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SUMMARY 

To this day, robotic rehabilitation has not met its promise. It did not revolutionize 
rehabilitation of patients after stroke or spinal cord injury yet. One of the challenges 
hampering this goal is the control and communication interface between the human and the 
machine. Currently, commercial exoskeletons replay pre-defined gait patterns, while research 
exoskeletons replay optimized torque profiles or assist proportionally to electromyograms 
(EMG) signals. In most cases, the dynamics of the human musculoskeletal system is ignored, 
simplified or considered as a black-box. This dissertation goal is to endow wearable robots 
with numerical representations of the human body to enable robust and intuitive human 
control of wearable robots. To achieve this goal, a change of paradigm in control of wearable 
robots is proposed in this dissertation, going away form pure robotic control where the 
human is driven by the robotic device to a new paradigm where the human drives the robotic 
device.  

This dissertation presents the development of a new human-machine interface (HMI) for 
control of exoskeletons via a neuromusculoskeletal model driven in real-time by 
experimental EMGs and joint positions recorded from the user to predict joint torques. 
These predicted joint torques are then used to assist the user via exoskeletons. 

First, the development of a real-time version of the HMI previously created by Sartori et al 
was accomplished by incorporating a B-spline algorithm for real-time computation of the of 
muscle-tendon lengths and moment arms from joint positions. Furthermore, the 
computational efficiency of the HMI was increased so that computational time was brought 
below the muscle electromechanical delay (i.e. < 50 ms). Further work was done to create 
real-time inverse kinematics and inverse dynamics pipelines informed by experimentally 
recorded marker positions and ground reaction forces. This was tested on five healthy 
subjects where results showed that the developed HMI could estimate muscle-tendon forces 
and joint torques online with direct validation against inverse dynamics (gold standard). 
Results indicated that our HMI could extrapolate across new movements and new degrees 
of freedom that were not used to calibrate the model.  

Secondly, the developed HMI was employed to enable torque control of wearable 
exoskeletons. Tests were done on stroke and spinal cord injury patients performing seated 
rehabilitation motor tasks. Results demonstrated that the HMI translated human bioelectrical 
muscle activity in exoskeleton control commands leading to reductions in EMG amplitudes 
as well as variability in the patients' group.  

Thirdly, further tests were conducted on locomotion tasks with different modalities (speeds 
and/or elevations) with healthy users. This experiment proved the possibility to assist 
positively (i.e. reductions of EMGs and biological torques) across different locomotion tasks 
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and transitions across tasks. Results showed that the total human + exoskeleton torques were 
always similar between the exoskeleton assisting mode and when the exoskeleton was in 
minimal impedance (i.e. transparent mode). This means that force transfers between the 
human and the exoskeleton were created where the provided assistance was fully integrated 
by the human thereby lowering biological joint torque levels by the same amount as the 
received torques from the exoskeleton. 

The development of this new HMI offers new possibilities for control of robotic devices as 
well as opens new avenues in assistive wearable robotics. 

 

  



 

 

 

1 



 

 

9 

INTRODUCTION 

1.1 Motivation 
Each year 6,3 million people worldwide [1] and 174.000 people in the Netherlands1 suffer 
from a stroke episode with a total of 42,4 million survivors of strokes worldwide. Of those 
who have a stroke in the USA, 15% do not survive. From the survival group, only 10 % 
regain the full functionality and the rest will have to live with some kind of disability2. The 
impact of rehabilitation after stroke is still limited and the success of rehabilitation 
procedures is mainly dependent on the skill of the medical expert3. Furthermore, between 
250.000 and 500.000 persons suffer from a spinal cord injury (SCI) worldwide4. SCI patients 
have 2 to 5 times more chances to die prematurely than non-SCI.  

Moreover, there are additional causes of motor impairment such as amputation, after a 
traumatic accident (3% [2]), oncology linked diseases (3% [2]) and more importantly, vascular 
linked diseases (94% [2]) (for the lower-limb, data for the north of the Netherlands). 
Unfortunately, only 66% return to work after amputation for lower-limb and 53% to 100% 
for upper-limb [3]. The return to work after amputation can be halted by the restricted 
mobility inherent to prostheses [3]. 

Finally, in factory settings, work-related injuries may lead to musculoskeletal disorders, loss 
of quality of life and have a negative economic impact. The 12th-month prevalence of 
musculoskeletal disorder ranges from 2.3 to 41% and the lifetime prevalence can be up to 
29% [4] (for upper-limb).  

Neuromusculoskeletal injury's impact on the quality of life could be mitigated by assistive 
wearable robotic devices. These robotic devices can take the form of exoskeletons, as well 
as prostheses for amputees and allow to provide forces in parallel (i.e. exoskeletons) or in 
series (i.e. prostheses) to a joint. For rehabilitation, they can be fully ambulatory like the 
EksoNR5 (Ekso Bionic, USA) or Rewalk Personal6 (Rewalk, USA). They can also be non-
ambulatory with a fixed support base like the Lokomat7 (Hocoma, Switzerland). For 
prostheses, the most common and technologically advanced upper-limb prostheses are the 

 
1 https://www.hersenstichting.nl/alles-over-hersenen/hersenaandoeningen/cijfers-over-
patienten 
2 http://www.stroke.org/we-can-help/stroke-survivors/just-experienced-stroke/rehab 
3 https://www.healthline.com/health/stroke/recovery#outlook6 
4 https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury 
5 https://eksobionics.com/eksohealth/ 
6 https://rewalk.com/rewalk-personal-3/ 
7 https://www.hocoma.com/solutions/lokomat/ 
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Michelangelo8 hands and Bebionic9 hand from Ottobock, Germany. For the knee, the 
Genium10 and for the ankle, the empower11, are the most advanced lower-limb prostheses 
also developed by Ottobock. Finally, in an industrial setting, most of the proposed 
exoskeletons are aimed for the back and are passive like the Laevo V212 (Laevo, the 
Netherlands) and the EskoVest13 (Ekso Bionic, USA). See part 7.1.1 of the Appendix for a 
presentation of the current state of the art on the research wearable devices used in this 
dissertation.  

Assistive wearable robotic devices are already in use but suffer from limitations. Assistive 
robotic devices for rehabilitation allow higher intensity training than classic rehabilitation 
without robotic devices and demand less manpower from physiotherapists. However, each 
stroke patient is unique and most of the robotic devices do not account for that. Moreover, 
rehabilitation relies on the patient’s voluntary involvement in the task to activate 
neuroplasticity, something current robotic devices do not easily enable as the user does not 
fully voluntarily control them. Furthermore, for prostheses, on average 25% of myoelectric 
prostheses users stopped or will stop using their prostheses because their quality of life does 
not improve [5] (for upper-limb). For the industrial setting, passive exoskeletons severely 
restrict the number of tasks that can be efficiently assisted as the springs that compose most 
of these passive devices and their line of action cannot be dynamically changed to adapt to 
new tasks. Moreover, active exoskeletons could potentially assist a wide variety of tasks but 
are limited by their controllers. 

The aforementioned limitations are due to the human-machine interface (HMI) of assistive 
robotic devices that cannot adapt to multiple tasks and do not offer voluntary control. HMI 
represents the connection between the human and the machine via kinematics, kinetics and 
bio-signals data recorded from the human. It also represents the connection between the 
machine and the human via the assistance provided. 

HMIs did not advance as much as their mechatronic counterpart (i.e., motor, computer 
power …) in assistive wearable robotics or as the electrode design and recording techniques 
(i.e., bio-signal recording, nerve interface …). For exoskeletons, a major paradigm shift on 

 
8https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-
overview/michelangelo-prosthetic-hand/ 
9https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-
overview/bebionic-hand/ 
10https://www.ottobockus.com/prosthetics/lower-limb-prosthetics/solution-
overview/genium-above-knee-system/ 
11https://www.ottobockus.com/prosthetics/lower-limb-prosthetics/solution-
overview/empower-ankle/ 
12 https://laevo-exoskeletons.com/laevo-v2 
13 https://eksobionics.com/eksoworks/ 
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mechatronic design happened with advances like soft exoskeleton [6] that promises to deliver 
a lightweight and more discrete exoskeleton (i.e. placed under clothes), and series-elastic 
actuation [7] that offers better torque or stiffness control. New electrode designs and bio-
electrical signal processing like high-density electromyography (EMG) recording [8] allow us 
to better understand motor control by the estimation of motor neuron activities. Also, 
surgical advances such as muscle reinnervation surgery [9], allow recording electrical impulses 
from previously cut nerves (i.e. connecting the missing muscles of the amputated limb). 
Tactile biofeedback via muscle reinnervation [10] promises to reroute tactile feedback from 
amputated limbs to cut nerves. 

For a long time, researches in HMI for wearable devices have considered the body as a black-
box, where biomechanical processes underlying human movement were ignored or 
simplified. Namely, the control and design of exoskeletons were mostly based upon 
mechanical inputs (i.e. mechanical assistance) -outputs (i.e. metabolic consumption, 
interaction forces between devices and users) of the user and ignored the internal properties 
of the human body that are influenced by the device. An instance of this black-box problem 
can be seen in the current state of the art approaches. Pre-recorded gait patterns are used to 
control exoskeletons for rehabilitation in the state of the art of commercially available devices 
(i.e., Lokomat, Hocoma, Switzerland). State of the art in exoskeleton control has proposed 
methods based on impedance control [11], pre-recorded torque pattern [6], and optimized 
torque pattern [12]. These solutions are limited in terms of flexibility and do not enable 
support of large sets of motor tasks, i.e. they do not allow other tasks than treadmill walking 
with the gait constrained in speed and do not allow start and stop of the gait. Moreover, 
current solutions have only had a modest impact on clinical scenarios involving 
neurologically impaired individuals. These modest impacts can partially be explained by the 
black-box paradigm used. In myoelectric prostheses, there are two main types of controllers, 
a direct EMG controller using two electrodes with one electrode controlling the positive 
ways (flexion) and the other the negative one (extension) from one degree of freedom 
(DOF). To change the controlled DOF the user has to produce a muscle co-contraction. 
The second kind of controller is based on machine learning algorithms, where EMG is used 
to classify movements. The first method allowed to achieve robust control but requires 
training of the user and allows control only one DOF at the time. The second method 
allowed a high level of recognition success (>90%) but is limited in the number of tasks or 
DOFs and is highly sensitive to changes in body-posture [13]. 

As we have seen, in HMI, kinematics or torque reference pattern based controllers are still 
in predominance limiting extrapolation of the controllers on untrained tasks. Biological 
signal-based controls do not investigate internal mechanisms of the human body limiting 
biomechanical benefices. As an alternative to current research on HMI that considers human 
as a black-box, a new class of methods using biomechanical modelling can be developed. 
This method is called neuromusculoskeletal modelling as it allows a biomechanical model 
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(i.e., the mechanical part) to estimate the user’s intention through EMG processing (i.e., 
surrogate of neural drive to muscles). This method is based on EMG-driven modelling, 
which is the virtual representation of the human body (i.e., kinematic and dynamic 
parameters) [14]. See Part 7.1.2 and 7.1.3 of the Appendix for a presentation of the human 
muscle physiology and EMG-driven modelling. This method was chosen because it offers 
to compute a large set of biomechanical outputs such as joint torques, muscle forces [14], 
joint contact forces [15], and joint stiffnesses [16] with a more wearable set of sensors than 
classic methods (i.e. inverse dynamics with static optimization). This large set of mechanical 
outputs is central for better understanding the impact of the wearable (i.e., the exoskeleton) 
on the wearer (i.e., the user) and thus offering better controllers. It also offers the advantage 
to be personalized [17] through calibration and scaling, which is of first importance for 
patients with multiple and different impairments or deficits. Moreover, this method is not 
bound to any task and does not need any further algorithm to switch between states to adapt 
to other tasks in contrary to other pre-computed torque or position patterns. Finally, this 
HMI solution can easily be adapted to other exoskeletons or body parts as only the 
substitution of the model to a new one needs to be done.  

Experiments and results presented in this dissertation were mainly conducted with 
exoskeletons on the lower-limbs. Nevertheless, as presented in this section, the issues of 
wearable robotic devices (prostheses and exoskeletons, for upper and lower-limbs) are 
common between them. The proposed HMI was tested on an upper-limb prosthesis [18] 
and an upper-limb soft exosuit [19] presenting the same biomechanical benefits as shown in 
this dissertation. 

1.2 Approach 
All along with this dissertation, the main tool for the developed HMI is a 
neuromusculoskeletal model, which is driven by EMG also referred to as EMG-driven 
modelling. This method is based on the Hill-type muscle model which is a numerical 
representation of the actual muscle, done by A. V. Hill [20] (See part 7.1.3.1 from the 
Appendix for the equations). In Fig. 1-1, a schematic representation of the developed HMI 
is shown. From the user, two signals were recorded, EMG signals and joint positions (Fig. 
1-1, in grey). These signals went first into an input stage (Fig. 1-1, in red) where they were 
filtered to remove artefacts and noises. The EMGs were further processed by normalization 
against the maximum voluntary contractions recorded offline. The filtered joint positions 
were sent to a surrogates stage (Fig. 1-1, in green) where muscle-tendon lengths and moment 
arms of the muscles were computed using cubic B-splines algorithm [21]. The muscle 
activations obtained after normalization of the EMGs and the muscle-tendon lengths were 
send to a musculo-tendon dynamics stage (Fig. 1-1, in blue) where muscle forces were 
computed. This stage is based on the Hill-type muscle model and previous works from Lloyd 
et al. [22] and Sartori et al. [14]. The muscle forces and moment arms were sent to a moment 
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 computation stage (Fig. 1-1, in blue) where the joint torques were computed (see section 
7.1.3.2 of the Appendix for the method used). The computed joint torques were sent to an 
assistance stage (Fig. 1-1, in purple) where they were used to control an assistive device like 
an exoskeleton or a prosthesis device. To obtain assistance, the joint torques were multiplied 
by a gain (from 10% to 70% for an exoskeleton and from 80% to 120% for a prosthesis). 
The assistance was delivered to the users via the device using a torque controller (see section 
7.1.1.2 of the Appendix). The neuromusculoskeletal model needs to be personalized to the 
user to obtain precise joint torque predictions. For this, a calibration stage was used (Fig. 1-
1, in cyan) to calibrate different muscle parameters such as maximal isometric force, tendon 
slack length, optimal fiber length, and EMG-to-activation shape factor [14]. An optimization 
procedure was used, which minimized the error between predicted joint torques and 
experimental joint torques by changing these parameters [14]. 

Such HMI has been used already to control orthoses for the arm [23] and the knee [24]. 
These are interesting proof of concepts but are still limited to one joint [24] or were not 
directly used to control a device [23]. In the next section, we are presenting the challenges 
still present for using an EMG-driven model as HMI for the control of assistive wearable 
robotic devices and we formulate the research questions linked to these challenges. 

1.3 Goal  
The main goal of this dissertation was to create and test a new HMI for lower-limb 
exoskeletons based on EMG-driven modelling.                         

To achieve this goal, this dissertation focused on creating a new class of HMI that gives 
knowledge of the human internal properties to the wearable robot controller. For the 
estimation of joint torques, the current gold-standard is inverse dynamics which computes 
joint torques using joint positions and ground reaction forces (GRF) [25]. One of the main 
issues of this method is that to record GRF, a force plate is needed, which is not a practicable 
solution when using a wearable robot. This is mostly due to the size of the force plates (only 
one step for each force plate) and the non-portability of them due to their weight. Another 
issue is that the user has to be able to produce enough force to create movements to be 
detected by inverse dynamics, which can be challenging for some patients. Another solution 
to compute joint torque would be to use machine learning but this approach suffers from 
extrapolation issues outside of the training data [26]. That is why EMG-driven modelling was 
chosen in this dissertation for computing joint torque as it offers full portability, only EMG 
and joint position are needed and offers accurate joint torque computation [14]. 
Unfortunately, there is currently limited research [23], [24], [27], [28] that bring EMG-driven 
modelling close to real-time performance (i.e. computation time below the electromechanical 
delay (EMD)) with a good trade-off between complexity and computation time for multiple 
degrees of freedom. Furthermore, its extrapolation capabilities, which are keys to possible 
exploitation with wearables devices are unknown. 
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From this, we have deducted the following research questions: 

1) Can real-time EMG-driven modelling achieve accuracy in joint torques close to the 
golden standard (Inverse dynamics)? 

2) Can real-time EMG-driven modelling achieve computation time within EMD? 
3) Can EMG-driven modelling extrapolate outside of its calibration data? 

Locomotion is crucial for giving back independence to paretic patients but walking with an 
exoskeleton can be arduous due to the added weight, kinematic constraints, and resistive 
force due to imperfect torque controllers. Thus, computing joint torques in real-time, as well 
as internal body parameters such as muscle forces during walking with an exoskeleton, can 
be challenging. It is unknown if the added inertia, weight, and assistance provided by the 
wearable robot could invalidate the predicted torque from the EMG-driven model. It is 
important to ensure the validity of the model since once the joint torque is computed, it will 
be used as assistance to support different locomotion modalities while wearing the 
exoskeleton. Moreover, assisting locomotion with an exoskeleton is extremely challenging 
[29]. Current research has shown that when using optimized torque profile assistance, 
metabolic consumption reduction can be obtained [29], [30]. Unfortunately, the limitations 
are multiple such as the torque profile being only valid for the task it was optimized on and 
the need for a long optimization process taking up hours of walking, which may not be 
feasible on patients.  

From this, we have deducted the following research question: 

4) Can predicted joint torques from EMG-driven modelling offer reduction in EMG 
and joint torques levels when used to assist via an exoskeleton healthy users during 
diverse locomotion modalities? 

Finally, the goal of this dissertation being to improve patients' mobility, experiments with the 
developed HMI on patients have to be done. This is extremely challenging for mainly two 
reasons. The first one being that to obtain the best results, the gold-standard calibration for 
the neuromusculoskeletal model requires diverse dynamic tasks like walking, squatting and 
so on. Unfortunately, this is not always feasible for all patients. So a different way of accessing 
patients’ data for calibration has to be developed. For that, the exoskeleton was used as a 
dynamometer and the recorded isometric tasks were used for calibration of the 
neuromusculoskeletal model. Then, the validity of the assistance delivered by the HMI, 
which is proportional to the predicted joint torques has to be accessed. It is unknown if joint 
torques computed by EMG-driven model driven by pathological EMG signals will allow 
positive assistance and reduction in EMG amplitudes and variabilities. 

From this, we have deducted the following research questions: 
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5) Can the developed HMI allow paretic patients to voluntarily control a robotic 
device? 

6) Can assistance via a robotic device based on EMG-driven modelling provide EMG 
amplitude and variability reductions in paretic subjects? 

1.4 Outline of this dissertation 
The dissertation follows the outline presented in the next paragraphs. 

The second chapter presents the development of a real-time EMG-driven model algorithm 
that validates the research questions 1) and 2) presented in the previous section. The 
possibility to use only a subset of all calibration tasks was also tested to validate the 
extrapolation capability of our HMI. 

The third chapter presents the combination of the Achilles ankle exoskeleton [31] (see 
Section 7.1.1.1.1 for a detailed description of the device) with our HMI to compute joint 
torques and internal body parameters such as muscle forces. This chapter also shows how 
muscle-tendon units were altered by the exoskeleton’s assistance. This chapter answers 
mainly research question 3). 

The fourth chapter presents the combination of our HMI with the H2 exoskeleton [32] (see 
Section 7.1.1.1.2 for a detailed description of the device). The possibility of calibrating our 
model on patients and having them receiving assistance in real-time based on their joint 
torques was investigated. Validation on seated tasks close to the ones done during 
rehabilitation therapy was realized. EMG amplitude reduction and EMG variability were 
used to assess if a benefit was given to the patient. This chapter answers our research 
questions 4) and 5). 

The fifth chapter presents the combination with the WE2 [33] exoskeleton (see Section 
7.1.1.1.3 for a detailed description of the device) and our HMI. The possibility of assisting 
during different locomotion modalities using the computed joint torques was tested. The 
walking tasks included two different speeds on three different inclinations in one long 
recording to also evaluate the transition capability between modalities. Validations of the 
results were done by looking at the reduction obtained at the level of EMGs and biological 
joint torques. This chapter answers our research questions 2), 3), 4) and 5). 

The sixth chapter presents an overall discussion of the key findings and their impact on the 
scientific community, the limitations of this work, the directions for future research, and a 
short conclusion.  
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ROBUST REAL-TIME 
MUSCULOSKELETAL 

MODELLING DRIVEN BY 
ELECTROMYOGRAMS 

Guillaume Durandau, Dario Farina, Massimo Sartori 

 

Abstract—Current clinical biomechanics involves lengthy data acquisition and time-
consuming offline analyses with biomechanical models not operating in real-time for man-
machine interfacing. We developed a method that enables online analysis of 
neuromusculoskeletal function in vivo in the intact human.  We used electromyography 
(EMG)-driven musculoskeletal modelling to simulate all transformations from muscle 
excitation onset (EMGs) to mechanical moment production around multiple lower-limb 
degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting 
musculoskeletal model parameters specific to an individual’s anthropometry and force-
generating capacity. We incorporated the modelling paradigm into a computationally 
efficient, generic framework that can be interfaced in real-time with any movement data 
collection system. The framework demonstrated the ability to compute forces in 13 lower-
limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in 
real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e. 
predicting accurate joint moments during six unseen tasks and one unseen DOF. The 
proposed framework can dramatically reduce evaluation latency in current clinical 
biomechanics and open up new avenues for establishing prompt and personalized 
treatments, as well as for establishing natural interfaces between patients and rehabilitation 
systems. The integration of EMG with numerical modelling will enable simulating realistic 
neuromuscular strategies in conditions including muscular/orthopaedic deficit, which could 
not be robustly simulated via pure modelling formulations. This will enable translation to 
clinical settings and development of healthcare technologies including real-time bio-feedback 
of internal mechanical forces and direct patient-machine interfacing. 

 Keywords—Electromyography; Extrapolation; Joint Moment; Musculoskeletal Modeling; 
Real-Time. 

Publication—G. Durandau, D. Farina and M. Sartori, "Robust Real-Time Musculoskeletal 
Modeling Driven by Electromyograms," in IEEE Transactions on Biomedical Engineering, vol. 
65, no. 3, pp. 556-564, March 2018.



Section: Robust Real-Time Musculoskeletal Modelling Driven By Electromyograms 

 

20 

 

2.1 Introduction 
Studying the neuromusculoskeletal (NMS) mechanisms underlying human movement is a 
fundamental challenge. This is central to characterize movement function and how it alters 
with pathology, thus providing a basis for devising personalized treatments. The study of 
human movement typically starts from the recording of experimental data including whole-
body kinematics, foot-ground reaction forces (GRFs) and muscle electromyograms (EMG). 
Computational NMS  models and simulations can be subsequently established to track 
experimental recordings, i.e. EMGs, GRFs, and marker trajectories [34]. This enables 
accessing internal body variables that are not easily measured experimentally [35], e.g. muscle 
force [36] or joint loadings [15].  

Musculoskeletal models based on inverse dynamics are currently operated offline and 
available in software packages such as OpenSim [25], AnyBody [37] and Biomechanics of 
Bodies14. Recent studies proposed online solutions, facilitating translation to clinical 
scenarios [38], [39]. In these methods, the multi-muscle recruitment problem is solved by 
navigating the solution space and selecting one muscle activation strategy that is optimal 
according to a priori defined physiological criteria, i.e. the minimal sum of squared activation 
[40]. However, pre-defined criteria cannot encompass an individual’s entire neuromuscular 
repertoire and its adaptations across conditions [41]. This motivated forward dynamics 

 
14 http://www.prosim.co.uk/BoB/ 

  

Figure 2-1: Schematics of the modeling framework. It is composed of four main parts including: 
movement data recording (A, B), plug-in system for data processing (C-E, with real-time inverse 
kinematics and inverse dynamics), musculoskeletal model calibration procedure and the real-time 
EMG-driven musculoskeletal modeling (F, G). The Calibration procedure and the BSpline 
coefficients computation are performed offline. Also see Section II. 
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methods where EMG is combined with numerical simulation to account for realistic 
neuromuscular strategies without making assumptions on muscle recruitment. These are 
referred to as EMG-driven musculoskeletal models [14], [22], [42]–[44]. The authors and 
colleagues have developed and used them for estimating internal body forces [22] tightly 
depend on multi-muscle co-excitation, such as joint loadings [15], [45] or joint stiffness [46], 
[47], where inverse dynamics methods would be challenged [48], [49]. 

Online EMG-driven modelling has been so far proposed and tested only in restricted 
conditions, i.e. about one single-degree of freedom (DOF) only [23], [24], [27], [28], on 
isometric tasks [27], and validated on the same tasks used for model calibration. Moreover, 
current online formulations did not model the full force-length-velocity properties of 
muscles [23], [24], [27], [28]. This all would prevent robust translation of these solutions to 
real-world applications. Although a real-time two-DOF upper limb model was recently 
proposed [50], this was not driven by actual voluntary EMGs but operated via synthetic 
simulated signals. Moreover, it was tested for computational speed on a desktop computer 
and was not validated on the ability of blindly predicting internal joint forces.   

