is to determine the success of the diagnosis (i.e. classification) of the heart 
condition using the signal received at the wrist; if the result is satisfactory (>75% 
success rate and <25% probability of error), the signal does not need any 
restoration and can be used as is without any improvement. This is good news, 
because it reduces the system complexity and consequently reduce the 
computation load and required time and power for this system. 

 

Figure 26. Original Signal: Healthy Heart Acoustic Signal 
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Figure 27. Received signal at the wrist (heart-wrist propagation mode) 

The diagnostic system is based on multivariate classification from parametric 
estimation as a Machine Learning technique. This is used to classify the acoustic 
signal as received at the wrist and find the most probable diagnosis of the heart 
condition. The classification is based on the discriminant function of the 
unclassified signal. The most probable diagnosis is found by maximising the 
discriminant function and in other words, minimising the Mahalanobis distance 
(Alpaydin, 2016). 

The experiment starts by defining five hypotheses, each representing a heart 
disease, these hypotheses are used as reference classes for the diagnostic system.  
This is done by introducing a unique transfer function that alters the healthy heart 
acoustic signal shown in Figure 26 to form a hypothetical disease, the resultant is 
then sent through the heart-wrist model (acoustic propagation transfer function) 
to be received as hypothesis x. And here is what makes these hypotheses valid - In 
simple words, an unhealthy heart is a heart that produces faulty PCG. When the 
cardiovascular system has a problem, the acoustic signal of the heart should reflect 
that in time/frequency space. This appears as corruption in the heart sound. Such 
change in the acoustic signals might not be audible or sensed by human ears (not 
even experienced cardiologist). However, it could be sensed and potentially 
classified with sensitive sensors and proper machine learning algorithms. A heart 
disease could be modelled as a linear corruption of signal of the healthy sound. 
This corruption has been performed by applying the healthy heart sound signal to 

Am
plitude 

Time in seconds 
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different linear filters with different characteristics. There is no medical basis for 
selecting these filters during the simulation. However, this could be another 
research for modelling different heart problems with linear/nonlinear transfer 
functions.   

The diagnostic system’s job is to identify this noise and consequently conclude the 
most probable heart condition. Table 6 shows the hypotheses that were created for 
the diagnostics task. 
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Table 6. Classes for The Diagnostic System 

Figure 28 shows what these hypotheses look like to highlight how they differ from 
each other. These are the signals with added system noise only before going 
through the heart-wrist model. In this figure the signals are shown in time domain, 
where x axis represents the time in seconds and the y axis shows the amplitude. 
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Figure 28   Heart Hypotheses: hypothetical heart conditions 

7.1 Classification of Heart Conditions 

There are numerous classification algorithms in the literature. However, there is 
an important trade-off between complexity and accuracy. One application of this 
proposal is to be applied in limited computation power device (mobile devices). 
Hence, simple classification algorithms are used as a start.  

7.1.1 Simplified Approach (Using two features) 

In this approach, each hypothesis is characterised with two features; the mean and 
covariance. Every new case would be characterised with the same features and the 
classification is based on minimising the result of the following equation 

Where A and B are weights that are chosen to maximise the indication of the mean 
difference and/or the covariance difference. During the experiment, it was 
observed that the covariance difference is more significant. For that, A and B were 
selected as 0.5 and 1, respectively. And the equation is now 
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This equation represents the distance between the unknown condition and every 
known hypothesis. When minimised, the result is the closest and most probable 
condition.  

To assure practicality and most importantly discuss accuracy and probability of 
error in relation to signal to noise ratio; this approach was deployed in two 
different scenarios.  

Scenario 1. Quite environment, where the heart acoustic wave (PCG) is recorded 
indoors or at least inside an ambulance with closed doors. In the experiment, this 
is represented with stationary noise ( ), also known as Gaussian Noise. 
Although this scenario is applicable, it is rarely achievable in accidents and more 
so in catastrophes, which are the targeted scenarios with this research.  

