
Tactile Sensing for Assistive
Robotics

by

Emmett Kerr, BEng, MSc.

A Thesis submitted to
Ulster University

for the degree of Ph.D.
in the

Faculty of Computing, Engineering & the Built Environment

May 2018
I confirm that the word count of this thesis is less than 100,000

words



This thesis is dedicated to my wife, Gemma, and my parents, Garvin and
Marie Kerr.



CONTENTS

Acknowledgements xi

Abstract xii

1 Introduction 1
1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Tactile Sensors 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Human Tactile Sensing . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Tactile Sensing Technology . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Resistance-based Tactile Sensors . . . . . . . . . . . . . 12
2.3.2 Capacitance-based Tactile Sensors . . . . . . . . . . . . 13
2.3.3 Optical-based Tactile Sensors . . . . . . . . . . . . . . . 15
2.3.4 Acoustic-based Tactile Sensors . . . . . . . . . . . . . . 17
2.3.5 Pressure-based Tactile Sensors Types . . . . . . . . . . . 18
2.3.6 Other Tactile Sensor Types . . . . . . . . . . . . . . . . . 19
2.3.7 Multi-modal tactile sensors . . . . . . . . . . . . . . . . 20

2.4 BioTAC Biomimetic Tactile Sensor . . . . . . . . . . . . . . . . . 22
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Computational Intelligence in Tactile Sensing 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Artificial Neural Networks (ANN) . . . . . . . . . . . . 26
3.2.2 Support Vector Machine (SVM) . . . . . . . . . . . . . . 28
3.2.3 Gaussian Mixture Model (GMM) . . . . . . . . . . . . . 29
3.2.4 Linear Discriminant Analysis (LDA) . . . . . . . . . . . 29
3.2.5 Naı̈ve Bayes (NB) . . . . . . . . . . . . . . . . . . . . . . 30
3.2.6 k-Nearest Neighbour (k-NN) . . . . . . . . . . . . . . . . 31
3.2.7 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Machine Classification using Tactile Sensing . . . . . . . . . . . 33
3.3.1 Material Classification using Tactile Images . . . . . . . 33
3.3.2 Material Classification based on Surface Texture . . . . 36

ii



3.3.3 Material Classification based on Thermal Characteristics 39
3.3.4 Material Learning Classification based on Multiple Char-

acteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.5 Machine Learning using the BioTAC . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Tactile Sensing Based Material Classification 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Initial Data Analysis . . . . . . . . . . . . . . . . . . . . 60

4.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 One-stage Support Vector Machine . . . . . . . . . . . . 62
4.3.2 Two-stage Support Vector Machine . . . . . . . . . . . . 65
4.3.3 One-stage Artificial Neural Networks . . . . . . . . . . 67
4.3.4 Two-stage Artificial Neural Networks . . . . . . . . . . 68
4.3.5 Support Vector Machine and Artificial Neural Networks

hybrid algorithm . . . . . . . . . . . . . . . . . . . . . . 69
4.3.6 Other Classifiers Evaluated . . . . . . . . . . . . . . . . 70

4.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 System Testing . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Evaluation of Human Performance . . . . . . . . . . . . 73

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 80

5 Human Pulse and Respiratory Signal Analysis 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Assessing Human Vital Signs . . . . . . . . . . . . . . . 82
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Waveform Pre-processing . . . . . . . . . . . . . . . . . 91
5.2.3 BPM and RR calculation . . . . . . . . . . . . . . . . . . 94
5.2.4 Pulse to Pulse (PPI) and Breath to Breath Interval (BBI)

Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Pulse to Pulse Interval (PPI) and Breath to Breath Inter-
val (BBI) Calculation and analysis . . . . . . . . . . . . . 110

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 115

6 Measurement of Capillary Refill Time and Determination of Health
Status 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Determination of Capillary Refill Time (CRT) . . . . . . . . . . . 119

6.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . 120

iii



6.2.3 CRT Results and Discussion . . . . . . . . . . . . . . . . 125
6.3 Triage Health Status Classification . . . . . . . . . . . . . . . . . 126

6.3.1 Fuzzy Classification Methodology . . . . . . . . . . . . 128
6.3.2 Fuzzy Classification Results and Discussion . . . . . . . 133

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions and Future Work 136
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 139
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 Object Recognition and Grasping . . . . . . . . . . . . . 141
7.2.2 Extension of Assistive Robot Based Triage . . . . . . . 141

A Appendix A 163

B Appendix B 174

iv



LIST OF TABLES

2.1 Table specifying the range, resolution and frequency response
of the sensory modalities available in the BioTAC sensor
(Fishel, 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Table comparing tactile sensing-based material identification
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Table comparing Machine learning methods used on BioTAC
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Table showing the individual materials and the groups to
which they belong. . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Table comparing the Support Vector Machine (SVM) classi-
fication accuracies for a range of C values for the linear ker-
nel function (KF), quadratic KF and Multi-Layer Perceptron
(MLP) KFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Table comparing the SVM classification accuracies for a range
of C values for the linear kernel function (LKF), polynomial
kernel function (PKF) and multi-layer perceptron kernel func-
tion (LMPKF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Table comparing the SVM KF classification accuracies. . . . . 65
4.5 Table comparing the training accuracies of different Artificial

Neural Networks (ANN) structures. . . . . . . . . . . . . . . . 67
4.6 Table comparing the material classification experimental results. 72
4.7 The percentages accuracies for each material from the human

evaluation experiments. . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Table comparing the Beats Per Minute (BPM) experimental
results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Table comparing the Respiratory Rate (RR) experimental re-
sults with absolute fluid pressure (PDC) data . . . . . . . . . 109

5.3 Table comparing the RR experimental results with thermal
flow (TAC) data . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Table comparing the PPI experimental results . . . . . . . . . 111
5.5 Table comparing the BBI experimental results . . . . . . . . . 111

v



6.1 Table outlining the calculated CRT experimental results . . . 126
6.2 Table outlining the details of the Input Membership Functions 129
6.3 Table outlining the Outputs of the Fuzzy Logic System . . . . 132

A.1 Table comparing the BPM experimental results using the two
stage filtering/smoothing approach. . . . . . . . . . . . . . . 164

A.2 Table comparing the BPM experimental results using the three
stage filtering/smoothing approach. . . . . . . . . . . . . . . 165

A.3 Table comparing the RR experimental results using the two
stage filtering/smoothing approach with PDC data. . . . . . 167

A.4 Table comparing the RR experimental results using the three
stage filtering/smoothing approach with PDC data. . . . . . 168

A.5 Table comparing the RR experimental results using the two
stage filtering/smoothing approach with TAC data. . . . . . 169

A.6 Table comparing the RR experimental results using the three
stage filtering/smoothing approach with TAC data. . . . . . 170

A.7 Table comparing the calculated PPIs using from dynamic fluid
pressure (PAC) data. . . . . . . . . . . . . . . . . . . . . . . . . 171

A.8 Table comparing the calculated BBIs using from PDC data. . 172
A.9 Table comparing the calculated BBIs using from TAC data. . 173

B.1 Table outlining all of the calculated CRT experimental results 174

vi



LIST OF FIGURES

2.1 Cross-section of Human Glabrous Skin (Asamura et al., 1998) 9
2.2 Diagram outlining various types of tactile sensors and their

advantages and disadvantages . . . . . . . . . . . . . . . . . . 11
2.3 Image of ATi Nano17 force Sensor (ATi, 2017) . . . . . . . . . 13
2.4 a) Sketch demonstrating that the capacitance of a parallel plate

capacitor depends on the area of the plates and the distance
between the plates, d.(Fraden, 2003); b) Sketch showing the
two conductive plates separated by a dielectric material (Bala-
subramanian and Santos, 2014); c) A mesh of the triangular
capacitive sensors from the palm of the iCub robot (Schmitz
et al., 2011); d) Image showing the tactile sensors in the grip-
per of the PR2 robot at the Intelligent Systems Research Centre
(ISRC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 a) Image showing the Schunk SDH multi-jointed 3-finger grip-
per grasping an object.(Schunk, 2017); b) Sketch illustrating
the optical-based tactile array sensor (Schunk, 2017) . . . . . 16

2.6 a) Image showing a schematic of the original TACTIP sensor
(Chorley et al., 2009); b) Image showing a schematic of the
revised TACTIP sensor (Winstone et al., 2012). . . . . . . . . . 16

2.7 Image of the PR2 Tactile Sensors with the accelerometer rigidly
mounted to a printed circuit board in the palm (Romano et al.,
2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Photo of the BioTAC Biomimetic fingertip (Syntouch, 2013) . 19
2.9 a) Photo of the BioTAC SP Biomimetic fingertip (Syntouch,

2013); b) Photo of the BioTAC NumaTac Technology (Syn-
touch, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Cross Section View of BioTAC Fingertip Tactile Sensor (Syn-
touch, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 An example of a fully connected feed-forward network with
one hidden layer . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 A sketch representing the use of a kernel function for non-
linear SVM classification (Moreira, 2011) . . . . . . . . . . . . 28

vii



3.3 A graph showing Gaussian membership functions with a
Fuzzy Classifier (Hameed and Sorensen, 2010) . . . . . . . . . 33

3.4 Graph showing the change in DC pressure measured by the
BioTAC as the normal force increased and decreased during
loading and unloading (blue lines) (Fishel, 2012) . . . . . . . 44

4.1 Samples of the 14 materials used in the experimental set-up. 55
4.2 a) Image showing the experimental rig; b) Screen shot of the

developed Graphical User Interface (GUI). . . . . . . . . . . 57
4.3 Diagram showing the Sequence of Data from the BioTac Fin-

gertip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 a) Thermal conductivity behaviour following point of max-

imum force of contact for five of the fourteen test materials;
b) Vibration measured during a slide action along four of the
fourteen test materials. . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Diagram showing the two-Stage SVM approach used for ma-
terial classification . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Diagram showing the ANN used for material classification . 68
4.7 Diagram showing the two-stage ANN used for material clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 Diagram showing the SVM+ANN hybrid approach used for

material classification . . . . . . . . . . . . . . . . . . . . . . . 70
4.9 a) Confusion matrix showing the percentage accuracy of the

artificial algorithm (using one-stage SVM) for classifying all
the materials individually; b) Confusion matrix showing the
percentage accuracy of the human participants for classifying
all the materials individually. . . . . . . . . . . . . . . . . . . . 78

4.10 a) Confusion matrix showing the percentage accuracy of the
artificial algorithm (using two-stage SVM) for classifying all
the materials into groups; b) Confusion matrix showing the
percentage accuracy of the human participants for classifying
all the materials into groups. . . . . . . . . . . . . . . . . . . . 79

5.1 Image of The Shadow Hand with three mounted BioTAC
Fingertip Tactile Sensors . . . . . . . . . . . . . . . . . . . . . 89

5.2 (a) Image showing the Shadow Hand taking the participant’s
pulse (b) Image showing the Shadow Hand resting on the
participant’s chest to measure RR . . . . . . . . . . . . . . . . 92

5.3 Graphs showing (a) the raw and low pass filtered PAC data
collected from participant three’s wrist and (b) the PAC data
after wavelet smoothing was applied. . . . . . . . . . . . . . . 100

5.4 Graphs showing (a) the raw and low pass filtered PDC data
collected from participant three’s chest and (b) the PDC data
after wavelet smoothing was applied. . . . . . . . . . . . . . . 101

5.5 Graphs showing (a) the raw and low pass filtered TAC data
collected from participant three’s chest and (b) the TAC data
after wavelet smoothing was applied. . . . . . . . . . . . . . . 102

viii



5.6 Graphs showing (a) the PAC data collected from participant
three’s wrist, (b) the PDC data and (c) the TAC data collected
from participant three’s chest following application of the
lateral inhibition algorithm to all three categories of data. . . 103

5.7 Graphs showing (a) the detected troughs in the PAC data
relating to pulse, (b) detected peaks in the PDC and TAC data
(c) representing breaths. . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Graphs showing (a) the detected troughs in the PAC data
relating to pulse, (b) detected peaks in the PAC and TAC data
(c) representing breaths following the application of lateral
inhibition smoothing. . . . . . . . . . . . . . . . . . . . . . . . 106

5.9 Graph showing the peaks detected in the PDC dataset with
the use of fully automatic thresholding . . . . . . . . . . . . . 107

5.10 Graphs showing (a) calculated PPI between the individual
pulses for participant 4 and (b) participant 6 and the tolerance
of the overall average PPI required for regular pulse rate for
each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.11 Graphs showing (a) calculated PPI between the individual
pulses for participant 4 and (b) participant 6 and the tolerance
of the overall average PPI required for regular pulse rate for
each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Images showing the customised camera mount on the Shadow
Hand from (a) the front and (b) the rear . . . . . . . . . . . . . 119

6.2 a) An image of a participant’s forehead taken immediately
after the press; b) An image of the same participant’s forehead
taken as the capillaries begin to refill . . . . . . . . . . . . . . 121

6.3 Graph showing the mean values of each histogram across a
sequence of images . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Graph showing the mean values of the red histogram across a
sequence of images . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Graph showing the red pixel values and mid-line of the aver-
age between the largest and smallest values . . . . . . . . . . 124

6.6 Graph showing the red pixel values and the identified signifi-
cant gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Graphs displaying membership functions for a) BPM; b) RR;
c) CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.8 Graph showing the membership functions for the outputs of
the Fuzzy System . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



ACKNOWLEDGEMENTS

It is with pleasure that I would like to take this opportunity to thank everyone
who was involved in my PhD. Firstly, I would like to sincerely thank my
supervisors, Prof. Martin McGinnity and Prof. Sonya Coleman. Their help,
guidance and support both academically and personally have been invaluable
over the course of my research. Without their time, dedication and advice my
time spent as a PhD student would not have been as fruitful. I would like to
add a special note of thanks to Mrs. Andrea Shepherd, a medical professional
and lecturer of Nursing who provided me with medical advice and guidance
for the measurement of vital signs. Without Andrea’s input, understanding
human vital signs, knowing how to measure them correctly and carrying out
data collection on human subjects would not have been possible.

I would like to thank the Department for Employment and Learning (DEL)
who provided financial funding for my research project and several conferences
over the course of my studies.

I would like to say a heartfelt word of thanks to my colleagues and friends in
the Intelligent Systems Research Centre (ISRC). I have been very fortunate to
work in a centre with extremely supportive, friendly and intelligent colleagues
and friends and I have no doubt that without their friendship and our “tea-
time discussions”, my PhD journey would have been a little more difficult.
I would like to pay a special word of thanks to Dr. Philip Vance, Dr. John
Wade, Dr. Dermot Kerr and Dr. Bryan Gardiner for their friendship, advice
and continuous support throughout my PhD journey. I would like to thank my
friends outside of Ulster University for helping me take my mind of my work
when things got tough. In particular, I would like to thank my fellow Sensei’s,
training partners and friends at Oakleaf Ju-Jitsu Federation. Training sessions
at our federation have helped me switch off and provided me with stress relief
which, without a doubt, was invaluable to progressing with my research.

Most importantly, I would like to thank my wife, Gemma, and my family. My
mum and dad, Garvin and Marie, thank you for always being there to support
me through the rough and smooth. You are the most supportive and loving
parents anyone could wish for and I would not be where I am today without
you. My sister, Dr. Karen Kerr, I am proud to follow in your footsteps and
thank you so much for all your support and advice in my research journey to

x



date and I look forward to that joint publication! My brother, Garvin, thank
you for always being there and giving me endless words of encouragement and
tears of laughter! Finally, my wife and best friend, my wee Gem. You are my
rock and I would be truly lost without you! Thank you for your continuous and
unlimited understanding, patience, support and encouragement throughout
my PhD journey. You have always been there to listen to me, give advice and
pick me up every time I struggled. You have believed in me every second of
this journey, even when I may have doubted myself. You have helped me stay
focussed on my goals, see things clearly and keep calm under pressure. Without
your continuous support, encouragement and love my success simply would
not have been possible.

xi



ABSTRACT

Humans perceive the world through information gathered by their five senses.
Attempting to replicate some of these senses in intelligent systems has been a
focus of research for many years. Due to high quality vision sensors such as
cameras and laser scanners being readily available at a relatively low cost for
some time now, vision sensing has been heavily researched for many decades
enabling systems to distinguish a lot of information such as the size, shape and
colour of objects or materials. However, there are attributes of objects, materials
and the environment that cannot be determined by vision sensing alone such
as compressibility, thermal properties or sub-surface vibration.

This thesis presents methods which demonstrate that tactile sensing can be used
to assess a human’s current state of health by measuring their vital signs using a
biomimetic fingertip, namely BioTAC. It involves three main contributions. The
first contribution is a method for classifying materials from tactile sensing alone.
Using machine learning approaches, the high sensitivity of the BioTAC tactile
sensors is demonstrated via the ability to classify different (and similar) material
with high accuracy based on surface texture and thermal properties. The second
contribution focuses on the use of the BioTAC fingertip to accurately measure
the vital signs of a human by mimicking medical professionals. Algorithms
have been developed and evaluated for determining a human’s Beats Per
Minute (BPM), Pulse to Pulse Interval (PPI), Respiratory Rate (RR), Breath to
Breath Interval (BBI) via tactile sensing. Furthermore, algorithms have been
developed to measure Capillary Refill Time (CRT) by using a combination
of tactile sensing for the control of a robot fingertip and vision sensing to
analyse changes in the subjects skin colour. The final contribution is a fuzzy
classification algorithm capable of classifying the human’s health status based
on their BPM, RR and CRT.

Significant contributions in the field of tactile sensing presented in this thesis
demonstrate that a robotic system can determine a human’s current status of
health. This could play a vital role in helping to rescue victims of a disaster or
emergency by performing medical triage and determining an order of treatment.
In turn, emergency personnel will be able to make a more informed decision on
how they should allocate their valuable resources thus preventing unnecessary
risk and reducing the further loss of human life.
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“Learning is a process of discovery - a process without end.”

Bruce Lee
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CHAPTER

ONE

Introduction

Humans perceive a sense of touch from all over their bodies. This sense can be
broken down into “sub-senses” such as sensing temperature, contact and pain.
These signals and internal sensations are transported to the somatosensory
cortex through our spinal cord. It is here that a lot of the pre-processing is done
before the manipulated data are sent to the neocortex for final sensory analysis
and fusion with other senses. The level of accuracy that we can get from our
finger tips and direct contact between our fingers and an object, and being able
to sense environment conditions from this contact, is largely founded on the
tactile and force sensing capabilities of our hands. Infants, in particular, rely
heavily on their sophisticated tactile perception, gathering tactile information
from their fingers and mouth as they are relatively slow to develop their visual
acuity (Gibson, 1988). Furthermore, adults who are blind from birth develop
sophisticated representations of objects and their dexterity by manipulating
and characterising them (Marks, 1988; Smitsman and Schellingerhout, 2000).
(Rothwell et al., 1982) studied the performance of a participant who was med-
ically diagnosed as deafferented from his elbows to his hands, i.e. he was
incapable of feeling cutaneous or proprioceptive touch in this area. Although
the participant could assert force with his fingertips and retained exceptional
performance in a wide range of grasping tasks, the inability to feel meant that
he was incapable of performing the simplest fine motor skills such as writing
with a pen, buttoning his shirt or holding a cup. (Johansson and Westling, 1984)
evaluate the roles of skin receptors and sensorimotor memory and show that
people become clumsy when deprived of reliable tactile information through
numbness of anaesthetised or cold fingers. Anyone who has ever experienced
having fingers so cold that they were numb can appreciate how the lack of sense
of touch can make humans appear clumsy and lack control even in the simplest
of grasping tasks. Similar limitations are evident in robotic systems without
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tactile sensing (Fishel, 2012). Equipping robotic systems with technology that
enables them to measure modalities such as temperature, microvibrations and
force and coupling this with effective algorithms to analyse the data collected
and form meaningful information about the person or material with which the
robot is in contact would provide robotic systems with similar tactile sensitivity
and perception that humans rely on to interact with the world.

Although vision has received the majority of attention in robot sensing research,
a sense of touch is vital for many tasks, as dexterous manipulation requires
control of forces and motions which can only be accomplished through touch
(Howe, 1994). In order to produce the tactual perceptions required to learn
about object properties, humans perform various types of movements when
interacting with an object. Experimental psychologists have identified six
general types of exploratory movements: pressure to determine hardness, static
contact to determine thermal properties, lateral sliding movements to determine
surface texture, enclosure to determine global shape and volume, lifting to
determine weight, and contour following to determine exact shape (Lederman
and Klatzky, 1987). Any individual action, or combination of these actions,
enables a human to collect tactile information which allows them to identify
objects and sense micro-vibrations or changes in an environment. Retrieval of
this tactile information enables humans to perform delicate tasks using their
sense of touch alone, such as reading an individual’s vital signs.

Unfortunately, over many years of research, artificial tactile sensing technology
has not developed as well as other perception modalities, even though tactile
sensory information is vital for effective and informative interaction with envi-
ronments (Dahiya and Valle, 2013). However, recent developments in tactile
sensing technology, in particular the release of a biomimetic finger shaped
tactile sensor produced by Syntouch R© called the BioTACTM (Syntouch, 2013)
have enabled rapid progress. This sensor allows for the collection of tactile data
similar to that of humans, in particular micro-vibrations, thermal data and force
data and is the sensor used in the research reported in this work.

Indicators of one’s health such as pulse rate in Beats Per Minute (BPM) and
Respiratory Rate (RR) can be sensed by touch; a further indicator, namely
Capillary Refill Time (CRT) can be assessed using a combination of tactile-based
control and vision-based sensing. These are inherent skills for a human due
to their sophisticated tactile sensing. However, enabling a robot to complete
similarly delicate tasks requires a sophisticated tactile sensor. The aim of this
thesis is to develop algorithms capable of measuring vital signs in humans
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that could equip a First Responder Robot to triage victims in an emergency
scenario or following a natural or man-made disaster. Assessing the vital signs
of humans is required to perform an initial evaluation of a victim’s current
health and hence enable a triage system to be applied in order to prioritise
which victims need the most urgent attention. Over the past three decades
Information and Communications Technology (ICT) for use in the health-care
field has become heavily researched (Ferrigno et al., 2011). Methods in which
systems are used to assess a human’s current health status, particularly in
emergency scenarios, are related to the novel approaches outlined in this thesis.
Many methods include wearable sensors or communicating with a trapped
person to attempt to assess their health status. However, wearable sensors
are not typically found on humans in an emergency scenario and methods to
physically assess a human’s health status are lacking. Furthermore, it is clear
that tactile sensing approaches to human vital sign assessment in robotics are
lacking in the literature. Tactile and vision based sensing methods that enable
the use of a non-invasive sensor, which is not required to be worn, to accurately
measure human vital signs are required for use in disaster zones.

The work in this thesis aims to develop algorithms for effective material iden-
tification in order to ascertain the capability of the BioTAC tactile fingertip.
Subsequently, this thesis aims to develop algorithms that enable the BioTAC tac-
tile fingertip sensor to measure BPM from the radial artery of a human’s wrist,
the RR by making contact with a human’s chest wall regardless of clothing
covering the chest and an accurate measure of CRT by pressing into a human’s
forehead. This information is used to develop a fuzzy logic classifier for use
in triage of victims following an emergency or disaster. Research into using
robots as automated triage systems in disaster zones is still quite limited and
is focussed on the systems or architectures towards an eventual physical sys-
tem. The algorithms presented in this thesis could be a significant contribution
toward the development of such systems.

1.1 Thesis Contributions

This thesis presents a substantial body of research into the use of tactile sens-
ing for robotic systems. This chapter provides an introduction to the thesis.
Chapter 2 provides an overview of tactile sensing and Chapter 3 provides an
overview of computational intelligence in tactile sensing. A tactile sensing
based algorithm capable of identifying materials from touch alone is presented
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in Chapter 4. This is achieved by using a BioTACTM biomimetic finger-shaped
tactile sensor from Syntouch R© (Syntouch, 2013) to execute standard exploratory
actions on the surface of a material. Numerous machine learning classifiers and
hybrid combinations of the classifiers are implemented and evaluated for clas-
sifying materials based on their thermal conductivity and surface texture. The
best performing machine learning approach is further evaluated against human
performance when faced with the same task. All aspects of this research have
been published in: (Kerr et al., 2013, 2014a,b) and a journal paper is currently
under review in the Elsevier Journal of Expert Systems with Applications (Kerr
et al., 2017). The objective of the material classification work, which is presented
in Chapter 4, is to ascertain the sensitivity and accuracy of the BioTAC sensors
for their suitability for measuring human vital signs.

Novel methods for measurement of key human vital signs such as BPM and
RR using a robotic system comprised of the five fingered Shadow Hand with
three BioTAC sensors are presented in Chapter 5. The BPM and RR of twelve
healthy human participants are measured. The data collected are smoothed
to enable the identification of troughs and peaks which are used to calculate
the BPM and RR of the participants. The methods presented in Chapter 5 are
capable of determining whether a person has a slow heart rate (< 60 BPM),
i.e. bradycardic, a normal heart rate (60− 100 BPM) or a fast heart rate (> 100
BPM), i.e. tachycardic. Also, it is possible to determine if a person has a slow,
normal or fast breathing rate (RR). The methods presented are evaluated against
readings measured by a medical professional on the same participants. The
methods presented in this thesis aim to mimic the procedure carried out by
medical professionals. The methods for determining BPM have been published
in a conference paper (Kerr et al., 2015).

The skin is one of the first organs that the human body temporarily stops sup-
plying with blood, in a state of shock or emergency, in order to allow more
blood to travel to vital organs such as the kidneys and liver. Therefore, the
measurement of a third vital sign, CRT, is made possible by the methods pre-
sented in Chapter 6. Vision is required for the measurement of CRT; therefore,
a camera mount was specifically designed for the BioTAC fingertip sensors.
The algorithms presented in Chapter 6 are used to determine the time taken
for blood to return to the pressed area of the forehead. The force at which the
fingertip presses against the participant’s forehead is regulated and a novel
method for determining the change in colour from vision-based data is pre-
sented. This replicates the procedure carried out by medical professionals when
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measuring CRT.

A fuzzy based classification algorithm is also presented in Chapter 6 in order
to collate the three vital signs measured from the participants and determine
an overall indication of their current health status. The fuzzy system is trained
and tested with synthetic data and further validated by applying the real data
collected from human participants. The algorithms presented, together with
the fuzzy classification system would equip a robot with the necessary skills to
perform as a triage system in a disaster zone or emergency scenario.

The main contributions presented in this thesis are:

• A new method for tactile sensing-based material classification, capable of
outperforming human performance.

• Evaluation of numerous classification algorithms and novel combinations
of classification algorithms for material classification.

• Measurement and analysis of human BPM and heart beat rhythm via
robotic tactile sensing.

• Measurement and analysis of human RR and breathing rhythm via robotic
tactile sensing.

• Measurement and analysis of human CRT via complementary use of
robotic tactile sensing-based control and a High Definition (HD) camera.

• Development of a fuzzy based classification system to ascertain an overall
status of health.

1.2 Thesis Outline

The thesis is organised as follows:

Chapter 2 outlines an overview of human tactile sensing, highlighting its so-
phistication and high ability, emphasising why it is so difficult to replicate
with an artificial system. This chapter also provides a review of tactile sensing
technologies available to date. Finally, a detailed introduction to the BioTAC
sensor is provided, this is the sensor used for data collection in this thesis.

In Chapter 3 an overview of computational intelligence methods used with
tactile data is presented. Applications of these methods are discussed including
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tactile sensing based material identification and machine learning applications
that have used the BioTAC sensor.

Chapter 4 presents a machine learning approach to material identification
using only tactile sensing. An evaluation of machine learning classifiers and
hybrid combinations of classifiers is also outlined in this chapter to ascertain
the most effective approach. The algorithm performance for the identification
of materials from tactile data is evaluated against human performance for the
same experiment. It is shown that the learning algorithms can outperform
humans when identifying materials by analysing tactile data such as thermal
conductivity and vibration representing surface texture.

In Chapter 5 a review of methods from the literature for the measurement of
human vital signs is presented. Novel methods for measuring and analysing
a human’s pulse and RR are also presented. Pulse and breathing data are
collected from 12 human volunteers. Algorithms for smoothing the collected
data and identifying heart beats and breaths from the data are presented. The
performance of the artificial system is evaluated against a medical professional
and found to achieve similar accuracies.

Chapter 6 provides a review of robotic systems used to assist humans in disaster
zones. A novel method for accurately determining a human’s CRT using a
robot hand, biomimetic tactile sensor and a red, green, blue (RGB) camera is
presented. As a medical professional can only estimate that a person’s CRT is
below the threshold of 2 seconds; the method presented in this chapter provides
a more accurate measurement of CRT than the current standard method carried
out by medical professionals. A fuzzy classification algorithm that combines
the measured BPM, RR and CRT and determines an overall status of health is
presented. These algorithms combined with the fuzzy classifier can be used
to equip a robot with the necessary techniques required to enable a robot to
perform medical triage in a disaster or emergency scenario.

Chapter 7 presents a conclusion to the thesis, outlines the contributions made
by this research and provides an outline of future work.
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CHAPTER

TWO

Tactile Sensors

2.1 Introduction

Humans can grasp objects of varying shapes and sizes (sometimes without
ever having previously seen the object) and ascertain properties such as surface
texture, compressibility and thermal characteristics. They can perform highly
complex tasks and switch between grasps in response to changing task require-
ments. This is due in part to the physical structure of our hands (multiple
fingers with many degrees of freedom), and in part to our sophisticated control
capabilities (Howe, 1994).

In contrast, efficient and accurate designs of robotic hands and touch sensors
are only now appearing following a few decades of development (Tiwana et al.,
2012). Surface texture, compressibility and thermal characteristics can now be
determined by the use of artificial tactile sensing systems, albeit with limited
performance. As Lee and Nicholls (1999b) indicated in their survey of tactile
sensing, the design and build of tactile sensors started in the 1980s, which means
most research into artificial tactile sensing was delayed somewhat until after
this. It was from 1991 onwards that there was a significant increase in tactile
sensing research. Therefore, industrial applications have mainly evolved to rely
on technology which has machine vision as the core component, with limited
contributions from tactile sensing. This was due to the lack of commercially
available tactile sensors for robotic fingers and grippers (Fishel, 2012).

This chapter provides an overview of tactile sensing. Initially a brief description
of the human tactile sensing system is presented in Section 2.2. An overview of
artificial tactile sensing technologies is then provided in Section 2.3, followed by
a detailed description of the BioTACTM biomimetic finger-shaped tactile sensor
from Syntouch R© (Syntouch, 2013) in Section 2.4; this is the tactile sensor used
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for all of the experiments presented in this thesis.

2.2 Human Tactile Sensing

The human skin is an extremely complex and efficient organ on the body and it
is one of the main sources of tactile information together with muscles, joints
and tendons. Two main sensory systems have been distinguished in relation
to the human sense of touch: kinaesthetic and cutaneous (Dahiya and Valle,
2008). Loomis and Lederman (1986) state that the kinaesthetic system provides
information regarding body posture from sensory inputs from receptors within
the muscles, joints and tendons. Receptors in the kinaesthetic system include
muscle spindles, which respond to changes in muscle length and tendon or-
gans, which provide information on muscle tension (Clark and Horch, 1986).
Furthermore, Howe (1994) states that during movement the deformation of
skin around joints may provide extra information about the angle of the joint,
particularly in the fingers.

The cutaneous system provides information on the stimulation of the outer
surface of the skin by means of receptors located within the skin and the associ-
ated somatosensory area of the Central Nervous System (CNS) (Lucarotti et al.,
2013). The cutaneous system deals with spatiotemporal perception of external
stimuli through a large number of receptors including mechanoreceptors for
detecting vibration/pressure, thermoreceptors for measuring temperature, and
nocioceptors for recognising pain/damage (Johansson and Westling, 1984).
These receptors are distributed all over the body with variable density (Dahiya
et al., 2010). A small sensory receptor in the subcutaneous tissues is the Pacinian
corpuscle, capable of detecting vibrations of frequencies up to 1000Hz; this
plays a vital role in the cutaneous sensing of microvibrations in human finger-
tips which are critical for tool usage, involving the perception of microtextures
and reflexive grip control (Fishel, 2012).

The response to mechanical stimulus is mediated by mechanoreceptors that are
embedded in the skin at different depths. Their number per square centimetre
area is estimated to be 241 in the fingertips and 58 in the palm of adult hu-
mans (Johansson and Vallbo, 1979). Figure 2.1 shows a cross-section of human
glabrous skin. The tissue includes four kinds of mechanroceptors with each
kind located at a specific level: fast adapting nerve endings with small receptive
fields, fast adapting nerve endings with large receptive fields, slowly adapting
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nerve endings with small receptive fields and slowly adapting nerve endings
with large receptive fields. Fast adapting nerve endings produce little response
to static loading but strong responses to dynamic loading and slowly adapting
nerve endings demonstrate little response to high-frequency stimuli but pro-
duce sustained response to static stimuli (Howe, 1994), (Fishel, 2012). On the
grasping surfaces of the hand there are approximately 17,000 mechanroceptors
(Howe, 1994), with the shallowest and deepest being the Meissner corpuscle
and Pacini corpuscle which lie below the surface at approximately 0.7mm and
2mm respectively (Asamura et al., 1998).

Figure 2.1: Cross-section of Human Glabrous Skin (Asamura et al., 1998)

The hairless glabrous skin on the palm of the hand possesses different receptors
and characteristics to hairy skin found elsewhere on the body (Fishel, 2012). For
example, to enable humans to conform to the wide range of objects encountered
on a daily basis, the glabrous skin in the palm and fingertips is thicker and more
compliant than hairy skin (Fishel, 2012). Furthermore, Vallbo and Johansson
(1978) describe that there is a higher density of mechanoreceptors in glabrous
skin particularly at the fingertips. Papillary ridges, or fingerprints, unique to
glabrous skin have been hypothesised to assist with the transduction of vibra-
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tions (Loeb and Fishel, 2009), (Scheibert et al., 2009). Rather than perceiving
each small surface feature individually, humans perceive a surface as textured if
the features are less than approximately 1mm apart (Howe, 1994). Furthermore,
the minimum perceivable height of a static raised feature on a smooth surface
was found to be 0.85 microns (Johansson and Westling, 1984).