We propose for the first time, an EMG-driven musculoskeletal modelling framework, that 
enables operating any musculoskeletal geometry model online and simulating the dynamics 
of multiple skeletal DOFs simultaneously. We tested the framework on the ability to predict 
joint moments from motor tasks and DOFs that were not used for calibration, 
demonstrating extrapolation capacity. We also demonstrated that the framework can operate 
online on low power embedded systems with computational latencies that are within the 
physiological electromechanical delay (EMDs). Our framework realizes processing steps that 

Figure 2-2: Workflow of the EMG-driven musculoskeletal modeling pipeline. From EMG-
excitations and joint angles to predicted internal joint moments. The diagram depicts, 
representatively, Soleus muscle variables and the net joint moment contributed by the muscles 
spanning the ankle plantar-dorsi flexion DOF. Angles are in radians, the EMG-excitations and 
activation are normalized. Fiber length, LMT and MA are in meter. Muscle forces are in Newton and 
joint moments in Newton-meter. 
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are normally performed by multiple software tools while providing real-time access to 
internal body variables, such as muscle activation, fiber length, contraction velocity as well 
as musculotendon length (Lmt), moment arm (MA), force and resulting net joint DOF 
moments. To enable further use in the scientific community we provide open-access to 
movement data and simulation at simtk.org15.  

The paper is organized as follows: Section II presents the model structure and 
architecture. Section III presents the experiments conducted. Section IV-VI provide results, 
discussion and conclusion remarks. 

2.2 Real-time EMG-Driven Modelling 
We developed a real-time musculoskeletal modelling pipeline driven by measured EMGs and 
motion-capture data based on our previous work (Fig. 1) [14], [21], [51]. The pipeline first 
stage (see IK & ID in Fig. 1E) is based on a mathematical representation of the dynamics 
and kinematics of the human whole-body encompassing 23 DOFs. The second stage (see 
BSpline in Fig. 1F), uses lower extremity joint kinematics (6 DOFs) to determine the 
underlying muscle-tendon kinematics, i.e. Lmt and MA. The third stage (see EMG-driven 
model in Fig. 1G), uses EMGs in conjunction with muscle-tendon kinematics to compute 
musculotendon force and resulting joint moments in the knee and ankle joints (Fig. 2). 

The real-time framework was developed in ANSI C++ (Fig. 1). It comprises two plug-in 
modules for direct connection with external recording devices (Fig. 1A-B) and with the 
OpenSim application programming interface (API, Fig. 1E-F). Moreover, it comprises a 
modelling component for the computation of musculotendon kinematics based on our 
previously developed Multidimensional Cubic BSpline (MCBS) method (Fig. 1F) [21] as well 
as a component for the simulation of musculotendon dynamics based on the previously 
developed Calibrated EMG-informed Neuromusculoskeletal Modeling (CEINMS) method 
[14], [51] (Fig. 1G). 

2.2.1 Software Plug-In 
The first plug-in module enables TCP/IP direct connection to external EMG amplifiers (Fig. 
1A). It records raw EMGs and extracts amplitude-normalized linear envelopes. The 
processing steps include high-pass filtering, full-wave rectification, and low-pass filtering. For 
each subject and muscle, the resulting EMG linear envelopes were amplitude-normalized 
with respect to the peak-processed values obtained from the entire set of recorded trials 
including both isometric maximal voluntary contractions (MVCs) and dynamic trials. This 
assured EMG linear envelopes always varied between 0 and 1, an important requirement for 

 
15 https://simtk.org/projects/rems 
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 musculotendon unit (MTU) force-production modelling. Filtered and amplitude-normalized 
EMGs will be referred to as muscle excitations. The second plug-in module enables TCP/IP 
direct connection to external motion capture (MOCAP) systems (Fig. 1B). It records and 
processes three-dimensional marker trajectories and GRFs to derive joint angle and joint 
moment estimates via real-time inverse kinematics (IK) and inverse dynamics (ID) 
performed using the OpenSim API. The module low pass filters the three-dimensional 
marker trajectories and rotates them from the MOCAP system reference frame into the 
OpenSim reference frame (Fig. 1D). The OpenSim model used for the IK and ID procedure 
is taken from [52] and comprises 23 DOFs.  

We extended the OpenSim single-thread IK algorithm into a multi-thread algorithm that 
produced real-time estimates (i.e., at 100Hz) of three-dimensional joint angles from filtered, 
rotated marker trajectories (Fig. 1E). In this, we established a direct TCP/IP connection to 
the MOCAP system to record markers trajectories and stream them to the OpenSim API 
framework (Fig 1B-E). The IK problem in OpenSim is solved via static optimization. For 
each time frame, three-dimensional joint angles are computed to minimize the root mean 
squared error (RMSE) between a set of virtual markers attached to the OpenSim 
musculoskeletal model anatomical landmarks and the corresponding set of experimental 
markers placed on the same anatomical landmarks of each subject [25]. To obtain real-time 
IK capability, we ran simultaneously multiple optimizations on different threads within a 
multi-stage pipeline. When a single frame of experimental marker trajectory is received, it is 
assigned to one thread, which performs one IK optimization. When a new experimental 
marker trajectory is received and the previous thread has not yet completed by the IK 
optimization, a new thread is established to perform concurrent optimization. The initial 
parameters used for the up-coming optimization stage are the latest computed DOF angles 
available. The plug-in also records experimental GRFs, low pass filters them and computes 
the resulting foot-ground center of pressure (COP, Fig. 1C). Filtered GRFs and COPs are 
rotated from the force plate reference frame into the OpenSim reference frame (Fig. 1D). 
The plug-in employs a Kalman filter [53] to process IK-generated joint angles and computes 
dynamically consistent estimates of joint angular velocity and acceleration (Fig. 1D). The 
Kalman filter parameters are derived as described previously [53]. Filtered and rotated GRFs, 
COPs, as well as Kalman, filtered joint angle, velocity and acceleration are streamed to the 
OpenSim API for the ID calculation and subsequent computation of the resulting joint 
moments (Fig. 1E). We refer to these to as the “experimental moment”. 

  



 

 

25 

 

Fi
gu

re
 2

-4
: J

oi
nt

 m
om

en
ts

 e
st

im
at

ed
 v

ia
 re

al
-ti

m
e 

E
M

G
-d

riv
en

 m
od

el
in

g 
an

d 
in

ve
rs

e 
dy

na
m

ic
s. 

Re
su

lts
 re

po
rt 

m
ea

n 
(s

ol
id

 li
ne

s)
 a

nd
 st

an
da

rd
 d

ev
ia

tio
n 

(d
ot

te
d 

lin
es

) v
al

ue
s a

cr
os

s a
ll 

su
bj

ec
ts

 a
nd

 tr
ia

ls.
 R

es
ul

ts
 d

ur
in

g 
ga

it 
ta

sk
s a

re
 re

po
rte

d 
ov

er
 th

e 
st

an
ce

 p
ha

se
 w

ith
 0

%
 b

ei
ng

 h
ee

l s
tri

ke
 a

nd
 1

00
%

 to
e-

of
f. 

Th
e 

re
m

ai
ni

ng
 

ta
sk

s a
re

 re
po

rte
d 

as
 a

 fu
nc

tio
n 

of
 th

e 
m

ov
em

en
t c

yc
le

. T
he

 ta
sk

s t
o 

th
e 

le
ft 

of
 th

e 
ve

rti
ca

l r
ed

 li
ne

 w
er

e 
no

t u
se

d 
fo

r t
he

 m
od

el
 c

al
ib

ra
tio

n 
pr

oc
ed

ur
e 

(S
ec

tio
n 

II
-B

), 
i.e

. t
he

se
 a

re
 re

fe
rr

ed
 to

 a
s 

ex
tra

po
la

tio
n 

ta
sk

s. 
Th

e 
de

gr
ee

s 
of

 fr
ee

do
m

 (D
O

F)
 b

el
ow

 th
e 

ve
rti

ca
l r

ed
 li

ne
 w

er
e 

no
t u

se
d 

fo
r c

al
ib

ra
tio

n,
 i.

e. 
ex

tra
po

la
te

d 
D

O
F.

 
 



Section: Robust Real-Time Musculoskeletal Modelling Driven By Electromyograms 

 

26 

2.2.2 EMG-driven modeling 
The alternative pathway to joint moments is via EMG-driven musculoskeletal modelling (Fig. 
1G). In this scheme, the same musculoskeletal geometry model used for the IK and ID 
calculations is employed (Section III). We computed EMG-dependent forces for 13 MTUs 
spanning the knee and ankle joints. These included: semimembranosus, semitendinosus, 
biceps femoris long and short head, tensor fasciae latae, rectus femoris, vastus medialis, 
vastus intermedius, vastus lateralis, gastrocnemius medialis, gastrocnemius lateralis, soleus 
and tibialis anterior.  We used a subset of the IK-generated whole-body angle estimates. 
These are six lower extremity DOFs defining the kinematics of the 13 selected MTUs, 
including subtalar flexion, ankle flexion-extension, knee flexion-extension, hip abduction, 
hip flexion-extension, and hip internal-external rotation [52]. IK-generated joint angles about 
the six selected DOFs are used to determine the underlying MTU kinematics, i.e. Lmt and 
MA (Fig. 1F). To achieve real-time performance we integrated into our framework the MCBS 
method we previously developed [21] (Fig. 1F). This synthesizes the complex MTU paths 
defined in large-scale OpenSim musculoskeletal geometry models into a set of MTU-specific 
multidimensional cubic Bsplines. This enables accurate computation of kinematic-dependent 
length and moment arms for all MTUs at the fastest computational speed to date, allowing 
the use of embedded systems with limited power.  

EMG-excitation, Lmt and MA estimates are then used to compute EMG-dependent 
MTU force and joint moment estimates (Figs 1G and 2). EMG-excitations are processed via 
a non-linear transfer function to determine the muscle fiber twitch dynamics in response to 
EMG-derived muscle excitation, as previously proposed [54]. Tendons were modelled as 
fiber series elements of constant tendon slack length. Resulting musculotendon forces were 

Figure 2-5: Filtered and normalized EMGs across all tasks for muscles including (from top to 
bottom): semimembranosus, biceps femoris, tensor fasciae latae, rectus femoris, vastus medialis, 
vastus laterals,  gastrocnemius lateralis,  gastrocnemius medialis, soleus and tibia anterior. 
 



 

 

27 

transferred to the joint via moment arms with no modelled ligament contribution. This 
enabled substantial computation speed with little to no loss of accuracy with respect to elastic 
tendon elements in the estimation of joint moments, as we previously proved [55].  

We developed a calibration procedure for deriving MTU parameters that determine 
subject-specific MTU-force generating capacity and that vary nonlinearly with subject 
anthropometry (Fig. 1F). These included MTU-specific optimal fiber length and tendon slack 
length, grouped maximal muscle forces, and a global excitation-to-activation shape factor 
[35]. In the first stage, the calibration procedure computes BSpline coefficients necessary for 
the estimation of Lmt and MA. The OpenSim API is used to derive Lmt nominal values for 
all MTUs spanning the ankle subtalar-flexion, ankle flexion-extension and knee flexion-
extension DOFs. Using these data, the piecewise polynomial coefficients are computed for 
every order of the BSpline. The order of the BSpline depends on the number of DOFs 
crossed by an MTU. The second stage determines subject-specific values of optimal fiber 
length and tendon slack length specifically for each MTU, as previously described in [56]. An 
optimization procedure determines tendon slack length and optimal fiber length values so 
that normalized muscle fiber length and tendon strain between the scaled and unscaled 
musculoskeletal geometry models are preserved across DOF functional operating ranges 
[56]. The third stage uses a constraint optimization to vary between pre-defined boundaries 
the EMG-to-activation shape factor parameter (i.e. between -3 and 0), the MTU maximal 
isometric force (i.e. scaled by factors between 0.5 and 1.5) and further refine the previous 
estimates of optimal fiber length (i.e. within ± 2.5 % of its initial value) and tendon slack 

Figure 2-6: Normalized musculotendon unit (MTU) force computed via the EMG-driven model 
across all tasks for MTUs including (from top to bottom) the semimembranosus, semitendinosus, 
biceps femoris long head, biceps femoris short head (BFS), tensor fasciae latae, rectus femoris, vastus 
medial, vastus intermedius, vastus lateralis, gastrocnemius medialis, gastrocnemius lateralis, soleus, 
tibia anterior. 
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length (i.e. within ± 5% of its initial value). Parameters are varied using a simulated annealing 
procedure [57] until the discrepancy between experimental and predicted joint moments is 
minimized over a range of calibration trials (Section III). We developed a graphical user 
interface (GUI) to enable real-time visual feedback of modeling steps including IK and ID 
calculations, EMG-muscle excitation processing as well as EMG-driven model-based 
estimation of MTU and joint variables. The video available in the supplementary material 
shows the real-time modeling framework being used on one individual subject. 

2.3 Experimental Procedures 
The University Medical Center Göttingen Ethical Committee approved all experimental 
procedures. Five healthy men (see Table I) volunteered for this investigation after providing 
signed informed consent. Data were recorded and processed in real-time using the modelling 
framework described in Section II, depicted in Fig. 1, and displayed in the supplementary 
video.  

EMGs were recorded using a 256-channel EMG amplifier (OTBioelettronica, Italy) at 
2048Hz. The high-pass filter was a second-order Butterworth filter with 30Hz cut-off. The 
low-pass filter was a second-order Butterworth with a 4Hz cut-off. We recorded EMG 
signals from 10 muscle groups including: rectus femoris, lateral and medial hamstrings, vastus 
medialis and lateralis, tensor fasciae latae, gastrocnemious medialis and lateralis, soleus and 
tibialis anterior. Muscle group EMGs were allocated to individual MTUs defined in the 
modelling framework (Section II.B). In this allocation, two MTUs that shared the same 
innervation and contributed to the same mechanical action were assumed to have the same 
EMG pattern. According to this convention, the lateral hamstring EMGs drove both the 
biceps femoris short head and long head MTUs. The medial hamstring EMGs drove both 
the semimembranosus and the semitendinosus MTUs. The vastus intermedius EMG activity 
was derived as the mean between the vastus lateralis and vastus medialis EMGs [14]. All 
remaining MTUs had dedicated EMG channels. A set of 29 retroreflective markers was 
placed on the trunk and lower extremity, as previously described [14]. Three-dimensional 
marker trajectories were recorded using a seven-camera motion capture system (Qualisys, 

Table 2-1: Participants' Anthropometric Properties and Locomotion Speed. 
 

Participant Age 
(years) 

Height 
(m) 

Weight 
(Kg) 

Gait Speed (m/s) 
Free Fast Backward 

1 26 1.77 73 0.66 0.74 0.59 
2 31 1.82 70 0.68 0.93 0.43 
3 34 1.82 67 0.65 0.70 0.31 
4 29 1.71 73 0.58 0.84 0.49 
5 28 1.86 85 0.66 0.96 0.63 
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Göteborg, Sweden) at 128Hz. Foot-ground reaction forces (GRFs) were recorded using two 
in-ground force plates (Bertec, Columbus, USA) at 2048Hz. The low-pass filter used for both 
marker and GRF data was a second-order Butterworth filter with 10Hz cut-off and a time 
group delay of 0.1-25ms with average delays in the order of 20ms. 

The subjects performed a static standing trial. The recorded marker trajectories were used 
to scale an OpenSim generic musculoskeletal model to match each individual subject’s 
anthropometry. MVC trials consisting of isometric contractions were performed for each 
muscle group for EMG normalization. The subjects performed three model calibration trials 
including one static standing trial, one single repetition of forward gait at a self-selected 
speed, and one single repetition of knee squat followed by calf rise. The model calibration 
procedure (Section II) was performed to minimize the discrepancy between predicted and 
experimental moments about the knee flexion-extension and ankle plantar-dorsiflexion 
DOFs. The subtalar-flexion DOF was not included in the calibration procedure. Validation 
trials included five additional repetitions of the calibration tasks (excluding the static standing 
task) as well as five repetitions of novel motor tasks including: backward gait at a self-selected 
speed, fast forward gait, knee squat, single-leg knee squat, calf rise, single-leg calf rise, knee 
squat followed by a vertical jump, and sidestepping. Motor tasks were chosen to underlie a 
variety of different neuromuscular strategies and produce a range of dynamic joint moments 
across knee and ankle joint DOFs.  

The whole real-time modelling framework (i.e. EMG-processing, IK, ID, and EMG-
driven modelling, Fig. 1) was operated on a laptop with dual-core processing unit (2.60GHz) 
and 16GB of RAM memory. Tests were also repeated using an embedded system (Raspberry 
Pi 2, Raspberry Pi Foundation, UK), which is a single-board computer with a four-core 
processing unit (900MHz) and 1GB of RAM memory. In this, joint angles and EMGs were 
read from file, i.e. we did not employ real-time EMG processing and IK computation. Three 
tests were performed for validating the framework capabilities.  

2.4 Results 
The first test verified the framework ability of computing joint angular positions in real-time 
via IK. Angles estimates about 23 articular joint DOFs were produced at an average rate of 
168±141Hz. Fig. 3 reports values derived about the knee flexion-extension, ankle plantar-
dorsiflexion, and ankle subtalar flexion across all motor tasks. These are the DOFs employed 
in the subsequent EMG-driven modelling pipeline. IK-generated angles reflect literature 
values across forward gait [58], backward gait [36], and squat tasks [59]. Table I summarizes 
locomotion speeds performed by all subjects as well as each individual’s anthropometry 
properties. Table I also show how self-selected locomotion speeds largely varied across 
participants generating a variety of different motor conditions to be predicted by the 
framework. 
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 The second test (Fig. 4) verified the real-time framework ability to estimate joint moments 
in real-time using the EMG-driven modelling pipeline using experimental EMG-excitations 
(Fig. 2) and IK-angles (Fig. 3). Results showed estimated joint moments being in agreement 
with ID generated joint moments (reference) derived using experimental GRFs and IK 
angles. Fig. 4 shows the model ability to predict moments during novel repetitions of the 
calibration trials including gait at a self-selected speed, knee squat with subsequent calf rise. 
Moreover, Fig. 4 also shows the model ability to extrapolate beyond calibration conditions. 
That is, to completely unseen motor tasks (i.e. extrapolation capacity: backward gait, sidestep, 
single-leg squat with calf rise, fast gait and vertical jump), and about one unseen DOF (i.e. 
ankle subtalar flexion). The largest Pearson coefficients r = 0.9±0.07 was observed at the 
ankle plantar-dorsiflexion DOF during gait at a self-selected speed. The smallest root mean 
square error (RMSE) was observed at the subtalar flexion DOF (0.01±0.01Nm/kg) during 
the single-leg squat task. Pearson coefficients were always greater than r = 0.43±0.36 with 
least favorable values observed at the knee flexion-extension DOF during gait at a self-
selected speed. The RMSE was always smaller than 0.37±0.12Nm/kg with the least favorable 
values observed at the knee flexion-extension DOF during the single-leg calf rise task. The 
EMG-driven model prediction accuracy during the unseen motor tasks was comparable to 
that observed during novel trials of the same type used for calibration. The RMSE and r 
variation from calibration to extrapolation trials was 0.02Nm/kg and 0.07 respectively at the 
knee flexion-extension, 0.003Nm/kg and 0.06 at the ankle plantar-dorsiflexion, and 
0.25Nm/kg and 0.12 at the ankle subtalar flexion. The task that displayed the largest 
prediction accuracy variation between calibration and extrapolation tasks was the single-leg 
knee squat with calf rise. The joint moments predicted both using EMG-driven modelling 

Figure 2-7: Computation time on the Raspberry Pi 2. The left-hand histogram depicts the 
computation time of MTU spline component. The right-hand histogram depicts the computation time 
of the EMG-driven model component. 
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and ID well reflected normative values found in the literature for tasks including gait [60], 
backward gait [61] and squat [62].  

Fig. 5 shows the EMG-excitations used for joint moment prediction across all tasks and 
muscles and reported for one subject. Excitations were found to assume values comparable 
for the forward gait[63], backward gait [64] and squat [62], for which literature data are 
available. During the knee squat, excitations from the quadriceps group assumed substantially 
high values in the knee extension part of the task. Similarly, calf muscle excitations assumed 
larger values during the calf raising part of the tasks. The jump task had comparable 
excitation patterns to the squat task particularly at the beginning and the end of the task.  

Fig. 6 shows the normalized force predicted for all MTUs across all motor tasks and reported 
for one subject. Results showed values matching literature data for gait [65] and squat tasks 
[62] for which values for comparison are available. Importantly, Fig. 5 and 6 highlight the 
non-proportionality existing between EMG-excitations and resulting forces, where 
modulations in EMG-excitations does not always correspond to a linear modulation at the 
force level. This reflects the non-linear EMG-to-activation transfer function (Section II) and 
the Hill-type viscoelasticity via force-length-velocity relationship.  

The third test (Figs 7 and 8) quantified the framework real-time computation performance 
when operated both on a laboratory desktop computer and on an embedded system. We 
used metrics including: the mean computation time and standard deviation measured across 
all simulation frames from all subjects and tasks, the maximal expected computation time 
within a 95% confidence interval assuming computation time frames with a normal Gaussian 

Figure 2-8: Computation time on a desktop computer. The histograms (starting from left) 
respectively depict computation times for the MTU spline, inverse kinematics, and EMG-driven 
model component as well as the total delay between EMG sampling time and multi-DOF moment 
computation. The inverse dynamics computation time is not reported as this is constant and does 
not add substantial latency to the workflow. 
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distribution, and the maximal expected computation time with a 90% confidence interval 
with no assumption on the computation time frame distribution, i.e. using the Chebyshev’s 
Theorem. Fig. 7 shows the computation time of the different components of the real-time 
EMG-driven pipeline (Fig. 1) on a desktop computer. 

 The MTU kinematics component (Fig. 1F) executed with a mean computation time of 
0.4±0.47ms with 95% of the samples being computed within 1.5ms. The inverse kinematics 
component (Fig. 1E) executed with a computational time of 10.1±8.5ms with 95% of the 
samples being computed within 28ms. The EMG-driven model (Fig. 1G) executed in 
0.301±0.65ms with 95% of the samples being produced within 1.6ms. Fig. 7 also shows the 
total delay from the EMG recording time to the multi-DOF moment computation, with the 
mean delay being 35±11ms and with 95% of the samples being produced within 55ms.  

Fig. 8 shows the computational time of the EMG-driven model and the MTU spline on 
the Raspberry Pi 2 embedded system. The MTU kinematics component (Fig. 1F) operated 
in 4.3±0.2ms with 95% of the samples being produced within 4.7ms. The EMG-driven 
model (Fig. 1G) operated in 2.7±0.48ms with 95% of the samples being produced within 
3.6ms. The video in the supplementary material displays the framework data recording, 
processing and musculoskeletal simulation capacity in real-time.  

2.5 Discussion 
We developed and validated a real-time framework for modelling and simulating the 
dynamics of the human NMS  system using EMG-driven modelling. The real-time 
framework enables recording and processing movement data (marker trajectories, GRF, 
EMGs) and determining reference three-dimensional joint angles and moments via real-time 
IK and ID. Moreover, it enables simulating how EMG-controlled muscle contractions 
transfer mechanical force to skeletal structures instantly during an individual’s movement. In 
this, EMGs enable simulating realistic subject-specific neuromuscular strategies across 
different individuals in conditions also including muscular/orthopaedic deficit, which could 
not be robustly simulated via pure modelling formulations [17]. In this study, we calibrated 
and tested the EMG-driven modelling pipeline using a lower extremity musculoskeletal 
geometry model with six DOFs (Section II). However, the proposed framework enables real-
time simulation of any musculoskeletal geometry model generated using the OpenSim 
modelling software package. 16 

The proposed framework enabled for the first time, robust estimation of muscle-
contributed joint moments about multiple DOFs simultaneously, during unseen dynamic 
motor tasks and DOF as well as using low power portable embedded systems. The joint 
moment estimation ability over the unseen motor tasks and DOFs was comparable to that 

 
16 http://simtk-confluence.stanford.edu:8080/display/OpenSim/ 
Musculoskeletal+Models 
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observed during novel repetition of the calibration tasks and DOFs (Section II). These results 
support the possibility of translating the proposed EMG-driven musculoskeletal modelling 
technique to real-world applications, i.e. computer-aided motor diagnosis and rehabilitation, 
human-machine interfacing, model-based control of assistive devices.  