Scenario 2. Chaotic/ noisy environment, where the heart acoustic wave (PCG) is 
recorded outdoors amid the accident where moving vehicles around, for example. 
In this experiment, this is represented with nonstationary noise ( ). 
The classification accuracy is discussed at the end of every scenario. 

In both cases, 300 cases were generated with equal distribution (50 
cases/hypothesis) between the Hypotheses. Although this is unrealistic; because 
in real life, there are some heart conditions there are more probable than others. 
If such scenario is explored, the experiment would be using Bayesian probability, 
where the impact of the most probable hypothesis (weight) would be factored in 
addition to the minimising the classification function. 

a) Scenario 1: Stationary Noise 

A random Gaussian noise is used to generate random variations of the heart signal, 
these signals represent unknown conditions. They are based on the hypotheses 
discussed at the beginning of this chapter. Total of 300 cases were generated and 
classified, all cases were classified successfully. This classification has percent 
error of 0%, with 100% reliability.  

If this approach with scenario 1 is considered system 1, the confidence interval can 
be calculated as follow 

 

Where; 
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•  is the mean of the classification function’s results 

•  is predefined value (Sullivan L.) based on the confidence level that this 
result can be reproduced 

•  is the standard deviation of the results of the classification function, and 
n is the number of samples. 

In this scenario, the confidence level of reproducing the same results is 95% since 
the result depend on the noise characteristics. And with that, the Confidence 
Interval is .  

If the confidence level increase to 99%, the confidence interval would be 
, which is clearly wider. 

With this, it can be concluded that system 1 is applicable with high accuracy due 
to the wide confidence interval. However, the wide confidence interval could also 
be caused by the relatively small sample size, which could also explain overfitting 
that has led to 100% successful classification.  Nevertheless, the application is 
limited to quite environment. This system can be used to reach quick diagnosis in 
an ambulance on the way to the ER, however, that is not the scope of this research 
and for that this system will not be considered further.  

b) Scenario 2: Nonstationary Noise 

A noise with defined mean and covariance is used to generate random variations 
of the heart signal that represent unknown conditions based on the hypotheses 
discussed at the beginning of this chapter. The noise is defined as follow 

Where N is the random nonstationary noise, n is the number of samples, and 
are the mean and covariance, respectively. The noise power ( ) value 

(  is used to keep value of N reasonably low, in order to meet an SNR of 
20 dB, C is a constant that was set to the same value of .  Here and after SNR 
= 20 dB is used as a threshold; least accepted SNR.  Total of 300 cases were 
generated and classified using this approach, and to maintain comparable results 
with the advanced approach.  
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Only 300 cases were classified. Out of which, 217 cases were successfully classified, 
while 83 cases have failed; a success percentage of 69.6%. 

This approach with scenario 2, is considered system 2. Looking at the classification 
results, the system functions with this success percentage as long as the SNR is 
kept higher than or equal to 20 dB.  However, this percentage drops to 18.6% as 
soon as the SNR is below 20 dB, until it simply stops distinguishing between the 
cases. In an attempt to show case an extreme scenario, SNR was set to -50 dB, 
where the noise power is kept the same, but the constant value was set to 1, in other 
words, the covariance was defined as: 

Consequently, this resulted in large confusion where all cases were classified as 
hypothesis H0. Only 17 cases were classified successfully, and the rest was false. In 
Table 7, the classification function shows how small is the distance between the 
unknown case and the Hypotheses. These small differences explain the high level 
of confusion and why this system in this scenario is simply useless when SNR is 
below 20 dB. 100% of the error occurs in classifying any case that is not related to 
hypothesis H0. Although it is an extreme case, but in this scenario, the result is 
particularly dangerous since the system perceives all conditions to be healthy.  
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Table 7. False classifications using simplified approach (scenario 2) 
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Using the same Equation (40), the Confidence Interval for this scenario with 95% 
confidence is . If the confidence level increase to 99%, the 
confidence interval would be , which is slightly wider than that of 
95% confidence interval but still too narrow for an acceptable success. 

