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Abstract

This thesis investigates the learning of motion skills for humanoid robots. As ground-
work, a humanoid robot with integrated fall management was developed as an experi-
mental platform. Then, two different approaches for creating motion skills were investi-
gated. First, one that is based on Cartesian quintic splines with optimized parameters.
Second, a reinforcement learning-based approach that utilizes the first approach as a
reference motion to guide the learning. Both approaches were tested on the developed
robot and on further simulated robots to show their generalization. A special focus was
set on the locomotion skill, but a standing-up and kick skill are also discussed.

Zusammenfassung

Diese Dissertation beschäftigt sich mit dem Lernen von Bewegungsfähigkeiten für hu-
manoide Roboter. Als Grundlage wurde zunächst ein humanoider Roboter mit inte-
griertem Fall Management entwickelt, welcher als Experimentalplatform dient. Dann
wurden zwei verschiedene Ansätze für die Erstellung von Bewegungsfähigkeiten unter-
sucht. Zu erst einer der kartesische quintische Splines mit optimierten Parametern nutzt.
Danach wurde ein Ansatz basierend auf bestärkendem Lernen untersucht, welcher den
ersten Ansatz als Referenzbewegung benutzt. Beide Ansätze wurden sowohl auf der
entwickelten Roboterplatform, als auch auf weiteren simulierten Robotern getestet um
die Generalisierbarkeit zu zeigen. Ein besonderer Fokus wurde auf die Fähigkeit des
Gehens gelegt, aber auch Aufsteh- und Schussfähigkeiten werden diskutiert.
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Chapter 1

Introduction

1.1 Motivation

In the last decades, robots have proven their usefulness in a wide range of domains,
e.g., mass production in factories [SK16, pp.1386-1392] or space exploration [SK16,
pp.1424-1437]. Still, they are rare in our everyday lives, as integration into our typi-
cal environment is challenging. The human everyday domain is complex and dynamic,
making it difficult for robots to perform tasks successfully. Furthermore, it is specifi-
cally designed for human abilities, e.g., by using stairs adapted for the human bipedal
locomotion system. Therefore, commonly used robot types, i.e., wheeled platforms, can
only be used to a certain extent. Humanoid robots, on the other hand, pose the chance
of integrating robots into the human domain better [SK16, p. 1790] and can be used
to improve our understanding of how humans work by trying to replicate their abili-
ties [SK19]. However, they come with additional challenges due to their complicated
hardware and the need for complex control software.

Research on humanoid robots has been growing constantly since the middle of the
1990s (see Figure 1.1). While it is still a small research topic compared to robotics
overall, the general public’s interest is high. Humanoid robots have been featured in
many famous science fiction works. Thus, the viewers have seen how they could benefit
from humanoid robots working in their environment. This includes tedious tasks, e.g.,
cleaning, or fields of work where human laborers are missing, e.g., elderly care. Still,
these expectations can not yet be satisfied by the current state of the art in humanoid
robotics.

We identified three main issues that need to be solved to allow a wide application of
humanoid robots. First, they are not robust enough. Due to their bipedal nature, they
are inherently unstable and might fall down. The impact of these falls often damages the
robot’s hardware, especially the gears, requiring expensive and time-intensive repairs.
Therefore, most humanoids are currently used in controlled lab environments where falls
can be prevented. Second, they are too expensive to build. Due to their high degree of
freedom (DoF) kinematic structure, they require a high number of actuators and linking
mechanical elements. These actuators also need to be precise to ensure that the robot can
be kept stable, as well as strong enough to achieve the high torque requirements for the
leg joints. Third, they lack reliable and simple to create motion skills. In comparison to
other robot types, i.e., robotic arms and wheeled platforms, humanoids pose additional
challenges as constant balance needs to be ensured and multiple kinematic chains need
to be controlled. This prevents or hinders the use of many simple approaches, e.g.,
teaching a motion trajectory by moving the endeffector manually, as it is often done for
robotic arms. Furthermore, generalizing skills for different humanoids is complicated as

1
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Figure 1.1: Number of publications containing the term “humanoid robot” (blue) and
the term “robot” (orange) per year. Both research areas show an increase in publica-
tions over the year, while the general robotics topic has naturally a much higher number
of publications. Data is extracted from scholar.google.com.

they have different kinematic and dynamic properties.
At the same time, new developments in deep reinforcement learning (DRL) and the

constantly increasing computational power of computers provide new chances to tackle
these issues. This thesis contributes to all three issues by providing new developments
for humanoid hardware, a novel approach for integrated fall management, and, most
importantly, new approaches for motion skill creation.

1.2 Aims of this Thesis

This thesis aims to advance research in the field of humanoid robotics in a meaningful
way. Therefore, the developed approaches should be tested on multiple robots to ensure
that they are generally applicable rather than specific to one kinematic configuration or
robot size. Furthermore, the approaches should be tested in realistic conditions. This
is difficult, as the capabilities of humanoid robots are far from being able to be applied
to real-world scenarios. Robotic competitions, such as RoboCup, provide an excellent
intermediate step to this goal since the domain is less controlled than a lab environment
but still simpler than the natural human domain.

The requirements for a well-working humanoid robot are manifold, but one funda-
mental pillar is robust bipedal locomotion, which also includes the management of falls
and standing-up motions. Since falls are not entirely avoidable, it is essential that the
robot sustains a fall without significant damage and that it can stand up again by itself.
Otherwise, the robot could never be fully autonomous, as it would always require the
assistance of a human after falls. Therefore, achieving a combination of a bipedal walk
with fall management is one of the objectives of this thesis. Since DRL approaches have
shown viable results in the past, it should be investigated whether they can be applied
to achieve stable locomotion and other humanoid motions. An auspicious direction
combines DRL with reference motions (RMs) to guide the learning process. Until now,
these were either recorded motion capture data or manually generated as keyframe ani-
mations. Rather than using one of these, it will be explored whether conventional walk
controllers can provide better RMs.Here, it should be investigated how the performance
of the learned policy is related to the quality of the RM.

Another critical aspect of the robot is its price, which limits its use cases. Most
current humanoid robots, e.g., Atlas [NSP19a], or Valkyrie [RSH+15], are expensive
since they need precise actuators to achieve stable walking. While some low-cost robots

scholar.google.com
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exist, e.g., the Darwin-OP [HTA+11], they pose additional challenges due to imprecise
actuators, primarily due to backlash, and noisier sensors. Despite this, only low-cost
hardware will be used in this thesis. On the one hand, to improve the hardware while
maintaining low-cost and, on the other hand, to verify that the software approaches are
applicable to hardware that consumers could buy one day.

1.3 Research Questions

This section explains the main research questions investigated by this thesis and why
they are relevant.

Improvement of Low-Cost Humanoids Can current low-cost humanoid robots
be improved to achieve a higher control loop rate while maintaining the widespread
serial bus system? Can the load on the knee joints be reduced so that energy is saved
and cheaper servos can be used? These questions are essential to achieve cost-efficient
hardware for the other experiments.

Quality of Reference Motion If a reference motion is used during reinforcement
learning (RL) to shape the reward, how does the quality of the RM influence the quality
of the learned policy? Is there a proportional relationship between the performance of
the RM and the policy? Does the training fail if the quality of the RM is below a certain
value? Previous approaches have used RM that are not optimized and, therefore, may
limit the quality of the resulting policy.

State, Action and Reward Design for DRL Walking Which state and action
designs lead to a well-performing policy? Is the usage of Cartesian space superior to
joint space? How can orientations be represented best in Cartesian space so that the
neural network of the policy can handle it? Does an action-based reward improve the
learning speed compared to a state-based one? The quality of the resulting policies
depends on these choices.

1.4 Contributions

This section lists the main contributions of this thesis toward the different research
fields.

Improving Dynamixel Bus Communication The shortfalls of current interfacing
solutions for bus systems with the Dynamixel protocol (see Section 2.2.1) were inves-
tigated. Based on this, a novel approach (the QUADDXL) was proposed, allowing a
significant increase in the achieved control rate. This system was successfully integrated
into the Wolfgang-OP platform, and its applicability was proven. Since Dynamixel ser-
vos are one of the most widespread robot servos, the impact on the general robotics
community is high. The approach was already adapted by others, i.e., by the Humanoid
Soccer League (HSL) team CITBrains in their new platform SUSTAINA-OP [22].

PEA for Knee Actuator Torque Reduction A low-cost parallel elastic actuator
(PEA) solution was developed, which reduces the load on the knee actuators of humanoid
robots. Thereby reducing energy consumption and allowing the usage of smaller servos.
The formula to achieve the optimal torque reduction was deduced, and its validity was
tested on real hardware.
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Robot Platform The humanoid robot platform Wolfgang-OP, which integrates mul-
tiple new approaches, i.e., PEAs in the knees and 3D printed elastic elements was
developed. The platform is entirely open source and open hardware. Thus it can be
built by others and be used as a reference design when developing new platforms. It
also features accurate simulation models for PyBullet [15], and Webots [Mic04]. Fur-
thermore, it is one of the first humanoid robots with a Robot Operating System (ROS)
2 software stack for locomotion and fall management. During the development of the
software, contributions were also made to the general ROS 2 community. This platform
was developed together with the Hamburg Bit-Bots (see Chapter 3 for details).

Software Abstraction Layer for Humanoid Robots A new architectonic ap-
proach, called Humanoid Control Module (HCM), was developed, which builds upon
the three-tier (3T) [PBJFG+97] approach. It adds a fourth layer, which abstracts from
the fact that the robot is humanoid by taking care of fall management and hardware
issues, as well as implementing an actuator control mutex. On the one hand, it allows
the motion skills to be decoupled into different modules, and on the other, it allows
control of the robot in a similar fashion to a wheeled robot. This simplifies software
development for humanoid robots.

Fall Detection Different classification approaches based on different modalities for the
detection of falling in humanoid robots were compared. The results allow the detection
of falls with higher reliability and a longer lead time, thus allowing counter measurements
and thereby reducing damages during falls. Fall detection for humanoid robots is still
little investigated, as most robots only work in lab conditions where falls are externally
prevented. It is still an important skill to allow the usage of humanoid robots in real-
world scenarios.

Decision Making Framework Co-development of a new high-level control architec-
ture (called Dynamic Stack Decider (DSD)) that is the basis for the HCM. It allows
programming dynamic behaviors in an understandable way. It has also been used to
program the high-level agent behavior for HSL and for building a blackjack dealer robot
[FGN+23].

Optimized Spline Motions An approach (called OptiQuint) using parameterized
Cartesian quintic spline motions with automatic parameter optimization was developed.
It was shown that it can be used for bipedal walking, as well as standing up and kick
motions. Its generalizability has been proven by application on various robot platforms.
The automatic parameter optimization makes it convenient to use for others. While it
may not provide the fastest and most stable walk controller, it is easy to deploy onto
a new robot and, therefore, unique. The impact of having such a simple-to-use walk
controller is proven as others, e.g., the HSL team NUbots, have already successfully used
it.

Reinforcement Learning with Optimized Reference Motion An approach (call-
ed DeepQuintic) was developed to create motion policies with DRL. In contrast to
existing approaches, the RM was created using OptiQuint, instead of relying on motion
capture (MOCAP) or keyframe animations. The relationship of the policy performance
with the quality of the RM was investigated, and it could be shown that a better RM
leads to an improvement of the policy’s performance.
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Reinforcement Learning using Position Control The DeepQuintic approach was
used to investigate how the space representation influences the policy’s performance. It
could be shown that the usage of Cartesian space is beneficial for bipedal locomotion.
Furthermore, it was shown that the choice of the initial action of the policy has a high
impact on the training if position control is used. In addition, different other choices for
the design of the training process were evaluated.

1.5 Publications

Parts of this thesis have already been published in research papers. These are listed be-
low with a short explanation of their content. All soft- and hardware that was developed
was released open source (see Section 1.6).

1.5.1 Core Academic Publications

This section describes the publications that are directly related to this thesis.

Marc Bestmann, Jasper Güldenstein, and Jianwei Zhang. “High-Frequency Multi
Bus Servo and Sensor Communication Using the Dynamixel Protocol.” RoboCup
Symposium, 2019.

[BGZ19] compares the different available interface solutions for servo-sensor-bus system
using RS-485 and the Dynamixel protocol. It investigates the communication bottle-
necks that limit their performance and proposes a new approach (called QUADDXL)
that allows higher control loop rates. Additionally, a compatible inertial measurement
unit (IMU) module and a foot pressure sensor are developed that can be read at a higher
rate than previous models. Furthermore, open-source software is provided to directly
control the hardware from ROS.

Marc Bestmann, Jianwei Zhang “Humanoid Control Module: An Abstraction Layer
for Humanoid Robots” IEEE ICARSC, 2020.

[BZ20] presents a new software architecture approach to decouple parts of the motion
software stack as well as handling the fall management of a humanoid robot. Using
this approach allows the user to abstract from the complicated bipedal locomotion of a
humanoid and thus allows navigation as simple as on a wheeled robot.

Martin Poppinga, Marc Bestmann “DSD - Dynamic Stack Decider: A Lightweight
Decision Making Framework for Robots and Software Agents” International Journal
of Social Robotics, 2021

[PB22] proposes a new decision-making framework called Dynamic Stack Decider. It
combines ideas from existing approaches, e.g., behavior tress [CÖ18], to achieve a
lightweight and simple-to-use framework that allows the implementation of complex be-
haviors. Examples of the usage and a qualitative comparison to the existing frameworks
are given.
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Marc Bestmann, Jasper Güldenstein, Florian Vahl, and Jianwei Zhang “Wolfgang-
OP: A Robust Humanoid Robot Platform for Research and Competitions” IEEE Hu-
manoids, 2021.

[BGVZ21] describes the open-source humanoid robot platform “Wolfgang-OP”. Special
attention is given to the new features of this platform. The main contribution is a new
low-cost PEA for the robot’s knee, which reduces its load and thereby allows the usage
of smaller motors and conserves energy. The paper also includes a formula to derive
the necessary spring force for the PEA as well as real-life experiments that verify the
approach. Additionally, the integration of the QUADDXL approach into a complete
robot and the validation of its performance are shown. Furthermore, 3D-printed elastic
elements are presented that reduce the damage to the robot’s hardware during falls.

Sebastian Stelter, Marc Bestmann, Norman Hendrich, and Jianwei Zhang “Fast
and Reliable Stand-Up Motions for Humanoid Robots Using Spline Interpolation and
Parameter Optimization” IEEE ICAR, 2021.

[SBHZ21] shows how usage of parameterized Cartesian quintic splines can create stand-
ing-up motions for humanoid robots. An approach for automatic parameter optimization
is presented and tested on multiple robot models. Additionally, it is shown that this
approach successfully reduces the necessary time to stand up and that the parameter
optimization is superior to manual parameter tuning. Although this paper was published
before [BZ22], it is building up on it.

Marc Bestmann, Jianwei Zhang “Bipedal Walking on Humanoid Robots through
Parameter Optimization” RoboCup Symposium, 2022.
(nominated for best paper award)

[BZ22] describes a generic approach for bipedal walking based on parameterized Carte-
sian quintic splines. An automatic parameter optimization method is proposed, and
different optimization algorithms are evaluated. Furthermore, it is shown that the ap-
proach works on a wide range of robot platforms, and the achieved baselines are provided.

Marc Bestmann, Jianwei Zhang “Reference Motion Quality and Design Choices for
Bipedal Walking with DeepRL”, submitted to International Journal of Humanoid
Robotics, 2023

[BZ23] investigates the influence of the reference motion’s quality in RL. It uses the walk
engine from [BZ22] as references with parameters of different qualities. Furthermore, the
paper describes our various experiments on the design of the RL training environment.
The paper was submitted briefly before finishing this thesis and is, therefore, at the time
of writing still in the peer-review process.

1.5.2 Further Academic Publications

This section describes further publications that are not the core of this thesis but are
loosely related, mainly because they use the same robot platform.
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Niklas Fiedler, Marc Bestmann, Jianwei Zhang “Position Estimation on Image-
Based Heat Map Input using Particle Filters in Cartesian Space” IEEE ICPS/MFI,
2019.

[FBZ19] uses a particle filter to improve the position estimation of a ball that is detected
with a fully convolutional neural network (FCNN). An early version of the Wolfgang-OP
robot was used in the experiments.

Niklas Fiedler, Hendrik Brandt, Jan Gutsche, Florian Vahl, Jonas Hagge, Marc Best-

mann “An Open Source Vision Pipeline Approach for RoboCup Humanoid Soccer”,
RoboCup Symposium, 2019.

[FBG+19] describes the open-source vision pipeline used on the Wolfgang-OP robot in
the RoboCup competitions. Its runtime and object detection performances are evalu-
ated.

Marc Bestmann, Timon Engelke, Niklas Fiedler, Jasper Güldenstein, Jan Gutsche,
Jonas Hagge, and Florian Vahl “TORSO-21 Dataset: Typical Objects in RoboCup
Soccer 2021”, RoboCup Symposium, 2021.

[BEF+22] provides a standardized dataset for the RoboCup humanoid soccer domain
with a baseline for object detection on it. The dataset contains many images recorded
by or showing a Wolfgang-OP robot and was used to train the vision networks.

Florian Vahl, Jan Gutsche, Marc Bestmann, and Jianwei Zhang “YOEO – You Only
Encode Once: A CNN for Embedded Object Detection and Semantic Segmentation”
IEEE ROBIO, 2021.

[VGBZ21] presents a novel YOLO-like neural network architecture that allows object
detection and image segmentation at the same time. It was later deployed on the
Wolfgang-OP for participation in RoboCup.

1.5.3 Team Description Papers

These team description papers also describe parts of this thesis that have been used in
RoboCup. They are created for participation in the RoboCup championship and are
not peer-reviewed. Thus, they are more like technical reports. Still, they are read and
cited by other teams and researchers.

Marc Bestmann et al. “Hamburg Bit-Bots and WF Wolves Team Description for
RoboCup 2019 Humanoid KidSize” RoboCup, 2019.

[BBE+19] describes the first developments for the DSD, the walk parameter optimization
and the Wolfgang-OP.

Marc Bestmann et al. “Hamburg Bit-Bots Humanoid League 2020” RoboCup, 2020.
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[BFGH20] describes issues of integrating the previous version of the walk controller into
the software stack and the development of the Wolfgang-OP platform.

Jasper Güldenstein and Marc Bestmann “Hamburg Bit-Bots Team Description for
RoboCup 2022” RoboCup, 2022.

[GB22] describes the development of the spline-based stand-up motions and the first
work on the RL based walking.

1.6 Thesis Structure

Some things described in this thesis have been developed in cooperation with colleagues
or students. Leaving these parts out is not feasible as components build up on each
other. Instead, a box, as shown below, is used to clarify where others have made a
significant contribution and what was not done by me.

This box shows that parts have been done in cooperation with others.

All digital supplementary material for this thesis is aggregated at [1]. This includes
links to the open-source repositories and various videos.

This thesis consists of two main parts, the development of the experimental platform
and the approaches for creating motion skills (see also Figure 1.2). For the first part, a
robust, low-cost humanoid robot platform was developed (see Chapter 3). It is usable
for the experiments of this thesis, but it is also used for participation in RoboCup.
This way, the thesis results were tested during competitions.Since the later experiments
for the motion skills require multimodal sensing capabilities, foot pressure sensors, as
well as IMUs, were integrated into the robot. Furthermore, the hardware interface was
improved for a fast perception-action-cycle that allows closed-loop control. The issue of
high loads on the knee joints was addressed by developing a new PEA based approach
for load reduction. Finally, adding elastic elements improved the robustness of falls.
These hardware modifications alone are not sufficient to make the robot robust against
falls since it also needs to move into a safe pose for the fall. To achieve this, a new
software architecture approach for handling fall management is created, and different
fall classifiers are investigated (see Chapter 4). Originally, it was planned to use this
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to train the reinforcement policy directly on the robot. These plans were later changed
because the training time would be too long, resulting in too much wear on the hardware.

For the creation of motion skills, two different approaches are presented. The first
approach is based on generating motion patterns with parameterized Cartesian quintic
splines (see Chapter 5). It is shown how their parameters can be optimized and that the
approach is applicable to a wide variety of robots and different types of motion skills.
The second approach utilizes a novel approach based on RL that utilizes locomotion
based on quintic splines as a reference motion (see Chapter 6). The influence of the
reference motion quality, as well as various environment design choices, is investigated,
and the generalizability of the approach is demonstrated.



Chapter 2

Basics

This chapter describes the fundamentals that are necessary to understand the thesis.
First, humanoid robots are defined in Section 2.1. Then, servo motors are described
in Section 2.2 with a focus on the Dynamixel servos that were used in this thesis.
Afterward, the ROS middleware is described in Section 2.3 as the software in this thesis
uses it. This is followed by an overview of splines in Section 2.4. Finally, the RoboCup
competition is described in Section 2.5.

2.1 Humanoid Robots

Humanoid robots are defined rather broadly without an exact and commonly accepted
definition. Most definitions are centered around being human-like in shape or function.