Results from the first test (Fig. 3) revealed large variability about the subtalar angular 
position highlighting this DOF predominant function of leg stabilization. This appears to be 
an important element, especially when comparing single leg-squat with respect to double leg-
squat tasks (Fig. 3). These tasks display substantially different ankle moment trends (i.e. see 
ID moments in Fig. 4). This is explained by single leg-squat tasks requiring larger knee joint 
moment production (see knee extensors function, Figs 5-6) and greater ankle stabilization 
function (see ankle antagonist muscle co-activation, Fig. 5). In this, estimation accuracy of 
fine ankle moment modulation was limited in our modelling framework by the fact that not 
all ankle muscles were recorded. However, despite current limits, the proposed modelling 
formulation was able to provide joint moment estimates in close agreement to reference data 
(Fig. 4). The results also revealed that the EMG-driven model better predicted the ankle 
plantar-dorsiflexion moments than the knee flexion-extension moments. This is due to the 
larger number of muscle prime movers in the knee than in the ankle. It is important to stress 
that the central requirement in our system was to achieve real-time performance, for which 
we needed to address computational challenges across all modelling and processing stages 
(i.e. Figs 1-2). These included on-line data acquisition and filtering introducing data losses 
and phase shifts respectively. In this context, we employed standard TCP/IP data acquisition 
protocols not specifically designed for hard real-time performances. This all limited the 
prediction accuracy of our system when compared to previous offline studies [14], [22], [43]. 
Future work will develop ad-hoc data acquisition and processing hardware and software 
systems, which will better enable handling real-time constraints. 

Future work will investigate the real-time modelling formulation with a larger set of 
recorded EMG channels spanning the knee and quantify the associated model prediction 
sensitivity. Also, future work will explore whether high-density EMG can enable better 
estimates of muscle activity especially important during tasks underlying fine-control of 
muscle excitation and small modulations of force.  

The ability to predict muscle forces while distributing their force output along all spanned 
DOFs simultaneously enables addressing the indeterminacy of the muscle force distribution 
problem, which has been achieved here for the first time in real-time. We previously showed 
that EMG-driven models calibrated with respect to different single-DOFs generated 
different MTU force solutions for the same input data and MTU set [14]. On the other hand, 
our proposed real-time multi-DOF modelling formulation provides a unique MTU force 
solution that satisfies all DOFs simultaneously and is, therefore, more generalizable across 
novel conditions. This was reflected by the model ability to extrapolate both task-wise and 
DOF-wise (Fig. 4).  
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The ability to operate the modelling pipeline in real-time is important in the context of 
human-machine interfacing for wearable assistive devices as it would enable predicting 
internal body forces and the intended movement before they actually manifest in the human 
body. This would enable supporting individuals with reduced motor abilities but with 
detectable electrophysiological activity. Conversely, systems that operate on the basis of the 
detection of externally measurable forces (i.e., limb orthosis interaction force) would not 
provide support until the user has produced detectable interaction force.  

Results also revealed that the elements contributing to the total computational time 
included: (1) the motion capture system and IK algorithm, which relies on static optimization 
and therefore required substantial computational power and (2) the EMG recording system 
we used, which sends 30ms-packets of data over TCP/IP. The EMG-driven modelling 
pipeline used only a small portion of the total computation time, as depicted in Figs 7-8. 
Future work will use fully integrated EMG and position sensors, to decrease the 
computational latency and assure enhanced real-time capability using wearable solutions.  

The computational performance obtained using the embedded system (Fig. 8) revealed 
that 90% of predicted frames were computed with latencies comparable to those derived 
using a laptop system. Peak latencies were observed to be one order of magnitude larger than 
using a laptop computer system, however only in a small percentage of the cases.  

Future work will investigate the possibility of predicting multiple mechanical variables 
including those tightly dependent on muscle co-excitation such as joint stiffness [46]. This 
will underlie the employment of series elastic tendon elements as previously described  [46] 
and ligaments, thus enabling the accurate estimation of a greater range of mechanical 
variables. Future work will also focus on the use of co-excitation primitives [44] for relaxing 
sensory-constraints, i.e. the need for recording from large sets of muscles. Applications will 
also include the interfacing of our proposed framework with wearable assistive technologies 
for restoring (robotic exoskeletons) or replacing (artificial limbs) [17] lost motor capacity. In 
this context, previously proposed offline NMS modelling formulations demonstrated to 
successfully capture patient-specific musculoskeletal function in conditions including 
cerebral palsy [66][67], stroke [43] or quadriceps weakness [17]. In this, important muscle 
functional abnormalities could be modelled by optimizing the passive muscle stiffness 
parameters (i.e. muscle contractures) or using velocity-dependent feedback controllers (i.e. 
spasticity) [66]. 

2.6 Conclusion 
We proposed and extensively validated an online EMG-driven musculoskeletal modelling 
framework that simulates the dynamics of multiple muscular and skeletal DOFs 
concurrently. This will enable (1) filling the gap between data collection and advanced 
analysis, (2) out-of-the-lab analysis for understanding human movement beyond constrained 
laboratory conditions, and (3) translation to the clinics and to assistive technologies.  
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Abstract—The ability to efficiently assist human movement via wearable robotic 
exoskeletons requires a deep understanding of human-exoskeleton physical interaction. That 
is, how the exoskeleton affects human movement and how the human body reacts to robotic 
assistance. In this context, it is central to gain access to human neuromuscular states, i.e. 
neural activation to muscle, muscle fibers short-stretch cycle, tendon strain, musculotendon 
viscoelasticity. This would enable the personalized design of assistive devices and human-
exoskeleton interfaces with respect to a specific subject’s anatomy and force-generating 
capacity. Here we present a real-time electromyography-driven framework interfaced to a 
robotic bi-lateral ankle exoskeleton. This framework provides real-time information about 
joint and underlying muscle mechanics. We provide a quantitative evaluation of the real-time 
framework across a repertoire of human-exoskeleton locomotion tasks. We also show how 
this enables understanding of how robotic exoskeletons in parallel to human limbs contribute 
to alter normative musculoskeletal mechanics. This will open new avenues for the creation 
of symbiotic exoskeleton technologies that operate as an extension of the own body.  

Keywords—Exoskeletons; Muscles; Electromyography; Real-time systems; Computational 
modelling. 
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3.1 Introduction 
Until very recently robotic lower-limb exoskeletons could not assist human locomotion 

to provide a metabolic energy cost advantage. Achievements in this direction used first a 
tethered actuation [68] and later untethered [69] as well as unpowered devices [70]. These 
techniques obtained metabolic cost reduction by prescribing pre-defined joint moment 
patterns to the user as a function of the gait cycle. A generalization of this was subsequently 
proposed via human-in-the loop optimization controllers, where the joint moments to the 
human are optimized online [30]. However, these methods require a large amount of 
metabolic data before they can adapt to variations in human gait with consequent large 
reaction times, i.e. > 20 minutes [30]. As a result, current methods enable supporting 
constrained, pre-defined gaits with limited capability of equally well assisting different motor 
tasks as well as continuous transitions across tasks promptly, i.e. from locomotion to stair 
climbing, to stair descending.  

The availability of human-machine interfaces (HMIs) that can capture human 
movement intention and provide prompt support across multiple movements, as well as the 
transition between them, is crucial for enabling wearable robotic exoskeletons to impact 
broad socio-economic domains, ranging from neuro-rehabilitation to industrial worker’s 
aids, from human physical training to augmentation. A possible way to achieve this is to 
create HMIs that open a window into human neuromuscular states, i.e. neural activation to 
muscle, muscle fibers short-stretch cycle, tendon strain, musculotendon visco-elasticity. This 
is important as human movement directly emerges from the interplay between the nervous 
and musculoskeletal system [17], [71]. In this context, the ability to determine how an 
individual’s neuro-muscular states dictate movement is central for addressing one of the 
major challenges in the field of wearable robotics: personalizing the design of the assistive 
device an HMI to a specific patient’s anatomy, force-generating capacity and way of moving. 

HMIs have been proposed that enable supporting different tasks via manual user 
interfaces based on buttons panels [72], finite sate machines coupled with wearable sensor 
data (i.e. from inertial measurement unit (IMU) and foot-ground contact sensors [73]), or 
bio-electrical signals such as electroencephalography (EEG) [74]. Impedance controller [75], 
[76] or sensitivity amplification control [76] offer some levels of voluntary and continuous 
control but no reduction in metabolic consumption. These controllers require mechanical 
input from the user such as interaction moments, which can be difficult to generate in weak 
patients (e.g. stroke, spinal cord injury).  
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Further approaches rely on electromyography (EMG) signal to control exoskeletons. 
For example in [77], EMG amplitude is used as a proportional control input to a pneumatic 
actuator. Even if this gives access to the user’s intention it ignores the mechanical force 
contribution of the user, which in general does not vary linearly with EMG amplitude [71]. 
The work in [78] used muscle activation primitives derived from static optimization along 
with an oscillator gait phase detector and a fuzzy-logic classifier for task recognition to 
control a neuromusculoskeletal (NMS) model. This provides a step toward more natural 
assistance but still lacks to integrate human bio-electrical signals in the control loop. This 
limits the ability to account for an individual’s actual muscle activation patterns and force-
generating capacity with limited applicability to patients [17]. 

To enable optimal and personalized human-machine physical interaction we propose 
the development of control schemes that can close the loop at the human muscle level. This 
would enable optimal synchronization between human muscular contraction and device 
actuation, enabling the wearable robot to become a natural extension of the own body. 

This paper presents a computational framework for the real-time estimation of human 
neuromuscular states during a repertoire of human-exoskeleton locomotion tasks. This 
allows real-time recording and processing of neural surrogates, i.e. EMG-derived neural 
activations to muscles. Moreover, it enables creating subject-specific physiologically correct 
computational models of the musculoskeletal system. Overall this allows for the real-time 
simulation of the human musculoskeletal dynamics as controlled by incoming neural 
activations recorded in vivo. Knowing this neural surrogate and internal muscle parameters 
allows our framework to extrapolate outside of the task used for model calibration [79]. We 
tested this framework on an individual wearing the bi-lateral ankle exoskeleton Achilles [7]. 

Figure 3-1: Schematic representation of the framework and its interface with the Achilles ankle 
exoskeleton. See methods section for explanation of the individual components. 
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We show how the framework can be used to determine how different exoskeleton assistive 
modes contribute to alter the human muscle behavior, something central for the 
development of future symbiotic controllers. We also show how the current framework 
operates in real-time within the human muscle electromechanical delay, i.e. this deadline 
within an HMI would ensure the assistive device to be actuated synchronously with the user’s 
muscle mechanical function. 

3.2 Methods 
To open a window into human neuromuscular states, we created a real-time EMG-driven 
musculoskeletal modelling framework [14], [80]. This is based on the algorithm developed in 
[14] and later enhanced to work in real-time [79]. We interfaced the framework with the 
Achilles robotic exoskeleton, i.e. a bi-lateral orthosis powered via series-elastic actuation to 
support plantar-flexion [7]. A schematic representation of the framework and his interface 
with the Achilles is presented in Fig. 1. 

The EMG-driven musculoskeletal model (Fig. 1C) used is made of four degrees of 
freedom (DOFs), i.e. bi-lateral knee flexion-extension and ankle plantar-dorsiflexion. The 
model also includes 14 musculo-tendon unit (MTU) consisting of the Gastrocnemius 
Medialis right and left, Gastrocnemius Lateralis right and left, Soleus right and left, Tibialis 
Anterior right and left, Peroneus Brevis right and left, Peroneus Longus right and left and 
Peroneus Tertius right and left. 

Figure 3-2: Bar graph of the transfer time to send and receive information between the EMG-driven 
framework and the Achilles low level controller. 
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The EMG-driven model receives two inputs; I) EMG recordings and II) user’s ankle 
joint kinematics. We developed a plug-in to record in real-time EMGs signals from 10 muscle 
groups (Fig 1A) including:  Gastrocnemius Lateral and Medialis right and left, Soleus right 
and left, Tibialis Anterior right and left and Peroneus Longus right and left. This was done 
using a wireless Delsys Trigno system (Delsys inc., Massachusetts, USA). Each recorded 
muscle EMG was transmitted to its respective controlled MTU in the model. That is, the 
Peroneus Longus EMG controlled the Peroneus Longus, Peroneus Brevis and Peroneus 
Tertius MTUs in the model, the Tibialis Anterior  EMG controlled the Tibialis Anterior 
MTU, the  Soleus EMG controlled the Soleus MTU, the Gastrocnemius Medialis EMG 
controlled the Gastrocnemius Medialis MTU and the Gastrocnemius Lateralis controlled the 
Gastrocnemius Lateralis MTU. EMGs were recorded at a frequency of 2000Hz, then high 
pass filtered at 20Hz, rectified, low pass filtered at 6Hz and normalized using maximal EMG 
recorded during maximum voluntary contraction (MVC). 

Figure 3-3: Mean computed moments in real-time by the EMG framework and mean interaction 
moment recorded during calf rise for the right ankle for all repetition. 
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Ankle joint kinematics were recorded in real-time from the Achilles ankle exoskeleton 
angle encoders. This information was subsequently used to estimate musculotendon 
kinematics, i.e. MTU length (LMT) and moment arms (MA) [21]. Our previously proposed 
B-Spline algorithm was used to synthetize the subject-specific musculoskeletal model in a set 
of multidimensional spline function and convert joint angles into smooth LMT and MA 
online (Fig. 1B) [79] [21]. EMG recordings and MTU kinematics were used by the 
musculoskeletal model to compute the interplay between muscle fibers and series tendons. 
This is done via a computationally efficient implementation of the Hill-type muscle model 
[16], [55] providing online estimates of variables including: muscle force, fiber length, fiber 
velocity and pennation angle and also joints variables such as joints moments.  

To obtain output from the EMG-driven model matching a specific user, the model first 
needs to be scaled to match individual anthropomorphic properties. Then, muscle 
parameters need to be personalized to the user. For this, an optimization-based calibration 
procedure is used (Fig. 1D). We first pre-scale tendon slack length and optimal fiber length 
using the method described in [56]. We then use an optimization procedure to minimize the 
error between the moment computed by our framework and experimental moment obtained 
by the Achilles moment sensor by varying muscle parameters (i.e. tendon slack length, 
optimal fiber length, maximal isometric force and EMG-to-activation shape factor). During 
this calibration, the B-Spline coefficients are also computed. 

The real-time interface with the Achilles exoskeleton was done using the Ethernet for 
Control Automation Technology (EtherCAT) communication protocol. The EtherCAT 
plugin uses the TwinCAT software (Beckhoff Automation GmbH & Co. KG,  Germany) 

Figure 3-4: Mean position of the right ankle during calf rise over all repetition. 
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and an EtherCAT PCI slave card (FC1100, Beckhoff Automation GmbH & Co. KG,  
Germany) to communicate in hard real-time with the Achilles ankle exoskeleton. 
Furthermore, the plugin is sending information to the framework using the Automation 
Device Specification (ADS) protocol. The plugin sends right and left ankle position and right 
and left ankle interaction moment to the framework (Fig. 1E). 

The Achilles exoskeleton is an autonomous ankle exoskeleton. The exoskeleton is actuated 
by a series elastic actuator, where a Maxon ECC22 motor (Maxon Motor AG, Switzerland) 
with a SH6x2 ball-screw gear (SKF, Sweden) moves a custom designed leaf spring. The 
exoskeleton is controlled from a computer running Linux in a backpack. Simulink 
(MathWorks, US) is used for the high-level control, which interfaces with EtherCAT that 
controls the motor drive, an EPOS3 70/10 EtherCAT (Maxon Motor, Switzerland). The 
Achilles exoskeleton is controlled as follows. The desired reference moment is converted to 
a reference position of the ball screw. This position is then converted to a target velocity that 
is sent to the drive. Therefore, a filtered derivative of the position is added to the unfiltered 
position error. In the drive (EPOS3), the signal is converted to a motor current using two 
cascaded PI controllers. The EMG-driven framework and the TwinCat software were 

Figure 3-5: Work loop of the right soleus muscle during calf rise and the projection of the work 
space of the normalized fiber length on the active fiber force-length relationship curve (subplot). 
The Y axis represents the mean muscle force and the X axis represented represent the normalized 
fiber length (i.e. fiber length divided by optimal fiber length). 
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operated on a desktop computer (Intel i7. 3.4 GHz (Intel, Santa Clara, CA, US), 12 Gb RAM, 
Windows 7) with the PCI EtherCat slave card installed on it. This computer was connected 
to the Achilles computer (NUC computer, Intel i3 1.8 GHz (Intel, Santa Clara, CA, US), 16 
Gb RAM, Linux) via an Ethernet cable. 

3.3 Experiments 
To test the interface and the framework, we conducted experiments with one healthy subject 
(male, 73Kg, 28 years old, 177 cm). EMG sensors were first placed on the ankle of the subject 
with respect to the muscles area. After placement, MVCs were performed for the 
normalization of the EMG during the rest of the experiment. Once MVC realized, the 
subject was asked to wear the Achilles ankle exoskeleton. The exoskeleton was then turned 
on and locked in position at an angle of around 90 degrees for both legs, for the rest of the 
experiment the Achilles was unlocked. The subject was then asked to realize isometric plantar 
dorsiflexion against the exoskeleton. These allow us to record isometric moments using the 
interaction moments sensor. This recording was used to calibrate the model. After the 
calibration, which takes less than 10 minutes, different locomotion tasks were realized with 
the EMG driven model framework computing in real-time joint moments and internal 
muscles parameters. The first task was to realize a series of calf rises. The second task was to 

Figure 3-6: Peak of the absolute value of the computed moment for the gait task on treadmill for 2 
km/h and 3 km/h and two conditions, with and without minimal impedance. 
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walk on a treadmill with a speed of 2 km/h and 3 km/h. The last task was to realize over-
ground locomotion directly followed by a stair ascension without pause during the two. 
Every task was realized with two exoskeleton operating modes: I) with the minimal 
impedance control and II) with motor off, thereby having the passive compliance of the 
motor acting on the human limb.  

An instance of the experiments can be seen in Movie 1. Across all experiments, we 
quantified communication speed between the EMG-driven framework and the low-level 
controller of the Achilles exoskeleton. The time between the sending of the information 
from the framework and the receiving of the same information resend by the low-level 
controller was recorded. 

3.4 Results 
The first test reports bidirectional communication speed between the exoskeleton and 
computer unit (Fig. 2). The mean speed was 6.22±0.87 ms with a 95% confidence interval 
(two standard deviations) comprised between 4.51 and 7.93 ms. Speeds estimates were 
computed over 60000 data samples. 

The second test reports both ankle joint sagittal position recorded via exoskeleton 
encoders (Fig. 3), as well as the ankle plantar-dorsiflexion moment, computed in real-time 
by our framework (Fig. 4) during calf rise tasks. Fig. 3 shows that both exoskeleton assistance 
modes underlie similar ranges of motion (0.34 rad, with -0.1 rad offset difference) but 
different slopes (affecting task average speed). For the right ankle position the maximal angle 
was 0.17±0.006 rad and minimal angle -0.18±0.03 rad with minimal impedance and 
0.16±0.007 rad for maximal angle and -0.19±0.022 rad for a minimal angle without minimal 
impedance. Fig. 4 shows a pronounced change of peak moments across exoskeleton 
assistance modes. That is, that both human ankle moment and human-exoskeleton 
interaction moment were smaller using the minimal impedance controller. This is confirmed 
by the root means square (RMS) of the moments with a value of 0.26 Nm/Kg with minimal 
impedance and 0.007 Nm/Kg for the interaction moment and 0.51 Nm/Kg without minimal 
impedance and 0.068 Nm/Kg for the interaction moment.  

The third test provided access to muscle behavior. This was reported at the level of the 
force-length work loop for the soleus muscle during calf rise (Fig. 5). Exoskeleton assistance 
modes resulted in substantial modulation of the work-loop specifically pronounced on the 
force axis. The minimum normalized muscle force was 0.04 with minimal impedance and 
0.08 without minimal impedance, the maximum normalized muscle force is 0.29 with 
minimal impedance and 0.65 without minimal impedance. The minimal normalized fiber 
length is 0.89 with minimal impedance and 0.88 without it, the maximal normalized length 
is 1.05 with minimal impedance and 1.04 without it. Fig. 5 also shows that the operating 
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length range of the muscle was not altered across modes with the Soleus short-stretch cycles 
always centered around the plateau of the force-length relationship.  

The fourth test reported variation of the peak moment during gait at 2 km/h and 
3km/h (Fig. 6) as well as the peak muscle force during the same conditions (Fig. 7). In Fig. 
6, we can see that the user developed more moment when minimal impedance was not in 
use. The mean peak force developed during the gait at 2km/h with minimal impedance is 
0.45±0.065 Nm/Kg and 0.52±0.08 Nm/Kg for 3 km/h, without minimal impedance it was 
0.53±0.012 Nm/Kg for 2km/h and 0.55±0.26 Nm/Kg for 3 km/h. The cumulative (i.e. of 
all right leg muscles considered by the model) mean normalized force (Fig. 7) is with minimal 
impedance 1.35 for 2 km/h and 1.47 for 3 km/h and 1.64 for 2 km/h and 1.52 for 3 km/h 
without minimal impedance. The biggest contributor was the Gastrocnemius Medialis when 
normalized but the Tibialis Anterior was the biggest contributor in net forces in newton. 

The fifth test reported ankle muscles moment in the transition between gait to stair 
ascending task (Fig. 8). We can see the muscles moment computation continuity from start 
to stop and an increase in moments for plantar dorsiflexion muscles during stair ascending. 
In Movie 1, the different task can be visualized. 

3.5 Discussion 
The motivations behind this study were I) to develop a real-time version of our framework 
directly interfaced with a bilateral ankle exoskeleton, II) to have a proof of concept 
experiment that tests whether the framework can be applied over a range of locomotion 
tasks and III) to capture human-exoskeleton interaction at the level of muscle mechanics and 
how this is altered by exoskeleton assistive modes. 

Figure 3-7: Maximal forces for all muscles for the right ankle considered in the model during the 
gait task for 2 Km/h and 3 Km/h and two conditions, with and without minimal impedance. 
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 These steps are central toward the creation of novel task-independent controllers that can 
operate in symbiosis with the operator’s muscle and provide optimal assistance. 

Current HMIs using bio-electrical signals (i.e. EMG) do not fully account for the form 
and function of the human musculoskeletal system, thus limiting the ability to optimally 
support an individual based on residual force-generating capacity. Other HMIs based only 
on mechanical inputs are efficient for a specific task, but do not easily generalize to other 
tasks [6], [30] or do not provide a neuromuscular benefit [76], [78] (i.e. no metabolic 
reduction). Furthermore, these HMIs do not provide direct muscle level 
understanding of how they affect the wearer [81]. This article shows the ability to account 
for both the actual muscle activation (via EMG) and the user’s force-generating properties 
(via subject-specific modelling).  

Our results showed that our framework could run in real-time with a computation time 
always lower than 11 ms (i.e. Fig. 2). Having a framework with the smallest delay possible is 
important as a desynchronization between received moment from an exoskeleton and the 
wearer can increase metabolic consumption [30]. Results also showed the impact of 
exoskeleton assistance modes on the joint moment generation capacity (Fig. 4). In this, peak 
moment reductions result from the Achilles exoskeleton absorbing the gravitational 
contribution of the ankle moment. Fig. 5 shows that our proposed signal-driven modelling 
approach opens a window into muscle level mechanics when wearing the Achilles 
exoskeleton. This is central to understand the effect that the exoskeleton can have, positive 
or negative, on the wearer. Computed work-loops for the Soleus show that the muscle fibers 
operate on length ranges centrally located toward the optimal plateau (i.e. around 1) of force 
production in the active force fiber length relationship curve when minimal impedance is 
used. Achieving this type of measurement would normally involve long and offline 
experimental procedures using expensive ultrasound and dynamometer technology. Here we 
show that muscle mechanics estimates can be obtained in real-time using a fully wearable 
robot. The same reasoning can also be made for metabolic consumption, as muscle 
modelling can also compute metabolic energy costs [82], which can remove the need for 
expensive metabolimeter systems and give immediate result in real-time. Our results showed 
that moment reduction between minimal impedance and without minimal impedance (Fig. 
6) are more important at a walking speed of 2 Km/h (≈ 0.07 Nm/Kg) than at 3Km/h (≈ 
0.02 Nm/Kg). Moreover, these can be computed continuously as well as during transitions 
across motor tasks (Fig. 8). This offers an important opportunity for exoskeleton HMIs than 
conventional state machines. 