Figure 29 shows a comparison between the success rate granted by an SNR that is 
higher than or equal to 20 dB and that granted by an SNR that is lower than 20 dB.  

 

 

Figure 29. Comparison of the success rate around the SNR threshold. 

From this, it can be concluded that the simplified approach is reliable and 
theoretically applicable to closed and quite environment with zero probability of 
error.  Nonetheless, classifying heart condition in an open chaotic environment 
with two features only is not reliable method. Evidently, the confidence level gets 
narrower when the noise is nonstationary in comparison to the stationary noise 
scenario. Moreover, the success percentage drops by 30%.  

In a pursuit of finding a higher accuracy, better success rate and a more reliable 
classification system, the advanced approach is proposed. In an attempt to 
introduce more features that identify and differentiate between the Hypotheses. A 
similar concept was used to distinguish between normal and abnormal heart sound 
using spectrogram analysis (Dey et al., 2012). However, the heart sound was 
measured at the chest with high quality. 
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7.1.2 Advanced Approach (Using Wavelet Transform) 

As seen in Approach 1, diagnosing the acoustic signal using two features only in an 
open and chaotic environment is limited to low noise powers that achieve SNR 
close to 20 dB, the same system proves to be useless when the SNR reaches small 
values that are far below 20 dB. This approach proposes to use more features to 
define the cases; to improve the process accuracy of distinguishing between the 
hypotheses.  This is achieved by decomposing the signal into a number of bands 
using Wavelet Transforms (specifically; Filter Banks), every band is then described 
by its mean and covariance, so that the entire case is defined by a number of 
features equal to 2x the number of bands.  As the focus of this research is 
diagnosing heart condition in an open and chaotic environment, the noise is kept 
nonstationary. However, the noise power and SNR are discussed around the 
threshold of 20 dB to maintain comparable results to the previous approach. The 
stationary noise scenario was ignored here since the result was satisfactory using 
Approach 1.  

Same as in the previous approach, 300 cases were generated with nonstationary 
noise (50 cases for every hypothesis). For each hypothesis, the cases were divided 
50% training and 50% testing sets. Then the following steps were followed 

(1) Decomposing the signal 

The signal is decomposed using Wavelet Transform and specifically Filter Banks 
with different number of levels for every cycle of this experiment. The training and 
test sets were decomposed into a number of bands equivalent to 2x Filter Levels.  
For each band, the mean and covariance were calculated, so that each case is 
described by a number of features equivalent to 2x the number of bands. These 
features are concatenated in a 1 x the number of features matrix named 
“descriptive matrix”.  

The number of levels was selected using trial and error as the method of 
optimisation. Starting the 1 level (2 bands), the experiment trials and compare 
results from 2 levels (4 bands), 3 levels (8 bands), 4 levels (16 bands), 5 levels (32 
bands), and finally 6 levels (64 bands). Increasing the levels beyond 6 did not add 
any value to the classification nor did it improve the classification result, for that 
this experiment was stopped at 6 levels.  

(2) Training the System 

Training the system in this approach is about using the training set to construct 
the discriminant function. By calculating the mean of the descriptive matrix to get 



90     Acta Wasaensia 

a 1x128 vector and calculate the covariance of the descriptive matrix, which is a 
square matrix of 128x128. These values are used to construct the Discriminant 
Function (DF) that is given by Equation 45. This equation represents quadratic 
discriminant function used for multivariant classification (Alpaydin, 2016). 

Where s is the covariance matrix, m is the mean vector, and x is the training case. 
It certainly helped to add a confirmation step here that tests the DF using the 
training set, by simply calculating the DF for the training set and maximising the 
result, in order to confirm the validity of the training. This is a simple test; because 
if the training is valid the classification must be 100% correct.   

During the confirmation step, it became evident that the determinant of the 
covariance matrix is zero in many cases, which made the first component of the DF 
function (-infinity). For that, the discriminant function equation was rewritten as 
follow 

This formula was used when the filter levels reached 4 (16 bands, 32 features). 