• “The field of humanoid robotics focuses on the creation of robots that are directly
inspired by human capabilities” [SK16, p.1789]

• “Per definition, humanoid robots are characterized by a human-like appearance
and/or functionality.” [MFL19]

• “A humanoid robot is a robot that has a human-like shape.” [KHHY14, p.1]

A more clearly defined subtype of humanoid robots are androids. These “are de-
signed to have a very human-like appearance with skin, teeth, hair, and clothes” [SK16,
p.1937]. Examples of an android robot and a non-android humanoid robot can be seen
in Figure 2.1.

There are different reasons for the research on humanoid robots [SK16, pp.1790-
1791]. Some of them relate to the field of human-robot interaction, e.g., understanding
human psychology through interaction with robots. These typically require human-
looking robots (androids) rather than a robot being able to perform human motion skills.
Nevertheless, there are also reasons to create robots that may not look human-like but
have similar physical properties. First, we know that humans can perform various tasks
well. Therefore, imitating our physiology is a promising approach to create a robot
with general capabilities. Second, the environment humans created is adapted to them,
e.g., we use stairs that are practical for bipedal walking and have high wall shelves
that can only be reached by having a vertical body. It would also be possible to adapt
the environment to the robot’s abilities which is, for example, done in warehouses for
logistic robots. Still, this would require extreme efforts and may reduce the usability
of the environment by humans. Therefore, it makes sense to adapt the robots to the
environment and not vice versa. See also Section 3.1.1 for an overview of humanoid
robot platforms.

10
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Figure 2.1: Comparison of the Actroid android robot (left) and the Atlas humanoid
robot (right). [SK16, pp.1791-1792]

2.2 Servo Motors

A servo is a type of actuator that allows it to directly control its position. It usually
consists of a direct current (DC) motor, a gearbox, a rotary encoder, and a microcon-
troller. Additionally, it often includes a bus interface. It utilizes closed-loop control that
compares its current state to a desired input state [Poo89, p.98] by using the rotary sen-
sor and the microcontroller. Different types of servos can be classified based on the
provided power (AC/DC) and on how the energy is transmitted to the electromagnets
(brushed/brushless). Since only brushed DC servos are used in this thesis, the word
“servo” will refer to this type of servo.

2.2.1 Dynamixel Servos

One of the most widespread robot servo motor types is the Dynamixel (DXL) series
from Robotis. Since this servo type is used in this thesis, it is explained in detail in the
following. These servos combine a DC motor, a gearbox, and control electronics into a
small casing that allows easy integration into a robot (see Figure 2.2). The servo uses
a daisy-chained serial bus for power and half-duplex communication. This reduces the
number of cables in the robot, as only one cable is necessary for each limb instead of one
for each motor. Thus only five cables are necessary for a humanoid robot (two arms, two
legs, one head) instead of the ≥ 20 cables required for parallel communication with each
servo. Additionally, it is possible to use the same bus system for different sensors that
can communicate with the same protocol. This bus connection and the used protocol
are explained in detail in Sections 2.2.2 and 2.2.3, respectively.

The integrated electronics consist of an STM32F013 microcontroller, power manage-
ment, a bus transceiver, and a rotary encoder to sense the servo’s position. The position
sensor is an AS5045 spinning current Hall effect sensor with a 12-bit resolution (ca. 0.1◦

resolution). It measures the rotation of a magnet attached to the output axis.
The servo provides the following control modes: current, velocity, position, multi-

turn position, current-based position, and pulse-width modulation (PWM) control mode.
The microcontroller executes these based on the sensed rotation and, in case of current
or current-based position control mode, the applied motor current. The main advan-
tage of using position-based control instead of direct force control is the high internal
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DXL Bus

Connector

DC Motor

Front Closed Front Opened Back ClosedBack Opened

High Ratio

Gearbox

Output

Gear

Micro-

controler

Magnet

(bottom side)

Position Encoder

(below)

Idler Bearing

Figure 2.2: Photo of a MX-106 servo from both sides with and without cover. The
hall-effect-based position encoder is not visible as it is on the backside of the printed
circuit board (PCB). Similarly, the corresponding magnet is not visible as it is on the
backside of the output gear. The MX-64 servo has the same structure and electronics
but is smaller.

Figure 2.3: Overview of the control of a Dynamixel Servo. The current is sensed by
measuring the motor input. The position and velocity of the servo are sensed by a
rotary encoder (displayed as “ENC”) that sits on the last gear’s axis. [26]

control loop frequency. If direct force control is used, the low-level control loop of the
joint would include the whole bus system. In high-DoF-robots, such as humanoids, this
is problematic since the maximal control rate on the bus is comparably low, as many
servos need to be communicated with. In contrast to this, the control loop inside of
the servo can be much higher and is independent of the number of used servos since no
bus communication is involved. See Figure 2.3 for a visual explanation of the position
control mode.

There are different series, each of which has a different casing (see Figure 2.2 and
Figure 2.4). The casing of the X-series directly includes the mounting threads and allows
cable routing through the servo axis. Each series has different types that mainly differ
in motor power and gear ratio. In this thesis, the MX-64, MX-106, and XH540-W270
were used (see Table 2.1).
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Figure 2.4: Photo of the front (left) and back (right) of a XH540-W270 servo. Note
the hollow bearing, which allows routing cables through the joint axis.

Type
Stall torque No load speed

Weight Backlash
@14.8V @14.8V

MX-64 7.3Nm 78 rev/min 135 g 0.33°
MX-106 10.0Nm 55 rev/min 153 g 0.33°
XH540-W270 11.7Nm 46 rev/min 165 g 0.25°

Table 2.1: Specifications of the used DXL servos [26].

2.2.2 RS-485 and TTL

Recommended Standard 485 (RS-485) (also known as TIA-485(-A) or EIA-485) is a
widespread industry standard for asynchronous serial data transmission [SZC+02]. It
uses a differential pair of data wires to increase the robustness against noise from elec-
trical fields and can be used for long-range data transmissions. To do this, the signal is
transmitted on one wire, and the inverted signal is transmitted on a second wire. The
receiver can reconstruct the original signal by taking the difference between both wires.
If the result is < −1.5V it is a 0 bit and if it is > 1.5V it is a 1 bit. Thereby, this
procedure may still provide a correct digital value even if electrical interferences shift
the voltage levels. It is especially beneficial when combined with robotic servos as the
DC-motors in the servos use electromagnets and can thus induce electric disturbances
into the wires.

Additionally to the two wires for the RS-485, two wires for DC power supply are used
when daisy-chaining the DXL servos. This leads to a four-wire cable for most DXL servo
models. Some models of DXL servos only use a three-wire connection. In this case, the
data transfer is done via universal asynchronous receiver-transmitter (UART) on a single
wire. This is called transistor–transistor logic (TTL) by the manufacturer. Therefore, we
will use the same term. The voltage level of the TTL wire is then only compared to the
ground, reducing the robustness to noise but reducing the necessary wires. The positive
signal of an RS-485 transceiver acts the same as a TTL signal if it is driven with 5V.
Vice versa, a RS-485 signal can be created from a TTL signal by tying the inverted data
line to 2.5V. Since RS-485 requires only a differential voltage of 1.5V and the TTL level
is on 5V, the transmitted bits will be interpreted correctly (see Figure 2.5). Naturally,
the robustness to noise is decreased compared to the standard RS-485 signal, where
both lines are actively driven. In the remaining thesis, the communication standard will
always be called RS-485 for simplicity, although everything will also work with TTL.
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Figure 2.5: Example of a transmitted byte via RS-485 (top) via a two-wire interface. It
is also possible to directly transfer a transistor–transistor logic (TTL) signal via RS-485
(bottom) if the inverted line (U-) is shifted to 2.5V.

2.2.3 Dynamixel Protocol

The Dynamixel protocol is a primary/secondary half-duplex protocol with 8 bit, 1 stop
bit, and no parity [26]. All Dynamixel servos, independent of the series, use it. Since
it makes sense to only use one protocol for a bus system, different compatible open-
source sensors have been created (see Section 3.4.1). There are two versions (1.0 and
2.0) of the Dynamixel protocol. Version 2.0 allows using larger packages and improves
the computation of the checksum. Furthermore, it uses byte stuffing to prevent package
headers from occurring inside a package. This can happen as the transmitted data
may contain, by chance, the same bytes that make up the package header. Thereby, a
recipient can be confused as it would wrongly signal the start of a new package. The
byte stuffing adds an additional byte at that point so that this data is clearly not a
header.

Additionally, it now officially supports all sync and bulk operations (see explanation
below), which were only partially possible with version 1.0 and not officially supported.
Both versions are incompatible, but older servos can use this version when their firmware
is updated. In the following, we will only discuss the newer version.

There are two general types of packages, the instruction package and the status
package. The primary (typically a controller board connected to a computer) sends
the instruction via the bus to one or more secondaries (typically servos or sensors)
which may respond with a status package (dependent on the type of instruction). Each
instruction package starts with a header that marks the start of the package (see also
Figure 2.6). After that, an identifier (ID) specifies the recipient of the instruction. Due
to this ID based protocol, each of the devices on the bus must have a unique ID, which
is encoded with one byte. The ID value 255 is not used (probably to reduce the chance
of accidentally having header bytes inside the package), and the 254 is reserved for sync
instructions (see below). This allows up to 253 devices on the bus. After the ID, the
length of the package is specified, followed by a byte that specifies the type of instruction.
After that, an arbitrary number of parameters that specify the content of the instruction
can be added to the package. Finally, the package ends with a two-byte checksum that
ensures that no bits were wrongly transmitted. The CRC-16 algorithm [PB61] is used
to compute this checksum.
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Instr.Header ID Length
0xFF 0xFF 0xFD 0x00 0x01 0x07 0x00 0x02 0x84 0x04 0x00 0x00 0x1D 0x15

Parameter CRC

Instr.Header ID Length
0xFF 0xFF 0xFD 0x00 0x01 0x08 0x00 0x55 0x00 0xA6 0x00 0x00 0x8C 0xC0

Parameter CRC

Read

Status
Error

0x00

Figure 2.6: Structure of a DXL protocol package presented by an example of a read
package (get the current position of a servo) and the corresponding status package that
is returning the current position.

A status package is defined very similarly, with just three differences. First, the ID
in a status package describes the ID of the sender, in contrast to the recipient ID in an
instruction package. Second, the instruction byte is always 0x55 to show that this is a
status package. Third, the status package has an extra error byte after the instruction
byte to indicate different possible errors, e.g., a checksum error.

There are 15 different instruction packages, including instructions typically not used
while running the robot, e.g., factory reset. In the following, we will focus on the different
read and write instructions since only these are used to control the robot’s motions. The
simplest way to control the servos are the standard single read/write instructions. Here,
each instruction reads or writes an arbitrary number of bytes from a single secondary.
In the case of a read, a single status package with the read data is sent back. The
downside of this is that a high number of packages, and therefore protocol overhead,
need to be sent over the bus if the number of devices on the bus is high, which is the
case for humanoid robots which have many DoFs.

Bulk or sync instructions can be used to reduce the number of packages (see Ta-
ble 2.2). The sync instructions allow to read or write the same registers of multiple
devices with a single instruction. The bulk instructions work similarly but allow spec-
ifying different registers for each secondary. This makes the instruction more flexible
but also increases its length. In the case of sync/bulk reads, each of the secondaries
returns a separate status package. After publishing our results on optimizing control
rates for DXL servos [BGZ19] (see also Section 2.2.1), the fast sync read instruction was
introduced to the protocol. It is unknown to us whether this was a direct reaction to
our findings or just coincidental. It works similarly to the sync read instruction, but
all secondaries return a single shared status package. Thus the number of bytes can be
further reduced. Unfortunately, only certain newer types of servos, not including the
MX series, support this instruction, and therefore it is not used in this thesis.

2.3 ROS

The Robot Operating System (ROS) [QCG+09] is, contrary to its name, not a real oper-
ating system but a middleware targeted to the robotics domain. It facilitates developing
software stacks for robots by providing message-passing-based communication between
different software components (called nodes) as well as providing compatible standard
solutions for different tasks, e.g., IMU filtering or mobile robot navigation.

There are two different versions of ROS: ROS1 [QCG+09] and ROS 2 [MFG+22].
Both have multiple sub-versions that differ in details, but versions 1 and 2 of ROS have
partially different concepts. The thesis was started with ROS 1 but we then switched
to ROS 2. Therefore, ROS will be used synonymously for both versions in this thesis,
Since the final version of the code uses ROS 2, we will only discuss this version in the
following.
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i: Instruction length [B]
s: Status length [B]
n: Secondaries to address
r: Registers to read/write

read write
i = n · 14 i = n · (12 + r)
s = n · (11 + r)
bulk read bulk write
i = 10 + n · 5 i = 10 + n · (5 + r)
s = n · (11 + r)
sync read sync write
i = 14 + n i = 14 + n · (r + 1)
s = n · (11 + r)
fast sync read
i = 14 + n
s = 8 + n · (4 + r)

Table 2.2: Number of bytes that are transferred on the bus using different instruction
types, sorted from less to more efficient. Note that not all of these methods are always
applicable, e.g., fast sync read is only available for certain newer servo models, and sync
commands require to use the same registers on all devices.

Software written with ROS is modularized in nodes. Each of these nodes can commu-
nicate with other nodes via message passing of three different types (see Figure 2.7). The
most used and simplest form are topics. These create a one-directional, asynchronous,
one-to-many relationship between one node that publishes messages on a topic and any
number of other nodes that listen to the same topic and thus receive the messages. A
typical usage of a topic would be one node that provides sensor data to all other nodes
and sends a message each time it reads the sensor.

The second type of communication are services. These create one-to-one communi-
cation between two nodes. One node must provide a service by using a service server.
This service can then be called by a client with a request message. When this service
is processed, a response message is returned to the client. Services are typically used to
request data from another node or to invoke short-running operations, e.g., switch on a
LED on the robot.

The third and most complicated type are actions. These also create one-to-one
communication between two nodes. One is the client, and the other is the server.
The client sends a goal message to the server to invoke an action. While the action
is executed, the server can send feedback messages. During the execution, the client
also might cancel an action. When the action is finished (successful or not), the server
returns a result message. Actions are typically used to invoke long-running operations,
e.g., moving the robot to a certain location.

Additionally, ROS comes with multiple tools that simplify the programming and
usage of robots. The most important ones are the 3D visualization tool RViz, the plugin-
based user interface rqt, and the plotting tool PlotJuggler. These tools can display debug
information or send commands to the robot. Additionally, ROS includes management
for a node’s parameters, including the ability to change these during runtime.

2.4 Splines

A spline Sn(x) is a mathematical function defined between k0 and km+1 that is piecewise-
defined through m polynomials Pn(x) of a given order n [BM08, p. 15f]. The points
where two polynomial sections meet (k1, ..., km) and where the outer sections end (k0,
km+1) are called knots. In contrast to direct polynomial approximation, the decompo-
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Figure 2.7: The three communication methods between nodes: topics, services, and
actions. [MFG+22]

sition into multiple polynomials avoids the Runge’s phenomenon [Run01].

Sn(x) : [k0, km+1] → R (2.1)

Sn(x) =



















Pn
0 (x− k0), x ∈ [k0, k1]

Pn
1 (x− k1), x ∈ [k1, k2]

...

Pn
m(x− km), x ∈ [km, km+1]

(2.2)

Pn
i (x) : [ki, ki+1] → R (2.3)

Pn(x) =

n
∑

j=1

ajx
j = a0 + a1x+ a2x

2 + ...+ anx
n (2.4)

Splines have various applications, but in the following, we will concentrate on their
application in robotics. A typical use case is the description of a robot’s end effector pose
in Cartesian space over time (t). Here, each knot (k) describes at least the position (p)
of the end effector at a given time point but can also describe the derivatives velocity
(v), acceleration (a), and jerk (j), if a high order spline is used. Analogically, it is
also possible to describe an end effector’s orientation (o) over time. For simplicity, we
will only discuss the case of the position in the following. Using splines to describe
a movement is convenient for the programmer as only specific key points need to be
specified. For example, for a grasping skill the start pose of the gripper, the pre-grasp
pose, and the final grasp pose need to be defined. These positions are typically known
or are computed by another part of the software, e.g., a grasp pose generator. The rest
of the trajectory can then be interpolated through the spline.
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In the following, we will assume that the spline represents a position over time.

x = t (2.5)

S(t) = pt (2.6)

Ṡ(t) = vt (2.7)

S̈(t) = at (2.8)
...
S (t) = jt (2.9)

In some applications, sudden changes of discontinuous accelerations are undesirable
as these can destabilize the robot. These discontinuities are often encountered when
the trajectory is optimized for time, thus leading to high accelerations [BM08, p.26].
This issue can be prevented by defining the position (p), velocity (v), and acceleration
(a) of all knots. Thereby, a continuous acceleration profile is achieved between two
polynomials. Therefore, each knot is defined as a triple.

ki = (pi, vi, ai) (2.10)

Creating a polynomial between two knots (ki, ki+1) requires fulfilling six conditions for
the polynomial.

P (ti) = pi, P (ti+1) = pi+1

Ṗ (ti) = vi, Ṗ (ti+1) = vi+1

P̈ (ti) = ai, P̈ (ti+1) = ai+1

(2.11)

Here, pi and pi+1 describe the positions, vi and vi+i the velocities and ai and ai+1 the
accelerations at ti and ti+1 respectively. Therefore, it is necessary to use a polynomial
of the fifth order. The resulting splines are also called quintic splines, hinting at their
polynomial order. An exemplary quintic spline is shown in Figure 2.8.

The polynomials of a quintic spline can therefore be defined as

P 5(t) =c0 + c1(ti+1 − ti) + c2(ti+1 − ti)
2+

c3(ti+1 − ti)
3 + c4(ti+1 − ti)

4 + c5(ti+1 − ti)
5

(2.12)

with

c0 = pi (2.13)

c1 = vi (2.14)

c2 =
1

2
ai (2.15)

c3 =
1

2T 3
[20h− (8vi+1 + 12vi)T − (3ai − ai+1)T

2] (2.16)

c4 =
1

2T 4
[−30h+ (14vi+1 + 16vi)T + (3ai − 2ai+1)T

2] (2.17)

c5 =
1

2T 5
[12h− 6(vi+1 + vi)T + (ai+1 − ai)T

2] (2.18)

where h = pi+1 − pi describes the displacement and T = ti+1 − ti the duration [BM08,
p. 26ff].

The jerk of a quintic spline is still discontinuous. This can be solved by using splines
with polynomials of order seven which also define the jerk at the boundaries.
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Figure 2.8: Exemplary quintic spline (blue) showing a position over time with the
derivatives for velocity, acceleration, and jerk. The dashed black lines show the parti-
tioning in different polynomials, and the knots with the corresponding bounding condi-
tions are displayed in red.
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Table 2.3: Allowed and Forbidden Sensors in the HSL.

Sensor Human Sense

Allowed

(Stereo-)Camera Vision
Microphone Hearing
IMUs Balance
Force sensors Touch
Rotary joint encoders Proprioception
Voltage/current sensors Proprioception

Forbidden

LIDAR -
RADAR -
RGB-D Camera -
Ultrasonic -
Magnetometer -

2.5 RoboCup Humanoid League

In 1997 the computer Deep Blue beat the then-reigning chess world champion Garry
Kasparov [CHJH02]. Before, chess was considered difficult to solve, and many chess
grandmasters doubted that a computer could win against them [New12, p.1f]. During
the development of chess computers from the 1950s to the 1990s, important discoveries
were made in the field of artificial intelligence (AI) [New12, p.3f] and search algorithms
[KAK+97]. However, after Deep Blue, chess could be regarded as a solved problem.
Therefore, the research community looked for a new standard challenge for artificial
intelligence. With this in mind, the RoboCup was founded [KAK+97]. Its goal, very
analogically to DeepBlue, is the following: “By mid-21st century, a team of fully au-
tonomous humanoid robot soccer players shall win the soccer game, comply with the
official rule of the FIFA, against the winner of the most recent World Cup.” [BDF+02]

Nowadays, there are multiple leagues in RoboCup, and not all of them are soccer-
related [AvS20]. The @Home league, for example, aims to foster the development of
service robots by creating competition scenarios in typical household environments. The
soccer section is again split into different leagues focusing on various issues. The Small
Size League uses small, wheeled robots to reduce hardware costs and circumvent the
complicated problem of bipedal walking. The game is played with eight vs. eight robots
using a small ball [AvS20]. An external ceiling camera system provides the poses of
all objects to the robots. Similarly, the Middle Size League also uses wheeled robots,
but larger ones that use a standard soccer ball and need to do onboard computation
and vision. The Standard Platform League (SPL) uses the humanoid NAO robot from
Aldebaran [GHB+09] with a small soccer ball. Since no changes to the hardware are
possible, the teams can focus on the software. Furthermore, the league makes different
software approaches comparable since there are no differences in hardware. There are
also entirely simulated leagues in a 2D and 3D simulation environment. These focus on
strategies and multi-agent communication without accurate physical simulation. Ad-
ditionally, the agents have physical abilities that are currently not reached by robot
hardware. This allows research without the limitations of current hardware but is not
feasible to be directly transferred to a real robot.