This study has limitations. The calibration procedure needs further experimental validation, 
i.e. via ultrasonography for muscle parameters or intramuscular pressure sensing for muscle 
force. Further, the transmission of mechanical moments from the exoskeleton to the 
biological ankle joint may be affected by joint misalignment. Composite human-exoskeleton 
models need to be developed to account for these factors. 
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3.6 Conclusion 
We have shown the possibility to have a muscle-level understanding of human-exoskeleton 
interaction during different locomotion tasks. We also showed that we can have a real-time 
interface between our framework and the Achilles ankle exoskeleton.  This will open new 
avenues for the creation of symbiotic exoskeleton and understanding the effect of 
exoskeleton on users. 
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VOLUNTARY CONTROL OF 
WEARABLE ROBOTIC 

EXOSKELETONS BY PATIENTS 
WITH PARESIS  VIA 

NEUROMECHANICAL 
MODELING 

Guillaume Durandau, Dario Farina, Guillermo Asín-Prieto, Iris Dimbwadyo-Terrer, Sergio Lerma-
Lara, Jose L. Pons, Juan C. Moreno, Massimo Sartori 

Abstract—Research efforts in neurorehabilitation technologies have been directed towards 
creating robotic exoskeletons to restore motor function in impaired individuals. However, 
despite advances in mechatronics and bioelectrical signal processing, current robotic 
exoskeletons have had only modest clinical impact. A major limitation is the inability to 
enable exoskeleton voluntary control in neurologically impaired individuals. This impacts the 
possibility of optimally inducing the activity-driven neuroplastic changes that are required 
for recovery. We have developed a patient-specific computational model of the human 
musculoskeletal system controlled via neural surrogates, i.e., electromyography-derived 
muscle neural activation surrogates. The electromyography-driven musculoskeletal model 
was synthesized into a human-machine interface (HMI) that enabled poststroke and 
incomplete spinal cord injury patients to voluntarily control multiple joints in a 
multifunctional robotic exoskeleton in real-time. We demonstrated patients’ control accuracy 
across a wide range of lower-extremity motor tasks. Remarkably, an increased level of 
assistance from the exoskeleton always resulted in a reduction in both amplitude and 
variability of muscle activations as well as in the mechanical moments required to perform a 
motor task. Since small discrepancies in onset time between human limb movement and that 
of the parallel exoskeleton would potentially increase human neuromuscular effort, these 
results demonstrate that the developed HMI precisely synchronizes the device actuation with 
the residual voluntary muscle contraction capacity in neurologically impaired patients. 
Continuous voluntary control of robotic exoskeletons (i.e. event-free and task-independent) 
has never been demonstrated before in populations with paretic and spastic-like muscle 
activity, such as those investigated in this study. Our proposed methodology may open new 
avenues for harnessing residual neuromuscular function in neurologically impaired 
individuals via symbiotic wearable robots. 
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4.1 Introduction 
The ability to walk directly relates to the quality of life. Neurological lesions such as those 
underlying stroke and spinal cord injury (SCI) often result in severe motor impairments (i.e., 
paresis, spasticity, abnormal joint couplings) that compromise an individual’s motor capacity 
and health throughout the life span. For several decades, scientific effort in rehabilitation 
robotics has been directed towards exoskeletons that can help enhance motor capacity in 
neurologically impaired individuals. However, despite advances in mechatronics and 
bioelectrical signal processing, current robotic exoskeletons have had limited performance 
when tested in healthy individuals [30] and have achieved only modest clinical impact in 
neurologically impaired patients [83], e.g., stroke [84], [85], SCI patients [86]. 

Two major challenges are hampering progress. The first is the inability of current systems to 
enable an individual patient to voluntarily control the robotic device while inducing a positive 
modulation of neuromuscular activity. This prevents wearable robots from optimally 
inducing the activity-driven neuroplastic changes that are required for recovery [87], [88]. 
The second is an incomplete understanding of how lesions in the central nervous system 
(CNS) impact musculoskeletal system function, which impedes understanding how patients’ 
motor intentions should be best supported by a robotic device.  

Following a brain lesion, secondary adaptation processes occur in the entire musculoskeletal 
system, i.e., alterations of muscles, ligaments and tendons properties [89]. In stroke survivors, 
this results in stiffness and disruption of muscle tone [90] followed by abnormal muscle 
contractile dynamics and consequent changes in locomotion control paradigms [83]. The 
scarcity of knowledge regarding the adaptation mechanisms taking place in the composite 
neuromusculoskeletal system has limited our ability to understand what drives impairment 
and therefore how to restore lost motor capacity via wearable robots. The development of 
human-machine interfaces (HMIs) that can take into account individual patients’ 
neuromuscular alterations is fundamental for enhancing the motor function of neurologically 
impaired patients [88]. 

HMIs in commercially available robotic exoskeletons for neurorehabilitation (e.g., Rewalk 
[91], Lokomat [92] and LOPES [75]) largely rely on position and impedance control [93], 
[94]. In these approaches, the robotic exoskeleton creates joint trajectories or force fields 
along predefined trajectories previously extracted from healthy populations [32], [95]. 
However, this does not fully engage the patient, limiting the emergence of positive 
neuroplasticity [96], with limited rehabilitation outcomes with respect to conventional 
therapy [85], [86]. Noncommercial robotic exoskeletons use more complex schemes 
including HMIs inspired by mechanical principles, e.g., predefined moment patterns 
triggered at specific phases of the gait cycle [6], [97], [98]. These approaches were recently 
applied to poststroke and cerebral palsy individuals [97], [99], [100]. However, such 
approaches are limited to supporting a cyclic gait under specific patterns and speeds, thus 
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limiting the patient’s self-pacing and voluntary control of the exoskeleton. A generalization 
of these methods was proposed via human-in-the-loop paradigms where moment patterns 
for the exoskeleton are optimized online to reduce the metabolic cost of locomotion [30]. 
Human-in-the-loop optimization, however, operates on large time scales. That is, for the 
wearable robot to react and adapt to movement variations, the controller needs to process 
several minutes of metabolic data (i.e., > 20 minutes), limiting current applications to healthy 
individuals only. Alternative approaches use sensitivity amplification control algorithms, 
where exoskeleton sensory information (i.e., interaction forces) is used to generate control 
commands [76], [101]. However, this paradigm does not provide support until the patient 
has produced detectable mechanical force or movement, thus critical in severely impaired 
individuals [17]. As a result, this has not been employed in patients to provide neuromuscular 
effort reduction [102]. 

Other HMI schemes rely on bioelectrical signals recorded from muscles or brain areas [103]. 
These methods could potentially enable exoskeletons to promptly respond and adapt to the 
patient’s motor intention, a central aspect of neurorehabilitation robotics [17], [83], [88]. 
Current schemes include neuro-fuzzy approaches [104] or proportional myocontrol methods 
[105]–[107] that use electromyograms (EMGs), sometimes in conjunction with foot-ground 
reaction forces, to generate direct control commands. However, these methods do not 
account for the nonlinearity between EMG amplitude and muscle mechanical force, the 
effect of which is especially important for the rehabilitation of neurologically impaired 
individuals [108]–[110]. As a result, these methods would not always enable optimal 
computation of exoskeleton assistive moments proportionally to the patient’s force-
generating capacity [71], [111]. This ultimately hinders patient-machine synchronization and 
limits the patient’s ability to control the exoskeleton voluntarily. Moreover, methods based 
on proportional myocontrol and foot-ground reaction forces [105], [106] are designed for 
cyclic locomotion where the subject receives support during a specific part of the gait cycle. 
However, these methods rely on detection of pre-defined gait events (e.g. foot-ground 
contact) and are tuned for a specific motor task (e.g. ground-level locomotion) and joint. 
Overall, this does enable continuous (event-free and task-independent) control of robotic 
exoskeletons. Alternative bioelectrical signals such as electroencephalographs [112]–[115] are 
currently limited in the context of robotic exoskeletons due to the high sensitivity of the 
signal to movement artefacts [74]. 

We have developed an HMI based on EMG-driven musculoskeletal modelling. This 
approach accounts for the form and function of the human neuromusculoskeletal system in 
neurologically impaired patients with paresis. We tested it in a wheelchair-bound patient with 
incomplete SCI and in two chronic hemiparetic post-stroke survivors with residual walking 
capabilities. Although EMG-driven musculoskeletal modelling was previously employed in 
conjunction with robotic devices [18], [23], [24] it was never applied to neurologically 
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impaired individuals to demonstrate neuromuscular activity reduction. To the best of our 
knowledge, our results demonstrate the first model-based HMI that enables neurologically 
impaired patients with paresis to voluntarily control multiple degrees of freedoms (DOFs) 
in complex robotic exoskeletons. Importantly, the results demonstrate that increased levels 
of exoskeleton assistance induced a positive modulation of neuromuscular activity across a 
large repertoire of motor tasks. This was reflected in a reduction in both the amplitude and 
the variability of muscle activations as well as in the resulting human joint moments required 
to perform a motor task. Since small discrepancies in onset time between human limb 
movement and that of the parallel exoskeleton can significantly increase human muscle effort 
[30], our results demonstrate that the proposed approach can precisely synchronize device 
actuation with human muscle contraction, which is especially challenging in pathological 
populations with paretic and spastic-like muscle activity.  

With neurorehabilitation in mind, it is important stressing that the goal of our HMI is not 
that of reducing the operator’s EMGs per se. The goal is rather that of amplifying the 
subject’s force-generating capacity to enable the mechanical moments necessary to execute 
motor tasks that could not otherwise be performed without the support of the exoskeleton. 

 

Figure 4-1: Schematic representation of the real-time modeling framework and its communication 
with the robotic exoskeleton. The whole framework is operated by a Raspberry Pi 3 single-board 
computer. The framework consists of five main components: (A) The EMG plugin collects muscle 
bioelectric signals from wearable active electrodes and transfers them to the EMG-driven model. 
(B) The B-spline component computes musculotendon length (Lmt) and moment arm (MA) values 
from joint angles collected via robotic exoskeleton sensors. (C) The EMG-driven model uses input 
EMG, Lmt and MA data to compute the resulting mechanical forces in 12 lower-extremity 
musculotendon units (Table 1) and joint moment about the degrees of freedom of knee flexion-
extension and ankle plantar flexion-dorsiflexion. (D) The offline calibration procedure identifies 
internal parameters of the model that vary non-linearly across individuals. These include optimal 
fiber length and tendon slack length, muscle maximal isometric force, and excitation-to-activation 
shape factors. (E) The exoskeleton plugin converts EMG-driven model-based joint moment 
estimates into exoskeleton control commands. Please refer to the Material and Methods section for 
an in-depth description. 
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The overarching goal of the experiments presented in this paper was to enable neurologically 
impaired patients to voluntarily control a multi-DOF robotic exoskeleton while receiving 
positive physical assistance [32]. In particular, the major objectives of this study were to test 
whether I) both healthy subjects and neurologically impaired patients could voluntarily 
control the angular position of the exoskeleton multiple joints accurately and II) whether our 
proposed framework could modulate the neuromuscular activity of healthy subjects and 
neurologically impaired patients (i.e., their muscle activations and resulting moments) as a 
function of different exoskeleton assistance levels with no loss of joint control accuracy. 

4.2 Methods 
We developed a computational patient-specific model of the human lower-extremity 
musculoskeletal system (Fig. 1). This enabled estimating the mechanical force produced in 
12 lower-extremity musculotendon units (MTUs, Table 1) as well as the resulting moments 
about knee flexion-extension and ankle plantar-dorsiflexion DOFs. Subject-specific models 
were built individually for four healthy individuals, one incomplete SCI patient and two 
hemiparetic stroke patients (Table 2). 

We demonstrated the feasibility of using real-time model-based joint moment estimates for 
the voluntary control of a robotic exoskeleton throughout a large repertoire of ankle-knee 
motor tasks. Our proposed framework schematic is depicted in Fig. 1. First, we describe the 
computational modelling framework structure. Then, we describe the movement data 
recording and testing protocol. 

4.2.1 Computational modelling framework 
EMG-driven musculoskeletal modelling framework: We developed an online framework that 
computes joint moments from EMG signals based on our previous works [14], [51], [79]. 
The framework comprises five main components (Fig. 1). The EMG plugin component (Fig. 
1A) provides a direct TCP/IP connection with the external EMG system. It records EMGs 
produced by active electrodes and sends them to the EMG-driven model component. 

The exoskeleton plugin component (Fig. 1B) records exoskeleton sensory information 
including human-exoskeleton interaction moments via strain gauges placed on every DOF, 
as well as the motor moments recorded via motor currents. This plugin assures the 
transmission of joint moments estimated via the EMG-driven model to the robotic 
exoskeleton. 

The musculotendon kinematics component (Fig. 1C) synthesizes MTU paths defined in the 
subject-specific geometry model (see Experimental Procedures Section below) into a set of 
MTU-specific multidimensional cubic B-splines. Each B-spline computes MTU length and 
moment arms as a function of input joint angles [21]. It enables fast and accurate 
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computation of smooth MTU kinematics, which is central for subsequent moment 
calculation [21]. 

The EMG-driven model component (Fig. 1C) converts eight input EMG signals into neural 
activation for 12 MTUs, as presented in Table 1. This is done using a 2nd-order twitch model 
(eq. 1) and a nonlinear transfer function (eq. 2)  [71], [79]:   

where 𝑢𝑢𝑗𝑗(𝑡𝑡) is the postprocessed EMG, 𝑒𝑒𝑗𝑗(𝑡𝑡) is the filtered EMG, 𝛼𝛼 is the filtering gain 
coefficient, 𝛽𝛽1and 𝛽𝛽2 are the recursive coefficients, t is the electromechanical delay, 𝑎𝑎𝑗𝑗(𝑡𝑡) is 
the muscle activation, A is the nonlinear shape factor and j is the muscle index. MTU-specific 
neural activation is used in combination with muscle and tendon kinematics to solve for the 
dynamic equilibrium between fibers and series elastic tendons in the computation of muscle 
force using a Hill-type muscle model (eq. 3) [16]: 

where 𝐹𝐹𝑡𝑡 is the tendon force, 𝐹𝐹𝑚𝑚 is the fiber force,𝜙𝜙(𝑙𝑙𝑚𝑚) is the pennation angle, 𝑙𝑙𝑚𝑚 is the 

fiber length, 𝑣𝑣𝑚𝑚 is the fiber velocity, 𝑓𝑓(𝑙𝑙𝑚𝑚) is the force due to the fiber force-length 
relationship, 𝑓𝑓(𝑣𝑣𝑚𝑚) is the force due to the fiber force-velocity relationship, 𝑓𝑓𝑝𝑝(𝑙𝑙𝑚𝑚) is the 
force due to the passive force-length relationship and 𝑎𝑎(𝑡𝑡) is the muscle activation from eq. 
2. Computed muscle-tendon forces are subsequently transferred onto skeletal joints via 
moment arms (from the musculotendon kinematics component ) to compute resulting 
moments about two sagittal DOFs. These included knee flexion-extension and ankle plantar 
flexion-dorsiflexion. Estimated joint moments are used to compute exoskeleton control 
command as follows (eq. 4):                   
  

where 𝜏𝜏𝑐𝑐 is the exoskeleton control command, 𝑀𝑀𝑗𝑗 is the estimated moment for joint j as a 
function of post-processed EMG of muscles m acting on the joint j and 𝑃𝑃𝑗𝑗 the position of 

𝑢𝑢𝑗𝑗(𝑡𝑡) =  𝛼𝛼𝑒𝑒𝑗𝑗(𝑡𝑡 − 𝑑𝑑) −  𝛽𝛽1𝑢𝑢𝑗𝑗(𝑡𝑡 − 1) − 𝛽𝛽2𝑢𝑢𝑗𝑗(𝑡𝑡 − 2)  

 

eq. 4.1 

 

𝑎𝑎𝑗𝑗(𝑡𝑡) = 𝑒𝑒𝐴𝐴𝑢𝑢𝑗𝑗(𝑡𝑡)−1
𝑒𝑒𝐴𝐴−1

  

 

eq. 4.2 

 

𝐹𝐹𝑚𝑚𝑡𝑡 =  𝐹𝐹𝑡𝑡 = 𝐹𝐹𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐�𝜙𝜙(𝑙𝑙𝑚𝑚)�  

=  �𝑎𝑎(𝑡𝑡)𝑓𝑓(𝑙𝑙𝑚𝑚)𝑓𝑓(𝑣𝑣𝑚𝑚) + 𝑓𝑓𝑝𝑝(𝑙𝑙𝑚𝑚)�𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐�𝜙𝜙(𝑙𝑙𝑚𝑚)� 

eq. 4.3 

 

𝜏𝜏𝑐𝑐 = 𝑀𝑀𝑗𝑗�𝑢𝑢𝑚𝑚(𝑡𝑡),𝑃𝑃𝑗𝑗� ∗ 𝐴𝐴𝑐𝑐𝑡𝑡𝑒𝑒  

 

eq. 4.4 
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joint j, and 𝐴𝐴𝑐𝑐𝑡𝑡𝑒𝑒 is the task’s specific constant (cte) gain that determines the assistance level. 
The assistance level 𝐴𝐴𝑐𝑐𝑡𝑡𝑒𝑒 , once chosen, remains constant throughout the experiment. 
Therefore, given a chosen 𝐴𝐴𝑐𝑐𝑡𝑡𝑒𝑒 , there is a fixed mapping between EMG and exoskeleton 
assistive moment.  

The model-calibration component (Fig. 1D) identifies subject-specific model parameters that 
vary nonlinearly across subjects’ anthropometric features and force-generating capacities. 
These include the muscle twitch activation/deactivation time constants, EMG-to-activation 
nonlinearity factor, muscle optimal fiber length, tendon slack length, and muscle maximal 
isometric force. The initial nominal parameters are repeatedly refined as part of a least-
squares optimization procedure so that the mismatch between the EMG-driven model’s 
predicted joint moments and those measured by the strain gauges of the robotic exoskeleton 
is minimized [116]. 

The low-level exoskeleton controller (Fig. 1E) transfers joint moment estimates to the main 
exoskeleton PID controller [32], which distributes moment commands to the motor drive 
and microcontroller (STMicroelectronics, Switzerland) of each joint.  

4.2.2 Communication Framework 
The whole real-time modelling framework (Fig. 1) operates on a portable low-power 
embedded system (Raspberry Pi 3, Raspberry Pi Foundation, UK) with a quad-core 
processing unit (1.20 GHz) and 1 GB of RAM memory. A custom board was built to 
digitalize EMG data recorded from active sensors with built-in hardware filtering (13E200, 
OttoBock, Duderstadt, Germany). The custom board was further connected to a wearable 
computer board through a Serial Peripheral Interface (SPI) bus to enable bidirectional 
communication. The robotic exoskeleton was connected to the embedded system running 
the modelling framework via a controller area network (CAN) protocol and a CAN board 
(Pican2, SP Pang, UK). 

4.2.3 Experimental Procedures 
Experimental procedures were divided into two parts, conducted on two consecutive days. 
The first part established the personalized musculoskeletal model and exoskeleton 
configuration, i.e., identified subject-specific model parameters and alignment of the human-
to-exoskeleton DOF center of rotation. The second part encompassed the exoskeleton 
voluntary control experiments reported in the Results section. 

First part – musculoskeletal model and exoskeleton personalization: Motion capture data were 
recorded (150 Hz) using a seven-camera system (BTS S.p.A., Italy) and a set of 29 
retroreflective markers placed on anatomic landmarks on the individual’s lower extremities 
(bilaterally), pelvis, and trunk [14]. Data were recorded during one static anatomical pose and 
used in conjunction with the open-source software OpenSim [25] to scale a generic model 
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of the human trunk-pelvis-lower extremity musculoskeletal geometry to match the subject’s 
anthropometric features. The OpenSim musculoskeletal geometry model had five lower-
extremity DOFs (per extremity side), including hip flexion-extension, internal-external 
rotation, adduction-abduction, knee flexion-extension, and ankle plantar flexion-
dorsiflexion. The model included 12 musculotendon units (per lower extremity, i.e., Table 1) 
and was taken from the literature [52]. During the scaling process, virtual markers were 
placed on the generic musculoskeletal geometry model based on the position of the 
experimental markers from the static pose. The musculoskeletal geometry model scaling 
procedure adjusted the anthropomorphic properties of anatomical segments (i.e., size, mass 
and inertial properties) as well as MTU insertions and origins and MTU-to-bone wrapping  

Table 4-1:. EMG-to-MTU mapping. Muscle groups from which experimental 
electromyography (EMG) signals were recorded and the associated musculotendon units 

(MTUs) in the computational modeling framework (Fig. 1C) that were driven by these EMG 
signals. In this study, the gastrocnemius medialis EMG also drove the gastrocnemius lateralis 
MTUs. The vastus intermedius EMG activity was calculated as the mean between the vastus 

lateralis and vastus medialis EMG signals. The long head and short head of the biceps femoris 
were driven by the same EMG signal. The same applied to the semimembranosus and 

semitendinosus. 
 

RECORDED MUSCLE 

EMG 

MUSCULOTENDON UNIT (MTU) 

GASTROCNEMIUS 

MEDIALIS 

gastrocnemius lateralis and gastrocnemius 

medialis 

TIBIALIS ANTERIOR tibialis anterior 

SOLEUS soleus 

VASTUS LATERALIS vastus intermedius, vastus lateralis 

VASTUS MEDIALIS vastus intermedius, vastus medialis 

SEMIMEMBRANOSUS semimembranosus, semitendinosus 

BICEPS FEMORIS biceps femoris short head, biceps femoris long 

head 

RECTUS FEMORIS rectus femoris 
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able 4-2: D

escription of recruited subjects. D
escriptions of healthy individuals and recruited stroke and spinal cord injury (SC

I) patients. 
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points. These properties were linearly scaled on the basis of the relative distances between 
the actual subjects’ experimental and corresponding virtual markers [25]. Subsequently, 
musculotendon parameters were identified, including optimal fiber length and tendon slack 
length. Because these do not scale proportionally across anthropometric profiles, we 
employed nonlinear optimization [117].  

This was used to iteratively adjust both optimal fiber length and tendon slack length to 
maintain the consistency of the normalized fiber length-joint angle relationship between an 
individual and a generic musculoskeletal model across the joint range of motion. This 
provided initial values for the model-calibration procedure (Fig. 1D) described in the 
Computational Modeling Framework section. 

Subsequently, subjects wore the robotic exoskeleton for joint alignment. EMG signals were 
measured (1000 Hz) from eight thigh and shank muscles (Table 1) using dry non-disposable 
bipolar electrodes (13E200 MyoBock, OttoBock Health Care, GmbH, Germany). Each 
individual was asked to perform maximal voluntary contractions (MVCs) in isometric 
conditions with the exoskeleton constraining knee and ankle rotations to predefined 
arrangements: 45 deg knee flexion and 0 deg ankle dorsiflexion. EMG electrodes provided 
on-board hardware preamplification and filtering to generate output linear envelopes. The 
resulting envelope peak-processed values were used for EMG normalization. EMG peak 
values were automatically obtained and saved to a file. The associated joint moment 
produced during these MVC contractions was not recorded and not used in the subsequent 
experiments. 

After MVCs, subjects performed an additional five cycles of isometric knee flexion-extension 
followed by five cycles of ankle plantar flexion-dorsiflexion with each joint fixed in an angular 
position corresponding to the middle of its range of motion (ROM). During these tasks, the 
exoskeleton built-in strain gauges measured the sagittal knee and ankle joint moments 
exchanged between the user and the exoskeleton structure. The measured moments were 
used for the model-calibration step (Computational modelling framework section, Fig. 1D). 
The paretic patients were instructed to reach their maximal moment contraction, whereas 
healthy subjects were instructed to exert only a fraction of maximal moment (between ±25 
and ±40 Nm) due to strain gauge sensing limits (maximum range of ±50 Nm). After 
calibration, the gains for different exoskeleton support levels were determined, including 
low-gain (LG) and high-gain (HG) support (see Table S2 in the supplementary material for 
the gain selected for the patients). The LG value was tuned to provide a comfortable, 
perceptible level of assistance. The HG value was manually tuned to achieve an increase of 
approximately 50% in exoskeleton moment for the same EMG level with respect to the LG 
condition. These gains were also empirically and individually adjusted, accounting for each 
subject’s feedback during the outside the exoskeleton (OUT-type) conditions (see section 
below). 
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Second part – exoskeleton voluntary control tests: The calibrated subject-specific EMG-driven 
model was employed in real-time to test individuals’ voluntary control of the robotic 
exoskeleton. First, subjects were seated in a medical chair outside the robotic exoskeleton. 
The exoskeleton was firmly secured next to the subject via custom-made support, i.e., OUT-
type tests. This enabled quantifying the influence of our proposed EMG-driven 
musculoskeletal model alone on both exoskeleton control accuracy and neuromuscular 
activity, i.e., without the physical support provided to the user’s leg by the robotic 
exoskeleton. This was central for assessing whether robotic assistance could be determined 
purely from patients’ voluntary neuromuscular function. Second, the subjects wore the 
exoskeleton, i.e., inside the exoskeleton (IN-type) condition tests. This enabled observing the 
behavior of the composite human-exoskeleton system, i.e., our proposed model-based HMI 
in conjunction with the physical support provided to the human by the robotic exoskeleton. 
This was used to verify whether human-exoskeleton synchronization could be achieved to 
enable neuromuscular effort reduction. Both OUT- and IN-type tests included single-DOF 
(i.e., the ankle or knee joint individually) and multi-DOF control tasks (i.e., the ankle and 
knee simultaneously). 