(3) Testing the System 

To test the system, the discriminant function calculated in step (2) is used to 
classify the test set. The classification was 97.33% successful using 8 features (2 
levels), with only 4 false classifications. With 128 features (6 levels), the 
classification was 79.33% successful. Total of 31 cases out of the 150 cases were 
falsely classified, while the rest 119 were correctly classified, see Figure 30 for a 
visual representation of the classification success across hypotheses.  
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Figure 30. Results of Advanced Approach – 8 features (using Filter Banks) 

After repeating the above steps for every all Filter Levels from 1 to 6, it was 
concluded that the best possible configuration for this scenario using this approach 
is to use a Filter Bank with 2 levels. This decomposes the signal into total of 4 bands 
and allows the signal to be described by 8 features. This is an interesting result 
because it defies the proposition behind this approach, that is more sub-bands will 
improve the success rate of the classification. Figure 31 shows that this relation is 
non-existent when the SNR is higher than 50 dB. Despite defying the proposition 
of the approach, this result is eye-opening. Decomposing signals is considered 
insightful, because it provides more descriptive details about the original signal. 
For example, a signal that is decomposed to 4 bands is more descriptive than one 
decomposed to 2 bands, since the number of features is twice as much with 4 
bands. What makes this result eye-opening, is that it argues against that. It is 
known that when the decomposition level is too large, the analysis goes too deep 
and might lead to analysing noise instead of the signal of interest. However, this 
was not expected with small decomposition levels as the ones used here. Looking 
at Figure 32, it is evident that when the SNR value is 20 dB, the success rate of the 
classification is inversely related to the filter level, and consequently, the number 
of features. 
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Figure 31. Classification success vs. the number of levels (High SNR) 

 

 

Figure 32. Classification success vs. the number of levels (Low SNR) 

Referring to Figure 28, there is a clear correlation between the hypotheses that 
could explain this result. Evidently, the correlation coefficients between these 
hypotheses proves exactly that, especially between Hypothesis 1 and 2, Hypothesis 
1 and 3, and also between Hypothesis 2 and 3, where the correlation coefficients 
are close to 1.  
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From this discussion, it can be concluded that a larger number of smaller bands 
causes the classification to be more error prone. Such bands result from 
decomposing the signal using filter banks with large number of levels. This could 
have been caused by the down sampling, since it removed information held in high 
frequencies and left some bands with just noise.  However, the trade-off was 
worthy, because the down sampling that was performed at the beginning of the 
experiment reduced the required computational load and processing power. Not 
to mention that it served the purpose of this research; limited energy and 
processing power (for potential use of mobile devices). Similar result had been 
noted in image texture recognition that filter banks with smaller number of levels 
performed better than larger ones (Randen, 1997). 

Despite that, this finding is considered a paradigm shift because it goes against 
expected performance. Let us use the analogy of localising a red ball inside a round 
field, Figure 33 demonstrates this visually, if the task is to find the location of  
visualised as the red dot.  is in one of the circle slices or not in the circle at all. 

Figure 33. Visual demonstration of the impact of the number of hypotheses. 

On the first circle, there are six slices. Therefore, the possible location of  is 
reduced to 1/6th of the circle only. On the middle circle, there are ten slices. 
Therefore, the possible location of  is reduced to 1/10th of the circle. The 
accuracy is higher here because the location is further reduced by ~ 0.07. And on 
the third circle, there are twelve slices. Therefore, the possible location of  is 
reduced to 1/12th of the circle. The accuracy is even higher here because the 
location is further reduced by 0.08 from first circle to the right and by 0.02 from 
the middle circle. The conclusion here is that the number of slices determines the 
level of accuracy when it comes to the location of , because it reduces the pool 
of possible locations. In the same concept, the number of sub bands of the signal 
should determine the accuracy of the diagnostic system. However, it is important 
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to maintain low noise to avoid analysing noise only and causing more errors in the 
classification. It is also important to maintain clear distinction between the 
classifications, to ensure low to no correlation between the sub bands.  