The most essential league is the Humanoid Soccer League (HSL) which tries to
solve the primary goal of RoboCup. To achieve this, the rules are gradually changed
to get closer to the ordinary FIFA rules. The hardware of the robots can be changed
by the teams, which is necessary since development in hardware is also necessary to
play against humans. However, there are certain limitations. The most important one
is that only human-like sensors are allowed to be used to make the game fair for the
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Figure 2.9: Photo of a RoboCup game from 2019 between Rhoban (blue) and CITBrains
(red). Courtesy of Florian Vahl.

human players. Table 2.3 shows a list of allowed sensors and their pendant in humans.
Furthermore, the proportions and the weight distribution of the robot are limited to
human-like proportions, e.g., the leg length needs to be between 35% and 70% of the
robot’s height. Based on the height of the robot, the team can participate in the Kid- or
Adult-Size League. Since this thesis is related to the Kid-Size League, we are referencing
this if we mention the HSL.

A game in the HSL is played over two half times with 10min each. The field consists
of artificial grass with sprayed on white lines and two white goals (see Figure 2.9). The
ball is a FIFA size one ball with any markings that are at least 50% white. The robots
need to act fully autonomously and can communicate with each other via a wireless
network. They also receive the current game state, e.g., the current score, via a wireless
network from a dedicated computer controlled by a referee. Each team provides a robot
handler that can take out robots on request by the team or the referee, e.g. if the
robot performed a rule violation. The robot will get a time penalty, and the team can
repair the hardware or change the software. Other manual control of the robot is not
allowed. Therefore, it is crucial that the robot can get up by itself after a fall, as it
would otherwise, get a time penalty. Additionally, the hardware needs to be robust to
prevent timeouts for repairs. The same is true for the robot’s battery which should
last at least one half-time (currently 10min) as otherwise timeouts need to be taken to
change them. The length of the half-time will be increased incrementally in the future
to get closer to the real FIFA rules [31]. Therefore, making the robot as energy-efficient
as possible is necessary.

In 2020 and 2021, it was impossible to hold regular RoboCup competitions due to
the worldwide COVID-19 pandemic. Therefore, the Humanoid League Virtual Season
(HLVS) (see Figure 2.10), a simulated pendant for the HSL, was created using the
Webots simulator to allow virtual competitions. The simulated environment tries to
resemble the real one as closely as possible, i.e., the ground has similar properties as
artificial grass, and the background and lighting conditions change each match. Each
team needs to provide a model representing their robot as closely as possible. This
includes, for example, sensor noise and joint backlash. Since these robot models are
made open source, it is possible to evaluate approaches on different platforms with a
comparable small overhead. Since this simulated competition allows a more accessible
entry for new teams and a simple way to evaluate the software, competitions are planned
to continue in the following years.
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Figure 2.10: Screenshot of the HLVS 21/22 final between the Hamburg Bit-Bots (red)
and CITBrains (blue). The overlay on the top shows the game’s current state, including
the time, goals, and time penalties for players.



Chapter 3

Robot Platform

For this thesis, a new robot platform was created, as previous ones were not applicable.
They were either too small, had too low control loop rates on the hardware bus (Sec-
tion 3.4.2 discusses the importance of this), lacked FPSs, were not robust against falls,
or could not stand up by themselves.

Therefore, a new platform was developed upon the basis of the Nimbro-OP [SSS+12],
and the further modifications from Team WF Wolves [BDG+17]. It was chosen since
it provides a good height and possibilities to integrate the missing components, such
as foot pressure sensors, while still being low cost. The new platform’s goal was to be
usable beyond this thesis in other research projects and for participation in the HSL.
For participation in RoboCup games, but also to allow training and evaluation on the
robot, it needs to be robust against falls and be able to stand up autonomously. In
regards to the available platform, its processing power and hardware control loop rate
should increase to allow faster reaction times, which are essential to stabilize motions.
Additionally, some size requirements have to be met to allow participation in the HSL
(see Section 2.5).

This platform will be described and evaluated in the following chapter. First, the
related works are presented in Section 3.1. Then, a general overview of the Wolfgang-OP
will be provided in Section 3.2. This is followed by detailed descriptions of the mechanics
(Section 3.3) and electronics (Section 3.4). The kinematic and simulation model creation
is discussed in Section 3.5. Afterward, the platform is evaluated in Section 3.6. Finally,
a summary is given in Section 3.7.

3.1 Related Work

The following sections give an overview of the current state of the art in the related re-
search field. First, other existing humanoid robot platforms are discussed, with a specific
focus on the HSL and low-cost humanoids (Section 3.1.1). Then, other works concern-
ing the robustness of humanoid robots are presented (Section 3.1.2). This is followed
by other usages of spring-based actuators in robots and exoskeletons (Section 3.1.3).
Then, different FPS are presented (Section 3.1.4). Finally, the existing servo and sensor
interface solutions are discussed (Section 3.1.5).

3.1.1 Humanoid Robot Platforms

Humanoid robots have been of interest in research for a long time. The first humanoid
robot was the WABOT-1 [Kat73]. Its development was finished in 1973. It already
had basic walking abilities but was naturally very limited in its capabilities. Public

23
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Darwin OP

Nimbro-OP

igus

Nimro-OP2

Nimbro-OP2X

Nimbro-OP
Wolves Version

Wolfgang-OP
V1

Wolfgang-OP
V2

Darwin OP 2

Robotis OP3

Hambot

Wolfgang-OP
V0

Minibot

- NUC -> Asus Minipc
- Remove Odroid
- Remove router
- Constant voltage
- Battery cage

- Camera with PoE
- QUADDXL
- 3D printed bumper
- Intel NCS2
- IMU in head

- 3D printed elastic
elements
- PEA for knees
- Use modified Rhoban
DXL board
- Foot pressure sensors

- 3D printed structure

- Increase size
- Parallel kinematics in
the legs

- Milled elastic elements
- Reduce size

- Improve CPU

- Change kinematic
chain
- Switch to Dynamixel X
series

- Add DoF
- 3D printed structure
- Custom electronics

- Reduce DoF
- Aluminum structure

- Increase size
- Improve CPU

- Switch to Dynamixel X
series

RFC2016

- Different Electronics

NUgus

- Different 3D printing

Chape

- New camera
- New computer
- Custom DXL board

Figure 3.1: Family tree showing how different robot platforms that were developed based
on the Darwin-OP. See Table 3.1 for more details on the platforms.

attention to this research field was raised when Honda first presented their ASIMO
platform [SGV18] in 2000. It was not only able to walk but also to run. Still, it was
only able to perform these skills in controlled environments. In 2002, the HSL was
started [17] and proposed a new challenge to humanoids within a partially controlled
environment. This led to an increasing development of new humanoid robots that had
to be reliable and robust. Additionally, the switch from the previously used four-legged
Sony AIBOs [CMQ07] to the humanoid Aldebaran NAOs [GHB+09] in the RoboCup
SPL pushed the development in this area. Although, in the latter case, the research was
focused on the software since no changes to the hardware are allowed (see 2.5).

In 2011, the Darwin-OP [HTA+11] was released by Robotis. In contrast to the
NAO, it fulfilled all rule restrictions of the HSL and was, therefore, a good entry for
new teams. Additionally, it was built modularly by using capsuled servo motors for
all joints, allowing simple hardware changes. Therefore, multiple new platforms for the
HSL were developed on the basis of the Darwin-OP (see Figure 3.1). The manufacturer
Robotis created two successor versions. First, the Darwin-OP2 [26], which is very simi-
lar and only features an updated main computer. Later, the Robotis-OP3 [26], which is
slightly increased in height and uses the never X-Series of the DXL servos (see Section
2.2.1). The main advantage of the Darwin-OP series and the NAO robot, in contrast
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to established research platforms like the ASIMO, was their price. This low-cost aspect
allowed groups to purchase multiple robots to form a team. While a lot of research
has been conducted on them, they are limited in their sensor modalities, computational
power, and the achieved actuator torques. Additionally, their small size leads to issues
with walking on uneven ground, i.e., artificial grass [AvS20], and makes the compari-
son to human capabilities difficult. Therefore, many researchers have developed these
platforms further.

One of its successors was the Nimbro-OP [SSS+12], which kept a similar kinematic
structure and electronics but increased the robot’s height to 0.95m. To achieve this,
the servo motors were replaced with stronger types from the same DXL MX series (see
Section 2.2.1), and parts of the mechanical structure were made out of carbon fiber,
which reduces the weight of the robot. Based on this, the mostly 3D printed igus Hu-
manoid Open Platform [AFSB15] was developed. This robot still had similar kinematics
and electronics, but the 3D printed manufacturing process allowed “a lightweight and
appealing design” [AFSB15]. Based on this, two additional successors were developed.
The Nimbro-OP2 [FAFB17] increased the robot’s size further to 1.35m and changed
to parallel kinematics in the legs. The latest member of the series, the Nimbro-OP2X
[FFB+18], kept similar kinematics but replaced all DXL MX servos with the never
X series. Additionally, the computational power was improved by adding a graphics
processing unit (GPU) and previously milled parts replaced by 3D printing.

The team NUbots developed the NUgus, a different successor of the igus-OP [ABC+17].
It is similar, but the 3D-printed parts were split into smaller parts to allow easier man-
ufacturing. Additionally, minor changes were made to have better access to the robot’s
cables [9]. Further robot platforms, i.e., the Bez [25], KAREN [4], and the Chape [25]
robot, have been developed on the basis of the Darwin-OP by other HSL teams. The
main changes are a slight increase in the robot size and an update of the computing
unit.

Still, there are other influential and successful robots in the HSL that are no succes-
sors of the Darwin-OP. The Sigmaban series [GHLZ+19] of the multiple world champion
team Rhoban has been adopted by other teams. It features similar kinematics as the
Darwin-OP but uses stronger DXL servos and more rigid mechanical connections. The
GankenKun [3] and the successor SUSTAINA-OP [22][Kea22] from team CITBrains is
one of the few platforms that feature parallel kinematics in the legs and does not use
DXL servos but Kondo servos [5].

The Hamburg Bit-Bots, including myself, developed the 0.87m high
Hambot-OP [BRW15] based on the Darwin-OP. This platform used 3D printing for
manufacturing to keep the costs low and to achieve complicated mechanical parts. It
changed the typically Darwin-OP-like kinematic structure by adding two DoF in the
robot’s waist and by adding one DoF in each foot for toe movement. Unfortunately,
this introduction of additional joints, in combination with the increased size and the
high backlash of the DXL MX servos, led to imprecise movements and instability. Fur-
thermore, the weight of the additional servos was problematic due to the weak knee
motors. Still, some effective concepts, e.g., allowing a fast battery change by putting
it into a sliding 3D printed battery cage, were later used for the Wolfgang-OP. In the
successor Minibot [Aea17], the number of joints and the height were again decreased to
counter the stability issues. The mechanical structure relied on aluminum sheet metal
which was difficult to produce and sometimes bent when the robot fell. The team FU-
manoids used the Minibot as a basis to develop a similar robot platform [Fre16]. Due
to internal issues, the team was dissolved, and a new team was founded with the name
01.RFC Berlin. This team participated with a model of this robot, called RFC2016, in
the HLVS.

Outside of the influence sphere of RoboCup, further humanoid platforms have been
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(a) Bez [25] (b) Chape [25] (c) Darwin-OP [26]
(modified)

(d) Gankenkun [3]

(e) Hambot [24]
(f) igus-OP [AFSB15]

(g) KAREN [4] (h) Minibot [24]
(modified)

(i) NAO [KW+08]
(modified)

(j) NUgus [25]
(k) Nimbro-OP

[SPA+13] (modified)

(l) Nimbro-OP2
[FAFB17]

(m) Nimbro-OP2X
[FFB+18]

(n) RFC2016 [24] (o) Robotis-OP3 [26]
(modified)

(p) SUSTAINA-OP
[2]

Figure 3.2: Pictures of the humanoid robot platforms listed in Table 3.1.
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developed, but typically at higher prices. The child-size iCub [PMN+12] has 53 DoF, but
it costs approximately 250,000e. This platform aims to have a robot that can interact
with the world similarly to a human child to get insights into the fields of artificial
intelligence and human cognition.

Also commercially available are different adult-size robots, such as the Robotis’
THORMANG3 [26] and the PAL Robotics’ TALOS [SFB+17]. Other humanoids in-
clude the Boston Dynamics Atlas [NSP19b], and the Asimov [Shi19]. Further infor-
mation on humanoids, especially full-size ones, can be found in these survey papers
[SJAB19] [SF19] [FB21].

Some platforms are targeted at optimal performance without regard to the costs,
e.g., the iCub with its many joints in the fingers. Others are specially designed to
be low-cost and try to achieve a sufficient performance with a limited budget, e.g.,
the above-mentioned Darwin-OP and NAO. From a researcher’s perspective, the costs
may not seem like a relevant feature of the robot since it should not be commercial.
Still, spending more money on the hardware results in less funding for other research.
Furthermore, widespread usage of robots in our everyday lives can only be reached if
their price is adequate. For this, the problems of controlling inaccurate hardware need
to be solved.

3.1.2 Robustness

Another important aspect, besides the costs, is the robustness of a platform against
falls. These can create high-impact forces on the robot, especially for larger humanoids.
Different approaches have been investigated to ease these impacts and thereby prevent
damage to the robot. They can be grouped into active and passive approaches. The
latter modifies the robot’s mechanical structure, so no additional software is necessary.
This can either be done with rigid structures [KKS+17] or elastic elements, e.g., a
piano wire [GHLZ+19]. To actively prevent damage from falls, the robot can employ
airbags [KCB+16] when a fall is detected or assume a pose that minimizes the damage
[FKK+02]. Section 4.1.3 gives a detailed description of active fall management.

3.1.3 Spring Based Actuators

The typical energy consumption of a bipedal robot is currently much higher than the one
of humans [SWC+14] (see also Figure 3.3). Different spring-based solutions have been
investigated to improve this efficiency in robots. These springs can be part of a tendon-
driven system [RMM+11]. They can also be placed parallel to a servo-based joint drive.
One example is the Poppy robot [LRO13] where linear springs were used (see Figure 3.4).
They are placed to support walking motions (other motions, such as standing or getting
up, were not considered). The spring straightens the leg during its support phase and
flexes it during its swing phase, thus reducing the power needed for the knee joint.
Another example is the WANDERER robot which uses linear compression springs in
the hip roll joint [HMS+20]. The current world record holder for the longest traveled
distance with one battery charge is the Xingzhe robot [LLTZ16], which also applies
springs to improve energy recuperation. Additionally, the usage of torsion springs was
investigated in exoskeletons, e.g., to optimize energy while cycling [CGKK17] or in
industrial applications [KNY20].

Using springs-based actuators not only reduces the overall energy consumption but
may also reduce the peak torques that act on certain motors. This can lead to faster
motions as the speed of a DC servo motor is inversely proportional to the torque. It
may also allow the usage of smaller motors in those joints, thus reducing the weight and
costs of the robot.
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Figure 3.3: Relationship between mass and cost of transportation for different animals
and robots. [SWC+14]

Figure 3.4: Combination of a linear spring with a servo-based knee joint in the Poppy
robot (left). Torque and force for different knee angles (right). [LRO13]

3.1.4 Low-cost Foot Pressure Sensors

Naturally, sensing the forces acting on the foot of a bipedal robot is interesting as it
may provide a way to stabilize it or perform its movements more energy efficiently. One
typical approach is installing a 6-axis-force-torque sensor in the robot’s ankle of the
robot [KHHY14, pp. 79-80]. However, these sensors are expensive, each costing in the
range of a complete low-cost robot. Therefore, they will not be discussed further in
detail.

Multiple low-cost solutions have been proposed to sense the forces between the
ground and the robot foot. One of the most widespread is to use force sensitive re-
sistors (FSRs) on the sole of the robot, e.g., in the Poppy robot [LRO13] and as an
upgrade to the Darwin-OP [26]. These sensors measure a change in resistance propor-
tional to the applied orthogonal force on the sensor. They are thin and cheap but not
precise, and their measurements drift over time [HW06].

The most widespread approach in the HSL is using four load cells with strain gauges
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Figure 3.5: Example images for FPSs based on FSR (top left [LRO13]), strain gauges
(top right [RPH+15]), hall sensors (bottom left [GVK15]) and optical proximity
sensors (bottom right [WHFZ18]).

placed at the corners of the foot. An orthogonal force leads to a bending of the load
cell and, thus, to elongating the wire in the strain gauge. Thus the resistance increases
and the applied force can be measured. This is typically done by utilizing a Wheatstone
bridge to sense the small resistance difference [Urb16, pp. 212-215] (these are also often
directly integrated into the load cell). Team Rhoban developed such a sensor that
connects to the DXL bus system [RPH+15]. Other teams then adapted similar sensors.

While using changes in resistance to measure the applied force is most common,
different approaches have been investigated. Gomez et al. [GVK15] used a combination
of magnets and hall sensors to measure the deformation and, thus, the force acting on
it. They built a three-toe foot which achieved comparable results to the FSR based
solution of the Darwin-OP but with reduced costs. Wasserfall et al. [WHFZ18] used a
3D printing approach that used an optical proximity sensor to measure the deformation
of a 3D printed beam. They built feet with one of these sensors at each corner and tested
it successfully with the Minibot. Examples of all approaches can be seen in Figure 3.5.

3.1.5 Servo and Sensor Interfaces

The DXL servos are widespread in robotics and, thus, also the corresponding protocol.
It is prevalent in the HSL where 32 of 34 teams used it in the 2019 championship and 13
out of 14 in the 2022 championship1. Additionally, they are common in other RoboCup
Leagues, e.g., the Rescue League [18]. Table 3.1 shows a list of humanoid robots that use
this protocol (see also Figure 3.2 for photos of the corresponding platforms). Addition-
ally, many other non-humanoid robots use this protocol. Robotis, the manufacturer of
the DXL servos, offers multiple platforms. These range from the wheeled mobile robot
TurtleBot3 [GA17] to the robotic arm OpenManipulator-X [12]. Furthermore, many
research groups developed robots based on this.

1Data from team description papers available at https://www.robocuphumanoid.org/
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Name Microchip
Max. Bus

No. Bus Prot. 2
Cost

Speed [MBaud]

CM7301 FT232R+STM32F103 4.5 1 no
OpenCM9.04 STM32F103 2.5 2 1 yes 50$
OpenCR STM32F746 10 1 yes 180$
Arbotix Pro FT232R+STM32F103 4.5 1 no 150$
Rhoban DXL STM32F103 4.5 (2.25)3 3 yes4 ∼20$
USB2DXL FT232R 3 1 yes 50$
U2D2 FT232H 6 1 yes 50$
QUADDXL FT4232H 12 4 yes ∼40$

Table 3.2: Comparison of the different available interfacing solutions for the DXL bus.
The maximal bus speed is the theoretical limit of the board, not regarding limitations
from the microprocessor speed. 1 Discontinued; 2 Limited by transceiver on extension
board; 3 Bus 1 can operate at 4.5 Mbps, bus 2 and 3 only at 2.25 Mbps; 4 Not supported
by original firmware [BGZ19]

Master Computer

STM32F103

USB 2.0 FS 
12 MBaud

Servos / Sensors 

RS485 / TTL
4.5 MBaud
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FT4232H

USB 2.0 HS 
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Figure 3.6: Overview of different interfacing solutions between the main computer and
the peripheral devices. They can be classified based on the of buses (horizontal) and
the used chip type (vertical). Our approach is the first combining multiple channels
with a UTS approach (bottom right). [BGZ19]

Different solutions exist to connect these to the main processing unit. Some controller
boards are commercially available from Robotis and other manufacturers. Additionally,
many custom solutions were created by researchers for their platforms. An overview of
the existing solutions can be seen in Table 3.2.

A common numerator is that these all connect to the main processing unit via
Universal Serial Bus (USB). Otherwise, they can be grouped into two main approaches.
The first approach uses an USB to serial (UTS) converter chip that directly translates
the USB signal to UART. A transceiver then converts this to a RS-485 (or TTL) signal.
Robotis offers two boards that work on this principle, the USB2DXL and U2D2. A
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Figure 3.7: Relationship between robot size and weight of all robots in Table 3.1. The
Wolfgang-OP is marked in red. A similar relation can be observed for most robots.
Outliers are the Nimbro-OP2 and Nimbro-OP2X on the top right.

downside of this approach is that it is impossible to directly connect further devices,
i.e., sensors, to the chip.

The second approach uses a standard microcontroller as the main component. It
is directly connected to the main processing unit with USB and to different sensors,
typically an IMU, via UART, SPI or I2C. The packages received via USB are first
parsed and then either directly forwarded to the bus if they are destined for one of the
servos or processed by the microcontroller itself if they request data from the directly
connected sensors. Figure 3.6 shows a block diagram of the different approaches.

Independent of the used approach, almost all use just a single bus. The only ex-
ception is the Rhoban DXL Board [ADF+16], which supports three buses. This allows
parallelized communication and thereby, theoretically, decreases the time necessary for
one control loop cycle. Generally, this would require more cables than a single bus sys-
tem, e.g., if this approach is applied to a robotic arm. However, a humanoid robot’s
structure already requires separated cable chains for each extremity. Therefore, having
up to five separate buses does not influence the cabling of the robot. The Hambot was
already supposed to use a similar three-bus approach with a microcontroller [BRW15],
but the development of the electronics was never fully completed. The performances of
the different approaches are further discussed in Section 3.4.2.