During the single-DOF tasks, subjects were instructed to perform a series of joint rotations 
that enabled the exoskeleton joints to be moved to track a monitor-displayed reference trace. 
Rotations were performed first with the ankle joint and then with the knee joint. For each 
joint, rotations were performed first with low support gain and then with high support gain. 

Table 4-3: Range of motion (in degrees) employed during experiments. Ranges of motion were 
personalized for each recruited patient to avoid muscle overstretching and testing outside of safe 
boundaries. Knee flexion and ankle plantar flexion-dorsiflexion are indicated by negative angles. 

 

SUBJECT KNEE 

ANGLE 

(OUT-

TYPE) 

ANKLE 

ANGLE 

(OUT-TYPE) 

KNEE 

ANGLE (IN-

TYPE) 

ANKLE 

ANGLE (IN-

TYPE) 

HEALTHY -80 to -40 -10 to 10 -80 to -40 -10 to 10 

STROKE 1 -80 to -40 0 to 15 N/A N/A 

STROKE 2 -80 to -40 -10 to 10 -80 to -40 -10 to 10 

SCI -80 to -40 -10 to 10 -70 to -50 -10 to 10 
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This involved moving the exoskeleton knee or ankle joint to track a joint angle trajectory 
that spanned a predefined ROM for each joint. ROMs were specifically adjusted for the 
stroke and SCI patients to avoid joint overextension that would overstretch the muscles since 
the patients’ muscles were found to be stiffer than those of healthy individuals (Table 3). Figs 
2 and 3 depict the single-DOF trajectories. Each tracking trial was designed to last for 30 
seconds. Each trial was repeated five times. 

During the multi-DOF tasks, the reference motions to be tracked involved simultaneous 
knee flexion-extension and ankle plantar flexion-dorsiflexion. Table 3 reports subject-
specific ROMs selected for the participants. Subjects were presented with a graphical user 
interface displaying real-time information about the kinematic arrangement of the robotic 
exoskeleton via a stick figure depicted in blue (Fig. 4). A second stick figure, depicted in 
green, represented the target stick figure to be reached over time (Fig. 4 and Movie 1). The 
multi-DOF tests were performed first with low support gain and then with high support 
gain. Each trial was repeated 5 times for the healthy subjects and up to 5 times for the 
patients. 

4.2.4 Robotic exoskeleton  
All tests were performed using a multijointed robotic exoskeleton (H2, Technaid, Spain) 
equipped with six sagittal non-back-drivable motors (Maxon, Switzerland) with harmonic 
drive (Harmonic Drive, US), i.e., three motor-drives per leg side. The actuated DOFs were 
hip flexion-extension (20 deg flexion, 100 deg extension), knee flexion-extension (100 deg 
flexion, 0 deg extension), and ankle plantar flexion-dorsiflexion (20 deg for both 
plantarflexion and dorsiflexion). The robotic exoskeleton had six strain gauges (i.e., one per 
joint) for measuring human-exoskeleton joint interacting moments and four footswitches for 
measuring foot-ground interaction. In this study, we employed a low-level PID controller 
for each motor that operated in the moment domain. The PID was fine-tuned for moment 
tracking across a range of mechanical loads [32]. The robotic exoskeleton was powered by a 
lithium-ion battery with five-hour autonomy. 

4.2.5 Human participants 
We recruited four healthy subjects along with three neurologically impaired patients, 
including one patient with SCI and two chronic hemiparetic stroke patients (Table 2). These 
patients were selected because they are representative of the majority of the paretic patient 
population [118], for whom the effectiveness of rehabilitation robotics with respect to classic 
rehabilitation has not been demonstrated quantitatively yet [85], [86]. Experiments were 
conducted on each patient’s most affected side, involving voluntary rotation of two sagittal 
DOFs in the knee and ankle joints. The dominant leg was used for the experimental tests in 
healthy individuals. The SCI patient did not participate in the multi-DOF OUT-type test due 
to time constraints, and stroke patient 1 did not participate in the IN-type test. 
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Figure 4-2: Tracking task performance during single-DOF IN-type tests. Exoskeleton joint 
angular position, electromyogram (EMG) data and model-based estimates of joint moments are 
reported during tasks with one degree of freedom (DOF). Data are reported as averages across all 
tracking trials with standard deviations (shaded area). They are reported for the low-gain (LG) and 
high-gain (HG) exoskeleton assistance levels and as a function of percent cycle, i.e., where 0% and 
100%, respectively, represent the beginning and the end of the tracking trajectory (Target). Target 
trajectories are personalized to each patient (Table 3) as detailed in the Materials and Methods 
section. The results are relative to tests inside the exoskeleton, i.e., IN-type tests. Data are reported 
for two representative healthy subjects (Healthy 1-2), two stroke patients (Stroke 1-2) and one 
incomplete spinal cord injury (SCI) patient. The results are reported both for the individual control 
of the exoskeleton ankle plantar flexion-dorsiflexion DOF and for that of the exoskeleton knee 
flexion-extension DOF. EMGs are relative to muscles, including the biceps femoris (BF), rectus 
femoris (RF), semimembranosus (S), vastus lateralis (VL) and vastus medialis (VM), soleus (So), 
gastrocnemius medialis (Ga) and tibialis anterior (TA), as shown in Table 1. 
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4.2.6 Numerical Analysis 
We quantified the model real-time performance via mean computation time and standard 
deviation across all simulation frames from all subjects and tasks. The 95% confidence 
interval was estimated using Chebyshev’s theorem, i.e., expected value = mean ± 4.47·std. This 
could be applied with no assumptions about the normality of computation time distributions. 
Similarity metrics between reference trajectories and exoskeleton joint kinematic trajectories 
were assessed via the Pearson product-moment correlation coefficient and the root mean 
square error for the two considered conditions (IN-type and OUT-type). 

Across all tests, data analysis was performed using Python and the NumPy library [119]. In 
Experiments 1 and 2 (see Results section, Figs 7, S3, S4), we verified whether our framework 
could induce EMG amplitude reduction while assuring that there was no loss of tracking 
quality. The histograms (Figs 7, S3, S4) represent the cumulative of the mean of the 
normalized EMG for each muscle. We used eq. 5 to quantify variability in cumulative EMG 
amplitude (black vertical lines on top of the bar):    

where W is the number of repetitions, N is the number of EMG samples, 𝑥𝑥𝑖𝑖 is the EMG 

sample for time i, and �̅�𝑥 is the mean of all EMG samples. In Experiment 3 (i.e., see Results 
section, Figs 6, S8), reduction in EMG variability was assessed via changes in standard 
deviation as well as in normalized standard deviation. The EMG variability measure was 
computed as follows: 

where W is the number of repetitions, 𝐸𝐸𝑀𝑀𝐸𝐸 is the mean of the EMG sample, and N is the 
number of EMG samples. The normalized std was computed using the following formula: 

 

where 𝑥𝑥𝑠𝑠𝑡𝑡𝑠𝑠 is the std computed in eq. 6 and 𝑥𝑥𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚 is the mean of the EMG signals. 

  

𝑥𝑥𝑠𝑠𝑡𝑡𝑠𝑠  =  �
∑ ��∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑖𝑖−�∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ��

2
𝑊𝑊
𝑖𝑖=1

𝑁𝑁−1
    

eq. 4.6 

 

∑

∑ ��
∑ �𝑥𝑥𝑖𝑖−𝑥𝑥�

2𝑁𝑁
𝑖𝑖=1

𝑁𝑁−1 �𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑟𝑟

𝑊𝑊𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐𝑚𝑚𝑒𝑒     

 

eq. 4.5 

 

  𝑥𝑥𝑠𝑠𝑡𝑡𝑠𝑠����� =  𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟

    
eq. 4.7 
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4.3 Results 
4.3.1 Tracking accuracy of single-DOF trajectories under different assistance 

levels 
The first test assessed subjects’ ability to control exoskeleton ankle and knee DOFs 
individually to track monitor-displayed reference trajectories, i.e., Figs 2 and 5, Movie 1.  

 

This assessed how tracking accuracy varied as a function of increasing robotic exoskeleton 
assistance levels, i.e., from LG to HG. During single-DOF tasks, the subjects were in full 
control of the robotic exoskeleton’s knee and ankle DOFs. 

Figs 2 and 5, respectively, show results for the OUT- and IN-type tests for both ankle plantar 
flexion-dorsiflexion and knee flexion-extension. Results are presented for two stroke 
patients, one SCI patient and two representative healthy subjects. The results from the 
remaining subjects are reported in supplementary Figs S1-S2. Fig. 3 shows that across all 
healthy subjects, test types (OUT and IN), DOFs, and gains (LG and HG), the maximal 
tracking errors were always < 8 degrees with a correlation coefficient always > 0.85. Tracking 
errors for the patients were on average 5.5±3.1 degrees with correlation coefficients always 
> 0.6 during IN-type tests. However, during OUT-type tests with LG, tracking errors 
reached higher values for the SCI patient (i.e., 13±7 degrees) these substantially decreased 
when employing HG assistance levels (i.e., 6.4±6.1 degrees). Overall, HG assistance offered 
comparable or reduced tracking capacity with respect to LG assistance but was still within 
acceptable boundaries (Fig. 3). 

Specifically, for the ankle joint during OUT-type tests (Figs 3 and 5), the mean tracking error 
and standard deviation (std) across healthy subjects and patients, respectively, measured 
1.58±1.64 degrees (LG) and 1.77±1.6 degrees (HG), while the correlation coefficients were 
0.88±0.10 (LG) and 0.86±0.14 (HG). During IN-type tests (Figs 2-3), the tracking error 
measured 1.45±1.35 degrees (LG) and 1.41±1.28 degrees (HG), with correlation coefficients 
of 0.94±0.04 (LG) and 0.93±0.06 (HG). During the OUT-type tests (Figs 3 and 5), for the 
knee joint control, the tracking error measured 5.8±3.98 degrees (LG) and 5.01±3.62 degrees 
(HG), with correlation coefficients of 0.81±0.27 (LG) and 0.90±0.09 (HG). During IN-type 
tests (Figs 2-3), the tracking errors measured 4.06±2.55 degrees (LG) and 4.58±2.61 degrees 
(HG), with correlation coefficients of 0.90±0.16 (LG) and 0.92±0.07 (HG). 

4.3.2 Modulation of neuromuscular activity 
The second test quantified the effect of our proposed model-based HMI on the modulation 
of neuromuscular activity. This was evaluated by examining modulations in normalized 
EMG and resulting mechanical joint moment amplitudes. Across all experiments, both EMG 
and resulting moments displayed the largest reduction during the IN-type tests for both 
healthy participants and patients; see Figs 4 and 7. 
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Figure 4-4: Tracking task performance during multi-DOF IN-type tests. Exoskeleton knee and 
ankle joint angular positions are reported by means of a stick figure. The green figure represents the 
target multiple-joint position to be attained. The blue and red stick figures represent the subject’s 
voluntarily controlled exoskeleton trajectory obtained using low-gain (LG) and high-gain (HG) 
assistance levels, respectively. The target positions were changed automatically when the user was 
within ± 5 degrees of the target position. Model-based estimates of joint moments are reported 
about both the knee flexion-extension and ankle plantar flexion-dorsiflexion degrees of freedom 
(DOFs). Data are reported as averages across all tracking trials with standard deviations (shaded 
area). They are reported as a function of percent cycle, i.e., where 0% and 100%, respectively, 
represent the beginning and the end of the tracking trajectory (Target). The results are relative to 
tests inside of the exoskeleton, i.e., IN-type tests. Data are reported for two representative healthy 
subjects (Healthy 1-2), one stroke patient (Stroke 2) and one incomplete spinal cord injury (SCI) 
patient, as shown in Table 2. Recorded electromyograms (EMGs) are relative to muscles including 
the biceps femoris (BF), rectus femoris (RF), semimembranosus (S), vastus lateralis (VL) and vastus 
medialis (VM), soleus (So), gastrocnemius medialis (Ga) and tibialis anterior (TA), as presented in 
Table 1. 
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 Figure 4-5: Tracking task performance during single-DOF OUT-type tests. Exoskeleton joint 
angular position, electromyogram (EMG) data and model-based estimates of joint moments are 
reported during tasks with one degree of freedom (DOF). Data are reported as averages across all 
tracking trials with standard deviations (shaded area). They are reported for the low-gain (LG) and 
high-gain (HG) exoskeleton assistance levels and as a function of percent cycle, i.e., where 0% and 
100%, respectively, represent the beginning and the end of the tracking trajectory (Target). Target 
trajectories are personalized to each patient (Table 3) as detailed in the Materials and Methods 
section. The results are relative to tests outside of the exoskeleton, i.e., OUT-type. Data are 
reported for two representative healthy subjects (Healthy 1-2), two stroke patients (Stroke 1-2) 
and one incomplete spinal cord injury (SCI) patient. The results are reported both for the 
individual control of the exoskeleton ankle plantar flexion-dorsiflexion DOF and for that of the 
exoskeleton knee flexion-extension DOF. EMGs are relative to muscles including the biceps 
femoris (BF), rectus femoris (RF), semimembranosus (S), vastus lateralis (VL) and vastus medialis 
(VM), soleus (So), gastrocnemius medialis (Ga) and tibialis anterior (TA), as shown in Table 1. 
The EMG for the SCI patient has a large offset due to the high amplification needed. 
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Single-DOF experiments: For the ankle joint during OUT-type tests (Fig. 5), the cumulative 
EMG amplitude (i.e., the sum of the mean EMG) decreased for all healthy subjects and 
patients from LG to HG. The cumulative EMG decreased from 0.04±0.03 to 0.02±0.001 
for healthy subject 1, from 0.08±0.04 to 0.04±0.01 for healthy subject 2, from 0.12±0.06 to 
0.08±0.04 for healthy subject 3 and from 0.07±0.008 to 0.04±0.004 for healthy subject 4. 
The cumulative EMG decreased from 0.03±0.02 to 0.01±0.008 for stroke patient 1, from 
0.16±0.03 to 0.13±0.08 for stroke patient 2 and from 0.43±0.07 to 0.35±0.04 for the SCI 
patient. 

For the ankle joint during IN-type tests (Figs 2, S3), cumulative EMG amplitude decreased 
from LG to HG, for all healthy subjects and patients, i.e., healthy subject 1 (from 0.16±0.01 
to 0.02±0.001), healthy subject 2 (from 0.09±0.04 to 0.06±0.005), healthy subject 3 (from 
0.14±0.02 to 0.07±0.06) and healthy subject 4 (i.e., from 0.04±0.03 to 0.01±0.009). For 
stroke patient 2, we observed a small increase from 0.12±0.06 to 0.13±0.07, whereas the SCI 
patient showed a small reduction from 0.40±0.03 to 0.39±0.007. 

For the knee during OUT-type tests (Fig. 5), we observed decreases or steady values for all 
healthy subjects and patients. This corresponded to a change in EMG amplitude from 
0.04±0.006 to 0.03±0.01 for healthy subject 1, from 0.30±0.03 to 0.12±0.06 for healthy 
subject 3 and from 0.02±0.02 to 0.04±0.02 for healthy subject 4. For healthy subject 2, we 
observed an unaltered signal level (i.e., a reduction of 0.001). For users with paresis, we 
observed reductions from 0.11±0.06 to 0.07±0.02 for stroke patient 1, from 0.11±0.01 to 
0.08±0.04 for stroke patient 2 and from 0.65±0.05 to 0.52±0.06 for the SCI patient. For the 
knee in the IN-type tests (Figs 2, S4), we observed reductions in EMG amplitude for all 
healthy subjects and patients. Specifically, the amplitude changed from 0.21±0.02 to 
0.04±0.003 for healthy subject 1, from 0.07±0.01 to 0.03±0.01 for healthy subject 2, from 
0.23±0.04 to 0.12±0.003 for healthy subject 3 and from 0.05±0.01 to 0.02±0.01 for healthy 
subject 4. Among the patients with paresis, we observed a reduction from 0.09±0.3 to 
0.07±0.01 for stroke patient 2 and 0.215±0.01 to 0.209±0.001 for the SCI patient. 

Model-based estimates of joint moments were always modulated in response to EMG 
activity, as shown in Figs 2, 5, S1, and S2. Both knee and ankle joint moments displayed 
decreases in their mean values from the LG to the HG assistance level. This was observed 
for both healthy subjects and patients, with the largest reductions observed during the IN-
type tests. Supplementary Table S1 provides detailed quantitative values. 
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Multi-DOF experiments: This testing condition assessed whether EMG and joint moment 
amplitude reduction could be observed in tasks relying on larger muscle sets and control of 
multiple joints. Reference motions to be tracked involved simultaneous knee flexion-
extension and ankle plantar flexion-dorsiflexion, as shown in Movie 2. 

All subjects and patients were able to control the multi-DOF robotic exoskeleton and match 
the target positions during both OUT-type (supplementary Fig. S5-S7) and IN-type tests 
(Fig. 4). Fig. 7 shows that the robotic exoskeleton assistance resulted in a consistent decrease 
in cumulative EMG amplitude across all subjects. During OUT-type tests (supplementary 
Figs S5-S7), cumulative EMG amplitude decreased for all healthy subjects and patients 
between LG and HG. The EMG amplitude decreased for healthy subject 1 (from 0.21±0.02 
to 0.12±0.02), subject 2 (from 0.64±0.16 to 0.46±0.27), subject 3 (0.91±0.1 to 0.70±0.23) 
and subject 4 (from 0.24±0.05 to 0.16±0.02). Among patients, the cumulative EMG 

Figure 4-6: Standard deviation of mean EMG amplitude during single-DOF and multi-DOF IN-
type tests. Histograms report the nonnormalized standard deviation (top row) and normalized 
standard deviation (bottom row, eq. 7) extracted from electromyogram (EMG) data across all 
trials performed during single-ankle control tasks, single-knee control tasks and simultaneous 
ankle-knee control tasks. Histograms are reported relative to low-gain (LG) and high-gain (HG) 
assistance levels. Data are relative to stroke patient 2 and to the incomplete spinal cord injury 
patient (SCI), Table 2. 
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amplitude decreased for stroke patient 1 (from 0.20±0.03 to 0.19±0.03) and stroke patient 2 
(from 0.35±0.10 to 0.27±0.05). Quantitative data are not available for the SCI patient, who 
did not perform this test. 

During IN-type tests (Figs 4 and 7, S5, S6), increased exoskeleton assistance resulted in EMG 
reduction for most healthy subjects and all patients, i.e., 0.61±0.003/0.27±0.06 (LG/HG) 
for healthy subject 1, 0.64±0.19/0.84±0.2 for healthy subject 2, 0.62±0.03/0.25±0.03 for 
healthy subject 3, 0.21±0.04/0.14±0.03 for healthy subject 4, 0.69±0.14/0.36±0.14 for 
stroke patient 2 and 0.90±0.18/0.89±0.005 for the SCI patient. Quantitative data are not 
available for stroke patient 1 who did not perform this test. 

Model-based estimates of joint moments were always modulated in response to EMG 
activity, with knee and ankle joint moments displaying decreases in their mean values from 
the LG to the HG assistance levels. This was reflected in both healthy subjects and patients, 
with the largest reductions observed during IN-type tests (Supplementary Table S1).  

4.3.3 Variability of neuromuscular activity 
The third test assessed the extent of variability in EMG amplitude across exoskeleton 
assistance levels and tasks, as described by eq. 6. An index of normalized variability was also 
computed (eq. 7) to enable comparison between the LG and HG assistance levels while 
controlling for mean EMG amplitude. The results showed that increased assistance levels 
resulted in reduced EMG variability across all patients (Figs 6, S8), which may have practical 
consequences for neurologically impaired patients who are affected by spastic (and thus 
highly variable) EMG activity. 

During OUT-type tests (Fig. S8), EMG variability across all trials (i.e., both single- and multi-
DOF) decreased for stroke patient 1 (from 0.48 to 0.38) and stroke patient 2 (from 0.82 to 
0.57). After normalization, the variability decreased for stroke patient 2 (from 22.8 to 22.2) 
and increased for stroke patient 1 (15.2 to 17.2). 

During the IN-type tests (Fig. 6), the EMG variability across all trials (i.e., both single- and 
multi-DOF) decreased for stroke patient 2 (1.24 to 0.67) and for the SCI patient (from 0.83 
to 0.58), as shown in the top row histograms in Fig. 6. Similarly, after normalization, the 
variability decreased for stroke patient 2 (from 26 to 21) and for the SCI patient (from 6 to 
4.2), as shown in the bottom row of histograms in Fig. 6. 
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4.3.4 Computational Time 
Across all subjects and tests, the proposed framework generated exoskeleton control 
commands with an average computational time of 7±3.7 ms – specifically, 5.6±3.3 ms for 
the EMG-driven modelling and 1.3±0.4 ms for the moment arm and tendon-muscle length. 
In this study, 95% of the control commands produced in a single time frame were generated 
within 14 ms. This is well below the length of the muscle electromechanical delay, i.e., ~30-
80 ms [120], as well as the human perceivable delay in motor execution, i.e., ~250 ms [121], 
[122]. 

4.4 Discussion 
We developed and tested a model-based HMI for the voluntary control of a wearable robotic 
exoskeleton. We validated it in one wheelchair-bound SCI patient, two hemiparetic chronic 
stroke patients with residual walking capabilities and four additional healthy individuals. To 
the best of our knowledge, this study provides the first HMI that enables neurologically 
impaired patients to voluntarily control multiple DOFs in robotic exoskeletons while 
inducing a positive modulation of neuromuscular activity, i.e., reduction of both 
neuromuscular amplitude and variability.  

 

Figure 4-7: EMG amplitude modulation between low and high levels of exoskeleton 
assistance during multi-DOF IN-type experiments. The results are reported for tracking tasks 
with multiple degrees of freedom (DOFs), involving simultaneous knee and ankle joint 
movement. Subjects performed the experiments while wearing the robotic exoskeleton, i.e., 
IN-type tests. For each healthy subject (Healthy 1-4) as well as for stroke patient 2 (Stroke) 
and the spinal cord injury (SCI) patient (Table 2), the vertical bars report the mean normalized 
EMG amplitude stacked vertically for each muscle along with the standard deviation (see 
black vertical lines). 
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Assessing the benefit of robotic devices for enhancing neurologically impaired patients’ 
movement is challenging. In this study, we focused on quantifying our model-based HMI 
ability to modulate EMG amplitude and variability as a function of assistive support levels. 
The focus was to amplify human mechanical function in a clinically viable way. This was 
realized by enabling the generation of (pre-defined) mechanical joint moments using reduced 
EMG activity via active exoskeleton support. 

We established a numerical model of the human musculoskeletal system that could be scaled 
and calibrated to match an individual’s anatomy. In this context, experimentally recorded 
EMG signals represented a surrogate of the neural drive to muscles. That is, EMG linear 
envelopes amplitude and shape features reflected the patient’s disrupted motor control. 
Moreover, the proposed patient-specific muscle model allowed capturing the patient’s 
impaired muscular force-generating capacity. Unlike state-of-the-art HMIs, our proposed 
approach allowed a robotic exoskeleton to be controlled proportionally to an individual 
patient’s residual muscle force-generating capacity, as shown in Figs 2-3 and 6-7. 
Furthermore, our method provided an enhanced level of patient specificity with respect to 
state-of-the-art exoskeleton HMIs. 

Results showed that all subjects were able to voluntarily control the exoskeleton accurately 
over a range of motor tasks involving rotations about single DOFs as well as multiple DOFs 
concurrently, i.e., Figs 2-4, 7. Subjects could control the exoskeleton to accurately track 
reference trajectories even when they were not directly wearing the exoskeleton, i.e., during 
OUT-type tests. This was hypothesized to be a challenging condition due to reduced 
perception of exoskeleton movement. Overall, results highlighted that patients were always 
in voluntary control of the exoskeleton motion, thus not being passively driven.  

The results showed that an increasing level of assistance induced a decrease in the net 
cumulative EMG amplitude and resulting mechanical moments required to perform a motor 
task (Figs 2-5 and 7). Reduction was observed across all measured muscles for all subjects 
both during single-DOF and multi-DOF tasks. However, in a few cases, HG assistance 
induced higher EMG activity than LG assistance, as shown in Fig. 7, subject 2. Systematic 
analyses are planned as part of future work to identify direct causes. Importantly, the 
increased level of assistance did not degrade the user’s accuracy in the reference position 
tracking tasks (Fig. 3).  

The exoskeleton generated a support moment that was equal to a fraction of the user’s net 
joint moment (calculated by the EMG-driven model). For higher gains the exoskeleton 
support moment reflected a larger fraction of the user’s net joint moment. Importantly, 
across support gains, the reference mechanical task to be performed by the patient and 
exoskeleton system was always the same. That is, the underlying total net moment to be 
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generated by the patient and exoskeleton system was similar across support gains. Therefore, 
for increasing support gains, the proportion of human-generated moment decreased while 
the proportion of exoskeleton-generated moment increased. This was directly reflected in 
our results (Figs. 2 and 4-5). 

