
High Level Programmable and
Flexible Industrial Robotized

Cells

Marcos Ferreira

Doctoral Program in Electrical and Computer Engineering

Supervisor: António Paulo Gomes Mendes Moreira

Co-Supervisor: Joaquim Norberto Cardoso Pires da Silva

A thesis submitted for the degree of

Doctor of Philosophy (PhD)

January 2014

mailto:marcos.ferreira@fe.up.pt
http://paginas.fe.up.pt/~pdeec/

Abstract

Industrial manipulators play a key role on major production lines. They are
one of the most powerful automation solutions for flexible mass production,
delivering efficiency and quality at reduced prices. In an entirely different
scene, there are the small and medium enterprises (SMEs), which mostly
rely on high skilled labour, delivering less quantity but increased customiza-
tion. In the face of modernization, and to sustain global competitiveness,
SMEs are increasingly adopting robotized solutions. Yet, despite of the
numerous researches and contributions to improve human-robot interface,
programming an industrial robot is still a very technical and time-consuming
challenge.

On this scenario, this thesis sets focus on developing new means of intuitive
and high level robot programming. Specifically, a new method for robot
programming by demonstration is proposed: the factory operator demon-
strates a given task, and the robot is automatically programmed to mimic
the human operation. This is a framework for human-robot skill transfer,
since the know-how of the operator is translated into robot language. Addi-
tionally, the final solution is designed and optimized for maximum industrial
applicability: use of low-cost hardware, low impact on the industrial pro-
cess, high success rate and accuracy, fast (real-time) output.

The proposed framework puts together a stereoscopic vision module and
a luminous marker. Unlike equivalent motion tracking solutions available,
this one uses visible markers. Using a synchronization technique known as
the sincrovision, cameras and markers and simultaneously triggered. This
results in very accurate and robust measures, even under harsh industrial
environment conditions. A collection of algorithms, that take advantage of
the marker shape and the colour of the markers, is able to reconstruct the

path in six degrees of freedom (6 DoF) — position and orientation. 3D B-
Splines and quaternion splines are used to smooth the tracked path before
generating the robot program.

A prototype of the system was implemented at an industrial demonstrator,
for a spray painting application. The operator was able to demonstrate sev-
eral painting trajectories using a minimal software interface to start and stop
the procedure. Immediately after demonstration (negligible post-processing
time), the robot successfully imitated the human moves, and the results were
validated by the painters. The company, Flupol, can now instantaneously
transfer to the robot the 25 years experience of the oldest painter.

Resumo

Os manipuladores industriais têm um papel preponderante nas grandes lin-
has de produção. São uma das soluções mais avançadas tendo em vista o
conceito de produção em massa flex́ıvel, produzindo com eficiência e qual-
idade a um custo reduzido. Num outro cenário completamente diferente
encontram-se as pequenas e médias empresas, PMEs, que dependem funda-
mentalmente da mão de obra qualificada dos seus trabalhadores, produzem
em menor quantidade mas com maior grau de customização. Na perspectiva
de se modernizarem, e de forma a manterem a competitividade no mercado
global, as PMEs têm vindo cada vez mais a apostar na robotização dos seus
processos. Contudo, apesar de toda a investigação em torno da criação de
novos métodos para melhorar o interface homem-robô, a programação de
um manipulador industrial ainda requer um elevado ńıvel de conhecimento
técnico para além de ser uma tarefa morosa.

É neste cenário que esta tese pretende contribuir, desenvolvendo métodos
intuitivos para a programação de robôs industriais. Mais especificamente, é
proposto um novo método para programação por demonstração: o operador
humano demonstra uma determinada tarefa e o robô é automaticamente
programado de modo a que consiga imitar o movimento humano. No seu
todo, esta solução consiste numa framework para transferência de know-how
do operador humano para o robô. Mais ainda, a solução final é projetada
e otimizada do ponto de vista da aplicabilidade industrial: é usado equipa-
mento de baixo custo, o impacto no processo é mı́nimo, apresenta elevada
exatidão e taxa de sucesso, o resultado é obtido em tempo real.

A framework proposta nesta dissertação engloba um sistema de visão es-
tereoscópica e um marcador luminoso. Ao contrário de algumas soluções
dispońıveis para seguimento de movimento, esta é baseada em marcadores

na gama do viśıvel. Usando uma técnica de sincronização denominada
por sincrovision, as câmaras e o marcador são acionados simultaneamente,
permitindo assim uma leitura precisa e robusta do marcador, mesmo em
condições adversas t́ıpicas de um ambiente industrial. Um conjunto de al-
goritmos otimizados para a forma e cor dos marcadores permite fazer uma
reconstrução da trajetória com seis graus de liberdade (6 DoF) — posição
e orientação. Antes da geração do código para o manipulador industrial, a
trajetória é ainda suavizada usando B-Splines em 3D e splines no espaço
dos quaterniões.

Um protótipo do sistema desenvolvido foi implementado num demonstrador
industrial, numa aplicação de pintura por pulverização. O operador foi
capaz de demonstrar várias trajetórias de pintura usando, para tal, uma
interface de software onde tem de indicar apenas o ińıcio e fim do pro-
cesso de demonstração. Imediatamente após a demonstração (o tempo de
pós-processamento é praticamente nulo), o robô imitou com sucesso o movi-
mento humano, tendo os próprios pintores validado a qualidade da execução.
A empresa onde se realizaram os ensaios, Flupol, tem agora a possibili-
dade de transferir os 25 anos de experiência do seu mais antigo pintor para
um manipulador industrial, conseguindo-o fazer de forma praticamente in-
stantânea.

When you make the finding yourself - even if you’re
the last person on Earth to see the light - you’ll
never forget it.

Carl Sagan

To my parents...

viii

Acknowledgements

First and foremost I must thank my supervisors, Professor A. Paulo Moreira
and Professor Norberto Pires, for their guidance. To Professor Norberto,
whose extensive and remarkable work on the field of robotics served as an
inspiration for my research. To Professor A. Paulo, to whom I owe a great
debt of gratitude for all this years of advice, support and friendship. His
enthusiasm for research, his liveliness and his faithfulness in my work were
a major motivation for me.

I would like to thank everyone in the Robotics and Intelligent Systems
Unit (Robis) of INESC-TEC. They are the most amazing colleagues and
they make of Robis laboratory the most interesting place to work at. A
special word of gratitude for my labmates Heber Sobreira, Miguel Pinto,
Filipe Santos, André Figueiredo, Lúıs Rocha and Germano Veiga for sharing
their knowledge and friendship over these past years. My sincere thanks to
Lúıs Rocha for all the help, the availability, and for enduring many hours
of frustration setting up the industrial solution. Furthermore, I’m also
grateful to Germano Veiga for all the insightful discussions, for sharing his
experience, and for taking time to examine my work and questioning it. I
would also like to give my sincerest thanks to my friends Paulo Malheiros
and Professor Paulo Costa. To Paulo Malheiros, I thank him for all his
support and for being the most helpful labmate. And also, because I was
able to develop my research upon the basis of his work. To Professor Paulo
Costa, I thank him for all the guidance, the most useful suggestions and
ideas, and for all those late night discussions which proved to be utterly
valuable.

My sincere appreciation and gratitude to José Bandeira, Pedro Bandeira
and Flupol. They believed and invested in my research since the very

beginning. They were patient, supportive and welcomed me at Flupol when
the time came to install the final product. They provided means for testing
and validating my research as well as to ultimately spread words of its
success. I thank all of Flupol’s staff, and particularly Rui Gomes, for their
help and care.

I will take this opportunity to express my appreciation to all Professors
of DEEC/FEUP who contributed to my pursuit of knowledge. I am very
fortunate to have crossed paths and to have being taught by such brilliant
minds and distinctive characters, encountering some odd personalities along
the way.

Finally, my last acknowledgements are the most heartfelt. I ought to thank
my close family and friends. Although I do not usually share much of my
academic and professional life with them, I still hope to feel their comfort
at the end of the day and to embrace their love and friendship in every step
of my way. And you Sara. . . I just can’t put it into words; a thousand would
be too few. Thank you for being there.

To all, thank you so very much.

Marcos Ferreira,
Porto, January 2014

Official Acknowledgements

Marcos Ferreira acknowledges FCT (Portuguese Foundation for Science and
Technology) for his PhD grant SFRH/BD/60221/2009, without which this
research work would not have been possible.

The work presented in this thesis, being part of the Project PRODUTECH
PTI (number 13851) - New Processes and Innovative Technologies for the
Production Technologies Industry, has been partly funded by the Incentive
System for Technology Research and Development in Companies (SI I&DT),
under the Competitive Factors Thematic Operational Programme, of the
Portuguese National Strategic Reference Framework, and EU’s European
Regional Development Fund.

Additionally, this work was also sponsored by the project QREN-SIIARI.
SIIARI - Sistema para o Incremento da Inteligência Artificial em Robótica
Industrial (QREN- Quadro de Referência Estratégico Nacional) 2010-2012.

The author also thanks the FCT for supporting this work through the
project PTDC/EME-CRO/114595/2009 - High-Level programming for in-
dustrial robotic cells: capturing human body motion.

Marcos Ferreira,
Porto, January 2014

xii

Contents

List of Figures xvii

List of Tables xxi

1 Introduction 1
1.1 On the use of industrial robotic manipulators 1

1.1.1 The quest for human-robot interfaces 4
1.2 Motivation . 5

1.2.1 A case study . 7
1.3 Proposed Solution/Aims . 8

1.3.1 A Previous Approach . 9
1.4 Thesis Outline . 10

2 Related Work 13
2.1 Programming Industrial Robots: the Teach Pendant and Simulators . . 14
2.2 Taking advantage of CAD . 17
2.3 Programming by motion demonstration 19

3 Background and Notation 25
3.1 Matrix Notation . 25
3.2 Coordinate Systems, frames and transformations 26

3.2.1 Homogeneous Coordinate System 27
3.2.2 Orientation of a Rigid Body: representations 29

3.3 3D computer vision . 33
3.3.1 Camera Model . 34
3.3.2 Stereoscopy: 3D from two-view geometry 36

xiii

CONTENTS

3.3.3 Camera/Stereo Calibration . 39
3.3.4 Tracking Luminous Markers — The sincrovision 40

3.4 Industrial Manipulators . 41

4 Motion Imitation Framework 45

4.1 System Architecture : Overview . 45
4.2 Camera and Stereo Calibration . 47
4.3 Motion Tracking . 51

4.3.1 6-DoF Marker . 51
4.3.1.1 Description: Hardware and Properties 52
4.3.1.2 Detection . 57
4.3.1.3 Per-Image Analisys . 57
4.3.1.4 Stereo — cluster matching 63
4.3.1.5 Estimating Position . 66
4.3.1.6 Estimating Orientation 72
4.3.1.7 Limitations . 76

4.4 Interfacing an Industrial Manipulator 78
4.4.1 Data Filtering . 78

4.4.1.1 Position Smoothing . 78
4.4.1.2 Orientation Smoothing 87

4.4.2 Path Segmentation . 90
4.4.3 Automatic Code Generation . 97

5 Tests and Results 101

5.1 Industrial Demonstrator — Setup and Hardware 101
5.2 Tests and Results . 105

5.2.1 Camera Calibration . 105
5.2.2 Marker Detection . 108

5.2.2.1 Colour Calibration . 108
5.2.2.2 Detection and Pose Estimation 110

5.2.3 Marker Accuracy in the Workspace 114
5.2.4 Filtering and Smoothing . 115
5.2.5 Timings . 126

xiv

CONTENTS

6 Conclusions 131
6.1 Global Assessment and Conclusions . 131
6.2 Future Work . 133

References 135

xv

CONTENTS

xvi

List of Figures

1.1 Industries purchasing robots . 2
1.2 Industrial Robots . 3

2.1 Teach Pendants . 15
2.2 Glove . 21
2.3 Input devices . 23

3.1 Frames . 27
3.2 Frames translation and rotation . 28
3.3 Homogeneous Coordinates . 30
3.4 Image Notation . 34
3.5 Camera Pinhole Model . 35
3.6 Stereoscopy . 37
3.7 Calibration Pattern . 40
3.8 Sincrovision Timings . 41
3.9 Sincrovision effect . 42

4.1 Camera and Stereo Calibration Using the Industrial Robot 49
4.2 Precision/Repeatability vs Accuracy . 51
4.3 Icosahedron: 3D shape, CAD model and real marker 53
4.4 Icosahedron/Dodecahedron properties 55
4.5 Marker applications . 56
4.6 Marker Electronics . 58
4.7 Stereo Capture and Normal Photo . 59
4.8 HSV color model . 60
4.9 Colour classification based on HSV . 62

xvii

LIST OF FIGURES

4.10 HSV Calibration Example and Detection 63
4.11 Pixel/Cluster Correspondence By Colour And Epipolar Line Constraint 65
4.12 Multiple matches . 66
4.13 3D Scene with LEDs and a Sphere . 67
4.14 Sphere Fitting — 3D representation . 71
4.15 The Dodecahedron Coloured Graph . 74
4.16 Synchronization across images and devices 79
4.17 Piecewise Linear Approximation of Noisy Path 80
4.18 B-Spline Cubic Basis Function . 82
4.19 B-Spline smoothing and a real path in a spray painting application . . . 86
4.20 lerp and Slerp interpolation . 88
4.21 Slerp and Squad interpolation for a path of rotations 90
4.22 Trajectory Segmentation Based on I/O Changes 91
4.23 Moving linearly to each point . 92
4.24 Segmentation of backtracks using 4D line fitting 95
4.25 Trajectory Segmentation in Linear Movements 96
4.26 Tweaking the Robot Trajectory Controller Tolerance 98
4.27 Automatic Robot Program Generation 99

5.1 Human Painter in Flupol Coating Cell 102
5.2 Robot in Flupol Coating Cell . 103
5.3 Marker Attached to the Industrial Spray Painting Gun 103
5.4 Two Camera Arrangement for Stereoscopy 104
5.5 CAD Model of the Calibration Tool . 106
5.6 Error variation in the X axis . 109
5.7 Error variation in the Y axis . 109
5.8 Error variation in the Z axis . 110
5.9 HSV Colour Classes Calibration . 111
5.10 A Baking Tray . 116
5.11 B-Spline Smoothing of a Baking Tray Painting Path 117
5.12 B-Spline vs Piecewise Linear Side View 118
5.13 B-Spline vs Piecewise Linear Opposite View 118
5.14 B-Spline vs Piecewise Linear X-Y view 119

xviii

LIST OF FIGURES

5.15 B-Spline Evaluation . 120
5.16 Sampling of the B-Spline at the Same Frequency of the Tracking 121
5.17 Sampling of the B-Spline at 2 times the Tracking Frequency 122
5.18 Sampling of the B-Spline at 4 times the Tracking Frequency 123
5.19 Sampling of the B-Spline at 8 times the Tracking Frequency 124
5.20 Path decomposed into X (t),Y (t) and Z (t) 125
5.21 B-Spline smoothing of X (t),Y (t) and Z (t) 126
5.22 Zoom on B-Spline Smoothing of X (t),Y (t) and Z (t) 127

xix

LIST OF FIGURES

xx

List of Tables

4.1 Cluster data after processing images from both cameras 64
4.2 Marker Position Estimation . 69
4.3 Dodecahedron Vertices . 75

5.1 Calibration error on x, y and z axis . 107
5.2 Calibration error . 107
5.3 Number of misclassification of image clusters sorted by colour 112
5.4 Evaluation of the position and orientation estimation 113
5.5 Marker position error on x, y and z axis 114
5.6 Marker pose error . 115
5.7 Sampling of the B-Spline Curve . 122
5.8 Processing times for every stage of the motion demonstration 129

xxi

LIST OF TABLES

xxii

Chapter 1

Introduction

1.1 On the use of industrial robotic manipulators

Industrial robotic manipulators are, as of today, a fully grown commercial off-the-shelf
product that integrate the largest and most complex manufacturing facilities world-
wide. These machines are taken as the ultimate automation tool:

A powerful and robust mechanical solution, fit to most demanding operations —
heavyweight cargo lifting and handling, ability to sustain hazardous environments, full
24h work-shift.

Top grade electronics using state of the art sensors and motion controllers — high
precision, high production quality and speed; integration with the most recent vision,
laser and force sensing technologies to satisfy the most heterogeneous systems.

Dedicated software and user interfaces — the manipulators can be reprogrammed
on-site, adapted to different work objects, configured with different grippers and tools;
in short, they can be recycled on and on through a number of distinct applications.

To these advantages must also be added the cost. As the price varies with the target
application and robot payload, the robotic market offers solutions for welding (arc and
spot), painting, handling, assembly, palletizing, packing, etc, with payloads ranging
from a few Kg to more than a ton. Choosing the right robot for a given application,
and for the right price is simple while avoiding expensive “home-made” or overrated
machines.

1

1. INTRODUCTION

Robots are the way to go in an ever increasing competitive market. But is it always
so? Precision, quality and robustness all come with the pack, i.e they are bought with
the industrial machine. Flexibility, however, it is an entirely different matter that may
cost huge extras.

In fact, that stands true on one face of today’s industry: the large scale produc-
tion, the large companies, the major markets. As depicted in Fig. 1.1, the electri-
cal/electronics (PCs, TVs, cellphones) industry, rubber/plastic, metal/machinery and
particularly the automotive industries are the most relevant purchasers of industrial
robots.

Figure 1.1: Industries purchasing robots - Estimated wordwide annual supply (taken
from [1])

Manipulators fit perfectly to these environments: production resumes for months,
sometimes even years — in the mean time, no reprogramming is needed, only casual
maintenance; large factories are build from scratch, supported by fine design (with vir-
tual models), with each step of the production stage carefully studied and identified —
it is known a priori how many robots, which task they are appointed to, the workspace
and its layout; there are experienced programmers that can develop machine code and
there are expensive simulation software products to aid them. The bet on robots is

2

1.1 On the use of industrial robotic manipulators

certain and undisputed. Flexibility, in this scenario, means that robots can do the
tedious and repetitive tasks humans would have to do otherwise; means calling in the
programmer, weeks apart, to debug and correct the manipulation procedure or even
change it completely to something else, instead of having to hire and teach an human
operator for days. The 2012 annual report [1] from the International Federation of
Robotics (IFR) shows the increasing use of industrial robots (Fig. 1.2, since the 2009
crisis and up until 2015(predicted)). Apart from the automotive industry, which has
always been the major growth stimulator on process robotization, all other sectors are
creating conditions to apply manipulators to their processes as they are seen as the
prime tool for modernization, competitiveness and improvement of quality of work for
human operators.

Figure 1.2: Industrial Robots - annual supply (taken from [1])

What’s then on the other face? The small batch production, the most limited
resources, companies with just a few tens of employees, the small and medium enter-
prises (SMEs). Are robots of as much importance as on large companies? Do they
bring the same benefits? It is believed that SMEs are the economy driving force [2]; it
is particularly true on rather small countries like Portugal. For years, SMEs relied on
skilled labour and scarcely automated processes, but the market has changed; technol-

3

1. INTRODUCTION

ogy prices dropped low, companies started to modernize, the competition is at global
level and above all, demand is different. Together, these factors led to the current mass
customization trend. Production has to face smaller series with greater customization;
consumers search the market for personalized goods, for tailored solutions. And few
scenarios can be more dynamic than those based on customers tastes. Companies strive
to answer this call and compete on the global market but this dynamic is costly: the
production lines must constantly adapt to new processes; skilled operators take years to
train. As such, the main work force is very limited. Moreover, mass customization does
not work if the product price does not remain low. To achieve the required flexibility
and low unit cost SMEs need no modernize; support their processes on automated and
computer-aided systems; increase productivity with the same human labour. Robots
do this at large companies. For SMEs, on the other hand, robots do not pose such an
obvious solution. The long-term flexibility of manipulators do not fit the short-term de-
mands. Reprogramming a robot takes too much time: a simple change in a pre-existing
program takes hours and a full reconfiguration may require days. Furthermore, SMEs
do not have the financial power to hire a full time skilled robot programmer. All of
these represent extra cost for the enterprise: hiring of experts, automated machines,
recurring configurations and the associated down-time. Before this scenario robots have
a hard time penetrating and earning their place into small business.

1.1.1 The quest for human-robot interfaces

Overcoming the implementation limitations of robots in SMEs has been one of the most
researched themes in the robotics field. Improving the interfaces with these machines
achieves several goals at once. It starts by dispensing a specific programmer; then,
under skilled operators with no technology know-how can operate complex machines
— no new hirings and no training; faster reconfiguration times indicates increased
productivity. So a quest has begun to develop the most advanced robot interfaces.
They range from instructing the robot using voice commands or gestures, to new ways
of developing machine code using block diagrams and pseudo instructions. The goal is
to create intuitive human robot interfaces (HRI); means of controlling the robot using
natural language and common daily use devices; or even allowing the robot and the
human to operate in the same space with complete safety.

4

1.2 Motivation

The research on this field has diverged into many streams. In the late years it
has expanded over other robotic areas such as medical, domestic services, security...
the appearance of humanoids led to a pursuit of ways to make the machine, made at
our image, to behave like ourselves. But the research at industrial level as continued
because there isn’t a solution that can fit the so many problems industry faces. Also,
much of the state of the art contributions use technologies that are not prepared for
industrial use, others are simply cost prohibitive. Chapter 2 presents an in depth view
of the current developments in HRI and easy robot programming. Yet it must be noted
that as the current market demands more of the companies, the research on this field
must also be able to answer the call and support small and medium business, with new
methods that facilitate the integration of robots in highly flexible processes.

1.2 Motivation

On the very same line of thought presented above, this dissertation was motivated by
the lack of industrial grade solutions that enable intuitive and easy robot programming.

The changes on the global market, the problem of small series production, cus-
tomization, improving robot flexibility, etc... for years, contributions on this field have
been supported by the same reasons, targeting the same goals. So why isn’t there a
solution already? Processes change everyday, companies attack new markets, develop
new products, new solutions. It is impossible to cover every area with a single system,
a unique programming or interface method. Moreover, technology is getting cheaper
everyday; automation of production lines becomes available at reduced costs. Despite
existing numerous contributions there are always new sensors to explore, more recent
machines to experiment.

Another motivational factor comes exactly with the industrial applicability of the
existing or currently researched techniques. Flexible robotic manipulators can aid the
most flexible business, SMEs. Yet this is where financial resources are the lesser. Pro-
posed solutions must be affordable both in matters of money and time. The three major
limitations that can be found on the proposed solutions found in literature (discussed
on the next chapter) are:

• The actual financial cost. Most of the times, researched technology is still fresh,
i.e, the market price is too high. Simply put, the solutions become unaffordable.

5

1. INTRODUCTION

Companies do need to improve production and quality but they also need to keep
the cost low otherwise competitiveness is lost from the start. Robotization, i.e,
acquiring the robot and re-designing production lines to fit it in is already a strong
investment. The support technology, HRIs and intuitive programming software,
cannot pose an equivalent financial burden.

• The dimension of the hardware apparatus and/or its inadequacy to industrial
use. A grand part of the research work (on industrial manipulators) lacks actual
industrial validation. Sometimes the hardware apparatus is inappropriate, fragile
or it simply cannot deliver in an industrial environment — there are examples
such as using retro-projectors to teach paths, which are equipments clearly not
ready for dust, intensive work... the aggressiveness of the industrial environment;
using IMUs (inertial measurement units) when, most of the times, the production
lines or working tools are metallic and the sensor is most likely to fail; using
special gloves requiring that the operator wears an object he is not used to work
with and affects his performance; or even using vision systems that require major
transformations in the workspace to control lighting thus being costly.

• Time. Many solutions base themselves on complex and computational intensive
algorithms. In addiction to the required hardware (high-end PCs or PC grids)
which are expensive alone, there is also the time it takes to interact with the
robot or to generate paths, making it unaffordable. Productivity cannot cope
with elevated downtime. Whether it is a gesture/voice recognition setup or a
path demonstration system, a quick delivery is mandatory for increased produc-
tivity. A 90-plus percent identification rate on a recognition-based interface still
means that after a thousand work pieces or tasks almost a hundred failed; a
path demonstration system that takes several minutes to process data from a
minute-length task do not improve reconfiguration times – if the path has to be
generated twice or a third time to perfect output, and it happens so for every
different object, production efficiency drops instead of being boosted.

With each of the pointed facts, that alone make enough reasons to invest on the
research of new intuitive programming methods, is also a last argument. Only a fraction
of current contributions focus on acquiring knowledge from the operator. Simulators,
CAD based programming, gesture recognition, software interfaces, all fit to a particular

6

1.2 Motivation

set of problems and they contribute by providing means of interacting with the machine.
A more broader solution, one that would satisfy a larger set of applications, is one
that can learn from the operator, him who knows best the process and procedure.
Rather than giving a mean to communicate with the machine, give it the know-how.
Factory operators hold all the expertise required to perfectly perform the task at hands;
companies survive due to them, they are the major asset. So, instead of providing the
operator with a way to speak to the robot intuitively, it is amazingly powerful to have
the ability to transfer skill from man to machine.

1.2.1 A case study

This thesis has been particularly fuelled by a real industrial case scenario.

Flupol [3] is a Portuguese SME operating in the area of industrial coatings. Their
applications range from house-ware utilities, automotive parts, baking industry, and up
to any general industrial application where advanced coating is required (for surface
adhesion, dry lubrication or corrosion prevention).

Its main asset lies on the application (spraying) of complex and delicate products
which only a few extremely experienced operators are qualified to do. Hence, the major
surplus comes from the operators’ know how. This is quite valuable since the company
estimates that fully training new operators takes as much as 8 years. Right now, only
a couple of employees are considered experts.

Flupol also struggles with the reduced dimension of Portugal and the Portuguese
market. Over 75% of the production is destined to external markets. As such, Flupol
finds itself as a global competitor, dealing against cheaper labour or more techno-
logically advanced adversaries. Even so, Flupol’s exclusive expertise on the product
application and on the control of several process parameters give them the edge. These
variables (know-how and process parameters), however, are non patentable which makes
property protection very restricted. To overcome these constraints Flupol relies on an
highly dynamic and versatile business model: costumers are treated individually, so-
lutions are customized, processes are designed to fit exclusive orders — it is a one to
one service. For that, the company relies on non dedicated production lines/cells, each
able to be adapted to the must varied demands. To keep costs low, each application
is designed to make best use of the available assets; to improve productivity however,

7

1. INTRODUCTION

machines and cells must be constantly updated to make use of new automation devices.
The next step: robotization.

This scenario is the most perfect match to the one presented in the previous sections:
high skilled labour, highly flexible processes, constant reconfigurations... the need to
increase competitiveness by boosting productivity while maintaining quality... the seek
of increasingly automated solutions which, ultimately, cries for the industrial robot.

And if the urge for robots is true, so are the requirements and limitations of a flexible
small company: hiring programmers is too expensive nor it delivers the required fast
reconfigurations; typical operators stand as painters, not informatics – programming
the robot must be the most intuitive.