3.2 Overview

The Wolfgang-OP is an 80 cm height robot that weighs 7.5 kg (see Table 3.3), which is
a typical weight for a robot of this size (see Figure 3.7). It features a Darwin-OP-like
20 DoF layout (see Figure 3.8). Three joints (head pitch and both shoulder roll joints)
feature a compliant element to protect the gears during falls. The knee joints are PEAs
to reduce the peak torques and to save energy. It has two IMUs and two FPSs. Still,
the cost of the robot was kept as low as possible and is estimated at ca. 11.000e
for the material, excluding manufacturing and assembly. The presented version of the
robot is the Wolfgang-V2. The published paper [BGVZ21] describes the earlier version
1, which has some minor changes, especially to the computer (see also Figure 3.1), but
is generally very similar. The following sections describe the platform in more detail.
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Figure 3.8: Photo of the Wolfgang-OP robot (left) and illustration of its kinematic
chain (right). The joints with elastic elements are colored orange, the parallel elastic
actuators are colored yellow, and the other joints are colored blue. The position of the
FPSs (red), the IMUs, and the camera are indicated. Based on [BGVZ21].
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Table 3.3: Wolfgang-OP Specifications. [BGVZ21]

Type Specification Value

General

Height 80cm
Weight 7.5kg
Battery 3500mAh, 22.2V, 6-cell LiPo

Battery Life 25min standing, 10min walking
Material Aluminum, Carbon, PLA, TPU

Control loop 700Hz - 1000Hz

PC

Name Asus PN51-E1 NCS2
Processor Ryzen 5700U Myriad X

CPU Cores/Threads 8/16
CPU Frequency 4.3GHz

Memory 16 GB
Network GigE
Wireless 2.4/5GHz

Controller
Microcontroller Teensy 4.0 + FT4232H

CPU 600MHz Cortex-M7
Connection 4 x RS-485 @ 12Mbaud; USB 2.0 HS @ 480Mbaud

Camera

Camera Basler acA2040-35gc
Camera Lens Computar Lens M0814-MP2 F1.4 f8mm 2/3“
Resolution 2048 px x 1536 px

Frames per second 36
Shutter Global Shutter

Connection GigE

IMU

Sensor MPU6500
Gyro Full Scale Range ± 2000 ◦/sec

Gyro Sensitivity 16.4 LSB/◦/sec
Accel Full Scale Range ± 16 g

Accel Sensitivity 2048 LSB/g
Microcontroller ESP32

Connection RS-485 @ 4Mbaud

Foot Pressure

Foot Pressure Custom strain gauge based
Range 0-40 kg

ADC Resolution 32 bit; ca. 18 bit noise-free
Microcontroller ESP32

Connection RS-485 @ 4Mbaud

Actuators

Name MX-64 MX-106 XH540
Count 8 10 2

Stall torque 7.3Nm 10Nm 11.7Nm
No load speed 78 rev/min 55rev/min 46 rev/min

Backlash 0.33◦ 0.33◦ 0.25◦

Position Sensor hall based, 12bit resolution
Connection RS-485 @ 4Mbaud
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Figure 3.9: Exploded computer-aided design (CAD) model of the PEA (left) and photo
of the real joint (right). The torsion spring (grey) is fixed to the upper and lower leg
by 3D printed parts (yellow). Two additional 3D printed parts ensure that it stays
centered on the joint axis (red) and that it does not get stuck on the screw heads
(blue).[BGVZ21]

3.3 Mechanics

The mechanical structure is mainly the same as in the predecessor platform Nimbro-OP
[SSS+12]. Slight changes were already made to shorten the legs in the Wolves version
and also adopted by us. It consists of four different materials: cut carbon fiber plates,
computer numerical control (CNC) milled aluminum, 3D printed polylactic acid (PLA),
and 3D printed thermoplastic polyurethane (TPU). Carbon fiber parts are light and
strong but only allow simple, mostly two-dimensional, shapes. Therefore they are only
used in the legs and arms of the robot. Aluminum can be milled into more complex
shapes while still providing good strength for little weight. The 3D printed materials
provide the largest freedom of design but do not provide the same strength per weight.
Additionally, PLA has the issue that it breaks easily along the axis it was printed due
to issues with inter-layer adhesion. It is mainly used for connecting parts. TPU is not
as brittle but can be only used for certain parts due to its elastic nature.

3.3.1 Torsion Springs

The Wolfgang-OP (like any humanoid robot without toes, a one-way bendable knee,
and rigid leg links) needs to keep its knees bent at most times to avoid the kinematic
singularity that exists when the knees are completely straight. If the legs are fully
extended, the robot cannot control the position of its center of mass (CoM), making
it unstable and prohibiting most motions, especially walking. While keeping the knees
bent by ca. 60◦ mitigates this problem, it comes with the price of a constant additional
torque on the knee joint. This torque is undesirable, as it increases energy consumption
and limits the remaining torque that the servo can produce for the actual task motion.

There are two possible solutions to this problem. Either the kinematic structure of
the robot is changed in a way that does not require constant knee bending, or a counter
torque is produced, which reduces the constant load on the knee joint. We took the
latter approach since changes to the kinematic structure require more effort and would
probably result in a more expensive robot. To produce this counter torque, a torsion
spring was added to the side of each knee (see Figure 3.9), turning the knees servos
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Figure 3.10: Drawing of the Wolfgang-OP’s leg from the side to visualize the used
mathematical symbols. [BGVZ21]

into PEAs. The torque compensation could further be improved by using a clutching
mechanism [PvNWV15], but this would require additional hardware and thus increase
costs and complexity.

In the following, we describe our approach for finding the correct torsion spring for
any humanoid robot (see Figure 3.10 for a visual explanation). The knee torque (τm),
which results from the mass of the robot, can be approximated using the equation for
an inverted pendulum if only the gravitation force is acting on the robot.

τm ≈
1

2
mgl · sinα (3.1)

Herem is the mass of the robot above the knees (thus excluding the mass of the lower legs
and feet), which is divided by two since it is distributed over two legs. Furthermore, g
is the gravitation constant, l is the distance to the mass point, and α is the pendulum’s
angle. Since m, g, and l are constant values, we can see the mass-based torque as
a function τm(α) that is only dependent on the angle of the pendulum towards the
gravitational vector.

The torque resulting from the torsion spring (τt) can be computed using Hooke’s
law.

τt = −ksβ (3.2)

Here ks is the spring constant, and β is the bending angle of the spring. The spring can
be mounted with an offset angle δ. Then the β can be computed as

β = γ + δ (3.3)

where γ is the current angle of the knee joint. Offsets of δ > 0 are not of interest as they
would create no τt for small bending angles of the knee. Offsets of δ < 0 would require
springs with a large bending range, as the knee requires almost 180◦ movement, thus
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limiting the available springs. Additionally, choosing δ = 0 reduces the complexity of
the mathematical model and the hardware implementation. Therefore, we chose to omit
this possibility and assume that β = γ. Since ks is constant, the spring-based torque
can be written as a function τt(β) that only depends on the knee angle.

Based on these, we can define the torque on the knee if the robot is standing on both
legs τd (double support), as well as when standing on only one leg τs (single support)
and when the leg has no ground contact τn. We neglect the torque resulting from the
foot mass for τn.

τd(α, β) ≈ τm(α) + τt(β) (3.4)

τs(α, β) ≈ 2τm(α) + τt(β) (3.5)

τn(β) ≈ τt(β) (3.6)

The optimal solution would be to find a k∗s that minimizes the torques τd, τs, and
τn.

k∗ = argmin
ks∈Ks,β∈[0,π],α∈[0,π/2]

(τd(α, β), τs(α, β), τn(β)) (3.7)

Here Ks is the set of all spring constants of springs which are available on the market
and fit from their dimensions to the robot’s knees. Furthermore, we assume that the
kinematics of the robot limits the knee angle and the pendulum angle is limited by 0
since the knees are always in front of the body and by π/2 since the torso of the robot
would touch the ground at this angle.

Since this optimization depends on both α and β, it can not be solved directly. It
would also depend on how much time the robot spends in having certain α, β value
combinations, and the ratio of time where the legs have ground contact. For example,
having a ks value that leads to lower τd for the typical α and β values of a standing
or walking robot reduces the overall power consumption more than having a lower τd
for angles that are rarely reached. Finding the optimal solution for this would require
recording statistical data on the usage of the robot, which is a great effort and only
possible when the robot is already built.

Instead, we apply additional approximations to circumvent this and to find a non-
optimal but good k◦s . To do this, we exploit the fact that the robot’s CoM is typically
above its feet when the robot is upright, as it would otherwise fall due to the zero moment
point (ZMP) reaching the edge of the support polygon. Additionally, we assume that
the robot is primarily upright, as it will stand back up after a fall. Furthermore, the
Wolfgang-OP, like most humanoids, has the same link length for the upper and lower
legs. The position of the CoM is generally variable and depends on the current pose of
all joints since these move around the masses of the head, arm, and leg links. In the
case of the Wolfgang-OP, the mass of the torso is high, while the mass of the arms and
the head is comparably small. Furthermore, the arms are primarily held in a similar
pose close to the torso. The legs have a higher mass, but only the part above the knee
is counted. Therefore, the position of the CoM typically does not move significantly in
relation to the robot’s torso.

We approximate its position at the hip joint, although it is a few centimeters higher
than that, as this will allow us to come to an analytic solution. This leads us to a rough
estimation of τm, which is lower than the actual torque.

Based on this, we can assume:
−β ≈ 2α (3.8)

Inserting 3.1, 3.2 and 3.8 into 3.4 will produce the following.

τd(β, ks) =
1

2
mgl · sinβ − ksβ (3.9)
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We simplify the equation further by replacing the concrete value of k with a scaling
factor x. This makes intuitive sense, as we want to scale the torques of the mass and
the spring correctly together rather than finding a concrete k.

ks = xs ·
1

2
mgl (3.10)

Inserting 3.10 into 3.9 leads to the following

τd(β, xs) ≈
1

2
mgl · sin

(

1

2
β

)

− xs ·
1

2
mgl · β (3.11)

τd(β, xs) ≈
1

2
mgl ·

(

sin

(

1

2
β

)

− xs · β

)

(3.12)

We reached a function that consists of a constant part ( 12mgl), and the difference
between a sine function and a linear function both depended on β. The factor xs can
be used to pick a trade-off between applied torque in different knee angles for the cases
of τd, τs, and τn. These trade-offs are then independent of the concrete mass and leg
link length values of the robot platform. A visualization of the influence of xs on the
different torques can be seen in Figure 3.11.

As discussed above, the optimal value for overall torque reduction depends on how
much time the robot spends in certain poses. However, it may also be important to
reduce the maximum torque that can occur at any angle, as the robot would otherwise
not be able to perform certain motions. Both, the overall torque reduction as well as
the maximum torque reduction, need to be accounted for the Wolfgang-OP. The energy
consumption should be decreased, but the knee servos are close to their limit during
stand-up motions (see also Figure 3.26a), which leads to issues when the battery gets
empty or when an older servo is used. Still, it is necessary to ensure max τn ≤ max τd as
the robot needs to pull its legs close to the body while lying on its back at the beginning
of a stand-up motion. If this movement creates too much torque, the stand-up motion
cannot be performed. We can assume that β ∈ [0, π], due to the joint limits of the robot.
This results in xs ≈ 0.15.

Inserting this value in 3.10 will provide the spring constant, which is optimal under
our assumptions.

k◦s = 0.15
1

rad
·
1

2
· 6.0kg · 9.81

m

s2
· 0.17m = 0, 75

Nm

rad
(3.13)

Due to size and availability, we chose a spring with ks = 0.755Nm
rad . This leads to a

theoretical reduction of 37% for the maximal τd torque. A plot of the theoretical torques
is shown in Figure 3.12, and an evaluation of the approach is presented in Section 3.6.2.

3.4 Electronics

The robot’s electronics were built from scratch to allow better performance than its
predecessor. An overview of the electrical system can be seen in Figure 3.13. The main
computer was updated to a newer model, and a tensor processing unit was added for
more processing power of neural networks. The complete sensor-servo bus was improved,
including adding new sensors. The details are explained in the following subsections.

3.4.1 Sensors

The robot includes different sensors to allow the usage of multi-modal approaches. Each
servo already includes a hall-effect-based rotational position sensor with a resolution of
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(a) Torque τm generated from the mass of the Wolfgang-OP body when it is standing on both
legs.
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(b) Torque τt generated by the torsion spring for different values of xs.
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(c) Torque τd (the combination of τm and τt) for different values of xs.

Figure 3.11: Visualization of the different torques on the knee joint over the span of the
joint’s movement. The torque τt is displayed without sign for better comparison.
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Figure 3.12: Plot showing the torques for the used spring with x = 0.15. The torque τm
(blue) that would act on the robot if no PEA would be used is higher than the torque
τd (red) for all joint angles if the robot is standing on both feet. If one leg is without
ground contact, the additional torque τt (yellow) is applied due to the knee spring.
Still, the maximal torque that may act on a knee is reduced. The torque τt is displayed
without sign for better comparison. [BGVZ21]

12bit (see Section 2.2.1 for more details). While each servo also includes a temperature
sensor, this is only used to ensure that no overheating happens. Additionally, they
provide current measurements of the supplied power. Based on this, the torque that
is currently generated by the motor can be computed since the torque provided by a
motor (τe) equals the provided current (I) times the field constant (kφ) [TP11].

τe = kφI (3.14)

Naturally, this way of sensing the servo torque is influenced by friction and noise from the
current sensing. Still, it provides an estimate of the torque without additional sensors.

The camera is connected to the main computer via Gigabit Ethernet and powered
with PoE. All other sensors are powered and communicate through a bus system that
uses the DXL Protocol (see Section 2.2.3). This reduces the number of cables drastically,
as only a single cable is necessary for each extremity, rather than one for each sensor
and actuator. The downside of this is that the bus limits the control loop rate of the
robot. We, therefore, investigated how this can be optimized to allow high update rates
(see Section 3.4.2).

IMU

The PCB was designed and build by Jasper Güldenstein. Development of the
Firmware was done conjointly with him.

There are two IMUs installed in the robot. The main IMU is located in the torso and
used to balance the robot during motions, e.g., walking. Another one is located in the
head in the same kinematic link as the camera. This allows a better estimation of the
camera’s orientation which is needed for the inverse perspective mapping (IPM). While
it could also be done from the IMU in the torso together with the head joint positions,
this is inaccurate due to the elastic element in the neck. Previous platforms have mostly
integrated the IMU into a larger board, e.g., the CM730, that also handles other tasks,
i.e., connection to motors and power management. We created a small independent
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Figure 3.13: Overview of the electrical system in the Wolfgang-OP. The main computing
unit (the Asus mini PC) already includes the GPU and is connected to the tensor
processing unit in the Intel Neural Compute Stick 2 (NCS2) via USB (blue). It is also
connected via USB to the QUADDXL, which provides the connection to the four RS-485
Dynamixel buses (yellow) with all servos and sensors. It is located on the COntrolling
and REgulating (CORE) board which also provides Power over Ethernet (PoE) for the
industrial camera that is connected to the main computer via Ethernet (red). To still
allow connecting to the robot via Ethernet from an external computer, a USB Ethernet
adapter is used. The battery is connected to the constant voltage supply unit (CVSU)
that ensures a steady voltage level independent of the battery charge. The CVSU then
connects to the CORE board. Since the external power supply unit (PSU) always
provides a constant voltage, it is directly connected. The CORE then does further
voltage regulation since some components require different voltage levels. Based on
[BGVZ21].

board (see Figure 3.14) using an InvenSense MPU6500 IMU sensor that connects to
the main bus system of the robot, thus allowing free positioning in the robot. It also
includes an ESP32 microcontroller with two cores. One handles the bus communication,
while the other reads the sensor and runs a complementary filter [VDX15] to estimate
the orientation based on accelerometer and gyroscope values. This is a crucial point, as
it ensures that the filter runs at a constant rate and no packages or IMU readings are
lost. The IMU is connected via Serial Peripheral Interface (SPI) to the ESP32. Reading
linear acceleration, angular velocity, and estimated orientation from the IMU requires a
DXL package of 37 bytes. Optionally, the IMU sensor module can also support buttons
and RGB-LEDs that can be read and set via DXL packages, too.

This approach of using a dual-core microprocessor to make a device directly con-
nectable to a DXL bus can be applied to any peripheral electronics or sensors that have
an interface that can be connected to an ESP32, such as GPIO, SPI, UART or I2C.
Besides the ESP32, a RS-485 transceiver is required, which connects the ESP32’s UART
to the DXL bus. Furthermore, a step-down converter is required to provide the correct
voltage for the ESP32 since the DXL bus has a higher one. A generic schematic can be
seen in Figure 3.15. This approach has also been used for the FPS of the Wolfgang-OP
(see next Section) and to create rotary encoders [Ste22].
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Figure 3.15: Generic schematic for a sensor or periphery module that connects to the
DXL bus. An ESP32 connects via UART and a RS-485 transceiver to the DXL bus.
Various sensors or input/output (IO) modules can be attached to the ESP32 via standard
microcontroller interfaces. A step-down converter provides the necessary voltage for the
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CHAPTER 3. ROBOT PLATFORM 43

Last Leg

Servo

DXL Bus

Connection

Strain

Gauge

Analog

Input

ADCADC

ESP32

Figure 3.16: Annotated image of the FPS installed on the foot. The 3D printed cover was
removed to show the PCB. Each corner of the foot has a cleat with a strain gauge. Their
analog signals are fed into the ADC, which is then read by the ESP32 microcontroller.
To include the FPS into the bus DXL bus, it is connected to the last servo of the robot.

Foot Pressure Sensor

The PCB was designed and build by Jasper Güldenstein. Development of the
Firmware was done conjointly with him.

Another important modality for humanoid robots, besides joint positions and inertia
measurements, are forces on the soles of the feet. On the one hand, they can be used
to measure the center of pressure (CoP), which is the same as the ZMP, an important
stability criterion for bipedal robots [KHHY14, pp.72f]. On the other hand, they provide
Boolean information if the foot is in contact with the ground. This allows loop closure
for step timings in locomotion skills and the detection of the kidnapped robot problem
for localization.

The Wolfgang-OP has four strain gauges at the corners of each foot to measure
the one-dimensional vertical ground reaction forces (see Figure 3.16 and 3.17). This
approach of sensing the forces is inspired by the sensor of the Sigmaban robot [RPH+15],
which also uses four strain gauges. However, this sensor uses a HX711 analog-to-digital
converter (ADC) to sense the strain gauges, and an ATMega328PB microprocessor to
allow reading them via the Dynamixel protocol. While their approach was generally
successful, the used ADC limits the reading rate to 80Hz. To improve on this, our
approach uses the ADS1262 as ADC, which theoretically allows sampling four analog
signals with a resolution of up to 32 bit and a rate of up to 38,400Hz. Furthermore,
it already integrates on-chip filtering. The sensor is connected via SPI to an ESP32.
Similarly to the IMU, this processor was chosen as it allows bus communication and
reading of the sensors simultaneously. The sensor provides the raw data of each strain
gauge to allow more flexibility in using this data in the software. Alternatively, it would
also be possible to directly provide the CoP, requiring less data to be transmitted on
the bus.

3.4.2 Dynamixel Bus Communication

All sensors and actuators in a robot need to be connected to the processing unit. Directly
connecting each of them would lead to a high amount of cabling, especially for multi-
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Figure 3.17: Photo (left) and exploded CAD drawing (right) of a foot cleat. The strain
gauge (red) is fitted on one side to the 3D printed foot (gray) to ensure that it does not
move. On the other side, the cleat (blue) is mounted. The PCB (yellow) is protected
by a cover (orange).

modal and high DoF humanoids. This problem is typically circumvented by daisy-
chaining all parts into a bus system, thus reducing the number of cables to one per
extremity. While different bus standards are available, the RS-485 bus (see Section 2.2.2)
is used as the Dynamixel motors require it. Similarly, only the Dynamixel protocol (see
Section 2.2.3) is discussed, but the findings generalize to other similar command-status
protocols. A discussion of previous approaches can be found in Section 3.1.5.

The downside of using a bus system is that all devices have to share the bandwidth
of the bus. Therefore, an increase in the number of connected devices results in fewer
reads/writes per device per second. This can create a bottleneck in the overall control
loop cycle of the robot. Thus leading to slower response times to sensory input, which
is undesirable for dynamic and reactive motions. To illustrate the importance, we show
how the control loop frequency influences the forces that act on the robot when the
swing foot makes contact with the ground. First, we can compute how much time (t) is
needed between sensing the ground contact and the servos receiving the stop command.
We assume that hardware communication and control are performed asynchronously (as
it is typically done when using ROS) and that we communicate with the hardware with
a fixed frequency f . We need more than two control cycles, in the worst case almost
three, to react to the event of the foot making ground contact (see also Figure 3.18).

2
1

f
< t < 3

1

f
(3.15)

This can also be expressed with a factor e that reflects how the contact’s moment relates
to the control loop’s phase.

t = e
1

f
, e ∈ [2, 3] (3.16)

The traveled distance x of the foot during t can be described as following if we assume
a constant velocity v.

x = vt (3.17)

To estimate the resulting force we can use Hook’s law that describes the resulting force
(F ) from compressing a spring with the spring constant (ks) over a distance of (x).

F = ksx (3.18)
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Figure 3.18: Illustration of why it takes multiple control cycles to react on the ground
contact.