Across all subjects, the net EMG amplitude reduction was consistently associated with a 
concurrent reduction in EMG variability. Motor tasks performed with high assistance levels 
corresponded to more repeatable EMG patterns than tasks performed with low assistance 
levels (Fig. 6). This could be achieved only if the exoskeleton joint actuation was precisely 
synchronized with the patient’s muscle contraction. Lower levels of human-exoskeleton 
synchronization would lead to the exoskeleton counteracting the patient’s movements or 
providing suboptimal assistive moments, thereby inducing an increase in EMG magnitude 
and variability. Personalized models played an important role in achieving these results. 
Supplementary Fig. S9 shows how noncalibrated models display large discrepancies with 
respect to reference moments, which would hamper the controllability of exoskeletons. 
Patients with neurological lesions naturally present greater movement variability than healthy 
individuals [123], especially because of involuntary (spastic-like) muscle activity. In this 
context, spasticity or hyperactive stretch reflexes would be directly captured via EMGs. 
Because our proposed musculoskeletal model was driven by EMGs, this enabled capturing 
muscle force controlled by abnormal spinal neuron activity. Our results showed that our 
proposed model-based amplification of patient’s neuromuscular function enabled tracking 
smooth join position trajectories despite the underlying patients’ EMGs may underlie spastic 
activity. This may be due to the fact that the presence of high-energy spikes in the EMG (i.e. 
due to spastic-like EMGs) may be attenuated by the inherent visco-elasticity of the Hill-type 
muscle model as well as muscle-tendon small moment arms. This has the benefit of 
generating smooth muscle force-dependent joint moment profiles even in the presence of 
spikes in the input EMGs. Future work will systematically assess the ability of 
musculoskeletal models in attenuating EMG abnormal spiking activity and also assess its 
robustness with respect to abnormal activation, such as spasticity, in a rehabilitation scenario.  
Furthermore, future studies will assess the possibility of using high-density EMG recording 
to decompose the signal at the level of constituent motor unit discharges. This would enable 
separating physiological motor units from those displaying abnormal behavior (i.e. spastic-
like). For each muscle, filtered physiological motor units only could be used to compute 
exoskeleton assistive moments [71].  

The ability to enforce EMG pattern repeatability (i.e., reduction of EMG variability) via 
wearable robotic technologies is central for retraining coordinated neuromuscular control 
and inducing positive neuroplasticity, i.e., by preventing involuntary uncoordinated muscle 
activations [88]. The ability of the proposed HMI to modulate neuromuscular activity in a 
controlled way may be beneficial in the future for high-intensity sensorimotor training, i.e., 
enabling patients to perform intensive motor tasks progressively across longer periods of 
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time (EMG reduction). Intensive training has been shown to improve both muscle strength 
and overall motor control in stroke patients [124]. 

Our HMI always computed exoskeleton control commands within the muscle 
electrophysiological delay, i.e., < 15 ms. This computational speed was achieved using a low-
power, small-sized, and fully wearable processing unit, i.e., Raspberry Pi 3 (Raspberry Pi 
Foundation, UK). This enabled the subject’s movement to be predicted shortly before the 
actual movement took place, which is important for synchronizing the exoskeleton response 
to the user’s neuromuscular function. Moreover, this was crucial especially for supporting 
neurologically impaired patients who had severely reduced motor abilities but still had 
detectable EMG activity. This is an important advantage with respect to HMIs that actuate 
the wearable robot solely on the basis of the detection of externally measurable forces (i.e., 
external joint moments or limb-orthosis interaction force); such systems cannot provide 
support unless the patient is able to produce detectable muscle force or movement [76]. In 
the context of our experiment, this would have severely challenged both voluntary 
exoskeleton control and EMG reduction in the SCI and stroke patients, whose muscle 
strength and EMG amplitude were substantially compromised. 

This study involved voluntary control of robotic knee and ankle rotations from a seated 
position. These exercises were selected for two reasons. First, they provided a controlled 
environment for testing our proposed control method for the first time in neurologically 
impaired individuals. Second, they mimicked physiotherapy tasks employed during early-
stage rehabilitation. Two major functional impairments related to stroke are the loss of 
selective joint control and muscle weakness. From a clinical perspective, both issues must be 
addressed via safe, comfortable and feasible positions for the patient [125], [126], something 
that could be provided by our proposed framework. Future work will pair wearable 
exoskeletons with our model-based human-machine interface to track and support the 
patient across all recovery stages: from sitting to walking in the hospital to finally walking 
outside the hospital [127]. An advantage of our framework over conventional inverse 
dynamics is that, once calibrated, it does not need ground reaction forces, i.e., it operates as 
a function of EMG and joint position, which are measurable via wearable sensors. This is 
central for wearable robotics applications. 

To the best of our knowledge, there is currently no robotic exoskeleton on the market, either 
in the rehabilitation domain (i.e., Lokomat) or in the assistive domains (i.e., Rewalk, HAL), 
that operates as a function of a patient’s residual muscle force-generating capacity. This may 
underpin a central element hampering the ability of current robotic exoskeletons to impact 
neurorehabilitation. Movie 2 shows the possibility for the SCI patient to control multiple 
DOFs despite minimal residual motor capacity, which is key for promoting recovery even in 
severely affected individuals. This study was not intended to quantify direct rehabilitation 
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outcome, as this requires systematic analysis on a larger patient population, which is subject 
of future work. 

Future work will extend our proposed methodology towards more functional tasks, such as 
ground- and inclined-level walking, as well as stair ascending and descending. We will 
investigate the effect of the exoskeleton on the patient with and without the device, as well 
as the effect of ground reaction force on the exoskeleton combined with our framework. A 
limitation of this study is that we did not test how noncalibrated models would affect 
exoskeleton control. Longitudinal tests with different types of models (i.e., calibrated and 
noncalibrated) will be performed as part of our future work. The overall quality of the 
optimized parameters of our muscle model (maximal isometric muscle force, optimal fiber 
length and tendon slack length) should also be validated against in-vivo experimental values 
in future work. However, it was first necessary to assess whether neurologically impaired 
patients could achieve voluntary control of robotics knee and ankle rotation.  

4.5 Conclusion 
This study established a new patient-specific model-based HMI that can aid clinicians and 
physiotherapists in the assessment of patients’ motor capacity and progress over time. It can 
enable exoskeletons to operate symbiotically to the human body by dynamically adapting to 
the patient’s motor capacity across different stages of recovery. This will open new avenues 
for establishing personalized neurorehabilitation technologies where wearable robots 
physically interact with the patient to maximize the recovery of compromised neuromuscular 
targets. 
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VOLUNTARY AND 
CONTINUOUS CONTROL OF 

ROBOTIC EXOSKELETONS 
DURING A BROAD 

REPERTOIRE OF 
LOCOMOTION CONDITIONS 

Guillaume Durandau, Wolfgang Rampeltshammer, Herman van der Kooij, Massimo Sartori 

 

Abstract— To enable the broad adoption of wearable robotic exoskeletons in both medical 
and industrial settings, it is central they can effectively support a large repertoire of motor 
tasks. Current human-machine interfaces for exoskeletons largely rely on joint torque or 
kinematics patterns that are pre-computed, thereby limiting the range of supported 
movements. Here, we propose a human-machine interface that generates exoskeleton 
control commands as a direct function of an individual’s neuromuscular activity, with no 
need to rely on pre-defined torque profiles or state machines. This is based on the use of 1) 
a personalized musculoskeletal model driven by electromyograms that estimate biological 
muscle force and joint torques and 2) an efficient torque controller based on a disturbance 
observer that translates biological torque estimates into exoskeleton control commands. In 
this study, we demonstrate the ability of the proposed approach via experiments during 
which three individuals voluntarily control a bi-lateral robotic ankle exoskeleton to walk 
across a range of gaits, i.e. two walking speeds, three ground elevations as well as the 
transitions across these. Across all walking conditions, the exoskeleton support enabled a 
reduction in electromyograms (6% - 15%) as well as in biological joint torques (18% - 25%) 
when compared against walking with no assistance, i.e. exoskeleton controlled in minimal 
impedance mode. Reduction of EMG and joint torque were also observed during the 
transition between tasks (16% - 23%). For all subjects, the total human-machine joint torque, 
computed as the sum of biological torque and exoskeleton torque, was preserved throughout 
the entire experiment. However, the exoskeleton torque proportion systematically increased 
while the human joint torque proportion decreased during the assisted condition when 
compared to the non-assisted condition, thereby making walking more economical for the 
user. 

Keywords—locomotion, EMG, exoskeleton, lower-limb, neuromusculoskeletal modelling.
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5.1 Introduction 
Human-machine interfaces (HMIs) are central for connecting exoskeletons to the human's 
neuromusculoskeletal (NMS) system. Common tasks such as locomotion require complex 
interplay between neurons, muscles and skeletal segments. Adding an artificial mechanical 
system in parallel to an already complex biological system makes human locomotion dynamic 
assistance an open challenge.  

Wearable robotic exoskeletons have great potentials for enhancing human mobility, i.e. from 
improving neurorehabilitation training [128] to preventing musculoskeletal injuries in factory 
settings [129]. For this, wearable exoskeletons need to operate in concert with the NMS 
system and aid a broad repertoire of movements in unstructured environments, i.e. 
dynamically accounting for changes in locomotion speed, direction, ground elevation as well 
as transitions across these.  

Current  HMIs do not enable humans to voluntarily control exoskeletons but operate within 
a priori defined conditions, i.e. they rely on pre-generated torque or angle profiles prescribed 
to the exoskeleton at pre-determined gait phases [29], [30], [130]–[133]. These profiles can 
be further optimized via human-in-the-loop methods for reducing metabolic cost [30], [132] 
or electromyograms (EMG) [134]. State machines are often used for switching across 
locomotion modes (i.e. speeds, ground elevation, tasks)  [133], [135], but cannot provide 
continuous support across transitions, being prone to misclassification and to inadequate 
assistance during unknown tasks. This all limits exoskeleton applicability outside of the lab.  

Proportional myoelectric controllers [107], [136] have been proposed to aid the user 
continuously, i.e. not only during pre-defined states. However, these have not shown 
conclusive results in terms of movement augmentation [137]. Joint angle proportional 
controller [138] based on the difference between left and right hip joint angle has shown 
promising experimental results for level ground locomotion and offers the possibility to 
assist ramp and stairs ascent and descent (metabolic results for these tasks were not shown 
in [138]). However, this method offers little flexibility as it based on a two-legged inverted 
pendulum only representing the hip joint limiting assistance to this joint. 

In this paper, we propose a new HMI that enables humans to voluntarily and continuously 
control a bi-lateral robotic ankle exoskeleton across a broad range of locomotion conditions 
as well as transitions across conditions, with no assumptions on the expected movement 
modes. The proposed HMI does not rely on a priori defined torque profiles. The HMI high-
level controller is based on a person-specific EMG-driven musculoskeletal model that 
computes exoskeleton reference torque profiles based on an individual's neuromuscular 
function estimates.  

We first describe the structure of our proposed HMI as well as that of the bilateral ankle 
exoskeleton employed in this study. Then, we present the experimental procedures for 



Section: Voluntary and Continuous Control of Robotic Exoskeletons during a broad 
Repertoire of Locomotion Conditions 

 

84 

testing the efficacy of our proposed approach as well as the quantitative analyses and results 
emerging from our experiments. Finally, we discuss our study implications, limitations and 
future work. 

5.2 Methods 
Fig. 5-1 represents our proposed HMI scheme. Each constituent block is detailed in the 
remainder of this section. 

5.2.1 High-level control via EMG-driven musculoskeletal modelling 
To assure voluntary and continuous control, exoskeleton commands are computed as a direct 
function of the subject's estimated joint torque. EMGs were recorded, amplified and filtered 
directly by the surface electrodes using proprietary signal detection and acquisition system 
(AxonMaster 13E500, Ottobock, Germany) (Fig. 5-1-A, input Stage). Filtered EMGs are 
normalized using pre-recorded maximal voluntary contractions to compute muscle 
excitation. The tasks used for MVC are static co-contraction as well as dynamic calf rise and 
toe rise.  

This signal after being converted into activation is used to drive a set of virtual muscle-tendon 
units. Activation is computed using the following equation to capture the non-linear twitch 
response of the muscle fiber: 

𝐸𝐸(𝑡𝑡) =
�𝑒𝑒𝐴𝐴𝑚𝑚(𝑡𝑡) − 1�

(𝑒𝑒𝐴𝐴 − 1)  

With A being the EMG shape factor and 𝑢𝑢(𝑡𝑡) being the filtered and normalized EMG. 

To update the kinematic state of the virtual muscle-tendon units, the muscle-tendon length 
needs to be known. Muscle-tendon length cannot be experimentally recorded directly but 
can be computed as a function of joint angles using musculoskeletal geometry models. To 
speed up computation, we used a B-spline algorithm to compute muscle-tendon length from 
joint angles in real-time [21]. B-spline coefficients for each muscle-tendon unit are computed 

 

Figure 5-1: Schematic representation of our HMI. 
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using values from the muscle analysis tool from OpenSim [25] where the full range of motion 
of each joint is sparsely explored. 

 

From these values, muscle forces are computed using personalized Hill-type muscle models 
(Fig. 5-1-C, Musculotendon dynamics stage). This muscle model consists of a non-linear 
spring (tendon) in series with three elements representing the muscle fibers: an active 
contractile element, in parallel with a non-linear spring and a linear damper (i.e. muscle fiber 
passive elements). 

Muscle-tendon force is computed using the following equation: 

𝐹𝐹𝐸𝐸𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑀𝑀 = 𝐹𝐹𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) 

With 𝐹𝐹𝐸𝐸𝑀𝑀  representing the muscle-tendon force, 𝐹𝐹𝑀𝑀 is the tendon force, 𝐹𝐹𝐸𝐸 is the muscle 
fiber force and 𝛼𝛼 is the muscle fibers pennation angle. 

Muscle force is computed using the following equation: 

 

Figure 5-2: Normalized force curves and Hill-type muscle model used in the human-machine 
interface with the modelled A) muscle fiber active force length and passive force-length 
relationship, B) muscle fiber force-velocity relationship of the muscle, C) elastic tendon force-
strain relationship D) the Hill-type muscle representation. 
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𝐹𝐹𝐸𝐸 = 𝐹𝐹𝐼𝐼𝑠𝑠𝐼𝐼𝐸𝐸𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚,𝑚𝑚 �𝐿𝐿𝐸𝐸� 𝑓𝑓𝑚𝑚,𝑣𝑣 �𝑉𝑉𝐸𝐸�𝐸𝐸(𝑡𝑡) + 𝑓𝑓𝑝𝑝 �𝐿𝐿𝐸𝐸� + 𝐷𝐷𝐸𝐸𝑉𝑉𝐸𝐸) 

With 𝐹𝐹𝐼𝐼𝑠𝑠𝐼𝐼𝐸𝐸𝑚𝑚𝑚𝑚 representing the maximal isometric muscle force, 𝑓𝑓𝑚𝑚,𝑚𝑚 �𝐿𝐿𝐸𝐸� is the active 

normalized muscle force-length relationship (Fig. 5-2-A), 𝑓𝑓𝑚𝑚,𝑣𝑣 �𝑉𝑉𝐸𝐸� is the active normalized 

muscle force-velocity relationship (Fig. 5-2-B), E(t) is the muscle activation, 𝑓𝑓𝑝𝑝 �𝐿𝐿𝐸𝐸� is the 

passive normalized muscle force-length relationship (Fig. 5-2-A), 𝐷𝐷𝐸𝐸 is a linear damper, 𝐿𝐿𝐸𝐸 
is the muscle length normalized by 𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸 , 𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸  the optimal fiber length represents the muscle 

length at which the muscle force production is maximal and 𝑉𝑉𝐸𝐸 is the muscle velocity 
normalized by 10 ∗ 𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸 . 

As previously stated, from joint angles the whole length of the musculotendon system is 
obtained but the muscle length is needed to compute muscle force. For this, the Brent–
Dekker root-solver iterative method [139] is used for solving the equilibrium between muscle 
force and tendon force. Tendon force is obtained using the passive tendon force-strain 
relationship (fig. 5-2-C). The tendon strain is obtained using the following equation: 

𝑆𝑆𝑀𝑀(𝑡𝑡) =
𝐿𝐿𝑀𝑀(𝑡𝑡) − 𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀

𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀  

With 𝑆𝑆𝑀𝑀(𝑡𝑡) the tendon strain,  𝐿𝐿𝑀𝑀  is the tendon length and 𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀  is the tendon slack length, 
which is the length at which the tendon does not produce force. 

As dynamic contractions occur in the muscle, change in fiber kinematics results in pennation 
angle 𝛼𝛼 change, while the overall muscle thickness is kept constant. Pennation angle 𝛼𝛼 is 
continuously updated at each time instant t using the following equation: 

𝛼𝛼(𝑡𝑡) = arcsin�
𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸 sin�𝛼𝛼𝑂𝑂𝑝𝑝𝑡𝑡�

𝐿𝐿𝐸𝐸
� 

Finally, muscle forces are projected onto the ankle joint plantar-dorsiflexion degree of 
freedom via the moment arms to obtain joint torque. The moment arm is obtained via the 
partial derivative relative to joint angles using the B-spline algorithm previously introduced. 

5.2.2 Model personalization 
A generic musculoskeletal geometry model is scaled linearly to each individuals using the 
open-source software OpenSim [25] and 3D motion capture data of body landmark (bony 
area) recorded during a static pose. During this procedure, muscle insertion points and 
wrapping points are linearly moved to offer personalized muscle-tendon length and muscle 
moment arm. This scaled model is the one used to create a multidimensional BSpline 
function per muscle-tendon unit. After model scaling, the muscle-tendon model needs to be 
personalized to the subject using non-linear calibration to capture subject properties that are 
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varying non-linearly across individuals. Four parameters are calibrated for each muscle in the 
model, A the EMG shape factor, 𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀  the tendon slack length, 𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸  the optimal fiber length 
and 𝐹𝐹𝐼𝐼𝑠𝑠𝐼𝐼𝐸𝐸𝑚𝑚𝑚𝑚 the maximal isometric muscle force. This calibration is based on two part. First a 
pre-tuning [56], which is identifying initial values for the optimal fiber length 𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸  and 
tendon slack length 𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀  using an optimization procedure (interior point optimizer) [140] 
that minimize the following equation: 

𝑚𝑚𝑚𝑚𝑚𝑚��𝐿𝐿𝐸𝐸𝑀𝑀(𝑚𝑚) − 𝐿𝐿𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝐸𝐸𝑀𝑀 (𝑚𝑚)�2
11

𝑖𝑖=1

 

With 𝐿𝐿𝐸𝐸𝑀𝑀(𝑚𝑚) the muscle-tendon length from the scaled model, i eleven angles equally spaced 
across the full range of motion of the DOFs crossed by the considered muscle and 𝐿𝐿𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝐸𝐸𝑀𝑀 (𝑚𝑚) 
the estimated muscle-tendon length computed using the following equation: 

𝐿𝐿𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝐸𝐸𝑀𝑀 (𝑚𝑚) = 𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀 + 𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀 𝜀𝜀𝑀𝑀(𝑚𝑚) + 𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸 + 𝐿𝐿𝐸𝐸(𝑚𝑚) 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼(𝑚𝑚) 

With 𝐿𝐿𝐸𝐸(𝑚𝑚) the normalized muscle length determined from the unscaled model and 𝜀𝜀𝑀𝑀(𝑚𝑚) 
computed using the following equations: 

𝜀𝜀𝑀𝑀 =
𝐹𝐹𝑚𝑚 cos(𝛼𝛼) + 0.2375

37.5
 for 𝜀𝜀𝑀𝑀 > 0.0127 

𝜀𝜀𝑀𝑀 =
ln𝐹𝐹

𝑚𝑚 cos𝛼𝛼
0.06142 + 1
124.929

 for 𝜀𝜀𝑀𝑀 ≤ 0.0127 

The second part is a calibration of all of the four parameters based on optimization using 
simulated annealing [57] that minimizes the error between the torque estimated by the model 
and the experimental torque computed for different motor tasks (Fig. 1-F): 

� �
1

𝑁𝑁𝑅𝑅𝐼𝐼𝑅𝑅𝑠𝑠
� (𝜏𝜏𝑃𝑃𝑃𝑃𝑒𝑒𝑠𝑠 − 𝜏𝜏𝐼𝐼𝐼𝐼)2
𝑅𝑅𝐼𝐼𝑅𝑅𝑠𝑠𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑁𝑁𝑇𝑇𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 

With 𝑁𝑁𝑅𝑅𝐼𝐼𝑅𝑅𝑠𝑠 the number of data points for the considered trials, 𝜏𝜏𝑃𝑃𝑃𝑃𝑒𝑒𝑠𝑠  the joint torque 
computed by our model presented in the previous section and 𝜏𝜏𝐼𝐼𝐼𝐼 the experimental joint 
torque computed using inverse dynamics using the inverse dynamics tool from OpenSim, 
which uses experimental joint angle and ground reaction forces. 

The parameters boundaries are for the EMG shape factor A varying between -3 and 0, for 
the maximal normalized isometric muscle force 𝐹𝐹𝐼𝐼𝑠𝑠𝐼𝐼𝐸𝐸𝑚𝑚𝑚𝑚 varying between 0.5 and 1.5 and for 
the optimal fiber length 𝐿𝐿𝑂𝑂𝑝𝑝𝑡𝑡𝐸𝐸  varying between ±2.5% and tendon slack length 𝐿𝐿𝑆𝑆𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑀𝑀  varying 
between ±5% from the values found during pre-tuning. 
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5.2.3 Bi-lateral ankle exoskeleton 
In this study, the ankle modules of the Symbitron exoskeleton were used [33] to assist 
plantar-dorsiflexion during locomotion tasks. Due to the modularity of the exoskeleton, and 
its possible 10 degree of freedom configuration, the ankles are relatively heavy at 5 kg each. 
Each ankle exoskeleton has two degrees of freedom: active plantar flexion and dorsiflexion, 
and passive inversion and eversion. The active degree of freedom is actuated with a rotary 
series elastic actuator (SEA), which transmits the desired interaction forces via a push-pull 
rod from its distal location to the ankle joint. The SEA consists of a motor (Tiger Motor U8-
10(Pro), T-Motor, Nancheng, China) that is connected to a harmonic drive (LCSG20, Leader 
Drive, Jiangsu, China) with a gear ratio of 1:100. The harmonic drive is connected to the 
output of the motor with a custom rotary spring with a stiffness of 1534 Nm/rad. The 
actuator can deliver a controlled peak torque of 100 Nm and has a maximum output speed 
of 5 rad/s. The motor is controlled via an Everest Net drive (Ingenia, Barcelona, Spain), 
which communicates with the control computer via EtherCAT. Motor position is measured 
via a rotational encoder (16 b MHM, IC Haus, Bodenheim, Germany). Additionally, the 
actuator measures the spring deflection and joint position with two encoders (20 b Aksim, 
RLS (Renishaw), Kemnda, Slovenia) which are transmitted to the control computer via the 
Everest Net drive. The backpack contains the control computer, a NUC (Intel, Santa Clara, 
USA) that executes the controller in TwinCAT 3 (Beckhoff Automation, Verl, Germany) in 
real-time with a sampling frequency of 1 kHz. Additionally, the backpack contains two 
batteries, supplying the computer and actuators with power. The backpack has a weight of 
10kg. 

5.2.4 Low-level torque control via disturbance observers 
The Symbitron ankle exoskeleton interacts with its subject by controlling the interaction 
torque between subject and exoskeleton, i.e. the spring torque 𝜏𝜏𝑒𝑒𝑚𝑚𝐼𝐼. This torque is computed 
from the measured spring deflection and a linear model of the actuator's spring (Fig. 5-1-E). 
The interaction torque is controlled via a disturbance observer algorithm previously 
developed for lower limb exoskeletons [141]. The controller fulfils three purposes: it 
increases the bandwidth of the actuator to 30~Hz, it lowers the actuator's apparent 
impedance, i.e. it makes the actuator as mechanically transparent as possible, and it 
guarantees unconditional interaction stability with any environment. The latter is especially 
important to avoid instabilities during ground contact. The controller consists of an inner 
loop PD controller with feedforward term, that increases the actuator's torque bandwidth, 
and an outer loop disturbance observer (DOB) that lowers the actuator's apparent 
impedance. 