Based on this experiment, it can be stated that the number of levels used in the 
decomposing filter bank is inversely related to the accuracy of the classification.  

7.1.3 Using Neural Network for Classification 

In this approach, a neural pattern recognition network from the Neural Network 
toolbox in MATLAB was used. That is a two-layer feedforward network, with a 
sigmoid transfer function in the hidden layer, and a softmax transfer function in 
the output layer. The simple network had one hidden layer with 10 neurons, the 
network diagram is shown in Figure 34.  

 

 

Figure 34. Neural Pattern Recognition Network Diagram 

The data set had 150 samples with 16 elements for the input. This input is the same 
decomposed signal using a 4-level filter bank (same as the previous approach). 
Similarly, it had 150 samples for the target with 6 elements. each element 
represented a class (Hypo 0, Hypo 1, Hypo 2, Hypo 3, Hypo 4, Hypo 5), and each 
target vector showed ‘1’ for the correct class and ‘0’ elsewhere. The data set was 
divided into 70% for training, 15% for validation and 15% for testing. 
Consequently, the network output has 6 elements. For training, the network used 
Scaled Conjugate Gradient training algorithm. The training was successful and so 
was the testing and validation. The performance was satisfactory as can be seen 
from Figure 35 
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Figure 35. Neural Pattern Recognition performance plot 

As can be seen in the confusion plot in Figure 38, 25 cases of every class were 
recognised, which represents all the dataset that was used for training, testing and 
validation, with zero% errors and zero confusion. That is when the training was 
concluded and there was no need for further testing. 

Following this, the network was used to classify a new dataset of 150 samples. The 
classification was 100% successful, the network was able to recognise the features 
of every sample with high accuracy; where the output showed 0.99999* for the 
correct class and <0.00001* for all other classes. The difference between the values 
of the output vector is very large, which proves low confusion and high 
performance, as can be seen in Figure 36. 
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Figure 36. The confusion plot of the Pattern Recognition Neural training  

The accuracy of the classification must be coupled with trust level to understand 
the reliability of this classification.  The Neural Network trust level can be 
measured using the formula in Equation 47 

Where  is the probability of each Hypothesis included in the 
training phase, which is (25 cases of each Hypothesis/150 total number of training 
cases=0.167) and from the resultant classification shown in Table 8, the 

, denoted in the table as T. 
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Table 8.  Snippet of the Classification Result. 

Therefore, the trust level on the classification provided by this Neural Network is 
, that is 83.3%. This is quite satisfactory; however, it could be 

improved using more Hypotheses. The below discussion explains further. 

In this experiment, there are six classes that have equal presence in the studied 
sample. Therefore, the probability that a given case is either of these classes is 
0.167 and since it is equal, it has been ignored. But let us consider a sample where 
the classes do not have equal presence, in other words, imbalanced sample.  For 
example; assuming the following imbalanced sample was used for training 
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The training process would have been more complicated, since it could suffer from 
local optima, where it keeps classifying cases to the class with the highest presence 
(highest probability). Not to mention that the accuracy of the classification would 
become a secondary measure of the network performance, since the cases that 
have been classified as Class (e.g. ) are 50% correct. In fact, such sample would 
be more realistic than the balanced sample that was used in the experiment, since 
heart diseases, and diseases in general, have different probabilities. These 
probabilities are impacted by the gender of the patient, their age group, their life 
style, and for some diseases their origin and country of residence.  

To improve the performance of the classification of imbalanced sample such 
problem, a combination of the following techniques can be used; 

- Collect more data from the underrepresented classes to reach a balanced 
sample. This will simplify the problem but might not always be possible. 
And in other times, it might not be desired, in case of limited resources. 

- Simply duplicate training samples to match up the number of samples per 
class in the training dataset. However, this will increase the training time 
without adding any new information. This solution can have better impact 
if the copies are augmented and modified to add new information, for 
instance a distorted version of the same class. 

- Remove training sample from the overrepresented classes to match up the 
number of samples per class in the training dataset. This will reduce the 
training time but will worsen the network performance by removing useful 
information for the training. 