Most solid materials follow this law as long as the compression is small. Combining the
equations leads to the following.

F = ksvf
1

f
(3.19)

Although k, v, f are not known, it is clear that the resulting contact force is anti-
proportional to the control rate. This means increasing the control rate decreases the
ground contact force when the robot puts its foot on the ground.

The previously used hardware in the Minibot, the CM730, resulted in low control
loop rates of around 80Hz. Furthermore, package loss and breaks in communication
were frequent. Therefore, two approaches were investigated to improve the control loop
time. First, a new firmware was written for the existing Rhoban DXL Board (R-DXL) to
enable usage of the protocol version 2.0, thus enabling the usage of sync commands (see
Section 2.2.3). Second, a novel approach was investigated based on a four-channel UTS
chip. Thereby, a microcontroller-based and a UTS based approach were investigated
and could be compared. Both approaches are presented in the following subsections and
evaluated in Section 3.6.1.

R-DXL Board

The R-DXL was the only available multi-bus controller. Therefore it was chosen as a
basis for further development. It supports three buses, one with 4.5Mbaud and two with
2.25MBaud, and can be connected to the main computer via USB 2.0 Full Speed with
12Mbaud. The original firmware supported only the Dynamixel Protocol 1.0 (compare
Section 2.2.3). Additionally, a custom sync read instruction was implemented. When
the board receives this command, it is translated into standard read commands for each
servo and sends these on the corresponding buses. All returning status packages are then
aggregated and returned to the main computer as a single custom response package.
While this decreases the number of bytes necessary to send between the computer and
the controller board, it does not improve the performance of the servo buses. Any overall
improvement from this is doubtful since the bandwidth of the USB bus is higher than
the combined bandwidth of the servo buses. Some additional communication over the
USB bus is necessary, i.e., to read the IMU, and an additional overhead exists due to
the USB protocol. Still, it is improbable that this bus will create a bottleneck due to its
high bandwidth. Additionally, these custom packages are not specified in the protocol
and therefore violate it. See Figure 3.19 for a visual explanation.
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(b) Improved version using protocol version 2.0.

Figure 3.19: Exemplary setup of the R-DXL with nine servos equally distributed on
the three buses. In the original version (a), it was necessary to send a read instruction
for each servo on the bus. Additionally, non-standard sync read packages needed to be
used. In the improved version (b), only one sync read per bus is necessary, and standard
sync reads can be used, but the status packages are not aggregated. Still, this is faster
as the USB connection has a higher bandwidth than the RS-485 buses.
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The protocol version 2.0 specifies a sync read instruction that can be used as a
replacement. Switching to this version not only circumvents the violation of the protocol
by a custom sync read, but it also allows the use of sync read packages on the servo
buses instead of regular reads. Thus a single sync read instruction can be sent from the
main computer to the microcontroller. It is then split into three sync read packages for
the three buses, each containing the corresponding servo IDs. The returning response
packages can then be forwarded from the servos to the main computer in the correct
order so that the protocol specifications are not violated. This way, the load on the
servo buses, the current bottleneck, can be reduced since the sync reads require fewer
bytes than regular reads (compare Section 2.2.3). As the returning packages to the main
computer are now single returns for each of the servos instead of an aggregated custom
one, the number of bytes on this bus increases. Still, this is not an issue since the USB
connection has a higher bandwidth.

Since the board is open-source and open hardware, it is simple to modify the
firmware. Two new firmwares that use protocol 2.0 were implemented and are com-
pared in Section 3.6.1. One uses the above-described sync read with three buses, and
one uses only a single bus. Since one of the buses allows communication with a higher
bandwidth than the other two, using just this at a higher rate might increase perfor-
mance. Additionally, the computational load on the microcontroller is also decreased as
all instructions not targeting the IMU are just forwarded to the bus. All return packages
can also be directly forwarded to the main computer. This might reduce the latency
from parsing packages.

QUADDXL

As described in Section 3.1.5, the existing solutions for this problem can be distinguished
based on the usage of a microcontroller or an UTS chip as the main component. A
representative of the first class is described above with the R-DXL. Since there were no
previous solutions for a multi-bus controller based on a USB to serial chip, we created
a new one that we call QUADDXL. Its main component is an FT4232H chip from the
company FTDI which converts a single USB 2.0 High-Speed interface with 480Mbaud to
four UART channels with 12Mbaud each. Thus, the available bandwidth is significantly
higher than in any existing approach. Additionally, four SP485 transceivers are used
to create an RS-485 interface for each of the UART channels. Virtual com port drivers
for this chip have been included in the Linux kernel since version 3.0.0, which allows
direct access to each of the buses as if they were single devices. This simplifies the usage
from the main computer side. Compared to the microcontroller-based approaches, no
firmware is necessary, further simplifying development. It is only necessary to set the
chip into the correct mode so that the TX enable works. Generally, this approach is
similar to the USB2DXL and U2D2 but offers multiple buses and higher bandwidths.
We integrated this into the CORE board.

3.5 Modeling

The creation of the Webots model was done together with Jasper Güldenstein.
The joint modeling was done collaboratively, and he simplified the collision

shapes.

An important part of a robot platform is a realistic model. This consists of multiple
parts: First, a kinematic model that includes all links (with visual and simplified collision
shapes) and the joints that connect them. This can be used to compute forward/inverse
kinematics and collision checking. Second, a dynamic model, including all the links’
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Figure 3.20: speed torque curve (NT-curve) of a MX-64 servo with the points for ω1/2

and τ1/2 marked. Modified from [26].

masses and inertia matrices, for simulating the robot. Third, models of the sensors and
their noise to simulate the sensed data.

Creating a model by hand is tedious for such a complex robot. Furthermore, each
future change in the hardware needs to be manually reflected in the model, thus com-
plicating further development on the hardware. Therefore, we extracted most of the
model directly from our CAD program. We chose to use OnShape [11] as CAD program
since it is free for research use but still supports all necessary features, e.g., modeling
of joints. It is cloud-based and, therefore, platform-independent. It also has a free view
functionality which allows easy sharing of the model, which fits well with the open hard-
ware nature of the platform. Furthermore, there was already an existing open source
project called onshape-to-robot [10], which generates an Unified Robot Description For-
mat (URDF) model directly from OnShape. We improved this project by allowing usage
with ROS, by improving the accuracy of the joint representations (as described below),
and by fixing bugs. The tool generates a model of all links by using the user-specified
material to compute the weight and inertia of the link. Additional frames can also be
specified, which is necessary to follow the standards specified in the ROS Enhancement
Proposal (REP) 120, e.g., by adding a l sole frame. The joints’ name, position, and
type can be specified directly through mates in OnShape. However, this does not al-
low to specify further joint properties, i.e., the torque, velocity, damping, and friction.
Therefore, the user needs to specify the additional data in a configuration file which will
then be used during the generation of the URDF.

A script was written to find these values for the different servos of the Wolfgang-OP
(MX-64, MX-106, XH540-W270). This script became the standard for the computation
of joint values for the HLVS [6]. The maxTorque and maxVelocity values can be directly
read from the datasheet since they are provided as stallTorque (τstall) and maxVelocity
(ωmax) respectively. The other two joint parameters (damping and friction) can not
be read directly from the datasheet. It is necessary to rely on the NT-curve that is
provided in the datasheet (see Figure 3.20). The torque (τ) and angular velocity (ω)
are taken from the lowest (1) and highest torque (2) of the curve. All values in between
are assumed to have a linear relationship that closely matches the actual NT-curve.

y = ax+ b (3.20)
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We first solve the slope (a).

a =
ω2 − ω1

τ2 − τ1
(3.21)

Then, b can be solved by inserting one of the points into the equation.

b = ω1 − aτ1 = ω1 −
ω2 − ω1

τ2 − τ1
τ1 (3.22)

This provides the complete linear equation for the NT-curve.

y =
ω2 − ω1

τ2 − τ1
x+ ω1 −

ω2 − ω1

τ2 − τ1
τ1 (3.23)

The damping constant (kd) is the same as the slope of the curve but has, per definition,
a positive sign while the slope is negative. Therefore it can be defined as follows.

kd = −a = −
ω2 − ω1

τ2 − τ1
(3.24)

To compute the friction parameter, the effective torque must be computed first. The
effective torque is not the same as the stall torque since the former is the torque while
still moving (thus acting against friction), while the latter is the torque holding a position
(thus the combined torque with friction). To compute the effective torque (τeff ), the
value of the NT-curve at ω = 0 is computed.

0 =
ω2 − ω1

τ2 − τ1
τeff + ω1 −

ω2 − ω1

τ2 − τ1
τ1 (3.25)

τeff =
−(ω1 −

ω2−ω1

τ2−τ1
τ1)

ω2−ω1

τ2−τ1

= −ω1
τ2 − τ1
ω2 − ω1

+ τ1 (3.26)

The friction (f) can then be computed by comparing the stall and effective torque.

f = τstall − τeff (3.27)

Unfortunately, the datasheet only provides the NT-curve for the default supply voltage
of 12V, but the Wolfgang-OP uses 14.8V. The stall torque and maximal velocity are
also provided for 14.8V in the datasheet and can, therefore directly, be used. The values
for the NT-curve are then scaled with a factor for the torque (sτ ) and one for the velocity
(sv).

sτ =
14.8τstall

12.0τstall
(3.28)

sω =
14.8ωmax

12.0ωmax
(3.29)

14.8kd = −
sωω2 − sωω1

sτ τ2 − sτ τ1
(3.30)

14.8f = 14.8τstall + sωω1
sτ τ2 − sτ τ1
sωω2 − sωω1

− sτ τ1 (3.31)

The resulting URDF can directly be used in the PyBullet [15] simulator, but not in
Webots since this requires a specific .proto format. The proto model can be generated
from the URDF using a script [23]. Still, some manual modifications are necessary, i.e.,
to add the sensors. Images of the different models are shown in Figure 3.21.

Besides the kinematic (URDF) and the simulation (proto) model, a configuration for
MoveIt is necessary. This specifies the kinematic chains and the inverse kinematic (IK)
solver. It can be semi-automatically generated using the Moveit Setup Assistant [7].
This needs only be adapted if the kinematic chain of the robot changes, which does not
happen frequently. Therefore, it is not necessary to completely automate this process.
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Figure 3.21: From left to right: CAD model in Onshape, URDF displayed in RViZ,
PyBullet simulator model, Webots simulator model, Webots model with simplified col-
lision shown.

3.6 Evaluation

This section evaluates different aspects of the Wolfgang-OP platform. First, the QUAD-
DXL approach is evaluated and compared to other methods (Section 3.6.1). Then, the
reduction of torque and energy usage by the torsion spring based PEA is investigated
(Section 3.6.2). Afterward, the computational performance of the motion software stack
is evaluated (Section 3.6.3). Finally, a qualitative evaluation is given (Section 3.6.4).

3.6.1 Servo and Sensor Interface

Typically, a continuous control cycle on humanoid robots includes reading the sensor
data and writing new goals to the actuators. Unlike other robots, i.e., robotic arms and
wheeled platforms, humanoid robots need to do this to keep stable. Thus, staying below
a threshold for the time between two cycles is necessary. Also, higher control loop fre-
quencies allow faster reactions to sensory information, for example, during disturbances.
Therefore, decreasing the time for a read-write-cycle is preferable (see Section 3.4.2).
First, we evaluate which control loop rates can generally be achieved with our approach.
Then, we investigate which control loop rates are achieved when the approach is inte-
grated into the Wolfgang-OP.

General Evaluation

The approaches presented in Section 3.4.2 are evaluated. For this, only the sync read-
/write instructions are used, as they require the least number of bytes and packages
(compare Section 2.2.3). The experimental setup consists of 20 Dynamixel MX-64.
This setup was chosen since it is the same number of servos used in the Wolfgang-OP,
and many other humanoids have similar numbers of actuators (compare Section 3.1.1).
The MX-106 servos and the X-series are assumed to perform identically as they are us-
ing the same processor (STM32F103)[26]. For the experiments, position control is used,
and all typically interesting information is read from the servo. Therefore, 4 bytes are
required for the write command, and 10 bytes are required to read the robot’s position,
velocity, and drawn current. The latter can be used to estimate the torque that the
servo is applying. In the single-bus case, this results in 568 bytes of data per update
cycle, including overhead from the packages’ checksums and headers (see Table 2.2). In
a four-bus case, the necessary data is 163 bytes per bus or 652 bytes overall. The overall
data size increases as sync read and sync write packages need to be written to each bus,
requiring additional header bytes.
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The mean update cycle rate of our approaches (see Section 3.4.2), as well as the
USB2DXL, as a baseline, were measured. Additionally, the theoretical maximum that
would be achieved if the bandwidth of the bus were ideally exploited is provided as a
comparison. The results are shown in Table 3.4. While the servos should be able to
communicate on 4.5Mbaud [26], we were not able to establish a connection with any
controller at this rate without a known reason. Thus, the maximal bandwidth that was
tested was 4Mbaud.

For a single bus, the highest rate for 1 and 2Mbaud is reached by the USB2DXL,
but the QUADDXL is only slightly slower. This difference is probably due to handling
multiple buses via a single USB interface. Both versions of the R-DXL perform worse.
The QUADDXL achieves the highest performance on the single bus if the full 4MBaud
are used. We did not test the U2D2 (as it was not available to us), which would be able
to achieve this rate, but we expect that it would be slightly faster in this case, as it is
very similar to the USB2DXL. In this configuration, the R-DXL only achieves a very
low rate. We believe that the microcontroller is not fast enough to handle packages at
this speed, and therefore package loss is happening.

The QUADDXL outperforms the R-DXL in all multi-bus cases significantly. It can
be seen that the performance of the R-DXL does not scale with the number of buses
as the QUADDXL does. The microcontroller is probably the bottleneck, although we
tried to optimize the firmware. The QUADDXL increases its control loop rate with the
number of buses and with increased bandwidth. A maximum of 1,373Hz is reached with
four buses, which is three times higher than on a single bus and two times higher than
the theoretical limit of the single bus.

Interestingly, there is a significant gap between the theoretical limit and the actual
performance for all approaches. A comparison can be seen in Figure 3.22. This difference
means that there are significant spans of time on the bus where no data is transmitted.
To get qualitative results on the bus usage, the experimental setup was extended with a
logic analyzer. An exemplary result can be seen in Figure 3.23. It is clearly visible that
the servos have a high reply time, not only initially after the sync read command but also
after each response from another servo. This reply time does not change when different
baud rates are used. This observation fits the fact that increasing the baud rate does
not linearly increase the control loop rate since the waiting times for return packages are
not affected by that. The exact time till a reply varies. To further investigate this, the
logic analyzer was used to record 61,913 packages, and the reply times were computed
(see Figure 3.24). While the delay is mostly comparably short, there are also long delays
that are less frequent.

Unfortunately, the firmware of the servos is not open source, so it is impossible to
investigate exactly why this is happening. Still, we have the following hypothesis that
would explain this phenomenon. The protocol specifies that the return packages need
to be ordered in the same way they were requested in the sync read. This ensures that
there are never two devices that write their return package simultaneously on the bus.
Thus each servo needs to parse the other return packages to know when it is its turn to
write the return package. Since the incoming packages can only be verified with their
checksum if they are fully parsed, the process of writing the own return package can only
start if the preceding package is completely parsed. Depending on the implementation
details, the data from the sensors could just then be read, thus requiring extra time.

This problem could be circumvented by changing the process of the return packages.
One solution would be to use fixed time frames for each read device based on the position
of the ID in the sync read package. Additionally, the return packages for sync reads
could be changed to include fewer overhead bytes, i.e., by reducing the number of header
bytes. Due to the mentioned closed-source nature of the servos, this is not simple to do.
There exists an experimental alternative firmware that is open source [FRP+16]. But
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Table 3.4: Mean update rates. [BGZ19]

No. buses MBaud Board Rate [Hz]

1

1

Theoretical Max 176
R-DXL Single 132
R-DXL Multi 125
USB2DXL 153

QUADDXL 149

2

Theoretical Max. 352
R-DXL Single 215
R-DXL Multi 179
USB2DXL 272

QUADDXL 261

4
Theoretical Max. 704
R-DXL Single 40
QUADDXL 398

2

1
Theoretical Max. 336
R-DXL Multi 185
QUADDXL 285

2
Theoretical Max. 671
R-DXL Multi 219
QUADDXL 497

4
Theoretical Max. 1342
QUADDXL 744

3

1
Theoretical Max. 461
R-DXL Multi 224
QUADDXL 390

2
Theoretical Max. 922
R-DXL Multi 250
QUADDXL 670

4
Theoretical Max. 1843
QUADDXL 1003

4

1
Theoretical Max. 613
QUADDXL 524

2
Theoretical Max. 1227
QUADDXL 923

4
Theoretical Max. 2545
QUADDXL 1373
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Figure 3.22: Actual and theoretical control loop rates for the QUADDXL with different
numbers of busses. It can be observed that the difference to the real result gets larger
with higher bus speeds as the response delay is constant while the time per byte de-
creases. Based on [BGZ19].

Figure 3.23: Screenshot of a logic analyzer output. Two buses with five servos each are
controlled at 4MBaud. The first package is a sync write (SW), which is followed by a
sync read (SR). Afterward, a series of response packages (RP) are visible. Then the
control cycle starts again with another sync write. The delay before each status package
is clearly visible. [BGZ19]

this is only for the MX-64 and protocol version 1.0. Therefore, using this as a basis to
develop an improved behavior of the servos was out of the scope of this thesis.

Based on these findings, it is possible to formulate an equation that estimates the
achievable control loop frequency (f) given a number of servos (n), the amount of data to
read (d), and the used baud rate (b). As a comparison, the formula for the theoretical
reachable control loop frequency (ft) is shown in Equation 3.32. Since the protocol
uses one start and one stop bit, 10 bit are necessary to transfer one byte. Therefore a
corresponding factor is added. Equation 3.33 includes an additional part that represents
the necessary reply time of the servos. While this is not exact, it gives an estimation
(fe) that can be used during the design of new robots or to validate in a running system
that no additional bottlenecks were introduced into a system. A further evaluation of
this equation on a real system is presented in Section 3.6.1.

ftHz =

(

dB · 10bit
B

bbits

)−1

(3.32)
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Figure 3.24: Delays between two status response packages are plotted as a histogram.
The y-axis is scaled logarithmically to show the outliers with high delays better. The
bucket size for each bar is 20us. Based on [BGZ19].

feHz =

(

dB · 10bit
B

bbits
+ n · 0.000050s

)−1

(3.33)

After publishing our results in [BGZ19], the manufacturer introduced a new mode
called fast sync read. Unfortunately, it is only usable with certain newer servo models.
Therefore we could not do the same experiment with this new mode. It reduces the
number of necessary bytes for the status packages by omitting the header of every single
package and merging them together into one larger return package. While this will
reduce the number of bytes and increase the control loop rate, it is unclear if the issue
of slow responses from the servos is solved. This should be further investigated.

Platform Evaluation

While the experiments above provide a general evaluation of our approach, integrated
tests on the platform together with the sensors are still necessary. To do this, different
combinations of the available devices on the bus were chosen, and the resulting control
loop frequency was measured (see Table 3.5). This only reflects the reading rate via the
bus. The sensors themselves might be read at a lower rate, e.g., around 720Hz for the
FPSs, thus providing the same value multiple times for fast reads via the bus.

The theoretical rate, following the Equation 3.33, is also provided. It is necessary
to compute this rate for each bus and take the minimum since the devices can not be
equally distributed on the bus due to the kinematic structure of the robot. The two
leg buses have the highest amount of data since six servos, and one FPS are connected
to each. The head chain with two servos and two IMUs is very similar since the IMU
needs to transmit the most data. Therefore, not reading the foot pressure sensors leads
to an increase in the loop frequency. While the embedding of the sensors as bus devices
reduces the achieved control rate, these results are still a significant improvement to all
existing solutions.

Comparing the estimated control loop rate following Equation 3.33 with the actu-
ally achieved one shows that the equation is not accurate for the integrated case. This
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Table 3.5: Achieved Control Loop Rates for Different Configurations.
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✓ ✓ ✓ ✓ ✓ ✓ ✓ 1,140Hz 757Hz
✓ ✓ ✗ ✗ ✓ ✓ ✓ 1,270Hz 798Hz
✓ ✓ ✓ ✓ ✓ ✓ ✗ 1,388Hz 758Hz
✓ ✓ ✗ ✗ ✗ ✗ ✗ 1,459Hz 1,194Hz
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✗ ✗ ✗ ✗ ✓ ✗ ✗ 4,706Hz 1,811Hz
✗ ✗ ✗ ✗ ✓ ✓ ✗ 2,352Hz 1,228Hz
✗ ✗ ✗ ✗ ✗ ✗ ✓ 6,557Hz 2,172Hz

has probably two reasons. First, it does not take the computational ROS overhead of
publishers and subscribers of the hardware interface into account. In the current im-
plementation, the hardware interface is doing these sequentially together with the bus
communication. This could be improved by parallelizing these. Second, the estimations
for configurations that only include servos are closer to the achieved rate than those
containing sensors. Since the equation was developed only based on the response be-
havior of the servos, possible different behavior of the custom ESP32-based sensors was
not taken into account. This could be improved by evaluating their response behavior
in more detail and possibly improving the firmware further to improve them. Still, it
could also be that using the sensors just creates further computational overhead as more
messages need to be published.