The DOB computes the torque caused by disturbances, such as impacts during heel strike, 
or voluntary motion of the subject, and subtracts that disturbance torque 𝜏𝜏𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡 from the 
desired reference torque 𝜏𝜏𝑠𝑠𝑚𝑚𝑝𝑝𝑝𝑝𝐼𝐼𝑃𝑃𝑡𝑡 , which is the estimated joint torque from the 
neuromusculoskeletal model multiplied by a support ratio, to eliminate the effect of the 
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disturbance on the interaction torque 𝜏𝜏𝑆𝑆 . This disturbance rejection makes the actuator as 
transparent as possible while keeping its interaction with the environment stable. The 
resulting torque 𝜏𝜏𝑚𝑚 is sent to the motor as a reference. 

5.2.5 Assistance 
To assure timely and voluntary assistance a tight integration between high and low-level 
control is required. For this, the estimated joint torque is sent from the model to the low-
level controller via the Ethercat real-time communication protocol where it then multiplied 
by a support ratio. This support ratio varies between 0 and 1 with 0 meaning that the 
exoskeleton acts in minimal impedance and 1 signifying 100% of assistance given (i.e. the 
exoskeleton assists with the same amount of torque as the subject's biological joint). The 
Assistance is then thresholded to a maximum of 30 N.m to assure the security of the subject 
and the integrity of the actuator. 

5.3 Experiment 
Experiments were conducted on 3 subjects (31±5 years, 177±7.5 cm, 70.3±7.3 Kg). 
Participants had no instance of musculoskeletal injury or motor-control impairment. All 
experimental procedures were carried out in accordance with the Declaration of Helsinki on 
research involving human subjects. All subjects provided their explicit written consent to 
participate in the study. 

The experiment started with the personalization phase. Motion capture's 3D markers data 
(Oqus, Qualisys, Sweden), ground reaction force (M-Gait, MotekForce Link, The 
Netherlands) and EMG (AxonMaster 13E500, Ottobock, Germany) were recorded on the 
subject. EMG signals for eight muscles were recorded, left and right Soleus, Tibialis Anterior 
and Gastrocnemius Medialis and Lateralis. Marker data and ground reaction forces were used 
to compute joint angles and joint torques using the inverse kinematics and inverse dynamics 
tool from OpenSim [25]. This data was further used to personalize the model using the 
methods described in section 5.2.2 (Model personalization). The model used during this 
experiment was based on [25] and contains the following joints: left and right plantar 
dorsiflexion and knee flexion-extension and the following 14 muscles tendon unit: left and 
right Soleus, Tibia Anterior, Gastrocnemius Medial and Lateral and Peroneus Longus, Brevis 
and Tertius. The following tasks were used for the calibration of the model: static, treadmill 
walking at 1.8 km/h and 2.8 km/h, calf rise and toe rise. 

The second phase of the experiment, after model personalization, consisted in defining the 
experimental parameters and acclimation of the subject to walking with the exoskeleton. Two 
experimental parameters were set during this phase, the support ratio (see Table 5-1) and the 
steps frequency for the two tested speeds. Step frequency was controlled during the 
experiment to make sure that assistance is integrated by the subject and reduce his own 
torque generation instead of increased speed or step length. The support ratio was selected 
by the subjects to be a trade-off between comfort and high assistance. Furthermore, since 
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most of the participants were naive subjects, training was necessary to eliminate learning 
effects during the experiments and get acclimated to walk with the exoskeleton. Previous 
work has shown that at least 45 min of walking is needed to obtain full metabolic benefice 
of the assistance and normal joint kinematics [142]. For this, the subjects walked on a 
treadmill (Thera-Treadpro, Sportplus) with the exoskeleton with and without assistance until 

 

Figure 5-5: Ankle joint torque root mean squared sum averaged across all subjects within each 
tested condition, i.e. assisted (in blue) and non-assisted (minimal impedance, in purple). The darker 
color represents the human biological torque estimated via the proposed HMI. The lighter color 
represents the exoskeleton torque recorded by the spring deflection of the actuator. The dashed 
area represents the portion of human biological ankle torque that is taken over by the exoskeleton. 
The number on top of each bar represents the difference in percentage of total ankle torque 
(exoskeleton and biological) between conditions. The lower number in bold represents the 
reduction in biological torque between the conditions with * representing statistical significance 
(P < 0.05). 
 

 

Figure 5-3: Mean EMG reduction for all subjects within each locomotion condition as well as 
during transitions and during the entire experiment (i.e. all conditions and transitions altogether). 
Data are reported for the assisted and non-assisted condition. The * represents statistical 
significance (P < 0.05). Individual EMG reduction results for each muscle for all tasks, transition 
and complete experiments presented in the table. 
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they presented a natural looking gait and were feeling confident (10 to 20 minutes). To access 
knee joint angles, an IMU suit was used (Link, Xsens, the Netherlands), the ankle joint angle 
was directly available from the joint encoder of the exoskeleton. The knee angles are required 
for the gastrocnemius muscles that span the ankle and knee joint. 

The last phase of the experiment was the recorded experiment. Two conditions were tested, 
minimal impedance and proportional estimated torque assistance provided by the model. 
Each condition was tested with six different locomotion tasks that were randomly presented 
to the subject. The data was collected in a single uninterrupted session including the six 
randomly combined conditions and the transitions within. The tested locomotion tasks were 
1.8 km/h, 0%; 1.8km/h, -5%; 1.8 km/h, 12%;2.8 km/h 0%, 2.8 km/h, -5%; 2.8 km/h 12%. 
Each task had a duration of 3 min, the transition between tasks was of variable length due to 
the time needed by the treadmill to change between speed and/or inclination. A fall 
prevention system was used every time the subjects were walking with the exoskeleton 
(ZeroG, Aretech LLC, USA) which provided a body-weight support of 5 Kg. 

5.4 Results 
In most figures, we first present each individual tested walking tasks followed by "during 
transitions", which is the average of all transition happening between two walking tasks (i.e. 
change in speed, elevation or both) and finally, the "complete experiment", which represents 
the full recorded experiment with walking task and tasks transition. 

5.4.1 Data processing 
All data were segmented automatically using a peak detector on the knee joint angle. Each 
segment was re-sampled as percentages of the gait cycles (from 0 to 100%). The root mean 

squared value was identified for each segment, values that were superior to three times the 

 

Figure 5-4: Estimated joint ankle torque for a representative subject for two tested conditions, i.e. 
assisted and non-assisted (minimal impedance). Each grey dot represents the torque root mean 
squared sum (RMS) for each gait cycle. The red dotted line represents torque RMS trend within 
each locomotion condition. The green dotted line represents torque RMS trend during transitions 
across conditions. 
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interquartile values were removed. Finally, percentages of change between conditions 
(assistance and minimal impedance) were calculated using the mean of all steps. Significance 
was computed using linear mixed modelling (mixedlm from the python statsmodels library). 

5.4.2 EMG reduction 
For the EMG, Fig. 5-3 shows that reduction could be achieved for all tasks as well as during 
the transition between tasks (16%, significant) and for the complete experiment (12%, 
significant). Fig. 5-3 presents detailed results at the muscle level. It can be observed that 
reduction was obtained for all muscles and all tasks, during transitions and for the complete 
experiments (maximum reduction of 35% for the soleus at 2.8 km/h with an inclination of 
-5%) except for the Tibialis Anterior that did not undergo reduction (except during task 
transition (10%) and walking at 1.8 km/h with -5% inclination (0%)) and for the 
Gastrocnemius lateralis at 2.8 km/h with an inclination of -5% (0%). Table 5-1 presents the 
EMG reduction obtained for each subject independently. It can be observed that the Soleus 
muscle always presented reduction in EMG superior to 5% (blue cell color) for all subjects 
(maximum 40.6% (subject 1 for 2.8 km/h, -5%) and minimum 9.5% (subject 1 for 1.8 km/h, 
12%)). The tibialis anterior is the muscle presenting the least reduce EMG level with increase 
always superior to 5% (red cell colour) for subject 1.  

5.4.3 Biological Torque Reduction 
Fig. 5-4 shows the estimated biological ankle torque averaged for each gait of a representative 
recording for the two tested conditions (i.e. minimal impedance and assistance from the 
model based HMI) as well as the trends (dashed line) for the tested tasks (red) and during 
the transition (green).  

Fig. 5-5 presents the estimated biological ankle torque for all the tested conditions as well as 
during the transition and in the complete experiment between the two conditions. 
Reductions were achieved for biological ankle torque for all tested condition (significant) 
(ranging from 18% to 25%) and reduction of 23% (significant) was obtained also during the 
transition between tasks. The final reduction in ankles for the complete experiment was 21% 
(significant). 

Table 5-1 presents ankle torque reduction obtained for each subject independently. It can be 
seen that for all subject and all condition the reduction in biological torque was always greater 
than 5% (blue cell color) (maximum 36.2% (subject 1 for 2.8 km/h, -5%) minimum 8.6% 
(subject 2 for 1.8 km/h, 12%)). Table 5-1 also shows the averaged assistance in N.m. received 
by subjects and the individual support ratio. 
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Table 5-1: Subject specific support ratio, EMG and torque reduction and averaged received assistance for 
all tasks, transition and complete experiments. Red cell represents increase greater than 5%, blue cell 

represents reduction greater than 5% and grey cell represents reduction between -5% to 5%. 
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5.4.4 Human-exoskeleton Torque invariance across conditions 
The total human-exoskeleton torque (summation of the estimated biological ankle joint 
torque and exoskeleton torque) was preserved across tasks (between -6% for the 2.8 km/h 
at -5% inclination and 6% for 1.8km/h at 12% inclination) as well as for the complete 
experiment (0%). Table 5-1 shows the human-exoskeleton torque per subjects. 

5.5 Discussion 
In this paper, we presented a novel HMI to assist during a wide range of locomotion tasks. 
We based our HMI on a high-level neuromusculoskeletal model controller driven by EMGs 
and joint angles. The low-level control was based on an efficient torque controller based on 
a disturbance observer connected to a bilateral ankle exoskeleton to give continuous and 
volition assistance. Results from Fig. 5-5 and 5-3 show that the developed HMI can positively 
assist for all tested locomotion tasks. 

More importantly, the developed HMI can assist positively during transitions between tasks 
without having to change control parameters or having to switch across assistance profiles. 
This is visualized in Fig. 5-4, where different torque profiles are dynamically generated by 
our proposed HMI across different locomotion tasks, prescribing more torque to the 
exoskeleton for more demanding tasks (higher speed and inclination). Exoskeleton dynamic 
adaptation to different locomotion condition is central for enabling wearable exoskeleton to 
be employed outside of the lab in rough and unstructured terrains. The presented HMI 
allows capturing how an individual's musculoskeletal function varies across movements, 
thereby generating exoskeleton control commands, something that state of the art 
exoskeleton HMIs cannot do. Human-in-the-loop optimization of assistive torque profiles 
needs up to 45 min [30], during which the human subject is exposed to sub-optimal torque 
patterns. In contract, the optimization-based HMI calibration employed in our proposed 
approach is done once per subject and requires only a few minutes of locomotion data, i.e. 
2 minutes on averages per subject.  

Our proposed approach showed the ability to extrapolate outside of the calibration condition 
(i.e. over-bound locomotion at 1.8 km/h and 2.8 km/h), thereby enabling positive assistance 
during unknown locomotion speeds, ground elevations and transitions. Importantly, no 
exoskeleton was worn during the recording of calibration data, showing the approach could 
compensate for the added exoskeleton during the real-time control tests. This shows that, 
contrary to current controllers based on state machines, the presented HMI can achieve 
tasks-independence that enables exoskeleton voluntary control, which offers positive 
assistance (i.e. reduction of biological torque and EMG). 

These advantages were previously demonstrated by our previous works where the HMI can 
estimate joint torques in real-time for a wide range of tasks such as walking, backward 
locomotion, calf rise, jumping, sidestepping and calf rising [79]. Furthermore, it offers further 
advantage than the ability to predict joint torques on a wide range of tasks, it also offers great 
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flexibility as it can easily be adapted to other body parts and wearable robotic devices such 
as upper-limbs, which we demonstrated when the proposed HMI was used to control a hand 
prosthesis in an amputee [18] and assisted via a soft exosuit, elbow's dynamic movement 
[143]. This method was also be applied successfully to post-stroke and spinal cord injury 
patients to voluntary control their knee and ankle joint simultaneously [144].  

Another interesting result is that the total amount of joint torques needed to walk (human-
generated + exoskeleton-generated torque) were preserved throughout the entire 
experiment. This can be seen in Fig. 5-5 in the summation of estimated joint torque and 
interaction torque. This shows that a synergistic transfer of torque happened between the 
robotic device and the subject (hashed area in Fig. 5-5) where the torque provided by the 
exoskeleton results in the same amount of biological torque being reduced in both left and 
right ankle joints across subjects. In this way, the human and the exoskeleton converged 
towards a condition where locomotion was more economical in terms of EMG and 
biological torque.  

This is due to the voluntary and natural assistance provided that is directly proportional to 
the subject's torque generation, which allows a precise and timely torque delivery by the 
exoskeleton. This could be achieved because the real-time EMG-driven model can predict 
joint torque before the subject's muscle contraction due to the electromechanical delay as 
shown in our previous publication [79]. Reduction of torque and EMG achieved in our 
experiments during a complex task such as locomotion could only be attained with an 
underlying torque delivered by the exoskeleton in sync with muscle contraction. Timely 
torque delivery has been shown to be crucial for metabolic reduction notably during the 
push-off phase [145]. Metabolic comparison via respiratory systems will be conducted in 
future work to compare net metabolic reduction. Future work will also test our proposed 
HMI to control a more lightweight exoskeleton in an unconstrained environment to fully 
explore the benefit of this HMI out of the lab.   

One of the limitations of the current method observed during the experiments was 
occasional instability during swing phase. As stated previously, the assistance provided is 
proportional to the subject's joint torque and thus assistance is provided continuously. 
Assisting only the push-off phase would have required implementation of a classification 
algorithm, limiting the continuous and task-independent aspect of our HMI. This came with 
limitation, notably, assistance during swing where the ankle joint is less stiff than during push-
off and thus can easily be perturbed by an external force applied to it (i.e. assistance provided 
by the exoskeleton). 

Future work will try to remove ankle instability during swing phase by modulating the 
support ratio based on joint stiffness estimation, to provide more assistance when the joint 
is stiff (i.e. push-off) and less assistance when the joint is lax (i.e. swing) [46], [146].  
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Future work will also investigate high-density EMG and blind-source separation to directly 
establish a connection between the muscle model and spinal motor neurons [71], [121], [147]. 
This will add robustness for the placement of EMG due to the high density of spatial 
distribution of EMG sensors. This will also remove the need for maximal voluntary 
contraction for the normalization of EMG signal since the motor unit transmits information 
in the frequency domain and not in the amplitude domain. 

We will also investigate learning effects and time needed for the subject to fully adapt to the 
assistance and compare them with other states of the art HMI like human in the loop 
controller. 

5.6 Conclusion 
We presented an HMI that enabled different individuals to control a robotic bi-lateral 
exoskeleton voluntarily during a broad range of locomotion conditions and transitions. The 
proposed approach enabled exoskeleton automatic adaptation to unknown locomotion 
conditions that were not considered during the HMI design. Moreover, the controlled 
exoskeleton dynamically adapted to different conditions with no need to use locomotion 
mode classification or state machines. This is an important step to enable the use of wearable 
robots outside of the lab during real-life situations.  
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CONCLUSION 

6.1 Summary of Key Findings 
We created a new tool that allows the computation of musculoskeletal variables such as 
muscle forces and kinematics as well as joint torques in real-time while moving with a 
wearable robotic device. We also showed that we can use this information to provide robotic 
assistance to healthy users as well as stroke and spinal cord injury patients. 

We first showed that EMG-driven modelling can be used in real-time and gave results (i.e., 
joint torques) close to the gold-standard (inverse dynamics). In the second chapter, results 
indicated a root mean squared error (RMSE) between estimated joint torques from our HMI 
and experimental joint torques from inverse dynamics of 0.17 Nm/kg and a Person 
coefficient of r = 0.65 for the knee flexion-extension, an RMSE of 0.17 Nm/kg and r = 0.74 
at the ankle plantar-dorsiflexion and 0.05 Nm/kg and r=0.61 at the ankle subtalar flexion. 
These results show that we can answer positively to our first research question: 

1) Can real-time EMG-driven modelling achieve accuracy in joint torques close to the 
golden standard (Inverse dynamics)? 

In Chapter 2, we also confirmed that internal body variables such as joint torques, muscle 
forces, and muscle kinematics can be calculated within the electromechanical delay (EMD) 
(< 50 ms). Results showed computation from EMG to joint torques under 35 ±11 ms. This 
is essential for controlling exoskeletons where the assistance timing is crucial [30]. This result 
shows that we can answer yes to our second research question: 

2) Can real-time EMG-driven modelling achieve computation time within EMD? 

For improving the mobility of patients, it is important to enable them to perform many 
different tasks independently. Thus it is fundamental to be able to assist with a robotic device 
for a large repertoire of tasks. In the second and fifth chapters, the extrapolation capabilities 
of our framework, namely, computing biomechanical variables on conditions not used for 
calibration, were presented. In the second chapter, the results showed that accurate joint 
torques were computed with respect to inverse dynamics on unknown tasks (fast walking, 
backward walking, sidestep, single-leg squat, and single-leg calf rise) and on uncalibrated 
degrees of freedom (DOF) (subtalar joint). These results demonstrated the extrapolation 
capabilities of our HMI. Furthermore, in the fifth chapter, computation of joint torques on 
unknown tasks (elevation) and when the users were assisted by an exoskeleton, were 
demonstrated. These results were not validated against inverse dynamics. The controlled 
exoskeleton reduced the users’ EMG and biological joint torque levels, which may not 
happen with non-physiological assistance. When assisted by non-physiological assistance, 
users may consider it as perturbations and thus co-contract muscles. These results on 
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exoskeleton demonstrated, once more, the extrapolation capabilities of our HMI. These 
results indicate that positive answers can be addressed to our second research question: 

3) Can EMG-driven modelling extrapolate results outside of its calibration data? 

Providing assistance during locomotion task needs good timing and efficient force 
transmission. This was the main focus of chapter 5. Here, we demonstrated that for healthy 
users we can deliver variable assistance for different locomotion modalities (change in speeds 
and/or inclinations), which produced reductions in EMG levels. This was particularly 
challenging as the assistance had to be properly timed with properly estimated joint torques. 
Our study showed a reduction in EMGs ranging from 6% to 18% for the tested tasks as well 
as a reduction of 16% for the transition periods in between tasks and 12% for the total. We 
also found a reduction in biological ankle torques ranging from 19% to 25% for the tested 
tasks as well as a reduction of 23% for the transition periods in between tasks and 21% for 
the total. Importantly, the total user + exoskeleton ankle joint torques between conditions 
(minimal impedance and assistance) were identical. This means that, between the user and 
the exoskeleton, a force transfer happened proving the natural and voluntary assisting 
components of the HMI based on EMG-driven modelling. These results show that we can 
answer positively to our third research question: 

4) Can predicted joint torques from EMG-driven modelling offer reduction in EMG 
and joint torques levels when used to assist via an exoskeleton healthy users during 
diverse locomotion modalities? 

Although most of the experiments in this dissertation were done on healthy users to validate 
the HMI's safety and feasibility, it was also tested on patients in Chapter 4. In general, paretic 
patients are a more difficult group to test with, but it is meaningful to do so because the 
assistance of paretic patients is the main aim of assistive robotics for rehabilitation. In this 
chapter, assistance was given to a group of patients (two strokes patients and one spinal cord 
injury (SCI) patient) through the H2 exoskeleton [144] with our HMI. We investigated seated 
tasks close to the ones used during rehabilitation exercises. Patients’ neuromusculoskeletal 
(NMS) models were calibrated directly using the exoskeleton. This was needed as most 
patients cannot accomplish the tasks needed for dynamic calibration (i.e., walking, calf rise 
and so on.. ). Results showed that patients assisted by our HMI and the exoskeleton can track 
reference trajectories with good accuracy (tracking error always < 5.5±3.1 degrees and with 
correlation coefficients always > 0.6). These results show that we can answer positively to 
our fourth research question: 

5) Can the developed HMI allow paretic patients to voluntarily control a robotic 
device? 
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An easy way to increase mobility in patients is to render locomotion more economical. This 
can be validated by checking EMG reductions with the developed HMI. From chapter 4, 
results on patients showed that we can reduce the EMG level between different levels of 
assistance. For stroke patient 2, we obtained a reduction in EMG from (Low Gain) 0.69±0.14 
to (High Gain) 0.36±0.14 and a decrease in EMG variability from 1.24 to 0.67 (normalized 
from 26 to 21). For the SCI patient, we obtained a reduction in EMG from 0.90±0.18 to 
0.89±0.005 and a decrease in EMG variability from 0.83 to 0.58 (normalized from 6 to 4.2)). 
These results provided an encouraging answer to our last research question: 

6) Can assistance via a robotic device based on EMG-driven modelling provide EMG 
amplitude and variability reductions in paretic subjects? 

6.2 Impact and Relevance of the Scientific Contributions 
The developed HMI in this dissertation, for the first time, predicted joint torques of multi-
DOFs in real-time and with good accuracy. The developed HMI is compatible with fully 
wearable sensors (EMG and IMU-suit) (chapters 3 and 5) and reduces the time between data 
recording and data analysis (chapter 2). These features allow the developed HMI to also make 
an impact outside of the research lab. 

Achieving a computation time less than the EMD is important as this allows estimation of 
the internal neuromechanical variables of the subject before their physical realizations 
(chapter 2). This can be a game-changer for assistive robotics where, with the help of robotic 
devices, we can steer the neuromechanical properties toward a more favourable area (i.e. 
plateau of the muscle force-length relationship) and reduce the muscular efforts for users. 
This can also help to prevent musculoskeletal injury. Furthermore, this real-time HMI can 
assist rehabilitation even without robotic help as the musculoskeletal properties can be given 
as bio-feedback to the patient directly or to the physiotherapist to evaluate the effects of 
different exercises. For instance, the HMI can capture the patient’s impaired muscular force-
generating capacity (chapter 4), thus, helping clinicians to refine personalized 
neurorehabilitation solutions.  

The possibility of our HMI to extrapolate beyond the calibration data is also valuable for 
assistive devices (chapters 2 and 5). There are currently no robotic controllers that can 
continuously accurately predict the state of the users. Most controllers require the use of a 
state machine type of controller [29] or do not accurately predict users’ state (i.e., uncalibrated 
model and without the use of experimental EMG). The assistance computed from our HMI 
can continuously assist the users in different conditions (speeds, inclinations) as well as in 
between tasks where the locomotion’s modality changes. To our knowledge, this has never 
been reported before. Moreover, since our assistance is directly proportional to the users’ 
joint torques, exoskeletons can provide natural assisting torques which automatically change 
along with users’ actions. This is vital for the neurorehabilitation of patients where the goal 
is to improve the patients’ independent mobility.  
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6.3 Limitations and Directions for Future Research 
There exist several limitations in this work that can lead to interesting future works. 

One important limitation lies in the current calibration process, which may include too much 
constraint for patients. The current gold-standard for model calibration requires calibration 
on dynamic tasks such as walking, calf rise or squat. Unfortunately, these may not be always 
feasible for some paretic patients and isometrics calibration (as used in Chapter 4) may not 
be valid for locomotion tasks. One possible way to solve this issue is to use on-line calibration 
where the patient will be assisted by an exoskeleton. Using real-time inverse dynamics, the 
patient’s experimental joint torques could be extracted and used for calibration. One of the 
problems of this solution is that inverse dynamics require ground reaction forces, which, as 
explained in the introduction, cannot be recorded via wearable sensors yet. In another 
solution direction, it will be interesting to fully explore the interpolation possibility of 
isometrics based calibration on dynamics tasks. 

Another difficulty is to assess the validity of the calibrated parameters such as maximal 
isometric force, optimal fiber length, and tendon slack length. The calibration results are 
currently only validated against joint torques from inverse dynamics. These values could be 
deducted (for the maximal muscle force using the physiological cross-sectional area (PCSA) 
[148] for example) or better constrained (optimal fiber length and tendon slack length) from 
magnetic resonance imaging (MRI) [149] or ultrasound. Research is being conducted toward 
this goal but MRI processing is still largely done manually, which could be difficult to 
generalize for all calibrations of the neuromusculoskeletal models and thus automatic 
methods should be developed. Statistical methods and population-derived modelling could 
also be interesting solutions [150], [151]. 

The calibrated neuromusculoskeletal model suffers also from limitations, not by the model 
itself but by the missing experimental validation of the predicted muscle forces. Experimental 
muscle force measurements are extremely difficult and constraining as the gold-standard 
method consists of surgical procedures to implement sensors [152]. Lately, a new device with 
less constraint has appeared that can inform about the shape of tendon forces [153]. This 
device can estimate muscle forces by tapping the tendon and measuring the speed of the 
shear wave propagation. This may be an easier way to validate muscle forces during dynamic 
tasks. This new tool could be a nice addition to the validation of the model and also for its 
calibration as these experimental values could add further information for calibrating of 
muscle parameters. 