- Train for sensitivity and specificity. Sensitivity is the probability of 
classifying a case as , while it is in fact , which measures the accuracy 
of detecting a Hypothesis. While Specificity is the probability of classifying 
a case as , while it is in fact , which measures the accuracy of detecting 
the absence of a Hypothesis. These two attributes describe the accuracy of 
the classification as a whole. For optimal performance, they should both be 
equally high (~1) due to their equal importance. However, this might be 
different in some application. For example, skin cancer detection system is 
better off with high sensitivity and low specificity. The two attributes can 
be traded-off depending on the application. 
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- For every class, specify a weight that is inversely proportional to the 
probability of the class. For example,   should have a weight of 0.5, while 

 should have a weight of 0.8. These weights represent the contribution 
of the class to the loss function. A practical implementation of this was 
presented in 2015 and it is called “Keras Implementation” (Chollet et el., 
2015). 

Another solution would be to introduce a new hypothesis “none of the known 
hypotheses”. This gives room to define an acceptable probability of error, where 
any classification that is lower than a certain minima would lead to “none of the 
known hypotheses”. This method increases the credibility and integrity of the 
system compared to the previous one, however, the fewer the hypotheses the more 
probable the neutral diagnosis is concluded.  Moreover, the higher the acceptable 
probability, the more accurate the system is. 

Using neural networks opens the door for broadening the pool of classes with 
minimal work, by training the network on new classes (hypotheses). A similar 
concept was presented to detect abnormal heartbeat using recurrent neural 
networks in January 2018 (Latif et al., 2018). However, the heartbeat was 
measured at the chest assuming high quality. 

In conclusion, the number of the learnt hypotheses has a huge impact on the 
accuracy level of the diagnostic system. The more knowledgeable the diagnostic 
system, the more accurate the diagnosis will be, which is achieved by training ANN 
on larger number of hypotheses.  

7.2 Summary  

For a chaotic environment, like the one represented with nonstationary noise, the 
advanced approach provided satisfactory results with 97.33% success rate. This is 
using the discriminant function for classifying. The signal is decomposed using 2-
level filter bank into 4 bands that are each described with their mean and 
covariance; the signal is represented with 8 features. This success rate is elevated 
to 100% when pattern recognition neural network is used for classifying the 16-
feature signal after decomposition into 8 subbands using 4-level filter bank. 
Moreover, the Neural Network-based classification had a trust level equal to 83.3% 
which correlates with the number of hypotheses included in the classification. 

Figure 37 shows two of the classification methods that were used in this research, 
these had the best results. 
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Figure 37. PCG-based Diagnosis Using Machine Learning (three methods) 
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8 CONCLUSIONS 

This research intended to study the feasibility of diagnosing the heart condition 
using low quality acoustic signal. In doing so, it would discuss multiple 
classification techniques that can handle distorted biomedical signals and analyse 
the reliability of such diagnosis. Lowering the quality was achieved by assuming 
the input to such system was taken from the wrist as opposed to the common spots 
on the chest. This input was simulated using a heart-wrist acoustic propagation 
model that was designed after cardiovascular models available in literature.  

On the journey towards this, eHealth history was studied, and more focus was put 
on mHealth tele-cardiology solutions and why there is still room for more research 
in this area. Especially when lowering the demands on the quality of the data and 
the computation load can mean saving more lives in chaotic accidents. 

This research used one healthy heart sound that was measured at the chest to 
explore the feasibility of the proposition. The signal was put through the heart-
wrist acoustic propagation system to get the input to the experiment. In the 
experiment, this healthy signal was called hypothesis H0. Which was then used to 
create five more hypotheses using different transfer functions. These six 
hypotheses represented the reference classes for the classification task. 

This experiment aimed to diagnose the heart condition using the acoustic signal of 
the heart as measured at the wrist. For that, three machine learning approaches 
were attempted; simple, advanced, and using neural networks. 