According to Loomis and Lederman (1986), tactual perception, where both the
kinaesthetic and the cutaneous systems supply significant information about
events and distal joints, is referred to as haptic perception. Analogous with the
kinaesthetic and the cutaneous systems in humans, robotic systems could be
equipped with extrinsic/external and intrinsic/internal sensors respectively,
for example force sensing at the servo or motor of the joint. (Wettels et al.,
2014) emphasise that extrinsic tactile sensors provide considerably more precise,
multi-modal information about object or material properties through interaction
than intrinsic tactile sensors. Retrieving similar precise information through
interaction requires a sophisticated tactile sensor, one which mimics the sensing
capabilities of human skin, at least to some extent. The most advanced tactile
sensor available that is capable of collecting similar data is the sensor used for
all of the experiments in this thesis, the BioTAC sensor from Syntouch.

2.3 Tactile Sensing Technology

Stand alone tactile sensors or those fitted to robotic hands or grippers have
received considerable attention over the last few decades and some excellent
designs and proposals have been presented, e.g. (Shimojo et al., 2010). The
literature outlines that in general a robotic tactile system should be cost effective
and have the following characteristics (Dario and De Rossi, 1985; Howe, 1994;
Dahiyal et al., 2007; Dahiya and Valle, 2008):

• There should be a small number of tactels, in order to minimise the
processing time of tactile images, typically estimated as 25-256 elements.
A tactel (derived from a combination of tactile element) is a single sensing
point on a tactile sensor array. It is also known as a taxel (derived from
tactile pixel) modelled on a pixel,

• Spatial sensitivity similar to that of humans, i.e. 1mm distance between
the centres of neighbouring tactels,

• Sensitivity to forces in the range of 1gram-force (gmf) (0.01Newton (N))
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to 1000gmf (10N) with incremental force resolution of 1gm,

• Negligible hysteresis and reasonable response linearity,

• Capability to measure characteristics such as compressibility, temperature
etc. (Dahiya and Valle, 2008).

There have been various tactile sensors and sensing arrays presented in the lit-
erature with or without the aforementioned characteristics. Tactile sensors have
utilised a range of transduction principles such as resistive sensors, capacitive
sensors etc. to measure tactile data. Figure 2.2 shows an outline of the types
of tactile sensors and some of their advantages and disadvantages. The sensor
types are summarised in the sections outlined in the diagram.

Figure 2.2: Diagram outlining various types of tactile sensors and their advan-
tages and disadvantages
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2.3.1 Resistance-based Tactile Sensors

In a resistive sensor, the resistance across the sensor changes according to a
change in the sensors’ environment. In terms of resistive tactile sensors, they
usually consist of two conductive sheets separated by air or insulating fabric.
A voltage gradient is generated on one of the sheets by applying a reference
voltage to one end of the sheet and ground to the other end. The second
sheet acts like the slider in a linear potentiometer when brought into contact
with the first sheet by an applied force, enabling detection of contact and the
location of the contact point to be calculated. Although the sensors are generally
inexpensive and sensitive, they are expensive in terms of power consumption
and are limited to measurement of only one contact location. Zhang and So
(2002) presented an improved design of a resistive tactile sensor which involves
arranging the sensors in an array therefore enabling measurement of many
contact points.

Piezoresistive touch sensors are made from materials whose resistance changes
when force or pressure is applied to them and have been proposed for use in an-
thropomorphic hands (Weiss and Worn, 2004). Generally the resistive materials
are an elastomer, a conductive rubber or conductive ink which is pressure sen-
sitive (Tiwana et al., 2012). This type of sensor is particularly popular in Micro
Electro Mechanical Systems (MEMS) and silicon based tactile sensors (Wolffen-
buttel and Regtien, 1991; Beebe et al., 1995). A lot of position sensing devices
such as joysticks use Force Sensing Resistors (FSRs) which are based on piezore-
sistive sensing technology. There are numerous FSRs commercially available
from Tekscan (2017) and Weiss Robotics (2017) that use carbon enriched silicon
rubber in their rigid tactile sensors. Eeonyx (2017) supply a piezoresistive fabric
and Inaba Rubber (2017) manufacture a pressure conductive rubber for use
in research and industrial applications for example detecting the position of
objects and slip detection. Another commercially available sensor based on
piezoresistive technology is the Nano17 sensor produced by ATi industrial
Automation (ATi, 2017) shown in Figure 2.3 and this sensor is used throughout
the work presented in this thesis to calibrate and verify force applied to various
surfaces throughout the experimental work. Although FSR sensors are low cost
with good sensitivity, they provide high non-linear responses and can suffer
from high magnitudes of hysteresis (Vidal-Verdú et al., 2011). Furthermore, an
elastic material may never regain its initial form following multiple deforma-
tions and as a result piezoresistors suffer from lower repeatability than some
other forms of tactile sensors (Kappassov et al., 2015).
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Figure 2.3: Image of ATi Nano17 force Sensor (ATi, 2017)

Quantum Tunnel Composites (QTC) sensors (known as tunnel effect tactile
sensors) are capable of transforming from near perfect insulators to a metal like
conductor when deformed by stretching, twisting or compressing the material.
The resistance drops exponentially throughout the transition from insulator to
conductor, following a smooth and repeatable curve. The metal particles within
the QTC get so close to each other that quantum tunnelling of electrons takes
place between the particles but they never actually come in contact with each
other (Dahiya and Valle, 2008). Walker (2004) used QTC tactile sensors in earlier
versions of the Shadow Hand. Zhang et al. (2013) also use their own developed
flexible QTC tactile sensor in an anthropomorphic artificial hand. Kappassov
et al. (2015) state that QTC sensors are more technologically advanced than
capacitive or piezoresistive sensors and Maheshwari and Saraf (2006) present a
sensor based on the electronic tunnelling principle with a spatial resolution of
≈ 40 µm, which is better than that of a human fingertip.

2.3.2 Capacitance-based Tactile Sensors

A common form of tactile sensors is capacitive sensors (Almassri et al., 2015;
Prescott et al., 2015). They consist of a dialectric material sandwiched between
two conductive plates (Lucarotti et al., 2013). Schmidt et al. (2006) present
examples of capacitive touch sensors which consist of a plate capacitor in which
the relative position of the plates are shifted when force is applied changing
the distance (d) between the plates or the effective area, as demonstrated in
Figure 2.4(a). The plates are separated by a compressible dielectric material as
demonstrated in Figure 2.4(b). The distance between the plates reduces when
force is applied which in turn changes the capacitance. Capacitive sensors are a
very common form of sensing transducers and used by some robot manufac-
tures. For example, as presented by Schmitz et al. (2011) they are used in the
iCub humanoid robot for sensing capabilities in the palm (Figure 2.4(c)) and
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they were used by Willow Garage as tactile sensors in the grippers of the PR2
robot as seen in Figure 2.4(d) (Romano et al., 2011).

(a) (b)

(c) (d)

Figure 2.4: a) Sketch demonstrating that the capacitance of a parallel plate
capacitor depends on the area of the plates and the distance between the plates,
d.(Fraden, 2003); b) Sketch showing the two conductive plates separated by
a dielectric material (Balasubramanian and Santos, 2014); c) A mesh of the
triangular capacitive sensors from the palm of the iCub robot (Schmitz et al.,
2011); d) Image showing the tactile sensors in the gripper of the PR2 robot at
the Intelligent Systems Research Centre (ISRC).

Capacitive touch sensors also allow for the production of dense sensor arrays
as they can be produced to be very small in size. Bhattacharjee et al. (2012)
present a method using capacitive touch sensors consisting of a 24× 24 array of
relatively large tactels measuring 9× 9mm. The large tactile array sensor covers
the forearm of the Meka A1 robot and the authors classify objects with which
the arm comes in contact, into four categories: rigid-fixed, rigid-moveable, soft-
fixed and soft-moveable. Gray and Fearing (1996) present an 8× 8 capacitive
tactile sensing array of 1mm2 area and a spatial resolution at least 10 times
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better than the human limit of 1mm. Due to their sensitivity and resolution
capacitive sensors are the basis of many touch screen technologies (Dahiya
et al., 2010). However, although capacitive sensors can be very sensitive, severe
hysteresis and stray capacitance are major drawbacks (Dahiya and Valle, 2008).

2.3.3 Optical-based Tactile Sensors

Most optical based tactile sensors use the properties of optical reflection between
mediums of different refractive indices (Lee et al., 2013). They consist of a light
source, a clear plate and a compliant membrane stretched above, but not in
contact with, the clear plate. Light is directed along the edge of the plate.
When there is no force applied, the light passes via total internal reflection
and when there is force applied it suffers through diffuse reflection. Placing
charge-coupled device (CCD) or complementary metal-oxide semiconductor
(CMOS) cameras in the imaging area allows for the light leaving the plate to
be recorded and the intensity of the light is proportional to the magnitude of
force between the plate and the object (Dahiya and Valle, 2008). An optical
three-axis tactile sensor also sensitive to shear forces was developed by Yussof
et al. (2009) for use on the fingertips of a two-fingered hand. The sensor consists
of a CCD camera, a light source, an optical fibre-scope and 41 sensing elements
made from silicon rubber; the use of the sensor enables the hand to manipulate
a light paper box. Kampmann and Kirchner (2014) present a three-fingered
robot gripper with embedded fibre optic sensors combined with the use of
both piezoelectric sensors to measure dynamic forces and strain gauge sensors
to measure absolute forces in their multi-modal sensing system to measure
force distribution. Schunk (2017) released a commercially available SDH multi-
jointed 3-finger gripper (shown in Figure 2.5(a)). The hand has the option
of having optical-based tactile array sensors fitted to the end of the grippers
(shown in Figure 2.5(b)) to allow for basic force readings to be calculated when
in contact with objects.

A flat 3× 3 optical tactile sensor array was developed by Xie et al. (2014) where
elements of the sensor were magnetic resonance compatible so that they could
be used in Magnetic Resonance Imaging. Heo et al. (2006) present an optical
fibre based tactile sensor with spatial resolution of 5mm capable of measuring
forces as low as 0.001N. Although these sensors are highly responsive, sensitive,
flexible and immune to electromagnetic interference they are relatively bulky,
can suffer from signal distortion due to loss of light caused by micro bending
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(a) (b)

Figure 2.5: a) Image showing the Schunk SDH multi-jointed 3-finger gripper
grasping an object.(Schunk, 2017); b) Sketch illustrating the optical-based tactile
array sensor (Schunk, 2017)

(Liu et al., 2017) and are known to have high computational costs and power
consumption (Dahiya and Valle, 2013; Tiwana et al., 2012).

The “TACTIP” biologically inspired biomimetic sensor was developed by Bristol
Robotics Laboratory (BRL) (Chorley et al., 2009). Papillae pins are located
on the inside of the sensor skin and deformation caused by interacting with
objects is measured optically by tracking the movement of the papillae pins,
which represent the intermediate epidermal ridges of human skin. The original
TACTIP sensor was 40mm in diameter, a schematic of the original TACTIP
fingertip can be seen in Figure 2.6(a). The TACTIP sensor was later revised and
reduced in size to 20mm to further replicate a human fingertip and be suitable
for use on a robotic hand (Winstone et al., 2012). A schematic of the revised
fingertip can be seen in Figure 2.6(b).

(a) (b)

Figure 2.6: a) Image showing a schematic of the original TACTIP sensor (Chor-
ley et al., 2009); b) Image showing a schematic of the revised TACTIP sensor
(Winstone et al., 2012).
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Roke et al. (2012) used the TACTIP as part of a mechanical teleoperated device
to detect and localise embedded objects in a synthetic skin material, repre-
senting lumps in teleoperated surgery. Test participants palpated a number of
artificial tissue models in order to identify lumps a varying stiffness. It was
shown that the addition of a tactile feedback system in the form of the TACTIP
sensor decreased the time users spent locating the lump from an average of 37
seconds in comparison to 55 seconds when using a mechanical device without
tactile feedback for the same task. Furthermore, the addition of tactile feedback
improved the accuracy of lump detection from 64% to 98% and reduced the
localisation error from 18mm to 11mm. Based on the premise that the human
finger is known to be highly sensitive to lateral skin deformation, Roke et al.
(2013) evaluated the effects of retrieving lateral information together with tactile
feedback from the mechanical teleoperated device from the authors previous
work (Roke et al., 2012). Surprisingly, it was proven that no improvement was
gained in the participants’ ability to detect and localise lumps in the form of
embedded objects by adding lateral feedback (Roke et al., 2013). The sensor has
since been developed as a 3D printed sensor and the designs are available to the
tactile sensing research community as open-source designs (BRL, 2016). How-
ever, the sensor was not released until after the majority of the experimental
work in this thesis was completed.

2.3.4 Acoustic-based Tactile Sensors

Acoustic ultrasonic sensing technology has been used for tactile sensing by us-
ing microphones to detect surface noise caused during slip or motion. Milighetti
et al. (2006) present a sensor that detects contact events from their ultrasonic
emission at a point of contact. The device consists of a Polyvinylidene Fluoride
(PVDF) polymer in a 2× 2 array of receivers on a silicone rubber sensing dome
capable of localising the point of contact; it is stated to be very effective in
identifying surface roughness during movement and detecting slip. Ultrasonic
tactile sensors have also been used to measure the hardness/ softness of a
material as presented by (Omata et al., 2004). This is achieved by measuring the
change in resonance frequency of Lead Zirconate Titanate (PZT) in accordance
with an object’s acoustic impedance. Although acoustic tactile sensors have
good force resolution and are very responsive, material such as PZT is difficult
to manage in miniaturised circuits (Alonso-Martı́n et al., 2017).

Structure-borne sound signals can be utilised for tactile sensors. Möser (2009)
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states that “structure-borne sound” is the term used for vibrations and waves in
solid structures. Structure-borne sounds occur at initial contact with an object
or during slippage in manipulation tasks and can serve as indicators to inform
the manipulator of details about the placement of the object in pick-and-place
tasks. Microphones and accelerometers can be used as detecting devices for
structure-borne sounds (Kappassov et al., 2015). Romano et al. (2011) use a
highly sensitive 3-axis accelerometer in their approach for example in the base
of the PR2 robot gripper, shown in Figure 2.7. The sensor is used to detect
when contact is made between the object and a table which determines when
to release the object. Although these types of sensors have a wide bandwidth,
they are suitable for dynamic measurements only.

Figure 2.7: Image of the PR2 Tactile Sensors with the accelerometer rigidly
mounted to a printed circuit board in the palm (Romano et al., 2011)

2.3.5 Pressure-based Tactile Sensors Types

Barometric measurement-based tactile sensors use pressure transducers to
measure the pressure in air and liquids (Fraden, 2003). Deformability of a
sensor together with a high frequency response can be achieved by using
liquid inside the sensor where changes in pressure values are a representation
of vibration (Fishel, 2012). A sensing system which incorporates the use of
electro-conductive fluid to produce both dynamic and constant vibration signals
is presented by (Wettels et al., 2014). The exterior surface of the sensor is
textured similar to that of the human fingerprint. Therefore, any motion over
the textured surface or slippage of the surface against another causes micro-
vibrations, which propagate as sound waves through the liquid medium to a
pressure transducer (Fishel et al., 2008). With a bandwidth of 1kHz, the sensor
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is suitable for slip detection applications by analysing the vibration signals.
This type of sensor is embedded in the BioTACTM biomimetic finger-shaped
tactile sensor from Syntouch R© (Syntouch, 2013) shown in Figure 2.8, which is
discussed in more detail in Section 2.4.

Figure 2.8: Photo of the BioTAC Biomimetic fingertip (Syntouch, 2013)

As an alternative to using liquid as a medium for sound waves to travel and
represent vibration, Tenzer et al. (2014) present a sensor with a barometer fitted
in each tactel moulded within a silicon rubber which acts as a membrane. When
the sensor makes contact with an object within the environment the rubber is
deformed causing changes in the pressure values in the barometer. It was found
that although these sensors, with a barometer moulded into silicon rubber, are
cost effective they also have a low frequency response due to the elasticity of the
silicon rubber. However, Wettels et al. (2014) showed that sensors incorporating
liquid and barometers have a high frequency response, therefore the use of
liquid as a propagation media is more suitable than other media such as silicon
rubber, in relation to frequency response.

2.3.6 Other Tactile Sensor Types

Nowlin (1991) presents techniques that use magnetic based tactile sensors
which measure changes in the flux density of a small magnet when forces
are applied to it. The measurement of flux density can be made by either a
magneto resistive device or a Hall Effect as presented by Jamone et al. (2006).
These types of sensor boast many advantages such as a linear response, no
measurable mechanical hysteresis, robustness and high sensitivity and dynamic
range. However, they involve complex computations and they cannot be used
in a magnetic medium (Dahiya and Valle, 2008).
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The piezoelectric effect is produced in quartz crystals (Kappassov et al., 2015)
or in man-made piezoelectric materials. They are classed as ’Smart Materials’
because they can be used as either sensors or actuators due to the fact that they
generate charge/ voltage proportional to the applied force or, alternatively,
they are able to generate force due to electrical output (Tiwana et al., 2012). A
piezoelectric film with structural electrodes was used by Chuang et al. (2013)
in the development of a flexible tactile sensor which was used to lift an object
of unknown weight. Some ceramics such as PZT have good piezoelectric
properties; however, it is polymers such as PVDF or its copolymers that are
normally used for touch sensors such as those presented by Dargahi et al. (2000)
and Yuji and Sonoda (2006). This is due to the attractive properties of PVDF
polymers as they are chemically stable and flexible (Flanagan and Wing, 1993).
One major concern with the use of piezoelectric materials as touch sensors is
their sensitivity to temperature change (Lucarotti et al., 2013).

2.3.7 Multi-modal tactile sensors

Tactile sensors which use more than one method of transduction allow for
the measurement of multiple modes of information such as vibration, force
and thermal characteristics. Dahiya and Valle (2008) show that studies of
human skin and tactile performance have inspired the development of such
tactile sensors which generally utilise softer materials rather than solid or fairly
rigid materials. Someya et al. (2004) present a number of touch sensors which
use conductive rubber as a transducer by taking advantage of the impedance
change due to the force applied. Furthermore, Johansson and Flanagan (2009)
state that a robot should be equipped with a multi-modal tactile sensor if it
is to be expected to match the human hand’s sensory capabilities. Wade et al.
(2015) present a hand-held multi-modal sensor consisting of a fabric-based
tactile sensor for force estimation, a contact microphone and accelerometer to
measure vibration and acceleration, a fast response thermistor for temperature
sensing and a sensor for measuring heat transfer. The authors collected data
from common objects found in a bathroom, used principal component analysis
(PCA) to reduce data dimensionality and a Support Vector Machine (SVM) to
complete binary classification between pairs of the objects, achieving up to
100% accuracy in some instances, for example classifying between a toothbrush
and a countertop.

Some more recent tactile sensors have been constructed using a combination of
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piezoelectric and piezoresistive materials and therefore have the ability to sense
dynamic and static contact forces (Kappassov et al., 2015). Goger et al. (2009)
present an example of such material consisting of piezoresistive rubber with
PVDF which is integrated with an anthropomorphic fluidic hand (Schulz et al.,
2004). Also, Choi et al. (2006) present a four-fingered robot hand which utilises
a pressure variable resistor ink with PVDF as a sensing mechanism. Kawamura
et al. (2013) present a hybrid sensing system consisting of a combination of static
and dynamic transducers by combining a force tactile sensor and a carbon micro-
coil touch sensor. Hasegawa et al. (2010) presented a method that enhanced
autonomous grasping by integrating pressure and proximity sensors on an
artificial fingertip. Friesen et al. (2015) analyse the mechanical properties of
the human fingertip when pressed against a surface and present a biologically
inspired artificial fingertip that resembles the behaviour of the human fingertip
when pressed against the surface. The fingertip consists of a rigid aluminium
core with a soft sponge surrounding it, a stiffer outer skin-like membrane and
a very thin outer layer of textured acrylic paint to represent the stiff stratum
corneum of the human fingertip (Friesen et al., 2015). Two types of rubber
were evaluated for the skin-like membrane. It was found that the response of
the fingertip to transient mechanical perturbation and the force-deformation
characteristics of the fingertip were both in qualitative agreement with the
human fingertip. Also the fingertip exhibits friction reduction when subjected
to transverse ultrasonic vibrations through interactions with variable friction
tactile displays (TPads). These fingertips contain no means of collecting force,
vibration or temperature based data at this stage, however Friesen et al. (2015)
provide an alternative method for constructing an artificial fingertip that is
approximately the same shape and size of the BioTAC sensor and the human
fingertip.

Lin et al. (2009) present the BioTAC biomimetic tactile sensor which is shaped
like a human fingertip, as seen in Figure 2.8. This sensor is capable of measuring
thermal, force and microvibration modalities simultaneously. Syntouch have
also released an updated design of the BioTAC sensor, namely the BioTAC SPTM

which can be seen in Figure 2.9(a). The BioTAC SP has the same functionality
as the original BioTAC sensor only it has a greater contact surface area. The
electronics of both the BioTAC and BioTAC SP are protected inside the rigid
core of the sensors therefore providing the aforementioned multiple sensory
capabilities without placing any sensors directly onto the skin. Furthermore,
Syntouch have recently released their NumaTacTM Technology as seen in Fig-
ure 2.9(b). This sensor distils all the sensory capabilities of the BioTAC and
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BioTAC SP and can be designed and manufactured to cover large and complex
areas such as a torso, feet, hands, limbs etc., (Syntouch, 2013).

(a) (b)

Figure 2.9: a) Photo of the BioTAC SP Biomimetic fingertip (Syntouch, 2013); b)
Photo of the BioTAC NumaTac Technology (Syntouch, 2013)

A highly sensitive sensor capable of measuring multiple modalities is required
to achieve the aims of this programme of research. The state-of-the-art sensor
at the time the experiments were completed was the original BioTAC; hence
this is the sensor used throughout this research and is explained in detail in
Section 2.4.

2.4 BioTAC Biomimetic Tactile Sensor

Loeb et al. (2011), define biomimetic design as the process of designing machines
that incorporate principles of operation of living organisms. The BioTACTM

biomimetic tactile sensor proposed by Syntouch R© is a finger-shaped sensor
array that provides simultaneous information about contact forces, microvibra-
tions and thermal fluxes induced by contact with external objects (Yamamoto
et al., 2012; Lin et al., 2009). The design of the fingertip incorporates the low-
pass filter effects of fluid and cosmetic skin into the transduction process in
a similar manner to a biological fingertip (Wettels et al., 2008). A solid core
containing all of the finger’s electronics and a conductive fluid surrounding the
core are enclosed by a silicone elastomer skin and a plastic finger nail. Wettels
et al. (2008) discuss how various textures for the inner surface of the skin were
evaluated by using simplified finite element models in the development of the
silicone elastomer skin. Analysing impedance versus force relationships of
various moulded skins enabled the selection of the appropriate material for the
skin which, when coupled with the appropriate fluid, proved to greatly reduce
hysteresis and diffusion loses (Wettels et al., 2008). Initial testing of impedance
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when the sensor was systematically probed in a 4 × 5 grid demonstrated a
spatial resolution of below 2mm in relation to the point of contact (Wettels
et al., 2008). Wettels et al. (2008) state that by analysing data collected from the
array of electrodes during contact with an object, it is possible to determine the
contact force magnitude and direction, the location of force centroid, the object
shape (e.g. curvature, sharp edge etc.), the object hardness/softness and contact
transients and vibration. Figure 2.10 shows a cross section view of the BioTAC
fingertip in which is seen a hydro-acoustic pressure sensor housed in the rigid
core, which also houses the impedance sensing electrodes and thermistor at the
tip of the finger.

Figure 2.10: Cross Section View of BioTAC Fingertip Tactile Sensor (Syntouch,
2013)

There are various sensors on the fingertip that enable retrieval of the afore-
mentioned sensory information. An array of 19 electrodes measures the force
applied on the fingertip by reading the impedance between each electrode and
four common excitation electrodes. As the impedance over a sensing electrode
increases, the measured voltage decreases demonstrating contact in that area of
the finger. Having a 19 electrode array allows the exact point of contact on the
fingertip to be derived. Furthermore, it enables multiple points of contact to
be derived at any instance. Inside the core of the fingertip there is a pressure
sensor (located in the rigid core). This sensor reads pressure changes in the
conductive fluid located between the hard core and the elastomeric skin. The
skin has a fingerprint, similar to that of a human, moulded on its surface. When
contact is made with a material, microvibrations are caused by the movements
within the fingerprint causing the pressure change in the conductive fluid. The
vibration sensor outputs two different data types; one is the static fluid pressure
i.e. absolute fluid pressure (PDC), which is the reading obtained after passing
through a low pass filter. The other is a measurement of the microvibrations
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sensed from the electro-conductive fluid, i.e. dynamic fluid pressure (PAC),
which has been passed through a band pass filter. The PAC data represent the
extent of the vibration that the fingertip has sensed when in contact with objects
or materials. The final sensory data that can be retrieved from the BioTAC fin-
gertip are the static temperature (TDC) and thermal flow (TAC) data. The TAC
data represent the rate at which heat is leaving the fingertip and transferring
to/from the object or material with which it is in contact. This is made possible
by the thermistor which is located in the tip of the fingertip. Table 2.1 shows the
maximum range, resolution and frequency response of the sensory modalities
available in the BioTAC when the high sampling PAC is interleaved with the
other channels (PDC, TAC, TDC, Electrodes 1-19) at a rate of 4.4kHz (Fishel,
2012).

Table 2.1: Table specifying the range, resolution and frequency response of the
sensory modalities available in the BioTAC sensor (Fishel, 2012)

Sensory
Modality Symbol Range Resolution Frequency

Response
Impedance E 0− 3.3V 3.2mV 0− 100HzV

Fluid Pressure PDC 0− 100kPa 36.5Pa 0− 1040HzV
Microvibration PAC ±0.76kPa 0.37Pa 10− 1040HzV
Temperature TDC 0− 75◦C 0.1◦C 0− 22.6HzV

Thermal
Conductivity PAC 0− 75◦C/s 0.001◦C/s 0.45− 22.6HzV

These data are used throughout this thesis, however due to the equipment used
the frequency of data collection changes. This is explained in more detail, as
necessary, in Chapter 4, Chapter 5 and Chapter 6.

2.5 Conclusion

This chapter has provided a brief overview of human tactile sensing, highlight-
ing its complexity and how difficult it is to replicate. An overview of existing
tactile sensors and their capabilities and an introduction to the BioTAC tactile
sensor that is used to collect all tactile data utilised in this work have also been
presented. Hardware utilised for collecting tactile data has also been discussed.
Chapter 3 builds on this and focuses on research which utilises tactile data to
learn information from objects following direct contact.
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CHAPTER

THREE

Computational Intelligence in
Tactile Sensing

3.1 Introduction

Humans can quickly gain information about an object or material simply by
viewing it from different angles; for example they can estimate how it might
feel to touch or how heavy it may be. This is due to our highly sophisticated
visual capabilities and ability to adapt prior knowledge learned from similarly
shaped and known objects. However, regardless of our heavy dependence on
vision as our primary sense, there are some properties which are difficult or
even impossible to detect by vision alone, for example thermal conductivity,
compressibility or a determination of the material an object is made from. In
order to learn these characteristics and remember them for future interactions,
physical manipulation of an object is required. Distinguishing between objects
and materials of different compressibility, temperature and texture or sens-
ing small vibrations such as a human pulse on a wrist can be achieved by
performing complex manipulation tasks such as squeezing or rubbing.

This chapter provides an overview of commonly used computational classifiers
for tactile-sensing based experiments such as object or material identification.
Furthermore, a summary of research utilising tactile sensing, particularly in
material identification, is presented followed by a review of recent research
conducted using the BioTAC sensor.
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3.2 Machine Learning

Two popular machine learning classifiers are Artificial Neural Networks (ANN)
and Support Vector Machines (SVMs) and therefore these classifiers, and com-
binations of them, are primarily used in this work for material identification in
Chapter 4. Variations of ANN, such as Multi-Layer Perceptron (MLP), together
with other classifiers such as Gaussian Mixture Models (GMMs), Linear Dis-
criminant Analysis (LDA), Naı̈ve Bayes (NB) and k-Nearest Neighbour (k-NN)
are also evaluated for material identification and therefore are briefly explained.
A Fuzzy logic based classification system is utilised in Chapter 6 for identifying
the health status of a human and is therefore also briefly explained in this
section. All classification algorithms are utilised from tool boxes within (MAT-
LAB, R2013) and R from the (R Core Team, 2013). A detailed description of the
inner workings and mathematics behind the algorithms is not presented but,
references throughout the descriptions provide extra detail if desired. Novel
hybrid combinations of the utilised algorithms were designed and evaluated.

3.2.1 Artificial Neural Networks (ANN)

The brain may be considered to be a complex, non-linear and parallel computer.
It has the ability to perform complex tasks such as pattern recognition, percep-
tion and motor control much faster than any electronic computer, even though
events occur in the nano-second range for silicon gates, and milli-seconds range
for natural neural systems (Engelbrecht, 2007). One of the aims of computa-
tional Intelligence is to replicate this ability in artificial systems. An ANN is just
one example of a paradigm of Computational Intelligence (CI) which, according
to Engelbrecht (2007), is the study of adaptive mechanisms to enable or facilitate
intelligent behaviour in complex and changing environments.

Neural Networks (NN) are networks or circuits of biological neurons. ANNs
are a computational tool modelled on the interconnections of neurons in the
nervous system of the human brain. ANNs mimic the hugely dense and
parallel processing ability of the brain (Wasserman, 1989) and are comprised
of large arrays of interconnected computational elements, know as neurons.
The brain consists of approximately 1011 neurons (Jain et al., 1996), each having
the possibility of being connected to 1000-10000 other neurons, resulting in
approximately 1014 to 1015 synaptic interconnections (Schalkoff, 1997). An
ANN is a network of many non-linear computational elements connected
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by adjustable weights, often implemented as a mixture of serial and parallel
executions paths on a standard computer.

Typically an ANN will possess one or more network inputs, an input layer, hid-
den layer(s) and an output layer with weighted connections between neurons
in the same layer and different layers, an activation function, output units and a
learning algorithm. The network will consist of interconnected neurons which
work in unity to solve particular problems. There are many variations of an
ANN (e.g. temporal ANNs, self-organising ANNs, spiking ANNs) but a typical
example is a second generation back-propagation feed forward network (with
bias). Figure 3.1 shows a sketch of the structure of a second generation ANN.

Figure 3.1: An example of a fully connected feed-forward network with one
hidden layer

ANNs have been used for a wide range of applications, including diagnosis of
diseases, speech recognition, data mining, image processing, robot control, clas-
sification, credit approval and many more. More specifically, ANNs have been
utilised as a classifier in many approaches using tactile sensory information to
classify between materials and/or objects (Drimus et al., 2012; Chathuranga
et al., 2013; Ho et al., 2011).

A variation of an ANN is a Multi-Layer Perceptron (MLP). This is a feed-

27



forward ANN model that maps sets of input data onto a set of appropriate
outputs and utilises back-propagation for training the network (Rosenblatt,
1962; Rumelhart et al., 1986). Like any ANN, an MLP has multiple layers of
neurons with each layer fully connected to the next one. However, in an MLP
each input node is a neuron with a non-linear activation function. As it is a
modification of the standard linear perception, an MLP can distinguish data
that are not linearly separable (Cybenko, 1989).

3.2.2 Support Vector Machine (SVM)

A SVM is a useful and well established technique used in machine learning to
learn and classify data (Cortes and Vapnik, 1995). In their simplest form, SVMs
are non-probabilistic binary linear classifiers that build a model based on a set
of training samples which belong to one of two categories and is then capable
of assigning new samples to one category or the other. The SVM model is a
representation of the labelled samples as points in space which are mapped
in separate categories with a clear gap between them. Based on the learned
information, new samples are then mapped onto the same space in the model
and therefore predicted to belong to one category or the other (Cortes and
Vapnik, 1995).

However, a common difficulty with a SVM is that it is not possible to linearly
separate the data (Press et al., 2007). Therefore in a non-linear SVM, it is required
to map the input data to a higher dimensional space through the use of a kernel
function (KF) (φ), as represented by the image in Figure 3.2.

Figure 3.2: A sketch representing the use of a kernel function for non-linear
SVM classification (Moreira, 2011)
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Binary classification alone is not suitable for the material classification task in
Chapter 4; therefore, the standard SVM algorithm has been adapted to enable
multi-class classification for materials. Two common ways of utilising binary
SVM classification techniques, to allow for multi-class classification, are by
either having a sequence of numerous one-versus-one binary classifiers or
by having a multiple one-versus-all classifier (Duan and Keerthi, 2005). The
approach utilised in this work is a series of one-versus-all classifiers in which
the system is trained with each class classified against the samples of all the
other classes, to develop a SVM multi-class classifier.

3.2.3 Gaussian Mixture Model (GMM)

The Gaussian probability density function (PDF) is a bell shaped curve defined
by two parameters, mean and variance. The Gaussian distribution is commonly
used for approximating a class model shape in a selected feature space. It is
assumed that the class model is truly a model of one basic class, however if the
actual PDF is multi-modal it fails. A GMM is a mixture of several Gaussian
distributions and is therefore able to represent different subclasses within a
class. The resulting probability density function is defined as a weighted sum
of the Gaussian distributions that make up the GMM. The PDF of the GMM
can be used to calculate the likelihood of any new input data within each class
and identify the class for which the PDF generates the maximum likelihood,
hence classifying the data. The expectation maximisation (EM) algorithm is an
iterative method for calculating the maximum likelihood distribution in GMMs
(Dempster et al., 1977).