Finally, the greatest question on this case: is it possible to transfer the skill of the
painter over to the robot and avoid 8 years training of an operator? Can a 25-year-
expertise badge be instantaneously transferred to the machine?

1.3 Proposed Solution/Aims

Against the panorama analysed above, to aid penetration of robots into the smaller
business and with a real test case in hands, this thesis sets focus on developing an
industrial grade human-robot skill transfer framework.

Starting on the target machine, the robot, the proposed system interfaces an off-the-
shelf industrial manipulator: these are mature products whose cost, maintenance and
technical support cannot be matched with home-made solutions. Standard industrial
manipulators include years of refinement in motion control and security aspects. They
are the most solid choice for the end product.

The human-robot skill transfer ability shall be achieved by means of capturing the
human movement and replaying it with the robot. Knowing that the deepest know-
how lies on the details of operation and tasks, capturing the operators’ moves in the
actual scenario is the crucial step. For this, the proposed solution integrates an artificial
vision architecture that records human hand movements in a contactless manner. The
fundamentals of stereoscopy (3D from multi camera arrangements) are used to track a
luminous marker that is attached to the operator work tool; the marker is designed to
endure industrial use, being particularly robust to lighting conditions — no artificial
or conditioned lighting is needed. The stereo system, together with the marker, are

8

1.3 Proposed Solution/Aims

designed to have minimum impact on the process; operators execute the usual tasks
with no interference from the hardware apparatus; this allows to completely capture
the essence of the human know-how.

Put together, all elements are industrial grade and by industrial grade is it meant
that the solution shall attend to the major industrial requirements: sensors, actuators
and auxiliary hardware paraphernalia must be able to endure the environment; all the
apparatus must be the less intrusive possible, i.e, not requiring major changes to the
processes; also, the operator must be able to act naturally without major cares towards
the sensing setup; the framework must deliver in real-time meaning that there can
be no overhead in the algorithms – as soon as the operation is demonstrated by the
human, the robot must be ready to replay it; the whole system must be low cost, using
standard industrial equipment.

On the end, the proposed solution integrates a set of industrial cameras and a cheap
luminous marker. Together these devices grant a robust capture of operator’s moves.
Then, a set of computationally fast algorithms can determine the marker position and
orientation. In a further step, the movement is analysed and segmented in order to
be “written” in robot language. Finally, the robot is set to replay the same exact
movement as made by the operator. From the users point of view, there is a complete
abstraction of the robot programming language. The machine is programmed with no
interaction with teach-pendants, code or any other sophisticated interfaces other than
a “start/stop learning” button.

To test for the industrial capability of the framework, Flupol is used as the test
bed. The skill transfer concept is applied to the spray coating application, where an
experienced painter demonstrates the coating technique and the robot mimics him. The
spraying over complex forms is replenished with technique and intricate wrist moves
which serves the purpose of intensively validate the proposed framework.

1.3.1 A Previous Approach

One of the first attempts to improve Flupol’s productivity through robotization was
based on CAD programming and automatic object recognition. This system is thor-
oughly described in Marcos Ferreira et al. [4]. In short, the research focus on generating
robot programs for the painting tasks through the use of a CAD interface. Along with
it, an automatic recognition system is used based on camera–laser triangulation. The

9

1. INTRODUCTION

parts travel on a conveyor and are scanned by the laser; then, a machine learning al-
gorithm identifies the part and uploads the correct painting program into the robot
controller. With this system it was expected that both the program generation and the
reconfiguration for different pieces would occur in a simplified manner without using
the robot teach pendant. Nonetheless, it was concluded that the generation of accu-
rate painting programs for complex shapes using CAD would be too difficult. So, the
pursuit for means of collecting the know-how of the painter begun, and with that a
simpler way to generate robot programs for any shape.

1.4 Thesis Outline

• Chapter 1 serves as the introductory chapter. It presents the panorama of using
robotic manipulators at the industry level, particularly on SMEs. Discussion
follows with the challenges of interfacing these machines and to allow factory
operators easy interaction with them. The problem addressed by this thesis is
exposed together with the proposed solution and major goals. The industrial
demonstrator is described and framed with the research aims.

• Chapter 2 presents a review on the state of the art on programming by demon-
stration, human motion capture and intuitive human-robot interfaces. A relevant
set of contributions has been selected to provide insight on current research work
along this stream. In addiction, they are also meant to support and justify the
line of research of this thesis.

• Chapter 3 provides the most basic tools for the understanding of the remaining
of the document. It defines the notation used in equations and schemes, and
presents some fundamental notions on cameras, stereoscopy, orientation of rigid
bodies, etc. Also, some trivial algebraic relations are defined so that they can be
skipped later and make the development sections more readable.

• Chapter 4 is the grand development chapter. It presents the design, implementa-
tion and methodology that make up the proposed solution to a novel human robot
skill transfer framework. The chapter itself follows the structure of the motion
imitation framework: starts with the sensing component, the module that deals

10

1.4 Thesis Outline

with capturing human moves, down to replaying those exact movements with an
industrial robot.

• Chapter 5 describes the implementation of the proposed solution in the industrial
demonstrator. It comprises the installation and test routines that validate the
developed framework. System precision is accessed and discussed.

• Chapter 6 provides the conclusions taken from this research work: a final word
on the achievements, the novelty of the system and where it excels. Also, some
lines of thought are addressed to future research work: how the framework can
be improved, adapted or used for other ends.

11

1. INTRODUCTION

12

Chapter 2

Related Work

This chapter presents the state of the art methods and achievements on robot programming-
by-demonstration.

The universe of human-robot interaction is vast and it is hard to cover all the
current streams of research in the area. Brenna Argall et al. [5] and Geoffrey Biggs et
al.[6] offer a survey on robotics learning/programming from demonstration. According
to the author of [5], the work on this thesis is best categorized as an imitation learning
process. On this line, this literature review sets focus primarily on motion and tasks
demonstration, which provide the necessary data for a robotic imitation. Also, the
main goal is to achieve a system that allows transferring skill from a factory operator
over to an industrial manipulator and, for that reason, this review is restricted to the
interface with industrial robots.

Within this shorter scope, the reader starts by finding references on the actual
methods for robot programming, mainly commercial-off-the-shelf products as simula-
tion software and the teach pendant (which is the default programming tool provided
by robot manufacturers).

From here, discussion follows through contributions found on programming by mo-
tion demonstration. In-between, a review on CAD based programming takes place since
this is a major stream of research on the field of intuitive robot interfaces. On program-
ming by demonstration there are also different approaches: gesture recognition, lead
through programming and actual motion capture for robot playback. Each of those is
discussed and, for the sake of completeness, a few contributions on humanoid/mobile
robot interfaces are also analysed. Although these are not the type of platforms that

13

2. RELATED WORK

this research aims to interface, some knowledge can be retrieved on limited sections of
such contributions: methods and technologies for motion capture (which are commonly
used in humanoid research and to build virtual reality models of humans), and methods
for robot path planning, trajectory smoothing and collision avoidance (which are also
used in mobile robotics).

2.1 Programming Industrial Robots: the Teach Pendant
and Simulators

Industrial manipulators have their vary own programming language. Unfortunately,
each brand has developed their specific version making it hard to develop an universal
method or tool to program these machines. Another drawback of this scenario stands
on the costumer side, who is forced to stick to the same manufacturer in order to prevent
their operators to have to learn how to work with/program different machines. The
first and most used method to teach industrial robots are the teach pendants — Fig.
2.1. The reasons are obvious: it is the default tool shipped with every robot, it comes
with no extra costs, manufacturers support is guaranteed, it is well established as it
has been around since the first manipulators. Furthermore, these tools have access to
all the robot functionalities, are designed to endure industrial environment and provide
an easy-to-learn interface for the final user.

Ease of learn, however, does not translate into ease of use or, more importantly,
into efficiency. The method of programming through the teach pendant is tedious,
time consuming and far from intuitive, mostly to the expected end user: an inexperi-
enced factory operator. Through the pendant, the user moves the robot to the desired
position, records the point, defines the type of movement, velocity and several other
parameters; all those steps for a single point, repeated to every point that makes the
desired path. In the end, the resulting program can hardly be used for anything else
other than the task it was first meant to; adaptation or upgrades cost as much as re-
doing from scratch. In the SME scenario, specially with small series production, this
is not a practicable solution. Therefore, the first approach on improving human-robot
interaction has been on the enhancement of these existing interfaces. At the teach pen-
dant level, KUKA has integrated a 6-D mouse, developed by the German Aerospace
Center for space robotics projects [7]. Renzo Calcagno et al. [8] present a wireless

14

2.1 Programming Industrial Robots: the Teach Pendant and Simulators

Figure 2.1: Teach Pendants - Each manufacturer has its own layout for the teach
pendant

15

2. RELATED WORK

pendant aiming to improve flexibility and usefulness in tight shop floors but also to
provide means for distributed supervision and multi-unit control. Even though these
steps enrich indeed user interface, the programming method is still the same as are the
proprietary programming languages. In a fairly recent study, as of 2011 (Lei Wang et al.
[9]), it is obvious that the research community still seeks to overcome the limitations of
such reality; in this case, the authors use case-based-reasoning to segment parts of the
machine code in order to reuse them in similar applications avoiding to rewrite the code
or to build a full point-by-point path all over again. Similar approaches dated old can
also be found: replacing the code editor and interface by an icon-based flowchart [10]
and the development a set of modular robot programs that adapt to different shapes
provided the user is able to extract geometric data of the work-pieces [11] — then, a
program variant is automatically created. All of these concepts cannot relinquish a
skilled programmer with experience in robot specific language nor provide a way for a
common factory operator to intuitively interact with the manipulator.

Another common reality of robot programming nowadays are the simulators. Some
major dealers of industrial manipulators have their own simulation software, such is
the case of RoboSim from Motoman and RobotStudio from ABB. Simulators provide
the ability to test machine programs offline, saving testing time along with other key
advantages: visual feedback, improved control over robot motion, security analysis,
collision avoidance, tool/robot dimensioning, cell layout definition, etc. To cite a few,
there are some projects that take full advantage of these virtual reality tools and try to
further improve their usefulness and flexibility as reported by Xiongzi Li et al. [12] (the
authors import CAD models of the pieces to generate and validate a painting path) and
by Liwei Qi et al. [13](the paper analyses the reasons why robot simulations and offline
programming are far from intuitive). One of the greatest drawbacks in simulations is
the need of an accurate representation of the real world scene: representing the robot,
the workspace, the work-pieces and every layout details with low precision grounds
the effectiveness and interest of offline simulation. Also, the volumetric inaccuracy
of the robot may compromise the virtual→real transformation: even if the virtual
environment has accurate models, the robot may fail to respect the coordinates and
still fail to deliver. Xiongzi Li et al. [14] present a solution for calibration between
virtual and real scene increasing the rate of success when mapping simulated programs
into the physical robot — [12],[13] and [14] all use ABB’s RobotStudio. The work of

16

2.2 Taking advantage of CAD

Haixiang Yu et al. [15] is conducted over Motoman’s MotoSim, and advocates the use
of simulation based programming in a palletizing application for a safe and efficient
output.

Each and every of the discussed researches assume the default tools for robot pro-
gramming and try to build more productive and/or intuitive layers on top of it though
they do not close the gap between man and machine. Before us remains the scenario
where the highly skilled (and expensive) programmer has to code for manipulators.
Although the teach pendant and the simulators are indeed the de facto standard of
industrial robot programming, while the former is not easy to use nor time efficient,
the latter are dizzyingly expensive. Again, for SMEs, that is not an affordable solution.
Besides, there’s still no away to take the operator expertise and send it to a robot.

2.2 Taking advantage of CAD

On a similar line to simulation and modelling tools comes the offline programming
using CAD. This stream alone has received notorious attention by researchers and can
be considered one of the major fields of human-robot interaction.

Since companies are increasingly resorting to CAD software to design their products,
this is an existing valuable asset that was waiting to be explored. Through the 3D
data on CAD files it is possible to generate robot programs that can uniformly cover
the object surface (useful for painting/coating applications), move along the contour
(grinding and polishing tasks) or to plan ahead complex trajectories for collision free
operations. Contributions to this area of expertise started long ago; Grier Lin et al.,
back in 1995, have demonstrated the capabilities of CAD for object recognition and
adaptive pick up applications with manipulators [16]: the authors used cameras to
capture images from the workbench which where compared to CAD drawings for proper
identification; robot programs where then generated to grab the objects in the messy
workbench. On an extension of that application, the same authors used the CAD data,
neural networks and torque sensors to further improve the grasping capabilities of the
robot and the compensate position uncertainty [17].

In the fields of industrial painting and coating, CAD has also served numerous
researches; Chen Heping is an author who provided a considerable amount of contri-
butions in this area: [18] and [19] are examples where the author seeks methods for

17

2. RELATED WORK

automatic robot path generation in order to evenly paint a work object based on its
CAD drawings. The later contribution shows the application of the developed algo-
rithms in an actual industrial situation of automotive painting. The same authors try
to expand the knowledge of this CAD based painting to applications that require any
kind of surface manufacturing. Although the basis are the same, the scope is widened
[20] and a CAD based path planning framework is proposed. Years later, as of 2008,
still the same authors release novel research on CAD based coating of composite ma-
terials [21], together with a review of industrial robot path planning in spray painting
applications, [22]. This shows the usefulness of automatic path planning through CAD
but also indicates that a generic approach is hard to accomplish. Furthermore it can
be seen that industrial painting applications are still requiring major research work;
the variability of shapes, applicable products and painting techniques make it harder
to develop a single framework.

The industrial demonstrator for testing and validation of the research work pre-
sented on this thesis is itself a case of industrial spray painting. It is believed that the
true know how lies on painters, experts with years of contact with the application; the
CAD solutions do not take advantage of that expertise nor allow operators to transfer
their skill to the robot.

The CAD employment obviously do not limit to painting application. To make
reference to a few more applications, T. Pulkkinen et al. [23] use 2D CAD to auto-
matically process metal profiles. M. Soron et al. [24] report on the field of welding —
again, CAD models are used to generate continuous tool paths. Norberto Pires et al.
[25] suggest an interface for easy mapping from the CAD to the robot program, also
directed over welding processes. Another different application, polishing, comes from
Fusaomi Nagata et al. [26] — other than for path generation alone, the CAD model is
used to integrate data from the force sensor, and feed it to a force controller to prevent
an over/under abrasive operation.

Since CAD data may not be as much accurate as needed for a given task, or the
robot may not have the required accuracy, researches are conducted ahead of the simple
path planning: P. Neto et al., [27] and [28], seek to compensate for poorly calibrated
scenarios or for inaccurate/uncertain CAD models.

18

2.3 Programming by motion demonstration

As mentioned before, CAD based robot programming have been seeing quite a
respectful amount of research and the number of contributions is vast. As such, it is
worthy of a mention in this state of the art overview. Nevertheless, this method of
programming is more of a sophisticated interface than a true demonstration method.
The user do not teach nor is able to pass on its expertise, he rather points out positions
to where the robot should move. It is indeed an improvement over the standard robot
programming interfaces but still lacks the ability of bringing together the robot and
the actual factory operator who usually executes the tasks.

The following section provides an insight on current and previous projects that
show how operator-robot interaction can or may evolve in the years to come. From the
vast set of contributions on the PbD (Programming by Demonstration) field it is from
programming by motion demonstration that most profit is taken from this state of the
art analysis. As commented before in the introductory chapter, this thesis searches for
a novel way to learn (even if only by imitation) from the human expertise in industrial
processes: to find a way to capture know-how while operators do their tasks, instead
of forcing them to learn how to use either software or hardware.

2.3 Programming by motion demonstration

The interaction with robots using the hand motion or gestures is arguably the most
explored. Gestures and movements come as the most natural means for humans to
express themselves. The programming by gesture recognition is, however, a mean of
intuitive interaction rather than motion demonstration; for the sake of completeness
of this review, some of the work on motion recognition is discussed: Stefan Waldherr
et al. [29] present a framework based on video tracking that allows a mobile robot to
follow an human; the same video data is used with neural networks and a template
matching algorithm so that, if a given predefined gesture is captured, the manipulator
on top of the mobile base executes pre-programmed tasks. The same approach is used
by Matthias Strobel et al. [30], this time with hidden markov models and integrating
context knowledge to better understand human intentions. Instead of a pure video
inspection of human moves, Piyush Kumar et al. [31] developed a glove which allows
a more precise tracking and identification of gestures.

19

2. RELATED WORK

The number of contributions on this area continues endlessly, most not directly
related to industrial manipulators nor even robotics. Nevertheless, all these contribu-
tions share a common line: the human is given a way to interact with the robot but
no means to program it or change its behaviour as needed. The recognition enables
the activation of a corresponding robot program which must be programmed before-
hand. There is no actual demonstration from the operator. In the same line of though
comes the programming by voice commands, as exemplified by Norberto Pires [32]:
the voice patterns are recognized and trigger tasks executions (which must also be pre
programmed). This approach may play an important role in conjunction with solutions
for actual programming by demonstration, liberating the user from any computer inter-
action. If the goal is to ever dismiss an experienced robot programmer at the factory,
the previous solutions prove insufficient; they do hold a powerful way to interact with
machines yet not teach them.

With focus on finding ways of demonstrating tasks, preferably with industrial capa-
bilities, the following set of contributions have been analysed deeply. The techniques for
capturing human moves or interfacing the industrial robot are close to what is expected
from this research work.

R. Dillman has several contributions on this field. Using stereoscopic vision and a
special glove, [33], the author proposes a framework for object handling where motion
is captured and segmented as tasks; each task is classified according to its goal and is
replayed using a linear-move, circular-move or free-move criteria. The proposed motion
sensor, the glove (Fig. 2.2), besides the lack of industrial robustness, still presented
a hard tracking problem. Most of the human move lies on the wrist and the glove
does not directly measures it; the finger movement and inter-finger angles were used
to perform a better estimate of the wrist movement. Even so, the neural network
based processing had a low success rate, at least for industrial grade. To improve this
system, the author upgrades the glove now to include tactile sensors also, [34]. This
allows an easier task segmentation but does not improve the tracking ability. The
same data of force on the fingertips is also used to upgrade the PbD system, and
expand it to areas other than pick and place. The tactile sensors on the glove were
used with an SVM (support vector machine) algorithm to identify grasp details and
understand complex tasks such as screw bolting, [35]. The introduction of the new

20

2.3 Programming by motion demonstration

sensors, however, brought the problem of sensor fusion in order to merge camera and
glove. This problem is addressed in [36]. Further work of this author have been carried
out on this grasp-understanding framework. Recently the research has drifted towards
humanoid robots but a hole has been left behind: actually exporting the results toward
industrial applications; precision, repeatability and high success rates are the keys for
successful scientific knowledge transfer to the industry market and little care is shown
in past research work to these topics.

Figure 2.2: Glove - A glove with tactile sensors proposed by Dillman, R et al [33]

Skoglund et al. [37] also focus on pick and place tasks alone, using fuzzy clustering
to identify the stages of a human demonstration. The robot playback is set to achieve
the same goals but no care is taken that the trajectory is precisely the same. This
serves well a pick-and-place task but is due to fail in a welding or painting operation.
The work presented by Y. Maeda et al. [38] targets an industrial robot. It has a
teaching-by-showing stage and a robot playback stage. Capturing the human motion
is done with video images which are then fed to a neural network. After training, the
robot achieves the correct manipulation task. This contribution, despite targeting an
industrial manipulator, does not have a pure skill transfer core. The operator moves
the robot in the teaching phase instead of doing it himself. Also, multiple teaching
is needed until the robot performs acceptably. In the same line of the lead through
programming, Germano Veiga et al. [39] report a system where the user also moves
the robot end-effector, and at the same time a torque sensor records the force pattern
along the path; this improves playback since an extra loop for force control is added
allowing online corrections to the movement.

21

2. RELATED WORK

Another different approach to PbD is reported by M. Stoica et al. [40]: the user
shows an action and the robot is set to repeat it in a loose fashion, i.e, the robot performs
an action that is similar yet not precisely the same. Based on the robot behaviour it
receives marks that are used in a reinforcement learning algorithm, until the desired
motion output is achieved. Even though the authors do stick to industrial manipulators
and point out the interest of interfacing with these machines, the developed system is
hardly accepted as an industrial solution mostly due to the learning stage: the algorithm
takes time and many failed repetitions until convergence on the desired behaviour.

Bjorn Hein has a pair of complementary contributions that deal in fact with move-
ment demonstration. The author presents a set of new input devices [41], based on
artificial vision and infrared markers; these are attached to different tools to cover
distinct applications — Fig. 2.3. The second part of the system [42] integrates the
tracking component in a more complex framework which deals with tele-operation,
simulation and path planning. The hardware components are thoroughly described as
well as the calibration stages of the system. Despite that, few tests are presented and
there is no actual discussion on the precision and the industrial applicability of the
apparatus. Furthermore, the major drawback lies on the robot interface: the authors
use a Kuka motor controller interface which allows controlling each joint separately;
the movement playback is achieved by doing inverse kinematics on the robot in order
to replay the tracked trajectory. This type of approach is far from optimal since the
high level controllers of the robot are disregarded — failing to provide a consistent set
of joint angles and the robot may break apart; the robot model must be very accurate
so that no precision is lost; finally, the standard off-the-shelf robotic manipulators do
not provide such low level interface (for the same reasons discussed. The consequences
of a software bug could be disastrous and wreak havoc on the surroundings and to the
robot itself).

The contributions discussed so far focus on providing a PbD framework; yet, some
profit can be found in exploring other fields of research that, for example, may not
provide interface with robotic manipulators but deliver an interesting motion capture
system or vice-versa. Field et al. [43] contributed with a fairly recent survey (2011)
on motion capture sensors for robotic applications. From this study, one can keep
track of the different technologies that enable motion tracking. Both Elgammal et al.
[44] and Shon et al. [45] make use of passive markers (infrared), for outdoor body

22

2.3 Programming by motion demonstration

Figure 2.3: Input devices - New input devices proposed by Hein, B. et al [41]

tracking and indoor humanoid imitation, respectively. Naksuk et al. [46] and Leonid
Sigal et al. [47] also use infrared markers but active ones. The former is an application
directed towards humanoid control and the latter proposes an algorithm to evaluate
articulated human motion. Both passive and active infrared markers have increased
post processing times with the increasing number of used markers; differentiation of
each light is usually done with a combination of inter-marker distance which becomes
harder to achieve with a larger number of markers. Markerless options also exist:
Azad et al. [48, 49] propose a stereo based human body tracking with no markers
required — the precision of these systems fall short to the marker-based alternatives,
nonetheless. Inertial [50] and magnetic [51] solutions (non vision based) are explored
extensively. While magnetic sensors fail abruptly near metallic structures and provide
noise full measures [52], inertial sensors do require double integration and, as such,
position estimation is poor. Moreover, data fusion is often required as an extra step in
post or online processing [53].

On the other end of the PbD framework lies the robot interface. This encompasses
trajectory clustering, filtering, segmentation and planning. Some contributions excel in
this area: Chien-Chou Lin [54] proposes a memetic algorithm to deal with path plan-

23

2. RELATED WORK

ning with collision avoidance taking into account the possible/allowable configurations
of an industrial manipulator. Aleotti et al. [55] describe a spline smoothing technique
to filter noise and human inconsistency on a set of repeated tasks. Joon-Young Kim
et al. [56] present a minimum time trajectory planning algorithm also for industrial
robots; a similar approach is followed by Wenguang Li et al. [57], using polynomial
fitting.

From this set of discussed contributions it becomes clearer the areas where this
research work can provide novelty. First, on the motion tracking component, active
visible markers are seldom found; the typical problems with lighting conditions may
have driven away researches but with the recently developed sincrovision concept there
is space for a new kind of marker. This can improve detection and measurements,
allowing a greater number of marker while maintaining low processing times. Another
aspect that can be improved is the industrial capability: low cost, high precision and
low latency times are fundamental for competitive production lines; these aspects seem
disregarded in many contributions.

24

Chapter 3

Background and Notation

This chapter section summarizes some basic notions that help understanding the re-
mainder of the document. It includes artificial vision concepts (camera model, calibra-
tion, reference frames, lenses,...), linear algebra relations for dealing with coordinate
frames (rotations, translation, homogeneous coordinates,...), quaternion algebra and
programming/interfacing industrial manipulators.

3.1 Matrix Notation

The most essential basics to understand every equation and procedure in this thesis
are related to matrix operations and notation. Summarizing:

1. matrices are represented by bold upper-case letters, for instance, matrix A;

2. the elements of A come in italic, lower-case letters — aij ;

3. the indexes i, j refer to matrix row i, column j;

4. the definition of a matrix appear in square brackets:

A =
[
a11 a12
a21 a22

]
(3.1)

5. vectors are Nx1 matrices, represented by bold lower-case letters, for instance
v = [v1, v2, v3]T ;

25

3. BACKGROUND AND NOTATION

3.2 Coordinate Systems, frames and transformations

In the remainder of this document, wherever is made reference to coordinate systems,
without further specification, cartesian coordinate system is meant. Camera models and
calibration, along with stereoscopic principles, make use of homogeneous coordinates
(more on it ahead); this fact is highlighted in such cases.

Throughout the proposed motion imitation framework there are numerous frames
(distinct cartesian coordinate systems) to be considered: the robot base frame, the
robot’s tip frame, the marker frame, the cameras frames, etc.

When a point in 3-D space is projected into a 2D image pixel, or when a point in
robot base coordinates is mapped to the end-effector frame, a transformation of frames
occur.

In Fig. 3.1, two frames are shown. The same point P is represented in both frames.
Concerning notation:

1. a frame is denoted by upper-case script capitals, e.g, A and B;

2. a point is denoted by italic upper-case letters. E.g, P ;

3. point P on frame A is represented by AP ;

4. when a set of points is considered, the subscripted index in Pi refers to point i;

5. APi has coordinates APi = A (xi, yi, zi);

6. alternatively, P can be converted to matrix notation thus using the vector con-
vention mentioned above: P → −−→OP → p, where O is the frame origin;

The transformation of frame A into B happens in two moments: a rotation BRA

and a translation BTA.
Rotations are represented by square matrices which rotate points about the origin

of the coordinate system by a certain amount (an angle) — in Fig.3.2 (a-left), a rotation
of φ degrees around the z axis is applied, followed by a rotation of θ around the new
y′ axis. More details on rotations matrices are given further ahead, in the angles and
orientation section.

Translations in RN are N × 1 matrices and represent the offset between the two
frames origins, AOA and AOB — Fig. 3.2 (b-right).

26

3.2 Coordinate Systems, frames and transformations

x

y

z

A

AP

OA

x′

y′ z′

OB

B

BP

Figure 3.1: Frames - Notation for frames and points. Two frames are shown: A and B.
The later is obtained from A after a translation and a rotation

3.2.1 Homogeneous Coordinate System

At this point, homogeneous coordinates are introduced for two main reasons: first they
simplify the algebra of frame transformation by allowing a more compact and com-
putationally efficient representation of the pair rotation+translation and by making
composition of successive transformations easier; secondly, homogeneous coordinates
are also used to represent projective transformations which is the base for (3D) com-
puter vision; as such, these notions will be used on the camera related subsystems.