The simple approach used two features to describe the heart condition acoustic 
signal in question. The approach proved to be successful in closed environments 
with stationary noise and the performance degraded by 30% in chaotic 
environment with nonstationary noise. Since the focus of this research is chaotic 
environments, this approach was rejected. 

The advanced approach studied the relation between the number of features and 
the accuracy of the classification. To do so, the heart acoustic signal was 
decomposed into sub-bands and each band was described with two features. The 
classification result was 27% better than that of the simple approach. However, the 
result introduced a new factor, that is the size of the bands being described. It was 
concluded that the smaller the bands, the stronger the correlation between the 
cases and, consequently, the less accurate the classification. This finding in itself 
is a paradigm shift, since signal classification is commonly thought to perform 
better with larger filter banks (larger number of levels and consequently 
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subbands). However, this was not the case in this research due to multiple reasons 
that were discussed in the experiment results.  

The pattern recognition neural network was attempted to simplify the 
computation load required by the advanced approach and most importantly, 
automate the classification task. The result was more than satisfactory, with 100% 
accuracy. And in comparison, to the discriminant function approach, the neural 
network was lighter. Once the training phase was complete, the pattern 
recognition neural required less computing time than that of the advanced 
approach, and consequently less computing power. Considering the complexity of 
the advanced approach, this does not come as a surprise.  

The proposition of this research seems to check out successfully; the biomedical 
signal is still useful and can lead to a successful diagnosis with a signal-to-noise 
ratio as low as 19dB. This opens the door for performing diagnostic tasks during 
catastrophes and at accident spots with small processing units, limited energy 
(mobile devices), with bad connections and in chaotic environments. It also leaves 
room for new wave of wearable devices that measure more prominent vital signs, 
like recording the heart sound, from the wrist (i.e. wrist bands) or even the ankle.  

There is a chance to lower the required signal-to-noise ratio further by introducing 
restoration techniques to improve the received signal (refer to Methods in chapter 
1). This, unfortunately, comes at the expense of more computation load. Another 
alternative would be to introduce amplification step before the signal is processed, 
which could also lead to lowering the required signal-to-noise ratio even further 
when coupled with restoration technique to mitigate the amplified distortion and 
noise. There is no need to assume perfect environment, this research proves that 
it is possible to get reliable diagnosis in a chaotic environment.  

8.1 Future Work 

It is obvious that there is still room for more research in this area. Not just to lower 
the required data quality, but also to build the proposed system and reduce the 
computation load further. One way to do this could be a wrist band that is equipped 
with a sensitive recording microphone, which could be considered an improved 
version of the wearable wrist sensor proposed in (Shi & Chiao, 2016) . The recorded 
signal is then sent to a mobile device that is equipped with a processing unit that 
can decompose the signal and run the analysis and diagnosis.  

One interesting idea would be to use data fusion to diagnose the cardiovascular 
system using more descriptive signals than just PCG. Referring to Wiggers 
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Diagram (Figure 16), there are multiple signals that could be used to describe the 
cardio cycle and consequently reveal diseases or defects.  

This concept of data fusion and how it could lead to better heart diagnosis was used 
early on by a group of a cardiologist, a paediatrician, and an engineer (Ninova et 
al., 1978). They attempted to automate PCG screening for heart disease in children 
using ECG signal as a reference. In a similar fashion to Wiggers diagram, QRS and 
R-R interval were used here as references for the heart sounds; S1 and S2. The 
classification was based on the amplitude of each sound to detect abnormality in 
the heart. The classification has a sensitivity of 96.5% and specificity of 92.4%. 

The same concept was used again in 2011 (Phanphaisarn et al., 2011). When a 
group of researchers detect and diagnose heart abnormality using a combination 
of subsystems. One subsystem studied the relation between the Electrocardiogram 
(ECG) and the Phonocardiogram (PCG) to drive a decision based on the linear 
predictive coding coefficients of the impulse response that represents the ECG-
PCG relationship. and a second subsystem that studied the phase space of the 
normal and abnormal heart using the likelihood ratio test value. 