3.2.4 Linear Discriminant Analysis (LDA)

LDA finds a linear combination of features that characterises or separates two
or more classes of objects or events by creating the linear combination which
yields the largest mean differences between the classes (Martinez and Kak,
2001). It is a generalisation of Fisher’s linear discriminant (Mika et al., 1999;
Müller et al., 2001; Fukunaga, 1990) and it is a widely used method in statistics,
pattern recognition and machine learning. The linear combination can then be
used as a classifier or for dimensionality reduction before classification. Similar
to principal component analysis (PCA), which is also used for dimensionality
reduction, LDA looks for linear combinations of variables which best explain
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the data (Martinez and Kak, 2001). LDA explicitly attempts to model the
difference between the classes of data. The accuracy of LDA and indeed any of
the classification techniques can be defined as

CA(%) =
Tests classified correctly

Total Tests
∗ 100 (3.1)

In the case where there are more than two classes (instead of dimensionality
reduction), LDA can still be used in a variety of different ways. For example, a
“one against the rest” approach could be applied where points from one group
are put into one class and all the rest of the points from the other groups are
put into another, then LDA applied. Another common method is pairwise
classification, where a new classifier is created for each pair of classes with
individual classifiers combined to produce a final classification. In this work
LDA is used for multi-class classification to identify materials individually and
into their groups, although it can be used for binary or multi-class classification.

3.2.5 Näıve Bayes (NB)

NB is a family of classifiers capable of binary or multi-class classification. Rather
than the classifier taking all features of a class into account collectively to
describe the class, all NB classifiers assume that the value of a particular feature
is completely independent of any other feature in the class. Hence NB classifiers
can be trained very efficiently during a supervised learning task, (Rish, 2001).

A NB classifier is a simple probabilistic classifier based on applying Bayes’
theorem with strong (naı̈ve) independence assumptions. Although quite a
simple classifier, it has proven to be very effective in some texture classification
approaches (Ho et al., 2011). The NB classifier is based on the assumption that
given the target value of the instance, the probability of observing the conjunc-
tion of attributes is just the product of the probabilities for the individual’s at-
tributes. Therefore, the NB classifier reduces a multivariate problem to a group
of univariate problems by ignoring the possible dependencies (correlations)
among the inputs (Islam et al., 2007). Hence the NB classifier is much simpler
than a standard Bayesian learning algorithm, although this does mean that it
is not as effective for more complex classification problems, especially since
only one simple joint probability distribution is used per class (Klawonn and
Angelov, 2006). However, considering its simple nature, it is rather straightfor-
ward to implement and therefore is very commonly considered and evaluated
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for many classification tasks.

3.2.6 k-Nearest Neighbour (k-NN)

k-NN is a non-parametric method that can be used for classification or regres-
sion. k-NN is quite a simple algorithm and straightforward to train and use
and this is likely to be the reason why it is still a popular choice as a classifier
(Drimus et al., 2012). There are three main elements to this approach: a set of
labelled objects stored in a database (e.g. tactile array images, forces applied,
credit history, stock market records), a calculation of the distance between the
objects and the value of k itself, which is the number of nearest neighbours.

When used for classification, an object is assigned to the class which is most
common amongst its k nearest neighbours following a majority vote. The
number of neighbours is defined by the user and is normally a small positive
integer, for example if k=1 then the object is assigned to the class of the single
nearest neighbour or if k=3 then the most popular class amongst the three
closest neighbours is the class that the object will be assigned to.

However, k-NNs also have their weaknesses; the main weakness being that
generally, in its simplest form, k-NN makes the assumption that all features
are of equal importance and therefore assigns equal weight to each, regardless
of whether they are relevant or not. So not only does this mean that it is not
possible to distinguish between more and less relevant features but it also means
that totally irrelevant features can have an adverse effect on the outcome.

k-NN assumes that each x = {x1, x2, ..., xn, xc} is defined by a set of n features,
where xc is x’s class value (discrete or numeric). Given a query q and a case
library L, k-NN retrieves the set K of the k most similar features (i.e. of least
distance from the query) in L and predicts their weighted majority class value
as the class value of q. The distance that is defined for all points in a dataset is
described as:

Distance(x, q) =

√√√√ n

∑
f=1

(w f × difference(x f , q f )2) (3.2)

where w f is the parameterised feature weight value assigned to feature f and the
value of k is a smoothing factor affecting the classification. When there is noise
or outliers present in the input data, a small k may result in misclassification.
Conversely, a large k can lead to over generalisation, hence the range of k values
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that is tested for each problem is very important. However, this can lead to
a further disadvantage of the k-NN algorithm considering the increase in the
calculations to be performed when the training space is large.

3.2.7 Fuzzy Logic

Zadeh (1965) first developed fuzzy logic in his seminal work on fuzzy sets. In a
traditional set, an element is either in or not in the set. In contrast, a fuzzy set
is a generalisation of the traditional set in which an element can have partial
membership to one or more sets. The driving force behind fuzzy sets was to
model uncertainly and slight inaccuracies within the reasoning process (Zadeh,
1965). It is not always possible to describe things in an absolute state. For
example, we describe the temperature in weather with terms like “cold”, “a
little bit cold”, “hot, “really hot” etc. It is these properties which makes Fuzzy
logic the ideal selection for determining the health status of humans based on
the combined vital sign measurements, as presented in Chapter 6.

Each element in a fuzzy set is mapped by a value of “trueness” for its mem-
bership to a set. This value is between 0-1, where 0 represents complete non-
membership of the fuzzy set and 1 represents complete membership. This
mapping is called the membership function and it completely describes the
fuzzy system. Examples of membership functions can be triangular, trapezoidal
or Gaussian in shape (Kuncheva, 2012). A Gaussian membership function is
commonly used in Fuzzy-based classifiers and an example set of Gaussian
membership functions can be seen in Figure 3.3.

Using the decomposition theorem, fuzzy sets can be decomposed into crisp
sets (Yuan et al., 2011). The three elementary set theoretic operations of two
fuzzy sets are union, intersection and complement. Using these operations,
the user can define and interpret fuzzy sets. Each fuzzy rule consists of two
parts - the premise and the consequent. The premise is the “if” part and the
consequent is the “then” part (Abe, 2012). Using a series of these rules the user
can configure the fuzzy system to fuzzily classify events or data inputs into
non-rigid descriptors.
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Figure 3.3: A graph showing Gaussian membership functions with a Fuzzy
Classifier (Hameed and Sorensen, 2010)

3.3 Machine Classification using Tactile Sensing

For tactile information retrieval there is a need for physical contact to be made
with the object, material or human. Therefore, full exploration of the object
can be time consuming as contact can only be made in patches equivalent
to the size of sensor being used. However, tactile sensors supply various
attributes about objects they contact that vision sensors simply cannot, for
example compressibility. This section reviews current literature on machine
learning methods used for tactile sensing based material identification.

3.3.1 Material Classification using Tactile Images

Despite initially receiving less focus than vision based methods for material
identification, research into tactile methods for object attribute learning and
identification is now very active. Although tactile information is retrieved
through a range of available sensors, for example tactile array sensors or simple
force pressure sensors, many approaches convert tactile information to image
based representations for learning an object. A common characteristic of an
object that can be represented by tactile images is compressibility, i.e. is it
rigid or deformable? Tiest (2010) described the compressibility or stiffness of
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the object as the ratio between the force applied to an object and the resulting
displacement of the object. The compressibility of the object will determine how
much force is required to grasp the object firmly. If the object can be squeezed
to half its width, for example, then it will be important that the correct amount
of force is applied by a robot manipulator to ensure a non-destructive grasp. In
contrast, if the object is not compressible at all, i.e. it cannot be squeezed, then it
is equally as important to ensure that there is not excessive force applied which
may crack or smash an object. Pezzementi et al. (2011) presented an approach
which utilises computer vision algorithms to allow tactile sensor readings, rep-
resenting compressibility, to be considered as images. The tactile array sensor
explores the object and images representing contact made with the array are
produced. Six feature descriptors including the well known Scale Invariant
Feature Transform (SIFT) (Lowe, 1999) and MR-8 (Varma and Zisserman, 2005)
are used to extract features from these images. The Bag-of-Words (BoW) ap-
proach (Jurie and Triggs, 2005), commonly used in computer vision methods, is
then used to learn and classify the objects based on these features. The majority
of evaluation was carried out in simulation and some on real world datasets
collected from objects using the tactile array sensor. It was stated that although
this method showed some promise for object detection from physical contact,
there is still some work required. Another similar approach by Schneider et al.
(2009) used low-resolution intensity images from a tactile array sensor, which
were obtained when the robot grasped an object. A BoW approach was then
applied to model the appearance of images and by the use of unsupervised
clustering on training data, a vocabulary from tactile observations was learned
that is used to generate a histogram codebook. The method was capable of
an average recognition rate of 84.6% across household and industrial objects.
However, the method struggled somewhat when classifying between indus-
trial objects only (such as a cylinder, triangle, cuboid and a handle) with a
classification rate of 58%. It was stated that further work on the method for
grasping the objects was required. Drimus et al. (2011), present a technique to
classify between rigid and deformable objects using a sensor they developed
and compared their results to those obtained using a commercial sensor. Ten
rigid and deformable household objects are squeezed in a gripper with force
sensors fitted. The squeeze is described as “palpation” motion as the gripper
closes on the object until contact is made. After contact is made, the gripper
closes by a further 1mm for five iterations or until a maximum force is achieved,
depending on the compressibility of the material being grasped, i.e. the object is
solid with no compression or it cannot be compressed any further. A set of tac-
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tile images for the force applied to each area of the tactile array was collected for
each complete set of “palpation” grasps of each object. The first two moments
of each tactile image were extracted as two independent features to reduce
dimensionality. The first feature corresponded to the average of the image and
the second to the standard deviation of the pixels in the image. The Dynamic
Time Warping algorithm (Sakoe and Chiba, 1978) was used to calculate the
distance between the time series of images. A k-NN classification was utilised
to classify the different objects, based on their compressibility. The results
showed that the algorithm was more successful when it took data from both
sensors (i.e. from each gripper) and features into account rather than either one
individually. Classification accuracy of up to 92% was achieved for 10 objects
ranging from a rubber ball to a plastic bottle. The algorithm struggled to dis-
tinguish between similarly compressible objects even though the objects were
very different, for example a “bad orange” and an empty bottle were found
to have similar compressibility and therefore the algorithm failed to classify
these objects correctly. Luo et al. (2015) also present an approach which utilises
tactile images and a BoW approach to object recognition. An optimised BoW
approach and dictionary were produced by considering different outputs of the
classic BoW with different dictionary sizes for different views of objects. The
classification performance of this optimised approach was compared against
the performance of the classic BoW model utilising 12 objects. It was found that
the proposed approach outperformed the classic BoW model particularly for
classification of objects with similar features. Sato et al. (2008) also turn tactile
sensing into a purely visual approach. They utilise a fingertip manufactured
out of a clear, compressible rubber and there are tiny blue and red markers
embedded in this rubber. These markers move location when contact is made
on the finger and the rubber is compressed. The markers are monitored by a
small charge-coupled device (CCD) camera embedded where the finger nail
would be. This camera tracks the motion of the markers and then force vector
field calculations are utilised to calculate the magnitude of the force applied
and where contact is made on the fingertip.

A novel “Gelsight” tactile sensor was proposed by Johnson et al. (2011) to
produce tactile images of surface texture. It consists of a camera capable of up
to 2 microns resolution and an elastomer coated with a reflective membrane.
Later, Li and Adelson (2013) proved that this sensor was capable of measur-
ing surface texture across 40 classes of textures made from materials such as
wood, sandpaper and fabric. The “Gelsight” produces a height map when it
is pressed against a surface which the authors treat as an image and process
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it using standard tools for visual texture analysis. A novel texture recognition
system, Multi-scale Local Binary Pattern (MLBP) based on the standard Local
Binary Pattern (LBP) system (Ojala et al., 2002), enhanced by using a multi-scale
pyramid and a Hellinger distance metric, classifies material surfaces with an
accuracy of 99.79% across the 40 test surfaces. Although these methods have
shown that they can be used to identify or classify between materials and ob-
jects in the majority of cases, a lot of the methods struggle with distinguishing
between materials or objects that have similar compressibility or texture. This
is due to assessing just one modality when classifying the material. The work
presented in this thesis aims to take more than one modality into account when
using machine learning techniques for material identification.

3.3.2 Material Classification based on Surface Texture

According to Tiest (2010), roughness is the most studied material property in
the context of tactual perception. Chathuranga et al. (2013) investigate the
ability of a biomimetic fingertip developed by the authors to discriminate
between different fabrics based on the texture of their surface alone. The
proposed biomimetic fingertip is designed to mimic the functions of a human
fingertip, although to allow for the use of commercially available sensors it
is approximately two and half times the size of the average human thumb.
The fingertip contains five accelerometers and eight force, single contact point,
sensors and is fixed horizontally to the test materials and then moved in an
exploratory motion called the active touch (moved forward initially, stopped
for 0.5 seconds and then moved back in the same path). The experiment was
carried out on seven types of materials, six of which are fabrics and one is
a polished aluminium surface. The fingertip’s ability to classify between the
textures was evaluated. Using ANNs as classifiers, accuracies of up to 85%
were achieved. However, some textures were frequently misclassified such
as polyester and acrylic. Ho et al. (2012) assess the ability of their developed
sensors to classify between three different materials (denim, a photo and tape).
Multiple machine learning algorithms are tested, such as NB, a multilayer
ANN with input extracted from autoregressive models and an ANN with
input extracted from the discrete wavelet transform (DWT). It was found that
the ANN with input extracted from DWT performed the best out of all of
the machine learning techniques with classification of 91% accuracy between
two very different materials, i.e. denim and a photo. However, as well as
performing the best out of all the learning algorithms tested, this was the
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most computationally expensive by far. In contrast the NB was very simple
in implementation, although the accuracy of classification was much lower,
dropping to 67% between denim and a photo. It is shown that neither method
can distinguish accurately between the two similar materials, namely the photo
and tape.

Drimus et al. (2012) presented an active exploration approach using a piezoelec-
tric Polyvinylidene Fluoride (PVDF) thin film sensor mounted inside a silicone
shell. Contact is made with the test materials using a contact and release pro-
cedure and features are extracted in order to classify different objects by their
surfaces. During feature selection, methods such as PCA, LDA and Bayes
Optimal LDA are tested for dimensionality reduction. The best results were
achieved by removing selected features from the original set and using Bayes
Optimal LDA. Three classification algorithms were considered for learning the
features; k-NN, ANN and SVM. Five artificial (man-made) surfaces (i.e. grades
of sandpaper) and six ’natural’ (found in everyday life) textures (i.e. dish cloth,
floor cloth, polished wood, aluminium, unpolished wood and plexiglass) where
used as test materials with 20 training samples acquired for each. It was found
that the k-NN and SVM performed equally well with average classification
rates of over 90%. Although this approach could distinguish between different
grades of sandpaper it struggled with the common problem of being able to
distinguish between two similar materials, such as two types of cloth. A similar
approach by Decherchi et al. (2011), assessed the suitability of computational
intelligence approaches for tactile data-processing. Various learning algorithms
were tested considering the trade-off of accuracy versus computational effi-
ciency. The SVM was found to have obtained the best results. However this
method also struggled to distinguish between similar surfaces, for example dis-
tinguishing between wood and brass. This is a drawback of many approaches
to surface classification and identification. Jamali and Sammut (2010) propose a
method which used an artificial fingertip to slide along materials and collect
vibration data. A total of seven materials were tested including sponge, carpet,
wood, two tiles of different roughness and two pieces of vinyl of different
roughness. A Bayes classifier was trained with the Fourier coefficients of the
sensor output data retrieved from the sliding motion over each material. It
was shown that the authors’ classifier performed well for classification between
dissimilar surface textures; however, their approach was unable to distinguish
between two types of tiles, as the texture of the surfaces were similar. Jamali and
Sammut (2011) extended this work to evaluate multiple classifiers and added
a majority voting algorithm. In a similar way to their previous work, data
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were retrieved from the fingertip making contact with test materials. The test
materials included the same seven as in their previous work with the addition
of a second type of carpet (different roughness), making eight material surfaces
in total. Whilst the fingertip was being rubbed over each surface, different
textures induced different intensities of vibration in the silicon fingertip. As
in their previous work, the data from the fingertip were pre-processed and
the Fourier coefficients of the sensor outputs were used as inputs to various
classifiers that were implemented in the WEKA machine learning toolkit (Hall
et al., 2009). It was found that the best performance of 95%±4% was achieved
using the NB tree (NBTree). The system struggled most when trying to classify
between materials of similar roughness.

Kaboli and Cheng (2015) use the Shadow Hand fitted with a BioTAC tactile
sensor on each finger and the thumb to identify objects whilst in-hand, based
on their surface texture. The method uses prior knowledge obtained from six
objects to attempt to distinguish between four new objects. The objects are
held in place by the Shadow Hand, while the middle finger (MF) and thumb
(TH) are used to slide the BioTAC sensor over the object for 1cm. The Shadow
Hand is controlled by a Cyber Glove configured to enable the Shadow Hand
to mimic the actions of the human wearing the Cyber Glove. The expectation
maximisation (EM) algorithm was utilised to differentiate between different
categories of objects based on their texture properties. When attempting to
identify the four new objects based on their category determined by the EM
algorithm, there were many objects that were confused with previous dissimilar
objects which may have had similar surface textures. However, when training
a Least Squared SVM with one data set per each of the four objects the system
achieved 83% accuracy in identifying the four objects and when the training
samples are increased to 10 and the priori knowledge of six objects from previ-
ous experiments is added, 100% accuracy is achieved. Although impressive, it
is important to remember that this is identifying between just four objects. How-
ever, it is an interesting approach to utilise previous knowledge. The authors
improved upon this work by collecting data from 20 household objects held
in the Shadow Hand, calculating tactile descriptors from the data and using
these to train different learning algorithms to successfully discriminate between
the objects (Kaboli et al., 2015). The data were used to train the SVM, Passive
Aggressive Online Learning (PA) and EM learning algorithms for comparison.
The SVM algorithm performed best with up to 97% accuracy, followed by the
PA algorithm which achieved up to 87% and lastly the EM algorithm which
achieved 82% accuracy across the 20 objects. Even though these accuracies are
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extremely high, the algorithms struggle to distinguish between similar objects
such as a spongy ball and a rough ball.

3.3.3 Material Classification based on Thermal Character-
istics

Another characteristic of a material that can be assessed and possibly used to
identify a material/object is thermal characteristics. Although one can generally
tell the difference between materials that feel hot and cold, one would struggle
to relate a list of similar materials to their actual thermal conductivity. What
human fingers detect thermally is not the absolute temperature of the material
alone, but also its thermal conductivity and diffusivity. This is due to the
fact that the human finger is at a consistent temperature, approximately 34◦

Celsius, and therefore will be different from the ambient temperature of most
objects we encounter. The nerves of the finger detect the flow of heat from the
source, suggesting that human temperature sense may be emulated by thermal
conduction sensing (Monkman and Taylor, 1993).

Jianfeng et al. (2011) use a thermal sensor to classify between materials of
different roughness. A simulation is run using ANSYS software to simulate the
change in temperature from the time of contact with the test material. For the
practical experiment a “Surface Air Layer” is proposed to examine the affect of
having a thin layer of air on a material during contact. Classification between six
materials of different surface roughness was achieved, but a specific accuracy
was not given. It is discussed that the simulation was not as accurate as the
practical experiments and some behaviours were different at the point of initial
contact; the behaviours discovered during the practical experiments were much
more difficult to model. The system struggled to distinguish between materials
of different roughness’ and the “Surface Air Layer” improved this slightly but
not sufficiently.

Bhattacharjee et al. (2015), present another approach that focusses on material
classification. Their approach uses a tactile sensor consisting of a thermistor
that is capable of measuring solely thermal properties and they focus on classi-
fication within a short period of time, for instances where longer term contact
is not viable. Three classification algorithms are considered, SVM+PCA, k-
NN+PCA and Hidden Markov Model (HMM). It was found that SVM+PCA
performed best with classification rates of 84% with 0.5 seconds of contact and
98% with 1.5 seconds of contact across 11 materials with varying initial con-
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ditions and 3-fold cross validation. Although the classification rates achieved
are impressive, the materials tested varied widely in thermal conductivity and
the purpose of the sensor is solely to determine thermal properties; it therefore
cannot measure material properties such as texture or compressibility, thus
limiting the applications for which it can be used. Bhattacharjee et al. (2016)
continued this research and presented a method for distinguishing between
contact with inanimate objects and humans, using a new portable handheld
device developed by the authors consisting of three tactile sensing modalities:
a force sensor to detect contact, a heat-transfer sensor that is actively heated,
and a small thermally-isolated temperature sensor (Wade et al., 2015). Data
was collected from the arms of 10 human participants from 3 different locations
on the right arm and 80 objects consisting of 8 similar objects from 10 differ-
ent bathrooms (Bhattacharjee et al., 2016). The effect of varying durations of
contact made with the human participants and the objects was also evaluated.
A SVM was used to learn to classify between an object and human in the first
instance and it achieved an average classification accuracy of 98.75% when
contact was held for 3.65 seconds, 93.13% for 1.0 second of contact and 82.13%
for 0.5 seconds of contact. High classification accuracies were also achieved
when generalising to new contact locations within the same bathroom with an
average of 92.14% for 3.65 seconds of contact, 91.43% for 1.0 second and 84.29%
for 0.5 seconds. However, when generalising to new environments, i.e. similar
objects in different bathrooms, accuracies were lower achieving 84.00% for 3.65
seconds of contact, 71.00% for 1.0 second and 65.00% for 0.5 seconds. Like
many other methods it struggled to identify similar objects especially when the
environment changes.

3.3.4 Material Learning Classification based on Multiple
Characteristics

Johnsson and Balkenius (2008) compared mono-modal and multi-modal ap-
proaches measuring just texture or both texture and hardness of materials. They
found that the multi-modal approach was more effective at recognising the
hardness of more objects although it was less effective at recognising individual
objects. Although Johnsson and Balkenius (2011) progressed this work by mod-
elling the object shape, texture and hardness by grasping and manipulating the
object, they also struggled to distinguish between very similar objects. Their
approach used Self Organising Maps (SOM) to learn the shape of the objects
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and their surface features. Kroemer et al. (2011) present an approach to clas-
sify surface texture using a straightforward oscillator-based designed tactile
sensor consisting of a compliant pin that makes contact with the surface and
a capacitor microphone that can detect the pin’s vibrations at 44.1 kHz. The
training phase of the experiment also incorporates visual information of the
surface’s texture. Pairings amongst the data modalities are correlated in order
for the system to learn each surface. During the testing phase only the tactile
sensor is used to collect data and determine the classified surface. The three
dimensionality reducing algorithms evaluated were PCA, Mean Maximum Co-
variance Analysis (µMAC) and Weakly-Paired Maximum Covariance Analysis
(WMAC). It was found that WMAC dimensionality reduction was the most
robust method, however both the µMAC and WMAC methods are capable of
enabling the surface texture to be classified from tactile sensing alone following
their use for dimensionality reduction of both visual and tactile data in the
training stage. It was stated that for effective use in object identification further
work on effective pre-processing of both the visual and tactile data is required.

Hoelscher et al. (2015) use a BioTAC fingertip sensor to collect several features
from a range of 49 objects to develop a system capable of identifying material
and recognising objects. The objects are made of materials including plastic,
metal, stone ceramic, paper etc. They collect data by making static and lateral
contact on each material with the BioTAC sensor. The authors then compare
seven different methods of extracting features from their processed data, includ-
ing temporal data, PCA reduced dimensionality raw data, pressure features,
electrode features, physically motivated features, temperature features and
mean features. The authors compare two generative (NB and Gaussian) and
two discriminative (SVM and Random Forests) classifiers to evaluate identifica-
tion of the materials and objects from the collected data. The best performing
method consisted of an SVM classifier with dimensionality-reduced mean val-
ues of filtered data, achieving a classification accuracy of material identification
of over 97% across a range of surfaces from 49 objects some of which had very
different surfaces. However, the algorithm struggled to classify between similar
surfaces within a material category, for example 58% classification accuracy
was achieved when classifying different ceramic materials.

Xu et al. (2013), presented an algorithm which considered three key properties
of a material to enable classification; compliance (compressibility), texture and
thermal conductivity. To collect data for these three key properties a BioTAC
fingertip was mounted on a Shadow Robot Hand. Based on a Bayesian explo-
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ration approach in the authors’ previous work (Fishel and Loeb, 2012a) three
exploratory movements were selected and used to explore ten test materials. A
classification accuracy of 99% using 10 materials was achieved with the only
failure being that a damp sponge was classified as a feather. The approach in
Xu et al. (2013) also obtained 99% classification, but this was using 10 substan-
tially different materials, varying from a brick to a light feather. Therefore, the
materials have very different properties allowing for more straight forward
classification. Furthermore, all three tactile properties were used making the
system both slow and computationally expensive.

It may be concluded that using just one material property does not allow
for desirable classification of materials and combining modalities can lead
to high computation cost. The ideal scenario would be to design a system
that can perform classification with accuracy similar to that of Xu et al. (2013),
using similar materials, with reduced computational burden and hence run in
real-time (or close to). An overview of the best performing machine learning
methods for the application of material identification using tactile sensing can
been seen in Table 3.1. It demonstrates that the biggest difficulty in classification
of materials is between similar materials or materials of similar roughness.
Although, this is to be expected, it is still an ongoing challenge within the field.

In order to attempt to solve the difficulty of distinguishing between similar
materials, i.e. two hard, smooth surfaces of wood and brass, more than one
characteristic of the material must be measured. State-of-the-art technology
in tactile sensing allows this to happen as outlined by Lin et al. (2009) who
utilise the BioTAC finger tactile sensor from Syntouch to distinguish not only
the roughness or compressibility of a surface but also calculate a temperature
transient upon contact with an object to identify general material classes of
plastic and metal of different thickness. Fishel and Loeb (2012a) use the BioTAC
sensors for a Bayesian exploration method for the intelligent identification of
textures. Classification was achieved from a set of 117 textures of everyday
materials including 9 paper-like materials, 5 types of glass, 4 tiles and laminates,
3 types of wood, 3 types of foam, 8 types of rubber, 11 cottons and silks, 8
different engineering materials (e.g. milled aluminium), 12 types of vinyl, 6
types of leathers and suedes, 2 furs, 16 coarse weaves (e.g. flannel), 16 other
fabrics and textiles (e.g. crushed satin) and 14 art supplies and miscellaneous
materials (e.g. velvet paper). This approach related the textures to human style
descriptions frequently used in psychophysical literature exploring texture
discrimination (i.e. sticky/slippery, rough/smooth). The focus in Fishel and

42



Table 3.1: Table comparing tactile sensing-based material identification methods

Research
Group

Machine
Learning
Method

Sensor Type
Accuracy
achieved

(%)
Description

(Xu et al.,
2013)

Probability
Matrices

Multi-modal
tactile sensor

(BioTAC)
99.00

10 very different
materials were used.

Continuous exploration
and three modalities

required therefore high
computational costs.

(Hoelscher
et al., 2015) SVM

Multi-modal
tactile sensor

(BioTAC)
97.00

Struggled to distinguish
between similar materials.
Required training from all

materials in the group

(Drimus
et al., 2011) k-NN

Single Mode
piezoresistive
tactile sensor

array

92.0

Classification across just
10 objects. Struggled to
identify between similar

objects.

(Chathuranga
et al., 2013) ANN Multi-modal

tactile sensor 85.0
Classification across just 7

materials, 6 of which
were fabrics.

(Ho et al.,
2012) ANN

Single Mode
electro-

conductive soft
skin sensors

81.0
Reported to be a very

computationally
expensive approach.

(Drimus
et al., 2012)

k-NN,
SVM

Single Mode
PVDF thin film

sensor
90.0

Classification across
different grades of

sandpaper but struggled
between similar

materials.

(Jamali and
Sammut,

2011)
NBTree

Single mode
silicon tactile

sensor with PVDF
films

95.0
Struggled to distinguish

between materials of
similar roughness.

(Kaboli et al.,
2015) SVM

Multi-modal
tactile sensor

(BioTAC)
83.0 Classification across just 4

materials.

(Bhattacharjee
et al., 2015) SVM

Single mode
thermistor-based

tactile sensor
98.0

Longer contact with
materials required for
maximum accuracy

(Bhattacharjee
et al., 2016) SVM

Multi-modal
Hand-held tactile

sensor
98.8

Classification accuracies
achieved across already
learned data, accuracy
drops to 84.0% when

tested against new data
from the same materials.
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Loeb (2012a) was to find the most useful exploratory motions on the surface
of the material, relating to six general types of exploratory movements that
humans make when tactually exploring objects, as outlined by experimental
psychologists Lederman and Klatzky (1987). Also, as part of this study Fishel
(2012), observed at forces less than 2Newton (N), the change in fluid pressure
of the BioTAC was linearly correlated with contact force as shown in Figure 3.4.
However, at forces greater than 2N the relationship is no longer linear due to
the fact that the skin of the BioTAC comes in contact with the core. The authors
used this observation to lower the BioTAC on to the material with a stepper
motor whilst monitoring the applied force with a Nano17 sensor and ensuring
it did not exceed 2N in preparation for lateral movements and this has been
utilised in the design of the experiment in Chapter 4.

Figure 3.4: Graph showing the change in DC pressure measured by the BioTAC
as the normal force increased and decreased during loading and unloading
(blue lines) (Fishel, 2012)

3.3.5 Machine Learning using the BioTAC

This section focusses on machine learning algorithms used with data collected
from the BioTAC fingertip. Wettels et al. (2009) use the data from the BioTAC
tactile sensor coupled with Bayesian inference to calibrate control of an an-
thropomorphic mechatronic prosthetic hand to adjust the grasp of a cup being
filled with liquid at varying rates. The authors collect impedance data from the
electrodes housed in the BioTAC sensor and use a Kalman filter to calculate a
force from the normalised voltages collected by the sensor. It was found that the
sensor could detect slip when the cup was filled at a slow fill rate (between 6-57
seconds to fill 250ml of liquid). However, it was less able to handle very rapid
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perturbations (4 seconds to fill 250ml), maintaining hold of the cup by adjusting
the grasp according to detected slippage in 4 out of 5 trials in comparison to
100% success rate in the trials with a slower fill rate. Wettels and Loeb (2011)
also used the force modality data coupled with numerous machine learning al-
gorithms to identify the point of application of force, force vector and radius of
curvature. The learning algorithms included GMMs, SVMs and ANNs and the
results indicated that an ANN was the best algorithm for identifying features
from the BioTAC data.

Veiga et al. (2015) address the ongoing challenge of in-hand manipulation in
robotics by developing a system to predict and counteract slip events when
grasping unknown objects. The authors use the BioTAC fingertip sensor
mounted on the end of a Mitsubishi PA-10, 7 Degrees of Freedom (DOF) robot
arm. An external RGB-D camera, namely an Asus Xtion Pro, is used to capture
the robot’s work space to record each trial and enable a human to manually
determine when slip of the object occurs. Objects ranging in shape and stiffness
including a ball, cup, measuring stick, box, marker, watering can and tape are
held between the robot fingertip and a vertical plane. Sufficient pressure is
applied to hold the object in place and then the robot arm and fingertip are
moved away from the object gradually until slip occurs and eventually the
object falls. The authors train two classifiers with the slip data, a SVM and a
random forest classifier, in order to attempt to learn how to predict when a slip
is about to occur. When a slip is predicted the robot arm applied more force
to the object in order to prevent it from falling. The random tree classifier was
found to perform best for four of the seven objects and on average best overall.
The ball was found to be the hardest object to identify or predict when a slip
would occur. However, with the delta random forest classifier achieving 95%
accuracy for predicting slip, the system was found to be a feasible approach for
predicting slip via tactile sensing and stabilising objects by feedback control.

Fishel and Loeb (2012b) present details of the signal processing techniques
within the BioTAC finger demonstrating that the accuracy of the micro-
vibrations readings of the finger tip can sense a range of very small particles
from as light as 0.422mg. The particles are dropped on the finger from a height
of 7cm. The BioTAC sensors were tested to determine if they could detect the im-
pact and were compared to five human volunteers who were tested to recognise
impact with the same particles. The only particle that could not be detected at
all by the BioTAC sensors was the 0.25mm (mass 0.072mg) solder ball; all others
were detected with a 100% classification rate. The human participants were also
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unable to identify that they felt impact with the 0.25mm solder ball and could
only manage 47.5% and 74.86% classification with the 0.45mm (mass 0.422mg)
solder ball and 1mm aluminium bearing (mass 1.461mg) respectively. 100%
classification was achieved by the participants for the remainder of the particles.
The performance of the BioTAC in this experiment was a major breakthrough
with regards to the hardware and software available for tactile research.

Ciobanu et al. (2014) present several novel solutions for identifying the point of
contact and normal force estimation when contact is made with an object by a
Shadow Robot Hand mounted on the end of a Kuka robot arm and equipped
with a BioTAC fingertip. The algorithms build on earlier work presented
by the authors outlining a pre-processing tool box for tactile data collected
using a BioTAC sensor (Ciobanu et al., 2013). Data were collected from the
BioTAC fingertip when contact was made with objects of different shapes and a
Support Vector Regression (SVR) algorithm was applied to these data in order
to identify a point of contact and develop a visual contact map by presenting
areas of contact in red and areas of non contact in blue. Although this could be
used in many applications to identify a point of contact on the BioTAC sensor,
it is reported that the SVR algorithm can be very time consuming to train, up
to several minutes in fact which may not be suitable in applications where a
rapid identification of contact is required or a system requires regular training
to update its suitability for the application.