Concerning frame transformations (rotation plus translation), the homogeneous co-
ordinates can be seen as an extra dimension, with value equal to 1. Simply put, a point
in 3D space with coordinates P = (x, y, z) has homogeneous coordinates P = (x, y, z, 1).
What are the implications? In the example of Fig. 3.2, if AP is represented in homo-
geneous coordinates, AP = (x, y, z, 1), then the whole transformation is written in a
more compact manner:

B
x
y
z
1

 =
[
BRA

BTA

03 1

]
︸ ︷︷ ︸

AHB

A
x
y
z
1

 , where 03 = [0, 0, 0] (3.2)

The homogeneous 4×4 transformation matrix H groups rotation and translation in

27

3. BACKGROUND AND NOTATION

x

y

z

φ

φ

θ

x′

y′ z′
φ

θ

(a)

x

y

z

A

OA

x′

y′ z′

OB B
t =

=
[
AOB − AOA

]

(b)

Figure 3.2: (a) Frame Rotation: The second frame (Oxyx)′ is obtained from the
original by a rotation in the z-axis followed by another around y′. (b) Frame Translation:
Vector t represents the offset from the two origins. Translation succeeds rotation. If
translation comes first, then the rotation must be around the translated BO.

28

3.2 Coordinate Systems, frames and transformations

a single form which is a more computationally efficient and clean representation. The

composition of consecutive frame transformations is also made easier: it is a succession

of multiplications by each H matrix — DHA = DHC
CHB

BHA.

The use of homogeneous coordinates in artificial vision problems is more than an

added 1-value coordinate. In fact, homogeneous coordinates are useful to describe

projective transformations and to have a non-singular definition of infinity. A point in

2D space still needs three coordinates: P = (x, y) → Ph = (x′, y′, w) where x = x′/w.

From here it is easy to see that the mapping of cartesian coordinates to homogeneous

ones is not unique: any value of w can be set; the inverse mapping, on the other hand, is

unique. When w is zero the point is at infinity so homogeneous coordinates can in fact

represent the infinity in the form of coordinates (x, y, 0) instead of having to compute

a zero division. In addiction, this added coordinate shows how it is impossible to go

from a 2D frame into 3D, for instance, from an image frame into the world, without a

complementary restriction — there are infinite possibilities (set w any value); for the

reverse transformation, a projection, it shows how there are many 3D points (along a

line) that project into the same 2D point (whichever the value of w, x and y are the

same when the normalization w = 1 occurs). Fig. 3.3 holds a geometric interpretation

for the added dimension w.

3.2.2 Orientation of a Rigid Body: representations

There are several ways to represent the orientation (also called attitude) of a rigid

body: rotation matrix (many times referred to as direct cosine matrix), euler angles,

direction cosines, vector-angle representation and quaternions.

There are advantages in using some representations over the others. Rotation ma-

trices are larger in size (9 elements) but their algebra is efficient and easier; nonetheless,

interpolating between orientations is not possible. Euler angles are just 3 values but

have discontinuities and the representation of a given attitude is not unique. Quaternion

algebra is less common and more complicated but they offer means for interpolation

that no other representation does.

The notation and some properties:

29

3. BACKGROUND AND NOTATION

x′

y′

w

Pxy

P

x
y

w = 1

infinity

P =

(
xp, yp, w

)

Pxy =

(
xp
w

,
yp
w

, 1

)
w = 0 → ∞

w = 1 : the usual cartesian
frame, the XY-plane

Figure 3.3: Homogeneous Coordinates - a geometric interpretation. A point Pxy in
cartesian R2 space (w = 1) can have infinite representations in homogeneous coordinates
— all points along the line Pxy–P . The plane w = 0 represents infinity.

1. Rotation matrices use the standard matrix notation, upper-case bold letters, e.g,
R.

2. The rotation around an axis u by an angle θ is denoted Ru,θ.

3. If BRA rotates frame A to B, then the inverse rotation ARB is defined by

ARB =
(
BRA

)−1
(also, R−1 = RT) (3.3)

4. Consecutive rotations (about the current axis) are obtained by pre-multiplication
of the respective matrices:

DRA = DRC
CRB

BRA (3.4)

5. There are many conventions for use of the euler angles. In this thesis, euler
angles were required to interface with a MOTOMAN manipulator and, as such,
the convention followed is the one that best adapts to the robot programming.

The euler angles define an orientation by the composition of three simple ro-
tations, around the coordinate system axis. Assuming intrinsic rotations, i.e,

30

3.2 Coordinate Systems, frames and transformations

around the moving axis, first there is a rotation around Z-axis by an amount φ;

then a rotation around the new Y-axis by θ; finally, there is a rotation around

the final X-axis by ψ. If fixed axis are considered (extrinsic rotations), then the

order of axis rotation is reversed. MOTOMAN uses angles (Rz, Ry, Rx) but this

notation is easily confused with the matrices. Hence the adopted notation here-

after will be (φ, θ, ψ); if a rotation matrix is associated with these angles and axis,

then an orientation is described by

R = Rz,φRy,θRx,ψ (3.5)

6. Lastly, there are quaternions. These are one of the most used tools to deal

with orientations specially in the computer graphics field. Quaternions are an

extension of complex numbers in 4D space: q = [qr, qi, qj , qk]T .

7. Unit quaternions represent orientation in 3D space; q and −q represent the same

orientation while q∗, the conjugate, represent the inverse rotation;

8. unit quaternions live on the unit sphere of R4; interpolation between two orienta-

tions, which is not possible using rotation matrices, is simple in quaternion space

— a ”linear” interpolation on the sphere surface (called Slerp, spherical linear

interpolation).

The algorithms used in this thesis are mainly based on rotation matrices and quater-

nions. However, the interface with industrial manipulators is usually done using euler

angles or quaternions. For this reason, and to simplify the presentation of the algo-

rithms throughout the thesis, the methods for converting between each representation

are here described. Later, the representations shall be used interchangeably without

caring to present again the same basic calculations.

31

3. BACKGROUND AND NOTATION

1. From euler angles to rotation matrix:

RZ,φ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

RY,θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

RX,ψ =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

R = Rz,φRy,θRx,ψ

(3.6)

2. From axis-angle to rotation matrix — considering a rotation of θ degrees around
axis k = [kx, ky, kz]T :

Rk,θ =

 k2
xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ k2
yvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ k2
zvθ + cθ

 (3.7)

where cθ = cos θ, sθ = sin θ and vθ = 1− cos θ.

3. From quaternion (q = [qr, qi, qj , qk]T) to rotation matrix

R =

 q2
r + q2

i − q2
j − q2

k 2qiqj − 2qrqk 2qrqj + 2qiqk
2qrqk + 2qiqj q2

r − q2
i + q2

j − q2
k 2qjqk − 2qrqi

2qiqk − 2qrqj 2qrqi + 2qjqk q2
r − q2

i − q2
j + q2

k

 (3.8)

4. From rotation matrix to euler angles —considering R = [rij] and X,Y,Z angles
as ψ, θ, φ:

φ = atan2

 r23

−
√
r2

11 + r2
12

,
r33√

r2
11 + r2

12

θ = atan2

(
r13,

√
r2

11 + r2
12

)

ψ = atan2

 r12

−
√
r2

11 + r2
12

,
r11√

r2
11 + r2

12

(3.9)

5. From rotation matrix to quaternion — considering R = [rij] :

32

3.3 3D computer vision

• If Trace(R)≥ 0

qr =
√

1 + r11 + r22 + r33
2

qi = sign(r32 − r23)
√

1 + r11 − r22 − r33
2

qj = sign(r13 − r31)
√

1− r11 + r22 − r33
2

qk = sign(r21 − r12)
√

1− r11 − r22 + r33
2

(3.10)

• If Trace(R)< 0 then pick the largest leading diagonal element. Assuming it
is r11 (works equivalently if is another element):

s = 2
√

1 + r11 − r22 − r33

qr = (r32 − r23)
s

qi = s

4

qj = (r12 + r21)
s

qk = (r13 + r31)
s

(3.11)

6. From quaternion to euler angles:

φ = atan2
(
2 (qrqi + qjqk) , 1− 2

(
q2
i + q2

j

))
θ = arcsin (2 (qrqj + qkqi))

ψ = atan2
(
2 (qrqk + qjqj) , 1− 2

(
q2
j + q2

k

)) (3.12)

7. From axis-angle to quaternion — θ degrees around axis k:

q = cos θ2 + sin θ2 k̂ , with k̂ = k
‖k‖ (3.13)

3.3 3D computer vision

The artificial vision processes start from an image frame captured by a camera. The
scheme on Fig. 3.4 exemplifies the notation for the axis of the image frame: horizontal
and vertical axis u and v, respectively, are the basis of the image space; a pixel p is
defined by its coordinates p = [up, vp]T . The value of the pixel is denoted F (u, v) and
can be one dimensional (grey-scale image) or three dimensional (colour image). The
origin of the image space is at the top left corner. In the example, the image resolution
is 8× 8 pixels.

33

3. BACKGROUND AND NOTATION

v

u

p = [up, vp]
T

Figure 3.4: Image Notation - The standard frame used in image processing. Pixels are
identified by their position (u, v) in the image frame/matrix.

3.3.1 Camera Model

In order to understand the phenomena of capturing a scene into an image (using a
camera and lenses) a model has to be established. The camera pinhole model is arguably
the most commonly used to that end. Fig. 3.5 holds a scheme from which the pinhole
model can be understood and derived. It synthesizes the projection of a world point
into the image frame and how the different coordinate frames are related.

The required notation:

1. M is a 3D world point and has coordinates m = [mx,my,mz]T , with respect to
the world frame W = {xw, yw, zw} ;

2. The corresponding pixel to m is pm = [um, vm]T ;

3. The image plane I has a frame {x̂, ŷ} centred in p0 = [u0, v0]T (the principal
point); the usual frame for image processing (due to the matrix representation)
is at the top left corner: {u, v}

4. The focal plane F has the camera coordinate system {x, y, z}, centred in c —
called the optical centre.

34

3.3 3D computer vision

5. The orthogonal distance between the planes F and I is f , the focal length; the
line that connects p0 and c is the optical axis.

I

Image Plane

v

u

x̂

ŷ
p0

pm

F
Focal Plane

x

y

z
c

f

M

FHW
xW

yW zw

W

Figure 3.5: Camera Pinhole Model - The geometric relationship in a perspective
projection. The pinhole model can be derived from this scheme (based on [58]).

The projection of m into pm happens in two moments: first there is the transforma-
tion of world coordinates into camera’s coordinates; then, the actual projection occurs.
As for the former, it is necessary to describe the position of the camera in the world
frame, i.e, specify c in terms of W; this is accomplished by the translation vector F tW .
The alignment of the frames, i.e, {x, y, z} matching with {xW , yW , zW }, is achieved by
a rotation: FRW . The homogeneous transformation

FHW =
[
FRW

FTW

03 1

]
(3.14)

holds the so called extrinsic parameters of the camera: how it is positioned with respect
to the world.

Regarding the 3D→2D transformation, it is described by the camera’s intrinsic

35

3. BACKGROUND AND NOTATION

parameters matrix

A =

 α γ u0
0 β v0
0 0 1

 (3.15)

which uses the principal point,[u0, v0], horizontal/vertical scale factors describing the
actual size of the pixels,α and β, and γ = α cos θ – the parameter of non-orthogonality
between u and v.

The perspective projection model, through the pinhole scheme, is then given by
the projection matrix P, which takes into account both intrinsic and extrinsic param-
eters. Equation 3.16 (assuming homogeneous coordinates), shows the final M → pm
relationship.

pm = Pm , where P = AFHW (3.16)

3.3.2 Stereoscopy: 3D from two-view geometry

A single camera captures a world scene using an unequivocal 3D → 2D mapping, i.e,
world point M can be seen at pixel p and at no other; on the other hand, pixel p can
be the image of an infinite set of world points: those along the line connecting optical
centre c and M . This means that the image frame has no depth information.

To recover depth, at least two cameras are needed. When a world point is simulta-
neously captured by two cameras(placed at distinct positions), a restriction arises that
allows going from the 2D world into 3D. Fig. 3.6 shows a scheme of the stereoscopy
principles. Point M appears in image I as p and in image I′ as p′.

The required notation:

1. The left camera image is I and the right is I′

2. The superscript ”prime” (′) indicates variables of the right camera;

3. M is a 3D world point;

4. p and p′ are the pixels corresponding to of the image of M in I and I′, respectively;

5. c and c′ are the optical centres. They are displayed behind the image plane for a
matter of simplicity; it is mathematically equivalent to the real case where they
lie in-between the world point and the image plane (as represented in the pinhole
model, in Fig. 3.5);

36

3.3 3D computer vision

M

Ω

c

c′

I

I′

Ω

b

l

l′
p

p′

e
e′

Figure 3.6: Stereoscopy - The geometric principles of two-view triangulation – known
as epipolar geometry. The possible matching pixels to p lie on epipolar line l′ and vice-
versa. This provides a useful geometric restriction used image analysis in order to find the
corresponding pairs. Remark: The camera centres are drawn behind the image scene for
simplicity and ease of interpretation. It is mathematically equivalent to the notation of
Figure 3.5

37

3. BACKGROUND AND NOTATION

6. e and e′ are called the epipoles; they stand as the projection of the other camera’s
centre.

7. the line b is called baseline; it connects the two centres and can be seen as the
optical ray that simultaneously projects c into I′ and c′ into I. The projection
pixels are the epipoles (e/e′).

8. Lines l and l′ are called the epipolar lines. The potential matches to pixel p(or
p′) lie on epipolar line l′ (or l);

9. The plane Ω is called the epipolar plane;

Stereo is possible when both the relative positioning of the two cameras is known,
and when there is a corresponding pair of pixels 〈p,p′〉.

Epipolar geometry ([58] and [59]) provides the tools to relate cameras positioning
and to generate 3D from the pixels: any corresponding pair of pixels 〈pi,p′i〉 satisfy
3.17:

p′Ti Fpi = 0 (3.17)

F is the fundamental matrix. It encapsulates both camera’s intrinsic parameters
and their relative pose, i.e, the geometry relationships present on Fig. 3.6.

Finding a matched pixel pair involves image analysis with the help of epipolar
geometry. Given a pixel p, the corresponding pixel p′ sits along the epipolar line l′. l′

is computed from the fundamental matrix F:

l′ = Fp

p′ ∈ l′ ⇒ p′l′ = 0

∴ p′Fp = 0

(3.18)

So, Equation 3.17 resolves into a line equation which defines l′ given a pixel p. All the
pixels p′i belonging to l′ are possible matches to p. So, epipolar geometry gives a search
constrain (a line among the entire image). Pixel features (as colour, texture, etc) must
decide if the pairs match — this is called the correspondence problem.

With the above data it is finally possible to recover depth data from two cam-
era views. The same concept is extensible to N-camera views, doing the possible 2-
combinations of cameras.

38

3.3 3D computer vision

3.3.3 Camera/Stereo Calibration

Camera calibration refers to the method of identifying/estimating the parameters of
the projection matrix P – equation 3.16. A complete calibration holds the intrinsic
parameters of the camera as well as its positioning according to a given world referential.
Available options for calibration include (based on [58]):

1. Self-calibration: moving the camera in a rigid scenario and finding corresponding
sets of points (on a least three images) provides enough data and constraints to
estimate all the intrinsic and extrinsic parameters. The mathematical formulation
of this problem is harder than those of the next techniques. Self calibration can
be categorized as a 0D method.

2. Calibration based on a 1D line: the camera captures a set of calibration points
that are displaced along a line; the points are moved around, maintaining the
linear restriction; this can be achieved with a bar with a set of markers attached
to it. Due to the linear restriction, this is categorized as a 1D method;

3. Calibration based on 2D patterns: this is arguably the most used method. Usu-
ally, a checker-board pattern is shown to the camera – Fig. 3.7 – at different
poses. The edges of the squares are found and, since the size of the real pat-
tern is known, the correspondence between pixels and real coordinates enables a
complete calibration of the camera’s parameters.

4. Calibration based on known 3D objects: as an upgrade to the previous method,
this one relies on a 3D pattern or a 3D object whose dimensions are precisely
known. The most simple form is to place two or three 2D-checker-board patterns
orthogonally to each other and, again, retrieve the square corners and match them
with the world coordinates.

Regarding stereo calibration, it can be achieved by using the estimated models of
the cameras. If each has been previously calibrated (known P and P′), then F can be
computed from a closed form solution — from Hartley and Zisserman [59]:

F =
[
P′c

]
×P′PT

(
PPT

)−1
(3.19)

39

3. BACKGROUND AND NOTATION

Figure 3.7: Calibration Pattern - A checker-board pattern used for camera calibration.
It is the most used method as it simply involves printing a known-size black and white
squared pattern. The required image processing is also minimal — finding the black-to-
white transitions and detect the corner.

The [a]× operator denotes the skew-symmetric matrix corresponding to vector a:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

The other option is to obtain a set of at least 8 corresponding pixel pairs. The

techniques presented above remain valid to obtain a list of corresponding points. From
the stereo equation 3.17 it is trivial to solve a set of homogeneous equations with respect
to the matched pairs and directly estimate the fundamental matrix F. Recovering P
and P′ from F is also possible [59].

A calibrated stereo system, working along with image processing methods that
match pixel pairs, ultimately allows going from 2D images to 3D world coordinates.

3.3.4 Tracking Luminous Markers — The sincrovision

The sincrovision concept was developed and patented [60] in the University of Porto -
Faculty of Engineering . It implements a system of 3D acquisition based on stereoscopic
vision synchronised with high intensity luminous markers. The key idea is to turn on
the markers as soon as the cameras start acquiring the image and turn them off after the
camera exposure time has expired. Figure 3.8 shows a timing diagram of the system.

40

3.4 Industrial Manipulators

Figure 3.8: Sincrovision Timings - A timing diagram depicting the synchronous image
acquisition. Both cameras are triggered at the same time. From that moment on they are
acquiring the scene for a very limited time(3ms). The ultra-bright LEDs are triggered at
the same instant the cameras were triggered too and remain lit only during the camera
exposure period.

Together with a fully closed aperture of the camera’s lenses, the high intensity lights
will be very bright on the images whilst the background noisy data will have no time
to be acquired by the camera. At the same time, blinking the markers for a short time
makes it possible to stare at them; keeping them always on would cause eye damage.
This setup makes it possible to triangulate the markers positions in space in a robust
way, independently of lighting conditions in the scene and ignoring most of the common
noise sources in artificial vision applications. Figure 3.9 shows a typical image captured
by the cameras using this synchronous feature.

The sincrovision will be used as the basis of the proposed new input device for
human movement capture, described in the next chapter.

3.4 Industrial Manipulators

The research reported in this thesis was supported by an industrial demonstrator,
as pointed in the introductory chapter. The experiments and validation tests were
performed on an industrial manipulator that has been acquired by this demonstrator,

41

3. BACKGROUND AND NOTATION

(a)

(b)

Figure 3.9: (a) Standard acquisition: The scene is captured with no timings con-
straints. The exposure and lense aperture make the image too dirt to be processed. The
background lighting obfuscates the marker. There are many noise sources, mainly the
fluorescent lamp. (b) Synchronous acquisition: The lenses aperture are reduced to a
minimal. Exposure is very low (around 3ms). The background noise is eliminated and the
markers shine robustly in the image. Under these conditions, clustering is straightforward.

42

3.4 Industrial Manipulators

exactly for the purpose of implementing the skill transfer framework. Without loss
of generality, the methods for interfacing and programming the robot were developed
aiming a MOTOMAN PX2050 robot.

This is an articulated manipulator, with 6 degrees of freedom (DoF) and a payload
of 10Kg. Precision/repeatability (how close to the same position the robot end-effector
is able to move to) is rated at ±0.5mm. In terms of accuracy (when the robot moves to
a pre-defined point in space, how close it gets to the desired coordinates), manufacturers
do not provide such data; this is some times referred to as volumetric accuracy, and
usually falls down to a millimetre or two. It is due to this volumetric inaccuracy that
online jogging and teaching is preferred over offline programming in high precision
operations.

For a real-time control of the robot, a TCP/IP interface with the robot controller
can be used. A specific network protocol must be implemented in order to control robot
movements, read its state and upload offline generated programs.

As for the programming language, there are three types of movements which are
also common across every brand of industrial robots:

1. Joint moves, or MOVJ: this instruction uses joint interpolation for moving the
robot. This means that it travels from point A to point B without a particular
path restriction; the controller moves each joint independently in order to achieve
the desired position. This type of control must be used with caution since there
is no a priori knowledge about where the tip or each link is going to move to.
Only the final positioning is assured.

2. Linear moves, or MOVL: this type of control instructs the robot to go from
position A to B using linear interpolation in the cartesian space, i.e, the robot
will draw a straight line from A to B;

3. Circular moves, or MOVC: this instruction controls the robot to perform a circular
movement; it is usually fed by enough data points (3) to define a circumference
in 3D space — the centre, the arc starting point and the arc ending point.

Together with the most basic movement instructions there are also a number of
parameters that can be controller for a refined motion control such as acceleration,
deceleration and tolerance (how close to the desired point the robot goes).

43

3. BACKGROUND AND NOTATION

A robot program is but a collection of successive movement instructions (either of
the presented) with sensor readings and actuation signals set in-between those instruc-
tions.

44

Chapter 4

Motion Imitation Framework

This chapter presents the methodology, the design and implementation of the human-
robot skill transfer framework.

The first section is a brief snapshot of the proposed solution. It exposes all the
modules and how they interface each other. From here, the remaining sections provide
an in-depth analysis and description of each subsystem. The structure and ordering
of the sections resemble the actual system flow on the real application: the motion
capture/tracking, the data processing and the interface with the robot.

4.1 System Architecture : Overview

This research is conducted towards a feasible industrial solution: the development
of all system modules takes in concern implementation costs, reduction of hardware
apparatus and cutback of setup and processing times. It is also important to minimize
the impact on the production process, on the shop floor and ultimately on the operator
task.

The proposed solution puts together a tracking framework and a set of routines
for data processing which aim to enable/simplify the interface and playback with an
industrial manipulator.

The sincrovision (see Background section 3.3.4) offers the possibility to develop a
new kind of marker for gesture tracking. The technique is based on multi-view artificial
vision and requires luminous markers. Using cameras to capture movement presents
numerous advantages: it is a contactless method, operators do not have to wear extra

45

4. MOTION IMITATION FRAMEWORK

devices (uncomfortable and unusual to their daily tasks), calibration is permanent as
long as cameras remain unmoved. Also, there is a wide range of cameras with varying
resolution and price. So, for a specific application there are many options to chose from
available on the market. Furthermore, stereoscopy can be used starting with only two
cameras (low cost) but more can be added as necessary to achieve the desired precision
or to cover larger workspaces. This flexibility makes the stereoscopy based solution
available to many industrial applications like painting, welding, bending, polishing,
etc.

From an industrial cell point of view, the required changes to install a stereoscopy
based tracking are small:

• Install a set of cameras;

• Attach the marker to the work tool;

• Connect the cameras to a PC and deliver power to the marker.

The added hardware apparatus is reduced to a cabinet that can hold the stereoscopic
setup (a set of industrial cameras and the synchronization device). The robot and the
human worker operate in the same area: first, the operator demonstrates then he is
replaced by the robot that is going to mimic the operation. The marker must be
attached to the operator tool. In the following sections, the design considerations are
described in order to achieve a robust and easy to plug luminous marker.

The skill transfer framework limits how the human interacts with the robot, i.e,
provides abstraction from the programming language but also from the teach pendant.
A minimal interaction with a computer is needed nonetheless: to start and stop the
demonstration, to calibrate the system and to playback desired programs.

The framework is divided into the following stages:

1. Calibration. In this step, two calibrations take place: the camera↔robot cali-
bration and the human-tool↔marker↔robot-tool calibration. The former needs
the operator to mount a calibration tool on the robot end-effector; after that, the
robot executes a program with no further human interaction. When the program
ends the stereo is calibrated. Human-tool↔marker↔robot-tool calibration needs
the operator to hold the work tool in front of the calibrated cameras. Calibration
in done from an image frame of the scene. From this point, the tracking system

46

4.2 Camera and Stereo Calibration

is ready to perform (these steps are detailed in the forthcoming sections). It is
important to note that the system calibration only needs to be done once as long
as the cameras remain in the same spot relative to the robot. The procedures
can be done during the actual installation of the system, so it is transparent to
the end user.

2. Demonstration. Through a computer interface, the operator starts the demon-
stration process. It takes a single click of a button. Then, he executes the
movements and, at the same time, the data is captured and processed. After
finishing the demonstration, the final trajectory processing is carried out and the
robot program is generated.

In this stage, the operator needs only to start and stop the process through the PC
interface. The demonstration happens in the most natural way, as the operator
executes a task as he would normally do. There is no use of an extra tool or any
change to the operators’ behaviour.

3. Playback. Again, using only a software interface, the operator chooses a robot
program. The code is transferred to the robot’s controller and the movement
mimic is executed. The operator needs only to evaluate the machine performance
by inspection.

The motion imitation is achieved in a short time. The image processing is done
in real time; the full trajectory analysis and robot code generation are also just a
few seconds long which make the robot almost instantaneously ready to mimic the
operator. The stereoscopy tracking requires camera calibration and a luminous marker;
the marker itself must be able to follow the tool path and retrieve its position and
orientation in space; the data must be processed in the shortest time possible; also, it
must be optimized to interface with an industrial robot, i.e, limited to the movements
the machine has available. These features, the design and implementation details that
make this a feasible industrial system, are presented in the next sections.

4.2 Camera and Stereo Calibration

As depicted in Chapter 3, camera calibration is a vastly researched subject. There
are many available tools (software libraries) that implement the required routines that

47

4. MOTION IMITATION FRAMEWORK

estimate the camera model parameters. Most of them are based on a list of points
retrieved from the checker-board patterns and implement either the Tsai calibration
method [61] or the more recent Zhang’s method [62].

The sincrovision, however, poses a problem to the use of checker-board patterns.
Since the lenses’ aperture is shut to its maximum, it is very hard to observe the pattern.
Even if the exposure is maximized, the images are too dark to be processed. It would
require intense adaptive thresholds or added hardware apparatus to use light flashes.

A new method to retrieve 2D ↔ 3D correspondences has been developed. First, the
sincrovision is expected to be used with intense synchronous markers. So, the options
are to build a checker-board with as much LEDs as there would be square corners in a
printed pattern or to show a single LED at different known positions. Additionally, 3D
calibration methods (recall the review on 0/1/2/3D calibration techniques presented in
Chapter 3, section 3.3.3) are known to be very efficient but are sometimes disregarded
since they require more apparatus and precisely prepared setup. To overcome this limi-
tation the proposed technique uses the industrial manipulator to calibrate the cameras
and the stereo. The robot can move in 3D, can hold the synchronous LED required by
sincrovision and has high precision.