What if we combine the system in Figure 39 along with a similar one that is ECG 
based to deduce a better diagnosis of the cardiovascular system and the health of 
the heart? There is a large number of researches in the area of ECG-based analysis 
and diagnosis, many of which are following the same concepts used in this research 
(refer to Chapter 4, 4.3). It has actually started long before PCG-based analysis, 
however, it suffered from the assumptions discussed in Chapter two. So, what if 
ECG-based diagnosis is built for mobile devices, similar to the PCG-based system 
built in this research? 

The two systems can then be combined; one is PCG-based like the one presented 
in Figure 37, and the other is ECG-based following the same limitations enforced 
by mobile devices; low computational load, processing power, and energy. The 
complete system would look like Figure 38. 
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Figure 38. Data Fusion-based Diagnosis using Machine Learning 

Each subsystem would have its own indications to the heart condition and 
combined they would complete the picture of the cardiovascular system’s heart. 
ECG analysis may detect; cholesterol clogs in the heart’s blood supply, history of 
heart attacks, enlargement of one side of the heart, and abnormal rhythms (Blood 
Pressure Association, 2008). While PCG analysis may detect; abnormal vibrations 
when the valves open or close, the speed of the blood flow through the chambers, 
and tension in the tissues that connect the valves to the heart muscle. The likes of 
heart murmur, friction rub, and gallop are sound indications that can be detected 
when analysing PCG (Altshul, 2015). This data-fused system will be able detect all 
of these diseases and analyse each indication. Not only that, but it can be extended 
to use the relationship between ECG and PCG to validate the indication into heart 
arrhythmias; since both analyses can detect arrhythmias. The novelty of such 
system would lay in getting reliable diagnosis using mobile devices’ restrictions; 
limited computational load, processing power, and energy. However, knowing 
what we know now from this research, down sampling would not have be the best 
approach since mapping the two signals would suffer greatly from that. Which 
consequently means that the computational load would not be small! Remember 
that longer recording of ECG is more insightful than shorter ones, in fact 12-Lead 
ECG is the shortest informative version of ECG. Although there are many 
researches that attempted analysing shorter recordings of the ECG; 5 – 60 minutes 
(Chudzik et al., 2014) , but should be further tested in this setup. But if 12-Lead is 
the shortest informative ECG, deep learning will be the right approach for this 
system. 

Now, envision using Neural Engine the one that Apple built in 2017 for iPhone X 
(A11© by Apple) to build this system (refer to Chapter 3, 3.4).  It will most probably 
require some modifications to handle large signals. If the number of features 
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required to describe the ECG and PCG signal reach 1024, the Filter Bank should 
have 512 sub bands, that is 256 levels. Every block in Figure 40 would have 1024 
inputs and outputs, except for the Filter Banks where they’ll have one input and 
1024 outputs. This system would be very interesting to study further! 

Another valuable addition to this data-fusion is Heart Rate Variability (HRV), 
which can be measured from multiple short ECG recordings, as short as 40 
seconds as shown in (Lim et al., 2011). It provides more insights into the wellness 
in general besides its indications to heart conditions (mostly arrhythmias). For 
instance, it is used nowadays in wearables to analyse stress levels and recovery 
patterns after high intensity activities (Firstbeat Technologies Ltd., 2014). There 
are different ways to analyse HRV, all have been reviewed in this article 
(Abdelmageed & Virrankoski, 2015). 

In this research we proved that 20dB SNR is good enough for a reliable diagnosis, 
but it is only the beginning.  Data fusion and neural chip will open the door for 
more reliable diagnosis and a lot fewer assumptions. This is because the 
powerfulness of the neural chip will mitigate the need to limit computational load 
and processing time, which were restricting factors in this research. The future 
work in this discussion will aim to reduce the impact of these restrictions relying 
on new technology to provide the required computation and processing power 
encapsulated for mobile devices.  

With the advancement made in neural chips, the likes of the neural engine, it is 
very likely to realise mobile diagnostic systems based on data fusion in the near 
future. So, watch this space… 
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