Pacchierotti et al. (2014) present a novel approach to enable a human to touch
objects within a remote environment using a BioTAC sensor which records
data and maps them back to a custom made cutaneous device that can be
worn by a human. The device is a 3 DOF cutaneous device consisting of two
platforms, one at the back of the finger and one at the front of the fingertip.
The platforms are connected by three cables whose lengths are controlled by
motors that can move the lower plate towards the user’s fingertip and re-angle
it to simulate contact with surfaces of varying angles. The device then portrays
what was sensed by the BioTAC sensor by relating the data to input commands
for the cutaneous device motors in real time without using any form of skin
deformation techniques. The Approximate Nearest Neighbour C++ library by
Mount and Ayra (2010) was used to help map the data collected by the BioTAC
to the nearest motor positions in the cutaneous device that reflect the forces and
angles felt by the BioTAC. This initial work is significantly extended when the
authors extend the data set collected to approximately 4.6 times larger than the
original and by carrying out a comprehensive object evaluation by placing the
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BioTAC into the cutaneous device and comparing the data collected together
with a subjective evaluation of the system involving ten users (Pacchierotti
et al., 2015).

Hui et al. (2016) also use the BioTAC to identify artificial tumours by distin-
guishing between lump-containing and non-lump-containing areas of artificial
skin made from Eco-Flex 00-10 silicon rubber in which 25 3D-printed lumps
were inserted to simulate tumours. In contrast to the approach used by Arian
et al. (2014), Hui et al. (2016) used a palpitation movement of the fingertip
against the material to collect data and in turn attempt to classify between
regions that contain artificial tumours and those that do not. Two sets of data
from the BioTAC palpating at 10,260 points across the artificial skin were col-
lected over two different days. The data collected consisted of readings from 19
electrodes and one DC pressure. A multivariate Gaussian model was fitted to a
training set of the data and when tested for classification between lump and
non-lump-containing areas, near perfect classification accuracies were achieved.
However, when tested on the second set of data the Gaussian learning model
was reported to perform dismally. Therefore, the authors transformed the 20
tactile sensor array readings into 190 binary pairwise comparisons, inspired
by robust perceptual methods from computer vision. It was found that this
novel approach achieved accuracies of approximately 80% across both datasets.
Although the pairwise comparison method outperformed the Gaussian model,
the authors suggest that feature extraction could further improve the pairwise
comparison models.

Table 3.2 shows an overview of machine learning algorithms that have been
used with BioTAC data. It can be seen that there have been a wide range of
applications where the BioTAC has been utilised, however the learning methods
that are common and perform best are ANN, SVM and GMM. Although a
wide range of applications and learning algorithms have been applied to data
collected from tactile sensors and in particular the BioTAC sensor, there are
still many remaining research problems in the field of tactile sensing. In terms
of material classification, the problem of distinguishing between materials of
similar texture and/ or compressibility remains a challenge. Furthermore, there
has been no work completed to date on using tactile data collected from the
BioTAC to assess human vital signs. Both of these research areas are addressed
in this work. A number of the learning algorithms discussed in this chapter and
novel hybrid combinations of them are utilised for the application of material
classification in Chapter 4. Noise reduction algorithms discussed in this chapter
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Table 3.2: Table comparing Machine learning methods used on BioTAC data

Research
Group

Machine
Learning
Method

Application Description

(Wettels
et al., 2009)

(Wettels and
Loeb, 2011)

GMMs,
SVMs and

ANNs

Control of an
anthropomorphic

mechatronic
prosthetic hand

ANN proved to be the
best algorithm for

identifying features

(Veiga et al.,
2015)

SVM,
Random

Forest

predict and
counteract slip

events

Random Forest classifier
was found to be best for

detecting slip

(Fishel and
Loeb, 2012b)

Band-pass
filtering for

noise
reduction

Compare the
sensitivity of the
BioTAC with a

human fingertip

BioTAC could sense
particles from a weight of

0.422mg. Only one
particle that could be

sensed by humans could
not be sensed by the

BioTAC.

(Ciobanu
et al., 2014)
(Ciobanu

et al., 2013)

SVR

Identifying the
point of contact

and estimation of
normal force

The SVR algorithm was
found to be very time

consuming to train,
making it not suitable for

applications where a
rapid identification of

contact is required.

(Hui et al.,
2016)

k-NN, A
multivariate

Gaussian
model

Tumour
Detection

Gaussian model
performed very poorly.
Authors transformed

sensor array readings into
190 binary pairwise

comparisons and used
computer vision

techniques achieving
great success.
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coupled with novel methods to assess human vital signs using data collected
via a BioTAC sensor are presented in Chapter 5 and Chapter 6.
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3.4 Conclusion

This chapter has provided an overview of computational intelligence methods
using tactile data. The work in this thesis work presents the use of computa-
tional intelligence techniques in real-life applications. Machine learning ap-
proaches are utilised to classify materials in Chapter 4 and for combining human
vital signs in order to ascertain a human’s health status in Chapter 6. A review
of the current research in material identification achieved using tactile sensing
and machine learning was presented. Section 3.3 provided a background of the
machine learning methods utilised to date for material identification, leading
to the proposed method for tactile-based material identification presented in
Chapter 4. Also, a focussed review on computational intelligence techniques
using data collected from the BioTAC sensor for material identification and
other purposes was presented, as this is most relevant to the work in this thesis.
This overview highlights the sensitivity of the BioTAC sensor and confirms
its suitability for collecting highly sensitive data such as a human’s pulse or
breathing, as detailed in Chapter 5. Furthermore, approaches which utilise a
mix of both tactile and vision data were discussed in Section 3.3.5, as a mixed
approach consisting of tactile sensing based control and vision sensing based
analysis is utilised in Chapter 6 to measure a human’s Capillary Refill Time
(CRT).
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CHAPTER

FOUR

Tactile Sensing Based Material
Classification

4.1 Introduction

Research into tactile methods for object attribute learning and identification is
now a very active field of research, despite initially receiving less focus than
vision based methods for object identification. Due to the lack of sophisticated
sensors available for tactile sensing research in recent decades, the field pro-
gressed slower than other fields such as vision focussed research (Lee and
Nicholls, 1999a). However, Syntouch R© recently developed the BioTACTM

biomimetic tactile sensor which is capable of achieving tactile perceptions simi-
lar to that of humans, enabling the possibility of identifying objects and their
properties including texture, compressibility and thermal properties (Fishel
and Loeb, 2012a) and (Xu et al., 2013). The BioTAC sensor has been used in all
experiments reported in this thesis.

Identification of the material from which an object is made is of significant
value for effective robotic grasping and manipulation. Compressibility, surface
texture and thermal properties are characteristics which can each be retrieved
from physical contact with an object using tactile sensors. In order to produce
the tactual perceptions required to learn about object properties, humans in-
herently perform various types of movements when interacting with an object.
As outlined in Chapter 1, experimental psychologists, such as Lederman and
Klatzky (1987), have identified six general types of exploratory movements.
Humans can complete these exploratory movements very fast and rapidly
evaluate the object leading to possible identification.

One of the main application areas of an artificial tactile sensing system is
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expected to be in robotics. In order to retrieve the necessary tactual perceptions,
it is probable that a robot must explore an object in a similar manner to that of
a human. However, in comparison to humans, these exploratory movements
may be slow for a robot and could lead to the evaluation of a great volume of
acquired data, thus being computationally expensive. It would be a useful skill
for a robot if it could complete a preliminary evaluation of the object by quickly
identifying the physical nature of the material (e.g. metal, wood, plastic etc.)
through completing a small number of initial basic actions, thus removing the
need for extensive manipulation. These initial basic actions could include the
retrieval of thermal information upon initial contact with the material, which
may provide an indication of its physical nature. Furthermore the texture of a
material could possibly be identified by sliding a robotic hand or finger along
the material, i.e. determining if it is rough or smooth.

This chapter presents a system for texture classification by collecting data using
a BioTAC fingertip in contact with various materials and then using these data
to classify the materials both individually and into groups corresponding to
their type. Following acquisition of data, principal component analysis (PCA)
is used to extract features. These features are used to train seven different
classifiers and hybrid structures of these classifiers for comparison. The seven
classifiers implemented and tuned are a standard feed-forward Artificial Neural
Networks (ANN), Support Vector Machine (SVM), Gaussian Mixture Model
(GMM), Linear Discriminant Analysis (LDA), Naı̈ve Bayes (NB), k-Nearest
Neighbour (k-NN) and a Multi-Layer Perceptron (MLP) ANN. For comparison,
an experiment for evaluating human performance when classifying the same
materials is also presented. The goal of the work presented in this chapter is
to determine the sensitivity of the BioTAC sensor in order to determine its full
potential in tactile based sensing.

The work in this chapter was published in the:

• IEEE International Conference on Robotics and Biomimetics (ROBIO),
China (Kerr et al., 2013). This work detailed the methods developed
for the classification of materials by their thermal conductivity and was
presented in China in December 2013.

• IEEE International Conference on Control, Automation, Robotics and
Vision (ICARCV), Singapore (Kerr et al., 2014a). This work extended
the work detailed in (Kerr et al., 2013) by introducing the analysis of the
texture of materials coupled with their thermal conductivity to achieve
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improved classification accuracy and was presented in Singapore in De-
cember 2014.

• Irish Machine Vision and Image Processing, Northern Ireland (Kerr et al.,
2014b). This work presented further extension to the work detailed in
(Kerr et al., 2014a) by evaluating more classifiers and developing a two-
stage approach to material classification and was presented in Northern
Ireland in August 2014.

Furthermore, the work outlined has been submitted as a journal article to the
Elsevier Journal of Expert Systems with Applications (Kerr et al., 2017) and is
currently under review.
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4.2 Methodology

Using the BioTAC fingertip, two actions were performed on different materials
in order to determine if the fingertip sensory system is capable of distinguishing
between them. The first action was a press action where the fingertip was
pressed into the material at a constant force. The second action was a slide action
where the fingertip was dragged across the surface of the material at a constant
force. Both actions replicate, to some extent, two of the actions that a human
completes when inspecting an unknown material for the first time, namely
static contact to determine thermal properties and lateral sliding movements to
determine surface texture. The thermal flow (TAC) and static temperature (TDC)
values only are extracted from the press action as they represent the thermal
difference between the fingertip and material; collecting the vibration data from
this action would not be beneficial as there is no lateral movement therefore
changes in vibration would be minimal. Furthermore, it was determined
that changes in the impedance values during a press action would not be
suitable for classification of the material type in these experiments. Firstly, the
impedance reading would relate to compressibility for the material which was
not the focus of this work and secondly, as the BioTAC is a highly non-linear
device susceptible to drift (Syntouch, 2013) it was empirically determined that
continuous calibration would be required to prevent the drift in the impedance
readings. The TAC, TDC, dynamic fluid pressure (PAC) and absolute fluid
pressure (PDC) values are extracted from the slide action. This is because
significant change is expected in vibration and thermal based data due to the
lateral movement of the fingertip being rubbed across a material. These data
are subsequently used for classification, as described in Section 4.2.1.

Fourteen materials are used in both the press and slide experiments. Some of the
materials are similar (i.e. two types of metal, two types of wood and two types
of cardboard) in order to determine if the approach is capable of classifying
the type (group) of material and furthermore distinguishing between similar
materials within a group. The 14 materials are Acrylic (Ac), Rough Acrylic
(AcR), Copper (Cr), Aluminium (Al), Rough Copper (CrR), Rough Aluminium
(AlR), Redbrick (R), Glossy Cardboard (GC), Plain Cardboard (PC), Soft Foam
(S), Carpet (Ct), Doormat (D), medium-density fibreboard (MDF) (M) and Pine
(P). Although similar to three of the other materials, the rough materials have
a very rough surface in comparison with their smooth counterparts. This
roughness was apparent when dragging a finger across the surface. Examples
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of each material can be seen in Figure 4.1; 15 trials of each material were
completed.

Figure 4.1: Samples of the 14 materials used in the experimental set-up.

The aim of this research is to initially classify each material in terms of its group
type, for example MDF and pine are both in the wood group. The materials
tested were split into six groups. The individual materials and the groups to
which they belong are shown in Table 4.1. Subsequently, the aim is to classify
each material individually within each material group. This helps to establish
the sensitivity of the BioTAC sensor.

4.2.1 Data Collection

Analogous with the experiments reported by Xu et al. (2013), in these experi-
ments the BioTAC fingertip was powered on and left to rest for 15-20 mins to
allow it to reach its steady state temperature (approximately 35◦C, 10◦C above
ambient). A rig including a motorised arm and turntable was designed and
built for the experiments carried out in Chapter 4. We designed the metal struc-
ture of the rig and it was manufactured by a local engineering company as per
our designs. All the other non-electrical components for the rig were designed
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Table 4.1: Table showing the individual materials and the groups to which they
belong.

Material Group
Acrylic (Ac) Plastic (P)

Rough Acrylic (AcR) Plastic (P)
Copper (Cr) Metal (Me)

Aluminium (Al) Metal (Me)
Rough Copper (CrR) Metal (Me)

Rough Aluminium (AlR) Metal (Me)
Redbrick (R) Masonry (Ma)

Glossy Cardboard (GC) Cardboard (C)
Plain Cardboard (PC) Cardboard (C)

Soft Foam (S) Fabrics (F)
Carpet (Ct) Fabrics (F)

Doormat (D) Fabrics (F)
MDF (M) Wood (W)
Pine (P) Wood (W)

by us using the Solid Works 3D design package (SolidWorks, 2016) and man-
ufactured on a 3D printer within Ulster University. Two stepper motors (one
for the arm and one for the turntable) were connected to an Arduino UnoTM

board and a Graphical User Interface (GUI) was developed using Python to
control the motors. An image of the experimental rig and GUI can be seen
in Figure 4.2(a) and (b) respectively. The BioTAC fingertip was placed at the
end of the motorised arm so that it could be moved towards or away from the
material. A Serial Peripheral Interface (SPI) protocol for digital communication
from the BioTAC was used and a “Cheetah” high-speed SPI/Universal Serial
Bus (USB) device manufactured by Total Phase (Total Phase, 2017) was used
to connect the fingertip to the computer and retrieve data. A GUI developed
and supplied by Syntouch on LabVIEW (National Instruments, 2017) was used
to communicate with the SPI controller and collect the data. The various test
materials were placed on the motorised turntable to allow them to be moved
below the finger to replicate a sliding action.

To produce the thermal exploratory movement, the fingertip is pressed onto
the material with a constant force of 3N, measured by an ATI Nano17 6-axis
Force/Torque (F/T) Sensor (ATi, 2017). To allow time for the heat flow to
stabilise, all data for the press action were collected from the fingertip for 20
seconds after initial contact. Fishel (2012) state that for a lateral exploratory
movement, contact force should be kept at less than 2N in order to maintain
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(a) (b)

Figure 4.2: a) Image showing the experimental rig; b) Screen shot of the devel-
oped GUI.

a linear relationship between contact force and fluid pressure. Therefore, to
produce the slide action, the fingertip was pressed down on the surface of the
material again, this time with a constant force of 1.59N (also measured with
the aforementioned force sensor), and slid along the surface for a distance of
approximately 5 cm. When using the manufacturers software to collect data,
the data from the BioTAC fingertip are recorded at 4400Hz and in a sequence,
with the PAC values and the individual electrode values alternating (i.e. PAC
data are recorded at 2200Hz). All other values such as TDC (static temperature),
TAC (thermal flow rate) and PDC (static vibration) are given at the end of each
sequence of values. An example of this sequence can be seen in Figure 4.3.
All values are sampled with 12-bit resolution. These values are extracted and
individual datasets for PAC, PDC, TAC and TDC data are obtained using
MATLAB.

4.2.2 Pre-Processing

The area of interest in the thermal conductivity time series data is the behaviour
following the point where maximum force of contact is made. Therefore, data
that occur prior to the point of maximum force of contact (the point of highest
thermal conductivity) are excluded from the TAC and TDC datasets correspond-
ing to the press experiment. Empirically it was found that a period of 8 seconds
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Figure 4.3: Diagram showing the Sequence of Data from the BioTac Fingertip

was sufficient for the thermal conductivity data to stabilise hence representing
a constant thermal flow rate and therefore data for a period of 8 seconds after
maximum contact were included. These datasets for TAC and TDC each consist
of 800 values. For sliding movements, it is important to crop the beginning of
the data in order to allow the data to stabilise and avoid noisy sensor signals
caused from the establishment of contact, as confirmed by Hoelscher et al.
(2015). Therefore, a subset of 220 pieces of data for each of the four modalities
(TAC, TDC, PAC, PDC) is selected from the data collected during the slide
motion.

Preliminary experiments using raw data as inputs to various machine classifiers
were performed but poor performance was achieved during training. Therefore,
PCA was applied to the modalities’ datasets to reduce the dimensionality of
the inputs. PCA projects the original dimensional space onto a linear subspace
where the latter is always smaller than the original dimensional space, such
that the variance in the data is maximally explained with the smaller subspace
represented by principal components (PCs). Features (or inputs) that have little
variance are therefore removed, (Engelbrecht, 2007). In this chapter, PCA is
used to extract the features of the time series data for TAC, TDC, PAC and
PDC in order to reduce their dimensionality into smaller datasets, which are a
representation of the TAC, TDC, PAC and PDC data for each material.

PCA can be completed in two ways; by calculating the eigenvectors in order
to perform Eigen-decomposition of a data covariance matrix or by singular
value decomposition (SVD) of a data matrix. The data are normalised in both in-
stances before the application of PCA. To calculate PCA by Eigen-decomposition
the covariance matrix of the normalised data matrix X was calculated for each
data modality, giving XXT. X is a n× p matrix where n is the total number of
data samples collected across all materials and p is the number of data points
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for each set. In the matrix X, n consisted of 14 materials with 15 trials of each,
totalling 210 data samples and p consisted of 800 data points for data collected
during the press experiments or 220 data points for data collected from the slide
experiment. We then calculate the eigenvectors and their associated eigenvalues
from the covariance matrix. The eigenvectors with the greatest eigenvalues are
the PCs of the data matrix. In contrast, when calculating the PCs by using SVD
we decompose the matrix X (considering that n 6= p) using SVD to get:

X = USVT (4.1)

where U is a n× n orthogonal matrix of the left singular-vectors, S is a n× p
matrix of the singular values of the matrix X and V is a p× p orthogonal matrix
of the right singular-vectors.

As n 6= p and each row of X is centred in all of the matrices of data, the prin-
ciple components are represented by the left singular vectors. The diagonal
elements in S represent the square of the eigenvalues. Finally the principal
component scores, which are the coordinates of the assays in the space of prin-
cipal components, are contained in the matrix SVT. Both variations of PCA
were tested to validate which method would provide the best principal compo-
nents with which to train the classifiers. A range of classifiers were evaluated
in preliminary experiments with raw data, PCs obtained from applying PCA
using Eigen-decomposition and PCA using SVD in order to classify between
14 individual materials. With these data, using the PCA Eigen-decomposition
based approach for generating PCs generated the best inputs to the classifiers,
as determined by the training accuracies of multiple experiments. For example
the training accuracies for an ANN were 70.60% when using raw data, 90.36%
when using PCs obtained from applying PCA using Eigen-decomposition and
89.05% when PCs obtained from applying PCA using SVD. Therefore, the
method and results presented in subsequent sections are based on the use of
PCA with Eigen-decomposition. In initial experiments, where thermal prop-
erties only were considered, PCA was applied to the combination of TAC and
TDC (a total of 1600 values), requiring 100 PCs to represent the modalities for
each material. Although this was a relatively successful method, it proved
to be computationally expensive. Therefore all approaches outlined in this
chapter apply PCA to each individual modality first. This allows combinations
of the different modalities to form a matrix of the principal components for each
material to suit each experiment (i.e. the principal components calculated from
TAC and TDC for the press experiment and principal components calculated
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from TAC, TDC, PAC, PDC for the slide experiment). As described in Section
4.3, these combinations of principal components are used to train the numerous
classifiers and hybrid combinations of classifiers evaluated.

4.2.3 Initial Data Analysis

The extracted thermal and vibration data were normalised and are visually
analysed in order to determine if the BioTAC sensor is sensitive enough to
distinguish between different materials.

Figure 4.4(a) shows an example of the TAC values collected from the fingertip
during a constant press of 3N on five of the 14 test materials. It is evident, in the
plot for the heat flow (thermal conductivity) of the fingertip, that when contact
is made with each material, there are some materials with clear differences in
thermal properties.

It can be seen from Figure 4.4(a) that the most thermally conductive material is
copper, as the line representing copper plateaus notably above the remaining
materials. The lower lines in the graph represent materials with a lower conduc-
tivity, e.g. pine, which is also to be expected. It should be noted that the thermal
conductivity for the rough metals does not plateau above the other materials
like their smooth counterparts. For example, Figure 4.4(a) illustrates a clear
difference between copper and rough copper. It is clear that the surface texture
affects thermal conduction between the fingertip and the material. Furthermore,
there exists a difference between the two different types of cardboard, (one
sample of cardboard has a glossy high print quality finish while the other is
plain cardboard with no print finish). Even though they are the same core
material, the rate of heat flow leaving the fingertip and entering the material
differs notably and also plateaus at a different value.

Figure 4.4(b) illustrates a subset of the PDC values collected from the fingertip
during a constant slide action along four of the 14 materials. It is evident
that the surface texture of some materials results in clear differences in the
magnitude of vibration detected when the fingertip was slid along the material.
Figure 4.4(b) illustrates that the material that caused the largest magnitudes
of vibration (i.e. the roughest material) was the doormat, whereas smoother
materials such as acrylic present a constant smooth line representing very small
magnitudes of vibration. This initial analysis clearly illustrates that material
classification using learning algorithms should, in theory, be possible.
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(a)

(b)

Figure 4.4: a) Thermal conductivity behaviour following point of maximum
force of contact for five of the fourteen test materials; b) Vibration measured
during a slide action along four of the fourteen test materials.
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4.3 Classifiers

PCA using Eigen-decomposition was applied to the data collected from the
fingertip during the press and slide experiments in order to extract features.
Following the evaluation of various quantities of principal components to
represent the modalities’ data sets, it was empirically determined that the
optimal number of PCs for each dataset using PCA is three, providing the best
trade off for performance versus speed. Therefore, as there are six modalities
in total to represent each material (two from the press action and four from
the slide action), there is a total of 18 inputs (three PCs per modality, 12-bit
values) to each classifier for each experiment. Average classification accuracy
is obtained using 5 fold cross validation. The MATLAB package (MATLAB,
R2013) and R package (R Core Team, 2013) were used to implement the range
of classifiers. As noted in Chapter 2, two common classifiers in tactile sensing
applications are SVM and ANNs. Variations and combinations of these two
classifiers have been implemented and evaluated in this work along with other
popular classifiers; this section outlines the details of the classifiers used.

4.3.1 One-stage Support Vector Machine

A standard binary SVM configuration was used for instances where there were
only two material groups to be classified. However in the majority of instances,
there were more than two materials or groups to be classified and therefore a
series of one-versus-all classifiers, in which the algorithm is trained with each
class classified against the samples of all the other classes, are developed to
form a multi-class SVM classifier. Although there are many types of kernel
functions (KFs) available to overcome the difficulty of linear separation of the
data, five are evaluated and their performances compared. Within each KF
there are various parameters that can be changed to optimise the performance
of the classifier. One common parameter is the soft margin (sometimes known
as the box constraint), C. The purpose of the soft margin is to modify the SVM
algorithm to tolerate training errors by intuitively tolerating a few outliers on
the wrong side of the hyperplane. Deciding on the size of the margin requires
parameter tuning and optimisation. The KFs evaluated for the classification of
materials and their respective parameters that were optimised are:

• Linear kernel function (LKF), quadratic kernel function (QKF) and multi-
layer perceptron kernel function (LMPKF): Soft margin value (C) is opti-
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mised.

• Polynomial kernel function (PKF): Two parameters are optimised in this
KF; the soft margin value (C) and the order of polynomial (p). Various
combinations of values were evaluated in order to find the best perform-
ing combination of parameters.

• Radial basis function kernel function (RBFKF): Two parameters are opti-
mised in this KF; the soft margin value (C) and the gamma parameter for
the Gaussian radial basis function (RBF) (γ). The Gamma parameter is a
positive number representing the scaling factor of the RBF. Various com-
binations of values were evaluated in order to find the best performing
combination of parameters.

Two separate experiments were conducted: one for the classification of the
materials into their six respective groups and one for the classification of the
fourteen individual materials. All KFs were evaluated and their parameters
optimised for both experiments. For each optimised KF implemented and
evaluated, three different methods for calculating the separating hyperplane
were also implemented and evaluated. The three standard methods evaluated
were sequential minimal optimization (SMO), quadratic programming (QP) and
the least-squares (LS) method. A summary of the classification accuracies for
classifying the material groups is shown in Table 4.2, with the best performing
parameter configurations for each method highlighted in bold text and the
worst performing highlighted in italic text.

For the PKF and the RBF KF, as well as a range of values for the soft margin
parameter (C) being evaluated for each KF and separating hyperplane method,
a range of values for the order of the polynomial kernel (order of the polynomial
kernel (p)) were evaluated for the PKF and a range of gamma (γ) values for
the RBF KF were evaluated. A summary of the classification accuracies for
classifying the material groups for these ranges of values is shown in Table 4.3,
with the best performing parameter configurations for each method highlighted
in bold text and the worst performing highlighted in italic text.

It can be seen from Table 4.2 and Table 4.3 that the worst performing KF was
RBF and the best performing KFs were the QKF and PKF. It can also be seen
that in some cases the QP method failed to calculate the separating hyperplane
and therefore a classification accuracy could not be calculated. It is evident that
the best method for calculating the separating hyperplane for the QKF and PKF
was SMO.
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Table 4.2: Table comparing the SVM classification accuracies for a range of C
values for the linear KF, quadratic KF and MLP KFs

Kernel
Function

Soft Margin
Parameter

(C)

Accuracy with
SMO (%)

Accuracy
with LS (%)

Accuracy
with QP (%)

LKF 0.01 67.62 70.00 71.43
LKF 0.10 75.71 75.24 79.05
LKF 1.00 78.57 77.62 79.52
QKF 0.01 86.19 83.81 -
QKF 0.10 77.14 76.67 -
QKF 1.00 77.14 70.00 -

LMPKF 0.01 37.62 57.14 -
LMPKF 0.10 46.67 28.10 -
LMPKF 1.00 40.00 24.76 -

Table 4.3: Table comparing the SVM classification accuracies for a range of C
values for the LKF, PKF and LMPKF

Kernel
Function

Soft
Margin

Parameter
(C)

p / γ
Parameter

Accuracy
with

SMO (%)

Accuracy
with LS

(%)

Accuracy
with QP

(%)

PKF 0.01 p=1 67.62 70.00 71.43
PKF 0.01 p=2 86.19 83.81 85.71
PKF 0.01 p=3 79.05 75.24 80.96
PKF 0.10 p=1 75.71 75.24 79.05
PKF 0.10 p=2 77.14 76.67 81.43
PKF 0.10 p=3 79.05 73.33 79.54
PKF 1.00 p=1 78.57 77.62 79.52
PKF 1.00 p=2 77.14 70.00 -
PKF 1.00 p=3 79.05 71.91 -
RBF 0.01 γ=0.01 14.29 14.29 14.29
RBF 0.01 γ=0.10 14.29 14.29 14.29
RBF 0.01 γ=1.00 61.43 63.81 63.81
RBF 0.10 γ=0.01 14.29 14.29 14.29
RBF 0.10 γ=0.10 14.29 14.29 14.29
RBF 0.10 γ=1.00 60.00 66.67 66.67
RBF 1.00 γ=0.01 14.29 14.29 14.29
RBF 1.00 γ=0.10 14.29 14.29 14.29
RBF 1.00 γ=1.00 62.86 63.33 63.33
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A summary of the best performing configuration for each KF can be seen in
Table 4.4. As outlined in Section 4.3.1, following evaluation of classification
accuracies and run times, the best configuration for the SVM method is by using
the PKF with a soft-margin value of 0.01 and a polynomial order of 2.

Table 4.4: Table comparing the SVM KF classification accuracies.
Kernel

Function
Best Performing

Method
Optimised
Parameters

Classification
Accuracy

Linear QP C = 1.00 79.524%
QKF SMO C = 0.01 86.190%

LMPKF LS C = 0.01 57.143%

Polynomial SMO C = 0.01
p = 2.00 86.190%

RBF QP C = 0.10
γ = 1.00 66.667%

It can be seen that the two best performing KFs with a classification rate of
86.19% are the QKF and the PKF. Although the two KFs performed equally well
in terms of classification, the PKF was found to be marginally more efficient
than the QKF at achieving the highest classification rate. The QKF took 0.49
seconds to train for one fold of data whereas the polynomial KF took 0.47
seconds. Therefore the PKF with a soft-margin value of 0.01 and a polynomial
order of 2 was used in the SVM implemented in this approach.

This configuration of the SVM method with data collected from the press and
slide actions was used for both experiments (group and individual classification)
with the only difference being the number of classes (g) that the SVM had to
classify. For the first experiment, i.e. classifying the materials into their six
groups, g = 6 and for the second experiment involving 14 individual materials,
g = 14 as described in Section 4.2.

4.3.2 Two-stage Support Vector Machine

In contrast to the one-stage approach described in Section 4.3.1, this section
explains a two-stage approach to material classification. This approach utilises
the multi-class SVM classification algorithm explained in Section 4.3.1 to firstly
classify the materials into their groups and then uses this information to further
classify the materials individually using a mixture of binary and multi-class
SVM classification in the second stage.
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Figure 4.5: Diagram showing the two-Stage SVM approach used for material
classification

The same SVM design as outlined in Section 4.3.1 is used in the first stage of
this two-stage approach. For the second stage, 6 SVM algorithms are trained,
one for each material group, some of which have different numbers of outputs/
groups for the individual materials within them, requiring the need for binary
classification in some cases and multi-class classification in others. These SVM
algorithms are saved and later used for testing the data input at the second stage.
Similar to the development of the SVM in the one-stage approach, five different
KFs with a range of parameters and hyperplane calculation methods were
evaluated for the second stage SVM classification algorithm. The three equally
best performing KFs in the second stage were the Quadratic KF, the Polynomial
KF and the RBF KF, with the most efficient proving to be the Polynomial KF.
Therefore the Polynomial KF was used in the second stage SVM.

Upon completion of material group classification in the first stage, the results
of the classification are used as the inputs to the second stage. A model of the
two-stage SVM approach can be seen in Figure 4.5. If a material is correctly
classified into a specific group in the first stage then this activates the second
SVM to classify the individual material within this material group. However, if
the material group is incorrectly classified in the first stage then it is recorded
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as an incorrect classification in the final output matrix and is not classified in
the second stage to improve efficiency. Likewise, if the material is classified
incorrectly in the second stage in comparison with the ground truth (i.e. it has
been correctly classified in its group but incorrectly classified individually),
then it is recorded as an incorrect classification in the output matrix.

4.3.3 One-stage Artificial Neural Networks

The ANN used is a back propagation ANN. In order to establish the best
performing structure for an ANN for classifying materials individually and into
groups, a range of number of hidden layers and training epochs were evaluated
and it was empirically found that one hidden layer with 1500 training epochs
provided the best trade off for performance versus speed. Furthermore, a
range of number of hidden layer neurons was evaluated and a summary of the
training accuracies of the best performing number of neurons in the hidden
layer is shown in Table 4.5.

Table 4.5: Table comparing the training accuracies of different ANN structures.
No. of Neurons

in Hidden
Layer

Average Training
Accuracy (%)

25 88.33
50 88.69
75 90.36

100 86.67

It is evident from Table 4.5 that the best performing structure for the ANN
consisted of 75 neurons in the hidden layer. Therefore, this configuration of
one hidden layer consisting of 75 neurons and training for 1500 epochs was
used for the ANN classifier throughout all experiments. A model of the ANN
is shown in Figure 4.6.

The same structure as shown in Figure 4.6 was used for both experiments with
the only difference being the number of outputs (n). For the first experiment,
n = 6 (six material groups) and for the second experiment n = 14 (fourteen
individual test materials), as described in Section 4.2.
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Figure 4.6: Diagram showing the ANN used for material classification

4.3.4 Two-stage Artificial Neural Networks

A two-stage ANN using a series of back propagation ANNs, each with one
hidden layer, where the output of the first ANN is the input of the second to
allow for group classification first followed by individual classification is also
considered. The two-stage approach structure can be seen in Figure 4.7.

The ANNs used in the two-stage approach are similar in structure to the ANN
used in the one-stage approach explained in Section 4.3.3. The first ANN is
used to classify the materials into groups and the second stage of the ANN is
comprised of six individual ANNs for each material group (i.e. plastic, metal,
masonry, fabrics, paper and wood). These ANNs are all trained individually
with their respective outputs relating to how many materials there are in each
group, for example plastic has two outputs for the two plastic materials whereas
metal had four outputs for the four metal materials in that group. After training,
these networks are used for classifying the resulting output from the first ANN.
In order to avoid identification of false positives, a threshold is set for testing
the materials within the group. If the output of the neuron fired for the material
sample being tested is not greater than 0.3 (1.0 being the maximum), then it is
considered to be a failed classification.
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Figure 4.7: Diagram showing the two-stage ANN used for material classification

4.3.5 Support Vector Machine and Artificial Neural Net-
works hybrid algorithm

A hybrid approach was also developed comprising of a SVM classifier for
material group classification and a separate ANN classifiers for the individual
material classification. The structure of the hybrid algorithm can be seen in
Figure 4.8.