Besides the quantitative measurements, it can also be stated that the QUADDXL
approach is now used by the team CITBrains in their new SUSTAINA-OP platform [22].
Notably, this robot does not use Dynamixel servos but other RS-485-based ones. Still,
the QUADDXL approach is usable and preferable to their previous microcontroller-
based solution. It is also part of a new Nimbro-OP2X-based robot platform that is in
development by the team HULKS. This and the fact that the protocol was extended
with the fast sync read indicates that the presented research had an actual impact on
the robotics community.

3.6.2 Torque Reduction

To evaluate the influence of the torsion spring, the torque on the knee joints was recorded
during different typical motions of the robot. The torque on the sensor is only approxi-
mated by measuring the current drawn by the DC motor. This is possible because the
torque (τ) is proportional to the current (I) with a motor constant (kτ ) [TP11, p.55].

τ = kτI (3.34)

The actual torque of the servo, including the gearbox, is naturally reduced due to friction.
Still, this is not an issue as we only compare the measurements against each other, and
both measurements are taken with the identical robot. The torque reduction can be
directly seen as a reduction in the power usage (P ) since the supply voltage (V ) is
assumed to be constant.

P = V · I (3.35)
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Table 3.6: Comparison of Knee Torques. [BGVZ21]

Motion
No PEA PEA Relation
[Nm] [Nm] PEA / no PEA

Standing in a mean 0.48 0.31 0.66
walk ready pose max 0.81 0.80 0.99

Walking
mean 2.47 1.91 0.78
max 9.4 7.29 0.78

Stand up mean 1.85 1.61 0.87
from the front max 7.58 6.60 0.87

Stand up mean 1.90 1.49 0.78
from the back max 7.03 6.80 0.97
Standing to mean 1.29 0.48 0.37
squatting max 2.85 1.17 0.41

Squatting to mean 2.75 1.74 0.63
standing max 7.08 3.75 0.53

The torque values also depend on how the motion is performed, e.g., how high the foot
is raised during the walking. Since evaluating all possible motion configurations is not
feasible, all motions were evaluated with the parameters that were used for the RoboCup
competition 2019. The results are presented in Table 3.6. Two metrics were investigated.
First, the mean torque was measured to investigate how the power consumption was
improved. Second, the max torque is measured to show how the stress of the servo is
influenced and to see if the spring could allow the use of a less powerful (meaning smaller
and lighter) servo for the joint.

The results show that the mean torque, and thereby the power consumption, is
reduced for all motions. Sebastian Stelter performed a similar experiment as part of his
thesis where he concluded that the PEA reduces the knee servos power usage by 26%
while walking [Ste22, p. 54]. This closely matches our result. The slight difference could
arise from using different walking parameters.

This reduction is even present in motions where the spring creates additional torque
while the foot has no ground contact. An example is walking. In this case, the leg
has no ground contact during the swing phase, and therefore the torque is higher than
without a spring (see Figure 3.25). Still, a significant decrease in the mean torque can
be observed. A similar situation exists during the stand-up motion from lying on the
back (see Figure 3.26a). The robot needs to pull both feet towards the pelvis while
only the torso has contact with the ground. Again, the torque with springs is increased
in this phase of the motion, but the overall mean is reduced as the torque is lower in
the rest of the motion. Additionally, the highest torque peak while getting up from a
squatting position is decreased. The stand-up motion from lying on the belly shows a
similar behavior (see Figure 3.27). The torque is increased by the PEA when the feet
are pulled to the body, but the peak and the mean torque is decreased. The knee joint
shows similar performance in tracking its goal position with and without PEA. The
values of the proportional derivative (PD) controller were not adapted when the spring
was added. Tuning these might further improve the performance of the PEA.

In contrast to this, the maximal torque values show almost no change for some
motions. Two factors influence this. First, the robot’s weight may not be equally
distributed on the two legs, leading to different maximal torques in some repetitions.
Second, this value is naturally more influenced by noise, and the measurement via the
motor current is noisy, which results in single outliers that increase the maximal value.

We also tested if our theoretical model (see Figure 3.12) fits the measured data. For
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Figure 3.25: A plot of the torque values of one knee with (yellow) and without (blue)
spring from 30s of walking each. The double support areas are marked in grey. In the
first half, the knee supports the robot’s weight. Therefore the spring reduces the torque.
In the second half, the knee belongs to the swing leg, and thereby the spring generates
additional torque. Modified from [BGVZ21].

this, the robot very slowly moved from squatting to a standing pose and back again.
During this, the torque on the knees was recorded over the full joint range of the knees
(see Figure 3.28). Interestingly, the torque is considerably different while moving up
or down. We hypothesize that the potential energy is used while moving down, thus
requiring less current in the DC motor (which is the basis for the torque computation).
Another explanation is that static friction needs to be overcome when moving upwards.
This is not the case when moving downwards since the torque generated by the mass of
the robot will make the joint move as soon as the torque of the motor is reduced. At the
highest angle, the torque drops as the hip motors make contact with the ankle motors.
Thus the mass of the robot is not creating any torque. Still, the measured torques from
moving upwards fit well with the theoretical model, and the torque with PEA is lower
in both moving directions.

Overall, it can be concluded that the application of the PEA is successful. It reduces
the mean torque and, thereby, the robot’s power consumption. Additionally, it reduces
the peak torques, especially during stand-up motions, thus reducing the stress on the
servo and allowing future versions to use smaller servos in this joint. Compared to the
approach with linear springs in the Poppy robot [LRO13], our approach does not only
provide an advantage for walking but for a large variety of motions.

3.6.3 Computational Performance

As stated above, it is important that it is possible to control the robot in a high-frequency
loop. The performance of the bus interface was already proven in Section 3.6.1. Still, it is
also important that the ROS based system with its multiple running nodes achieves the
same rates. One approach to ensure the correctly timed execution of multiple processes
would be the usage of a real-time operating system and specially set scheduling. This
would require great effort, and therefore, another approach was chosen. Since the central
processing unit (CPU) of the Wolfgang-OP features eight cores with 16 hyper-threads,
it is possible to divide the important nodes onto these cores. Thereby, each of them
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(a) Plot of the knee torque during a stand-up motion from the back, with (yellow) and without
(blue) torsion spring. [BGVZ21]
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(b) Plot of the knee angle, with (yellow) and without (blue) torsion spring, as well as the goal
position (black).

Figure 3.26: The different phases are marked with vertical lines. First, the feet are
pulled towards the torso, resulting in a high torque from the springs. Second, the robot
tilts on its feet and then stands in a squatting pose. Finally, the robot moves upwards to
a standing pose. In these last three phases, both feet are on the ground, and, therefore,
the overall torque is reduced by the spring. The position control with spring is worse in
the first phase due to the additional torque, but better in the other phases.
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Figure 3.27: Torque of the knee during a stand-up from lying on the belly. First, the
torque is higher with PEA while the feet are moved towards the torso. Still, the peak
torque while moving from squatting to standing can be reduced.
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(b) Right knee

Figure 3.28: Comparison between the theoretical angle torque relationship with mea-
sured torques while moving upwards and downwards between squatting and standing.
A slight difference between the measurements in the knees can be observed. This can
either be due to the different behaviors of the servos or to the CoM being not exactly
centered laterally.



CHAPTER 3. ROBOT PLATFORM 60

has its own CPU hyper-thread where it can run without being interrupted by the Linux
scheduler. This can easily be realized by using the Linux kernel option isolcpus to forbid
the Linux scheduler from using certain parts of the CPU. The important ROS nodes
can then be set manually to these cores by using the command taskset. It may not be
the solution that uses the performance of the CPU most efficiently, but it is one of the
easiest. If the complete RoboCup software stack is executed without this approach, the
control loop becomes unstable as a process like the hardware interface gets interrupted
and moved around the processor’s cores. This leads to visually observable degradation
of the motions by creating jerky movements, which may make the robot fall.

The switch to ROS 2 first created a new problem as the CPU load of the nodes
that run at a high frequency was significantly higher than with ROS 1. The reason
for this was the inefficient implementation of the default executor that did not scale
well with high-frequency topics. The problem was solved by using a new experimental
executor called EventExecutor, which was at this time not part of the default ROS 2
libraries. Additionally, some nodes needed to be written in C++ instead of Python, as
this executor was only available for C++.

After applying these optimizations to the motion stack, we measured the computa-
tional load when the robot is actively walking with a control loop frequency of 500Hz.
During this, the hardware interface, the HCM, and the walking each need less than one
CPU hyper-thread. Additionally, auxiliary nodes, e.g., the odometry and the robot state
publisher, take together less than one hyper-thread. Therefore, only a quarter of the
available performance is used for the motion stack. It can be concluded that the CPU
of the Wolfgang-OP is powerful enough to run the hardware interface and the motion
stack at a high control loop rate while still leaving resources for high-level behavior and
computer vision.

3.6.4 Qualitative Evaluation

The Webots model (see Section 3.5) of the platform was used in multiple virtual Ro-
boCup competitions (see Section 2.5). In the simulated world championship 2021, the
Hamburg Bit-Bots achieved third place using this robot. Additionally, the robot was
awarded third place in the category “best model”. In the same year, it also won first
place in the simulated RoboCup Brazil Open tournament. In the HLVS 21/22 the
Hamburg Bit-Bots achieved second place. Additionally, the model was successfully used
to transfer motions from the simulator to the real robot (see Chapter 5). This shows
that the model is accurate enough to be useful.

The real robot has been successfully used in its previous versions (see Figure 3.1)
in the RoboCup championships in 2018 and 2019. In 2019, it won first place in the
teen-size category push-recovery challenge. In this challenge, the goal is to withstand
the largest external impact while walking. The latest version was used in the RoboCup
2022 with less success as the switch from ROS 1 to ROS 2 led to various software issues.
The elastic elements in the shoulder joints, together with the fall detection (see Chapter
4), drastically reduced the number of gears that needed replacement due to fall damage.
After multiple years of usage and many falls, no 3D-printed elastic elements broke.

Still, there is one major issue remaining in the platform which could not be solved
during this thesis. This is the backlash issue of the Dynamixel servos. Due to the
used gear system, each of them has a nominal backlash of 0.25-0.33° (depending on the
model). This backlash increases further as the gears wear down over time of usage.
The combination of the backlash from the multiple motors in the leg makes the robot
challenging to control. For example, when a robot with old servos is standing straight,
the torso can easily be moved by around 1 cm in the sagittal and lateral directions.
Unfortunately, this issue can not easily be solved. One option would be to use different



CHAPTER 3. ROBOT PLATFORM 61

Figure 3.29: Images from Wolfgang-OP in the HSL (left) and in the HLVS (right).
Photo courtesy of Florian Vahl.

motors, especially ones with planetary or strain wave gearboxes. Another would be
using multiple servos for one joint and parallel kinematics.

The platform was also used as a basis for multiple bachelor, and master theses [Gül19]
[Fie19] [Hag19] [Fle19] [Har19] [Ste20] [Mir20] [Ber20] [Rei20] [Eng21] [Gül22] [Ste22].
It was also used in multiple research papers with other authors (see Section 1.5). This
shows that the platform is usable for various research topics and that the goal of creating
a robot that is not only used for this thesis was achieved.

3.7 Summary and Future Work

In this chapter, the work on the low-cost Wolfgang-OP was presented. This platform
builds upon previous works but offers multiple improvements. A new torsion spring-
based approach to reduce the load on the robot’s knees was developed and proved its
effectiveness in multiple experiments. Additionally, existing approaches for handling
the communication with the DXL servos were investigated. This led to the creation
of the QUADDXL approach, which outperformed all existing solutions. The complete
electronics of the robot were designed based on this approach, and its feasibility could be
shown in experiments. Furthermore, the robot platform proved its usefulness in different
research projects, theses, and the HSL competition.

In the future, the platform could be improved by using a different type of actuator.
Using brushless DC servos with planetary gears would solve multiple issues at the same
time. First, this gear system has a lower backlash and would, therefore, allow more
precise control of the robot. Second, the different gear ratio makes the servo back
drivable, which would allow falling with less damage. Third, they have higher rotational
velocities, which would allow faster movements. They have become the standard for
quadrupeds [BPK+18], but are still comparatively expensive. A solution would be to
use a 3D printable servo [UARM22]. This would also allow easier integration into the
robot.



Chapter 4

Fall Management

The fall management for humanoid robots was investigated for two reasons. First, it
was planned to train the RL policy on the robot’s hardware. This requires the robot to
withstand many falls during training and then return to a usable upright pose. Although
it turned out later to be not feasible due to the long training time (see Chapter 6), it was
also necessary that the robot could execute the trained policy for experiments without
breaking. The platform’s robustness was increased by adding elastic elements to the
hardware. Still, additional software is required to bring the robot into a safe falling pose
and let it stand up again. The second reason is that one topic of this thesis is bipedal
locomotion. This is not complete without fall management, as falls can always happen,
thus rendering the walk controller useless.

Therefore, this chapter presents a novel approach called Humanoid Control Module
(HCM), which handles the fall management and other related tasks in a humanoid
robot. The HCM is built up upon the DSD decision-making approach, which was partly
developed during this thesis. Therefore, it will also be described.

This chapter is structured as follows: First, the related work is presented in Sec-
tion 4.1. Then, the underlying decision-making approach is described in Section 4.2.
Afterward, the HCM is presented in Section 4.3 and evaluated in Section 4.4. Finally, a
summary is given in Section 4.5.

4.1 Related Work

This section will present the related work for this chapter. Since the HCM needs to take
many decisions, we first investigate the different approaches that can be used for this
(Section 4.1.1). Then, we will present other works in the field of software architectures
for robots (Section 4.1.2). Finally, we will present other approaches for handling falls of
humanoid robots (Section 4.1.3).

4.1.1 Decision Making

Decision-making (also called robot control) “is the process of taking information about
the environment through the robot’s sensors, processing it as necessary in order to make
decisions about how to act, and executing actions in the environment”[SK16, p.308].

It can be grouped into four classes [SK16, pp.308-309]:

Deliberative Using a deliberative approach, the robot builds a plan based on the
information it gathered from its sensors. After finishing the plan, it executes it. While it
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Figure 4.1: Used decision making approaches in the HSL. Note that one team (Rhoban)
uses FSM and learns the parameters with RL. The data was taken from personally
questioning all other Kid-Size teams during the RoboCup 2022.

allows sophisticated behaviors, it is typically not reactive to changes in the environment.
This approach is also often described as sense-plan-act.

Reactive The reactive approach was developed to counter the central issue of the de-
liberative approach. Here the sensor inputs are more directly connected to the actuator
outputs and do not rely on complex planning. This, naturally, results in fast reaction
times on stimuli and many problem classes can be solved by it. Still, the approach is
not usable for problems that require internal models or memory. This approach is also
often described as sense-act.

Hybrid The hybrid approach is a combination of the ideas from the deliberative and
reactive approaches. They consist of two components, one deliberative and one reactive.
Therefore, it can perform complex behaviors while still reacting quickly to changes.

Behavior-Based The behavior-based approach uses a set of interactive modules.
Each receives the data from the sensors and input from other behavior modules and
creates commands to the robot’s actuators or other behavior modules based on this.
Therefore, the system is a decentralized decision network.

Every robot needs a decision-making component in its software to fulfill its task.
Therefore, several approaches were developed in the history of robotic research. Many
of them already exist for a long time, e.g., finite state machine (FSM) [Gil64]. Since
many problems tackled by current robots are still of low or medium complexity, such
classic approaches are still widespread (see also Figure 4.1). Therefore, we will also
mention them here.

State Machines

FSMs are made of a finite set of discrete states with transitions between them [Gil64].
The agent changes its state based on the available information. It will act based on its
current state and/or when the state changes. This approach is simple to understand
and implement. Furthermore, it provides a clear state of the robot, which is helpful
for a human operator. Still, complex behaviors require a high number of states (state
explosion), thus leading to bad scalability. Adapting an existing FSM to new goals will
typically require changing multiple states and transitions (low maintainability). Testing
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sub-parts of the decision-making is not directly possible as a FSM can not easily be
divided.

The hierarchical state machine (HSM) [Har87] approach tries to address these issues
by adding a hierarchical ordering to the state machine. This is done by allowing each
state to be a state machine that can have transitions in itself or to other superstates.
Thereby, a better organization is introduced, which divides the state machine into sub-
parts. These can be more easily tested independently and are often better understood
due to their order. Still, adapting existing HSMs to new tasks might force the developer
to modify a large number of transitions [CÖ18].

Planning

Planning approaches define a current state, a goal state, and a set of possible actions.
Then they plan a sequence of actions and execute them to reach the goal state. They
are the classic example of a deliberative approach. The most widespread member of
this class is Stanford Research Institute Problem Solver (STRIPS) [FN71], which is a
basis of many newer approaches such as hierarchical task network (HTN) [Ero95]. These
approaches allow complex behaviors but often rely on the closed-world assumption and
are not reactive.

Subsumption

The Subsumption Architecture [Bro86] focuses on achieving reactive decision-making.
It consists of multiple sub-tasks that can run parallel to each other. Each sub-task can
subsume other tasks by overwriting their output. They, thereby, form a hierarchical
order. This approach is not stateful, which makes it challenging to apply to problems
that require knowledge of past decisions or information.

Fuzzy Logic

Fuzzy logic [Zad88] is a reactive approach that uses a non-Boolean logic to decide on
the actions that need to be taken. This allows the use of decision rules that are closer to
human concepts. To do this, the sensor data is first fuzzyfied by matching crisp values
to fuzzy linguistic terms. Based on this, the inference engine produces a fuzzy output.
This is then defuzzyfied into crisp actuator commands.

Decision Tree

The decision tree (DT) [Qui86] is probably the most simple and straightforward approach
as it can be created by a simple nested combination of if-else clauses. A DT generally
connects multiple decisions to a tree-like structure, resulting in a hierarchical ordering
of these decisions. Besides its simplicity, it also allows a clear traceability of how the
decision for an action was made. Still, it is a stateless approach, and all decisions need
to be evaluated at each iteration of the decision-making. This can also lead to oscillating
behaviors when the input data is noisy, as it is typically the case in robotics.

Behavior Tree

The behavior tree (BT) [CÖ18] is, in relation to the others, a recent approach that
originates from the computer game industry, where it is used to program the behavior
of non-player characters. As the name suggests, it uses a tree-like structure where the
leaf nodes are either actions or conditions. All internal nodes control which actions
are activated. This also allows to activate multiple parts of the tree simultaneously,
thus enabling parallel execution of actions. While they are a powerful tool, they are
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complicated to program. Furthermore, the fact that decisions are taken implicitly by
conditions in the leaf nodes makes the decision process less clear. The current state of
a BT can also be unclear as multiple parts of it can be activated simultaneously.

4.1.2 Robot Software Architecture

The HCM creates a hierarchical decomposition of the system. This is generally desirable
as it “decreases the overall system complexity and increases overall reliability” [SK16,
p. 284]. The three-tier (3T) architecture [PBJFG+97] tries to achieve this and is often
used for autonomous robots. As the name suggests, it decomposes the system into
three hierarchical layers. The topmost layer is the deliberative tier which does long-term
planning to achieve the agent’s goal. Below this is the sequencing tier. Based on the
input of the deliberative tier, it invokes skills. These are provided by the lowest layer,
the reactive tier. A more detailed comparison of our approach to the 3T approach is
given in Section 4.3.2

Since our approach is specific to humanoid robots, we will focus in the following
on other approaches for this type of robot. Naturally, the teams in the HSL have
produced multiple different architectures. The NUbots developed the motion manager
approach for their NUPlatform [KW11]. It has a queue of motion jobs, provided by a
higher tier, that are executed in parallel if possible. Based on sensor data, the motion
manager can also detect falls. In this case, the current job is interrupted, and fall
protection or stand-up motions are invoked. Different movement handlers might lock
joints during the execution of jobs to prevent clashes between jobs. It is possible to query
the currently locked joints from the motion manager, but no semantic state is provided.
This locking mechanism was intended as a mutex but did not work [HFL+16]. This was
because each movement handler needed to specify the locks by itself. If it did not do
so correctly, the mutex was incorrect, and two jobs could actuate the same joint, thus
leading to osculations in this joint which in turn then mostly led to falls. Furthermore,
the construction of the movement handlers’ locking was deemed difficult to maintain.

They replaced this with a new approach called NUClear [HFL+16], which they de-
scribe as “an extended form of subsumption logic” [HFL+16]. It uses no explicit locking
or mutex mechanics, but skills can subsume others, leading to a hierarchy of skills. This
also includes fall detection, which will just subsume all other skills.

A typical approach in HSL is to implement all motion skills in a single module that
gets commands from a higher tier [FAFB17] [DHW19]. The mutex problem is thereby
implicitly solved as only one module controls any joints. Still, such a tight coupling has
the disadvantage that exchanging motion skills is complicated as it is not modularized.

Some teams are running such a single motion module on a dedicated microcontroller
[RWA+19]. The advantage is that this allows a more direct connection to the sensors and
actuators, as no additional hardware interface is needed. Thereby, the latency in the
hardware communication is decreased, leading to a more frequent control loop cycle.
Still, this makes the development of motion skill software harder since debugging on
microcontrollers is more complex. Furthermore, the performance of microcontrollers is
limited. Thus, computationally expensive approaches like non-analytic IK solvers can
not be applied.