With this approach, the LED attached to the robot’s end-effector describes a path
with well known way-points. At these control points, the LED is lit and captured
by the cameras. The world position is given by the robot controller and the LED is
captured simultaneously by the cameras so building the 2D ↔ 3D correspondence list
is straightforward. The robot has the ability to move and draw any shape (for instance,
a cube), which simulates the use of two or three orthogonally positioned checker-board
patterns. In addiction, the robot can move inside that cube which means the calibration
method can have point/pixel correspondences from all over the workspace without extra
hardware.

Figure 4.1(a) shows an industrial robot performing the calibration path. It moves
in a grid pattern and the LED is lit at a regular interval. Figure 4.1(b) has the final
calibration grid, after the robot has moved in the entire workspace. The grid density
is easily adjusted to have extra points for a more robust calibration or to have few and
take less time.

With the pixel–world-point correspondence list, the estimation method proposed
by Faugeras [63] can be followed: it is a linear estimation of the camera’s projection

48

4.2 Camera and Stereo Calibration

(a)

A

A

z

x

y

Workspace

(b)

Figure 4.1: (a) Robot Path: The manipulator moves in an incremental path and the
LEDs are turned ON at regular intervals (red dots). Care is taken that all positions are
visible to both cameras. (b) The final calibration grid: After the robot has moved
around the entire workspace, the result is a calibration grid with 3D points with have also
been captured by both cameras. This data can be used for camera and stereo calibration
and is already described in robot coordinates.

49

4. MOTION IMITATION FRAMEWORK

matrix. Recall the camera model and the perspective projection equation (equ.3.16):

pm = PM , where P = AFHW

The set of n points in space, Mi = (Xi, Yi, Zi, 1), captured by a pair of cameras
generates a set of n conjugate pairs of pixels (pi,p′i) (corresponding pixels). For each
camera we have n 2D ↔ 3D mappings pi = (ui, vi) ↔ Mi = (Xi, Yi, Zi, 1) which,
according to equ. 3.16, originate:

Xi Yi Zi 1 0 0 0 0 uiXi uiYi uiZi ui
0 0 0 0 Xi Yi Zi 1 viXi viYi viZi vi
...

...
...

...
...

...
...

...
...

...
...

...
Xn Yn Zn 1 0 0 0 0 unXn unYn unZn un
0 0 0 0 Xn Yn Zn 1 vnXn vnYn vnZn vn

p = 0 (4.1)

where p = [p11, p12, . . . , p34]T and 0 is an 1× 2n null vector.
This system of homogeneous equations Gp = 0 can be solved using linear esti-

mation. The error produced by this procedure is sub-pixel and acceptable for hu-
man hand motion capture. The least squares solution is as usual the singular vector
associated with the smaller singular value of GTG, i.e, the last column of V from
SVD(G) = USV T .

To calibrate the stereo from the known P and P′ matrices, the relation from Equ.
3.19 is used:

F =
[
P′c

]
×P′PT

(
PPT

)−1

This calibration method has the added benefit that cameras and stereo are cali-
brated in the robot’s coordinate frame. No additional frame translation and rotation is
needed. When computing a 3D position from the images, the coordinates are directly
used in the robot controller. Also, the manipulator is already supposed to exist, i.e,
is an available asset as it integrates the motion imitation framework. Using it reduces
the cost of having to develop hardware and complex mechanics that could provide a
precise positioning of the 3D pattern.

More so, this calibration technique avoids the major positioning accuracy error on
offline programming of industrial manipulators. These robots execute with great pre-
cision but a mediocre accuracy — see Fig. 4.2, from [64]. Precision, or repeatability,

50

4.3 Motion Tracking

describes how close the robot can move back to a given position. Usually this indi-
cator is provided by manufacturers and can be lower than 0.1mm. Accuracy defines
the ability to move to some exact 3D coordinates in space. Manipulators can move to
the same position over and over again with great precision yet they may still fail the
desired position by a considerable amount. Usually manufacturers do not provide this
indicator. Robot manufacturer ABB claims that their own robots may have a volumet-
ric error of about 5 to 15 mm [65]. For offline programming solutions (where absolute
positions/coordinates are used to generate programs) this feature may jeopardize the
task performance as the robot moves to the simulated positions but adds a considerable
error. By the proposed method for camera calibration, the camera model inherits the
error pattern of the robot positioning. Thereafter, the offline programming based on
coordinates read from camera images significantly reduces this interference from the
robot inaccuracy.

Accuracy and Calibration Issues of Industrial Manipulators 133

Poor Accuracy
Poor Repeatability

Good Accuracy
Poor Repeatability

Poor Accuracy
Good Repeatability

Good Accuracy
Good Repeatability

Poor Accuracy
Poor Repeatability

Good Accuracy
Poor Repeatability

Poor Accuracy
Good Repeatability

Good Accuracy
Good Repeatability

3. Calibration Overview
There has been a lot of work on the subject of improving the positioning accuracy of industrial
robot manipulators ((Hayati & Mirmirani, 1985), (Mooring & Pack, 1987), (Driels & Swaze, 1994)
and (Roth et al., 1987) among many others). Most of the authors considered the main source of
errors to be only geometric, with the exception of (Chen at al., 1987) and Whitney et al. (Whitney
et al., 1986), who included explicitly non-geometric errors as well. Although some introduced
their own models (Whitney et al., 1986), the majority used models that are universally valid and
widely accepted, such as the Denavit-Hartenberg or modified versions of it ((Khalil et al., 1991),
(Driels, 1993) and (Harb & Burdekin, 1994)). Much previous work is based only on computer
simulations, but some validation work used real measurements ((Chen at al., 1987), (Whitney et
al., 1986), (Stone, 1987) (Stanton & Parker, 1992) (Khalil et al., 1991),(Driels, 1993),(Driels & Pathre,
1994) and (Abderrahim & Whittaker, 2000)), and very recently there is even commercial
application dedicated to robot calibration ((Renders, 2006) and (Fixel, 2006)). Stone (Stone, 1987)
developed a model and also a novel general identification method to estimate his S-model
parameters, based on the circle-point analysis (Mooring et al., 1991) which lead to what he
designated as joint features. These joint features are the plane of rotation, centre of rotation and radius
of rotation. If required, the D-H parameters can then be extracted from the S model. Stone's
motivation for developing his model was because “the D-H Model is not amenable to direct
identification” (Stone, 1987). However, with small modification, the D-H Model has been used
successfully for calibration in several of the papers referred to above. Although the S-Model can
be identified using the method proposed in (Stone, 1987), it still suffers the same disproportion as
the D-H model when consecutive joint axes are parallel or near parallel. The real problem here is
that the control software of existing industrial manipulator does not use the S-model parameters.
The physically explicit significance of the D-H model and its widespread use in robot control
software make it very desirable to develop identification methods that obtains the D-H
parameters directly, whilst at the same time is able to deal with the case where consecutive joint
axes are parallel. Our procedure proposed in (Abderrahim & Whittaker, 2000) makes use of the

Figure 4.2: Precision/Repeatability vs Accuracy - Interpretation for the concepts
of repeatability and accuracy. Industrial manipulators report to the 3rd example: they
provide a good repeatability but volumetric accuracy is less feasible.

4.3 Motion Tracking

4.3.1 6-DoF Marker

This section describes a marker — hereafter referred to as luminous marker, icosahedron
or simply marker — for a complete 6D (six degrees of freedom: position, (x, y, z), and
orientation, (φ, θ, ψ)) motion tracking.

As pointed earlier, the major concerns on the development of this tracking tool
were to achieve a device that provides an accurate measure of the pose of the human
hand/tool while maintaining costs low, reduced processing times and low impact on
the process and on operator movements.

51

4. MOTION IMITATION FRAMEWORK

The description section that follows provides details on the choosing of the size and
geometry of the marker. The later sections dissect the modus operandi, with an in-
depth analysis of the tracking scheme — pose estimation and marker↔tool calibration.
Finally, the limitations of this new input device are discussed.

4.3.1.1 Description: Hardware and Properties

The sincrovision process demands high intensity luminous markers to be turned on
simultaneously with the camera acquisition window. For that it was chosen to build
a marker based on high-power/high-brightness LEDs. These devices are simple to
command and offer high versatility.

In order to capture full 3-D orientation, at least three non-collinear LEDs are
needed. Nevertheless, such a scarce number of lights would fail to provide a com-
plete freedom of movements to the end-user: all of those individual markers should
have to be visible at all times on both cameras otherwise pose estimation would fail
due to occlusions. Increasing the number of cameras around the working area can
fight back this problem but at a greater financial cost. In similar approaches ([44],
[41],[46],[47] — already discussed in chapter 2) researchers used infra-red LEDs; they
could be distinguished from one another through the distance as they were placed at
different lengths from each other. As the number of individual LEDs increase to allow
a full 360◦ cover on the 3 axis, playing with inter-LED distance is harder as it is detec-
tion of the lights on the image. On this line of reasoning, the proposed marker is based
on 20 multiple visible-light (RGB) LEDs. These are distributed in a special manner,
based on the shape of an icosahedron — see Fig. 4.3 — , as it showed to provide an
interesting set of properties that aid in constructive and algorithmic aspects:

• Placing the LEDs on the centre of each face covers the intended full 360 degrees
rotations in every axis; there are always enough visible lights on both cameras so
that it is possible to compute orientation and position. The number of cameras
can then be kept to a minimum (for stereoscopy) of two.

• The dodecahedron/icosahedron are regular (Platonic) polyhedra: all vertices/face
centres lie on a sphere — Fig. 4.4 (b). Knowing the position of each vertex one
can find the centre of the marker using sphere fitting (this is the circumsphere
or circumscribed sphere). This property guarantees the symmetry of the LED

52

4.3 Motion Tracking

(a) (b)

(c) (d)

Figure 4.3: (a) Polyhedron 3D view: A 3D representation of an icosahedron. (b)
CAD: the CAD model of the designed marker. (c) Construction Details: details on the
developed marker; cabling, electronics and the LEDs are visible; the top hatch is held by
screws to allow access to the interior. (d) Lights ON: real marker with LEDs in ON state.
The camera which took the shot was not synchronized; also, the typical exposure time used
in a daily use camera makes the LEDs very bright and the sensor reaches saturation. Is it
hard to distinguish red from yellow or red from purple, even though the colours are quite
different at naked eye. Moreover, they are perfectly distinguishable from the computational
point of view.

53

4. MOTION IMITATION FRAMEWORK

positioning. The icosahedron dual polyhedron, the dodecahedron, has vertices
touching the centre of icosahedron faces so it is equivalent to work with one or
the other — Fig. 4.4 (a).

While the icosahedron shape provides housing for the hardware, the equations of
the dodecahedron vertices are easier to work with so the properties of these two
polyhedra are used simultaneously.

• The spherical symmetry is useful for algorithmic purposes as will be described
ahead. Furthermore, it completely decouples the estimation of position and ori-
entation of the marker; the translation is given by the sphere centre which is
invariant under any rotation.

• Regarding construction issues, this polygon makes a balanced object that easily
attaches to an industrial tool — Fig. 4.5 (a) shows the marker attached to an
industrial spray-paint gun for coating applications; Fig. 4.5 (b) shows the marker
attached to industrial suction cups for bending applications.

Also, the empty space in its interior makes room for electronics, LEDs’ supports
and cabling. The polyhedron faces, unlike a sphere shaped surface, are ideal to
pin a PCB holding one LED.

• Once the LEDs are found in the vertices of the dodecahedron, it is possible to see
them on a grid/net pattern: the dodecahedron schlegel diagram — Fig. 4.4 (c).
From this planar graph, one can colour de vertices using only 5 distinct colours
and obtain unique sets: a vertex and its 3 neighbours are unique throughout the
whole marker. This property is used to estimate orientation as detailed ahead.

Regarding electronics, each icosahedron face holds a triangular PCB with an RGB
LED on its centre. Connections of the semi-conductor are standard to achieve the
required 5 different colours: a series resistor on one input pin (primary colour) or in
two (secondary colour), a supply capacitor to support the brief turn-on current surge
and an electronic switch to enable the synchronized acquisition. Since the LEDs are
ON only by a few milliseconds, no heat dissipation is needed reducing the required
hardware and costs. The whole electronic apparatus (Fig. 4.6) is minimal and low-
cost: it needs a synchronization device to generate the clock signal (a microprocessor

54

4.3 Motion Tracking

C4

(a) (b)

(c)

Figure 4.4: (a) Dodecahedron: The dodecahedron inscribed in an icosahedron. The
marker outline follows the icosahedron shape while the LEDs are positioned on the vertices
of a dodecahedron that touch the face centres of the former. (b) Circumscribed sphere:
the dodecahedron circumscribed sphere. It shows how the polyhedron vertices lie on a
spherical surface. (c) Schlegel diagram: a planar representation of the dodecahedron
where no edges cross each other — called a schlegel diagram. It is useful for accessing the
distribution of the LEDs are understand their relative positioning

55

4. MOTION IMITATION FRAMEWORK

(a)

(b)

Figure 4.5: (a) Spray painting gun: The marker is attached to an industrial spray
gun. The balanced/symmetric shape does not change the handling of the tool neither does
it hinder the line of view of the operator (b) Bending suction cups: two icosahedron
shaped markers are attached to each side of an industrial tool bearing suction cups. This
is intended to be used in bending operations. Since the metal sheets may easily cause
occlusion of one marker, two are used to enforce a continuous tracking no matter the
handling pose.

56

4.3 Motion Tracking

for instance), cabling to deliver the triggers to both cameras and cabling the marker
to deliver both the control signal and power; inside the marker itself, there are small
PCBs that hold the LEDs and discrete electronics for a total of 20 replicas that make
all the lights around the icosahedron.

Also, due to the very short actuation period, the diodes are driven with well over
their rated current. This produces the required powerful luminous flash, that can be
captured by the camera regardless of the almost completely closed aperture of the
lenses. This avoids the use of expensive ultra bright/power LEDs since cheaper high
brightness ones fit the requirements using the short over current burst. Moreover, the
smaller power ratings smaller semiconductors can be used, keeping the whole marker
also small.

4.3.1.2 Detection

The starting point for the tracking system is a pair of synchronized images. The
sincrovision technique (recall section 3.3.4) provides very clean shots of the marker.
Fig. 4.7 shows a real scene captured by a hand held camera and the two synchronous
frames from the stereo pair.

4.3.1.3 Per-Image Analisys

The first stage of detection is based on a global threshold that takes in concern the
characteristics of each LED for a fast and optimized algorithm. This is done over RGB
images where each pixel p with image coordinates (u, v) is composed by red, green and
blue lights:

F (u, v) =
[
p.red p.green p.blue

]
(4.2)

To extract luminous clusters from the dark background despite the colour, the
RGB model is not the most adequate so the evaluation is done over the HSV/HSL
(hue, saturation, value/lightness) model. This is a cylindrical representation of the
colour space (Fig. 4.8 (a))

whose hue component will come very handy in the cluster colour analysis further
ahead; for now, the interest is on the value/ lightness component — also called bright-

57

4. MOTION IMITATION FRAMEWORK

RgRr Rb

+V

Trigger

+V

RGB LED
CV

(a)

Synchronization Device
(µC)

Marker

Camera 2

Camera 1
Camera 1 Trigger

(2-wire)

Camera 2 Trigger
(2-wire)

Marker Trigger
(3-wire)

(b)

Figure 4.6: (a) Schematic and Components: the LED drivers for the synchronous
operation are based on the most simple electronics; each colour has a series resistor in
order to optimize each component individually. The mosfet does the triggering. (b):
Connections and Cabling Diagram: the required connections and cabling are minimal.
Each camera receives a pair with trigger+reference; the marker, in addiction to those, also
receives power. The complete apparatus is minimal.

58

4.3 Motion Tracking

(a)

(b) (c)

Figure 4.7: (a) Scene captured by a hand-held camera: a normal photo of an opera-
tor holding the worktool with the luminous marker. (b,c): Stereo sincrovision Capture:
the same scene of (a) captured by a pair of industrial cameras with the synchronization
effect.

59

4. MOTION IMITATION FRAMEWORK

(a)

R

YG

C

B P

0◦

60◦120◦

180◦

240◦ 300◦

Hue

Chroma

(b)

Figure 4.8: (a) HSV model: Cylindrical geometry of the colour space. The Hue com-
ponent is the angular dimension that describes the colour itself; for a given colour, the
value/lightness tells how close it is to white or black. (b) Primary and Secondary
colours in HSV space: The hexagon representation of the HSV space gives a feel of how
close the colours are to each other and how they combine. In order choose a set of different
colours for the proposed marker, the hexagon scheme is used so that the colours are the
most separated as possible. This improves image processing and cluster classification.

60

4.3 Motion Tracking

ness or even intensity, all refer to the same property even though each has a slightly
different formula, which maps colour into a grey-scale representation.

The marker consists of red, green, blue, yellow and purple lights. The most simple
definition of intensity (and respective threshold function) is the average of the three
RGB components:

FGrey(u, v) = 1
3 (R+G+B) ⇒ F(u, v) =

{
0 , if FGrey(u, v) < threshold
F(u, v) , otherwise (4.3)

but this is a poor evaluation when expecting only primary and secondary colours. Each
LED light is composed by only one or two of the components; averaging the three com-
ponents every time makes the intensity estimation lower then the actual value as at
least one of the arguments will be always close to zero. The algorithm starts by thresh-
olding each component then computes brightness from the active ones. This is possible
because there is a priori knowledge from the light sources: the LED drivers are de-
signed to provide strong intensity of a given primary colour; in the case of a secondary
colour, each component intensity is reduced such that the sum of the two intensities is
similar to the primary colour alone. In addiction, this has the effect that the size of all
clusters in the image is fairly the same.

From the thresholded image follows the clustering algorithm. It is based on hor-
izontal sweeps of the image frame: first, horizontal segments are detected; then they
are merged together with segments from the rows below according to their relative
positioning. Both large and small clusters (compared to the expected cluster size) are
disregarded. Finally, the centre of mass of each light is computed.

The threshold and clustering stages are a single shot algorithm, meaning that only
one entire image sweep is required. This reduces processing time keeping the whole
tracking real-time capable.

After the cluster detecting comes the colour classification. Again, the HSV model is
used. For reasons made clear further ahead, a total of five different colours are needed
for a perfect unambiguous identification and tracking of the icosahedron.

The colour information is kept on the hue component of the HSV system which is
an angular dimension. For an easy classification and distinction of the required five
colours, these are chosen having the most hue distance from each other. Red, yellow,

61

4. MOTION IMITATION FRAMEWORK

green, cyan, blue and purple and separated by at least 60◦ from one another — Fig. 4.8
(b). After some tests, cyan was dropped as it was harder to get using the RGB LED; the
green/cyan and cyan/blue pairs caused ambiguous detections so the five icosahedron
colours were finally set to red, yellow, green, blue and purple.

The HSV is then divided in 6 classification areas as seen in Fig. 4.9.

R

YG

B P

Rh max

Rh min

Yh max

Yh minGh max

Gh min

Bh max

Bh min

Ph max

Ph min

Shaded gray areas indicate that
colour classification fails, i.e
no colour is assigned to the cluster

Figure 4.9: Colour classification based on HSV - The hexagon of HSV colour model
is divided into 6 classification zones: one for each colour plus the zones of indetermina-
tion(gray).

For each cluster in the image, the hue quantity was computed as an average of each
pixel hue, H, defined as:

α = 1
2 (2R−G−B)

β =
√

3
2 (G−B)

H = atan2 (β, α)

(4.4)

62

4.3 Motion Tracking

R

YG

C

B P

0◦

60◦120◦

180◦

240◦ 300◦

(a) (b)

Figure 4.10: (a) HSV Calibration: Example of calibration of the colour classification
algorithm. Samples are collected for each colour and the boundaries are set accordingly.
This is a per-camera analysis. Remark: only the hue quantity is evaluated so all the
samples are drawn in the maximum-chroma circle. (b) Cluster Detection: a zoomed
image captured by one camera of a stereo configuration. The LEDs are detected and
identified according to the average hue value of all pixels.

Equation 4.4 is a simplified and hence faster computation of hue, ignoring the
peculiarities of the hexagon vs circle shaped HSL model (RGB cube projects into an
hexagon HSV space; the formula assumes a circular space instead; the error of this
approximation is smaller than 1.2◦ therefore negligible). Since there is a thick margin
to the hue value of each colour, classification is robust to changes in the LEDs output,
or even distortions from light sources pointed towards the marker. Fig. 4.9 shows a
theoretical/perfect division of HSV space. In practice, the classification areas are not
pre-defined but result from a colour calibration process: The colours are shown, each
at a time, to both cameras. The samples are collected from the whole workspace. The
boundaries between classes (hue regions) are then set individually and are different for
each camera — Fig. 4.10(a) shows an example of the calibration of HSV colour classes
for cluster identification; several samples are read from each colour and the limits to
the hue values are set. On (b), the clusters are outlined in a real image.

4.3.1.4 Stereo — cluster matching

Following the detection of individual clusters on each image, the next stage is matching
them over a set of synchronized images from different cameras. For the sake of simplic-

63

4. MOTION IMITATION FRAMEWORK

Table 4.1: Cluster data after processing images from both cameras: The data is
about the colour and the centre of mass of each visible LED. The stereo will have to pick
clusters from both lists and match them.

Clusters

Camera 1 Camera 2

Colour
Position

Colour
Position

u v u v

Red
448 462

Red
321 422

Green
430 464

Green
301 425

475 463

Blue
455 481

Blue
330 441

Yellow
474 481

Yellow
299 446

428 484

Purple 460 451 Purple 329 411
444 494 316 455

ity, the fundamentals of this step are presented for a two-camera framework; N-camera
setups are processed in equal terms, considering two cameras at a time.

The starting point is a colour-ordered list of clusters from each image — an example
is shown in Table 4.1.

The position entry refers to the centre of mass of the cluster. The stereo fundamental
matrix, the one that defines the relationship of the two cameras to the 3D world, plays
now its role: the relationship

l′ = Fp

defines the epipolar line; for a given pixel p in camera 1, the epipolar line on camera’s
2 image holds the possible corresponding pixels, p′. Figure 4.11(c-right) shows three
epipolar lines for a red, green and blue led on (c-left); with a precise calibration of
the stereo setup, the epipolar lines go through the matching pixel on the other image.
Image (a) and (b) are fullsize examples of two camera view.

The matching algorithm picks every cluster (centre) on camera 1 and computes the

64

4.3 Motion Tracking

(a)

(b)

G

R

B

G’

R’

B’

(c)

Figure 4.11: (a) Camera 1 Image with clusters: an image from camera 1 with a set of
clusters. (b) Camera 2 Image with Epipolar Lines: the red, green and blue lines (not
straight due to barrel distortion) are epipolar lines from some clusters in image (a). (c)
Zoom on Epipolar Lines and Cluster Correspondence:the highlighted and labelled
red, green and blue clusters — on the left, zoomed from (a) — need a matching pair in the
other camera image so that 2D ↔ 3D is possible. Finding the correspondence is achieve
by colour and the geometric constraint given by the epipolar lines — on the right, zoomed
from (b).

65

4. MOTION IMITATION FRAMEWORK

corresponding epipolar, e′; then, if any cluster of the same colour, on camera 2, lies at
a parametrized distance to the epipolar, it is considered a good match.

It is possible, for some specific icosahedron poses, that two clusters of the same
colour fall close to the epipolar:

R
R’

R”

Figure 4.12: Multiple matches - In some cases, both the colour and the epipolar
constraints fail to deliver an unique match of cluster pairs. In this example, the epipolar
line of the red cluster on the left goes near two red clusters in the right image. Both
hypothesis are considered.

In this case, more than one match is registered for a given cluster. At this point, it
is not possible to reject either in favour of the other so both hypothesis are considered,
i.e, (R,R′) and (R,R′′). On the next section, while estimating the marker position,
these ambiguities are solved.

Still on Fig. 4.12, the R′′ cluster is actually a yellow one. In such a narrow point of
view, the HSV analysis misclassified it as being red. Even with the epipolar uncertainty
and the misclassification, the pose estimation algorithms succeeds and proves robust to
worst case scenarios of the marker detection.

4.3.1.5 Estimating Position

The 3-dof related to the marker translation are computed taking advantage of the
spherical positioning of the LEDs. Since the 3D coordinates of the matched clusters
are already available, the world points are used to estimate the sphere shell in which

66

4.3 Motion Tracking

they lie — Fig. 4.13 shows a 3D scene with the luminous markers and the sphere shell
in which they lie at.

Figure 4.13: 3D Scene with LEDs and a Sphere - To estimate the whole marker
position each individual LEDs contributes for a sphere fitting algorithm. The resulting
sphere centre is used as the marker position in 3D space. The more LEDs are visible the
more robust the estimation gets.

There are two main methods of data fitting to sphere surfaces, namely the geometric
[66] and the algebraic fitting [67].

The former uses the most ”obvious” cost function; from the sphere equation 4.5

(xi − xc)2 + (yi − yc)2 + (zi − zc)2 = r2 (4.5)

it minimizes the orthogonal distance, di, from each point to the sphere shell 4.6.

F (xc, yc, zc, R) =
∑
i

d2
i (4.6)

The vector [xc, yc, zc]T denotes the centre of the sphere and R its radius. Expanding
4.6 since

di = ri −R , ri =
√

(xi − cx)2 + (yi − cy)2 + (zi − cz)2

67

4. MOTION IMITATION FRAMEWORK

it resolves into a non-linear least squares minimization, 4.7, which has no closed
form solution.

min
n∑
i=1

(
(xi − xc)2 + (yi − yc)2 + (zi − zc)2 − r2

)2
(4.7)

Methods for solving the geometric fitting all consist in iterative algorithms, with
Levenberg-Marquardt optimization being one of the most common solutions. Since the
goal is to keep processing time to a minimum, this solution has been avoided; iterative
algorithms may take large amounts of time to converge which is also dependent of the
initial estimate. Failing to converge would also compromise the output of the tracking
system. Furthermore, the position estimation will make use of the sphere fitting at
least once per observation. It may be called upon several times to eliminate stereo
ambiguities, as explained ahead.

For these reasons, the algebraic approach is preferred. Starting over from the sphere
equation 4.5, the expansion of the squared terms retrieves:

−2xixc − 2yiyc − 2zizc + x2
c + y2

c + z2
c − r2 + x2

i + y2
i + z2

i = 0

With variable substitution

κ = xc
2 + yc

2 + zc
2 − r2

and for n sample points, it results in (matrix notation):

 1 2x1 2y1 2z1
...

...
...

...
1 2xn 2yn 2zn

︸ ︷︷ ︸

A

−κ
xc
yc
zc

︸ ︷︷ ︸

θ

=

 x2
1 + y2

1 + z2
1

...
x2
n + y2

n + z2
n

︸ ︷︷ ︸

b

(4.8)

Equation 4.8 now solves directly using linear least squares — Eq. 4.9.

θ̂ =
(
ATA

)−1
ATb (4.9)

This method, with a closed form solution with basic matrix algebra, suits a real
time implementation of the movement tracking.