A SVM classifier, as described in Section 4.3.2, is used first to classify the mate-
rials into their material group (i.e. using the polynomial KF with a polynomial
order value of 2 and a soft margin value of 0.01). Then an output matrix is
formed and the values in this matrix initiate the second stage of the hybrid
approach with six ANNs for individual material classification within each of
the material groups. The ANNs are constructed as described in Section 4.3.4
(i.e. with one hidden layer of 75 neurons and trained for 1500 epochs). As with
the other two-stage approaches outlined in this section, in order to improve
efficiency only materials correctly classified into their group are classified in
the second stage.
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Figure 4.8: Diagram showing the SVM+ANN hybrid approach used for material
classification

4.3.6 Other Classifiers Evaluated

Together with evaluating the performance of SVM, ANN and combinations of
these classifiers other well known classifiers were also evaluated. The other
classifiers evaluated and the configuration of these classifiers are outlined
below:

• Gaussian Mixture Model: GMMs are calculated to represent each material
(cluster centres are initialised randomly and the k-means algorithm is
used for calculating convergence). The expectation maximisation (EM)
algorithm is then used to calculate the maximum likelihood and the
associated class label is selected. These classified labels are used to form
an output matrix. As the cluster centres are initialised randomly 10 runs
of each classification (i.e. material groups and individual materials) were
completed and an average classification accuracy calculated.

• Linear Discriminant Analysis: In this work LDA is used for multi-class
classification to identify materials individually and into their groups,
although it can be used for binary or multi-class classification.

• Naı̈ve Bayes: In this work NB is used firstly to classify materials individu-
ally and secondly classify them into their groups.
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• k-Nearest Neighbour: In this work k-NN is used for multi-class classifi-
cation of materials. A range of k values was tested to identify the most
accurate number of neighbours to take into account for maximum classifi-
cation accuracy. The k value that proved to be most effective for classifying
the materials individually and into their groups was k=5.

• Multi-Layer Perceptron: Networks of varying complexity from 1-38 layers
and 1-20 neurons in each layer, were evaluated in order to find the optimal
structure for the MLP. The structure of the MLP used in this work to
classify the materials into their groups and individually was a network
consisting of 10 layers containing 19 neurons each.

4.4 Evaluation Results

In order to determine the best performing classifier for the material identifica-
tion algorithm, analysis comparing the various classifiers was conducted. In
addition, the best performing artificial algorithm was evaluated against human
performance. The results of the evaluation of the aforementioned classifiers
and their performance in comparison to human performance are presented in
this section.

4.4.1 System Testing

A comparison of the results obtained for all of the classification algorithms
presented and the average classification accuracies of the participants are shown
in Table 4.6. As specified in Section 4.3, the results for the artificial algorithms
are calculated by computing the average of the classification rates using 5-fold
cross validation.

As shown in Table 4.6, SVM has outperformed the other approaches for both
the classification of the materials into their groups and for classification of the
individual materials. The two-stage SVM has proven capable of maintaining the
group classification accuracy for the classification of the individual materials in
its second stage. Considering that in three out of the six groups, the classification
is binary and the most materials to classify between in the other groups is four,
then it was possible for the SVM classifier to achieve such high classification
accuracies in the second stage. Although it requires classifying the materials
into groups initially and subsequently classifying them individually, using a
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Table 4.6: Table comparing the material classification experimental results.
Modalities

Utilised
Run Time (to

train one fold) Material Group Individual
Materials

Human
Participants -

Thermal Only
N/A 61.00% 50.90%

Human
Participants -
Thermal and

Vibration

N/A 79.76% 69.64%

One-Stage ANN -
Thermal Only 4.94secs 73.00% 60.90%

One-Stage ANN -
Thermal and

Vibration
5.47secs 83.81% 79.05%

Two-Stage ANN -
Thermal and

Vibration
7.66secs 83.81% 70.48%

One-Stage SVM -
Thermal and

Vibration
0.48secs 86.19% 72.38%

Two-Stage SVM -
Thermal and

Vibration
0.55secs 86.19% 86.19%

Hybrid SVM and
ANN - Thermal
and Vibration

2.66secs 86.19% 82.86%

GMM - Thermal
and Vibration 13.35secs 86.14% 80.24%

LDA - Thermal
and Vibration 1.52secs 78.57% 80.95%

NB - Thermal and
Vibration 1.68secs 71.43% 80.95%

k-NN - Thermal
and Vibration 0.95secs 71.43% 64.29%

MLP - Thermal
and Vibration 5.45secs 71.43% 66.67%
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two-stage approach provides an increase in classification accuracy of individual
materials.

The second best performing algorithm is the SVM and ANN hybrid approach.
The SVM and ANN hybrid approach using the polynomial KF achieved 82.86%
accuracy. The GMM approach was also a highly performing classifier with
86.14% for material groups and 80.24% for individual materials. However, it can
be seen in Table 4.6 that aside from the fact that it achieved slightly less accuracy
in comparison with the two-stage SVM algorithm, like the other algorithms, the
GMM algorithm also takes significantly longer to train (taking 13.35 seconds to
train for one fold of data) than the SVM algorithm (taking 0.48 seconds to train
for one fold of data). Interestingly the LDA and NB classifiers both performed
better when classifying the materials individually rather than into their groups.
This is contrary to what was expected as there are 14 outputs when classifying
into individual materials compared with only 6 outputs for group classification.
As a consequence, LDA and NB both performed marginally better than GMM
for classifying the individual materials with 80.95% accuracy, but performed
poorer than GMM however for the classification of material groups with 78.57%
accuracy for LDA and 71.43% accuracy for NB. k-NN was found to perform
optimally when k = 5 with a fast training time of 0.95 seconds for one node,
however in comparison with the other classifiers it is still lacking in accuracy
for classifying materials individually and into their groups. MLP was found to
be relatively slow to train and was out performed by the majority of the other
classifiers. The training times presented are based on training one fold of data
for each classifier and the training was completed in Matlab on a desktop PC
with an Intel R© Xeon R© CPU E5-16070 @ 3.00GHz x 4 processor and 16Gb of
RAM. Therefore it is concluded that the two-stage SVM algorithm is the best
performing and most efficient algorithm for the task of material classification.

4.4.2 Evaluation of Human Performance

The study participants consisted of 12 healthy humans, two female and ten male,
all aged between 23-56 years and all participants used their preferred hand. It
was determined that ethical approval was not required for these experiments
as no data was collected from or about the participants other than age and sex.
Each of the materials was enclosed in a box, out of sight of the participants,
during the entire experiment, in order to ensure that the participants were
classifying between the materials based on tactile sensing alone (to compare
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fairly with the artificial system experiment). The participants were informed
about what each material is during the training phase. Then the materials were
presented to the participants again in a random order and the participants were
required to identify each material. They could select a material more than once
or state that they couldn’t identify it and therefore give a null response. One
testing phase per participant was completed, allowing for both the slide and
press actions. Before the experiment commenced, the participants were given
clear instructions on how to make contact with the material. For the press
experiment, they were instructed:

1. to press down on the material with their index finger,

2. to leave it on the material for a maximum of 20 seconds (similar to the
artificial fingertip),

3. to lift their finger away from the material,

4. that it was prohibited to move their finger laterally or slide/ rotate their
finger at any time when in contact with the material.

For the slide experiment they were instructed to:

1. reapply their finger to the material,

2. slide their fingertip along the material for a distance of 10cm,

3. lift their finger away from the material.

The 14 materials were presented to the participants one by one. In the first
experiment, the results from the participants were analysed to determine the
humans’ ability to classify the material groups. In the second experiment,
the results were analysed to determine the humans’ ability to classify the
individual materials. In terms of analysis, if a participant selected the correct
group (regardless of whether it was the correct particular material or not) in
the first experiment then one point was awarded for group classification. For
each individual material that the participant correctly identified in the second
experiment, one point was awarded for individual material classification. A
percentage accuracy was calculated for human classification of material groups
and individual materials with the maximum each participant could score in
the two experiments being six points and fourteen points respectively. A
breakdown of the results of the human evaluations for each material can be
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seen in Table 4.7. The second column shows the accuracies of participants
successfully identifying the materials from a press action alone and therefore
sensing thermal properties only. The third column shows the accuracies of the
participants identifying the test materials from using both the press and slide
action therefore utilising both thermal properties and surface texture.

Table 4.7: The percentages accuracies for each material from the human evalua-
tion experiments.

Material Identified Percentage -
Thermal Only

Identified Percentage -
Thermal and

Vibration

Acrylic 40.00% 100.00%

Copper 40.00% 58.33%

Redbrick 20.00% 58.33%

Soft Foam 100.00% 100.00%

Pine 30.00% 41.67%

Carpet 100.00% 100.00%

MDF 40.00% 50.00%

Glossy Cardboard 20.00% 66.67%

Plain Cardboard 30.00% 83.33%

Doormat 100.00% 100.00%

Aluminium 60.00% 58.33%

Rough Copper - 41.67%

Rough Aluminium - 58.33%

Rough Acrylic - 75.00%

Average 53.00% 70.83%

Table 4.7 shows that every participant achieved 100% identification of the soft
foam, the carpet and the doormat when considering thermal properties only
and when using thermal and surface texture properties. It also shows that
100% of participants were able to correctly identify the smooth acrylic when
using thermal and surface texture properties in comparison with only 40% of
the participants correctly identifying it when considering thermal properties
only. Indeed, in comparison to when the participants were sensing thermal

75



properties only, the identification accuracies for all of the individual materials,
except aluminium, either increased or stayed at a maximum when the vibration
(i.e. texture) analysis was permitted. This clearly shows that exploration of the
texture, via the sliding action, plays a vital part in the identification of materials,
and indeed is a critical characteristic that humans use to identify materials. The
results in Table 4.7 also show that pine and rough copper were the most difficult
materials for the participants to identify.

4.5 Discussion

Initially, the participants were evaluated for identification of material groups.
It is found that the average accuracy was 79.76%. Secondly, the participants
were evaluated for identification of individual materials and it is found that the
participants achieved an average accuracy of 69.64%. It can be seen from Table
4.6 that all of the classification algorithms presented have outperformed the
participants (when performance is averaged across all test materials). However,
the best performing artificial algorithm consists of data reduction by using
Eigen-decomposition based PCA to produce PCs as inputs to the best perform-
ing classification algorithm, i.e. the two-stage SVM. This configuration is the
algorithm that is evaluated against the human performance for the remain-
der of this discussion. The artificial algorithm outperformed the participants
by over 6% for material group classification and by over 16% for individual
material classification. This is due to the fact that it is easier for a human to
determine what group a material would belong to (i.e. identify that the material
is definitely metal) than it is for them to identify a specific material within
that group (i.e. is it copper or aluminium). It can be seen from the confusion
matrix in Figure 4.9(a) and 4.9(b) that both the artificial algorithm and the par-
ticipants successfully classified the soft foam in every instance and did not get
it confused with any other material. It can also be seen from Figure 4.9(a) that
where the artificial algorithm classified the pine material correctly on 60% of the
instances, the highest misclassification was with MDF, another material with
similar properties and in the same material group. Likewise, for classifying
MDF, the largest misclassification was with pine. This misclassification can
also be witnessed as a common misclassification amongst the participants as
only 50% of the participants correctly classified MDF. Furthermore, in almost
42% of the instances the participants misclassified MDF as pine as shown in
Figure 4.9(b). It is shown in Figure 4.9(a) that a common misclassification of the
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artificial algorithm was a confusion between acrylic and glossy cardboard, with
glossy cardboard being classified correctly for 40% of the instances however
in just over 33% of the instances it was misclassified as another material with
similar texture and thermal conductivity properties: acrylic.

Interestingly, the participants struggled with the identification of the rough
materials, with only 2 out of 12 being able to identify all three rough materials.
For example, one of the most challenging materials for humans to identify was
the rough copper, and interestingly it was commonly misclassified as redbrick,
as shown in Figure 4.9(b). This is due to the fact that the redbrick is perceived
as cold and rough by the participants, in a similar manner to how metals are
perceived. Therefore this is one of the instances where the artificial algorithm
outperforms the participants as the algorithm can analyse thermal conductivity
much more accurately than the participants and therefore not misclassify it
as a masonry material. This is shown in Figure 4.9(a) where the artificial
algorithm classifies the rough copper in just over 93% of the instances with
the only misclassification being with another rough metal: aluminium. This
misclassification is also evident when classifying the materials into their groups,
as shown in Figure 4.10(a) and 4.10(b). The artificial algorithm outperforms the
participants when classifying materials in both metal and masonry groups. The
majority of instances of misclassification for the participants when classifying
masonry objects is confusing them with a metal object, as both are perceived as
cold.

It is evident from the results that the introduction of tactile texture analysis via
vibration has increased the accuracy of classifying materials for the participants
and particularly when identifying the material groups. It should be noted
that due to the nature of some materials, humans can intuitively take other
characteristics into account, for example compressibility (i.e. soft foam is much
more compressible than the other materials). The artificial algorithm was
trained to analyse only the thermal properties and surface texture of the material
and not compressibility. This may have given the human participants a slight
advantage in identifying some materials. This is evident when comparing the
accuracy of the artificial algorithm for classifying fabrics as a material group
(80%) with the accuracy of the participants (100%), as shown in Figure 4.10(a)
and 4.10(b). The participants have no misclassification of the fabrics when
identifying their material group. It can be assumed that this is due to the
participants being able to identify the compressibility of the objects like soft
foam and carpet whereas the artificial algorithm was not trained to analyse
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(a)

(b)

Figure 4.9: a) Confusion matrix showing the percentage accuracy of the artificial
algorithm (using one-stage SVM) for classifying all the materials individually; b)
Confusion matrix showing the percentage accuracy of the human participants
for classifying all the materials individually.
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(a)

(b)

Figure 4.10: a) Confusion matrix showing the percentage accuracy of the ar-
tificial algorithm (using two-stage SVM) for classifying all the materials into
groups; b) Confusion matrix showing the percentage accuracy of the human
participants for classifying all the materials into groups.
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this modality. However, even though the artificial algorithm did not utilise a
key modality for humans, namely compressibility, overall it still outperformed
humans.

4.6 Conclusion and Future Work

A range of classifiers and combinations of classifiers that were implemented,
tuned and evaluated for the classification of materials into their respective
groups and the classification of individual materials has been presented in this
chapter. This classification was based on a combination of the thermal and
surface texture properties of the materials. It is proven that a two-stage SVM
approach performs best and is the most efficient method in completing the
material classification task. Performance evaluation has been conducted using
human participants and, although the machine-based algorithm is slower than
humans at classification due to training requirements, it was found that the
average performance of all biologically-inspired learning algorithms across all
test materials exceeded that of the participants’ average performance. The two-
stage SVM approach outperformed humans by over 16% accuracy in material
identification.

The success of the challenging task of material identification presented in this
chapter proved invaluable in providing familiarity with the use of the BioTAC
fingertip and the analysis of the data it presents. Whilst getting familiar with
the sensitivity and accuracy of the BioTAC, it became apparent that because
of its high sensitivity, it may be capable of measuring biomedical parameters,
namely human vital signs such as a human pulse. Therefore, this directed the
remainder of the research in this thesis towards the automated collection and
analysis of human vital signs based on tactile perceptions.
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CHAPTER

FIVE

Human Pulse and Respiratory
Signal Analysis

5.1 Introduction

Being able to accurately and quickly assess a person’s condition in an emergency
or search and rescue situation could, in critical scenarios, mean the difference
between life and death. Two key indicators of human health are pulse and
respiratory rate. The pulse can be measured from numerous points around
the human body, for example, from the finger artery, the brachial artery on the
inside of the upper arm, the posterior tibial at the ankle, the carotid artery at
the neck or the radial artery at the wrist. The heart pulse rate is the speed of
the heart measured in Beats Per Minute (BPM). Although heart rate can vary
depending on one’s age, physical size and activity, amongst other factors, it
is considered that a normal pulse (heart rate) for a resting adult ranges from
60-100BPM. A rate slower than 60BPM is defined as bradycardic and a rate
higher than 100BPM is described as tachycardic. However, it is not solely how
many BPM that the heart makes which determines the health of a person’s
heart as the rhythm of their heart beats must also be considered. With a heart
rate of 60-100BPM and a regular rhythm of beats, an adult is considered to
have a normal heart rate and be in sinus rhythm (i.e. have a healthy heart rate).
However, an individual may have a normal pulse (heart rate) of 60-100BPM
but may have an irregular rhythm of beats. When the heart is not beating in
a consistent pattern, it is referred to as arrhythmia. It is also possible for an
individual to have a regularly-irregular form of arrhythmia; for example if
their heart is not beating at regular intervals but it is consistently following an
incorrect pattern, this is classed as sinus arrhythmia. Likewise, it is possible
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for an individual with bradycardia or tachycardia to still be in sinus rhythm,
i.e. their pulse is outside of the normal rate of 60-100BPM, however it has got
a healthy rhythm. Arrhythmia and/ or irregularities in the aforementioned
measurements of blood flow can sometimes indicate disease. To read and
analyse the pulse can require high levels of skill and experience from medical
personnel.

Measuring Respiratory Rate (RR) requires counting how many times the chest
rises in one minute. This is a difficult procedure as it is often completed visually
and if the person is breathing weakly or visibility is poor, it may be difficult to
distinguish movement in the chest (particularly through clothing) and therefore
requires skilled medical personnel. It is estimated that a healthy adult should
breath 12-20 times per minute when at rest (Barrett et al., 2010). This chapter
presents novel algorithms that will equip a robot with the necessary skills to
assess a human’s BPM and RR. Algorithms that calculate heart BPM, Pulse to
Pulse Interval (PPI), RR and Breath to Breath Interval (BBI) are presented. The
aim of this work is provide a “first response” service to an elderly or disabled
user in a home assist scenario, or to determine a human’s health status in an
emergency rescue scenario before risking further human life.

The BPM is used to classify if a heart rate is normal, bradycardic, or tachycardic.
PPI is used to determine if the pulse rate is regular or in a form of arrhythmia.
The RR and BBI are used to determine if the human’s breathing is normal
and regular. The results in this chapter show that pulse and breathing can be
successfully measured and a participant’s BPM and RR calculated using trough
and peak detection methods respectively. Furthermore, the robotic system
proved to be capable of classifying the pulse as being regular or arrhythmic and
the RR as being regular or irregular.

5.1.1 Assessing Human Vital Signs

There are numerous key vital signs that can be measured from a human in
order to ascertain their current health status. Some require more equipment
and time than others but may provide more detail; for example a complete
12-lead electrocardiogram (ECG) requires the connection of electrodes on the
patient’s limbs and the surface of the chest in order to measure the heart’s
electrical potential over a period of time, usually 10 seconds. Although this
procedure would not be suitable for first response or in a disaster zone, it
does provide a trained clinician with a large amount of information about the
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function of the heart’s electrical conduction system along with heart rate and
rhythm (Walraven, 2011). Assistive technologies have been developed to help
with the nursing of elderly care, particularly with the manual handling aspect
of moving patients etc. (Hu et al., 2011) or to enable a doctor to carry out basic
remote assessments of a patient’s health (Stollnberger et al., 2016). However,
in order to complete an accurate assessment of a patient or victim’s vital signs
it is reported that these systems need much more advanced tactile sensing
capabilities (Stollnberger et al., 2016). Key vital signs that can be assessed
outside of a medical practice, hospital or home and what they indicate are
discussed below:

• Heart/ Pulse Rate (measured in Beats Per Minute (BPM)): A key indicator
of a patient’s clinical condition. Tachycardia (greater than 100 BPM) may
be indicative of circulatory compromise due to cardiac failure, volume
depletion or sepsis, pyrexia, metabolic disturbance, cardiac arrhythmia or
pain and general distress. Bradycardia (less than 60 BPM) can be more
difficult to identify as it could be normal with physical conditioning, or as
a consequence of medication. However, it may also be an important indi-
cator of hypothermia, hypothyroidism, Central Nervous System (CNS)
depression or heart block (Royal College of Physicians of London, 2012).

• Respiratory Rate (RR): the number of breaths taken by a person in one
minute. This is one of the key indicators of current health status. An
elevated RR is a powerful sign of acute illness, distress, generalised pain,
sepsis remote from the lungs, CNS disturbance and metabolic distur-
bances such as metabolic acidosis. A reduced RR is an important indicator
of CNS depression and narcosis (Royal College of Physicians of London,
2012).

• Capillary Refill Time (CRT): the time taken for the colour to restore in
an external capillary bed following blanching caused by pressure being
applied. The Capillary Refill Time (CRT) can be measured by pressing
on the fingernails, the soft tissue at the kneecap or forearm, the centre
of the chest or the forehead (Beckow, 2005). The forehead is usually the
most accessible area to press in a disaster zone considering the victims
will most likely be wearing clothes. When measured at the forehead, the
normal time for CRT should be less than 2 seconds for an adult or up
to 3 seconds for an infant (Strozik et al., 1997). A prolonged capillary
refill time may be a sign of shock, can indicate dehydration, decreased
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peripheral perfusion or that the blood supply has been cut off from the
skin.

There has been much work on the design and development of wearable sensors
that are capable of monitoring vital signs. For example, Mouradian et al.
(2014) presents a wearable photoplethysmography (PPG) sensor that enables
continuous monitoring of vital signs such as oxygen saturation, RR, heart rate
and blood pressure. The small wearable device enables users to store all the
measured data and send it to a remote location. He et al. (2015) developed a
different style of wearable sensor in the form of in-ear sensors which measure
the ballistocardiogram (BCG) (a measure of ballistic forces on the heart), ECG
and PPG (a volumetric measurement of an organ) in order to measure and
monitor stroke volume (SV), pulse transit time (PTT), pre-ejection period (PEP)
and cardiac output (CO). There have also been efforts to include the wearable
sensors within fabric so that the user is not disturbed or inconvenienced in any
way by wearing a sensor and also to help a user not forget to put the sensors
on (Mahfouz et al., 2011). For example, Gagarin et al. (2014) present a sensor
that incorporates their previously designed microwave stethoscope (Gagarin
et al., 2012), capable of reading of heart beat, RR, SV and changes in lung
water contents. However, the sensors faced numerous problems during testing
such as intermittent skin contact, making it difficult to accurately monitor
the aforementioned vital signs continuously. Another sensor aimed at being
integrated into a standard shirt was presented by Ramos-Garcia et al. (2016).
Accuracies of within 1 breath per 10 seconds period was achieved and showed
that the sensor could potentially be used as a means of continuously monitoring
a person’s RR. Someya (2013) also focuses on a wearable sensor with the aim
that the user would not be constricted in any way whilst wearing it. The
authors are working on a “bionic skin” type wearable sensor that sits on top
of skin and will eventually be capable of continuously monitoring vital signs.
However, all of these styles of sensors require the users to be wearing them
in order for their vital signs to be assessed. These would not be helpful in an
emergency or disaster zone as most people do not currently wear any form of
health monitoring equipment on a daily basis and certainly not sensors that are
connected back to a monitored database. Therefore, one could not depend on
wearable sensors as a means of assessing, for example, the current health status
of a trapped, unconscious person.

It is evident from a thorough review of the literature regarding non-invasive
and non-wearable sensors, that the two most common vital signs measured by
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these styles of sensors are BPM and RR. The most common method used for the
measurement of these two vital signs is the Doppler effect. Using microwaves
and Radio Frequency (RF) to detect small movements such as heartbeat and
respiration dates back to the 1970’s (Lin, 1975). Gu and Li (2014) explain how
the moving of the chest wall causes a Doppler shift and by analysing the phase
information in the received radar signals it is possible to determine the RR
and BPM. This approach to measurement of RR and BPM has been heavily
researched by many research groups, e.g (Choi and Kim, 2009; Lu et al., 2011;
Iyer et al., 2013; Boothby et al., 2013) since the initial work by Lin (1975). The
majority of radar-based methods can have inaccuracies, particularly in the
measurement of the heart rate due to several spurious peaks being produced
at harmonics and intermodulation frequencies (Ren et al., 2015). In order to
reduce these errors, Ren et al. (2015) apply a signal processing algorithm, based
on the state-space method, to the data collected from a human participant using
a Stepped Frequency Continuous Wave (STCW) radar in order to extract the
cardiac and respiration rates. Accuracies of over 98% for heart rate in static
mode and 94% in motion were obtained without producing spurious peaks,
although tests were carried out on just one participant. More recently, Kuo et al.
(2016) extended their previous work (Kuo et al., 2015) to develop a 60-GHz
complementary metal-oxide semiconductor (CMOS) direct-conversion Doppler
radar RF sensor with a clutter canceller non-contact vital signs detection sys-
tem using a single antenna. The clutter canceller which consisted of a Video
Graphics Array (VGA) and a 360◦ phase shifter was reported to greatly increase
sensitivity when detecting weaker human heartbeats and breaths. The vital
signs could be read from a human up to 75cm away and the sensor was on
a 2× 2mm chip which could eventually be installed onto a mobile robot for
use in disaster zones. Although sensors utilising the Doppler effect are heavily
researched and their accuracies for detecting human vitals are continuously
improving, they would face difficulties when in disaster zones as any other
movement within the area would undoubtedly cause numerous artefacts in the
signals received.

Another very popular method for measuring vital signs, particularly heart rate,
is via camera equipment and image processing techniques. Tasli et al. (2014)
use a standard off-the-shelf video camera to implement a remote PPG based
technique where variations in the colour of human skin were analysed for
observing average heart rate. It was found that although acceptable accuracies
were achieved in heart rates measured between 50-90 BPM, anything higher
than this tended to be underestimated. Additionally, it was found that changes
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in lighting dramatically affected the effectiveness of the method and that the
success of this method requires training on a ground truth dataset of personal
skin colour which may not always be available. Wu et al. (2012) also use a stan-
dard video camera and apply their “Eulerian Video magnification” technique
to the video sequence. The authors record a video sequence of a human face
and apply their magnification algorithm which applies spatial decomposition
and temporal filtering to each of the frames. They then amplify the resulting
signal to reveal blood filling and leaving the skin which is not visible to the
naked eye. Although a useful method to visualise and analyse human heart
rate, this method struggles under changes in ambient lighting. Tran et al. (2015)
present a robust real time method that addresses issues relating to challenging
environments for vision based heart rate measurements such as low illumi-
nation, movement of participants and complicated facial models that include
beards and moustaches etc. The proposed method applies a combination of
face detection/ tracking and skin detection algorithms and the application
of a finite state machine to reduce noise and construct a series of red, green,
blue (RGB) images. The method is reported to perform well and is suggested
for use in remote health care monitoring, however it would require further
evaluation for extreme conditions such as disaster zones. In contrast to using
a standard camera, Gault and Farag (2013) use video frames from a thermal
imaging camera to calculate heart rate from vascular mapping, blood perfusion
and wavelet analysis. Various locations from the images, e.g. forehead, cheeks,
chin etc., were evaluated for heart rate detection and accuracies of > 85% were
found when analysing the forehead region. However, like the other vision
based heart rate measurement algorithms presented, this method may struggle
in uncontrolled environments due to changes in ambient temperatures etc. It
is evident that vision based methods for heart rate measurements are highly
accurate when good quality vision data are available but other sensors such as
sound and tactile sensors are required for use in areas where vision is very poor.
The use of these alternative sensing modalities will enable collection of data
that vision systems will not be able to measure, such as vibration and thermal
data from physical contact.

Another sensor that has been used to measure a heartbeat and RR is an optical
interferometer. This is a sensitive device which detects physical changes in
the optical fibre length. Šprager et al. (2010) use an optical fibre interferometer
placed in a mattress to continuously measure a person’s vital signs overnight.
A third-order low bandpass filter was applied to the data collected from the
sensor and further bandpass filters ranging in cut-off frequencies were used
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to detect BPM and RR. Accuracies of approximately 95.7% for heartbeat and
93.8% for respiration were achieved across datasets consisting of 5 males for
60 seconds of data collection. The authors continued this research in later
work to test the method on a user during a full night’s sleep of 9.75 hours
(Šprager et al., 2012). Although higher accuracies of 97.76±1.04% for heart rate
were achieved, these sensors are extremely sensitive and must be used in an
embedded environment. Therefore, although they are useful for applications
such as overnight monitoring of a patient’s vital signs, they would not be useful
for measuring vital signs in emergency or disaster zones.

Interestingly, to date force or tactile sensing has not been heavily researched
for measurement of human vital signs. Mi and Nakazawa (2014) present a
thin multi-point polymer force/pressure sensor that they developed for pulse
measurement from the radial artery on the wrist. The sensor is extremely thin
measuring just 100 µm and contains 25 sensing electrodes on a charged cellular
polymer layer. The authors placed the sensor on the wrist of a human and
visually assessed the detection of pulses against a physician’s diagnosis in real
time and reported that there was a strong correlation meaning the sensor is
capable of sensing a heartbeat. Qian et al. (2011) also develop a tactile sensor
for measuring pulse from indirect contact with an artery. The sensor is a tactile
array consisting of six pieces of Polyvinylidene Fluoride (PVDF) films and
is evaluated using a person’s wrist, demonstrating effective measurement of
pulse from the radial artery. A highly sensitive tunnelling piezoresistive tactile
sensor was developed by Chang et al. (2016) for continuous blood pulse wave
monitoring. The sensor proved effective at measuring pulse from a human’s
wrist. The work presented in the literature for tactile sensing focuses mainly
on the development of application specific sensors in pulse measurement,
however there is little research on using a multi-modal tactile sensor for pulse
measurement on a triage robot. The work outlined in this thesis aims to utilise
a commercial tactile sensor for pulse measurement and analysis by considering
the time between pulses (PPI).

Capillary Refill Time (CRT) is a critical clinical indicator of trauma and detec-
tion, however digitised CRT techniques are not readily available or researched
(Karlen et al., 2011). CRT is normally assessed by visual inspection at cer-
tain points around the body for example the chest, fingertip or forehead by a
trained clinician; however, this method is prone to high inter-observer variabil-
ity (Otieno et al., 2004). Karlen et al. (2011) aim to address this variability by
standardising the pressure placed on the finger when using a small portable
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device to assess CRT by analysing PPG recordings. They assess the use of
their standardised rules on a paediatric dataset to validate 93 readings from
fingertips and reliably detected invalid CRT readings, with a sensitivity rate of
98.4%. Invalid readings are caused by numerous issues such as low perfusion
signals, insufficient pressure, and artefacts. Although a promising step towards
a reliable digital method to validate CRT measurements, it is not capable of
directly measuring CRT and requires the use of other algorithms. All of the
methods discussed in this section measure BPM, RR or both and one method
takes a step towards the measurement of CRT. However, algorithms for use
with a tactile sensor that are capable of measuring all three of these vital signs,
particularly in areas of poor lighting or visibility, are not available to date. The
work in this chapter and in Chapter 6 provides such algorithms.

5.2 Methodology

The five fingered Shadow Hand, made by the Shadow Robot Company,
equipped with three BioTACTM sensors from Syntouch R©was used to collect
pulse and respiratory data from a human. The Shadow Hand has 21 degrees
of freedom and has similar dexterity to a human hand, allowing it to mimic
to some extent the actions required to take one’s pulse from their wrist and
sense movement in their chest. Figure 5.1 shows an image of the Shadow Hand
equipped with three BioTAC sensors.

As outlined in Chapter 2, the BioTAC is a tactile sensor which is shaped like a
human fingertip and is liquid filled, giving it similar compliance to a human
fingertip. It measures force applied across an array of 19 electrodes, absolute
fluid pressure (PDC), dynamic fluid pressure (PAC), static temperature (TDC)
and thermal flow (TAC). Figure 2.10 showed a cross section view of the BioTAC
fingertip. The data source used for the pulse reading is vibration (as is used
by a human when reading another’s pulse) rather than light or electrical data
which are used in the majority of other pulse reading technologies with the
most common being through the use of photoplethysmography (PPG) (Allen,
2007). Experiments for measuring respiratory rate along with pulse rate are
carried out. The data sources used for measuring breaths are vibration and
thermal conductivity, used concurrently to ensure algorithm robustness. In
the case of pulse measurement, contact with a human wrist allows for sensing
vibration caused by blood flow through the radial artery and contact with the
chest allows for sensing vibration signals caused by the lungs inhaling and
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Figure 5.1: Image of The Shadow Hand with three mounted BioTAC Fingertip
Tactile Sensors

releasing air when breathing. In all cases, this work uses a lowpass filter as a
first stage of noise reduction of the data and utilises wavelet algorithms as a
second stage of smoothing, thus improving the overall noise reduction in the
pulse and respiratory rate waveforms. A further smoothing algorithm based
on lateral inhibition is also evaluated in this chapter.

5.2.1 Data Collection

For data collection in the experimental work carried out in this chapter and
Chapter 6, three BioTAC sensors were installed on to the first finger (FF), middle
finger (MF) and thumb (TH) of a five fingered Shadow Dexterous HandTMfrom
the Shadow Robot Company (2017) upgrading from the standard single point
force Pressure Sensor Tactiles (PST) sensors that are fitted as standard to the
fingertips of the Shadow Hand.

Pulse and RR data were collected from 12 human participants, all of whom
were volunteers from within the Intelligent Systems Research Centre (ISRC)
at the Ulster University (UU) Magee Campus. All participants were male
aged between 18-65 years who were in generally good health, have never been
diagnosed with a heart or lung condition and have never had surgery on their
heart or lungs. Due to the nature of the data recording for respiratory rate and
the necessity that the robot hand must rest and apply light pressure to the chest
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of the participant, no female participants were recruited at this stage of the
investigation. Ethical approval for “category A” research was granted by the
research governance at Ulster for all experiments carried out. An exclusion
process was carried out for each participant prior to participation to ensure that
they met the required criteria. Each successful participant was fully briefed
about the experiment and signed a consent form prior to participation. To
ensure that the participant was in generally good health at the time of data
collection, the researcher collected each participants’ temperature using an ear
thermometer with a new tip for each participant, following training on how to
do so from a medical professional. The medical professional also oversaw the
procedure and measured each participant’s pulse and respiratory rate in each
experiment as ground truth data to verify the accuracy of the artificial system
approach described in this chapter.

