361 research outputs found

    Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation

    Get PDF
    In this paper, the complex problems of internal forces and position control are studied simultaneously and a disturbance observer-based radial basis function neural network (RBFNN) control scheme is proposed to: 1) estimate the unknown parameters accurately; 2) approximate the disturbance experienced by the system due to input saturation; and 3) simultaneously improve the robustness of the system. More specifically, the proposed scheme utilizes disturbance observers, neural network (NN) collaborative control with an adaptive law, and full state feedback. Utilizing Lyapunov stability principles, it is shown that semiglobally uniformly bounded stability is guaranteed for all controlled signals of the closed-loop system. The effectiveness of the proposed controller as predicted by the theoretical analysis is verified by comparative experimental studies

    A survey of robot manipulation in contact

    Get PDF
    In this survey, we present the current status on robots performing manipulation tasks that require varying contact with the environment, such that the robot must either implicitly or explicitly control the contact force with the environment to complete the task. Robots can perform more and more manipulation tasks that are still done by humans, and there is a growing number of publications on the topics of (1) performing tasks that always require contact and (2) mitigating uncertainty by leveraging the environment in tasks that, under perfect information, could be performed without contact. The recent trends have seen robots perform tasks earlier left for humans, such as massage, and in the classical tasks, such as peg-in-hole, there is a more efficient generalization to other similar tasks, better error tolerance, and faster planning or learning of the tasks. Thus, in this survey we cover the current stage of robots performing such tasks, starting from surveying all the different in-contact tasks robots can perform, observing how these tasks are controlled and represented, and finally presenting the learning and planning of the skills required to complete these tasks

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Learning Algorithm Design for Human-Robot Skill Transfer

    Get PDF
    In this research, we develop an intelligent learning scheme for performing human-robot skills transfer. Techniques adopted in the scheme include the Dynamic Movement Prim- itive (DMP) method with Dynamic Time Warping (DTW), Gaussian Mixture Model (G- MM) with Gaussian Mixture Regression (GMR) and the Radical Basis Function Neural Networks (RBFNNs). A series of experiments are conducted on a Baxter robot, a NAO robot and a KUKA iiwa robot to verify the effectiveness of the proposed design.During the design of the intelligent learning scheme, an online tracking system is de- veloped to control the arm and head movement of the NAO robot using a Kinect sensor. The NAO robot is a humanoid robot with 5 degrees of freedom (DOF) for each arm. The joint motions of the operator’s head and arm are captured by a Kinect V2 sensor, and this information is then transferred into the workspace via the forward and inverse kinematics. In addition, to improve the tracking performance, a Kalman filter is further employed to fuse motion signals from the operator sensed by the Kinect V2 sensor and a pair of MYO armbands, so as to teleoperate the Baxter robot. In this regard, a new strategy is developed using the vector approach to accomplish a specific motion capture task. For instance, the arm motion of the operator is captured by a Kinect sensor and programmed through a processing software. Two MYO armbands with embedded inertial measurement units are worn by the operator to aid the robots in detecting and replicating the operator’s arm movements. For this purpose, the armbands help to recognize and calculate the precise velocity of motion of the operator’s arm. Additionally, a neural network based adaptive controller is designed and implemented on the Baxter robot to illustrate the validation forthe teleoperation of the Baxter robot.Subsequently, an enhanced teaching interface has been developed for the robot using DMP and GMR. Motion signals are collected from a human demonstrator via the Kinect v2 sensor, and the data is sent to a remote PC for teleoperating the Baxter robot. At this stage, the DMP is utilized to model and generalize the movements. In order to learn from multiple demonstrations, DTW is used for the preprocessing of the data recorded on the robot platform, and GMM is employed for the evaluation of DMP to generate multiple patterns after the completion of the teaching process. Next, we apply the GMR algorithm to generate a synthesized trajectory to minimize position errors in the three dimensional (3D) space. This approach has been tested by performing tasks on a KUKA iiwa and a Baxter robot, respectively.Finally, an optimized DMP is added to the teaching interface. A character recombination technology based on DMP segmentation that uses verbal command has also been developed and incorporated in a Baxter robot platform. To imitate the recorded motion signals produced by the demonstrator, the operator trains the Baxter robot by physically guiding it to complete the given task. This is repeated five times, and the generated training data set is utilized via the playback system. Subsequently, the DTW is employed to preprocess the experimental data. For modelling and overall movement control, DMP is chosen. The GMM is used to generate multiple patterns after implementing the teaching process. Next, we employ the GMR algorithm to reduce position errors in the 3D space after a synthesized trajectory has been generated. The Baxter robot, remotely controlled by the user datagram protocol (UDP) in a PC, records and reproduces every trajectory. Additionally, Dragon Natural Speaking software is adopted to transcribe the voice data. This proposed approach has been verified by enabling the Baxter robot to perform a writing task of drawing robot has been taught to write only one character