Besides the RoboCup, the DARPA Robotics Challenge (DRC) was another com-
petition that led to the development of architectures for humanoid robots. Here, the
teleportation of humanoids was also part of the research. The team THOR used multi-
ple FSMs that each control different kinematic chains of the robot, i.e., legs, arms, the
head, and the body [YMV+15]. Additionally, a Motion FSM performs movement to
stabilize the robot and act in emergencies.
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4.1.3 Fall Handling

As already stated above, fall management is important to prevent damage to the robot.
Its most crucial part is the detection of the fall, as it is the basis for invoking any counter
or protective measurements. Typically, each motion skill will already try to keep the
robot stable, e.g., by adapting the joint goals while walking using the ankle strategy
[NN08] or for larger disturbances capture steps [PCDG06]. Still, this is only applicable
for disturbances up to a certain threshold. If these are exceeded, the robot is not able
to control itself. Thus, the only remaining option is to use protective measures, e.g.,
moving the body to make it fall on certain robust sections. To activate these, the fall
needs to be detected first (Section 4.1.3), and then protective measurements need to be
invoked (Section 4.1.3). Standing up skills to bring the robot back to a controllable pose
are discussed in Chapter 5.

Fall Prediction

Multiple different approaches, using different modalities, have been proposed to predict
falls. Ruiz-del-Solar et al. [RdSMPT10] used a virtual attitude sensor (VAT) to detect
falls. The VAT uses a Kalman filter [Kal60], which computes the attitude towards
the ground and its derivative. This is compared to the ankle joint position, and a fall
is predicted if a threshold is exceeded. Kalyanakrishnan et al. [KG11] used a learned
decision list of multiple thresholds to classify if the robot is falling or has fallen. As input,
they used simulated joint encoders, FPS, and a gyro to compute information about the
CoM and how the feet are in contact with the ground. They did not differentiate between
the different directions in which the robot is falling and performed all experiments only
in simulation.

Muender et al. [MR17] used a model-based approach to predict falls as early as
possible. They assumed that a fall would only happen if an external force acted on the
robot, as the walking would be generally stable. While this might be a valid assumption
for a production system, it is not true for our planned use case, where the robot is still
learning to walk. A typical problem of unstable walks is an increasing oscillation that
slowly leads to a fall. Furthermore, their approach was only tested on the NAO robot,
which has comparably large feet and, therefore, a large support polygon. The results
might not translate well to robots with smaller feet.

Wu et al. [WYC+21] used a support vector machine (SVM) classifier to predict falls
on a bipedal, but not humanoid, robot. The classifier used the angular velocity from
the gyroscope and the angular acceleration, which was computed by differentiating the
angular velocity.

A related research topic is detecting falls in humans. The typical use case is the
detection of falls for elderly people so that emergency services can be informed. Different
approaches with different modalities have been investigated [RP19]. Abeyruwan et al.
[ASSV16] developed a novel approach that they tested on humans and humanoid robots
both. They used a two-layer approach which classifies in the first layer if a fall is
happening and in the second in which direction. The classifiers were built using neural
and softmax regression networks. Since they used, among others, a compass sensor, this
would not directly be applicable in the HSL.

Protective Measurements

Protective measurements aim to minimize damage to the robot by either minimizing
the impact of the fall itself or by making contact with the ground with certain areas of
the robot so that damage is minimized. To do this, Ukemi motions that originate from
martial arts can also be applied to humanoid robots [FKK+02]. They combine multiple
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strategies. They lower the center of gravity during the fall to reduce the overall impact.
Furthermore, they increase the area on which the impact is distributed as well as the
time. Finally, they direct the impact on specific parts of the robot that can withstand
it best. Another approach uses planning of the contact points [HL15].

Alternatively, the hardware can be modified to increase robustness against falls.
More information on this is provided in Section 3.1.2.

4.2 Dynamic Stack Decider

The DSD was originally targeted at developing high-level soccer behaviors for
RoboCup, and early predecessor implementations were used without formal

specification of the framework since 2015. The final specification and evaluation
of the framework were done during this thesis together with Martin Poppinga
and published in [PB22]. During this work, the domain specific language (DSL)
(see Section 4.2.2) was created by Martin Poppinga. The rest of the work was

done by us equally. A clean reimplementation of the DSD library ROS 1 package
was done by Timon Engelke and Finn-Thorben Sell. The adaption to ROS 2 was

done by Jörn Griepenburg, Timon Engelke, and myself.

The DSD was developed to be usable in dynamically changing domains like the HSL
while still being simple to implement and use. In terms of usage, the maintainability
and extendability of a behavior over more extended periods of time were especially
important. We identified a series of design aspects that we needed to include to achieve
the framework’s goals. Naturally, this means classical software development goals such as
code reuse, modularization, and maintainability. These are put on a more abstract level
where they regard decisions and actions in the DSD instead of lines of code. Additionally,
the agent’s current state must be clear at all times. This means, on the one hand, that
the framework is stateful so that decisions are based not only on the current input but
also on past decisions. However, it also means that the user can clearly know the agent’s
state at all times. This simplifies debugging and understanding the agent’s behavior.
Still, the robot should be able to change its state quickly to adapt to the dynamic
environment. This typically requires many checks to determine if previous decisions are
still correct under the current conditions. This should be able to be done quickly and
without overhead for the developer.

With these goals in mind, the DSD was developed. Its main component (and name
giver) is a stack-like structure that orders all currently active parts of the behavior
hierarchically. It is assumed that the DSD is called periodically in a control loop.
The frequency of this loop is not defined and can be adapted to the domain as well
as the computational resources. Each time that the DSD is called, the elements on
the stack may be reevaluated, and the topmost one is executed. Based on its output,
modules on the stack might be removed or added. The elements on the stack are divided
into decision elements (DEs) and action elements (AEs) (see Section 4.2.1). These are
programmed independently. The DSD is then created by connecting these to a directed
acyclic graph (DAG) by the DSL (see Section 4.2.2). All data for the DSD is aggregated
in a blackboard which is shared between all elements.

4.2.1 Elements

Decision Elements

A DE is a representation of one logical decision that can have a discrete set of semantic
outcomes. It does not perform any actions by itself and does not directly change anything
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$ $Name
Name of a decision element

@ @Name
Name of an action element

−− > “ReturnV alue”−− > $,@Name
Defining the following element

# #Name
Defining or using a sub-tree

+ {$,@}Name+ param : p value
Gives initial parameters to the element

Table 4.1: Definition of the symbols used in the DSL. [PB22]

in the agent. The complexity can differ from a simple if-then clause to a multilayer
perceptron (MLP). When the DE is called, it makes the decision based on the current
information in the blackboard and returns a string representation of the decision. For
example, a DE could decide which role a robot in a HSL game should currently take
based on the data it has about the game. This decision would then return either Goalie,
Defender, or Attacker. Other decision elements would then specify how each of these
roles should act. The DAG would then contain the information which DE needs to be
pushed next onto the stack.

Besides the normal execution of DEs that are on top of the stack, they can also be
reevaluated while they are inside of the stack. In this case, the decision will be executed
normally, but the result will be compared to the last result that this decision had. If they
are not identically, it is assumed that all later taken decisions are not valid anymore.
Therefore, all elements on the stack above the reevaluated decision are removed, and
new elements are pushed based on the new decision outcome. For example, a robot
might have decided to be the goalie at the start of the game. However, when all other
teammates are removed due to penalties and the other team has scored more goals, the
agent reevaluates this decision from earlier. It now becomes an attacker as this is the
only chance to still score goals and win the game. Each DE can decide if it wants to be
reevaluated or not. This decision does not need to be static but can also depend on the
information in the blackboard. For example, the role decision from above might only
want to decide on the robot’s role at specific points, e.g., when there is an interruption
in the game, and the robots organize themselves.

Action Elements

AEs do not perform any decisions but only execute something that changes the environ-
ment or the agent itself, for example, the execution of a kick. Since many actions take
a certain time for execution, the AE stays on top of the stack until it removes itself or
is removed due to a reevaluation.

4.2.2 Domain Specific Language

As described above, the DEs do not directly define which element is pushed next onto
the stack. Therefore, an additional description for the DAG that connects the elements
based on their outputs is necessary. In earlier versions, this connection was directly
written in code. This approach proved to be cumbersome and badly maintainable.
Therefore, a DSL was developed that describes these relations in a clearly readable and
arranged format. For this, a text file is written that specifies the modules and their
connections with certain symbols (see Table 4.1 and Figure 4.2). This file is then used
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1 #Kick

2 $ InKickDistance + k i ck th r e shho ld : 0 . 1
3 ”Yes” −− > @KickBall
4 ”No” −− > @GoToBallDirect
5
6 #Attack

7 $Closes tPlayerToBal l
8 ”Yes” −− > #Kick

9 ”No” −− > @Wait
10
11 −− > SampleBehavior
12 $RoleDec i s ion
13 ” F i e ldP laye r ” −− > $Ba l lPo s i t i onAva i l ab l e
14 ”No” −− > [ . . . ]
15 ”Yes” −− > $DefendAttackDecis ion
16 ”Defend” −− > $BallInOwnHalf
17 ”No” −− > @Wait
18 ”Yes” −− > #Attack

19 ”Goal ie ” −− > [ . . . ]
20 [ . . . ] −− > #Kick

Figure 4.2: Exemplary DSL description of a simplified DSD for the HSL. Two subtrees
are defined with the names Kick and Attack. The start point is the SampleBehavior.
First, the robot’s role is decided, and then further decisions are taken based on this.
The [...] means this part was omitted for brevity. [PB22]

to automatically generate the DAG when the DSD is initialized (see Figure 4.3). The
DSL also supports giving parameters to elements and sequences of actions.

4.2.3 Call Stack

The stack of the DSD works similarly to typical stacks in a programming language,
but in a DSD stack, each element can be accessed. Therefore it is not a stack in the
narrowest sense. Still, the name is used as it depicts the general idea. An exemplary
stack is depicted in Figure 4.4. Additionally, an overview of how the stack and its
elements are used is shown in Figure 4.5. The stack is initialized using its root element
during the start and whenever an external interrupt is called. This interrupt can be used
to reset the DSD externally, for example, for manual resets. Then, each time the DSD
is called, a check for the reevaluation of the elements on the stack is performed, starting
from the bottom. If a decision outcome changes during reevaluation, all elements above
are cleared. Otherwise, the reevaluation procedure finishes when the top DE is reached.
Then the topmost element is executed. Now all pushing and popping operations on
the stack are performed until the topmost element is an action which is then executed.
This ensures that an actual action is performed during each control loop cycle, and no
cycles are spent on changing decisions on the stack. It is reasonable to perform multiple
decisions in one cycle as they change nothing and are (principally) instantaneous.

4.2.4 Implementation

The implementation is done in Python as a ROS 2 package. This allows simple integra-
tion into the ROS 2 software stack, including visualization in RQT. Python was chosen
because it is simple to write and allows access to many libraries, e.g., SciPy or PyTorch.
Using Python does not pose any performance issues as the decisions of the DSD are
either not computational heavy itself, i.e., being simple if-else clauses, or utilize libraries
with C implementation for more complex tasks, e.g., MLPs with PyTorch. Each DE
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Role Decision

DefendAttackDecision

Yes

BallPositionAvailable

ClosestPlayerToBall

InKickDistance

GoToBallDirect
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Yes

Yes

No

Start

Goalie

Defend

No

No

KickBall

Yes

Wait

[...]

No

BallInOwnHalf
[...]

[...]

Figure 4.3: Simplified representation of the DAG that is generated by the DSL in
Listing 4.2. An exemplary chosen path is marked (blue). The agent decides on being
an attacker and going to the ball since it is not in kick distance. It can also be observed
that there are multiple paths through the DAG that result in the same action. Therefore
it is necessary to know the complete stack of previous decisions to know the state of an
agent. [PB22]

Stack 

Role Decision

DefendAttackDecision

BallPositionAvailable

ClosestPlayerToBall

InKickDistance 

GoToBallDirect 

Decisions
(can be reevaluated) 

Root Decision
(stays on stack) 

Action
(Persistent until done or
preconditions are violated)

Figure 4.4: Exemplary stack for an agent after following the decisions displayed in
Figure 4.3. Each time step, all DEs are checked if they need to be reevaluated, starting
from the bottom of the stack. If no decision outcomes changed, the AE on top of the
stack is executed. [PB22]
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Figure 4.5: Graphical representation of the control flow of the DSD. [PB22]

and AE is implemented as a class that inherits from an abstract class and implements
methods for execution and reevaluation. When the DSD is started, the element names in
the DSL are matched to the class names, and no further work from the user is required.

4.3 HCM

The basic idea of the HCM was already developed in my master’s thesis [Bes17]
but only a very basic version based on a FSM was implemented, it was not yet
formalized and lacked multiple of the functions it has now. It was completely
redesigned and rewritten using a DSD. Furthermore, the evaluation of different
falling detection approaches was completely done during this doctoral thesis.

Humanoid robots promise easy integration into everyday environments due to their
similarity to humans. Today, they are still primarily present in research. They have not
reached the level of a typical consumer product, in contrast to wheeled robots, which
are, for example, used for vacuum cleaning. This difference between humanoid and
other mobile robots arises on the one hand from the higher costs due to more complex
hardware but also because humanoids are harder to control from a software perspective.
Wheeled robots are constantly in a stable and, therefore, controllable state while driving
on flat terrain. On the other hand, humanoids can fall easily, even when moving on flat
terrain. If this happens, the robot can not perform a sensible action before it achieves a
standing pose again. Additionally, the robot may need to detect falls while they happen
to minimize the damage by doing counter measurements. These cases must be handled
in all software parts that control the robot, making it more complex. Therefore, most
of the research in mobile robotics is done with wheeled robots. Additionally, standard
implementations for wheeled robots, e.g., for path planning, can not be directly applied.
Even manual moving of the robot with teleoperation only works if the human in the
same location can pick up a fallen robot.
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The HCM solves this issue by introducing an additional abstraction layer that allows
other software parts to control the robot as simply as a wheeled one. Thus, teleoperation,
as well as the usage of software for wheeled robots, is enabled. Additionally, it allows
autonomous reinforcement learning of motions directly on the robot (see Chapter 6)
since it can reset the robot back to a standing pose and prevent damage during falls.

4.3.1 Requirements for Abstraction

We identified six issues that need to be addressed to achieve the abstraction mentioned
above. Two of those (hardware problems and manual stops) are also present in wheeled
robots but have different implications for humanoids.

Hardware Issues During the usage of a robot, different types of hardware issues
may occur suddenly at any time. These can be the complete failure of a single compo-
nent, e.g., a sensor or actuator, as well as losing connection to one or multiple devices
due to broken cables. In our experience, connection breaks are especially present on
Dynamixel servo-based robots due to impractical cable routing, an issue that has only
been addressed in the never X-Series (see Section 2.2.1). In contrast to wheeled robots,
this can damage the robot further as it can lead to falls or prevent the execution of fall
countermeasures. Therefore, such issues must be autonomously detected, and the robot
must stop until a human resolves the issue. While this would only require a cut of the
actuator power on wheeled robots, it is not feasible on humanoids as it would result in
an uncontrolled fall. In our experience, this also simplifies the debugging of issues that
are triggered by this in other parts of the software, e.g., having an unstable walking due
to not receiving sensor updates.

Manual Stops Manual stops are necessary to ensure the safety of the robot and its
environment. This situation is similar to having a hardware issue, as the robot must be
stopped completely until the issue is resolved.

Fall Management Falls on bipedal robots can not be avoided entirely. Even if all
motions of the robot by itself are perfectly stable, an external force can occur, e.g.,
by impacts from humans or other robots. These fall situations need to be managed.
Preferably, a counter measurement, e.g., a capture step, would be executed to prevent
the robot from falling and bringing it back into a stable pose. If this is not possible,
the robot can at least perform safety measurements, e.g., moving the head to a safe
position, to minimize the damage from the imminent fall.

Stand Up When a fall has happened, the robot needs to get up so that it can again
be controlled by the high-level behavior. Depending on the use case, the time until
the robot returns to a standing pose might also be of interest. This can be the case in
competitive domains, e.g., RoboCup soccer, or in time-critical situations such as rescue
operations.

Joint Goal Mutex The joint actuators of a humanoid robot typically have multiple
uses, e.g., the arm joints can be used during grasping but also to stabilize walking. They
are, therefore, typically used by different software parts. This leads to problems when
two parts try to control the same joint at the same time as PD controller will move to
them alternately, creating jittery movements. Therefore, a mutex-like approach needs
to be applied to limit the usage of different joints.
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Figure 4.6: Location of the HCM in a classical 3T approach. It needs to be below the
skill layer so that it can mutex the joint goals and react quickly when falls happen.
The HCM provides a semantic robot state and a manual stop, which can be used to
communicate with high-level behavior. The rest of the layers (gray) are not changed,
allowing simple migration of existing software modules. [BZ20]

Semantic Robot State Although the goal of HCM is that higher-level software parts
can handle the robot as a wheeled one and do not need to be aware of the state of the
robot, it can be beneficiary in some situations to provide this information to higher-level
behavior parts. One important example is the localization which can be improved by
informing it about falls. The localization can then add the possible rotation of the robot
during the fall into its belief. Providing information about the robot’s state to the user
allows simplified debugging.

4.3.2 Architecture

Overall Architecture

Fast reactions are necessary for the above-described tasks, especially for the fall handling.
Therefore, the HCM can not be placed on a deliberative or sequencing tier (see Section
4.1.2). Furthermore, this would hinder the usage of standard software for wheeled robots
that are located on these tiers. Thereby, the HCM needs to be on a lower tier.

Additionally, the HCM should implement a mutex for the actuator control to ensure
that only one skill can control an actuator at any time point to avoid issues like in the
NUPlatform (see Section 4.1.2). This could be implemented by using subsumption, as
it was done in the NUClear framework (see Section 4.1.2). Still, this would not provide
a clear semantic state, which is also one of our requirements. Instead, we propose a
four-tier architecture where the HCM is an entirely new layer below the skills layer
and above the hardware abstraction (see Figure 4.6). Thereby no changes to the other
layers are required. All actuator commands are routed through the HCM, which allows
enforcing a mutex while having a clear semantic state. The targeted middleware ROS is
based on asynchronous message passing (see Section 2.3). This allows routing the joint
commands through the HCM while the sensor data can be directly passed to the higher
levels as it does not require a mutex. Thus reducing the introduced delay in the control
loop cycle.
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Choice of Decision-Making Approach

The HCM decides in which state the robot is based on two pieces of information. First,
it uses the sensor data from IMU, foot pressure sensors, and joint position encoders to
determine its external state, e.g., being picked up. Second, it uses the joint goals from
the different skills to determine the robot’s internal state, e.g., walking. This state is
then used to determine which joint goals are being forwarded and if fall management
actions need to be executed. Additionally, it is published as information to the rest of
the software.

Knowing the correct state is a typical decision-making problem, and multiple differ-
ent approaches to this already exist (see Section 4.1.1). The first basic version of the
HCM used a FSM as a basis, but as the HCM was developed further, the number of
states and transitions increased dramatically. This typical issue of FSMs is also called
state explosion and leads to low maintainability and understandability. Additionally, the
different states of the HCM have a hierarchical ordering, e.g., Falling is more critical
than Walking. This cannot be clearly represented with a normal FSM.

While an HSM does allow hierarchical ordering in general, it is not well fitted to a
scenario like this where the number of hierarchical levels is high. It only allows traversing
through hierarchical layers one by one, thus enforcing recurrent conditional clauses. For
example, if the prioritization of three states Stopped>StandinUp>Walking needs to be
encoded, it is necessary to check if the robot is stopped in the StandingUp and Walking
state.

This issue is not present in a decision tree, but as this approach is stateless, other
issues arise. The state can only be decided on the current sensor data and not on the
previous state. This can, for example, lead to issues when the robot gets a brief push
and thus needs to go into the state Falling, but in the next cycle, these sensor readings
are not present anymore, and the HCM has now forgotten that it is falling.

A behavior tree would allow the creation of a strong hierarchical relationship while
remembering previous decisions. We still decided against using one since it is unneces-
sarily complex for this task. Furthermore, the extraction of the state can be difficult
since multiple parts in the behavior tree can be active at the same time.

Based on this reasoning, we decided on using the DSD (see Section 4.2). It can nicely
encode many levels of hierarchy while having a clearly defined state that is represented
by its stack. Additionally, it is also used for the high-level soccer behavior of the robot
and thus lowers the entry barrier for users of the complete software stack.

4.3.3 Implementation

Software Stack Integration

The concrete implementation of the HCM was targeted for the RoboCup soccer do-
main. Therefore, it includes some small things which are specific to this domain, e.g.,
handling of the kick. Still, it can generally be used and also easily be adapted to other
domain-specific tasks. In the following, its integration into the complete software stack
is described exemplarily.