For collecting both pulse and respiratory data, the BioTAC fingertip is allowed
15-20 mins to reach its steady state temperature (approximately 35◦C, 10◦C
above ambient) after being first powered on. Unlike the experiments in Chap-
ter 4 where the BioTAC fingertip was used within an experimental rig and
data were collected and stored through the use of a Graphical User Interface
(GUI) at a rate of 4400Hz, in the experiments presented in this chapter the
data generated from the BioTAC fingertip are transferred through Ethercat on
the Shadow Hand. Therefore, due to the quantity of data being transferred
the PAC, PDC, TAC and TDC values from the BioTAC fingertip are recorded
at a reduced frequency of 100Hz. These values are recorded using the Robot
Operating System (ROS) and a dataset for PAC, PDC and TAC data was formed
using Python.

In order to measure pulse, each participant was seated in front of the robot
hand and asked to roll up their left sleeve and remove any jewellery from their
wrist. They were asked to place their left wrist facing upwards into the robot
hand. The PAC values can be used to determine the vibration (of the internal
conductive fluid) caused by the pulse when the fingertip is pressed against the
radial artery. To press the finger against the radial artery the Shadow Hand
positions its TH below the wrist and moves its FF and MF in small increments
towards the radial artery on the ventral aspect of the wrist on the side of the
thumb of a participant, as illustrated in Figure 5.2(a). Using the electrodes in
the BioTAC fingertip the force applied to the finger is constantly measured and
once sufficient contact is made with the wrist by the FF and MF, the fingers
stop moving and the system begins recording the PAC data. The Shadow Hand
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applied a safe level of force similar to that which a human would apply. This
force was measured using the ATI Nano17 6-axis Force/Torque (F/T) Sensor
(ATi, 2017) from a medical professional mimicking the same procedure for
reading pulse from a human wrist. The fingertips are soft and warmed to
approximately the same temperature as a human fingertip and therefore did
not cause any pain or discomfort to the participants. As seen in Figure 5.2(a),
this action replicates the action of a human when attempting to measure a
participant’s pulse by using the fingers to contact the wrist and count how
many beats are felt per minute. Three datasets of 120 seconds each were
collected with a short break in between each one. The individual was at rest in
each case.

In order to determine the RR of the participant, contact with the chest of each of
the 12 participants was made using the Shadow Hand, as shown in Figure 5.2(b).
The hand started in an open position and both the FF and MF moved towards
the upper left side of the participant’s chest in small increments. The electrodes
on the BioTAC were constantly monitored until sufficient contact was made
with the chest. The required force was determined using the ATI Nano17 6-
axis F/T Sensor (ATi, 2017) measuring the force that a medical professional
applies to a human chest when attempting to measure respiratory rate. In this
case static vibration data (PDC) were used to identify the movements of the
chest wall more effectively than PAC. Furthermore, as breathing can cause a
lot of added artefacts and noise, another modality was measured along with
vibration data, namely the thermal conductivity value (TAC). As the chest wall
rises during breathing, the skin of the participant pushes against the inside
clothing and as a result of the concentrated indirect contact with the skin under
the clothing the thermal conductivity value (TAC) fluctuates as the fingertip
senses the change in temperature and friction. Therefore, both TAC data and
PDC data were recorded to assess respiratory rate in order to add robustness to
the algorithm.

5.2.2 Waveform Pre-processing

In order to reduce noise and smooth the waveform of both the pulse and
respiratory data, in all cases, two stages of filtering were applied to the data.
As a human heart beat is a low frequency sound, various low pass filters were
evaluated for the first stage of filtering. Infinite impulse response (IIR) filters
generally achieve a required response with a much lower filter order than finite
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(a) (b)

Figure 5.2: (a) Image showing the Shadow Hand taking the participant’s pulse
(b) Image showing the Shadow Hand resting on the participant’s chest to
measure RR

impulse response (FIR) filters and therefore are more efficient (Elliott, 2001).
Various types of IIR filters including Chebyshev Types I and II, Butterworth,
and elliptic were evaluated along with various cut off frequencies and filter
orders. Following the application of the various filters, the filtered signal was
visually inspected to determine if all of the troughs representing heart beats and
breaths taken in the waveform were preserved whilst as many incorrect troughs
(i.e. noise) as possible, were removed. By visual inspection of filtered signals
following a range of filtering types, it was found that a Butterworth IIR filter
with a cut off frequency of 10Hz and a filter order of 10 performed best, as it
produced the preferred smoothing without loss of valuable data. Therefore this
filter was used throughout the pulse and respiratory experiments presented.

A wavelet decomposition algorithm (Mallat, 2008) was then employed as the
second stage of filtering to perform smoothing of the waveforms. Wavelets
are very efficient in dealing with noisy data series due to their multi-scaling
property (Haven et al., 2012). Wavelets are defined by the wavelet function,
ψ(x), (i.e. the mother wavelet) and a scaling function , φ(x), (know as the
father wavelet) in the time domain. Effectively, the wavelet is a band-pass
filter, meaning that every time the wavelet is stretched by a factor two in the
time domain, its bandwidth is halved. Therefore, with every stretch of the
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wavelet only half of the remaining spectrum would be covered (Kaiser, 1994).
This means that an infinite number of wavelets would be required to cover
the entire spectrum. Hence, a low-pass filter known as the scaling function,
first introduced by Mallat (1989), is designed so that its spectrum neatly fits in
the space left open by the wavelets. It is used to filter the lowest level of the
transform and ensure that all the spectrum is covered.

Discrete wavelet transform (DWT) algorithms with two wavelet functions,
namely Haar and spline (SPL) (Luo et al., 2006) and various levels of decom-
position were evaluated. The Haar wavelet is a wavelet family compiled of a
sequence of rescaled “square-shaped” functions and is the simplest possible
wavelet (Misiti et al., 2007). The Haar wavelet function, ψ(x)h, is defined by
Equation 5.1 and the Haar scaling function,φ(x)h, is defined by Equation 5.2
(Misiti et al., 2007).

ψ(x)h =


1 for 0 ≤ x < 1

2 ,

−1 for 1
2 ≤ x < 1,

0 otherwise

(5.1)

φ(x)h =

1 for 0 ≤ x < 1,

0 otherwise
(5.2)

The SPL wavelet function used in the DWT wavelet algorithm is the B-spline
of order 2, namely the quadratic B-spline (Misiti et al., 2007). The SPL wavelet
function, ψ(x)s, is defined by Equation 5.3 and the SPL scaling function,φ(x)s,
is defined by Equation 5.4 (Misiti et al., 2007).

ψ(x)s =



1
2 x2 for 0 ≤ x < 1,

−x2 + 3x− 3
2 for 1 ≤ x < 2,

1
2 x2 − 3x− 9

2 for 2 ≤ x < 3,

0 otherwise

(5.3)

Œ(x)s =
1
4

N3(2x) +
3
4

N3(2x− 1) +
3
4

N3(2x− 2) +
1
4

N3(2x− 3) (5.4)

It was empirically found that a DWT wavelet algorithm with a SPL wavelet
filtering algorithm and a wavelet decomposition value of 5 is the most effective
algorithm providing smoothing without loss of information. Therefore, this
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was applied to all waveforms collected for pulse and respiratory rate.

Reichardt and MacGinitie (1962) initially studied the use of lateral inhibition
in various neural networks and since then there has been continuous interest
in these networks, particularly in the field of sensory analysis. According to
Bekesy (1967), lateral inhibition is an ubiquitous phenomenon which is assumed
to be operative in all sensory systems. It is based on a concept of suppression by
a given element on its topological neighbours where the capacity of an excited
neuron reduces the activity of its neighbours. It is believed to be responsible for
a number of self-organising processes in biological systems ((Kral and Majernik,
1996)). Using lateral inhibition couplings, the sharpening of Artificial Neural
Networks (ANN) input data can be achieved ((Kral and Majernik, 1996; Li
et al., 1992). Kral and Majernik (1996) study various lateral inhibition neural
networks regarding their ability to sharpen input excitation curves. They also
introduce two new entropy-like quantities, namely iteration entropy and the
rate of convergence. In line with work done by Kral and Majernik (1996), who
used lateral inhibition neural networks to smooth waveforms in their analysis
of the auditory system, lateral inhibition as a third stage of smoothing was used
to further smooth the pulse and respiratory waveforms. The method is capable
of highlighting the peaks in a waveform and suppressing any data points that
were not considered to be part of a peak by using a linear threshold output
function with the lateral inhibition neural network. As lateral inhibition is
used to emphasise peaks in data, the data is inverted for trough detection cases.
The addition of lateral inhibition as a third stage of smoothing is evaluated
against using only the low pass filter and the wavelet algorithm as a two-stage
smoothing approach.

5.2.3 BPM and RR calculation

Upon visual inspection of the pulse waveforms following filtering from the
low pass filter and smoothing using DWT wavelets, it is clear that there is a
prominent trough in each case representing a pulse (heart beat) and breath
taken, as seen in Figure 5.3(b). Therefore, by identifying and calculating the
number of troughs in a 60 second window of the pulse waveform a calculation
of the participant’s BPM can be completed. However, as breathing is calculated
by analysing the PDC and TAC readings from the BioTAC, i.e. the pressure and
thermal conductivity, it was evident upon visual inspection following the first
two stages of filtering and smoothing that in these waveforms peaks are more
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prominent than troughs, as seen in Figure 5.4(b) and Figure 5.5(b). This is to be
expected as when the chest wall raises (to accommodate an intake of air) the
skin presses firmly against the clothing increasing thermal conductivity which
is measurable using the BioTAC fingertip. Therefore by identifying the number
of peaks (breaths taken) within a 60 second period of the respiratory data the
participant’s RR can be calculated.

Although the troughs and peaks can be clearly seen when inspecting the graphs,
it is required that they are detected automatically in order to calculate the BPM
and RR of a participant. In order to detect prominent troughs and peaks in the
waveforms a modified version of a publicly available function called “peakdet”
in MATLAB is utilised. This function detects the local maxima and minima
in a wave signal. The function uses a threshold (default 0.5) of the difference
between the suspected trough or peak and its surrounding values in order to
declare it as a peak or trough.

However, due to the range of variance within the datasets for each modal-
ity (i.e. PAC, PDC and TAC), the default threshold was not adequate for
accurately differentiating all the troughs and peaks from within the various
waveforms. Therefore, a dynamic threshold was required. Two thresholding
approaches were evaluated, one semi-automatic and one fully automatic. The
semi-automatic approach enabled calibration per participant for improvement
of accuracy as the troughs and peaks in the graphs vary in terms of how promi-
nent they appear from their surrounding values across each participant. This
helps to avoid any outstanding residual noise being detected as a trough or
peak. As the troughs or peaks are required to be detected with respect to
the resting waveform the calibrated dynamic threshold is calculated for each
modality per participant using the standard deviation and is given by:

dtm = x×σ (5.5)

where dtm is the calibrated dynamic threshold for each modality per participant,
x is a factor calibrated for each participant per modality, and σ is the standard
deviation of the waveform. Various values of x were applied and tested for
each modality and manually calibrated for each participant until an optimal
value for the threshold was determined enabling accurate detection of troughs
and peaks representing heart beats and breaths respectably.

The fully automatic thresholding approach was implemented based on the
technique used by Jacobson (2001) in his approach for automatic peak detection
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in ECG signals. The approach considers the fact that the slope of a leading edge
of a peak is positive. The derivative of samples greater than zero are classified
into two clusters, one consisting of peak slopes and the other consisting of the
remaining values in the waveform. Using a nearest neighbour style approach
to separate the two clusters, each data point in the waveform is considered in
turn and assigned to the cluster whose mean is closest in value to the data point.
Once this is completed for all data points, new means are calculated for the two
clusters and the process is completed again where each data point is classified
into the two clusters. At each iteration the difference between the means of
the two clusters is calculated and the process continues until the difference is
below a specified termination value. Due to the nature of the data analysed
and considering how noisy it can be, the algorithm is designed to continue
until the difference between the two means is less than 1 in the expectation that
this would produce the most accurate threshold for each waveform, resulting
in accurate peak detection. The results are presented for algorithms using the
semi-automatic approach and the fully automatic approach in order to evaluate
which method is most accurate.

5.2.4 Pulse to Pulse (PPI) and Breath to Breath Interval (BBI)
Calculation

In order to determine if a pulse is regular, the time difference between each
detected pulse, PPI, is calculated across the waveform. An individual may
have a normal heart rate (i.e. between 60-100 BPM) but their pulse may not be
beating at regular time intervals or may be following an irregular pattern, i.e.
they would be classed as having an arrhythmic heart beat or a sinus arrhythmia.
Likewise in order to determine if the participant’s breathing is regular the BBI
is calculated across the waveform. Both the PPI and BBI are time intervals
between each pulse and breath respectively.

To classify the interval calculated from the collected waveforms, firstly the
expected PPI (time difference between each detected pulse) and BBI (time
difference between each detected breath) in the given time of the data collected
(i.e. 60 seconds) are calculated in order for the heart rate and RR to be classified
as regular and healthy. This expected interval, Iexp is defined as:

Iexp =
twf

Ntd
(5.6)
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where Iexp is the expected interval in seconds (s) for the heart rate or RR to be
regular, tw f is the complete length of time (s) of the waveform and Ntd is the
number of peaks or troughs detected in the waveform.

The calculated actual interval between each individual pulse or breath detected
in the waveform is calculated by:

Iobs = tct − tpt (5.7)

from a human chest where Iobs is the observed interval between each individual
trough detected (s), tct is the time stamp of the current trough detection (s) and
tpt is the time stamp of the previous peak or trough detected.

A sliding window is utilised to reduce outliers or any residual noise in the
waveform affecting the interval classification. Along with the Iobs being calcu-
lated at every time point, an average of all the Iobs values within the window at
each step is calculated. The sliding window moves in time steps of 0.5 seconds
and has a length of 5 seconds. Equation 5.8 determines how many sample
windows are analysed across each dataset.

Nsw =
Ntds − (lsw ×Ndps)

(TSsw ×Ndps)
(5.8)

where Nsw is the number of sample windows analysed across the complete
dataset, Ntds is the number of data points in the complete dataset, lsw is the
length of the sliding window (s), Ndps is the number of data points recorded
per second, and TSsw is the time step of the sliding window (s). The average I
for each window of data was calculated as:

I ¯obsw =

Ntdw
∑

Iobsw=1
Iobsw

Ntdw
(5.9)

where I ¯obsw is the average interval (s) between the troughs detected within the
window, Iobsw is the individual interval between the troughs detected within
the window (s) and Ntdw is the number of troughs detected within the window.

Iobs and I ¯obsw are then analysed against the expected interval required for a reg-
ular and healthy pulse rate, Iexp, (equation 5.6) in order to determine if the pulse
is regular or arrhythmic. Clearly, due to the nature of the data, it is not realistic
to expect every individual Iobs reading or the average interval reading of a 5
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second window of data, I ¯obsw, to be exactly the same as the expected rhythmic
average, Iexp. Therefore, following discussion with a medical professional it
was estimated that a tolerance of within ±25% of the rhythmic average PPI at
each pulse detected was sufficient to classify between regular (healthy) and
arrhythmic pulse rates. If the individual PPI is within this tolerance then the
heart rate is classified as being regular. Likewise the Iobs and I ¯obsw are analysed
to determine if the participant’s breathing is regular or irregular. A similar
tolerance is suggested for the BBI to be within for the breathing to remain
classified as regular.

5.3 Results

In the following section, results are presented for BPM and RR identified from
waveforms following two forms of smoothing. Results for BPM and RR iden-
tified from waveforms following a third stage of smoothing by using lateral
inhibition neural networks are also presented. The results are evaluated against
the manual measurement of each participant’s pulse measured by a medical
professional. Furthermore, results for the calculation of the PPI and BBI are
presented.

For comparison, the algorithm’s performance is also evaluated against a modern
off the shelf light-based pulse measurement device. During data collection,
the participant’s pulse was also measured using an Android smart-phone
application called “Heat Rate Monitor” (Mellado, 2013). The smart-phone
application requires the user to place their index finger against the camera lens
of the phone. It then analyses the input from the camera feed, detecting the
slight changes in red colour to identify pulses. The algorithm applies band pass
filtering to the signal and then begins a sliding window approach to analyse
the signal. Within the sliding window Fast Fourier Transform (FFT) is applied
to the signal followed by a peak detection algorithm in which it classes each
peak as a pulse. A smoothing algorithm is then applied to the signal to allow
for it to appear back on the smart-phone screen as a smooth waveform with
minimal noise.

Similarly, it was found that applying the low bandpass Butterworth IIR filter to
the raw PAC, PDC and TAC data collected using the BioTAC, reduced noise
and smoothed the waveform to a level that may in some cases be sufficient
to clearly identify peaks and troughs. This can be seen in Figure 5.3(a) which
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shows an example of the raw PAC data collected from the wrist of one of the
participants and the filtered data following application of the IIR filter, in this
case from participant 3.

Figure 5.4(a) and Figure 5.5(a) show graphs of the raw data and the data
following the first stage of filtering with the low pass filter for the PDC and
TAC datasets respectively collected when the fingertip was applied to the
participant’s chest (again participant 3 in this case). It can be seen from these
graphs that although application of the low pass filter did not make a dramatic
change to the data, it has still smoothed it slightly in the areas of the peaks and
troughs where the data were noticeably noisier.

Application of the second stage of filtering, namely the DWT noise reduction
process, to the raw data successfully further removed noise, smoothed and
normalised the waveform to a level that would allow for successful trough and
peak and therefore pulse and breath detection. The data contained significantly
less noise compared with using a low pass filter alone. This is evident in
Figure 5.3(b) which shows the PAC data following the application of the DWT
noise reduction algorithm where the data are clearly less noisy than the raw or
single stage filtered data. Figure 5.4(b) and Figure 5.5(b) show the PDC and TAC
waveforms, respectively, of data recorded from the individual’s wrist following
the application of the DWT noise reduction algorithm. It is evident that the
second stage of smoothing in the case of the respiratory data was especially
effective resulting in a waveform where troughs and particularity peaks are
easily identified.

As described in Section 5.2.2, a third smoothing algorithm, namely lateral
inhibition, was also applied to each dataset to evaluate if it would improve the
accuracy of pulse and breath detection in their respective datasets. It can be
seen from Figure 5.6(a) that the application of the lateral inhibition algorithm
does not reduce noise any further than the two stage filtering process (shown
in Figure 5.3(b)) and therefore provides no further benefit. As is evident in
Figure 5.6(b) and Figure 5.6(c), when analysing the respiratory data collected
from the participants’ chests, it is clear that lateral inhibition provides further
smoothing of the data in comparison to the smoothing following the application
of the two stage filter (shown in Figure 5.4(b) and Figure 5.5(b)). However, this
does not necessarily mean that it will increase peak detection accuracy.

The trough/peak detection algorithm with the semi-automatic thresholding
method has proven to work well for pulse and breath detection enabling ac-
curate BPM calculations. Figure 5.7(a) shows the troughs (representing pulse)
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(a)

(b)

Figure 5.3: Graphs showing (a) the raw and low pass filtered PAC data collected
from participant three’s wrist and (b) the PAC data after wavelet smoothing
was applied.
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(a)

(b)

Figure 5.4: Graphs showing (a) the raw and low pass filtered PDC data collected
from participant three’s chest and (b) the PDC data after wavelet smoothing
was applied.
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(a)

(b)

Figure 5.5: Graphs showing (a) the raw and low pass filtered TAC data collected
from participant three’s chest and (b) the TAC data after wavelet smoothing
was applied.
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(a)

(b)

(c)

Figure 5.6: Graphs showing (a) the PAC data collected from participant three’s
wrist, (b) the PDC data and (c) the TAC data collected from participant three’s
chest following application of the lateral inhibition algorithm to all three cate-
gories of data.
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detected by the trough detection algorithm using the semi-automatic thresh-
olding method, highlighted by blue stars. Tuned threshold values for each
participant were empirically found and ranged from 0.090-1.323 (representing
value x in equation 5.5) Figures 5.7(b) and 5.7(c) show the breaths detected
represented by peaks in the PDC and TAC waveforms respectively. It can be
seen from all of the graphs in Figure 5.7 that the trough detection algorithm
detects the majority if not all of the troughs or peaks in all cases when the
thresholds are semi-automatically calculated with manual fine tuning. Tuned
threshold values for each participant per modality were empirically found and
ranged from 1.000-2.545 for PDC and from 0.600-2.500 for TAC(representing
value x in equation 5.5). However, it can also be seen in Figure 5.7(b) that
there can be some instances where it would be expected that a peak would be
detected as a breath but it hasn’t been detected (one such instance is highlighted
by the green circle). This is an example of where the points on either side of the
peak are just below the threshold for difference and therefore it is not classified
as a breath. It is due to borderline cases like this that some of the calculated
BPM and RR may be marginally incorrect when compared with the readings
measured by a medical professional. However, the benefit of this approach
is that the algorithm does not detect all peaks or troughs in the waveforms
particularly when a series of them occur and would clearly be an incorrect
representation of pulse or breaths. An example of this is highlighted by the
purple circle in Figure 5.7(c) where there are three clear peaks however they are
correctly not considered as breaths by the algorithm.

Following the application of the third stage of smoothing, namely lateral inhibi-
tion, the trough and peak detection algorithm was applied and the performance
evaluated. Figure 5.8 shows examples of detected troughs in the PAC data
and detected peaks in the PDC and TAC data following the application of the
lateral inhibition smoothing algorithm. Although in most cases the algorithm
performed well and detected the majority of peaks and troughs, the smoothing
was not sufficient to highlight the correct points of the waveform that repre-
sented the pulses and breaths. This was caused by the algorithm amplifying
incorrect troughs or peaks in the waveform which are in turn related to pulse
and breaths, examples of which are highlighted by the green circles in the PAC,
PDC and TAC graphs in Figure 5.8.

The trough/peak detection algorithm with fully automatic thresholding method
has been shown to perform weaker than the semi-automatic thresholding
method. It has proven to be over sensitive when detecting troughs and peaks.
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(a)

(b)

(c)

Figure 5.7: Graphs showing (a) the detected troughs in the PAC data relating to
pulse, (b) detected peaks in the PDC and TAC data (c) representing breaths.
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(a)

(b)

(c)

Figure 5.8: Graphs showing (a) the detected troughs in the PAC data relating
to pulse, (b) detected peaks in the PAC and TAC data (c) representing breaths
following the application of lateral inhibition smoothing.
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An example of this is demonstrated in Figure 5.9 where there are too many
peaks detected as breaths particularly in a short space of time, highlighted by
the green circles.

Figure 5.9: Graph showing the peaks detected in the PDC dataset with the use
of fully automatic thresholding

Analysis of the results for collection of the BPM from the participants can be
seen in Table 5.1. The average of the absolute difference between the calculated
BPM and the actual BPM measured by a medical professional is shown for
each method. The minimum and maximum difference from the actual BPM
that each method measured is also shown in Table 5.1. A calculation of the
accuracy of each method when classifying if the participant was bradycardic,
normal or tachycardic is also presented in the “Correct Class (%)” row of Table
5.1. Results for the two stage filtering approach with semi-automatic thresh-
olding are presented in the column labelled “2 Stage Filtering Semi-automatic
(2SFS)”. Results for the two stage approach with fully automatic thresholding
are presented in the column labelled “2 Stage Filtering Fully-automatic (2SFF)”.
Results for the three stage approach (i.e. using low pass filtering, DWT and
lateral inhibition smoothing) with semi-automatic thresholding are presented
in the column labelled “3 Stage Filtering Semi-automatic (3SFS)” and the results
for the three stage approach with fully automatic thresholding are presented
in the column labelled “3 Stage Filtering Fully-automatic (3SFF)”. The results
using the Android smart-phone application (Mellado, 2013) are also presented
in the column labelled “Smart Phone Application (SPA)”. The complete results
for the BPM calculated for each participant for the two stage and three stage
filtering approaches can be seen in Table A.1 and Table A.2 respectively in
Appendix A.
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Table 5.1: Table comparing the BPM experimental results
Difference

From Actual 2SFS 2SFF 3SFS 3SFF SPA

Average 1.47 4.28 2.19 6.22 16.47
Min. 0 0 0 0 1
Max. 13 14 14 17 53

Correct
Class (%) 97.22 97.22 97.22 100.00 91.67

It can be seen from Table 5.1 that the best performing approach is the two stage
filtering/smoothing approach with the semi-automatic thresholding algorithm
as it allows for calibration to be tuned per participant. This approach achieved
an average of just 1.47 BPM difference from the actual measured BPM across
all datasets. In fact, this method calculated the exact BPM in 13 instances out
of the 36 datasets. This approach also correctly determined if the participant’s
heart rate was classified as bradycardic (“B”), normal (“N”) or tachycardic (“T”)
in 97.22% of cases which collates to 35 of the 36 datasets. It can be assumed
that this a poor quality dataset as the approach calculated the BPM with 100%
accuracy in the other datasets collected for the same participant.

The three-stage filtering/ smoothing method also achieved 97.22% accuracy
when classifying the heart rate. This method was slightly less accurate than
the two-stage approach when measuring the BPM achieving an average of 2.19
BPM difference from the actual measured BPM. It is proven from the results
presented in Table 5.1 that the addition of the lateral inhibition smoothing for
a third stage of filtering/ smoothing does not provide any further benefit in
improving the overall accuracy of BPM calculation, however it is still a viable
approach which produced accurate results for classifying a heart rate.

The results presented in Table 5.1 show that the fully automatic thresholding
approach did not produce results of similar accuracies to those produced by the
semi-automatic thresholding method. However, it can be seen that although
the algorithm did not determine the exact BPM, it achieves similarly high
accuracies when classifying the heart rate. Therefore, it could be a useful
approach to rapidly determine an estimate of the status of a person’s heart rate
in an emergency scenario.

Analysis of the results for the calculated RR can be seen in Table 5.2 and Table
5.3. The average, minimum and maximum of the absolute difference between
the calculated RR and the actual RR measured by a medical professional is
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shown in Table 5.2 and Table 5.3 for each method when using PDC and TAC
respectively. A calculation of the accuracy of each method when classifying if
the participant had a slow, normal or fast breathing rate is also presented in
the “Correct Class (%)” rows of Table 5.2 and Table 5.3. The same labelling for
column headings as Table 5.1 apply to Table 5.2 and Table 5.3. The complete
results for the RR calculated from the PDC data using the two and three stage
approaches can be seen in Table A.3 and Table A.4 respectively in Appendix A.
Also, the complete results for the RR calculated from the TAC data using the two
and three stage approaches can be seen in Table A.5 and Table A.6 respectively
in Appendix A.

Table 5.2: Table comparing the RR experimental results with PDC data
Difference

From Actual 2SFS 2SFF 3SFS 3SFF

Average 0.56 7.00 0.92 10.97
Min. 0 0 0 0
Max. 4 28 4 32

Correct
Class (%) 91.67 41.67 91.67 22.22

Table 5.3: Table comparing the RR experimental results with TAC data
Difference

From Actual 2SFS 2SFF 3SFS 3SFF

Average 0.72 5.39 0.83 11.89
Min. 0 0 0 1
Max. 7 24 4 21

Correct
Class (%) 72.22 47.22 83.33 11.11

It can be seen from Table 5.2 and Table 5.3 that the best performing method
was the two stage filtering/ smoothing with semi-automatic thresholding, as
was the case with the BPM calculations. For example, it can be seen that when
using PDC, the algorithm achieved on average 0.56 breaths away from the
actual breathing rate and an average of 0.72 breaths away when using TAC. It
has been proven that both the PDC and TAC data have performed similarly
well. In fact the RR was calculated exactly correct 22 times out of a total of 36
datasets with the PDC data and 23 times with the TAC data. In the majority of
cases the classification of the RR when using PDC and TAC was classified in
the correct class, 91.97% of instances when using PDC data and 72.22% when

109



using TAC data. It is evident from the results in Table 5.2 and Table 5.3 that
the fully automatic thresholding approach was not suitable for classifying the
RR of the participants. It is also evident that although the addition of the third
smoothing algorithm, namely lateral inhibition, did not lower the accuracy of
the RR calculations, it also did not improve the calculations or classifications
either and therefore is not worth extra computation time, as is the case when
calculating the BPM.

5.3.1 PPI and BBI Calculation and analysis

The pulse to pulse (PPI) and breath to breath (BBI) intervals were successfully
calculated between individual troughs detected and the average interval of
troughs detected within a sliding window for each dataset. Analysing these
values of PPI and BBI can determine if a participant’s pulse was in sinus rhythm
or a form of arrhythmia and if a participant’s breathing is occurring in a regular
rhythm. Due to the nature of the data being collected and the noise levels
present in the data it is expected that the intervals between detected heart beats
and breaths will not be exactly equal from pulse to pulse or breath to breath.
This is similar to real life when medical professionals are reading pulse and RR
manually. They would not be capable of detecting minor sub second differences
in the intervals between pulses or breaths, rather assessing for a change to pulse
or breathing intervals representing an irregular or stressed heart or breathing
rate, hence the inclusion of the 25% tolerance for the interval times.

Table 5.4 shows an analysis of the PPIs calculated using each method. The
average, minimum and maximum percentage of calculated intervals between
each detected pulse ere within the 25% tolerance of the average interval. Table
5.5 presents the average, minimum and maximum percentage of the calculated
intervals between each detected breath that were within the 25% tolerance of
the average interval using PDC data and TAC data. The column headings
labels have the same meanings as outlined previously for Table 5.1. It is evident
from Table 5.4 that in some cases quite a few of the intervals are not within
the tolerance which could represent an irregular pulse however none of the
participants had an irregular pulse. As we are analysing accuracies in the scale
of tenths and hundredths of a second for these measurements it is difficult to
put a binary classification of regularity for a pulse waveform. However in some
instances the majority of pulse intervals are within the tolerance, up to 98.88%
is achieved by all methods. Similar to the method for calculating BPM, it is
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evident from Table 5.4 that the most accurate method for assessing the interval
between each heart beat is the two stage filtering/ smoothing approach with
semi-automatic thresholding. All calculated PPI results for each participant
using PDC and TAC data can be seen in Table A.8 and Table A.9 respectively in
Appendix A.

Table 5.4: Table comparing the PPI experimental results
Percentage within

tolerance 2SFS 2SFF 3SFS 3SFF

Average 73.56 72.07 68.96 65.68
Min. 38.16 38.67 33.75 34.94
Max. 98.88 98.88 98.88 98.88

Due to the nature of the breathing data collected and the fact that there is a
lot fewer occurrences of a breath in one minute than a heart beat, it can be
less challenging to calculate an accurate interval between each breath than
between each heart beat. This is evident from the results in Table 5.5, where
there are considerably higher percentages of breath intervals, on average within
the 25% tolerance, particularly when using TAC data. Table 5.5 shows that
assessment of the intervals between breaths can be very accurate when using
the two stage filtering/smoothing approach with semi-automatic thresholding.
With similarly accurate results being obtained using PDC data and the highest
accuracy of 100.00% was obtained using PDC data as shown in Table 5.5, it
is proven that, either PDC or TAC data can be used for analysis of breath
intervals. All calculated BBI results for each participant can be seen in Table A.7
in Appendix A.

Table 5.5: Table comparing the BBI experimental results
Data
type

Percentage within
tolerance 2SFS 2SFF 3SFS 3SFF

PDC
Average 68.92 51.51 67.63 30.33

Min. 23.53 33.33 41.18 9.09
Max. 95.45 77.78 100.00 69.70

TAC
Average 71.87 46.40 69.17 26.84

Min. 37.50 26.83 19.05 9.09
Max. 91.67 70.73 95.45 66.67

Graphs showing examples of the calculated PPI between the individual pulses
for a participant where the percentage accuracy of PPI was low (participant
4, set 2; 38.16%) and a participant where the percentage accuracy was very
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high (participant 6, set 1; 98.88%) are shown in Figure 5.10(a) and Figure 5.10(b)
respectively. The two stage filtering/smoothing method with semi-automatic
thresholding was used for BPM calculation and PPI analysis in both cases. Also
plotted on each graph in Figure 5.10 are the upper and lower limits of the
25% tolerance of the overall average PPI for that dataset, required to class the
participant as having a regular pulse rate.

Graphs showing examples of the calculated BBI between the individual breaths
for a participant where the percentage accuracy of BBI was low (participant
1, set 3; 41.18%) and a participant where the percentage accuracy was very
high (participant 4, set 3; 91.67%) are shown in Figure 5.11(a) and Figure 5.11(b)
respectively. Using TAC data, the two stage filtering/smoothing method with
semi-automatic thresholding was used for RR calculation and BBI analysis in
both cases. Also plotted on each graph in Figure 5.11 are the upper and lower
limits of the 25% tolerance of the overall average BBI for that dataset, required
to class the participant as having a regular breathing rate.

5.4 Discussion

The use of the BioTAC tactile sensors together with the algorithms presented
can determine BPM and RR as accurately as a trained professional. It should be
noted that when a medical professional is measuring a pulse in the majority of
cases they will only measure for 10, 20 or maybe 30 seconds with their fingers
on the participant’s wrist to ascertain an estimate of their pulse rate. Although
the pulses measured by the medical professional to compare with the accuracy
of the system were measured over 60 seconds, there is still a possibility of slight
human error. It is clear from the results presented that the artificial system is also
capable of such estimates, and indeed accurate measurements of pulse. Often a
medical professional is trying to measure vital signs in an emergency situation
and therefore their measurements are not exact and have a slight margin of
error as is the case with the algorithms presented. Often, when assessing a
person’s pulse, an estimate of their BPM and their pulse rhythm is sufficient.
Likewise, when assessing a person’s breathing, a medical professional will
simply watch a person’s chest for movement when breathing in and out and
count how many times this occurs in one minute. In extreme circumstances
where vision is inadequate or not possible, the medical professional will rest
their hand on the participant’s chest and try to determine a breathing rate via
touch. The methods presented are capable of such measurements and with
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(a)

(b)

Figure 5.10: Graphs showing (a) calculated PPI between the individual pulses
for participant 4 and (b) participant 6 and the tolerance of the overall average
PPI required for regular pulse rate for each dataset
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(a)

(b)

Figure 5.11: Graphs showing (a) calculated PPI between the individual pulses
for participant 4 and (b) participant 6 and the tolerance of the overall average
PPI required for regular pulse rate for each dataset
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similar accuracies.