As for the position estimation itself, the collected data from the 3D analysis of the
stereo pairs is organized in a list as depicted on Table 4.2 (a).

68

4.3 Motion Tracking

Table 4.2: Marker Position Estimation: an example of using the sphere fitting al-
gorithm to eradicate bad matches. At each step, a different pair is tested; at the end,
all possible combinations are used and each outputs an estimation for the sphere radius.
The known true value is 40mm so the 3rd. step used all the good matches. The other
possibilities are eliminated.

(a) Sphere Fitting
Step 1

a b

(R1, R
′
1) -

(R2, R
′
2) -

(G1, G
′
1) (G1, G

′′
1)

(B1, B
′
1) -

(Y1, Y
′

1) (Y1, Y
′′

1)
(P1, P

′
1) -

(P2, P
′
2) -

(b) Sphere Fitting
Step 2

a b

(R1, R
′
1) -

(R2, R
′
2) -

(G1, G
′
1) (G1, G

′′
1)

(B1, B
′
1) -

(Y1, Y
′

1) (Y1, Y
′′

1)
(P1, P

′
1) -

(P2, P
′
2) -

(c) Sphere Fitting
Step 3

a b

(R1, R
′
1) -

(R2, R
′
2) -

(G1, G
′
1) (G1, G

′′
1)

(B1, B
′
1) -

(Y1, Y
′

1) (Y1, Y
′′

1)
(P1, P

′
1) -

(P2, P
′
2) -

(d) Sphere Fitting
Step 4

a b

(R1, R
′
1) -

(R2, R
′
2) -

(G1, G
′
1) (G1, G

′′
1)

(B1, B
′
1) -

(Y1, Y
′

1) (Y1, Y
′′

1)
(P1, P

′
1) -

(P2, P
′
2) -

(e) Sphere Fitting Result

Step No. Sphere Radius mm

1 74.36
2 71.98
3 39.60
4 78.55

69

4. MOTION IMITATION FRAMEWORK

It’s a list containing all matched clusters, their respective colours and the ambiguous
pairs.

The fast computational nature of the sphere fitting allows, at this point, to investi-
gate and eradicate the matching ambiguities. The algorithm will match every possible
combination of the paired clusters. Then, even though the sphere radius is known a
priori (a constructive measure), its estimation from the sphere fitting algorithm sheds
light on the quality of the clusters: if the estimated radius largely deviates from the
known measure, it indicates that the 3D point set is ill; one or more points do not in-
tegrate the expected sphere shell — Fig. 4.14(a) shows a good fitting whilst on (b) the
two outliers ruin the estimation; the radius is larger and indicates that some clusters
were wrongly paired.

The algorithm then moves on to a different combination, using other matching can-
didate: this steps are shown on Table 4.2. If no configuration is considered good, then
one 3D point is dropped and the previous search is done all over again. With, at most,
twenty visible LEDs and two ambiguities (constructively it is not likely that more than
2 LEDs are aligned on the same epipolar), this iterative and recursive fitting takes no
longer then a few milliseconds; typically, it runs below the millisecond mark.

Remark 1: in an offline implementation, or with supervised operation, the geometric
fitting can be used as a final step to further enhance precision. After the correct set
of matched clusters is found, the iterative optimization can be performed using the
algebraic fitting estimation as a good initial guess. Despite this, it is not guaranteed
that the non-linear method will converge.

As presented by Sung et. al [68], the orthogonal method can provide better es-
timates for increasingly noisy data. For the most basic tracking framework, with a
minimum of two cameras, it is expected that the visible LEDs lie on the same side of
the sphere. This tends to increase the bias of the centre estimation and the geometric
fitting can prove a valuable tool in this scenario. Though, with a more complete setup
(that may guarantee LED visibility all around the marker) the algebraic fitting do not
fall short to the other method; the error improvement of the geometric fitting can be
neglected in this case.

70

4.3 Motion Tracking

(a)

(b)

Figure 4.14: (a) Good Fitting: a sphere fits to the LEDs. There are two outliers,
one red above the sphere and a purple below it. This is the correct output, ignoring the
outliers. (b) The Sphere Fitting Output Using all available LEDs: if one or mode
LEDs are take into consideration because a bad match occurred in the stereo stage, the
sphere fitting retrieves an oversized or undersized sphere. Since the true radius is known,
if the estimation is different than there are bad paired clusters that must be eliminated.
The algorithm gradually eliminates outliers until a good fitting is achieved.

71

4. MOTION IMITATION FRAMEWORK

Remark 2: With proper placement of the minimum of two cameras, the marker
guarantees, constructively, that at least 4 LEDs are visible are all the times. Also,
these 4 lights are always non coplanar, which avoids the singularity (3 points alone
are coplanar) of the fitting algorithm. Obviously, if due to unexpected behaviour less
LEDs are visible then the position estimation is skipped; the pose corresponding to
that particular time slot is filled by averaging its neighbours as described in the data
filtering section further ahead.

4.3.1.6 Estimating Orientation

After retrieving the translation vector, the missing 3-dof with respect to angular dis-
placement are computed from the known well-matched 3D points.

Using again the advantages of the dodecahedron geometry, it is possible to build a
list of the LEDs’ coordinates in the 3D world. It is important to note that the actual
position of the polyhedron where these coordinates are read does not need to be known.
It is sufficient to know that there exists one dodecahedron pose to which a set of LED
coordinates maps. For instance, there is a coordinate frame (or orientation) at which
the dodecahedron vertices lie at:

s (±1,±1,±1)

s (0,±1/ϕ,±ϕ)

s (±1/ϕ,±ϕ, 0)

s (±ϕ, 0,±1/ϕ)

(4.10)

where s is a scale factor and ϕ =
(
1 +
√

5
)/

2 is the so called golden ratio (if a and b

are in golden ration, and a > b, then ϕ = a+b
a = a

b).
For the rotation estimation algorithm, this set of known 3D positions is designated

by P , where Pi is a 3D vector [xi, yi, zi]T with the coordinates of dodecahedron vertex
i. P is considered the set of stand-by positions.

The rotation estimation is then achieved in two steps:

1. Finding which LED is which, according to its colour and neighbours; outputs a
correspondence list between the observed position and the stand-by pair;

2. Compute the optimal rotation matrix that transforms the stand-by positions into
the current ones.

72

4.3 Motion Tracking

Into the first step: the dodecahedron can be drawn using a schlegel diagram— recall
Fig. 4.4 (c). A schlegel diagram is a planar graph that consists of a projection of Rn

into Rn−1 which, in this case, projects the 3D dodecahedron in a 2D equivalent (where
lines never cross). The graph’s lines and nodes represent the polyhedron vertices and
edges, respectively.

From this representation comes the interest and usefulness of having the vertices
coloured by five distinct colours: there are twenty vertices with three edges connected
to each; If no vertex has a neighbour of the same colour, then there are exactly twenty
possible arrangements of colours that take one LED plus its three neighbours (hereafter
such a set is also called a star or Y) — 5 possible colours for centre × 4 possible
colours that will not appear in the neighbours; i.e, every star features all but one
colour. Using the graph, these sets can be distributed such that the orientation of the
sphere is unequivocally known given one complete star — Fig. 4.15(a). Fig. 4.15(b)
shows the detection of the star/Y in a real image. There are many possible solutions to
distribute the twenty Ys; the chosen configuration holds the sequence Red-Green-Blue-
Yellow-Purple clockwise within each pentagon but it has no influence over performance
(it may be more intuitive while assembling the marker).

The stand-by position list is augmented with the neighbour information as shown
in Table 4.3.

For every 3D point list from a stereo image pair, a distance matrix defined. It states
whether or not a point is neighbour to the others. This step assumes that, by design,
the distance between LEDs is known.

With the neighbour/distance matrix, is it possible to search for a complete start.
The marker geometry and camera placement guarantee that such a set of four LEDs is
always visible, one at least. If that start can be found, that it can be compared to the
stand-by list. Once that vertex and the three neighbours are known (the correspondence
to the original position), a recursive analysis of all the other visible lights in the image
retrieves the complete point correspondence list. On one hand there are the stand-by
positions and, from the observations, there are a set, Q, of measured positions. It is
important to note that this comparison can only take place after removing the matching
ambiguities on the previous step.

The second part of the orientation estimation algorithm lies on the computation of
the optimal rotation matrix between the two sets, P and Q, of paired 3D points — the

73

4. MOTION IMITATION FRAMEWORK

Unique ”Y”

With 5 colours there are
20 unique sets

(a)

(b)

Figure 4.15: (a) Coloured Dodecahedron Graph:The schlgel diagram provides an
intuitive way to view the distribution of LEDs around the dodecahedron. Using 5 colours,
it is possible to colour the vertices with a pattern that allows a quick identification of the
marker orientation. As soon as a star/Y is completely visible in the images, orientation is
known. (b) Y Detection: Detection of a complete star/Y in a real image capturing the
luminous marker. The Y is identified and it is enough to know the full orientation of the
marker in world coordinates

74

4.3 Motion Tracking

Table 4.3: Dodecahedron Vertices: Coordinates, Colour and Neighbours

Dodecahedron Vertices

No. Colour*
Coordinates Missing

Colour
Neighbours No.

x y z Ngb 1 Ngb 2 Ngb 3

1 1 -0.38197 0.525731 0.850651 4 2 5 8
2 2 0.381966 0.525731 0.850651 5 1 3 9
3 3 0.618034 -0.20081 0.850651 1 2 4 10
4 4 3.28E-08 -0.64984 0.850651 2 3 5 6
5 5 -0.61803 -0.20081 0.850651 3 1 4 7
6 1 -2.29E-08 -1.05146 0.200811 5 4 12 13
7 2 -1 -0.32492 0.200811 1 5 13 14
8 3 -0.61803 0.850651 0.200812 2 1 14 15
9 4 0.618034 0.850651 0.200811 3 2 11 15
10 5 1 -0.32492 0.200811 4 3 11 12
11 1 1 0.32492 -0.20081 2 9 10 18
12 2 0.618034 -0.85065 -0.20081 3 6 10 19
13 3 -0.61803 -0.85065 -0.20081 4 6 7 20
14 4 -1 0.32492 -0.20081 5 7 8 16
15 5 2.29E-08 1.051462 -0.20081 1 8 9 17
16 1 -0.61803 0.200812 -0.85065 3 14 17 20
17 2 -3.28E-08 0.649839 -0.85065 4 15 16 18
18 3 0.618034 0.200812 -0.85065 5 11 17 19
19 4 0.381966 -0.52573 -0.85065 1 12 18 20
20 5 -0.38197 -0.52573 -0.85065 2 13 16 19

*Colours: 1-Red; 2-Green; 3-Blue; 4-Yellow; 5-Purple

75

4. MOTION IMITATION FRAMEWORK

nth vector in Q stores the current world position of the nth stand-by LED in P .

The kabsch algorithm [69] provides a mean to solve this problem. This method
finds the rotation matrix that optimally describes (in a root-mean-squared-error sense)
the rotation from two paired 3D point lists:

1. P and Q must have origin-centred vectors so the first step is subtracting both
sets their respective centroid.

2. Compute the covariance matrix A defined as: A = P TQ

3. Compute the singular value decomposition of A:

A = USV T

and the optimal rotation matrix W ∗ comes from :

d = sign(det(V UT)) → W ∗ = V

1 0 0
0 1 0
0 0 d

UT (4.11)

(The auxiliary parameter d is used to insure a right handed coordinated system.)

At this point we have the full (6-dof) characterization of the movement of the
marker, with both position (3-dof) and orientation (3-dof).

4.3.1.7 Limitations

The icosahedron shaped marker provides the most complete movement tracking, with
full 6-DoF capture of the human operator. Most of the properties of this shape have
proved very useful and effective regarding handling and algorithms. Even so, there are
some known limitations:

• The smaller and most common hi-power LEDs, that can be driven bright enough
to get captured using sincrovision, are around 3 to 5 mm in size — side of a
square shaped LED. This restricts the minimum size of the marker (radius) at
about 30mm. This restriction is required in order to prevent light superposition
— in an undersized marker the lights get mixed up.

76

4.3 Motion Tracking

• The sphere fitting algorithm behaves well with observations from all around

the full sphere shell. This means that cameras should be placed on two dif-

ferent/opposing sides for optimal performance. This way, the collected 3D points

are balanced throughout the spherical surface. A single pair of cameras provides

measures from just one side, which causes individual LED noise to have a greater

effect on the centre estimation. This happens because the measure along the

depth axis of the stereo is where the error is larger so the centre estimation tends

to have greater variance and bias in that direction.

• The most cheap arrangement, with the minimum of two cameras, has the com-

bined disadvantages of the previous two statements. On one hand it greatly

influences the size of the marker: even though a proper choosing of lenses may

provide a complete workspace coverage, the stereo precision is limited to how

much the cameras can be placed apart; the depth precision can only be improved

with more cameras rather than with better ones (more resolution). One of the

must crucial and laborious tasks is to achieve a perfect trade-off between number

of cameras, tracking precision and marker size that can satisfy the demanded

system precision, work volume, shop-floor restrictions for camera instalment and

the size/weight of the marker that will be attached to the operator’s tool.

• The further the number of cameras is reduced, the more susceptible the system

is to occlusions. The tracking algorithms work for a minimum of 4 visible LEDs;

while the framework attempts to be the less intrusive possible in the process, the

operator still needs to be cautious not to stand in-between marker and cameras.

• The synchronization process requires cabling. Even though some industrial tools

are active (actively powered, electrically or by means of compressed air for in-

stance) as in painting, welding, etc, some processes are passive (grinding, polish-

ing, etc); in the case of active tools, the extra marker cabling may be an acceptable

overhead while in passive processes it may present itself as an extra apparatus

that the operator may have to learn how to cope with.

77

4. MOTION IMITATION FRAMEWORK

4.4 Interfacing an Industrial Manipulator

The tracking subsystem provides, in short, a set of time-stamped world coordinates.
Due to the camera calibration process presented earlier, the coordinates are already
referenced to the robot’s base frame which simplifies the interface process.

Nevertheless, there is still much to an operators’ task beyond the pure movement.
The most critical point in order to achieve a perfectly timed mimic is the interface with
peripherals. Capturing the wrist pose can be complemented with reading the actuation
of the main control signals of the process such as a blowtorch on/off, the spray gun
trigger, the suction cup enable/disable, etc. These main interfaces are synchronously
captured and only then can the robot perform a timely imitation.

The developed synchronization device outputs the camera and marker triggers (syn-
chronous signals) and is also able to keep the same synchronization across the periph-
erals in the industrial cell — Fig. 4.16. Should the operator interact with any of those
commands (asynchronous signals), the action is recorded with a time stamp.

The robot interface then starts from two synchronized lists of human movements
and human-device interfaces, as depicted in the bottom part of Fig. 4.16.

4.4.1 Data Filtering

This section deals with data smoothing, for both position and orientation. Rather
than using online filters, the focus sets on using all points to create a smoother path.
This means that a given 6D point Mi is filtered using past and future poses Mfilt

i =
f
(
{Mi}i+pi−p

)
, with p being the filter window width,i.e, how many past and future points

are used. Position and orientation are treated separately but both approaches focuses
on delivering a smooth path (either in position or orientation space).

4.4.1.1 Position Smoothing

Position is described by a translation vector kT0. It represents the position of the
marker at time k in coordinates of the robot’s base frame (because cameras where
calibrated using the robot). In order to simplify notation, each translation vector will
now be treated as a position Pk in space. This change of notation is needed so to
maintain a certain degree of standardization in the notation of the smoothing method.

78

4.4 Interfacing an Industrial Manipulator

Position No. Time Stamp Translation Orientation

1 105781087 1T0
1R0

2 105821050 2T0
2R0

3 105861072 3T0
3R0

4 105901112 4T0
4R0

5 105941005 5T0
5R0

6 105981091 6T0
6R0

… … … …

6D Trajectory Points Time Stamp I/O Change

105821301 SprayGun RE

105901889 Conveyor Move RE

105941333 SprayGun FE

106485213 Conveyor Move FE

… … …

Synchronized Data

*

* RE: Rising Edge, FE: Falling Edge

Figure 4.16: Synchronization across images and devices - The synchronization
device delivers the triggers for the cameras and the marker. At the same time it reads the
changes to I/Os. The video tracking outputs a list of 6D positions while the monitoring
of the I/Os provides a synchronous list that can be merged into the trajectory using the
time stamp.

79

4. MOTION IMITATION FRAMEWORK

1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850
−100

−50

0

50

100

150

200

250

300

350

Target Points
Piecewise Linear

Real Spray Painting Path (Dimensions in mm)
 400

(a)

1200

1400

1600

1800

2000

−1000100200300400

550

600

650

700

Target Points
Piecewise Linear

Real Spray Painting Path (Dimensions in mm).

(b)

Figure 4.17: (a) 2D Upper View, (b) 3D View: These plots show a set of captured
marker positions in a real spray painting application. The ”*” represent the spatial position
and the lines are but a linear piecewise approximation for the path. Despite the synchronous
capture, the position estimation is still noisy.

Even though the tracking system is very robust to disturbances, the output path
comes affected by noise. It has roots on the camera sensor, which captures noisy images
despite the sincrovision effect, and on the position estimation algorithm, particularly
when a small number of cameras is used and the marker is only visible from one of
the sides (already discussed in section 4.3.1.5). Figure 4.17 shows an example of a real
trajectory where each position is connected by a line. In order to remove some of the
noise, and achieve an equivalent smoother path, a spline based smoothing is proposed.

Splines are polynomials defined piecewise, i.e, a set of n-degree polynomial func-
tions connected together in a smooth fashion. The motivation for the use of splines
comes from their extensive and successful use in computer graphics and CAD systems,
to approximate arbitrarily complex curves and surfaces. Also, there are already numer-
ous contributions on industrial machining problems and even industrial robotics (for
instance, Jia Pan et al [70]) that take advantage of splines.

The main advantages of this smoothing/modelling tool are the numerical stability,
easiness and flexibility of construction and the ability to fit complex curves (like a
free hand movement). The numerical stability is closely related to the possibility of
interpolating data (as in polynomial interpolation) with low-degree polynomials which
avoids the Runge’s phenomenon for single high-degree polynomial interpolation. For

80

4.4 Interfacing an Industrial Manipulator

this reason, the most commonly used splines are of 3rd degree, i.e, the so called cubic
splines. Moreover, there are numerous forms of splines which vary on how they are
constructed or which features they offer. The most commonly used (generally, but also
particularly in curve fitting) are B-splines: a spline that is itself a (linear) combination
of splines and offers means to easily ensure continuity across a set of chained splines
used approximate a whole curve.

This introduction leads to the definition of a B-spline as a linear combination of
splines:

S (u) =
n∑
i=0

PiNi,p (u) (4.12)

The points Pi, for a total of n+ 1,

P = {P0, P1, ..., Pn}

are called the control points. It is to these positions that the final spline curve tries
to stick to. Ni,p (u) are the splines which are linearly combined to obtain S; they are
called the basis functions. From the definition above, equ. 4.12, it is easily seen that
the final B-Spline is not defined as a function of (x, y, z) positions. Instead, S stands
as a parametric function with parameter u taking values in the interval [0, 1]. Yet, u
was represented as lower-case bold letter because it is a vector

u = {u0, u1, ..., um}

where each uj is a value in [0, 1] representing break points on the curve, that is, the
whole curve is segmented in smaller curves. Each of these is itself a linear combination
of splines. So it is easy to understand that the uj sequence must be crescent (moving
along de curve, from 0 to 1, and breaking it along the way):

uj 6 uj+1 , 0 < j < m− 1

Vector u is known as the knot vector.
The last component that makes S are the basis functions Ni,p (u). p is the degree

of the basis functions and, as such, is the degree of the B-Spline because the latter is a
linear combination of the former.

81

4. MOTION IMITATION FRAMEWORK

According to Krebs, H. et al. [71], a human-like movement can be well described
by a combination of bell shaped basis functions. This is the shape of a cubic basis
function — see Figure 4.18. For this reason, cubic B-splines are used in the smoothing
algorithm.

The zero-order basis function (constant), Ni,0 (u), is defined as — from [72]:

Ni,0 (u) =
{

1 if ui 6 u 6 ui+1
0 otherwise (4.13)

The next higher order basis functions are recursively computed from Ni,0 (u):

Ni,p (u) = u− ui
ui+p − ui

Ni,p−1 (u) + ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1 (u) (4.14)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.18: B-Spline Cubic Basis Function - Illustration of the cubic basis function
for a 3rd degree B-Spline. It has the so called bell shape.

At this point, where a path with Pi points awaits for smoothing, the only thing
that is not already available is the knot vector. As pointed before, this is where the
entire curve gets broken into smaller curves. As such, the knot positions have a major
influence on the final layout of S. First, the number m of knots must respect the
relationship: m = n + p + 1, i.e, the number of points, n + 1, plus the degree of the
polynomial. To define values for u there are different strategies (covered in [73]);
in short, the sequence may be uniform, u = [0, 1/ (m− 1) , 2/ (m− 1) , ..., 1], or non-
uniform (which result in the so called uniform or non-uniform B-Splines, respectively);
additionally, the sequence can be closed, clamped or open which result, respectively,
in: a closed curve where the last point is the same as the starting one (not useful in

82

4.4 Interfacing an Industrial Manipulator

smoothing an unpredictable human move); a curve clamped to the first and to the end
points, smoothing all positions in-between; an open curve which has no restrictions. In
this case the clamped method is used as it is desirable that the robot playback starts
and ends at the same place as the human did. In addiction, a non-uniform sequence
must be used because data is not equally spaced (it is in time dimension but not in
spatial dimensions). The method for clamping both ends is to set the first and last
values of u to 0 and 1 respectively. The number of 0s and 1s is related to the degree of
the polynomial — p+ 1 repetitions at each end:

u = [u0, u1, . . . , up, . . . , um−p, um−p+1, . . . , um] =

0, 0, . . . , 0︸ ︷︷ ︸
p+1

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
p+1

 (4.15)

To fill in the middle of the knot vector the method of chord length was used: each
point Pi is given a parameter t (actually this is still a u value but it is named t not
to be confused with the u values that belong to the knot vector). This parameter t
is proportional to the length of the lines connecting the control points Pi; that is, t
parameters are as spaced as points are:

d =
n∑
k=1
‖Pi − Pi−1‖2

ti =
∑i
j=1 ‖Pj − Pj−1‖2

d

(4.16)

Then, the u values that compose the knot vector are defined as:

u0, . . . , up = 0

up+1, . . . , um−p = uh+p = 1
p

h+p+1∑
k=h

tk

um−p, . . . , um = 1

(4.17)

where the middle values, uh+p, are generated from the average of p parameters.
With this formulation, the B-Spline is completely defined. Points Pi from the path

serve as control points, and the ratio of their relative distance to the whole path gives
rise to the knot vector. From the definition of S, recovering points along the curve (also
called evaluating the spline) is done by giving values to u, from 0 to 1. This step shows
the major disadvantage of spline fitting: as discussed above, B-Splines are defined in
a parameter space of u and not in actual 3D space; this means that it is quite hard

83

4. MOTION IMITATION FRAMEWORK

to know which u to use in order to go to some well-defined 3D point. In other words,
there is no direct correspondence from an original point path Pi to a u value; there is
no saying that Pi corresponds to the new filtered S(ui).

Another subject that influences the outcome of the B-spline smoothing is that using
all the trajectory points also causes the B-Spline to follow the noisy data to closely;
furthermore, too many points greatly increases the computation time. To address this
issue, the implemented solution samples the path {Pi} so that less points are used
to compute the B-Spline. After inspection of a number of runs, and trying different
sampling rates, it can be concluded that choosing every other point or every three points
has acceptable results. Acceptable in the sense that the curve does not over-smooth
the path, does not short-cut corners, while eliminates much of the high frequency
noise. These tests shall be presented later on section 5. Nonetheless, this choosing
has much to do with the characteristics of the demonstration: the sampling can be
adjusted as a function of the camera frame rate and the velocity of the demonstration;
for instance, slow movements may require less points whilst highly dynamic ones, with
sharp turns and edges, may be more demanding. The critical situations are U-turns as
it is important that the sampling does not miss narrow arcs. This way the spline does
not over smooth the edges and sharp turns. In short, from the set of original tracked
points

{O}n0 = {P0, P1, . . . , Pn}

the spline is defined with a set {D}k0 sampled from {O}n0 at a frequency s, such that

{D}k0 = {D0, D1, . . . , Dk} = {P0, Ps, P2s, P3s, . . .}

At this stage, evaluating the B-Spline, S, at some u values gives a smooth path from
start to end, S (u). The problem of choosing which ”u”s to evaluate is again solved
using the chord length method for every point in the original trajectory. This retrieves
a vector ueval (which is equal to the set of t parameters defined above in Equation
4.16) which evaluates into 3D positions over the spline curve. This positions may be
considered the smoothed counterpart to the original ones:

{O}n0
Parameter Space−−−−−−−−−−→ {ueval}n0

S ({ueval}n0) = {Pfilt}n0

84

4.4 Interfacing an Industrial Manipulator

This notion of a matched pair between original and curve point is needed because

the velocity information exists on the original points but not on the B-Spline — the

original points hold the time stamp. Sampling the spline at these same locations allows

to associate the resulting 3D position with the same velocity of the original points:

{O}n0 ↔ {Vo}
n
0 ⇒ S ({ueval}n0)↔ {Vo}n0

Additionally, it may be of interest to evaluate the B-Spline in more parameters

than those of the initial positions; this is necessary to further improve smoothness in

the robot playback. Since the manipulator uses linear interpolation of each point, the

more points are sampled/evaluated from the B-Spline the smoother the final trajectory.

Concerning position, the curve can be evaluated in as much points as needed by choos-

ing a longer ueval. In this case, ueval has a higher dimension than uo ({O}n0 → {uo}
n
0

). Regarding velocity, there is no information outside the initial set of tracked points

so an interpolation must be done. If the velocity is assumed constant between each

point than evaluating the B-Spline outside {uo}n0 translates into a discontinuous ve-

locity — it will only change when some ueval equals some uo. It practice, this means

that infinite acceleration is prompted to the robot at each point uo. The truth is that

it will always be so because the final robot path will always be a discretization of the

smooth curve. Despite that, every industrial robot controller implements an acceler-

ation and deceleration limitation to deal with this situation. Yet, it makes sense to

improve velocity smoothness on pair with the position. So, if the B-Spline is being

oversampled (retrieving more points than the originals) it also makes sense to at least

linearly interpolate velocity. This way, the final B-Spline synchronized with the tracked

velocity is at least C1 continuous (obviously, after discretization the path will always

be C0 because the robot program is built on linear interpolations. Even though, as will

be discussed further ahead, the robot controller tweaks this by implementing a smooth

junction at each path point).

Finally, for comparison, Figure 4.19 shows the smoothed B-Spline fitted to the same

data points shown previously in the beginning of this section, Figure 4.17. Much of

the noise is clearly eliminated,the path is smooth, and it is close to the original points

even though only one third of them have been actually used to construct the curve.