    Learning Motion Skills for a Humanoid Robot

    Get PDF
    This thesis investigates the learning of motion skills for humanoid robots. As groundwork, a humanoid robot with integrated fall management was developed as an experimental platform. Then, two different approaches for creating motion skills were investigated. First, one that is based on Cartesian quintic splines with optimized parameters. Second, a reinforcement learning-based approach that utilizes the first approach as a reference motion to guide the learning. Both approaches were tested on the developed robot and on further simulated robots to show their generalization. A special focus was set on the locomotion skill, but a standing-up and kick skill are also discussed. Diese Dissertation beschäftigt sich mit dem Lernen von Bewegungsfähigkeiten für humanoide Roboter. Als Grundlage wurde zunächst ein humanoider Roboter mit integriertem Fall Management entwickelt, welcher als Experimentalplatform dient. Dann wurden zwei verschiedene Ansätze für die Erstellung von Bewegungsfähigkeiten untersucht. Zu erst einer der kartesische quintische Splines mit optimierten Parametern nutzt. Danach wurde ein Ansatz basierend auf bestärkendem Lernen untersucht, welcher den ersten Ansatz als Referenzbewegung benutzt. Beide Ansätze wurden sowohl auf der entwickelten Roboterplatform, als auch auf weiteren simulierten Robotern getestet um die Generalisierbarkeit zu zeigen. Ein besonderer Fokus wurde auf die Fähigkeit des Gehens gelegt, aber auch Aufsteh- und Schussfähigkeiten werden diskutiert

    A Developmental Evolutionary Learning Framework for Robotic Chinese Stroke Writing

    Get PDF
    The ability of robots to write Chinese strokes, which is recognized as a sophisticated task, involves complicated kinematic control algorithms. The conventional approaches for robotic writing of Chinese strokes often suffer from limited font generation methods, which limits the ability of robots to perform high-quality writing. This paper instead proposes a developmental evolutionary learning framework that enables a robot to learn to write fundamental Chinese strokes. The framework first considers the learning process of robotic writing as an evolutionary easy-to-difficult procedure. Then, a developmental learning mechanism called “Lift-constraint, act and saturate” that stems from developmental robotics is used to determine how the robot learns tasks ranging from simple to difficult by building on the learning results from the easy tasks. The developmental constraints, which include altitude adjustments, number of mutation points, and stroke trajectory points, determine the learning complexity of robot writing. The developmental algorithm divides the evolutionary procedure into three developmental learning stages. In each stage, the stroke trajectory points gradually increase, while the number of mutation points and adjustment altitudes gradually decrease, allowing the learning difficulties involved in these three stages to be categorized as easy, medium, and difficult. Our robot starts with an easy learning task and then gradually progresses to the medium and difficult tasks. Under various developmental constraint setups in each stage, the robot applies an evolutionary algorithm to handle the basic shapes of the Chinese strokes and eventually acquires the ability to write with good quality. The experimental results demonstrate that the proposed framework allows a calligraphic robot to gradually learn to write five fundamental Chinese strokes and also reveal a developmental pattern similar to that of humans. Compared to an evolutionary algorithm without the developmental mechanism, the proposed framework achieves good writing quality more rapidly