It would appear from the graph in Figure 5.10(a) that the variance of individual
PPIs for participant 4 in set 2 would indicate a form of arrhythmia however this
was not the case. Set 1 and set 3 clearly demonstrate that the participant was
healthy and this was also verified by the medical professional. This dataset was
relatively noisy in comparison to other two smoothed datasets for participant 4.
This highlights the importance of successfully removing noise from the datasets.
As seen in Figure 5.10(b), the only PPI that was not within tolerance was the
first one and the reason for this is that the participant was in between heart
beats when the analysis began and therefore it would have been calculated from
time zero, meaning a shorter interval to his first detected heart beat would be
expected. Figure 5.10(b) clearly indicates that participant 6 is in sinus rhythm.
However, the classification of rhythm in the heart beat and respiratory rate
has proven extremely difficult to classify precisely into categories due to the
nature of the data collected. Furthermore, similar to calculating the BPM and
RR, it not necessary to get an exact value with 100% accuracy in every instance,
particularly when we are comparing our results from this artificial system to
human measurements which in themselves will contain human error. The aim
of this work was to measure two of the vital signs that indicate the current state
of a person’s health by detecting, measuring and classifying their BPM and RR
as accurately as a medical professional. The methods presented have achieved
this aim. At this point, it is possible to measure a human’s pulse and respiratory
rate and also estimate the rhythm of their pulse and breathing using these
methods. Similar to a medical profession, there will not be 100% accuracy in
each case. However, the methods have proven that they are capable of making
an initial assessment of two human vital signs representing health. In order
to determine an overall snapshot of a person’s health and compensate for any
possible inaccuracies of the system, particularity in borderline cases between
bradycardic, normal or tachycardic heart rate or slow, normal or fast breathing
and indeed borderline cases of pulse or breathing rhythm, these measurement
approaches will be supplemented with one further vital sign, namely CRT in
Chapter 6.

5.5 Conclusion and Future Work

Methods for detecting, measuring and analysing two human vital signs, namely
BPM and RR were presented. The methods presented replicate, to some extent,
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the methods carried out by medical professionals when measuring these two
vital signs and could be used to equip a first responder robot. A method
for detecting a human’s pulse by making contact with the radial artery and
respiratory rate by making contact with the chest using a BioTAC robotic
fingertip was presented. The calculation of the participant’s BPM and RR was
also completed. Using data collected from the BioTAC fingertip, the algorithms
are able to determine whether a person has a regular heart rate, is bradycardic
or tachycardic and whether the person has a slow, normal or fast RR. It is
clear that accuracies similar to that of a medical professional, can be achieved
for the calculation of BPM and RR when using the methods presented in this
chapter, particularly when using a robust two stage noise reduction algorithm
comprising of a low pass filter and a DWT wavelet based smoothing algorithm
to firstly smooth the data and then a peak/ trough detection algorithm with
a semi-automatic thresholding technique. Due to the nature of the data a
fully automatic thresholding approach was found to be adequate to gather an
estimate of the participant’s BPM and RR but not for an accurate calculation, as
it was proven to be less accurate. Furthermore, it was found that the addition
of a third stage of filtering by means of lateral inhibition did not improve the
accuracy of detecting peaks and troughs in the datasets. As it is not just BPM
or RR that should be considered when assessing one’s blood circulation and
breathing, determining the time between pulses PPI and breaths PPI is also
important, as this shows if the individual’s pulse is regular or in a form of
arrhythmia and if the person’s breathing is regular or irregular. Arrhythmic
beat rates can represent signs of disease.

The methods presented performed reasonably well for pulses and breaths
recorded from the participants. However, due to the nature of the data collected
an exactly accurate PPI and BBI can be difficult to calculate and therefore a tol-
erance for time intervals between pulse and breaths was applied. Furthermore,
calculating the BPM and RR and classifying them to determine an indication
of a person’s health is only one element of being able to ascertain a person’s
current health status. Bringing the results of the calculated BPM and RR and
the associated rhythm analysis together with other vital signs into an artificial
intelligence algorithm that can determine an overall “first-responder” status
of a human’s health is the next step in having a complete automated health
analysis system for emergency scenarios. This is explored in Chapter 6.
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CHAPTER

SIX

Measurement of Capillary Refill
Time and Determination of Health
Status

6.1 Introduction

The assessment of a human’s cardiovascular system is another measurement
that can help determine their current state of health. One method of assessing
the cardiovascular system peripherally is by assessing the Capillary Refill Time
(CRT). Although it would be preferable to have more detail like the blood
pressure reading of the human to assess their cardiovascular system, it is not
always possible to get these readings, especially in cases of emergency. One
approach to measuring CRT is to press a finger into the centre of the human’s
forehead for approximately 5 seconds and then release it. If the skin returns to
its normal colour within 0.5-4.5 seconds (depending on age, sex, temperature
etc.) then it can be assumed that the cardiovascular system is performing
normally. However, in the majority of cases it should be under 2 seconds for a
healthy human (King et al., 2014). If normal colour returns within the expected
time period from the press, then the skin is getting a healthy supply of blood; if
not it could be a sign that the body has gone into shock or has cut off the blood
supply to the skin. The skin is the first organ that the body cuts blood supply
off to in the event of severe harm or illness. Therefore, this chapter describes a
method which computes CRT by using the Shadow Robot Hand and a BioTAC
sensor to press against the participant’s forehead with a safe, pre-calculated
force for 5 seconds. Image processing techniques are used to determine how
long it takes for their skin colour to return to normal, by using a micro 1000
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Television Lines (TVL) camera and visual processing algorithms.

In a disaster situation, where there are numerous casualties, triaging care for
such casualties is a huge task. Casualties need to be prioritised and sorted,
based on their need for treatment and it is foreseen that robots could be an
extremely useful aid in helping responders to triage victims in non-accessible
places, hazardous environments and large scale accidents or disasters (Chang
and Murphy, 2007). To date, there has been limited research in the development
of algorithms that are capable of measuring vital signs in a disaster zone,
although some research exists which is aimed at helping responders to triage
victims. Saeki et al. (2006) present algorithms to measure pulse and calculate
the victim’s blood oxygen saturation degree (SPO2) using an infra-red sensor.
As haemoglobin absorbs infra-red the absorption rate of the infra-red ray will
change in relation to the increase and decrease of blood flow, making it possible
to measure Beats Per Minute (BPM). Additionally, the absorption of the red
ray enables the calculation of SPO2. Saeki et al. (2006) show that pulse was
successfully measured with up to 97% accuracy. Asaoka et al. (2008) extend
the work of Saeki et al. (2006) by assessing the use of an electrocardiogram
(ECG) measuring device consisting of capacitive coupling electrodes for use
alongside the infra-red pulse and SPO2 measuring sensor. It was found that
ECG could be measured along with pulse however the measurement of SPO2
remained inaccurate due to cross talk between sensors. Wong et al. (2009) also
present preliminary findings towards a robotic system that they are developing
for autonomous evaluation of battlefield casualties. They present a novel
algorithm using ultrasound sensors to detect fractures in human bones and
investigated the use of infra-red imaging for surface wound detection. The
work is preliminary but the authors state that with further development the
algorithms could be used on a robot in battlefields to assess the current health
status of injured soldiers.

This thesis aims to use the calculated BPM and Respiratory Rate (RR) in Chap-
ter 5 and a measurement of CRT to enable a robot to assess a human’s current
health status in, for example, a home environment or emergency situation.
With a clear assessment of these three vital signs it is possible to have a solid
indication of a person’s current health and assess their need for emergency in-
tervention. Equipped with this knowledge, a first response robot could update
paramedics prior to their arrival to a user’s home or act as a triage assistant in
an emergency situation. This chapter outlines the algorithm developed to accu-
rately calculate a human’s CRT (Section 6.2). Details of a fuzzy system designed
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to classify the human’s health status based on their calculated BPM, RR and
CRT are also presented in Section 6.3. The results in this chapter demonstrate
that it possible to accurately measure CRT and use this measurement together
with BPM and RR as inputs to a fuzzy system to ascertain a human’s current
health status.

6.2 Determination of CRT

To establish if an accurate measurement of a human’s capillary refill time can
be calculated by analysing the change in skin colour as a result of a press action
being carried out on the centre of the participant’s forehead, the Shadow Hand
was equipped with a camera. A customised camera mount that can clip securely
onto the fingernail of a BioTAC fingertip was designed and built using a 3D
printer. The customised camera mount can be seen in Figure 6.1. A small 1000
TVL camera was inserted into the mount and the video data was recorded on a
PC by using a Universal Serial Bus (USB) video grabber.

(a) (b)

Figure 6.1: Images showing the customised camera mount on the Shadow Hand
from (a) the front and (b) the rear
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6.2.1 Data Collection

Data collection involved the use of 12 healthy participants, as outlined in
Section 5.2.1. participants were filtered according to the inclusion criteria,
initially briefed and asked to complete a consent form. Each participant sat in a
standard chair in front of the robot hand which was positioned very close to the
participant’s forehead. Data was collected at different times of the day meaning
ambient light could have changed slightly from participant to participant. When
video recording commenced, the region of interest (approximately 12cm2) on
the forehead was captured for 5 seconds before the first finger of the Shadow
Hand, equipped with the small 1000 TVL camera, was pressed against the
centre of the participant’s forehead for 5 seconds with a constant, painless force.
The fingertip was then moved back to its starting position and video data of
the area of interest on the participant’s forehead was captured for a further
10 seconds. The short time before the fingertip applied pressure enables the
camera to auto focus and capture the participant’s natural skin colour so that
it is possible to identify when their skin returns to its natural colour. Based
on advice from a medical professional, 10 seconds was considered sufficient
recording time after pressure as a CRT of anything more than 10 seconds was
almost certainly a sign that the patient would be dead. An abnormal CRT (i.e.
from 2-10 seconds) can be a sign of illness or that the body has gone into a
state of shock. The applied force was measured using the ATI Nano17 6-axis
Force/Torque (F/T) Sensor (ATi, 2017) from a trained medical professional
mimicking the same procedure of measuring a human’s RR. The impedance
values measured by the array of electrodes on the BioTAC sensor were used
to ensure that a constant force, similar to that of a medical professional, was
applied in each case. At no stage was the participant’s entire face or body filmed
or recorded. A medical professional was consulted to verify that the action was
completely safe and non-intrusive. There was a soft emergency stop in place to
stop the robot hand from applying too much pressure on the participant at any
time and furthermore the power could be cut instantaneously to the robot in
case of emergency, posing very little risk to the participant at any time. This
procedure was completed 3 times for each of the 12 participants.

6.2.2 Image Analysis

The videos were recorded at a frame rate of 30 frames per second (fps). The
videos were split into still frames using the FFMpeg software (FFmpeg Develop-
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ers, 2016) and imported into MATLAB (MATLAB, R2013) where the remaining
analysis was completed. Figure 6.2(a) shows an image of a participant’s fore-
head taken immediately after the press and shows the skin to be pale due to the
capillaries being compressed and emptied and Figure 6.2(b) shows an image of
the same participant’s forehead as the capillaries begin to refill. This shows the
skin to be much redder as it returns to its normal colour.

(a) (b)

Figure 6.2: a) An image of a participant’s forehead taken immediately after the
press; b) An image of the same participant’s forehead taken as the capillaries
begin to refill

The red, green and blue histograms were retrieved for each image per partici-
pant and the mean value of each colour’s histogram calculated. A plot of the
mean value for each colour histogram across a sequence of frames from one
recording is shown in Figure 6.3.

As red is the most significant colour to signify the refill of the capillaries, the
red pixel value is extracted from each recording and used for further analysis
to determine the CRT. An image of the mean pixel value for red only is shown
in Figure 6.4.

Prior to contact with the forehead it is evident that the average value of the
red pixels is slightly higher than the average value post contact, phases 1
and 4 respectively, of the graph in Figure 6.4. This is due to shadows cast by
the fingertip being close to the forehead causing the image to be darker than
normal. Upon release of the fingertip from the forehead, it is expected that
there would be an immediate drop detected in the red pixel value as the contact
area is initially still whiter than normal due to the blood flow being temporarily
stopped in the affected capillaries during contact, this is evident in phase 2
of the graph in Figure 6.4. In a healthy human, it is expected for this to be
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Figure 6.3: Graph showing the mean values of each histogram across a sequence
of images

Figure 6.4: Graph showing the mean values of the red histogram across a
sequence of images
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rapidly followed by a rush of blood vessels to the area as the capillaries refill,
resulting in a spike in the red pixel value, as witnessed in phase 3 of the graph
Figure 6.4. The time from the instance that the skin regains blood flow (i.e.
the beginning of phase 3) until the time it has settled at its original pigment
(i.e. the beginning of phase 4) is the CRT. Phase 4 in Figure 6.4 shows that the
skin appears to return to a steady colour where the red pixel value is lower
than it was immediately before contact (in phase 1). This is due to the fact that
the fingertip is now slightly further away from the forehead than it was when
it was pressed against it, resulting in less shadows and ultimately a lighter
colour being detected by the camera. Therefore, the exact time of transition
from the drop in the red pixel value to the rise in the value of red pixels and the
exact time when the skin settles, no longer changing colour, must be identified.
Calculating the difference between these two times (i.e. the length of phase 3 in
Figure 6.4) will result in an accurate measurement of CRT.

To identify the start and end times of the capillaries refilling, the graph is
cropped to focus on the area surrounding the highest value of the red pixels.
The time stamp of when the capillaries are being refilled (i.e. the highest
peak) is calculated and the graph is cropped 5 seconds before and 10 seconds
after to reduce the volume of data to analyse, hence increasing efficiency of the
algorithm. In order to identify the time stamp when the spike in red pixel values
started and ended, it was necessary to analyse the gradient of the graph at each
time stamp. A sliding window was used to calculate the moving gradient along
the graph using Equation 6.1 and each gradient and its corresponding time
stamp were stored in an array for further analysis:

mt =
rt − rt−1

Tt − Tt−1
(6.1)

where mt is the gradient at time t, rt and rt−1 are the red pixel values at time t
and t− 1 respectively, Tt and Tt−1 are the times at t and t− 1 respectively.

To disregard insignificant gradients caused by noise and identify significant
gradients, a dynamic threshold was calculated for each dataset. The threshold
for identifying significant positive gradients was set as the mean of the positive
gradients and the mean of the negative gradients was used as the threshold for
identifying significant negative gradients. To compensate for the change in the
average value of the red pixel before and after the press on the forehead, an
average of the highest and lowest value of the red pixel is calculated. This value
is taken as the mid-line of the red pixel value and is shown by the green line in
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Figure 6.5. This mid-line was used as the baseline to demonstrate changes in
gradient.

Figure 6.5: Graph showing the red pixel values and mid-line of the average
between the largest and smallest values

Each identified significant positive gradient was represented as a positive step
in the mid-line and significant negative gradient represented by a negative
step, as seen in Figure 6.6. It is possible that artefacts in the red pixel graph
mean a gradient which is larger than the threshold, but not of interest, is
detected (illustrated by the dashed orange circles in Figure 6.6). In order
to ensure these gradients are not considered, the gradients are analysed to
identify periods where there is a series of gradient values consistently above the
threshold (illustrated by the dashed purple circles in Figure 6.6). This enables
identification of the significant positive and negative gradients of interest, i.e.
indicating the start and end of the CRT.

The first period of consecutive positive gradients above the threshold is identi-
fied as the start of the time period where the capillaries are refilling with blood
and the last period of consecutive negative gradients below the threshold is the
end of the capillary refill time period (identified by the dashed, purple circles
in Figure 6.6). Therefore the time stamp of one frame before the first period of
consecutive positive gradients and after the last period of consecutive negative
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Figure 6.6: Graph showing the red pixel values and the identified significant
gradients

gradients is identified. These are represented by the blue and magenta coloured
dots respectively in Figure 6.6. The time difference between each instance is
calculated and represents the CRT of the participant. The CRT is calculated for
each of the three data sets collected for all 12 participants.

6.2.3 CRT Results and Discussion

This section presents results for the experiments calculating the CRT from 12
healthy human participants of varying skin tone. As there is no medical method
for calculating a precise value of CRT, a medical professional verified that all
participants were healthy and their CRT was below the expected duration of 2
seconds. Table 6.1 analyses the results of the calculated CRT following 3 sets of
video data collected for each participant. The average, minimum and maximum
calculated CRT in seconds of the 3 sets are shown for each participant. Also,
the number of sets which correctly calculated the CRT as taking less than 2
seconds is stated for each participant. All of the calculated CRT values for each
set and participant can be seen in Table B.1 in Appendix B. In some cases, for
example if the participant is elderly or an infant, the CRT can be as high as 4.5
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seconds. However, generally speaking the majority of people should have a
CRT of no more than 2 seconds according to a medical professional and the
(Royal College of Physicians of London, 2012). Since there were no elderly or
infant participants assessed, 2 seconds is used as the threshold to determine if
participants are healthy or in a state or shock or a critical condition.

Table 6.1: Table outlining the calculated CRT experimental results
Participant Average (s) Min (s) Max (s) Sets < 2secs

1 0.976 0.909 1.082 3
2 0.739 0.551 0.842 3
3 0.869 0.681 0.995 3
4 1.117 0.976 1.222 3
5 1.421 1.085 1.877 3
6 1.715 0.759 3.554 2
7 1.001 0.940 1.121 3
8 1.081 0.875 1.264 3
9 3.772 1.091 6.983 1
10 0.988 0.908 1.121 3
11 2.362 0.978 5.019 2
12 1.111 1.010 1.309 3

As shown in Table 6.1 the CRT was accurately calculated and correctly deter-
mined as less than 2 seconds in 32 of the 36 (≈ 89%) tested video data sets.
The video data for participant 9 proved to be the most difficult from which
to accurately calculate the CRT, with two of the datasets being calculated as
greater than 2 seconds. One of the sets was as high as almost 7 seconds and
was a particularly noisy dataset which contained numerous prolonged positive
gradients. These spikes in the red pixel value could be caused by an unexpected
change in ambient lighting or a shaking of the camera during recording. How-
ever, in the majority of instances the values calculated are within the expected
range of 0.5-2 seconds for healthy participants of varying skin colour, including
Caucasian, Black and Indian. Therefore, the algorithm proved to be robust
regardless of skin colour.

6.3 Triage Health Status Classification

To date, the majority of research in relation to robots being utilised in disaster
zones has focused on being able to search the zone for survivors and determine
safe routes to exit. Teleoperated robots that are able to move around disaster
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sites collecting and transmitting data have been a common focus for researchers.
However, methods and robots discussed in literature to date that are used to
searching for victims, are not capable of any physical interaction with humans
when identified. Furthermore, regardless of how a survivor is identified in
a disaster zone there has been little work on the physical interaction with a
human, for example, to release them from rubble or to use a robot to carry out
a medical assessment of the survivor in situ. Samani and Zhu (2016) present a
mobile robotic ambulance called “Ambubot”, that is capable of transporting
and using an automated external defibrillator (AED) on victims within a smart
city either by manual teleoperation or fully automated operation. The mobile
vehicle is equipped with numerous sensors standard to that of a mobile robot
such as two high resolution video cameras, sonar sensors and laser scanners.
Although an effective and potentially very useful robot for rapidly deploying
an AED to patients who have just had a cardiac arrest in the city, there were
some restraints with the autonomous use and mobility; adding omnidirectional
mobility to the robot would help improve it. Furthermore, the robot requires
a “smart city” infrastructure in which to operate, to provide the locations of
people in need of an AED. Murphy et al. (2013) investigated the use of robots
to interact with trapped victims in terms of four different schemes: one-way
video with no audio (from the robot at the victim back to responders), two-way
video with no audio, one-way video (from robot to responders) with two-way
audio and two-way video with two-way audio. Although communication was
achieved between responders and a victim in a simulated building collapse,
the authors identified key areas that require improvement for communication
between victims and responders, including transparency of robot state and
minimalistic interfaces. Even with this level of communication it would be
difficult to carry out remote assessment of the victim’s current health status,
particularly if the victim is unconscious. Therefore, a system that could carry
out an assessment of of a participant’s vital signs and enable triage of victims
would be extremely useful in a disaster scenario.

Algorithms capable of using data collected from a Shadow Hand equipped with
BioTAC fingertip sensors to determine a human’s BPM and RR were presented
in Chapter 5 and an approach to determining a human’s CRT was presented
earlier in this chapter. It is necessary to appropriately combine these vital signs
to determine an overall health status of the human. A fuzzy classification
system (Cios, 2001) was determined to be the most appropriate approach due
to it having fuzzy boundaries between classes enabling it to handle noisy and
inconsistent real data. This is described in the next section.
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6.3.1 Fuzzy Classification Methodology

As outlined in Chapter 3, fuzzy sets have the capability to model uncertainly
and slight inaccuracies within the reasoning process (Zadeh, 1965); accordingly
a fuzzy classification algorithm was determined to be the most effective ap-
proach for classifying a human’s health status based on the three vital signs
discussed in this thesis. Fuzzy systems aim to model the human reasoning
system, which Pal and Mandal (1991) state is approximate rather than precise in
nature. Fuzzy logic systems have been used for numerous applications ranging
from process control to medical diagnosis (Pal and Mandal, 1991; Ali et al.,
2011; Dennis and Muthukrishnan, 2014; Nguyen et al., 2015). Other classifica-
tion algorithms such as Artificial Neural Networks (ANN) and Support Vector
Machine (SVM) were evaluated for classifying the measured vital signs data.
However, due to the nature of vital signs data having overlapping boundaries
for which a human is deemed “healthy”, fuzzy logic approaches were deter-
mined to be the most suitable choice for classifying human’s health status from
the vital signs calculated via the methods outlined in this thesis. A medical
professional advised that there was a finite number of possible outcomes of
health status when measuring vital signs in a disaster zone. These possible
outcomes could be written as rules within a fuzzy logic system. The widely
accepted Mamdani fuzzy system is suited to human style input (in this case a
reading of a vital sign) and the output of a Mamdani-type fuzzy system can be
easily transformed to a linguistic form in comparison with a Sugeno-type fuzzy
system (Blej and Azizi, 2016). Therefore, a standard Mamdani fuzzy system
(Mamdani, 1974, 1977) was selected. A Mamdani system defines a function,
f, which generates numerical outputs y = f (x) from numerical inputs, x, by
using a set of IF/THEN rules (Zimmermann, 2001). In this case the numerical
inputs are the calculated BPM, RR and CRT values and the numerical output
refers to a specific health status. In order to allow for some cases where the
numerical value for one or more of the vital signs may be borderline between
two classes it is necessary to have some overlap in the membership functions.
Furthermore, there may be cases where the person is extremely healthy and
naturally has a lower BPM or RR. Gaussian membership functions have been
found to perform well for similar applications due to their smooth curved edges
and style of overlap (Hameed, 2011) and therefore will be used in the fuzzy
logic system in this approach.

The rules of the fuzzy logic system were determined based on the advice
of a medical professional who determined possible status’ of health based
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on the measurement of BPM, RR and CRT in an emergency scenario and by
referencing (Royal College of Physicians of London, 2012), which is the National
Health Service (NHS) standard for the assessment of acute illness and severity.
Graphs displaying the membership functions for each input are shown in
Figure 6.7. The details of the membership functions for each of the inputs and
their approximate ranges are shown in Table 6.2. The overlaps presented in the
table allow for some abnormal readings of BPM and RR within reason.

Table 6.2: Table outlining the details of the Input Membership Functions

Input Membership
Function Range

BPM

Zero 0-2
Low 1-63

Normal 50-110
High 97-240

RR

Zero 0-2
Below

Average 1-13

Normal 7-25
Above

Average 20-80

CRT
Normal 0-2.5

Prolonged 2-11
Infinite 10-60

The aim is to determine a participant’s health by monitoring their BPM and RR
over a 60 second period and taking one measurement of their CRT rather than
continually monitoring their vital signs over a longer period of time. Therefore,
there are 9 possible outcomes that can be determined in an emergency type
scenario. The 9 outcomes were represented by triangular membership functions.
As there were possible combinations that would not represent one of the 9
possible diagnoses’, there was a tenth membership function included for all
non-classified combinations, including unrealistic values of the vital signs that
may have been caused by sensor error, for example. A graph displaying the
output membership functions is shown in Figure 6.8. The MATLAB Fuzzy
Logic Toolbox (2013) was used to develop the fuzzy algorithm, which includes
5 defuzzification methods. As it is required that the most likely output from
the combination of vital sign inputs is selected, the ’centroid’ defuzzification
method was used. This method returns the centre of the area underneath the
curve of the fuzzified outputs. It is the most common and effective method for
converting the result to a crisp output (Naaz et al., 2011). The returned centroid
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(a)

(b)

(c)

Figure 6.7: Graphs displaying membership functions for a) BPM; b) RR; c) CRT
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value is rounded to the smallest integer greater than or equal to the centroid
value. Table 6.3 shows pseudo code of the fuzzy rules related to the membership
functions outlined in Table 6.2, the output integer related to each rule and a
description of what each output represents in relation to the participant’s health
status.

Figure 6.8: Graph showing the membership functions for the outputs of the
Fuzzy System
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Table 6.3: Table outlining the Outputs of the Fuzzy Logic System
Fuzzy Rule Output Description

If (BPM is Normal) and (RR is
Normal) and (CRT is Normal) 1 Healthy

If (BPM is Low) and (RR is
Normal) and (CRT is Normal) 2 Heart Block / Fit

If (BPM is Low) and (RR is Below
Average) and (CRT is Normal) 3 Unconscious / Sleep

If (BPM is Normal) and (RR is
Above Average) and (CRT is

Normal)
4 Acute Deterioration

If (BPM is High) and (RR is Above
Average) and (CRT is Normal) 5 Pain / Anxiety

If (BPM is High) and (RR is Below
Average) and (CRT is Normal) 6

Central Nervous System
(CNS) Depression /

Traumatic brain injury
(TBI) (Bang on Head)

If (BPM is High) and (RR is Above
Average) and (CRT is Prolonged) 7

Hypovolemic shock /
Open Wounds /

Bleeding Out
If (BPM is Low) and (RR is Below
Average) and (CRT is Prolonged) 8 Critical (close to death)

If (BPM is Zero) and (RR is Zero)
and (CRT is Infinite)n 9 Dead
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6.3.2 Fuzzy Classification Results and Discussion

To evaluate the fuzzy logic classifier synthetic data were used, consisting of
10,000 datasets of BPM, RR, CRT for each possible output. Simulating the
output of the BPM, RR, CRT algorithms presented in Chapter 5 and Section
6.2, the values for each vital sign were generated using a pseudo-random
number generator limited between the ranges for each sign as outlined in
Table 6.2. For example, a range of values representing BPM were pseudo-
randomly generated over the intervals 1-63, 50-110 and 97-240 to represent
low, normal and high BPM respectively. There was a total of 90,000 (10,000 x
9) datasets created, representing all possible outcomes and ensuring that there
were sufficient datasets which included values in the overlapping areas of the
membership functions. As the synthesised dataset contained combinations of
pseudo-randomly generated data to fulfil one of the 9 possible outcomes, it
was possible that it would differ from the real collected data as there could be
misreadings (due to sensor error) in the real data causing a combination that
was not necessary to be included within the synthetic dataset. Furthermore, the
synthetic dataset was generated based on what BPM, RR and CRT readings that
are perceived as “normal” or “abnormal” by medical professionals. However, in
reality it is possible that a human could have vital signs outside of the expected
boundaries and still be perfectly fit and healthy. As this is not common, the
synthetic dataset did not have data representing these profiles. The datasets
were randomised, split into 5 parts and with 4 parts training one part testing
as input into the fuzzy system. The output generated for each of the 5-folds
was compared against the expected output and an average of the 5 validation
accuracies was calculated, representing the percentage accuracy of the fuzzy
logic classifier for synthetic data.

Following validation of the fuzzy logic system, the data collected from the
participants was organised into the same format as the synthetic data, i.e. into
datasets containing a calculated BPM, RR and CRT for each set of data collected
per participant.

The average 5-fold validation percentage accuracy of the fuzzy logic system
for classifying the synthetic datasets was 95.3%. The inaccuracies occurred
where there was more than one vital sign in an overlap area of the membership
functions. Considering the high performance of the classifier and the under-
standable reasons for any inaccuracies, the classifier was also tested with real
participant data. The participant data were input into the fuzzy system and
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evaluated in a similar manner to that of the synthetic data.

The percentage accuracy of the fuzzy logic system for classifying the vital signs
calculated from the participants was 72.2%. Although this is considerably
lower than the accuracy when classifying synthetic data, it is important to note
that there were only 36 datasets from human participants in comparison with
90,000 synthetic datasets, meaning each incorrect classification has a greater
effect on the overall accuracy percentage. As the data being classified by the
fuzzy logic system was the outputs from the BPM, RR in Chapter 5 and CRT
in Section 6.2, then some of the incorrect classifications are cumulative errors.
For example, if the BPM, RR or CRT or more than one of them was incorrectly
computed then it will not be possible for the fuzzy logic system to correctly
classify the participant’s health based on incorrect vital sign data. Considering
that the accuracies of the algorithms were 97.22%, 91.67% and 88.89% when
classifying what status their BPM, RR and CRT was respectively, then it is
expected that the inaccuracies from these algorithms would cumulate towards
inaccuracies during fuzzy logic classification. Furthermore, all 12 participants
were healthy and included some very fit participants. Therefore, there were
cases where the participants had as low as 6-7 breaths per minute and a BPM
of under 60. This meant that at least two of the vital signs were outside what
is considered to be normal for an average person. Unfortunately, the system
cannot deal with outliers at this time due to lack of previous knowledge about
the participant. It is expected that there will be exceptions which mean that
some peoples vital signs lie outside of the expected boundaries even though
they are perfectly healthy, however they would be exceptions rather than rules.
In a disaster zone, if the system were to encounter any of these exceptions, it
would merely result in the person being rescued earlier than perhaps needed,
which is not a negative outcome. There is no information provided to the
system to inform it if the participant is fit and thus it is normal for them to have
a lower than average BPM and RR. Furthermore, it is important to reiterate
that the assessment of each participant’s health is being made from a short,
one-off, 60 second monitor for BPM and RR and one measurement of CRT
rather than continuous monitoring of their health over a prolonged period of
time. Therefore, if the datasets containing such outliers were removed from the
fuzzy classification, the accuracy of the fuzzy logic system when classifying the
health status of the participants increases to 83.9%. Considering the data for
CRT was collected at different times of the day producing different ambient
light conditions and from a range of skin colours, the algorithm has proven to
be robust. Although the overall accuracy of the fuzzy classification system is
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lower when classifying participant data than synthetic data, an effective system
to classify human health status in an emergency scenario based on a one-off
assessment of BPM, RR and CRT has been developed.

6.4 Conclusion

This chapter presented an algorithm capable of determining a third vital sign
of human health, namely CRT. A human’s CRT should normally be less than 2
seconds if they are in a healthy state. The algorithm used tactile sensing data for
control of the BioTAC fingertip and a camera to collect vision data which was
later analysed to determine the duration of time lapsed before a participant’s
skin colour returned to its normal tone. The algorithm proved to be effective
and robust across a range of skin tones, determining a correct measurement of
CRT in 32 of the 36 participant datasets.

This chapter also presented a fuzzy logic classifier which utilises the three vital
signs (BPM, RR and CRT) measured by the methods outlined in Chapter 5
and Section 4.2.1 of this chapter and determines an overall classification of
health. The outputs of the fuzzy logic classifier was developed using the knowl-
edge of a medical professional and by referring to the NHS standard for the
assessment of acute illness and severity document (Royal College of Physicians
of London, 2012). The classifier was evaluated for robustness with synthetic
data initially and was then evaluated for its effectiveness to classify participant
data. Although the classifier did not perform as well when classifying real data
collected from the participants as it did when classifying synthetic data, it still
proved to be an effective classifier capable of determining a human’s health
status from just one assessment of BPM, RR and CRT. This system could be
used as part of a robotic triage system in an emergency scenario and play a key
role in prioritising victims in an emergency situation.
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CHAPTER

SEVEN

Conclusions and Future Work

Interest in the use of tactile sensing in artificial systems has grown considerably
since the development of sophisticated multi-modal tactile sensors such as the
BioTAC Biomimetic fingertip. This thesis focuses on the use of machine learn-
ing techniques and tactile sensing technology to perform tasks similar to those
humans can complete due to their sophisticated tactile sensing capabilities, such
as material identification and reading a human’s vital signs. A brief description
of human tactile sensing is provided in Chapter 2 emphasising its complexity,
enabling humans to carry out integrate tasks which require sophisticated dex-
terity and tactile feedback. This outline demonstrates how difficult the human
tactile system is to replicate, as is evident by the fact that sophisticated tactile
sensors have only been developed in recent decades. An overview of such
sensors and types of tactile sensor technologies is also provided in Chapter 2.
Specifically a detailed introduction to the multi-modal tactile sensor which is
used throughout this thesis, namely the BioTACTM biomimetic finger-shaped
tactile sensor from Syntouch R© (Syntouch, 2013), is provided.