85

4. MOTION IMITATION FRAMEWORK

1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850

−50

0

50

100

150

200

250

300

350

Real Spray Painting Path (dimensions in mm)

Target Points
B-Spline

(a)

1400

1600

1800

−50050100150200250300350

550

600

650

700

Real Spray Painting Path (dimensions in mm)

Target Points
B-Spline

(b)

1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850

−50

0

50

100

150

200

250

300

350

Real Spray Painting Path (dimensions in mm)

Target Points
Piecewise Linear
B-Spline

(c)

Figure 4.19: (a) B-Spline 2D Upper View, (b) B-Spline 3D View: These plots show
the approximated B-Spline curve to the data points marked with ”*”. Actually only one
third of the points are used in the construction of the curve. (c) Comparison Between
Piecewise Linear Approximation and B-Spline.

86

4.4 Interfacing an Industrial Manipulator

4.4.1.2 Orientation Smoothing

Orientation is described by a rotation matrix or, equivalently, euler angles or quater-
nions. Interpolation of the rotation matrix can result in degenerate solutions: the
gimbal lock may occur, where one rotational degree of freedom is lost; also numerical
inaccuracies can cause problems since matrices must remain orthogonal after interpola-
tion with forces each row to have unit length and the columns to be mutually orthogonal
— these conditions must be kept during interpolation. Quaternions, on the other hand,
can also represent orientation and present some advantages: the mapping from angles
to quaternions is unambiguous (q and −q do represent the same orientation but this
does not bring any inconveniences); most importantly, interpolation of orientations is
easy to achieve, even smooth interpolation, using simple quaternion algebra.

An unit quaternion represents orientation. Since quaternions are R4 entities, this
means that every vector in R4 unit sphere represent orientation. To interpolate between
two quaternions a linear interpolation can be used – Lerp; yet, the result would not lie on
the unit sphere and therefore would not represent an orientation. The correct method
and the most commonly used for quaternion interpolation is SLERP — spherical linear
interpolation. Here, the interpolation is done across the unit sphere yielding a unit
quaternion as result — Figure 4.20 shows a geometric interpretation for lerp and Slerp.
One of the possible implementations [74] to interpolate between quaternions q0 and q1

is given by:

Slerp (q0, q1, t) = p0
(
p−1

0 p1
)t

(4.18)

In short, Slerp draws a path on a sphere equivalent to a straight line in affine spaces,
which is a spherical geodesic. As such, the above equation can be re-written as:

qt = Slerp (q0, q1, t) = sin ((1− t) θ)
sin θ q0 + sin (tθ)

sin θ q1 , 0 6 t 6 1 (4.19)

where θ is the angle between the two vectors — cos θ = q0.q1.
Slerp is optimal [75] to interpolate between two quaternions. Despite that, when a

sequence of rotations is available (like the 6D trajectory retrieved from the tracking)
Slerp causes the orientation to be non-differentiable. Similarly to linear interpolations in
affine spaces, the resulting path has sharp edges — Figure 4.21 (a). In order to create a
smooth interpolation along a set of consecutive orientations Squad was used — Spherical

87

4. MOTION IMITATION FRAMEWORK

t

lerp

Slerp

q1

q0

r
=

1

v

p’

t p ht

p’

q

p

a) b)

Figure 6.5: Slerp in the plane. a) The interpolation goes from p to p0 across the angle t. b) A

step in the interpolation, where h 2 [0; 1], q moves from p to p0.

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.6: Interpolation curve and velocity graph for spherical linear quaternion interpolation

{ Slerp. Between the two key frames there are 300 interpolated frames.

essarily optimal. Since p and �p perform the same rotation (according to equation 18 page 17), the interpolation

between �p and q could possibly yield a shorter interpolation path. This can be established simply by comparing

the distance between p and q, kp� qk, with the distance between �p and q, kp+ qk.

48

0 50 100 150 200 250 300

Angular Velocity

q0

q1

Figure 4.20: lerp and Slerp interpolation - On the left side there is a 2D represen-
tation of lerp and Slerp: the two quaternions q0 and q1 have unit length thus representing
some orientation; the blue line represent the lerp interpolation and, as a result, blue quater-
nions do not have unit length; Slerp, on the other hand, represented by the red arc, result
in unit quaternions. On the right side picture it is shown the Slerp interpolation on a
sphere surface which gives rise to a spherical geodesic.

88

4.4 Interfacing an Industrial Manipulator

and quadrangle interpolation. Squad is the spherical equivalent to a cubic interpolation,
and resembles a bilinear interpolation as it depends on Slerp. The derivation of Squad
can be found in [76]. For what matters, Squad is defined by:

Squad (qi, qi+1, a, b, t) = Slerp (Slerp (qi, qi+1, t) ,Slerp (a, b, t) , 2t (1− t)) (4.20)

where a and b are control points. The cubic curve starts on qi and ends on qi+1 but
does not pass through a and b. The choosing of the control points affect the layout of
the curve, as it was discussed for the B-Splines, presented on the position smoothing
section. To smoothly interpolate between a set of consecutive quaternions, a set of
Squad curves can be computed: Sj (t)=Squad. Yet, each Squad retrieves a cubic curve,
and it is necessary that consecutive curves meet at the start and end so that the final
entire path is smooth. In short, Sj−1 (1) = Sj (0); and for velocity, S′j−1 (1) = S′j (0).
With these constraints, a and b are determined by — details can be found at [75] and
[77]:

ai = bi = qi exp

− ln
(
q−1
i qi+1

)
+ ln

(
q−1
i qi−1

)
4

 (4.21)

So, the definition of a spherical spline interpolation of quaternions is given by:

Si (t) = Squad (qi, qi+1, si, si+1, t) = Slerp (Slerp (qi, qi+1, t) ,Slerp (si, si+1, t) , 2t (1− t))
(4.22)

si = qi exp

− ln
(
q−1
i qi+1

)
+ ln

(
q−1
i qi−1

)
4

 (4.23)

This method of spline-ing through orientations is common in computer animation
to generate smooth transitions between image frames. Squad ensures C2 continuity
in the interpolated orientations. Figure 4.21 (b) shows the smooth orientation path
between the target points resulting from Squad interpolation.

The steps to apply a Squad filter to the entire path are:

• Take the path q0, q1, q2, ..., qn and for all qi with 0 < i < n (the start and end
points remain unfiltered):

• compute: qsi = Squad (qi−1, qi+1, si−1, si+1, t); qsi is the best orientation for point
i in a smoothness sense, and uses two points before and two points after: qsi =

89

4. MOTION IMITATION FRAMEWORK

5.4 Some examples of visualization

In this section we show some examples of the visualization of the angular velocity graphs and

the interpolation curves. The interpolation methods are described in section 6; we only describe

properties of the resulting visualizations here.

The interpolation is performed on the frames given in table 5.1. The key frames are given by

a general rotation. As noted above, we choose the rotation angle and axis such that all the

rotations lie in the same three-dimensional hyperplane.

In �gures 5.1 through 5.3 we discuss di�erent properties of the visualizations. Note that there

is no obvious connection between the rotations in �gure 5.1 and the points on the surface of the

sphere. This is because the table contains general rotations, while the visualizations show the

corresponding quaternions. Since we are only interested in the geometric shape of the curves,

the absolute positioning of the key frames on the sphere is irrelevant.

Rotation angle � 2]� �; �] Rotation axis v 2 R3

1 (1,3,0)

1.9 (-1,0,0)

0 (-2,1,0)

-2 (3,4,0)

-1 (-1,4,0)

1 (1,3,0)

Table 5.1: Key frames

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.1: The interpolation curve stays on the surface of the sphere, but it is not di�erentiable

in any key frames; the curve \breaks" when it passes through the key frames. The angular velocity

graph is piecewise continuous and shows that the angular velocity is constant between keys. This

method of interpolation is called Slerp and is described in section 6.1.5.

36

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.2: The interpolation curve is now di�erentiable through all key frames. Compare, for

example, the key frame in the middle of the �gure with the corresponding key frame in �gure

5.1. The angular velocity graph is continuous and assumes local minima at the key frames. This

interpolation curve is called Squad, and it is described in section 6.2.1.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.3: This interpolation curve dips below the surface of the three-dimensional unit sphere.

This means that the interpolated points are not unit quaternions, and thus the points do not lie

on the surface of the sphere. The angular velocity graph is piecewise linear. This interpolation

curve is called LinEuler, and is described in section 6.1.1

In general we will illustrate the interpolation methods with the last two visualization methods:

Sphere and graph. We have included the animated sequences for the sake of completeness, since

it is in this context that the interpolation serves its practical purpose.

A few examples of these animated sequences can be seen at http://kantine.diku.dk/~myth/gif/

37

(b)

Figure 4.21: (a) Slerp: Interpolation of a consecutive number of orientations (a path of
orientations) with Slerp yields an edged path, non-differentiable. This is similar to affine
space’s linear interpolation. (b) Squad: The same set of nodes interpolated using Squad
gives birth to a smooth path. It is a differentiable curve and, additionally, angular velocity
is also differentiable.(images credits to Erik B. Dam et all [75])

f (qi−2, qi−1, qi+1, qi+2). t can be computed using the chord length method pre-
sented in the previous section; the euclidean distance is replaced by an angular
measurement:

t = cos−1 (qi−1qi)
cos−1 (qi−1qi) + cos−1 (qiqi+1)

• The final filtered orientation is a weighted interpolation between the smooth
qsi and the measured orientation qi. For this, Slerp can be used. So: qfilti =
Slerp (qsi , qi, t). As t takes values from 0 to 1 it gives more weight to the Squad
result or to the measured orientation.

4.4.2 Path Segmentation

This stage of data processing focus on breaking the whole trajectory in smaller seg-
ments. Industrial robots programming is about chaining movement instructions and
I/O control commands. As such, path segmentation is performed on 2 steps: I/O based
segmentation and movement-type segmentation.

The first step splits the path according to the synchronized I/O list (recall the
synchronized lists from Fig. 4.16). This is accomplished by looking at the I/O signal

90

4.4 Interfacing an Industrial Manipulator

time-stamp on the list and then grouping the 3D trajectory points between two I/O

changes – Fig. 4.22 illustrates this procedure. This is a necessary step due to how

industrial robot controllers deal with external I/O interfaces. The use of these signals,

either being it reading an input or writing an output, takes place in-between movement

instructions. As such, the move-type-instruction chaining must pause to insert the I/O

control; then it makes sense to break the path when such event occurs is it follows the

natural way robot controllers deal with path points and I/Os.

I/O Change

I/O Change
I/O Change

I/O Change

Segment 1 Segment 2 Segment 3 Segment 4

Figure 4.22: Trajectory Segmentation Based on I/O Changes - The first stage
of segmentation is based on the I/O change list. The 6D points are grouped into sets of
consecutive points in-between two I/O changes. This is a mandatory action since robot
controllers execute movement instructions and I/O control sequentially.

The second step for segmentation is the interpretation of trajectory points as well

defined geometric movements. Programming interfaces from standard manipulators

already implement linear interpolation of both position and orientation between two 6D

points; so, it is the job of segmentation to cluster a set of 6D points and write them as a

single linear movement. Doing it for the entire path makes possible to chain consecutive

move-linear instructions and automatically create a robot program. First, parts of the

trajectory that do not show any type movement must be detected, i.e, it is necessary

to identify motion stops. This is accomplished by analysing the velocity between to

consecutive points: if the value is smaller than a given threshold, ‖v‖2 < vthres, than

the marker is assumed to be stopped in the same position. Computing velocity from

the trajectory data is straightforward since both position (M) and time(t) are known

91

4. MOTION IMITATION FRAMEWORK

are each instant i:

vi = Mi+1 −Mi

ti+1 − ti
(4.24)

The remaining of the trajectory points represent a motion of some kind and are
now processed in order to achieve the desired segmentation. As there are different
applications and requirements, two methods are proposed:

1. Segmentation of a free hand movement. This method is adequate for any
application where the operator may need to perform free movements, i.e, movements
with high degrees of liberty. For instance, a spray painting of elaborated shapes where
the spray gun needs to execute complex, unstructured moves. This method can be
the starting point for any application since it is assumed that the output path is very
unpredictable. This type of trajectory segmentation uses all the points collected from
the tracking system and simply creates a robot instruction that moves to each point
— Fig. 4.23. Velocity is computed using the 3D position and time stamp as referred
above on equation 4.24. A set of move-line instructions are used to reproduce the path,
making the robot perform a straight line between each point.

Figure 4.23: Moving linearly to each point - In this method of trajectory segmenta-
tion all the points are used. A move-linear instruction is used to follow the path by going
through every point. The corresponding robot code is extensive but the resulting path is
more faithful to the captured trajectory

2. Path Segmentation into Move-Linear Instructions. This method fits bet-
ter to applications where there is some a priori knowledge about the type of movement

92

4.4 Interfacing an Industrial Manipulator

the human operator is supposed to perform. For instance, welding of metal sheets;
unlike the previous method, here it is expected that the operator performs a set of
straight lines instead of a complex free movement through the whole workspace. This
path segmentation method uses 4D-line fitting to break the trajectory into line seg-
ments. Given a set of points in space, Mi = (xi, yi, zi), there is a line that best fits the
points, in a least squares sense [78]. The line l (t) is defined by

l(t) = M̄ + td (4.25)

where M̄ is a point on the line and d is the (unit) direction vector. Each point Mi can
be decomposed into two components: one along the line (md) and another orthogonal
to it (m⊥):

Mi = M̄ +mdd +m⊥di⊥ (4.26)

where di⊥ is the unit vector orthogonal to the line passing through Mi. m⊥ is the
component of Mi that contributes to the fitting error, i.e, the orthogonal error. The
squared distance is

ei = (‖mi⊥di⊥‖2)2 = m2
i⊥ (4.27)

Then, the least squares minimization sets its goal to

min
n∑
i=0

ei = min
n∑
i=0

m2
i⊥ (4.28)

From Equation 4.26:
m2
i⊥ =

(
Mi − M̄ −mid

)2
(4.29)

The solution for this minimization [78] sets M̄ as the average of the points Mi

M̄ =
(
x̄ ȳ z̄

)
, x̄ = 1

n

n∑
i=1

xi (4.30)

that is, the line goes through the average of points. The direction d is given by the
singular value decomposition of the covariance matrix Q:

A =

M1 − M̄

...
Mn − M̄

 =

 x1 − x̄ y1 − ȳ z1 − z̄
...

...
...

xn − x̄ yn − ȳ zn − z̄

 (4.31)

Q = ATA (4.32)

93

4. MOTION IMITATION FRAMEWORK

[
U S VT

]
= SVD(Q) (4.33)

d is the eigen vector vi corresponding to the largest singular value σi of Q

V = [v1,v2,v3] ; S = diag (σ1, σ2, σ3) (4.34)

Since each point of the trajectory has a time stamp, it means that the path can be
seen as a 3D-positions time series. To split the entire path into lines, the line fitting is
recursively used in the following steps:

• Fit all data available to a 3D line and compute the error:

e =
n∑
i=1

dist⊥ (Mi, l)2 (4.35)

dist⊥ is the procedure that computes the orthogonal distance from the point to
the line.

• If the error is too large, e > σmax (σmax is an adjustable parameter, defining how
rough the approximation can be), find the point Mme that has the largest error
maxi (ei).

• Take all points up to Mme (up to its time) and start again.

• When a line is fitted, re-run the algorithm for the remaining points (from Mme

onwards).

The 3D fitting has a problem with backtracks, i.e, if the path follows one direction
and then comes back (going back and forth in the same direction), the whole set of
points are approximated by a single line. Fig. 4.24 (a) shows an example of this
situation; red points move from left to right and blue points from right to left. A
simple way to solve backtracks is to extend the 3D line fitting into 4D where the added
dimension is time. As such, equations 4.25-4.34 are extended into 4 dimensions with
Mi = (xi, yi, zi, ti) — those equations remain valid for nD. The geometric interpretation
is shown in Fig. 4.24 (b): backtracks clearly become distinct directions.

The previous algorithm is computationally fast given that the trajectory has been
previously split by I/O changes and motion stops — so that the number of points to
consider in each step is already reduced.

94

4.4 Interfacing an Industrial Manipulator

(a)

t

(b)

Figure 4.24: (a) A back track in 2D/3D: using only spacial information backtracks
are not detected. The red dots represent positions of a movement going from the left to
the right; blue circles are a path in the opposite direction. Using all the points in a 3D line
fitting method comes up with the grey line. (b) Adding time as an extra dimension
to data: the image represents a scheme of adding a 4th dimension (time) to each point.
Backtracks now clearly point in a different direction. Note: the noise on red/blue dots are
not in the time axis; this is still a variation on the xy plane; the visual feeling results from
the 2D view.

95

4. MOTION IMITATION FRAMEWORK

Figure 4.25: Trajectory Segmentation in Linear Movements - After the recursive
4D line fitting algorithm the trajectory is composed of consecutive lines. This method is
useful for applications where it is known that the operator wants to execute well structured
movements; this segmentation removes much of the noise associated with hand jitter.

The resulting robot path is more ”rigid” than the previously presented method since
there are now less and longer segments — Fig. 4.25.

Finally, the sequence of line segments li (t) defined by the start and end points, li (0)
and li (1), make up the path. Yet, in long lines, care must be taken for non-uniform
linear and angular velocity. To address this issue, each line segment is evaluated at
different positions t, computed using once again the chord length of the original points.
This way, there is no averaging the velocity, and linear interpolating rotation, between
the start and end points. Instead, the segment is divided and, for each piece, the
velocity is computed from the original points, and orientation is linearly interpolated
within each piece. This method forces the whole line to have different linear and angular
velocities, and does not assume the shortest path of orientation between ends. If the
original path does not have such dynamics than this is just a point over-head in the
final program; if such changes do occur, the playback is able to mimic it.

The line-segmentation has the added effect of smoothing both position and orien-
tation. Since a group of consecutive points is replaced by a line, the noise between the
start and end points are substantially reduced. Additionally, the move-line instruction
of industrial robots also implements a linear interpolation of orientation so rotation is
also smoothed using this approach.

At this point, by either method, the list of consecutive linear movements can be
used to automatically generate a program for the industrial manipulator.

96

4.4 Interfacing an Industrial Manipulator

4.4.3 Automatic Code Generation

The last stage on the programming by demonstration framework is to generate the
robot program. Taking the points/lines obtained from the previous algorithms and
stacking up a list of strings with robot instructions is rather simple. Yet there is one
last issue that must be addressed: velocity smoothness. It is not related to the data
itself but to how robot controllers interprets the program and do the joint control.
When the robot travels from point M0 to point M1 by a move-linear instruction

instruction: move-linear, M1, V = V1, Tolerace=Tol (4.36)

the linear velocity V must be specified along with a tolerance, tol parameter. As
already discussed, velocity is computed from the current and previous point and their
respective time stamp: vi = (Mi −Mi−1) / (ti − ti−1) (or the start and end points of
line segments). Tolerance sets how close to position M1 the robot actually moves to.
Usually this parameter is specified in millimetres. Figure 4.26 (left) shows a geometric
interpretation of this parameter (in 2D): as soon as the robot’s tool tip is at a distance
tol from the target M1 the controller assumes the movement has been accomplished
and stops the robot or starts the next instruction. Additionally, the robot controller
implements a trapezoidal control for robot velocity, which means that when it leaves
point M0 it starts accelerating then it reaches nominal velocity V1 during the line, and
finally, starts decelerating until M1. If the tolerance parameter is kept too low, for
instance zero (the robot moves to M1 with full accuracy) then the robot will decelerate
until a stop and only then moves on to the next target. This generates a “hiccup-like”
movement due to the full stop at each point. If the target points from the tracking
system are directly used in the movement instructions then two situations can happen:

1. The tolerance parameter is set to zero, tol = 0, to insure the robot goes exactly
through the points captured by the vision system. This is the ideal in terms of
positioning. Yet, due to the full stops at each point, the movement has no velocity
continuity; instead of continuously flowing through the points, the robot stops at
each line-end causing the sobbed behaviour.

2. The tolerance parameter is set to some value grater than zero, in such a way that
when it enters the tolerance sphere it has not started to decelerate (the toler-
ance value must be accessed by investigating the acceleration and deceleration

97

4. MOTION IMITATION FRAMEWORK

parameters of each robot type/brand). If there are any further instructions, the

robot will start executing them before coming to a stop. This ensures velocity is

smooth as lines are performed one after the other with no deceleration due to the

positioning controller. This smoothness comes with the price of adding error to

the position; the target points from the tracking are not fully respected.

To overcome this issue additional control points are computed from the desired

path. So, for a sequence of moves M0 → M1 → M2, control points M ′1 and M ′′1 are

created as an extension in the direction of the movement — Fig. 4.26 (right) — such

that

M ′i = Mi + tol ∗ Mi −Mi−1
‖Mi −Mi−1‖2

(4.37)

It means that instead of moving to M1 the robot will move to M ′1 which is further

away from M1 by the distance tol in the same direction of the movement. Then, the

tolerance parameter can be effectively applied because the robot will not reach M ′1: it

will start moving in that direction and will stop (or proceed to the next step) when it

is at a distance tol from M ′1 therefore being over M1. M ′′1 is a point in the direction of

M2 but closer to M1 so that the robot does not follow the line M ′1 — M2 but stays on

M1 — M2.

tol

M0

M1

M2

M0

M1

M′
1

M′′
1

M2

Figure 4.26: Tweaking the Robot Trajectory Controller Tolerance - On the left
side of the picture there is a geometric interpretation of the robot tolerance parameter:
upon reaching at a distance tol of the target point the robot starts executing the next
instruction; it does not go exactly over M1. On the right side there is a scheme for the
compensation of this feature. The robot is given a target point a little bit further ahead
from the real target in order to assure that it actually goes through M1.

98

4.4 Interfacing an Industrial Manipulator

This tweak ensures velocity smoothness along the path as well as smoothness in the
transition between consecutive lines due to the small arc the robot performs in order
to maintain velocity constant.

From here, the code generation is straightforward as points give rise to robot in-
structions:

Robot
Program

 MOVJ P1 : VINI

 MOVL P2 : V=V2

 MOVL P3 : ...

 MOVL P6 : ...

 MOVL P7 : ...

 MOVL P9 : ...

 MOVL P11 : ...

 MOVL P12 : ...

 MOVL P17 : ...

Figure 4.27: Automatic Robot Program Generation - From the 6D points and
velocities is it easy to automatically generate a robot program: each point or line end is
mapped into a move-line instruction. This approach is valid for any robot brand as this
instructions work the same way in industrial manipulators.

99

4. MOTION IMITATION FRAMEWORK

100

Chapter 5

Tests and Results

This chapter presents the tests and results that show the performance of the human-
robot skill transfer framework.

The first section introduces the industrial demonstrator with a description of the
scenario and the hardware. The following sections present the results for each module of
the motion tracking and robot interface. All tests were carried out at the demonstrator
and the demonstrated tasks are from real spray painting applications.

5.1 Industrial Demonstrator — Setup and Hardware

As indicated in the introductory chapter, Flupol [3] served as an industrial demonstrator
for the application and validation of the programming by demonstration framework.

Below is presented a list with the implementation details of the instalment in Flupol
facilities of the motion imitation system. It includes the hardware specification and
layout geometry/dimensions, both of which directly influence the performance of the
motion mimic. As such, the remaining sections of this chapter detailing the tests and
results are based on this implementation.

Description of Flupol’s motion imitation system:

• The painting takes place in one of Flupol’s coating cells; it has been adapted to
accommodate the robot, its controller and the industrial cameras. The parts are
painted on a turn-table so that the operator does not need to walk around the
part and the over-spray can be sucked in by the air-suction system. Both the

101

5. TESTS AND RESULTS

painter and the robot operate in the same space — Figure 5.1 shows the painter
and the turn-table and Figure 5.2 shows the robot occupying the same place.

Figure 5.1: Human Painter in Flupol Coating Cell - This figure shows the work
area with the painter operating over a baking tray held by a turn-table.

• The total workspace dimension is (x × y × z) 1000mm×1000mm×400mm. The
horizontal axis on Figure 5.2, for the forward and backward robot movement is
the x axis. The vertical direction on the figure is the robot z axis. The depth
direction is the y axis. In this workspace Flupol coats mainly baking trays and
molds, of maximum size of 800×800mm.

• To cover up the entire workspace, a MOTOMAN EPX2050 robot was installed.
It has approximately 2000mm of horizontal reach which enables it to easily move
into any area of the workspace.

• The marker has 50mm radius and was attached on the bottom of the spraying
gun — Figure 5.3. This way the marker does not get into the operator’s line of
sight, enabling him to maintain eye feedback on the process. Also, the LED lights
cause much less eye disturbance while on the bottom side of the gun.

• To capture the marker a single pair of industrial cameras was used. Figure 5.4
shows the cabinet which holds the cameras. Even though a simple tripod would
be sufficient, a larger and more robust cabinet was installed. It is able to protect
the cameras from dust while they are not in use and, at the same time, it is very

102

5.1 Industrial Demonstrator — Setup and Hardware

x

z

Figure 5.2: Robot in Flupol Coating Cell - This figure shows the work area with the
robot operating over a baking tray held by the turn-table. The manipulator occupies the
same place and the human did for demonstration (Figure 5.1).

Figure 5.3: Marker Attached to the Industrial Spray Painting Gun - The lumi-
nous marker is attached to the bottom side of the spray gun so that it stays clearer from
the spraying and the operator’s line of sight.

103

5. TESTS AND RESULTS

robust so that the cameras’ positioning remain unchanged. This way, the camera
calibration process needs to be executed only once.

Figure 5.4: Two Camera Arrangement for Stereoscopy - The figure shows the
cabinet that holds both cameras. These are separated by 70mm and slightly rotated
towards each other. The cabinet has the function of maintaining the cameras’ positioning
and protect them from dust.

• The cameras are placed 700mm apart and are slightly rotated towards each other.
Each device is a CCD 1024×768 RGB industrial camera with USB 2.0 connec-
tivity.

• The use of a single pair is justified by both financial and logistic reasons. Two-
cameras arrangement is the bare minimum to accomplish stereo and so it is the
most cheap solution to start with. Additionally, there were strong spatial re-
strictions on the cameras’ positioning; there is the problem of avoiding the over
spraying and respecting the cell limits, while causing the minimum impact in
the process and the cell layout; a second pair of cameras could not be installed
because the opposite area is used as loading/unloading buffer.

• As a consequence of the reduced number of cameras, the painter needs to make
caution during the demonstration stage not to step in-between the marker and

104

5.2 Tests and Results

the cameras. Such an action causes occlusion of the marker and jeopardizes the
motion tracking.

• The synchronization device, which delivers the cameras and marker triggers, is
made up from an arduino board. A second board is used to capture some I/Os
such the spray gun trigger and the commands to operate the turn-table. Such
I/Os are also connected to the robot controller making possible for the robot to
operate the devices in the same way the human did.