    Humanoid robot control of complex postural tasks based on learning from demostration

    Get PDF
    Mención Internacional en el título de doctorThis thesis addresses the problem of planning and controlling complex tasks in a humanoid robot from a postural point of view. It is motivated by the growth of robotics in our current society, where simple robots are being integrated. Its objective is to make an advancement in the development of complex behaviors in humanoid robots, in order to allow them to share our environment in the future. The work presents different contributions in the areas of humanoid robot postural control, behavior planning, non-linear control, learning from demonstration and reinforcement learning. First, as an introduction of the thesis, a group of methods and mathematical formulations are presented, describing concepts such as humanoid robot modelling, generation of locomotion trajectories and generation of whole-body trajectories. Next, the process of human learning is studied in order to develop a novel method of postural task transference between a human and a robot. It uses the demonstrated action goal as a metrics of comparison, which is codified using the reward associated to the task execution. As an evolution of the previous study, this process is generalized to a set of sequential behaviors, which are executed by the robot based on human demonstrations. Afterwards, the execution of postural movements using a robust control approach is proposed. This method allows to control the desired trajectory even with mismatches in the robot model. Finally, an architecture that encompasses all methods of postural planning and control is presented. It is complemented by an environment recognition module that identifies the free space in order to perform path planning and generate safe movements for the robot. The experimental justification of this thesis was developed using the humanoid robot HOAP-3. Tasks such as walking, standing up from a chair, dancing or opening a door have been implemented using the techniques proposed in this work.Esta tesis aborda el problema de la planificación y control de tareas complejas de un robot humanoide desde el punto de vista postural. Viene motivada por el auge de la robótica en la sociedad actual, donde ya se están incorporando robots sencillos y su objetivo es avanzar en el desarrollo de comportamientos complejos en robots humanoides, para que en el futuro sean capaces de compartir nuestro entorno. El trabajo presenta diferentes contribuciones en las áreas de control postural de robots humanoides, planificación de comportamientos, control no lineal, aprendizaje por demostración y aprendizaje por refuerzo. En primer lugar se desarrollan un conjunto de métodos y formulaciones matemáticas sobre los que se sustenta la tesis, describiendo conceptos de modelado de robots humanoides, generación de trayectorias de locomoción y generación de trayectorias del cuerpo completo. A continuación se estudia el proceso de aprendizaje humano, para desarrollar un novedoso método de transferencia de una tarea postural de un humano a un robot, usando como métrica de comparación el objetivo de la acción demostrada, que es codificada a través del refuerzo asociado a la ejecución de dicha tarea. Como evolución del trabajo anterior, se generaliza este proceso para la realización de un conjunto de comportamientos secuenciales, que son de nuevo realizados por el robot basándose en las demostraciones de un ser humano. Seguidamente se estudia la ejecución de movimientos posturales utilizando un método de control robusto ante imprecisiones en el modelado del robot. Para analizar, se presenta una arquitectura que aglutina los métodos de planificación y el control postural desarrollados en los capítulos anteriores. Esto se complementa con un módulo de reconocimiento del entorno y extracción del espacio libre para poder planificar y generar movimientos seguros en dicho entorno. La justificación experimental de la tesis se ha desarrollado con el robot humanoide HOAP-3. En este robot se han implementado tareas como caminar, levantarse de una silla, bailar o abrir una puerta. Todo ello haciendo uso de las técnicas propuestas en este trabajo.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Manuel Ángel Armada Rodríguez.- Secretario: Luis Santiago Garrido Bullón.- Vocal: Sylvain Calino
    corecore