Chapter 3 focuses on research which utilises tactile data collected from the
tactile sensors outlined in Chapter 2. In particular, this chapter provides an
overview of computational intelligence methods which have been utilised in
applications using tactile sensing data. One such application is the classifica-
tion of materials, for which an overview is provided and some of the ongoing
challenges in the area highlighted. Classifying between objects of similar com-
pressibility and/ or surface texture was highlighted as an ongoing issue and is
one which is addressed by the methods developed for material classification
in Chapter 4. Chapter 3 also provides an overview of key artificial intelligence
based applications for which the BioTAC sensors have been utilised to date.
This research has outlined that the BioTAC has not yet been utilised to measure
human vital signs or to assess human health in disaster zones or following an
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emergency. Therefore, this motivated the direction of this thesis. However, it
was first necessary, to ascertain the capability of the BioTAC sensor by complet-
ing a task such as material classification in Chapter 4. Following the success of
such a challenging task, it was decided to use the BioTAC sensor to measure
human vital signs. This work is presented in Chapter 5 and Chapter 6.

A machine learning approach to material classification is presented in Chap-
ter 4. This is capable of successfully classifying materials, including those which
have similar compressibility and surface texture. Vibration and thermal data
were collected relating to the surface texture and thermal conductivity of the
materials respectively. Principal component analysis (PCA) was applied to
extract features from the data and an evaluation of machine learning techniques
including Support Vector Machine (SVM), Artificial Neural Networks (ANN),
Gaussian Mixture Model (GMM), Linear Discriminant Analysis (LDA), Naı̈ve
Bayes (NB), k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron (MLP)
was completed. A novel hybrid combination of an SVM and ANN was also
evaluated for its capability in the task of material classification. A two-stage
SVM approach was found to perform best for material classification based on
vibration and thermal based data. Performance evaluation involving human
participants classifying the same set of materials was also presented in Chap-
ter 4. The performance of the participants when attempting to classify the
materials using only their sense of touch is presented. The machine learning
techniques were compared against human performance. It was found that all of
the machine learning techniques outperformed human performance; in fact the
two-stage SVM approach outperformed humans by over 16%. Although the
learning algorithms outperformed human performance in terms of accuracy,
the algorithms require training and are therefore still slower than the adult
participants.

Chapter 5 presents an overview of methods in the literature to measure human
vital signs. Two vital signs that can be used to represent a human’s health status
are heart rate in Beats Per Minute (BPM) and Respiratory Rate (RR). Common
methods in the literature for measuring these vital signs include the use of the
Doppler effect, wearable sensors and vision based techniques. However, it
would not be possible to depend on these techniques in a disaster zone or in the
event of an emergency. Chapter 5 presented methods that were developed to
measure a human’s BPM and RR from tactile sensing. The method developed to
measure BPM replicates the procedure carried out by medical personnel when
measuring a human’s pulse from their radial artery at the wrist. The method
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presented for measuring RR aims to improve upon the current method used
by medical personnel which involves watching the chest wall and counting
the breaths taken in one minute. The method presented in this thesis uses
tactile sensing to measure both vibration and changes in thermal properties
to identify when a breath is taken. Furthermore, both methods determine the
interval between each heart beat and breath and analyse it to determine if the
human is in sinus rhythm or some form of arrhythmia and if they are breathing
regularly or irregularly. Both methods use a third-order low bandpass filter
and the application of wavelets to smooth the data prior to pulse and breath
detection. Following ethical approval, data were collected from 12 healthy
human volunteers using the Shadow robot Hand fitted with the BioTAC tactile
sensors. The experiment was overseen by a medical professional and the perfor-
mance of the developed methods was evaluated against groundtruth vital sign
measurements conducted by the medical professional on each participant. It
was determined that the method developed for analysing a human’s heart rate
could accurately measure a human’s BPM and determine if the participant had
a regular heart rate (60− 100BPM), was bradycardic (< 60BPM) or tachycardic
(> 100BPM). The method proved to be able to successfully determine if the
participant was in sinus rhythm or some form of arrhythmia. The method devel-
oped to analyse a human’s breathing proved capable of accurately determining
how many breaths per minute were being taken by the participants and if they
had a below average, average or above average RR. Furthermore, the method
could determine if the participant had a regular breathing rate. Both methods
required the use of a semi-automatic threshold which was tuned for each par-
ticipant. Using a fully automatic threshold which did not require tuning did
not produce the same level of accuracy in terms of a specific measurement of
their exact BPM and RR. However, the fully automated method is viable, as
it was able to determine the class of the participant’s BPM and RR and could
be a rapid method for determining two vital signs in a disaster zone without
requiring previous knowledge about the victim’s health.

A method to measure a third human vital sign is presented in Chapter 6.
Capillary Refill Time (CRT) is the length of time it takes for the capillaries to
refill in the centre of a person’s chest, fingernail or forehead following pressure
being applied by one’s fingertip to prevent blood flow in the area. The CRT for
an average healthy adult should be approximately 1 second but can be anything
from 0-2 seconds. It can take as long as 4.5 seconds for an infant or elderly
person, however even in variations of age it is normally a maximum of 2 seconds
for a healthy individual. A time longer than 2 seconds can be an indication that
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the body has gone into a state of shock or is in a critical condition. Chapter 6
presents a method which uses tactile sensing feedback to control the movement
of the BioTAC fingertip and press it into participants’ foreheads with a force
measured from a medical professional when applying the same technique. A
custom 3D printed mount attached a camera to the fingernail of the BioTAC
fingertip enables recording of video footage of a small region of interest on the
forehead where the press was applied. The video footage was split into images
and image processing techniques were utilised to split the images into three
colour histograms; red, green and blue. The red colour was analysed and a
novel algorithm was developed to identify the start and end of the time period
where the participants’ capillaries refilled with blood. This method proved to
correctly identify the time period in almost every dataset collected from the
participants of varying skin colour, despite slight variations in ambient lighting.
The capability to measure human vital signs using tactile and vision sensing
could be extremely beneficial to assistive robots used in disaster or emergency
scenarios. Therefore, a review of robotic systems used to assist humans in
disaster zones was also presented in Chapter 6. A method for classifying a
human’s health status following accurate measurements of three vital signs,
namely BPM, RR and CRT was presented. A fuzzy logic classification algorithm
was utilised to classify the human’s health status into one of nine possible
classes based on the available vital signs and no historical knowledge of the
person’s health. These nine states of health were determined in collaboration
with a medical professional and by consulting guidance documents of the
(Royal College of Physicians of London, 2012). The Fuzzy Logic algorithm was
evaluated with both synthetic and real data collected from the participants and
proved to be an effective method of classifying a human’s health status based
on one assessment of their BPM, RR and CRT. Being able to remotely assess a
human’s health status by physical interaction of a victim with a robot system
following a disaster or emergency would allow triage of all victims to take place
and determine who is in most need of help. In turn, this could prove to be life
saving for victims of the disaster and indeed help reduce the risk to the lives of
emergency service workers.

7.1 Summary of Contributions

This thesis has presented a review of the state of the art in tactile sensing
technology and algorithms. The key contributions in this work are:
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• An evaluation of numerous classification algorithms and novel combina-
tions of classification algorithms for material classification using tactile
data.

• An evaluation of human performance for classifying materials via touch
alone. It was evident that knowledge of surface texture played a key role
for humans when identifying materials, as the task proved much more
difficult when assessing only the material’s compressibility and thermal
properties.

• A novel method for material classification using tactile data, capable of
classifying materials of similar compressibility and surface texture and
outperforming human performance.

• The use of a robot to mimic medical procedures in order to accurately
measure and analyse human BPM and heart beat rhythm via tactile sens-
ing.

• The use of a robot to accurately measure and analyse human RR and
breathing rhythm via tactile sensing, rather than a crude vision-based
method used by medical personnel.

• Accurate measurement and analysis of human CRT via complementary
use of robotic tactile sensing-based control and a micro 1000 Television
Lines (TVL) camera.

• The ability to ascertain a human’s health status by using a fuzzy based
classification system to assess the measured BPM, RR and CRT.

7.2 Future Work

This thesis has provided a substantial body of work in the field of tactile sensing.
However, there remains a considerable amount of work in the field of tactile
sensing and in particular in the use of artificial intelligent systems carrying out
human health assessment in disaster zones or emergencies. There are two main
directions in which the work outlined in this thesis could be extended to further
the robotics community.
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7.2.1 Object Recognition and Grasping

Although methods for object and material identification using vision have been
heavily researched, the tactile sensing based material classification method pre-
sented in Chapter 4 could be used in collaboration with vision based methods.
If an object was identified using image processing techniques and an estimate
of the physical size of the object is determined then the volume of the object
can be calculated. The tactile sensing methods presented in Chapter 4 could
identify the material from which the object is made and armed with the volume
of the object, an estimate of the object’s weight can be calculated. The incor-
poration of vision would further strengthen the identification of objects and
materials. To train a robotic system on a vast array of objects and incorporate
vision, a significant dataset of tactile data, static image and video data should
be collected for numerous materials, objects, clothing and human skin. A deep
learning structure could then be utilised for the robotic system to learn the vast
dataset of materials and objects. This information could be used to help deter-
mine the effort and grasping method required to successfully lift previously
unlearned objects. This would provide a useful skill to assistive robots in a
home environment when learning the affordances of objects they have not pre-
viously encountered. It could also be used in a disaster zone when determining
debris entrapping a human or when attempting to remove an object that may
be preventing access to a trapped person’s arm or head preventing assessment
of their vital signs. For example, if a piece of debris is occluding a victim’s arm,
the robotic system could determine the size of the debris, what material the
debris consists of and estimate its weight. This would enable to the robot to
determine how much force and with which pose it should apply to lift and
remove the debris, thus clearing access to the humans wrist in order to measure
their pulse.

7.2.2 Extension of Assistive Robot Based Triage

The work in this thesis focussed on using the BioTAC fingertip to replicate the
role of medical personnels’ fingertips when assessing human vital signs. Col-
lecting Electromyography (EMG) data from the arm of medical personnel when
conducting standard medical assessments would provide useful knowledge
and inform researchers on the correct kinematics for the control of robot arms
and hands to conduct similar medical assessments. These methods, coupled
with extensive knowledge of materials and objects, could be used to help a
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robotic system guide a fingertip to the wrist, chest and forehead of a trapped
victim and proceed to measure their vital signs. Although some methods have
been presented in the literature to identify trapped persons in a disaster or
emergency zone, combining tactile sensing with vision to firstly confirm vic-
tims in an emergency environment and secondly conduct a medical assessment
of them, could prove to be very effective.

The fuzzy classification system utilised in Chapter 6 to classify an overall status
of health considered only BPM, RR and CRT. The extension of this algorithm
could include the consideration of the calculated Pulse to Pulse Interval (PPI),
Breath to Breath Interval (BBI) and other vital signs. In order to consider these
factors, the artificial system would require extensive medical knowledge and
be trained in making intelligent observations of PPI and BBI data.
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APPENDIX

A

Appendix A

This appendix chapter includes tables outlining detailed results from the BPM,
RR, PPI and BBI measurements outlined in Chapter 5.

Calculation of the heart rate BPM for three datasets collected per subject, the
accuracy of the calculated BPM and the heart rate classification of either normal
heart rate, bradycardic or tachycardic can be seen in Table A.1 and Table A.2.
Table A.1 presents all results for the approach using a two stage filtering/s-
moothing process (i.e. using low pass filtering and discrete wavelet transform
(DWT) smoothing). Results for the two stage filtering approach with semi-
automatic thresholding are presented in the column labelled “2 Stage Filtering
Semi-automatic (2SFS)”. Results for the two stage approach with fully auto-
matic thresholding are presented in the column labelled “2 Stage Filtering
Fully-automatic (2SFF)”. Table A.2 presents all results for the three stage filter-
ing/smoothing process (i.e. using low pass filtering, DWT and lateral inhibition
smoothing). Results for the three stage approach with semi-automatic thresh-
olding are presented in the column labelled “3 Stage Filtering Semi-automatic
(3SFS)” and the results for the three stage approach with fully automatic thresh-
olding are presented in the column labelled “3 Stage Filtering Fully-automatic
(3SFF)”. The actual BPM measured from the subject’s wrist by a trained medical
professional for each subject is also stated in Table A.1 and Table A.2 in the
column labelled “Actual BPM”. The difference between each of the calculated
values and the actual BPM is stated in each table for each dataset in the column
next to each calculated value and labelled as the method abbreviation followed
by “diff”. The classification of the subject’s heart rate based on the calculated
BPM values is stated for each dataset in the column next to the accuracy column
and labelled as the method abbreviation followed by “class” in each table. The
classification is labelled as either bradycardic (“B”) for a BPM value less than
60BPM, normal (“N”) for a BPM value less between 60-100BPM or tachycardic
(“T”) for a BPM value greater than 100BPM. The BPM measured from each
subject at each set using the Android smart-phone application (Mellado, 2013)
is also presented in the column labelled “Smart Phone Application (SPA)” in
each table.

The calculated RR for each set of data for each subject, the accuracy of the
calculated RR in comparison to the measured RR by a trained medical profes-
sional and the classification of the subject’s breathing can be seen in Table A.3,
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Table A.1: Table comparing the BPM experimental results using the two stage
filtering/smoothing approach.

Subject Set Actual
BPM

sp
BPM 2SFS 2SFS

diff
2SFS
class 2SFF 2SFF

diff
2SFF
class

1
1 73 88 73 0 N 66 -7 N
2 73 86 71 -2 N 63 -10 N
3 73 81 74 +1 N 65 -8 N

2
1 74 81 70 -4 N 68 -6 N
2 74 93 75 +1 N 75 +1 N
3 74 77 73 -1 N 69 -5 N

3
1 67 71 69 +2 N 73 +6 N
2 67 71 64 -3 N 70 +3 N
3 67 75 67 0 N 73 +6 N

4
1 76 81 75 -1 N 65 -11 N
2 76 107 76 0 N 65 -11 N
3 76 85 76 0 N 62 -14 N

5
1 66 92 68 +2 N 65 -1 N
2 66 119 64 -2 N 60 -6 N
3 66 88 66 0 N 64 -2 N

6
1 87 77 89 +2 N 89 +2 N
2 87 85 88 +1 N 88 +1 N
3 87 74 86 -1 N 84 -3 N

7
1 82 97 84 +2 N 75 -7 N
2 82 89 81 -1 N 79 -3 N
3 82 83 80 -2 N 80 -2 N

8
1 63 97 50 -13 B 54 -9 B
2 63 65 63 0 N 65 +2 N
3 63 89 63 0 N 66 +3 N

9
1 72 93 72 0 N 72 0 N
2 72 91 72 0 N 76 +4 N
3 72 115 73 +1 N 76 +4 N

10
1 76 87 76 0 N 74 -2 N
2 76 65 77 +1 N 77 +1 N
3 76 97 79 +3 N 79 +3 N

11
1 71 95 71 0 N 71 0 N
2 71 95 72 +1 N 72 +1 N
3 71 85 72 +1 N 71 0 N

12
1 63 85 68 +5 N 67 +4 N
2 63 87 63 0 N 60 -3 N
3 63 85 63 0 N 60 -3 N
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Table A.2: Table comparing the BPM experimental results using the three stage
filtering/smoothing approach.

Subject Set Actual
BPM

sp
BPM 3SFS 3SFS

diff
3SFS
class 3SFF 3SFF

diff
3SFF
class

1
1 73 88 78 +5 N 78 +5 N
2 73 86 66 -7 N 69 -4 N
3 73 81 73 0 N 78 5 N

2
1 74 81 71 -3 N 74 0 N
2 74 93 80 +6 N 83 +9 N
3 74 77 71 -3 N 79 +5 N

3
1 67 71 69 +2 N 76 +9 N
2 67 71 67 0 N 81 +14 N
3 67 75 67 0 N 77 +10 N

4
1 76 81 77 +1 N 68 -8 N
2 76 107 76 0 N 74 -2 N
3 76 85 75 -1 N 68 -8 N

5
1 66 92 66 0 N 70 +4 N
2 66 119 61 -5 N 64 -2 N
3 66 88 66 0 N 73 +7 N

6
1 87 77 89 +2 N 89 +2 N
2 87 85 87 0 N 91 +4 N
3 87 74 84 -3 N 89 +2 N

7
1 82 97 82 0 N 81 -1 N
2 82 89 81 -1 N 81 -1 N
3 82 83 80 -2 N 80 -2 N

8
1 63 97 49 -14 B 53 -10 N
2 63 65 69 +6 N 80 +17 N
3 63 89 63 0 N 73 +10 N

9
1 72 93 75 +3 N 76 +4 N
2 72 91 72 0 N 78 +6 N
3 72 115 72 0 N 73 +1 N

10
1 76 87 73 -3 N 75 -1 N
2 76 65 76 0 N 78 +2 N
3 76 97 78 +2 N 79 +3 N

11
1 71 95 71 0 N 83 +12 N
2 71 95 72 +1 N 75 +4 N
3 71 85 68 -3 N 76 +5 N

12
1 63 85 66 +3 N 80 +17 N
2 63 87 61 -2 N 77 +14 N
3 63 85 64 +1 N 77 +14 N

165



Table A.4, Table A.5 and Table A.6. Table A.3 and Table A.4 present the results
from the two and three stage filtering/ smoothing method respectively when
using collected absolute fluid pressure (PDC) data. Table A.5 and Table A.6
present the results from the two and three stage filtering/ smoothing method
respectively when using collected thermal flow (TAC) data. Again the RR
results are obtained using the semi-automatic thresholding (“2SFS”) and fully
automatic thresholding (“2SFF”) algorithms. The actual RR measured from the
subject’s chest by a trained medical professional for each subject is also stated
in each table in the column labelled “Actual RR”. The difference between each
of the calculated values and the actual RR is stated in each table for each dataset
in the column labelled as the method abbreviation followed by “diff”. The
classification of the subject’s breathing rate based on the calculated RR values is
stated in each table for each dataset in the column next to the accuracy column
and labelled as the method abbreviation followed by “class”. The classification
is labelled as either being classified as either a either slow (“S”) for a value of
less than 12 breaths per minute, normal (“N”) for a value of between 12-20
breaths per minute or fast (“F”) breathing rate over 20 breaths per minute.

Table A.7 shows the percentage of the calculated intervals between each de-
tected pulse that were within the 25% tolerance of the average interval. Table
A.8 and Table A.9 present the percentage of the calculated intervals between
each detected breath that were within the 25% tolerance of the average interval
using PDC data and TAC data respectively. All of the aforementioned tables
present the percentage accuracy of the intervals within the tolerance for all
the evaluated methods of BPM and RR calculation; the two stage filtering/
smoothing approach with semi-automatic thresholding (“2SFS”) and fully auto-
matic thresholding (“2SFF”) and the three stage filtering/ smoothing method
with semi-automatic thresholding (“3SFS”) and fully automatic thresholding
(“3SFF”).
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Table A.3: Table comparing the RR experimental results using the two stage
filtering/smoothing approach with PDC data.

Subject Set Actual
RR 2SFS 2SFS

diff
2SFS
class 2SFF 2SFF

diff
2SFF
class

1
1 16 17 +1 N 31 +15 F
2 17 16 -1 N 29 +12 F
3 17 17 0 N 36 +19 F

2
1 21 21 0 F 22 +1 F
2 20 21 +1 N 21 +1 F
3 21 22 +1 F 22 +1 F

3
1 16 17 0 N 18 +2 N
2 15 15 0 N 20 +5 N
3 17 17 0 N 26 +9 F

4
1 11 11 0 S 22 +11 F
2 12 12 0 N 17 +5 N
3 11 12 +1 N 12 +1 N

5
1 10 10 0 S 20 +10 N
2 11 11 0 S 14 +3 N
3 11 11 0 S 17 +6 N

6
1 12 12 0 N 11 -1 S
2 11 12 +1 N 12 +1 N
3 11 11 0 S 11 0 S

7
1 13 14 +1 N 20 +7 N
2 14 14 0 N 28 +14 F
3 13 16 +3 N 24 +11 F

8
1 10 6 -4 S 6 -4 S
2 10 10 0 S 23 +13 F
3 9 7 -2 S 9 0 S

9
1 8 8 0 S 25 +17 F
2 7 7 0 S 24 +17 F
3 7 7 0 S 35 +28 F

10
1 11 11 0 S 12 +1 N
2 12 11 -1 S 14 +2 N
3 12 12 0 N 27 +15 F

11
1 14 15 +1 N 27 +13 F
2 13 12 -1 N 17 +4 N
3 13 13 0 N 14 +1 N

12
1 8 8 0 S 9 +1 S
2 8 7 -1 S 7 -1 S
3 8 8 0 S 8 0 S
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Table A.4: Table comparing the RR experimental results using the three stage
filtering/smoothing approach with PDC data.

Subject Set Actual
RR 3SFS 3SFS

diff
3SFS
class 3SFF 3SFF

diff
3SFF
class

1
1 16 17 +1 N 26 +10 F
2 17 17 0 N 27 +10 F
3 17 17 0 N 33 +16 F

2
1 21 21 0 F 21 0 F
2 20 20 0 N 20 0 N
3 21 23 +2 F 24 +3 F

3
1 16 17 +1 N 20 +4 N
2 15 16 +1 N 18 +3 N
3 17 17 0 N 24 +7 F

4
1 11 11 0 S 16 +5 N
2 12 12 0 N 28 +16 F
3 11 11 0 S 23 +12 F

5
1 10 8 -2 S 21 +11 F
2 11 13 +2 N 27 +16 F
3 11 11 0 S 24 +13 F

6
1 12 12 0 N 21 +9 F
2 11 11 0 S 21 +10 F
3 11 11 0 S 17 +6 N

7
1 13 16 +3 N 21 +8 F
2 14 12 -2 N 21 +7 F
3 13 15 +2 N 24 +11 F

8
1 10 8 -2 S 24 +14 F
2 10 10 0 S 26 +16 F
3 9 11 +2 S 24 +15 F

9
1 8 6 -2 S 22 +14 F
2 7 8 +1 S 29 +22 F
3 7 7 0 S 32 +25 S

10
1 11 10 -1 S 19 +8 N
2 12 12 0 N 19 +7 N
3 12 13 +1 N 27 +15 F

11
1 14 14 0 N 26 +12 F
2 13 11 -2 S 15 +2 N
3 13 11 -2 S 20 +7 N

12
1 8 8 0 S 40 +32 F
2 8 4 -4 S 29 +21 F
3 8 8 0 S 23 +8 F
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Table A.5: Table comparing the RR experimental results using the two stage
filtering/smoothing approach with TAC data.

Subject Set Actual
RR 2SFS 2SFS

diff
2SFS
class 2SFF 2SFF

diff
2SFF
class

1
1 16 14 -2 N 20 +4 N
2 17 17 0 N 27 +10 F
3 17 17 0 N 27 +10 F

2
1 21 21 0 F 23 +2 F
2 20 20 0 N 20 0 N
3 21 22 +1 F 23 +2 F

3
1 16 17 0 N 20 +4 N
2 15 15 0 N 16 +1 N
3 17 24 +7 F 41 +24 F

4
1 11 11 -1 S 16 +5 N
2 12 12 0 N 18 +6 N
3 11 11 0 S 13 +2 N

5
1 10 10 0 S 12 +2 N
2 11 10 -1 S 11 0 S
3 11 12 +1 N 13 +2 N

6
1 12 12 0 N 11 -1 S
2 11 11 0 S 11 0 S
3 11 11 0 S 11 0 S

7
1 13 13 0 N 14 +1 N
2 14 14 0 N 20 +6 N
3 13 11 -2 S 14 +1 N

8
1 10 12 +2 N 20 +10 N
2 10 9 -1 S 9 -1 S
3 9 9 0 S 13 +4 N

9
1 8 11 +3 N 26 +18 F
2 7 7 0 S 16 +9 N
3 7 7 0 S 19 +12 N

10
1 11 11 0 S 17 +6 N
2 12 11 -1 S 19 +7 N
3 12 12 0 N 24 +12 F

11
1 14 14 0 N 30 +16 F
2 13 12 -1 N 15 +2 N
3 13 13 0 N 13 0 N

12
1 8 8 0 S 15 +7 N
2 8 5 -3 S 9 +1 S
3 8 8 0 S 14 +6 N
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Table A.6: Table comparing the RR experimental results using the three stage
filtering/smoothing approach with TAC data.

Subject Set Actual
RR 3SFS 3SFS

diff
3SFS
class 3SFF 3SFF

diff
3SFF
class

1
1 16 16 0 N 22 +6 F
2 17 17 0 N 32 +15 F
3 17 21 +4 N 25 +8 F

2
1 21 21 0 F 27 +6 F
2 20 20 0 N 21 +1 F
3 21 22 +1 F 23 +2 F

3
1 16 13 -3 N 24 +8 F
2 15 15 0 N 27 +12 F
3 17 17 0 N 33 +16 F

4
1 11 11 0 S 28 +17 F
2 12 13 +1 N 28 +16 F
3 11 11 0 S 27 +16 F

5
1 10 11 +1 S 23 +13 F
2 11 11 0 S 19 +8 N
3 11 12 +1 N 32 +21 F

6
1 12 12 0 N 20 +8 N
2 11 11 0 S 14 +3 N
3 11 11 0 S 17 +6 N

7
1 13 14 +1 N 25 +12 F
2 14 14 0 N 27 +13 F
3 13 12 -1 N 28 +15 F

8
1 10 13 +3 N 29 +19 F
2 10 9 -1 S 12 +2 N
3 9 8 -1 S 16 +7 N

9
1 8 7 -1 S 29 +21 F
2 7 4 -3 S 24 +17 F
3 7 7 0 S 24 +17 F

10
1 11 11 0 S 28 +17 F
2 12 14 +2 N 32 +20 F
3 12 11 -1 S 23 +11 F

11
1 14 14 0 N 32 +18 F
2 13 12 -1 N 18 +5 N
3 13 13 0 N 25 +12 F

12
1 8 6 -2 S 27 +19 F
2 8 6 -2 S 16 +8 N
3 8 8 0 S 21 +13 F
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Table A.7: Table comparing the calculated PPIs using from PAC data.

Subject Set 2SFS
(%)

2SFF
(%)

3SFS
(%)

3SFF
(%)

1
1 52.63 40.85 44.87 46.91
2 48.68 46.48 39.74 45.68
3 51.32 46.48 41.03 48.15

2
1 52.63 54.79 50.00 53.09
2 46.05 45.33 46.25 55.42
3 44.74 41.33 38.75 50.60

3
1 85.53 83.56 80.77 82.72
2 61.84 68.49 66.67 59.26
3 64.47 64.38 57.69 70.37

4
1 65.79 65.33 58.75 62.65
2 38.16 38.67 33.75 34.94
3 56.58 52.00 56.25 50.60

5
1 46.05 41.33 43.75 45.78
2 60.53 64.00 63.75 55.42
3 71.05 64.00 65.00 60.24

6
1 98.88 98.88 98.88 98.88
2 95.51 95.51 94.38 97.80
3 94.38 92.13 92.13 94.51

7
1 78.65 68.54 70.79 68.13
2 98.88 98.88 98.88 96.70
3 97.75 96.63 97.75 95.60

8
1 82.02 88.76 79.78 83.52
2 97.75 91.01 76.40 47.25
3 89.89 89.89 79.78 63.74

9
1 85.39 84.27 80.90 81.32
2 74.16 71.91 70.79 61.54
3 79.78 77.53 75.28 72.53

10
1 92.13 88.76 82.02 80.22
2 97.75 96.63 92.13 91.21
3 95.51 94.38 93.26 90.11

11
1 57.30 56.18 49.44 40.66
2 83.15 82.02 74.16 64.84
3 87.64 91.01 78.65 75.82

12
1 67.42 65.17 64.04 46.15
2 74.16 71.91 74.16 46.15
3 74.16 77.53 71.91 46.15
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Table A.8: Table comparing the calculated BBIs using from PDC data.

Subject Set 2SFS
(%)

2SFF
(%)

3SFS
(%)

3SFF
(%)

1
1 23.53 64.52 70.59 42.31
2 64.71 48.39 88.24 33.33
3 47.06 52.78 52.94 51.52

2
1 95.24 77.78 100.00 69.70
2 95.24 77.78 95.24 66.67
3 90.91 75.00 91.30 63.64

3
1 88.24 66.67 88.24 45.45
2 82.35 36.11 76.47 24.24
3 52.94 47.22 41.18 30.30

4
1 77.27 66.67 78.26 39.39
2 86.36 47.22 78.26 18.18
3 86.36 58.33 86.96 9.09

5
1 63.64 52.78 78.26 24.24
2 72.73 47.22 56.62 18.18
3 72.73 33.33 73.91 15.15

6
1 68.18 44.44 73.91 30.30
2 95.45 58.33 91.30 39.39
3 86.36 52.78 86.96 30.30

7
1 81.82 41.67 56.62 21.21
2 59.09 50.00 47.83 24.24
3 45.45 47.22 47.83 27.27

8
1 54.55 52.78 52.17 12.12
2 54.55 38.89 47.83 24.24
3 72.73 36.11 43.48 18.18

9
1 59.09 33.33 47.83 28.57
2 45.45 47.22 47.83 25.71
3 50.00 52.78 43.48 22.86

10
1 72.73 69.44 73.91 22.86
2 72.73 38.89 65.22 17.14
3 72.73 47.22 65.22 17.14

11
1 40.91 38.89 52.17 45.71
2 72.73 36.11 73.91 37.14
3 77.27 58.33 69.57 28.57

12
1 50.00 44.44 60.87 30.00
2 77.27 58.33 60.87 17.50
3 72.73 55.56 69.57 20.00
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Table A.9: Table comparing the calculated BBIs using from TAC data.

Subject Set 2SFS
(%)

2SFF
(%)

3SFS
(%)

3SFF
(%)

1
1 80.00 40.00 87.50 34.78
2 70.59 55.56 23.53 50.00
3 41.18 33.33 19.05 43.75

2
1 79.17 58.54 85.71 24.24
2 83.33 68.29 95.24 60.61
3 91.67 70.73 95.45 66.67

3
1 88.24 51.85 57.14 31.25
2 82.35 62.96 52.38 12.50
3 37.50 43.90 28.57 27.27

4
1 83.33 41.46 63.64 15.15
2 79.17 41.46 95.45 27.27
3 91.67 48.78 86.36 27.27

5
1 79.17 39.02 72.73 33.33
2 83.33 53.66 81.82 27.27
3 70.83 41.46 63.64 27.27

6
1 70.83 56.10 72.73 30.30
2 79.17 56.10 90.91 24.24
3 70.83 51.22 86.36 36.36

7
1 83.33 51.22 72.73 15.15
2 70.83 39.02 72.73 18.18
3 70.83 41.46 81.82 15.15

8
1 62.50 51.22 59.09 15.15
2 62.50 51.22 68.18 27.27
3 54.17 51.22 59.09 33.33

9
1 62.50 36.59 59.09 18.18
2 54.17 29.27 54.55 30.30
3 62.50 39.02 54.55 27.27

10
1 75.00 29.27 63.64 18.18
2 66.67 26.83 54.55 18.18
3 70.83 36.59 63.64 15.15

11
1 66.67 43.90 63.64 15.15
2 70.83 39.02 86.36 33.33
3 79.17 53.66 90.91 27.27

12
1 75.00 46.34 77.27 9.09
2 70.83 41.46 81.82 18.18
3 66.67 48.78 68.18 12.12
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APPENDIX

B

Appendix B

This appendix chapter presents a table outlining detailed results for each subject
and dataset collected for the CRT measurements outlined in Chapter 6.

Table B.1: Table outlining all of the calculated CRT experimental results
Subject Set 1 Set 2 Set 3

1 0.976 1.082 0.909
2 0.823 0.842 0.551
3 0.681 0.933 0.995
4 1.152 1.222 0.976
5 1.302 1.085 1.877
6 0.759 3.554 0.832
7 0.943 0.940 1.121
8 1.264 0.875 1.102
9 6.983 1.091 3.242

10 0.935 0.908 1.121
11 1.091 5.019 0.978
12 1.309 1.010 1.012

174


	Acknowledgements
	Abstract
	Introduction
	Thesis Contributions
	Thesis Outline

	Tactile Sensors
	Introduction
	Human Tactile Sensing
	Tactile Sensing Technology
	Resistance-based Tactile Sensors
	Capacitance-based Tactile Sensors
	Optical-based Tactile Sensors
	Acoustic-based Tactile Sensors
	Pressure-based Tactile Sensors Types
	Other Tactile Sensor Types
	Multi-modal tactile sensors

	BioTAC Biomimetic Tactile Sensor
	Conclusion

	Computational Intelligence in Tactile Sensing
	Introduction
	Machine Learning
	ann
	svm
	gmm
	lda
	nb
	knn
	Fuzzy Logic

	Machine Classification using Tactile Sensing
	Material Classification using Tactile Images
	Material Classification based on Surface Texture
	Material Classification based on Thermal Characteristics
	Material Learning Classification based on Multiple Characteristics
	Machine Learning using the BioTAC

	Conclusion

	Tactile Sensing Based Material Classification
	Introduction
	Methodology
	Data Collection
	Pre-Processing
	Initial Data Analysis

	Classifiers
	One-stage svm
	Two-stage svm
	One-stage ann
	Two-stage ann
	svm and ann hybrid algorithm
	Other Classifiers Evaluated

	Evaluation Results
	System Testing
	Evaluation of Human Performance

	Discussion
	Conclusion and Future Work

	Human Pulse and Respiratory Signal Analysis
	Introduction
	Assessing Human Vital Signs

	Methodology
	Data Collection
	Waveform Pre-processing
	BPM and RR calculation
	Pulse to Pulse (PPI) and Breath to Breath Interval (BBI) Calculation

	Results
	ppi and bbi Calculation and analysis

	Discussion
	Conclusion and Future Work

	Measurement of Capillary Refill Time and Determination of Health Status
	Introduction
	Determination of crt
	Data Collection
	Image Analysis
	crt Results and Discussion

	Triage Health Status Classification
	Fuzzy Classification Methodology
	Fuzzy Classification Results and Discussion

	Conclusion

	Conclusions and Future Work
	Summary of Contributions
	Future Work
	Object Recognition and Grasping
	Extension of Assistive Robot Based Triage 


	Appendix A
	Appendix B