Furthermore, since our HMI is based on an EMG-driven modelling approach, accessing 
healthy EMGs is mandatory. However, this can be difficult when working with patients, for 
example, complete SCI patients may not have EMG signals anymore or in stroke patients 
some muscles do not have EMG signals ( i.e., patients with drop foot syndrome for example) 
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or are perturbed by non-voluntary EMG signals (i.e., spasticity). This could be solved by 
using synergies between muscles [44] instead of experimentally recorded EMGs. With muscle 
synergies, muscle activations are represented by recombination of a small set of basic signals 
or primitives. These primitives are timed using the phase of the gait. One limitation with this 
solution is that the primitives are task-dependent and thus would reduce the usability of the 
system to only certain tasks. Even more problematic, when EMGs are recorded from stroke 
patients, spastic activities can appear. Part of them can be filtered out but a better solution 
would be to directly remove groups of unhealthy motor neurons from the signal. That could 
be done by using high density (HD-)EMG recording with real-time decomposition at the 
moto-neuron level [154] and to then removing (or filtering out) pathological moto-neuron. 
A notable benefit of this approach is that decomposition can record neural activities from 
SCI patients with complete lesion [155]. 

Another limitation of this method is its current dependency on the technical limitations of 
surface EMG. This can be seen in the difficulty to have the same level of EMG between 
recording sessions due to placement and replacement of EMG sensors, change in skin 
condition, movement artefacts and so one. This problem could also be solved by using textile 
HD-EMG with automatic muscle detection and real-time decomposition where the neural 
drive from the spinal cord could be used to drive our HMI [71]. 

We showed that we can assist users using wearable robotic devices by giving back a 
percentage of the users’ joint torques. This can be useful for an industrial or military setting 
but this assistance has never been shown to deliver better outcomes over classic 
rehabilitations [83], e.g., stroke [84], [85], SCI patients [86]. Long term study on the effects 
of the assistance provided by our HMI for rehabilitations would be an interesting future 
work. Furthermore, our HMI can deliver information not only about joint mechanical 
properties but also about muscle mechanical properties. Putting this information into a 
rehabilitation controller with a clear goal (targeting at the muscle level) could also be 
beneficial for patients. Additionally, other joint mechanical variables such as joint stiffnesses 
[16] and joint compressive loads [15], could be added to the model and computed in real-
time. Being able to reduce these parameters could have a clear impact on some groups of 
patients such as Duchenne patients or osteoarthritis patients. Due to the difficulty to obtain 
these parameters (i.e. stiffnesses and joint compressive loads) little research has been done 
to use these parameters in wearable robotic device controllers. Besides, by offering access to 
all of these internal parameters to clinicians, more informed decisions on which rehabilitation 
method to use can be made. 

Finally, exoskeletons are still bulky with heavy components and low ergonomics which can 
be difficult for users, especially patients, to use for a long period. Soft exosuits [6] transfer 
some of the load of actuators from the user’s limb to the user’s back and are generally lighter. 
Soft exosuits still have issues with ergonomics as forces meant for only one joint can be 
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distributed to the whole body. Currently, they can only offer low torque assistance when fully 
wearable due to friction and shear forces. 

6.4 Final Conclusion 
In this dissertation, an HMI was developed that, for the first time, could accurately compute 
multi-DOF joint torques from experimental EMGs and joint positions in real-time. This 
HMI was used to control lower-limb exoskeletons to assist healthy users during walking 
tasks, as well as paretic patients during seated tasks. Reductions of EMG amplitudes and 
joint torque levels were seen in both scenarios, which proved the positive effects of this new 
interface. We believe that this new tool can provide a higher quality of rehabilitation care for 
patients through wearable robotic devices. The next steps along realizing this include making 
the HMI easier to use by working on aspects such as EMG recording, creating a wearable 
robot’s controller focused on personalized neurorehabilitation, and further validating the 
model estimated neuromuscular variables.   
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APPENDIX 

7.1 Appendix to Introduction 
7.1.1 Wearable Robotics 

7.1.1.1 The different type of Wearable Robot 
In this thesis, we were interested in mainly two types of wearable robots: exoskeletons and 
prosthesis. An exoskeleton is a robotic device placed in parallel to the musculoskeletal system 
of the user and provides assistance to the joint. Exoskeletons can be rigid (i.e. all actuators 
are rigidly connected to the user and in-between them) or soft (i.e. soft interfaces are used 
with the user or in-between actuator). A prosthesis is placed on series to the musculoskeletal 
system of the user to replace a missing limb most of the time. The following devices were 
used during this PhD’s thesis: 

7.1.1.1.1 Achilles 
The Achilles exoskeleton is an autonomous rigid ankle exoskeleton [31] (Fig. 7-1-1) 
consisting of one backpack with computer and battery and two ankle modules (right and 
left). The ankle module consists of a series-elastic actuator (SEA) composed of a leaf spring, 
motor and spindle. The ankle modules also possess diverse sensors like joint encoder, motor 

 

Figure 7-1-1: Achilles ankle exoskeleton (Image from [31]). 
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encoder and pressure sensor. Communication between ankle modules and backpack is done 
via the real-time Ethercat network. The Achilles was developed by the group of Herman van 
der Kooij at the University of Twente and the University of Delft, the Netherlands. This 
exoskeleton was used for conducting experiments in Chapter 2. 

 

Figure 7-1-2: H2 exoskeleton (Image from [32]). 
 

 

Figure 7-1-3: the WR2 exoskeleton. 
 

 

Figure 7-1-5: Michelangelo hand prosthesis from 
OttoBock (Image from ottobockus.com) 

 

 

Figure 7-1-4: soft exosuit for the elbow 
(Image from [143]). 
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7.1.1.1.2 H2 
The H2 exoskeleton is a rigid lower-limb exoskeleton composed of 6 degrees of freedom 
(DOFs) (hip flexion-extension, knee flexion-extension and ankle dorsi-plantarflexion) [32] 
(Fig. 7-1-2). Each joint module has a motor with harmonic drive, motor sensor, position 
sensor, sole sensor and strain gauge. The H2 uses the real-time CAN network for 
communicating between modules. This exoskeleton was developed by the group of Jose L. 
Pons at the CSIC, Spain. The H2 was used for realizing experiments in Chapter 3. 

7.1.1.1.3 WR2 
The WR2 exoskeleton [33] (Fig. 7-1-3) was developed for the Symbitron European project 
lead by Herman van der Kooij. The WR2 has 12 DOFS (ten actives and two passives) and 
is a rigid exoskeleton. Each joint has a SEA with a motor, spring and harmonic drive. The 
exoskeleton also has a position sensor, a motor sensor for each active joint and sole switch 
sensor for each foot. Communication between DOF module and backpack is done via the 
EtherCAT network. This exoskeleton was used for conducting experiments in Chapter 4. 

7.1.1.1.4 Soft Exosuit 
The soft exosuit (Fig. 7-1-4) used during this PhD, is a cable-driven exoskeleton for the 
elbow. It was developed by the group of Lorenzo Masia at Nanyang Technological 
University, Singapore. It is composed of a motor mounted on the upper arm driving a cable 
pulling the forearm. It also has the following sensors: motor encoder, load cell and position 
encoder at the elbow. This exoskeleton was used in [143]. 

7.1.1.1.5 Michelangelo Hand 
The Michelangelo is a hand prosthesis with 3 DOFs (Hand open and close, wrist flexion-
extension and wrist rotation) (Fig. 7-1-5). This prosthesis is a commercial device developed 
by OttoBock, Germany. Connection to the device is done via Bluetooth. This device was 
used in [18]. 

7.1.1.2 Torque Control of Wearable Robot 
The most common approach for the control of robotic devices in torque is a proportional 
derivative integrator (PID) controller, which tries to reduce the error between the torque 
command and experimental torque using the following equation: 

𝜔𝜔 = 𝑃𝑃. 𝑒𝑒(𝑡𝑡) + 𝐷𝐷�𝑒𝑒(𝑡𝑡) − 𝑒𝑒(𝑡𝑡 − 1)� + 𝐼𝐼(𝑒𝑒(𝑡𝑡) + 0.1∑ 𝑒𝑒𝑡𝑡−1
0 )  eq. 1.4 

With 𝜔𝜔 the velocity command for the motor, P the proportional gain, 𝑒𝑒(𝑡𝑡) error in torque 
between the command and the experimental torque at instant t, D the derivative gain and I 
the integrator gain. 

This approach is used for the control of the H2 exoskeleton and the soft exosuit. 



Section: Appendix 

 

 

122 

For the Achilles exoskeleton, the torque control is done by controlling the spring deflection. 
A curve, calibrated beforehand is used to compute the desired spring deflection for the 
desired torque then a PD controller computes the desired motor command to reduce the 
error between spring deflection command and actual spring deflection. This can be 
summarized with the following equation: 

𝜔𝜔 = 𝑃𝑃. 𝑒𝑒(𝑡𝑡) + 𝐷𝐷�𝑒𝑒(𝑡𝑡) − 𝑒𝑒(𝑡𝑡 − 1)�   eq. 1.5 

With 𝜔𝜔 the velocity command for the motor, P the proportional gain, 𝑒𝑒(𝑡𝑡) error at instant t 
and D derivative gain. 𝑒𝑒(𝑡𝑡) can be computed with the following equation: 

𝑒𝑒(𝑡𝑡) = 𝑓𝑓�𝜏𝜏,𝜃𝜃𝑒𝑒𝑚𝑚𝑝𝑝� − 𝑝𝑝𝑒𝑒𝑚𝑚𝑝𝑝    eq. 1.6 

With 𝑓𝑓�𝜏𝜏, 𝜃𝜃𝑒𝑒𝑚𝑚𝑝𝑝� the torque spring deflection relationship, 𝜏𝜏 the torque command, 𝜃𝜃𝑒𝑒𝑚𝑚𝑝𝑝 the 
experimental joint position and 𝑝𝑝𝑒𝑒𝑚𝑚𝑝𝑝 the current spring deflection. 

Finally, the latest development in torque control of exoskeleton can be found in the work of 
Rampeltshammer et al [141]. This controller was implemented in the WR2 exoskeleton. This 
controller is based on disturbance observer (DOB) and is composed of four elements, a PD 
controller, feedforward term, DOB and a model of the SEA actuator. More information can 
be found in [141]. 

 

Figure 7-1-6: Muscle to fascicle to fiber (image from openstax.org). 
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7.1.2 Neurophysiology of the Muscle 

7.1.2.1 Muscle-Tendon unit physiology 
Muscle-tendon units (MTU) are the main force generator in our body. It is composed of a 
tendon that is attached to the skeletal system on one side and the muscle on the other side. 
Tendons are mainly made of collagen and act as a spring in the muscle-tendon system. 
Muscle, on the contrary, can actively produce force by twitching under the effect of motor 
unit action potential (MUAP) that is the main command signal of the muscle-tendon system. 
The muscle is mainly comprised of muscle fiber bundled together in fascicle (Fig. 7-1-6), 
which are activated together by the same MUAP.  

 Each muscle fibers are also known as muscle cells are composed of myofibrils (Fig. 7-1-7). 
Myofibrils are built of proteins (actin, myosin and titin) that are organized into myofilaments 
(Fig 7-1-8) that can slide along each other under the effect of MUAP creating muscle 
contraction. 

For the central nervous system (CNS) to be aware of the MTU state, the MTU is composed 
of multiple proprioception mechanisms. For example, the muscle spindle type II will activate 
(or fire) depending on the stretch level of the muscle fiber giving information about the 
length of the muscle. Muscle spindle type I will activate depending on the rate of change in 
contraction giving information about the muscle velocity. Golgi tendon organ (GTO) named 
after Italian physician Camillo Golgi, is situated as the intersection between the muscle and 
the tendon. The GTO will activate when compressed by the muscle fiber thus encoding 
muscle force. 

  

Figure 7-1-7: Muscle fiber to myofibrils (image from openstax.org). 
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7.1.2.2 Electromyography 
Electromyography (EMG) is a technique to record the electrical signal of the muscles. EMG 
represents the summation of all MUAP. It can be recorded using surface electrodes placed 
directly on the skin or via intramuscular electrodes using needles electrodes introduced in 
the muscle [156]. Surface electrodes are currently the most popular form of recording for 
EMG as other methods like needle electrodes are invasive method. Processing of EMG for 
use in neuromusculoskeletal modelling use the following methods: 

1. High pass filtering; 
2. Normalization; 
3. Low pass filtering ; 
4. Normalization against maximal voluntary contraction. 

A neuromusculoskeletal model can also directly be driven by MUAP from high density (HD) 
EMG recording [157]. HD EMG recording uses multiple electrodes in a matrix configuration 
to record EMG on the whole muscle. A decomposition algorithm can then be used to go 
back to the MUAP [158]. 

Information about surface electrode placement, shape, size and so on can be found on the 
SENIAM project website17. 

 
17 seniam.org/ 

 

Figure 7-1-8: Myofilaments sliding to create force (image from openstax.org). 
 

https://upload.wikimedia.org/wikipedia/commons/c/c6/1006_Sliding_Filament_Model_of_Muscle_Contraction.jpg
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7.1.3 Neuromusculoskeletal Modelling 

7.1.3.1 Hill-type muscle model 
Hill’s muscle model is a numerical representation of the muscle composed of three elements. 
It was first formulated by English physiologist Archibald Vivian Hill [20], [22], [159], [160] 
for which he received the 1922 Nobel prize in Physiology or Medicine.  

The model is comprised of a contractile element (CE), parallel element (PE) and a series 
element (SE) (see Fig 7-1-9).  

The muscle-tendon unit (MTU) can be approximate by the following equation: 

𝐹𝐹𝐸𝐸𝑀𝑀𝑀𝑀(𝑡𝑡) = 𝐹𝐹𝑀𝑀 = 𝐹𝐹𝐸𝐸𝑚𝑚𝑚𝑚�𝑓𝑓(𝐿𝐿𝐸𝐸)𝑓𝑓(𝑉𝑉𝐸𝐸)𝐸𝐸(𝑡𝑡) + 𝑓𝑓𝑝𝑝(𝐿𝐿𝐸𝐸)� cos(𝛼𝛼𝐸𝐸(𝑡𝑡)) eq. 1.1 

With 𝐹𝐹𝐸𝐸𝑀𝑀𝑀𝑀(𝑡𝑡) the MTU force at instant t, 𝐹𝐹𝑀𝑀 the tendon force (SE), 𝐹𝐹𝐸𝐸𝑚𝑚𝑚𝑚 the maximum 
isometric force, 𝑓𝑓(𝐿𝐿𝐸𝐸) the force-length relationship (Fig 7-1-10), 𝑓𝑓(𝑉𝑉𝐸𝐸) the force-velocity 
relationship, 𝐸𝐸(𝑡𝑡) the normalized muscle activation at instant t. These values represent the 

 

Figure 7-1-9: Hill's muscle model (Image from [159]) 
 

  

Figure 7-1-10: Active 𝑓𝑓(𝐿𝐿𝐸𝐸) and passive 𝑓𝑓𝑝𝑝(𝐿𝐿𝐸𝐸)  force length curve (image from [22]). 
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contractile elements (CE). We also have   𝑓𝑓𝑝𝑝(𝐿𝐿𝐸𝐸) the passive force-length relationship (PE) 
(Fig 1-2) and 𝛼𝛼𝐸𝐸(𝑡𝑡) the pennation angle.  

7.1.3.2 From Muscles Force to Joints Torque 
Once all muscles’ force acting on the joint of interest have been computed, these forces have 
to be projected on the joint using the moment arm (Fig 7-1-11). The moment arm is often 
computed numerically using the ‘tendon excursion method’ [161] using the following 
equation: 

𝑟𝑟𝜃𝜃 = 𝑠𝑠𝑚𝑚
𝑠𝑠𝜃𝜃

     eq. 1.2 

With 𝑟𝑟𝜃𝜃  the moment arm, 𝑑𝑑𝑙𝑙 the MTU length displacement for 𝑑𝑑𝜃𝜃 the displacement of the 
joint. 

Finally, the joint torques are computed using the following formula: 

𝜏𝜏 =  ∑ 𝑟𝑟𝜃𝜃,𝑚𝑚𝐹𝐹𝑚𝑚𝐸𝐸𝑀𝑀𝑀𝑀𝑚𝑚    eq. 1.3 

With 𝜏𝜏 the joint torque, 𝑟𝑟𝜃𝜃,𝑚𝑚 the moment arm for muscle m and 𝐹𝐹𝑚𝑚𝐸𝐸𝑀𝑀𝑀𝑀 the muscle force for 
muscle m. 

More information about the muscle model and joint torque computation used in the 
developed HMI can be found in chapter 2.   

  

Figure 7-1-11: Moment arm computation for the elbow joint (Image from [161]). 
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7.2 Appendix to Chapter 2 
7.2.1 Supplementary Tables 

 

 

Table 7-2-1:root mean squared error, standard deviation and Pearson correlation coefficients. 
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7.2.2 Video 
Real-time EMG-driven modelling: Jump Task. Video 
demonstrating the real-time EMG-driven framework working 
in a gait lab. The framework connect via TCP/IP to the 
motion capture system and the EMG amplifier. The resulting 
torque and muscles force are then show in real-time in a user 
graphical interface (GUI). 

https://www.youtube.com/watch?time_continue=1&v=yXATF7P216E&feature
=emb_logo 

7.3 Appendix to Chapter 3 
7.3.1 Video 

A real-time HMI for the estimation of neuromuscular 
states during human-exoskeleton. This video presents a real-
time EMG-driven musculoskeletal model for the control of a 
bilateral ankle exoskeleton. Experiments were realized on one 
subject wearing the Achilles ankle exoskeleton with Minimal 
impedance and with motor off. Motor tasks included treadmill 
walking at 2 km/h and 3 km/h and transition between walking 
and stair ascending. We show that this HMI can process and give 

information on joint torque and internal muscle parameter on multiple motor tasks involving 
hums-exoskeleton interaction. 

https://www.youtube.com/watch?v=IVHFi9uj72U 

 

https://www.youtube.com/watch?time_continue=1&v=yXATF7P216E&feature=emb_logo
https://www.youtube.com/watch?time_continue=1&v=yXATF7P216E&feature=emb_logo
https://www.youtube.com/watch?v=IVHFi9uj72U
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7.4 Appendix to Chapter 4 
7.4.1 Supplementary Figures 
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Figure 6-S7-2: Tracking task perform
ance during single-D

O
F tests for healthy subject 4. E

xoskeleton joint angular position, electrom
yography (E

M
G

) data 
as w

ell as m
odel-based estim

ates of joint m
om

ents (torque) are reported during single degree of freedom
 (D

O
F) tasks. D

ata are reported as averaged across 
all tracking trials. They are reported for the low

-gain (LG
) and high-gain (H

G
) exoskeletons assistance levels and as a function of percent cycle, i.e. w

here 0%
 

and 100%
 respectively represents the beginning and the end of the tracking trajectory (target). Results are relative to tests outside and inside of the exoskeleton, 

i.e. O
U

T-type and IN
-type respectively. Results are reported both for the individual control of the exoskeleton ankle plantar-dorsiflexion D

O
F and for that of 

the exoskeleton knee flexion-extension D
O

F. E
M

G
s are relative to m

uscles including: biceps fem
oris (BF), rectus fem

oris (RF), sem
im

em
branosus (S), vastus 

lateralis (V
L) and vastus m

edialis (V
M

), soleus (So), gastrocnem
ius m

edialis (G
a) and tibias anterior (TA

), i.e. Table 2. A
verage ±

 standard deviation of E
M

G
 

linear envelopes are reported at the bottom
 of the graph. 
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Figure 6-S7-4: EMG amplitude modulation between exoskeleton low- and high-assistance levels 
during single ankle plantar-dorsi flexion, IN-type experiments. Electromyography (EMG) 
amplitude is consistently reduced when transitioning from low-gain (LG, left-hand vertical bar) to 
high-gain (HG, right-hand vertical bar) exoskeleton support levels. Experiments were performed 
while wearing the robotic exoskeleton, i.e. IN-type tests. For each subject (Healthy 1-4) as well as 
for stroke patient 2 (Stroke) and the spinal cord injury (SCI) patient (Table 1) the vertical bars 
report mean normalised EMG amplitude stacked vertically for each muscles along with standard 
deviation (i.e. see black vertical lines). 

Figure 6-S7-3: EMG amplitude modulation between exoskeleton low- and high-assistance levels 
during single knee flexion-extension, IN-type experiments. Electromyography (EMG) amplitude 
is consistently reduced when transitioning from low-gain (LG, left-hand vertical bar) to high-gain 
(HG, right-hand vertical bar) exoskeleton support levels. Experiments were performed while 
wearing the robotic exoskeleton, i.e. IN-type tests. For each subject (Healthy 1-4) as well as for 
stroke patient 2 (Stroke) and the spinal cord injury (SCI) patient (Table 1) the vertical bars report 
mean normalized EMG amplitude stacked vertically for each muscles along with standard deviation 
(i.e. see black vertical lines). 
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Figure 6-S7-5: Tracking task perform
ance during m

ulti-D
O

F, O
U

T- and IN
-type tests for healthy subject 3. E

xoskeleton knee and ankle joint angular 
positions are reported by m

eans of a stick-figure. The green figure represents the target m
ulti-joint position to be tracked. The blue and orange stick-figures 

respectively represent the subject’s voluntary controlled exoskeleton trajectory obtained using a low
-gain (LG

) and high-gain (H
G

) assistance levels. M
odel-

based estim
ates of joint m

om
ents (torque) are reported both about the knee flexion-extension and ankle plantar-dorsi flexion degree of freedom

 (D
O

Fs). D
ata 

are reported as averaged across all tracking trials. They are reported as a function of percent cycle, i.e. w
here 0%

 and 100%
 respectively represents the beginning 

and the end of the tracking trajectory (target). Recorded electrom
yography (E

M
G

s) signals are relative to m
uscles including: biceps fem

oris (BF), rectus fem
oris 

(RF), sem
im

em
branosus (S), vastus lateralis (V

L) and vastus m
edialis (V

M
), soleus (So), gastrocnem

ius m
edialis (G

a) and tibias anterior (TA
), i.e. Table 2. 

A
verage ±

 standard deviation of E
M

G
 linear envelopes are reported at the bottom

 of the graph. 
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Figure 6-S7-7: Tracking task performance during multi-DOF, OUT-type tests. Exoskeleton knee 
and ankle joint angular positions are reported by means of a stick-figure. The green figure 
represents the target multi-joint position to be tracked. The blue and orange stick-figures 
respectively represent the subject’s voluntarily controlled exoskeleton trajectory obtained using a 
low-gain (LG) and high-gain (HG) assistance levels. Model-based estimates of joint moments are 
reported both about the knee flexion-extension and ankle plantar-dorsi flexion degree of freedom 
(DOFs). Data are reported as averaged across all tracking trials. They are reported as a function of 
percent cycle, i.e. where 0% and 100% respectively represents the beginning and the end of the 
tracking trajectory (Target). Results are relative to tests inside of the exoskeleton, i.e. OUT-type. 
Data are reported for two representative healthy subjects (Healthy 1-2) and two stroke patients 
(Stroke 1-2), i.e. Table 1. Recorded electromyography (EMGs) signals are relative to muscles 
including: biceps femoris (BF), rectus femoris (RF), semimembranosus (S), vastus lateralis (VL) and 
vastus medialis (VM), soleus (So), gastrocnemius medialis (Ga) and tibialis anterior (TA), i.e. Table 
2. 
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Figure 6-S7-9: Predicted moment for the Ankle plantar-dorsiflexion and the Knee flexion-extension 
using an uncalibrated model. Average of 5 subjects for a locomotion task (fast walking), with in grey 
line the predicted moment using an uncalibrated model, in light grey the predicted moment using a 
calibrated model and in black line the experimental moment from inverse dynamics using the OpenSim 
Software. Data were taken from (1). 
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7.4.3 Video 
Voluntary control of wearable robotic exoskeletons by 
patients with paresis. Video presenting the real-time control of 
the H2 exoskeleton by a stroke patient. The video also presents 
the GUI showed to the user and the voluntary control of the 
exoskeleton with the patient inside and outside of the exoskeleton. 

 

https://www.youtube.com/watch?v=5_vsu1pHoNs 

7.5 Appendix to chapter 5 
7.5.1 Video 

Voluntary and Continuous Control of Robotic Exoskeletons 
during Locomotion. In this video, we present our experiments 
conducted with the WR2 exoskeleton on locomotion. We show the 
exoskeleton giving assistance based on the neuromusculoskeletal 
model’s computed ankle joint torque for locomotion at 1.8 km/h and 
with no inclination. 

https://www.youtube.com/watch?v=JlzlpvC1xzo 

 

 

  

https://www.youtube.com/watch?v=5_vsu1pHoNs
https://www.youtube.com/watch?v=JlzlpvC1xzo
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