In short, the coating cell was upgraded with an industrial robot, a pair of industrial
cameras, a small box containing the micro-controller boards and a desktop PC. The
extra apparatus specifically used to program the robot in an intuitive way, i.e, the hard-
ware that makes it possible to program the manipulator using motion demonstration
is limited to the pair of cameras, the marker and the synchronization devices. In terms
of pricing (of the equipment, not taking in concern design, installation/assembly and
configuration), this is comparable to an extra PC or two thus a very small fraction
when compared to the price of an industrial manipulator.

5.2 Tests and Results

This section provides detailed description of the tests used to define the motion demon-
stration framework performance. Results are presented for each subsystem: from the
precision of a single LED detection, to the final stage of trajectory smoothing; in-
between these there are results for the colour classification, the success rate of the
marker pose estimation and its accuracy in terms of translation and orientation. Fi-
nally, the timings of each step are analysed to prove the real-time capability of the
framework as well as its ability to mimic motion right after the demonstration with no
apparent post-processing overhead.

5.2.1 Camera Calibration

Camera and stereo calibration is achieved using the grid pattern to collect the set of
pixel↔ 3D correspondences. For the 1000×1000×400 mm workspace, the grid cell size
was set to 100mm which resolves to 10×10×3=300 3D points and pixel pairs. Figure

105

5. TESTS AND RESULTS

5.5 shows the CAD model of the developed tool which holds the calibration LED and
is attached to the robot end-effector.

Figure 5.5: CAD Model of the Calibration Tool - This object is attached to the
robot end-effector and holds a single LED near the tip. This LED is turned ON at each
node of the calibration grid and allows capturing a pair of images corresponding to the
node position in space.

Tables 5.1 and 5.2 shows de calibration error for the stereo arrangement. The
analysis is done in two ways: the deviation in each axis alone, x/y/z, and the absolute
deviation of the stereo 3D point to the real known coordinate. The error is defined
by the n calibration points Pi = (xi, yi, zi) and the corresponding estimates from the
stereo P̃i = (x̃i, ỹi, z̃i). The n×3 error matrix E(xyz) is defined as

P =

 x1 y1 z1
...

...
...

xn yn zn

 =

 P1
...
Pn

E(xyz) = P− P̃

E(xyz)
i is the cartesian deviation on point i. The total deviation error at each point

is given by Ei =
∥∥∥E(xyz)

i

∥∥∥
2
, i.e, the distance from the real and the estimate position.

Figures 5.6,5.7 and 5.8 hold plots for the variation of the absolute error in the x,y
and z axis.

106

5.2 Tests and Results

Table 5.1: Calibration error on x, y and z axis: Four measures are presented for
each axis: the mean error, the mean absolute error (MAE), the maximum absolute error
and the root mean squared error (RMSE). Since the model is unbiased, ē ≈ 0, the RMSE
coincides with the standard deviation.

Calibration Error (X, Y, Z)
(all measures in mm)

x y z

Mean Error:
Ē(xyz) = 1

n

∑
E(xyz) 2E-05 -5E-04 3E-05

Mean Absolute Error:
MAE= 1

n

∑∣∣∣E(xyz)
∣∣∣ 0.36 1.23 0.34

Max. Absolute Error:
maxei =

∥∥∥E(xyz)
∥∥∥
∞

2.20 5.29 1.22

Standard Deviation:
σ =

√
1

n−1
∑
i

(
E(xyz)
i

)2 0.47 1.58 0.42

Table 5.2: Calibration error: It is measured as the euclidean distance from the expected
position P to the estimated P̃ .

Calibration Error —
∥∥∥P − P̃∥∥∥

2
(all measures in mm)

Mean Error 1.4
Max Error 5.7

Std. Deviation 9.8E-01

107

5. TESTS AND RESULTS

Table 5.1 shows that the stereo model is unbiased in every direction since the mean

error is approximately zero in each axis. As expected, the smaller errors are present in

x and z axis as they are fairly aligned with camera’s u and v axis, respectively — the

absolute error is almost the same for x and y.

The measures along the y axis show larger errors and are the major responsible

for the total deviation error presented on Table 5.2. The average position error is

1.4mm and the average y error is 1.3mm; the same happens for the maximum error.

This is justified with the fact that the y axis stands as the stereo depth axis. With a

two camera arrangement it is expected that points further away present larger errors.

This can be seen at Figure 5.7: the negative Y coordinates are further away from the

cameras and show increasing error as distance increases (cameras’ y position coordinate

is approximately 3000mm). On the other hand, the error remains almost constant

among x and z directions — Figures 5.6 and 5.8, respectively. The x axis has increased

error in the plot’s rightmost end since the positions get closer to the image border

thus being affected with lenses distortion. Even though, the error show much more

independence on x and z axis whilst it clearly increases in the y direction (right to

left means stepping away from the cameras). It can be concluded that increasing

camera resolution will have limited benefit to the global stereo precision as it primarily

affects u and v directions, x and z correspondingly; instead, having more cameras can

significantly enhance the system precision. Particularly, having a second camera pair

opposite to the first pair can be most advantageous. In such scenario, the error for

negative y coordinates would be a mirror of the positive coordinate tendency.

5.2.2 Marker Detection

5.2.2.1 Colour Calibration

Colour calibration is achieved by moving the marker on the entire workspace with only

one colour lit at a time. Figure 5.9 shows the HSV circle with the sampled hue values

for each colour (each line represents a measure). It can be clearly seen that any two

set of samples are disjoint except for yellow and red. Red is the most well defined

colour (lowest hue variance among the samples) but yellow LEDs are made up from

red and green; the red contribution imposes in some conditions and yellow clusters

108

5.2 Tests and Results

1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900
0

0.5

1

1.5

2

2.5

3

X coordinate (mm)

E
rr
or

(m
m
)

Error = f(x)

Figure 5.6: Error variation in the X axis - The figure plots the calibration error as
a function of the position’s x coordinate.

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

Y coordinate (mm)

E
rr
o
r
(m

m
)

Error = f(y)

Figure 5.7: Error variation in the Y axis - The figure plots the calibration error as
a function of the position’s y coordinate.

109

5. TESTS AND RESULTS

300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600
0

0.5

1

1.5

2

2.5

3

Z coordinate (mm)

E
rr
or

(m
m
)

Error = f(z)

Figure 5.8: Error variation in the Z axis - The figure plots the calibration error as
a function of the position’s z coordinate.

are evaluated as red. As it will be made clearer ahead, this class interception do not
jeopardize the marker tracking.

5.2.2.2 Detection and Pose Estimation

The sincrovision concept, allied to optimized camera exposition and LED driver elec-
tronics allow a very robust detection of each individual LED in the image.

Camera exposure was set to 3ms which is also the ON time for the LEDs. With
this short duty cycle, 3ms@25fps = 7.5%, LEDs were driven at 10 times their rated
current.

The detection was evaluated according to the number of (un)successful marker
detection: how many times individual LED colours were misinterpreted, how many
times position and orientation estimation failed.

Remark: These results intend to state the quality and robustness of the implemented
algorithms and not of any specific hardware. Therefore, the following results do not
take in concern possible hardware failures; for instance, the USB cameras failing to
deliver some image frames and/or the operating system drivers failing to put together

110

5.2 Tests and Results

R

YG

B P

0◦

60◦120◦

240◦ 300◦

Figure 5.9: HSV Colour Classes Calibration - The figure shows the collected samples
from each LED after moving it around the workspace. Almost all classes are separable with
exception to yellow and red.

the received data in the USB bus thus bringing forth a misconceived image. Some of
these problems were experienced in the industrial setup and worsen as more cameras
were plugged into the same computer. Despite being rare occurrences, the results for
this section were evaluated only on good image frames.

The following results were determined after the evaluation of 50000 paired image
frames from roughly 30 different human demonstrations. Table 5.3 summarizes the
accuracy for image cluster classification. That is, given an image with a number of
visible LEDs, how many times each colour was misclassified. The evaluation was done
over 50000 stereo frames and this analysis is image-wise, therefore the results are for a
total of 100000 image frames. False positives (F/P) for red mean that the cluster is of
another colour and is classified as red; false negatives (F/N) mean that the cluster is
red and was classified as other; the same reasoning applies to all other colours.

For the 50000 stereo pairs, the successfulness of pose estimation is resumed in
Table 5.4. It is divided in position and orientation estimation because different factors
contribute for the output of each algorithm. Additionally, for the unsuccessful measures,
it is given the number of failures (in brackets) derived from colour misclassification.

The colour classification results, from Table 5.3, are clearly in tune with the results

111

5. TESTS AND RESULTS

Table 5.3: Number of misclassification of image clusters sorted by colour: F/P
are the false positives (another colour classified as the current) and F/N are false negatives
(the current colour classified as some other).

Image Analysis: 100000 frames

Cluster Colour Classification

F/P F/N

Red 4544 (4.544%) 0
Green 0 0
Blue 0 0

Yellow 0 4544 (4.544%)
Purple 0 0

obtained in colour calibration (discussed above, in Figure 5.9). All the colours are

perfectly classified except for yellow. Yellow LEDs evaluation on hue parameter is very

close to red. As such, there are many detections where a yellow cluster is tagged as

being red. Despite that, the pose estimation algorithm is robust enough to eliminate

these misclassification; as depicted in Table 5.4, only 37 detections went wrong due to

the bad classification. On one hand, the misclassified yellow do not have a matching

cluster on the other image so it will never give birth to a 3D point that can used in

the position estimation; the sphere fitting is unaffected by colour classification. On the

other hand, if the yellow LED would complete a ”Y” in the image — the pattern used

for orientation estimation — then the misclassification may lead to having no complete

”Y”; this is the scenario that contributes for 37 orientation estimation failures; the

remaining are rare situations where no complete ”Y” is seen yet all colours are well

classified.

Over the 30 demonstrations used for these tests, the pose could not be estimated for

an average of 3 times per demonstration. It means that there are three 40ms ”holes”

in the final path. This is completely negligible over a 1500-positions/one-minute-long

trajectory. The smoothing algorithms will later fill in these holes.

112

5.2 Tests and Results

Table 5.4: Evaluation of the position and orientation estimation: The success and
failure rate for each algorithm is presented for a total of 50000 successfully paired image
frames. Since orientation depends on colour classification, the number of failures due to
colour misclassification is shown in brackets. The complete pose estimation performance
is held at the last sub-table.

Stereo Frames: 50000 pairs

Position Estimation

Success Failure
50000 [100%] 0 [0%]

Orientation Estimation

Success Failure (due to colour)
49919 [> 99.8%] 81 (37) [< 0.2%]

Complete Pose Estimation

Success Failure
> 99.8% < 0.2%

average/per demonstration (1500 frames)
< 3 fails

113

5. TESTS AND RESULTS

5.2.3 Marker Accuracy in the Workspace

The pose precision was accessed using the same principle of camera calibration: the

marker was attached to the robot’s end-effector and the same routines were used to

sweep the entire workspace. Therefore, the robot moved in a grid like pattern and

samples were collected at each node.

To estimate position accuracy the manipulator was set to move in a 100mm grid.

This renders a total of 305 positions; at each position 10 samples were collected. The

(robot) coordinates from the 305 test positions are well known as they are read from the

robot controller; also, the manipulator was moved to the target positions and allowed

to remain there for 4 seconds in order to minimize vibrations.

To estimate orientation accuracy, the robot was stopped at 5 different positions. At

each one, the orientation was incrementally changed by 30◦ for a total of 60 different

orientations: for example, Rx = [0, 30, 60]×Ry = [0, 30, ..., 90]×Rz = [−60,−30, ..., 60].

In the end there are 300 orientations to evaluate.

Tables 5.5 and 5.6 resumes the marker pose accuracy; the analysis is done along each

direction and also for the euclidean error/shortest angle between the position/orientation

estimate and the ground truth.

Table 5.5: Marker position error on x, y and z axis: Four measures are presented
for each axis: the mean error, the mean absolute error (MAE), the maximum absolute
error and the standard deviation.

Marker Pose Error (X, Y, Z) — (Rx, Ry, Rz)
(all distances in mm, angles in degrees – ◦)

x y z Rx Ry Rz

Mean Error 0.52 -2.1 0.9 0.5 -0.2 -0.5

Mean Absolute Error 1.1 3.2 1.9 1.0 0.8 1.1

Max. Absolute Error 3.6 8.2 5.4 4.1 3.9 3.6

Standard Deviation 1.5 2.9 1.7 2.2 2.1 1.8

114

5.2 Tests and Results

Table 5.6: Marker pose error: Marker position error measured as the euclidean distance
from the expected position M to the estimated M̃ . For orientation, the absolute error is
the shortest path (angle) between the two orientations which is computed from the angle
between the two corresponding quaternions, qM and qM̄ .

Marker Position Error: E =
∥∥∥M − M̃∥∥∥

2
, and

Orientation Error: θ = 2 cos−1 q−1
M q∗

M̃

(all distances in mm, angles in degrees ◦)

E θ

Mean Error 3.8 1.7
Max Error 8.9 6.2

Std. Deviation 2.7 2.1

∗ shortest angle between 2 quaternions

Comparing these results (Tables 5.5 and 5.6) with those for a single LED in the

calibration procedure (recall Tables 5.1 and 5.2) it can be seen that the error has

increased globally. With the two-camera arrangement, going from one LED (which

tracks translation alone) to the whole marker (which tracks six degrees of freedom)

penalizes accuracy in a few millimetres. First, the error pattern is no longer unbiased;

it is specially noticeable along the y direction, i.e, the depth axis. This happens due

to the biased placement of the cameras, that is, the pair of devices being installed only

on one side of the workspace; the sphere fitting algorithm receives samples from just

a small area around the sphere. Since the cameras are aligned horizontally, i.e, along

the robot x axis, the position error tends to be lower along that direction. Concerning

orientation, each direction seems equally affected by the estimation noise.

5.2.4 Filtering and Smoothing

Evaluating the performance for the B-Spline smoothing is not easy since there is no

measure of the real path of the human hand; that is, there is no ground truth for the

free hand movement. Therefore, a set of path segments were analysed and are presented

for visual inspection. The comparison is always done against the piecewise linear path,

i.e, when the tracking points are connected through a line.

115

5. TESTS AND RESULTS

The following results were recorded when the human operator painted a baking tray

as the one depicted in Figure 5.10. The tray was held at the turntable and the painting

is executed in four moments: the painter sprays the whole surface, then rotates the

table and sprays again the tray, and this is repeated twice more. For a visual feedback

of the path and the smoothing output the results are shown just for a small illustrative

segment of the trajectory so that the plots are more readable.

Figure 5.10: A Baking Tray - One of the work pieces coated at Flupol. The discussion
on the trajectory features for the remaining of this section is based on the painting path
for this shape.

Figure 5.11 shows the resulting B-Spline for the spraying of the entire tray surface;

on top, the (a) plot shows th B-Spline alone; on bottom, the (b) plot shows the B-Spline

and the piecewise linear approximation.

A closer (zoomed) look at the B-Spline vs Piecewise linear approximation shows

how the high frequency noise is eliminated particularly on U-turns. Figures 5.12,5.13

and 5.14 hold three different views to the spline and original curves.

As it was made reference in section 4.4.1.1, the curve is parametric thus not a x, y, z

116

5.2 Tests and Results

1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000−200

0

200

400

450

500

550

600

650

700

750

Real Spray Painting Path (dimensions in mm)

B-Spline

(a)

1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000−200

0

200

400

450

500

550

600

650

700

750

Real Spray Painting Path (dimmensions in mm)

B-Spline
Piecewise Linear

(b)

Figure 5.11: (a) Smooth B-Spline: It goes smooth through the tracked positions and
do not have sharp edges or discontinuities. The path is a coast-to-coast swing along the
surface of the tray. (b) B-Spline vs Piecewise Linear Approximation: The same
path as in (a) against the piecewise linear approximation. The smoothness facet is obvious
as it is the noise reduction over the entire path.

117

5. TESTS AND RESULTS

1,300 1,350 1,400 1,450 1,500 1,550 1,600 1,650 1,700 1,750 1,800 1,850 1,900 1,950

−400

−200

0

200

400

400

450

500

550

600

650

700

750

Real Spray Painting Path (dimensions in mm)

B-Spline
Piecewise Linear

Figure 5.12: B-Spline vs Piecewise Linear Side View - Comparison between the
B-Spline and the Piecewise Linear Approximation on a portion of the painting path

1,3001,3501,4001,4501,5001,5501,6001,6501,7001,7501,8001,8501,9001,950

−400

−200

0

200

400

400

450

500

550

600

650

700

Real Spray Painting Path (dimensions in mm)

B-Spline
Piecewise Linear

Figure 5.13: B-Spline vs Piecewise Linear Opposite View - Comparison between
the B-Spline and the Piecewise Linear Approximation on a portion of the painting path —
opposite view of Figure 5.12

118

5.2 Tests and Results

1,300

1,350

1,400

1,450

1,500

1,550

1,600

1,650

1,700

1,750

1,800

1,850

1,900

1,950

−450−400−350−300−250−200−150−100−50050100150200250300350400

Real Spray Painting Path (dimensions in mm)

B-Spline
Piecewise Linear

Figure 5.14: B-Spline vs Piecewise Linear X-Y view - Comparison between the
B-Spline and the Piecewise Linear Approximation on a portion of the painting path —
X-Y plane view

collection of coordinates. Using the chord length method — recall equation 4.16

d =
n∑
k=1
‖Pk − Pk−1‖2

uj =
‖Pj − Pj−1‖2

d

it is possible to know which B-Spline position is equivalent to the original points. Figure
5.15 shows a section of the path where the tracked positions are marked in red and the
equivalent value of the B-Spline, S (ui) is marked in green. It is easy to conclude that
the filtered points not always are the ones that are close to the tracked positions; this
shows how the B-Spline looses track of space and how hard it is to numerically evaluate
the result of the spline smoothing since there is no real point correspondence.

The tracking points are collected throw the cameras at constant rate: the camera’s
frame rate, hereafter designated as Ft. After the B-Spline reconstruction of the path
it is necessary to sample the curve in order to have again a set of 3D points with
which it is fed the robot controller. The main variables that influence the sampling
rate of the spline are the final number of points — a high sampling rate implies large

119

5. TESTS AND RESULTS

1,450 1,500 1,550 1,600 1,650 1,700 1,750 1,800 1,850 1,900

−200

−100

0

100

200
500

520

540

560

580

600

620

640

660

680

700

Real Spray Painting Path (dimensions in mm)

B-Spline
Control Points (tracked positions)

B-Spline S(ui) (Filtered Points)

Figure 5.15: B-Spline Evaluation - Marked in red are the original tracked positions.
The evaluation of the blue B-Spline is done over the parameter u and not in cartesian
space. As such, the correspondence between S values of the spline and 3D coordinates is not
known. Using the same parameter definition method as used in the B-Spline construction it
is possible to have an equivalence. The spline points, i.e, the filtered positions corresponding
to the tracked ones are marked in green.

robot programs, and the distance between points — as the sampling rate changes so
does the distance between each point; these will be used in move-linear instructions so
the fewer points the less roundness of the final path. Figures 5.16,5.17, 5.18 and 5.19
show the final shape of the path using a sampling frequency of 1×Ft, 2×Ft, 4×Ft and
8×Ft respectively. After 4×Ft the smooth effect is already undistinguishable; there are
enough points to perform a smooth path. Table 5.7 summarizes the data from these
sampling rates: it shows the number of points of each sampling rate, the computational
time required to evaluate the B-Spline, the total curve length and the average distance
from one point to the next. The curve length is a measure of how long the path is,
and can be compared to the piecewise linear approximation of the tracked points. It
shows how much the original tracked path was shortened. To estimate the arc length
one must find the integral of the B-Spline:

L =
u=1∫
u=0

S (u)du

The solutions to these integrals are extremely difficult to find as it involves complex
elliptic integrals. Alternatively, a chord length method can be used; that is, it is possible

120

5.2 Tests and Results

to divide the curve into small segments and compute its length as a linear path. The
approximation becomes better as more divisions are considered. If the spline S is
sampled into n points Di, i = 1, ..., n than the arc length is given by:

u=1∫
u=0

S (u)du '
n∑
i=2
‖Di −Di−1‖

Actually, since the robot is going to playback the path with linear interpolation,
this measure is the best length estimation of the curve executed by the manipulator
(the tolerance feature adds uncertainty). As can be seen from Table 5.7, increasing
the sampling frequency more than four times has little to no effect of the final path
length. This sampling rate already provides points 9mm close to each other to the
linear approximation of the robot controller appears smooth.

1,450 1,500 1,550 1,600 1,650 1,700 1,750 1,800 1,850 1,900
−200

0

200

450

500

550

600

650

700

Real Spray Painting Path (dimensions in mm)

B-Spline176pts — 1xFt

Piecewise Linear

Figure 5.16: Sampling of the B-Spline at the Same Frequency of the Tracking
- The plot shows the piecewise linear approximation and the B-Spline curve. The spline
is drawn using as much points as were originally captured by the tracking system. The
linear tracks are clearly visible

Finally, these last plots evaluate the path over time. Figure 5.20 plots the evolution
of each path component with time, x (t), y (t) and z (t). These plots alone give some
feedback on the precision of human hand work. As depicted on the picture, the human

121

5. TESTS AND RESULTS

1,450 1,500 1,550 1,600 1,650 1,700 1,750 1,800 1,850 1,900
−200

0

200

450

500

550

600

650

700

Real Spray Painting Path (dimensions in mm)

B-Spline 350pts — 2xFt

Piecewise Linear

Figure 5.17: Sampling of the B-Spline at 2 times the Tracking Frequency - The
plot shows the piecewise linear approximation and the B-Spline curve. The spline is drawn
using twice as much points as were originally captured by the tracking system. The linear
tracks are still visible.

Table 5.7: Sampling of the B-Spline Curve: This table shows the resulting number of
points, their average spacing, the computational time and the final curve length for various
sampling rates. The first entry is the original path, without spline smoothing. The next
entries are for spline sampling at rates proportional to the tracking frequency.

Sampling Rate
No

Points
Chord Length

(mm)
Avg. Point

Spacing (mm)
Comp.

Time (ms)

Piecewise Linear @ Ft 1750 64580 37.0 0
1xFt 1750 62590 35.8 40
2xFt 3500 62830 18.0 64
4xFt 7000 62870 9.0 115
8xFt 14000 62890 4.5 215
16xFt 28000 62890 2.2 426
32xFt 56000 62890 1.1 839

122

5.2 Tests and Results

1,450 1,500 1,550 1,600 1,650 1,700 1,750 1,800 1,850 1,900
−200

0

200

450

500

550

600

650

700

Real Spray Painting Path (dimensions in mm)

B-Spline 700pts — 4xFt

Piecewise Linear

Figure 5.18: Sampling of the B-Spline at 4 times the Tracking Frequency - The
plot shows the piecewise linear approximation and the B-Spline curve. The spline is drawn
using 4 times as much points as were originally captured by the tracking system. The path
appears smooth and the linear tracks are not visible.

123

5. TESTS AND RESULTS

1,450 1,500 1,550 1,600 1,650 1,700 1,750 1,800 1,850 1,900
−200

0

200

450

500

550

600

650

700

Real Spray Painting Path (dimensions in mm)

B-Spline 1400pts — 8xFt

Piecewise Linear

Figure 5.19: Sampling of the B-Spline at 8 times the Tracking Frequency - The
plot shows the piecewise linear approximation and the B-Spline curve. The spline is drawn
using 8 times as much points as were originally captured by the tracking system. Visually
there is no improvement over the 4 times the tracking frequency, presented in Figure 5.18.
Yet, it costs double its computational time and twice more points.

124

5.2 Tests and Results

hand movement is quite precise: x (t) shows how linearly the movement is going from

the beginning until the end of the tray at constant velocity; z (t) is the distance to the

work piece, and the human operator can keep it almost constant over the entire path,

i.e, the spray gun is kept at constant distance from the object ensuring the constant

spraying over the surface; y (t) is an almost perfect periodic movement of the side to

side swinging over the surface. As a whole, this path clearly shows the expertise of the

operator.

0 1 2 3 4 5 6 7
−500

0

500

1,000

1,500

2,000

t [s]

p
os
it
io
n
[m

m
]

X(t)

Y(t)

Z(t)

Figure 5.20: Path decomposed into X (t),Y (t) and Z (t) - The x,y and z components
of the painting path plotted against time. It gives some insight on the precision of the
human operator movements.

Figure 5.21 shows the same data adding the B-Spline to each curve. The spline

and the original positions are almost indistinguishable; despite that, it has already

been shown that the B-Spline is actually smoothing the path. This shows how in spite

of smoothing through the points and not passing over them, the B-Spline still holds

the essence of the movement, i.e, it does not change the pattern nor the speed of the

original path; the real operator’s know-how is kept after the path smoothing. Looking

closer, as in Figure 5.22, the B-Spline is eliminating the noisy data while preserving

the frequency and the geometry/shape of the demonstrated trajectory.

125

5. TESTS AND RESULTS

0 1 2 3 4 5 6 7
−500

0

500

1,000

1,500

2,000

t [s]

p
o
si
ti
on

[m
m
]

X(t)

Y(t)

Z(t)

Spline

Figure 5.21: B-Spline smoothing of X (t),Y (t) and Z (t) - The B-Spline curve does
not change the main shape of the trajectory; instead it cleans up noise and hand jitter.
The resulting path is very similar to the original one.

5.2.5 Timings

One of the most advantageous features of this motion mimic framework is to deliver an
instant playback of the demonstrated movement. Even if the high level programming is
achieved, it is important to reduce setup times. Also, a given demonstration may not be
successful on the first try; if the movement mimic consumes too much post-processing
time (i.e, the operator needs to wait an extended time to see the result) then the high
level interface is still carrying expensive downtime and becomes unfeasable.

Table 5.8 presents the processing times for both the online and offline processes that
make up the motion demonstration system. The online stages are those being executed
as image frames arrive; it includes the image debayer (conversion of the bayer pattern
into the RGB in some colour cameras), cluster detection and classification, matching
clusters from different cameras and 3D retrieval, and finally pose estimation. The offline
steps include the trajectory smoothing and the generation of the robot program.

The tracking (all processes up to the marker pose estimation) is done in real-time
which adds another powerful feature to the framework: the robot can be moved in real-

126

5.2 Tests and Results

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

1,700

1,720

1,740

1,760

1,780

1,800

1,820

1,840

1,860

t [s]

X
p
os
it
io
n
[m

m
]

X(t)

Spline

(a)

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

−400

−300

−200

−100

0

100

200

300

t [s]

Y
p
o
si
ti
o
n
[m

m
]

Y(t)

Spline

(b)

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

400

420

440

460

480

500

520

540

560

580

600

t [s]

Z
p
os
it
io
n
[m

m
]

Z(t)

Spline

(c)

Figure 5.22: (a,b,c) Zoom view of B-Spline with X (t), Y (t) and Z (t): the spline
eliminates the high frequency noise while preserving the shape of the path.

