430 research outputs found

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Supporting active and healthy aging with advanced robotics integrated in smart environment

    Get PDF
    The technological advances in the robotic and ICT fields represent an effective solution to address specific societal problems to support ageing and independent life. One of the key factors for these technologies is the integration of service robotics for optimising social services and improving quality of life of the elderly population. This chapter aims to underline the barriers of the state of the art, furthermore the authors present their concrete experiences to overcome these barriers gained at the RoboTown Living Lab of Scuola Superiore Sant'Anna within past and current projects. They analyse and discuss the results in order to give recommendations based on their experiences. Furthermore, this work highlights the trend of development from stand-alone solutions to cloud computing architecture, describing the future research directions

    AI and robotics to help older adults: Revisiting projects in search of lessons learned

    Get PDF
    Abstract This article is a retrospective overview of work performed in the domain of Active Assisted Living over a span of almost 18 years. The authors have been creating and refining artificial intelligence (AI) and robotics solutions to support older adults in maintaining their independence and improving their quality of life. The goal of this article is to identify strong features and general lessons learned from those experiences and conceive guidelines and new research directions for future deployment, also relying on an analysis of similar research efforts. The work considers key points that have contributed to increase the success of the innovative solutions grounding them on known technology acceptance models. The analysis is presented with a threefold perspective: A Technological vision illustrates the characteristics of the support systems to operate in a real environment with continuity, robustness, and safety; a Socio-Health perspective highlights the role of experts in the socio-assistance domain to provide contextualized and personalized help based on actual people's needs; finally, a Human dimension takes into account the personal aspects that influence the interaction with technology in the long term experience. The article promotes the crucial role of AI and robotics in ensuring intelligent and situated assistive behaviours. Finally, considering that the produced solutions are socio-technical systems, the article suggests a transdisciplinary approach in which different relevant disciplines merge together to have a complete, coordinated, and more informed vision of the problem

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    ENRICHME integration of ambient intelligence and robotics for AAL

    Get PDF
    Technological advances and affordability of recent smart sensors, as well as the consolidation of common software platforms for the integration of the latter and robotic sensors, are enabling the creation of complex active and assisted living environments for improving the quality of life of the elderly and the less able people. One such example is the integrated system developed by the European project ENRICHME, the aim of which is to monitor and prolong the independent living of old people affected by mild cognitive impairments with a combination of smart-home, robotics and web technologies. This paper presents in particular the design and technological solutions adopted to integrate, process and store the information provided by a set of fixed smart sensors and mobile robot sensors in a domestic scenario, including presence and contact detectors, environmental sensors, and RFID-tagged objects, for long-term user monitoring an

    Evaluating the use of robots to enlarge AAL services

    Get PDF
    We introduce robots as a tools to enhance Ambient Assisted Living (AAL) services. Robots are a unique opportunity to create new systems to cooperate in reaching better living conditions. Robots offer the possibility of richer interaction with humans, and can perform actions to actively change the environment. The current state-of-art includes skills in various areas, including advanced interaction (natural language, visual attention, object recognition, intention learning), navigation (map learning, obstacle avoidance), manipulation (grasping, use of tools), and cognitive architectures to handle highly unpredictable environments. From our experience in several robotics projects and principally in the RoboCup@Home competition, a new set of evaluation methods is proposed to assess the maturity of the required skills. Such comparison should ideally enable the abstraction from the particular robotic platform and concentrate on the easy comparison of skills. The validity of that low-level skills can be then scaled to more complex tasks, that are composed by several skills. Our conclusion is that effective evaluation methods can be designed with the objective of enabling robots to enlarge AAL services.This research was partly supported by the PATRICIA project (TIN2012-38416-C03-01), MANIPlus project (201350E102), Spanish Ministry of Economy and Competitiveness, and European Found for Regional Development (FEDER).Peer Reviewe

    Acceptance of ambient assisted living (AAL) technologies among older Australians : a review of barriers in user experience

    Get PDF
    One of the great challenges facing Australian society is that of an ageing population. Amongst the issues involved in this drastic demographic change, the most significant aspect is the demand for older Australians to live independently at home. The development of Ambient Assisted Living (AAL) technologies aims to address this issue. The advancement of AAL applications have been done to support the users with their daily-life activities and health concerns by providing increased mobility, security, safety in emergencies, health-monitoring, improved lifestyle, and fall-detection through the use of sensors. However, the optimum uptake of these technologies among the end-users (the elderly Australians) still remains a big concern. Thus, there is an elevated need to understand the needs and preferences of the seniors in order to improve the acceptance of AAL applications. The aim of this study is to investigate the barriers and perceptions in the use of AAL applications amongst older Australians. Focus groups and quantitative surveys have been conducted to provide a detailed analysis of these impediments. The results show that there are different factors that restrict the use of these technologies along with the fact that elderly people have certain preferences when using them. An understanding of these factors has been gained and suggestions have been made to increase the acceptance of AAL devices. This work gives useful insights towards the design of AAL solutions according to user needs

    On the design, development and experimentation of the ASTRO assistive robot integrated in smart environments

    Get PDF
    This paper presents the full experience of designing, developing and testing ASTROMOBILE, a system composed of an enhanced robotic platform integrated in an Ambient Intelligent (AmI) infrastructure that was conceived to provide favourable independent living, improved quality of life and efficiency of care for senior citizens. The design and implementation of ASTRO robot was sustained by a multidisciplinary team in which technology developers, designers and end-user representatives collaborated using a user-centred design approach. The key point of this work is to demonstrate the general feasibility and scientific/technical effectiveness of a mobile robotic platform integrated in a smart environment and conceived to provide useful services to humans and in particular to elderly people in domestic environments. The main aspects faced in this paper are related to the design of the ASTRO’s appearance and functionalities by means of a substantial analysis of users’ requirements, the improvement of the ASTRO’s behaviour by means of a smart sensor network able to share information with the robot (Ubiquitous Robotics) and the development of advanced human robot interfaces based on natural language

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio
    corecore