127

5. TESTS AND RESULTS

time, for instance in an attempt of accessing reachability and reproducibility before the
definitive demonstration, or for teleoperating the robot in some applications. The B-
Spline smoothing and code generation take place after the demonstration is concluded
but the processing time involved is far below 1 second which makes it perfectly unno-
ticeable to the user. Even the communication with the robot controller and uploading
the program do not consume more than a couple of seconds. Therefore, the robot is
ready to perform right after the demonstration has ended.

Moreover, looking at the online processing times it can be concluded that less
than 15% of the available time is being used — 6ms at 25 frames per second means
6ms/40ms = 0.15. This makes it possible to increase camera resolution or even the
frame rate whilst maintaining the real-time capability.

128

5.2 Tests and Results

Table 5.8: Processing times for every stage of the motion demonstration: The
results are divided in online and offline: the former set is done in real-time as the images
come in from the cameras; the later include the routines that need the whole trajectory and,
as such, can only be executed when the demonstration is complete. The offline processes
clearly dominate processing time yet they barely take more than one second. The tests
were run on a core i7 @2.8GHz , under a Fedora 16 installation.

Routine Time (ms)

O
nl

in
e

Image Debayer 2.2

Cluster Detection & Classification 2.6

2-Camera Cluster Matching and 3D
Retrieval

0.5

Pose Estimation 0.6

Total < 6

O
ffl

in
e Filtering and Smoothing 74.7

Robot Program Generation 220

Communication and Upload 1000

Total < 1300

129

5. TESTS AND RESULTS

130

Chapter 6

Conclusions

6.1 Global Assessment and Conclusions

In the domain of industrial applications, this research begun with the two available
workforces: on one side, the skill-full human operator; on the other, the productive
robotic manipulator. In-between there are set of companies, SMEs, that mostly rely
on the former to deliver quality, and eager for the other to have the edge in an in-
creasingly competitive global economy. Technology-unaware operators and complexly-
programmable machines fail to interface each other.

This thesis described a high level programming framework that ultimately delivers
the possibility of transferring human know-how to the industrial manipulator. It pro-
poses a new mean for human motion tracking based on an innovative marker together
with a collection of routines that allows a real-time interface with the robot. And it
does so while caring for the most crucial elements for a successful industrial implemen-
tation in low budget companies: the low cost, the simplicity (minimal changes required
to working cells, minimal intrusion in the process, minimal human interface), readiness
(instant output, real-time capability) and flexibility (possible different marker sizes,
number of cameras, workspace volume, adjustable precision).

The goal of allowing an human to program an industrial manipulator with complete
abstraction of programming concepts has been achieved. But in addiction, it happens
while the operator is kept in his area of comfort: doing the everyday tasks, putting
his skills on work. Instead of an human-robot interaction scheme where the operator
needs to learn a new tool to intuitively command the robot, this framework also allows

131

6. CONCLUSIONS

complete abstraction from the machine. That is, the operator does not need to perform
any new action in order to have the robot programmed, he does not even need to be
aware that the robot exists. His know-how is captured from the daily routine and
transformed into a robot program that mimics the actions. The human is able to
instruct the robot without knowing he is doing so.

From the start, this framework is optimized for industrial feasibility. The marker,
besides being a cheap plastic-printed shape with basic electronics, performs at industrial
grade with high detection rates, high immunity to environment conditions (particularly
lighting and dust) and high flexibility (easily plugged to industrial tools, adaptable in
size). Using industrial cameras is also another robustness and flexibility indicator: they
are fit to harsh conditions by design; the wide range of commercial options makes a
solution available to a wide range of applications — whether an expanded work volume
or a fine accuracy is needed, one can easily choose proper lenses and camera resolution.
Additionally, the light-based marker and the cameras form an advanced sensor-set
that performs without contact and only requiring a clear line of sight. This makes
installation easier and minimally intrusive to the process.

The proposed framework was installed in a Portuguese company, Flupol, which
served as an industrial demonstrator and validator. The former human-operated coat-
ing cell has been robotized and serves now as a hybrid workstation where either painters
or robot can operate. The manipulator painted several shapes, mostly baking trays
and molds, starting with an human demonstration for one sample, and then having
the robot resume production with the motion mimic. The validation and evaluation of
performance is primarily done by human inspection of the finishing quality, but also
by weighting the amount of dispensed taint and measuring the coating thickness. The
results have been approved and, by the time of writing of this dissertation, Flupol has a
fully functional robotized cell with a high level human-robot interface through motion
imitation. The intricate human wrist movements have been successfully captured in its
full six degrees of freedom, and through a series of filtering and smoothing techniques
the robot is able to mimic the human actions. The painting know-how is instanta-
neously transferred from the painter (with over 25 years experience on the field) to the
robot. This is accomplished without operators writing a single line of code, but also
with the bare minimum software interface to start and stop the demonstration process.

132

6.2 Future Work

6.2 Future Work

The proposed motion imitation framework is presently installed at Flupol and serves
as a high level interface for a spray painting industrial robot. Nonetheless much work
can be developed in order to improve the concept and the implementation.

The performance validation at Flupol asserts the industrial feasibility but spray
painting is still a contact-less application. One of the most interesting improvements is
to prepare the system for a full contact task. Eventually, this will lead to the integration
of a sensor force in the robot control loop and, as such, integration of the sensor as
an optional component in the motion demonstration framework. The research on this
topic can significantly expand the areas of applications of the developed system.

On the performance level, it is important to study the actual impact of varying the
number of cameras, changing the camera resolution and varying the marker size. The
conclusions reported in the results chapter of this thesis provide means to predict how
the system output changes with some of those variables. Increasing the resolution and
adding another pair of cameras opposite to the first may effectively boost the playback
accuracy. Yet, it is important to run tests and put these conclusions in numbers. It can
help dimensioning new setups for different applications in matters of both performance
and cost.

A natural evolution of the human-machine interface for this framework would be the
minimization of software interfaces, for instance, by using voice commands to initialize
and finish the demonstration process. There are already much work developed in this
area such that the integration with these kind of solutions would be fairly simple and
to a great profit.

This framework was conceived for an accurate mimic of human moves at the low-
est cost. Comparison with off-the-shelf solutions should be done, in terms of price,
accuracy, and industrial applicability.

Finally, the proposed architecture is supposed to lay the basis for a new method
of robot programming through motion demonstration. From here, every kind of ap-
plication specific optimizations can be built on top of it. For instance, spray painting
applications can benefit with the offline analysis of the trajectory in order to reduce
over-spray whenever possible, or to correct path segments to achieve an uniform taint
thickness along the object surface.

133

6. CONCLUSIONS

134

References

[1] Statistical Department International Federation of
Robotics (IFR). World Robotics 2012 (Executive Summary).
http://www.worldrobotics.org/, 2012. 2, 3

[2] T. Beck, A. Demirguc-Kunt, and R. Levine. SMEs, Growth, and
Poverty. Working Paper 11224, National Bureau of Economic Research, March
2005. 3

[3] Flupol. Flupol - Surface Engineering. 7, 101

[4] M. Ferreira, A. Paulo Moreira, and P. Neto. A low-cost laser scanning
solution for flexible robotic cells: spray coating. The International Journal
of Advanced Manufacturing Technology, 58(9-12):1031–1041, 2012. 9

[5] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey
of robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469 – 483, 2009. 13

[6] G. Biggs and B. Macdonald. A Survey of Robot Programming Systems.
In in Proceedings of the Australasian Conference on Robotics and Automation,
CSIRO, page 27, 2003. 13

[7] G. Hirzinger, J. Bals, M. Otter, and J. Stelter. The DLR-KUKA
success story: robotics research improves industrial robots. Robotics
Automation Magazine, IEEE, 12(3):16–23, 2005. 14

[8] R. Calcagno, F. Rusinà, F Deregibus, AS Vincentelli, and
A Bonivento. Application of wireless technologies in automotive pro-
duction systems. VDI BERICHTE, 1956:57, 2006. 14

135

http://www.worldrobotics.org/
http://www.nber.org/papers/w11224
http://www.nber.org/papers/w11224
http://www.flupol.pt/
http://dx.doi.org/10.1007/s00170-011-3452-x
http://dx.doi.org/10.1007/s00170-011-3452-x

REFERENCES

[9] L. Wang, Y. Tian, and T. Sawaragi. Case-based automatic programming
in robotic assembly production. Industrial Robot: An International Journal,
38(1):86–96, 2011. 16

[10] R. Bischoff, A. Kazi, and M. Seyfarth. The MORPHA style guide for
icon-based programming. In Robot and Human Interactive Communication,
2002. Proceedings. 11th IEEE International Workshop on, pages 482–487. 16

[11] E. Freund and B. Luedemann-Ravit. A system to automate the gener-
ation of program variants for industrial robot applications. In Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on, 2, pages
1856–1861 vol.2. 16

[12] X. Li, O. A. Landsnes, H. Chen, Sudarshan M-V, T. A. Fuhlbrigge,
and M.A. Rege. Automatic Trajectory Generation for Robotic Painting
Application. In Robotics (ISR), 2010 41st International Symposium on and 2010
6th German Conference on Robotics (ROBOTIK), pages 1–6, June. 16

[13] L. Qi, X. Yin, H. Wang, and L. Tao. Virtual engineering: challenges
and solutions for intuitive offline programming for industrial robot. In
Robotics, Automation and Mechatronics, 2008 IEEE Conference on, pages 12–17,
Sept. 16

[14] X. Li and B. Zhang. Toward general industrial robot cell calibration. In
Robotics, Automation and Mechatronics (RAM), 2011 IEEE Conference on, pages
137–142, Sept. 16

[15] H. Yu, J. Shan, and X. Zhu. Off-lineprogramming and remote control for
a palletizing robot. In Computer Science and Automation Engineering (CSAE),
2011 IEEE International Conference on, 2, pages 586–589, June. 17

[16] G. C. I. Lin, T.-F. Lu, and D. Zhang. CAD-based intelligent robot vision
system. pages 156–167, 1995. 17

[17] G. C. I. Lin and T. Lu. CAD-Based Intelligent Robot Workcell, 1995. 17

136

http://dx.doi.org/10.1108/01439911111097887
http://dx.doi.org/10.1108/01439911111097887
+ http://dx.doi.org/10.1117/12.205501
+ http://dx.doi.org/10.1117/12.205501

REFERENCES

[18] Heping C., Weihua S., N. Xi, M. Song, and Y. Chen. Automated robot
trajectory planning for spray painting of free-form surfaces in automo-
tive manufacturing. In Robotics and Automation, 2002. Proceedings. ICRA ’02.
IEEE International Conference on, 1, pages 450–455 vol.1, 2002. 17

[19] Heping C., Weihua S., N. Xi, M. Song, and Y. Chen. Automated robot
trajectory planning for spray painting of free-form surfaces in automo-
tive manufacturing. In Robotics and Automation, 2002. Proceedings. ICRA ’02.
IEEE International Conference on, 1, pages 450–455 vol.1, 2002. 17

[20] Heping C., Weihua S., N. Xi, Y. Chen, A. Roche, and J. Dahl. A general
framework for automatic CAD-guided tool planning for surface manu-
facturing. In Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE
International Conference on, 3, pages 3504–3509 vol.3, 2003. 18

[21] Heping Chen and N. Xi. Automated tool trajectory planning of indus-
trial robots for painting composite surfaces. The International Journal of
Advanced Manufacturing Technology, 35(7-8):680–696, 2008. 18

[22] Heping Chen, T. Fuhlbrigge, and Xiongzi Li. Automated industrial
robot path planning for spray painting process: A review. In Automation
Science and Engineering, 2008. CASE 2008. IEEE International Conference on,
pages 522–527, 2008. 18

[23] T. Pulkkinen, T. Heikkila, M. Sallinen, S. Kivikunnas, and T. Salmi.
2D CAD based robot programming for processing metal profiles in short
series manufacturing. In Control, Automation and Systems, 2008. ICCAS 2008.
International Conference on, pages 156–162, 2008. 18

[24] M. Soron and I. Kalaykov. Generation of continuous tool paths based
on CAD models for Friction Stir Welding in 3D. In Control Automation,
2007. MED ’07. Mediterranean Conference on, pages 1–5, 2007. 18

[25] J Norberto Pires, T. Godinho, and P. Ferreira. CAD interface for
automatic robot welding programming. Industrial Robot: An International
Journal, 31(1):71–76, 2004. 18

137

http://dx.doi.org/10.1007/s00170-006-0746-5
http://dx.doi.org/10.1007/s00170-006-0746-5

REFERENCES

[26] F. Nagata, T. Hase, Z. Haga, M. Omoto, and K. Watanabe.
CAD/CAM-based position/force controller for a mold polishing robot.
Mechatronics, 17(4?5):207 – 216, 2007. 18

[27] P. Neto, N. Mendes, R. Arajo, J. N. Pires, and A. P. Moreira. High-
level robot programming based on CAD: Dealing with unpredictable
environments. Industrial Robot, 39(3):294–303, 2012. Cited By (since 1996):1.
18

[28] P. Neto, J. Norberto Mendes, N.and Pires, and A.P. Moreira. CAD-
based robot programming: The role of Fuzzy-PI force control in un-
structured environments. In Automation Science and Engineering (CASE),
2010 IEEE Conference on, pages 362–367, 2010. 18

[29] S. Waldherr, R.Romero, and S. Thrun. A Gesture Based Interface for
Human-Robot Interaction. Autonomous Robots, 9:151–173, 2000. 19

[30] M. Strobel, J. Illmann, B. Kluge, and F. Marrone. Using Spatial Con-
text Knowledge in Gesture Recognition for Commanding a Domestic
Service Robot. In In Proc. 11th IEEE Workshop on Robot and Human Interac-
tive Communication, pages 468–473, 2002. 19

[31] P. Kumar, J. Verma, and S. Prasad. Hand Data Glove: A Wearable
Real-Time Device for Human-Computer Interaction. Hand, 43, 2012. 19

[32] J. Norberto Pires. Robot-by-voice: Experiments on commanding an
industrial robot using the human voice. Industrial Robot, an International
Journal, 32, 2005. 20

[33] R. Dillmann, O. Rogalla, M. Ehrenmann, R Zollner, and M. Bor-
degoni. Learning robot behaviour and skills based on human demon-
stration and advice: the machine learning paradigm. In ROBOTICS
RESEARCH-INTERNATIONAL SYMPOSIUM-, 9, pages 229–238, 2000. 20,
21

[34] R. Zollner, O. Rogalla, and R. Dillmann. Integration of tactile sensors
in a programming by demonstration system. In Robotics and Automation,

138

http://www.sciencedirect.com/science/article/pii/S0957415807000141
www.scopus.com
www.scopus.com
www.scopus.com

REFERENCES

2001. Proceedings 2001 ICRA. IEEE International Conference on, 3, pages 2578–

2583 vol.3, 2001. 20

[35] R. Zollner, O. Rogalla, R. Dillmann, and M. Zollner. Understanding

users intention: programming fine manipulation tasks by demonstra-

tion. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Confer-

ence on, 2, pages 1114–1119 vol.2, 2002. 20

[36] O. Rogalla, M. Ehrenmann, and R. Dillmann. A sensor fusion approach

for PbD. In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ

International Conference on, 2, pages 1040–1045 vol.2, 1998. 21

[37] A. Skoglund, B. Iliev, B. Kadmiry, and R. Palm. Programming by

Demonstration of Pick-and-Place Tasks for Industrial Manipulators us-

ing Task Primitives. In Computational Intelligence in Robotics and Automation,

2007. CIRA 2007. International Symposium on, pages 368–373, 2007. 21

[38] Y. Maeda and Y. Moriyama. View-based teaching/playback for indus-

trial manipulators. In Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on, pages 4306–4311, 2011. 21

[39] J Norberto Pires, G. Veiga, and R. Araújo. Programming-by-

demonstration in the coworker scenario for SMEs. Industrial Robot: An

International Journal, 36(1):73–83, 2009. 21

[40] M. Stoica, F. Sisak, and A. D. Morosan. Reinforcement learning algo-

rithm for industrial robot programming by demonstration. In Optimiza-

tion of Electrical and Electronic Equipment (OPTIM), 2012 13th International

Conference on, pages 1517–1524, 2012. 22

[41] B. Hein and Heinz Worn. Intuitive and model-based on-line program-

ming of industrial robots: New input devices. In Intelligent Robots and

Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 3064–

3069, 2009. 22, 23, 52

139

REFERENCES

[42] B. Hein, M. Hensel, and H. Wo?rn. Intuitive and model-based on-line
programming of industrial robots: A modular on-line programming en-
vironment. In Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on, pages 3952–3957, 2008. 22

[43] M. Field, Z. Pan, D. Stirling, and F. Naghdy. Human motion capture
sensors and analysis in robotics. Industrial Robot, 38(2):163–171, 2011. 22

[44] A. Elgammal and Chan-Su Lee. Tracking People on a Torus. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 31(3):520–538, 2009.
22, 52

[45] A.P. Shon, K. Grochow, and R. P N Rao. Robotic imitation from human
motion capture using Gaussian processes. In Humanoid Robots, 2005 5th
IEEE-RAS International Conference on, pages 129–134, 2005. 22

[46] N. Naksuk, C. S G Lee, and S. Rietdyk. Whole-body human-to-
humanoid motion transfer. In Humanoid Robots, 2005 5th IEEE-RAS In-
ternational Conference on, pages 104–109, 2005. 23, 52

[47] L. Sigal, A. Balan, and M.J. Black. HumanEva: Synchronized Video
and Motion Capture Dataset and Baseline Algorithm for Evaluation
of Articulated Human Motion. International Journal of Computer Vision,
87(1-2):4–27, 2010. 23, 52

[48] P. Azad, T. Asfour, and R. Dillmann. Robust real-time stereo-based
markerless human motion capture. In Humanoid Robots, 2008. Humanoids
2008. 8th IEEE-RAS International Conference on, pages 700–707, 2008. 23

[49] P. Azad, A. Ude, T. Asfour, and R. Dillmann. Stereo-based Markerless
Human Motion Capture for Humanoid Robot Systems. In Robotics and
Automation, 2007 IEEE International Conference on, pages 3951–3956, 2007. 23

[50] A.G. Cutti, A. Giovanardi, L. Rocchi, and A. Davalli. A simple test to
assess the static and dynamic accuracy of an inertial sensors system for
human movement analysis. In Engineering in Medicine and Biology Society,
2006. EMBS ’06. 28th Annual International Conference of the IEEE, pages 5912–
5915, 2006. 23

140

http://dx.doi.org/10.1007/s11263-009-0273-6
http://dx.doi.org/10.1007/s11263-009-0273-6
http://dx.doi.org/10.1007/s11263-009-0273-6

REFERENCES

[51] T. Yamamoto and T. Fujinami. Hierarchical organization of the coordi-
native structure of the skill of clay kneading. Hum Mov Sci, 27(5):812–22,
2008. 23

[52] J. Moldenhauer, I. Boesnach, T. Beth, V. Wank, and K. Bos. Analysis
of Human Motion for Humanoid Robots. In Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages
311–316, 2005. 23

[53] A. Y. Benbasat and J. A. Paradiso. An Inertial Measurement Frame-
work for Gesture Recognition and Applications. In Revised Papers from
the International Gesture Workshop on Gesture and Sign Languages in Human-
Computer Interaction, GW ’01, pages 9–20, London, UK, UK, 2002. Springer-
Verlag. 23

[54] Chien-Chou Lin. A hierarchical path planning of manipulators using
memetic algorithm. In Information and Automation, 2009. ICIA ’09. Interna-
tional Conference on, pages 746–750, 2009. 23

[55] J. Aleotti, S. Caselli, and G. Maccherozzi. Trajectory reconstruc-
tion with NURBS curves for robot programming by demonstration. In
Computational Intelligence in Robotics and Automation, 2005. CIRA 2005. Pro-
ceedings. 2005 IEEE International Symposium on, pages 73–78, 2005. 24

[56] Joon-Young Kim, Dong-Hyeok Kim, and Sung-Rak Kim. On-line
minimum-time trajectory planning for industrial manipulators. In Con-
trol, Automation and Systems, 2007. ICCAS ’07. International Conference on,
pages 36–40, 2007. 24

[57] W. Li, G. Liu, Y. Wang, J. Zhi, S. Ma, and T. Chen. Optimized tracjec-
tory planning algorithm for industrial robot. In Fuzzy Systems and Knowl-
edge Discovery (FSKD), 2012 9th International Conference on, pages 2397–2400,
2012. 24

[58] G. Xu and Zhengyou Zhang. Epipolar Geometry in Stereo, Motion, and Object
Recognition: A Unified Approach. Kluwer Academic Publishers, Norwell, MA,
USA, 1996. 35, 38, 39

141

http://dl.acm.org/citation.cfm?id=647592.728869
http://dl.acm.org/citation.cfm?id=647592.728869

REFERENCES

[59] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004. 38, 39, 40

[60] P. Malheiros, P. Costa, and A. Paulo Moreira. Robust 3D motion
capture and object positioning system using light emitting markers syn-
chronized with stereoscopic camera system. UPIN NPat.77/ Pat. 41, Int.
Patent PCT/IB2009/007186. 40

[61] R. Y. Tsai. Radiometry. chapter A versatile camera calibration technique for
high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and
lenses, pages 221–244. Jones and Bartlett Publishers, Inc., USA, 1992. 48

[62] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE
Trans. Pattern Anal. Mach. Intell., 22(11):1330–1334, November 2000. 48

[63] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint. MIT
Press, Cambridge, MA, USA, 1993. 48

[64] Industrial Robotics: Programming, Simulation and Applications. Free Open Access
Book — InTechOpen. 50

[65] Peter Fixell. Absolute Accuracy Marketing Presentation. ABB Automa-
tion Technologies AB. 51

[66] G. Lukács, A. D. Marshall, and R. R. Martin. Geometric least-squares
fitting of spheres, cylinders, cones and tori. Technical report, 1997. 67

[67] V. Pratt and P. Point. Direct Least-Squares Fitting of Algebraic Sur-
faces, 1987. 67

[68] S. Joon Ahn, W. Rauh, and H. Warnecke. Least-squares orthogonal dis-
tances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern
Recognition, 34(12):2283 – 2303, 2001. 70

[69] W. Kabsch. A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica Section A, 32(5):922–923, September 1976. 76

142

http://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100429&DB=worldwide.espacenet.com&locale=en_EP&CC=WO&NR=2010046759A2&KC=A2&ND=4
http://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100429&DB=worldwide.espacenet.com&locale=en_EP&CC=WO&NR=2010046759A2&KC=A2&ND=4
http://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100429&DB=worldwide.espacenet.com&locale=en_EP&CC=WO&NR=2010046759A2&KC=A2&ND=4
http://dl.acm.org/citation.cfm?id=136913.136938
http://dx.doi.org/10.1109/34.888718
http://www.intechopen.com/books/show/title/industrial_robotics_programming_simulation_and_applications
http://www.sciencedirect.com/science/article/pii/S0031320300001527
http://www.sciencedirect.com/science/article/pii/S0031320300001527
http://dx.doi.org/10.1107/s0567739476001873

REFERENCES

[70] J. Pan, L. Zhang, and D. Manocha. Collision-free and smooth trajec-
tory computation in cluttered environments. The International Journal of
Robotics Research, 31(10):1155–1175, 2012. 80

[71] H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe. Robot-aided
neurorehabilitation. IEEE Trans Rehabil Eng, 6(1):75–87, March 1998. 82

[72] L. Piegl and W. Tiller. The NURBS book (2nd ed.). Springer-Verlag New
York, Inc., New York, NY, USA, 1997. 82

[73] G. Farin. Curves and surfaces for computer aided geometric design (3rd ed.): a
practical guide. Academic Press Professional, Inc., San Diego, CA, USA, 1993. 82

[74] K. Shoemake. Animating rotation with quaternion curves. SIGGRAPH
Comput. Graph., 19(3):245–254, July 1985. 87

[75] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and
animation. Technical report, 1998. 87, 89, 90

[76] W. Boehm. On cubics: A survey. Computer Graphics and Image Processing,
19(3):201 – 226, 1982. 89

[77] A. H. Barr, B. Currin, S. Gabriel, J. F. Hughes, and S. Design. Smooth
Interpolation of Orientations with Angular Velocity Constraints using
Quaternions, 1992. 89

[78] S. Chatterjee and A.S. Hadi. Regression Analysis by Example. Wiley Series
in Probability and Statistics. Wiley, 2006. 93

143

http://ijr.sagepub.com/content/31/10/1155.abstract
http://ijr.sagepub.com/content/31/10/1155.abstract
http://view.ncbi.nlm.nih.gov/pubmed/9535526
http://view.ncbi.nlm.nih.gov/pubmed/9535526
http://doi.acm.org/10.1145/325165.325242
http://www.sciencedirect.com/science/article/pii/0146664X82900090
http://books.google.pt/books?id=uiu5XsAA9kYC

	List of Figures
	List of Tables
	1 Introduction
	1.1 On the use of industrial robotic manipulators
	1.1.1 The quest for human-robot interfaces

	1.2 Motivation
	1.2.1 A case study

	1.3 Proposed Solution/Aims
	1.3.1 A Previous Approach

	1.4 Thesis Outline

	2 Related Work
	2.1 Programming Industrial Robots: the Teach Pendant and Simulators
	2.2 Taking advantage of CAD
	2.3 Programming by motion demonstration

	3 Background and Notation
	3.1 Matrix Notation
	3.2 Coordinate Systems, frames and transformations
	3.2.1 Homogeneous Coordinate System
	3.2.2 Orientation of a Rigid Body: representations

	3.3 3D computer vision
	3.3.1 Camera Model
	3.3.2 Stereoscopy: 3D from two-view geometry
	3.3.3 Camera/Stereo Calibration
	3.3.4 Tracking Luminous Markers — The sincrovision

	3.4 Industrial Manipulators

	4 Motion Imitation Framework
	4.1 System Architecture : Overview
	4.2 Camera and Stereo Calibration
	4.3 Motion Tracking
	4.3.1 6-DoF Marker
	4.3.1.1 Description: Hardware and Properties
	4.3.1.2 Detection
	4.3.1.3 Per-Image Analisys
	4.3.1.4 Stereo — cluster matching
	4.3.1.5 Estimating Position
	4.3.1.6 Estimating Orientation
	4.3.1.7 Limitations

	4.4 Interfacing an Industrial Manipulator
	4.4.1 Data Filtering
	4.4.1.1 Position Smoothing
	4.4.1.2 Orientation Smoothing

	4.4.2 Path Segmentation
	4.4.3 Automatic Code Generation

	5 Tests and Results
	5.1 Industrial Demonstrator — Setup and Hardware
	5.2 Tests and Results
	5.2.1 Camera Calibration
	5.2.2 Marker Detection
	5.2.2.1 Colour Calibration
	5.2.2.2 Detection and Pose Estimation

	5.2.3 Marker Accuracy in the Workspace
	5.2.4 Filtering and Smoothing
	5.2.5 Timings

	6 Conclusions
	6.1 Global Assessment and Conclusions
	6.2 Future Work

	References