Since the whole software stack relies on this middleware, the HCM is implemented as
a single ROS node. It receives all inputs via either ROS message transfers or service calls.
All high-level decisions are made by the Body Behavior, which represents the deliberative
layer of the architecture. It decides where the robot should go. This navigation goal is
then processed by Nav 2, the ROS 2 standard package for path planning. It splits the
task into a global and local path planner. For both, different standard implementations
exist which are targeted at wheeled robots. While we were able to navigate using these
standard planners, a specialized local planner was later implemented, especially for
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Figure 4.7: Visualization of the HCM with the RoboCup software stack grouped into
the different layers. ROS nodes are depicted as ellipses and topics as rectangles. The
dotted arrows represent a direct connection to any other node. The deliberation and
sequencing layers can be replaced by a simple interface for manual teleoperation. [BZ20]

faster positioning at the ball before kicking. The navigation sequences the goal location
to velocity commands which are normally directly translated to wheel speeds. In our
case, the walk engine skill computes the corresponding joint goal positions to match this
speed. Implementation of a footstep-based planner would also be possible but was not
necessary as the domain is flat without obstacles that can be stepped over.

Additionally, the Body Behavior can set a head mode that specifies which information
should be preferably obtained by the camera, e.g., the ball position or field features for
self-localization. The Head Behavior produces Cartesian positions, which should be
looked at. These are then again translated by an IK into head joint goal positions.

The Body Behavior can also directly invoke a kick with a specified direction, which
is then translated to joint goal positions by a kick engine (see Section 5.5). Additionally,
a set of keyframe animations, e.g., cheering after scoring a goal, can be directly invoked
and are then translated into joint goals by the Animation Server.

Altogether, the HCM receives the joint goals from four different skills. Additionally,
it may also get stop requests via a ROS service call.

HCM Node Implementation

The implementation of the HCM node consists out of two parts. The DSD runs at a
fixed frequency and decides, based on the latest sensor information, if the state needs
to be changed. The ROS subscribers have asynchronous callbacks for all joint goal
positions and directly forward the goals to the hardware if the current state allows it.
This way, the introduced delay by the HCM is minimized. While the DSD part of the
HCM is written in Python, the ROS node is written in C++. This was necessary since
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the Python executors in ROS 2 were not performant enough (see Section 4.4.2 for more
details).

The HCM provides the following states: Animation Running, Controllable, Falling,
Fallen, Getting Up, Kicking, Picked Up, Record, Shutdown, Startup, Stopped, Walking.
Most of these states are self-explanatory. The Animation Running state means that a
keyframe animation is currently moving the robot’s joints. The robot is Controllable
if it is idle and standing upright in a pose from which it can either start walking or
performing other motion skills. If a human is holding the robot above the ground, it is
in the Picked Up state, which prevents movements and signals to the localization that
the robot might have been moved to a different place (kidnapped robot problem). The
Record state is only used during the recording of keyframe animations on the robot, i.e.,
to deactivate the fall detection. The Stopped state reflects that the robot’s movements
were currently disabled due to a manual stop request from a human.

The DSD consists of 14 decisions that are ordered hierarchically and can be grouped
into five objectives (see Figure 4.7). All of them are reevaluated every time unless some
actions block reevaluation, i.e., during a fall.

The first group of decisions checks if special modes are requested. This can be a
shutdown request, where the robot first sits down before powering off its servos. It can
also be a stop request, which stops the walking and lets the robot stand until the stop
request is revoked. Additionally, the HCM can be put into a record mode, which is
necessary to record keyframe animations on the robot. In this case, the HCM will only
let through the goals of the recording software, but it will not perform any fall detection
as it is expected that a human is holding the robot while recording poses of it. The fall
detection must be deactivated in such a scenario as the robot might be put into unstable
poses during this process.

The second group consists of a range of hardware checks. Here, the time since the
last value was successfully read from a sensor as well as when the sensor changed its
value the last time is used to determine if all sensors are working. This includes the
IMU, the foot pressure sensors, and the joint feedback. Additionally, the servo motors
are maybe powered off if they got no new commands for a long time. This is done to
prevent damage to the robot while idly standing for too long after being forgotten by
a human operator. Of course, the robot first sits down before it turns off its motor
power. If new commands are received, it will turn the power on again and stand up
again (based on a later decision).

The third group checks if the robot is currently in a state where it can move. The
robot can recognize if a human operator has lifted it up based on the IMU and foot
pressure sensor values. In this case, it will stop moving and go into a standing posture.
This allows easier carrying due to no movements and depositing due to a stable standing
pose. Additionally, movements introduced by the carrying human might trigger the fall
detection, leading to movements that might hurt the operating human. In case the robot
is on the ground, and a fall is detected (see also Section 4.3.4), the HCM recognizes in
which direction the robot is falling and performs an appropriate movement to prevent
damage to the robot, i.e., moving the arms to a pose so that the robot falls on the soft
parts.

The fourth group checks if the robot is upright. It could either be sitting, due to
previously sitting down, or due to being started in this posture, or it could lie on the
floor, after a fall or due to being started this way. If one of these is the case, the
corresponding motion is performed to bring the robot back into an upright position
where it can be operated (see Section 5.4 for details on how this is done).

The fifth group is responsible for managing the high-level tasks, playing keyframe
animations, walking, and kicking, that should be executed. Finally, it is evaluated if
the robot is in the so-called Walkready pose, which it should always go to while it is
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idle because it is stable and allows to quickly start walking or perform various other
motions.

The state of the HCM can be visualized during runtime using the default DSD
visualization rqt plugin.

4.3.4 Fall Detection

Fall detection can be formulated as a typical classification problem. This generally uses
a training dataset D of tuples of classifier input (xi ∈ X) and correct result (yi ∈ Y ),
which are typically provided by human labeling [dMP18, p.3]. A classifier (C) is a
function that maps the inputs (X) to the labels (Y ).

D = {(x1, y1), (x2, y2), ..., (xn, yn)} (4.1)

C : X → Y (4.2)

In our case, the input represents the observed robot state (o), and the output is the
corresponding true direction of the fall (d∗).

xi = oi (4.3)

yi = d∗i (4.4)

The sensor data is a vector of real numbers whose length (n) depends on the type of
modalities we chose.

oi ∈ R
n (4.5)

The resulting direction is either one of the four natural sides in which a vertical body
can fall or the information that the robot is not falling.

di =































0, notFallen

1, fallenFront

2, fallenBack

3, fallenLeft

4, fallenRight

(4.6)

Therefore, our classifier (C) is a function with the following mapping.

C : Rn → N[0 : 4] (4.7)

In the typical usage of classifiers, two consecutive data points (xi, yi) and (xi+1, yi+1)
are not related. Furthermore, the classifier’s quality is measured based on how correctly
it predicts the label from the given data. In our use case, we have a slightly different
objective. The robot is getting a constant stream of observed states (Oe

d) at a high
rate which are in a temporal order and end at time point te with an end direction of d.
The classifier can be solved at each control loop cycle to decide if the robot is currently
falling or not.

Oe
d = [ot0 , ot1 , ..., ote ] (4.8)

The time point te can either be the impact after a fall or just the point where the
robot was deactivated if no fall happened. The correct classification of each of the time
points is of less importance as long as a fall is detected early enough and no falls are
predicted while the robot is stable. Thus, false positives, which would unnecessarily
invoke fall counter actions and disturb the current motion of the robot, are worse than
false negatives, which might be corrected in the next control loop cycle. Still, having
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too many false negatives after each other would result in the robot not detecting the
fall and crashing into the ground. Therefore, we introduce a better measurement of
the continuous performance of the classifier, the lead time. This is defined as the time
difference between the successful detection of the fall and the impact on the ground. To
express this formally, we first define the times for the first true positive (ttp) and for the
first false positive (tfp) for a classifier (C), given a stream of sensor data (Oe

d) leading
to a fall in direction d.

ttp = min{t ∈ [0, te]|C(ot) ̸= 0 ∧ C(ot) = d∗t } (4.9)

tfp = min{t ∈ [0, te]|C(ot) ̸= 0 ∧ C(ot) ̸= d∗t } (4.10)

Then the prediction time (tp) can be defined as follows.

tp =

{

ttp, ttp < tfp

te, else
(4.11)

The lead time (tl) of O
e
d given d ̸= 0 can then be computed as follows.

tl = te − tp (4.12)

This also implies that the lead time is 0 if the fall is not detected correctly. If no fall is
happening in Oe

d, tl is undefined.
We define false positives (FPs) and true positives (TPs) only based on their first

decision as we assume that once any protective measures are invoked, the robot will not
decide again on the fall direction.

FP : tfp < ttp (4.13)

TP : ttp ≤ tfp (4.14)

It would also be possible to use observations from the past (oti−m
, ..., oti), but this

is not further investigated as these data can directly be included in the current state,
e.g., by using a complementary filter to get the orientation of the robot from the IMU
data. Therefore, we will only discuss the observation at a certain time point.

There are various approaches to solving a classification problem. Typical approaches
include: k nearest neighborss (KNNs) [FH89], support vector machines (SVMs) [BGV92],
and multilayer perceptrons (MLPs) [Mur91]. The Hamburg Bit-Bots previously used
a simple threshold-based (TB) classifier based on IMU data (see Algorithm 4). It has
already shown its usability in multiple RoboCup competitions. Still, a more sophisti-
cated classifier or additional modality could improve the lead time (see Section 4.4.3 for
a comparison).

The TB classifier (Algorithm 4) was written by Florian Vahl.

4.4 Evaluation

This section evaluates different aspects of the presented approach. First, a qualitative
evaluation of the HCM is given (Section 4.4.1). Then, the latency aspect will be further
investigated (Section 4.4.2). Finally, different classifiers and modalities for fall detection
will be compared (Section 4.4.3).

The DSD will not be evaluated quantitatively since this is not possible for an archi-
tectural approach. Still, the evaluation of the HCM shows that the DSD works well.
Additionally, it has also been successfully used for the high-level RoboCup behavior.
The stand-up skill will be evaluated in Section 5.4.3.
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4.4.1 HCM

The HCM has been used successfully in multiple simulated and real RoboCup compe-
titions and reduced the number of broken gears (see also Section 3.6.4). During the
years of usage, the skill implementations have been changed by successive switching
from keyframe animations to spline and RL based solutions (see Chapters 5 and 6).
The HCM allowed not only a simple change of the module but also to have old and new
skill implementations beside each other. This is practical as it offers a simple fallback
solution while the new implementation is not stable yet. This shows that the HCM
improves the modularization and maintainability of the architecture.

The goal of the HCM to allow a simple, wheeled-robot-like control was also achieved.
It was possible to apply the default path planning pipeline of ROS as well as simple
teleoperation. The main behavior of the RoboCup software stack could also be simplified
since it did not need to take care of the fall management. Thus complex strategies could
be implemented with low implementation complexity.

4.4.2 Latency

One important downside of the HCM approach is the added latency from the joint goal
mutex, which adds one additional message transfer. In the following, we investigate how
high this latency is to show if this disadvantage is acceptable.

Although the latency might increase with message size, e.g., for image messages, this
is not relevant for this evaluation since the HCM joint mutex only affects the joint goal
messages. Therefore, no experiments on different message sizes were performed, and the
same joint command message was used in all experiments.

There are already multiple benchmarks and benchmarking frameworks available for
ROS 2 [MKA16] [KPM+21]. Still, we decided to perform our own experiments as the
previous experiments did not use the EventExecutor or targeted different setups, i.e.,
with larger messages and lower control loop frequencies.

Influence of Idle Function

It was already described that the default Linux scheduling might interrupt nodes during
execution, leading to various issues (see Section 3.6.3). Therefore, all experiments were
performed on isolated cores. Furthermore, the idle function of the CPU was disabled
to reduce latency introduced by it (see Figure 4.9). This was done with the following
command.

echo 1 | sudo tee / sys / dev i c e s / system/cpu/cpu∗/ cpu id l e / s t a t e ∗/ d i s ab l e > /dev/ nu l l

It is also possible to deactivate the idle function during kernel boot up by setting
cpuidle.off=1, but this showed roughly a factor two higher latency than using the
command above. The reasons for this are not clear. All experiments were performed on
the ASUS PN51-E1 main computer of the Wolfgang-OP to ensure that the results are
not biased due to a faster CPU, i.e., by using a desktop computer instead. The messages
were recorded over a span of 100 s, after discarding the first 100 messages since these
often contained outliers with high latencies due to the start-up process of the nodes.

Choice of Executor

ROS 2 provides different executors which run nodes and handle the message transfer.
The issues with high CPU usage were already discussed in Section 3.6.3. Even though
this issue makes only the EventExecutor usable for our system, we still compared it to
the others to see if its lower CPU usage comes with an increase in latency. Furthermore,
it is possible in ROS 2 to run multiple nodes in the same process, thus potentially
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Figure 4.9: Message latencies for different publishing frequencies using a single process
or two processes with the idle option enabled (top) or disabled (bottom). All measure-
ments were conducted with the ROS 2 EventExecutor. The impact of disabling the idle
function is larger for the lower frequencies. The 1,000Hz seem to create enough load so
that the CPU does not always go into idle mode, thus reducing the mean latency.

further decreasing the latency of message transfers. The event executor performs worse
in separate processes but similarly with a single process (see Figure 4.10). The other
executors perform similarly for both process configurations. Generally, running both
nodes in the same process leads to lower latencies. This matches previous work [SvD19].
However, they did not test a single message latency but the overall time for processing
their software. Therefore, times for copying message contents, especially for large image
messages, play a bigger role.

Comparison to ROS 1

Additionally, we compared the results to a ROS 1 message transfer of the same message.
No different executors are selectable here as ROS 1 does not have this concept. Still, it
is possible to activate a tcp nodelay option that should decrease latency. Therefore, we
tested it with this option activated. Besides the executors, ROS 2 also has the concept of
Quality of Service (QoS), which influences the latency. To keep the results comparable
to ROS 1, we chose the default QoS settings, which are specially designed to mimic the
ROS 1 behavior [20]. This setting also makes sense for our use case, as we do not want
to lose messages. The results can be seen in Figure 4.11.
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Figure 4.10: Message latency of different executors for ROS 2 C++ nodes running at
1,000Hz. Each is evaluated with both nodes running in the same process and with them
running in different processes. Both are done on isolated cores. The mean latency is
given on the left. Running both nodes in the same process leads to a smaller latency for
all executors. The difference between the executors is not as large as between different
numbers of processes.
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Figure 4.11: Comparison of the message latency of the C++ EventExecutor to the
Python MultithreadedExecutor and to ROS 1. The mean latencies are provided on the
left. Using C++, ROS 2 is only able to achieve better performances than ROS 1 if
both nodes are run in the same process. Using Python, ROS 2 has significantly higher
latencies than ROS 1.
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Figure 4.12: Comparison between different data distribution service (DDS) implemen-
tations using the EventExecutor at 1,000Hz with a single (top) and two processes
(bottom). All settings for the DDS were kept to the corresponding default. Cyclone
DDS performs slightly better than Fast DDS.

Choice of DDS

It is possible to choose between different DDS implementations in ROS 2. The most
commonly used ones are Fast DDS and Cyclone DDS, which are also open source.
Cyclone performs slightly better (see Figure 4.12). This contrasts previous work by
Kronauer et al. [KPM+21] where they concluded that Cyclone DDS has the highest
latency. They only tested frequencies up to 100Hz, on different hardware and with a
different executor. This could explain the difference in the results.

Integrated Evaluation

Another experiment was performed to see how well these results of our simple test
scenario apply to the real world (see Figure 4.13). For this, the complete motion stack
was executed on the robot with 500Hz, and the robot was commanded to walk forward.
Cyclone was used as DDS. The latency was measured directly inside the HCM for the
received joint command messages that are sent by the walking. The results are compared
to the simple publisher subscriber test from the previous experiment. Furthermore,
different ways to run the HCM are compared as they significantly influence the latency.
All of them use the EventExecutor. Executing the HCM without modifications results
in high outliers with up to 4ms. As described in Section 3.6.3, it is necessary to configure
the distribution of process to the CPU cores in a ROS 2 system with high-performance
nodes. However, only applying taskset without isolating the CPU cores worsens the
results. In this case, we gave the HCM three cores. If the cores are isolated, the result
improves, and no message transfer takes more than 0.5ms, but the performance is still
not comparable to our previous experiment. One reason for this is that ROS 2 runs
all callbacks sequentially as default. Since the HCM listens to multiple high-frequency
topics, the message from the walking will not be processed instantaneously. Therefore,
we set the callbacks to be executed in parallel, but it did not improve the results. After
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Figure 4.13: Message latencies in the integrated system while executing the motion stack
and actively walking. The lower plot shows the same data but zoomed in for better
readability. Different options to run the HCM were evaluated. These include using
taskset (“task”), isolating the cores (“Iso”), using parallel callbacks (“CB”), using the
round robin scheduler (“RR”), and deactivating the idle function of the CPU (“NoIdle”).
It can be seen that only an exact configuration of the Linux scheduling prevents outliers
with high latency in an integrated test scenario.



CHAPTER 4. FALL MANAGEMENT 85

Figure 4.14: Image sequence of a frontal fall with the HCM active. Between pictures two
and three, the robot recognizes the fall and moves its arms and head into a safe position.
It reaches this position in picture four before hitting the ground. In this example, the
threshold-based classifier was used. [BZ20]

Table 4.2: Different classes of sensor information used in the falling experiment.

Name Dim. Description
imu R

6 Accelerometer and gyroscope data.
euler R

3 Torso orientation in Euler angles based on IMU complementary filter.
fused R

3 Torso orientation in fused angles based on IMU complementary filter.
joints R

12 Effort feedback of the leg servos.
cop R

4 Center of pressure of each foot computed from strain gauge sensors.

some investigation, we realized that the usage of taskset leads to only one of the node’s
threads being executed simultaneously. We solved this issue by using the round-robin
scheduler for the HCM node process. This improved the results, especially for the single
process case. Additionally, we also tested if the deactivation of the idle function also
helps for a node that uses the CPU for more than just sending a message. There is only
a small difference for the separate processes case.

Overall, the results show that the introduced latency by the HCM can be kept low
enough to allow a fast response to sensor input. When using ROS 2, it is crucial to use
the C++ EventExecutor and to execute the HCM with the other motion nodes and the
hardware interface in the same process to minimize the latency. Furthermore, the Linux
system needs to be correctly configured to prevent interrupts from other processes and
to prevent the CPU from going into idle mode.

4.4.3 Fall Detection

Investigation with slow-motion videos showed that it takes around 1 s between giving
an impact to the robot and it hitting the ground, depending on the applied force (see
Figure 4.14). The robot needs 0.2 s to take a safe pose when it was standing or walking.
Therefore the detection must have at least a lead time of 200ms before impact. Having
a higher lead time is still desirable as the time to get into a safe pose can be higher
based on the current pose, e. g., while performing a kick motion. Furthermore, having
a higher lead time would also enable the usage of different fall poses that minimize the
getting up time afterward, e. g., landing on the hands.

Dataset

To investigate this, different types of sensor data and processed orientation estimations
were used (see Table 4.2). The IMU data and the derived orientation in Euler angles
are commonly used for this issue (see Section 4.1.3). Additionally, the fused angles
representation of the torso orientation was used since it was specially developed for
balancing [AB15] and could be simpler to classify. Other modalities from the servos
and strain gauge sensors were also included to investigate if these could improve the fall
detection.
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All data types were recorded with 200 Hz (due to the hardware limitations at that
time) on the robot while it was standing, walking, and falling in different directions.
Manual perturbations were performed to produce edge cases where the robot is almost
falling. The robot performed no protective measurements during recording to prevent
biases. Instead, the robot was manually caught just before the fall to prevent damage.
The recorded frames were manually annotated as stable or with the fall direction. All
frames after catching the robot were removed. Therefore, the training set does not
contain samples of the actual impact of the robot on the ground. This missing data
is not an issue since the prediction of the fall impact at this state is too late for any
protective measures. The lead time computation is influenced by it as the recorded
impact time is slightly before the actual impact. Therefore, the performance of the
classifiers may be underestimated. Still, this does not bias the comparison between the
different approaches.

The training set consists of 13,944 frames where the robot is not falling and 7,961
where it is falling in one of the four different directions. For evaluation, a set of 9,436
frames where the robot is not falling, but moving and manually pushed, is used to
compute the number of FPs. Furthermore, the impact times for five falls while standing
and walking in each direction (together 40) were labeled to compute the lead time (see
Figure 4.15 for examples).

Training

Three commonly used classification approaches were used: KNN, SVM, and MLP.
They were trained using the scikit-learn library [PVG+11] with five-fold cross-validation.
Their hyperparameters were tuned for each type of sensor input using the Tree-struct-
ured Parzen Estimator (TPE) [BBBK11] implementation of the Optuna library [ASY+19]
with 100 trials each. TPE was also used to optimize the thresholds of the original TB
classifier for both input types with 100 trials each.

Results

All classifier-sensor combinations were evaluated for their mean lead time and the num-
ber of FPs (see Figure 4.16) as well as for their minimal lead time (see Figure 4.17).
The latter is especially interesting to evaluate how much time can be planned to perform
protective movements during a fall, while the FPs quantify the classifier’s reliability.

The SVM and MLP classifiers seem to perform similarly well for most modalities,
while the KNN classifier performs worse, especially in regard to the minimal lead time.
Regarding the sensor information, euler and fused perform inferior in terms of lead time,
probably due to the inertness introduced by the complementary filter. In contrast to
this, imu provides the best lead time but has a high number of FPs. Combining imu
with either euler or fused leads to a few FPs while still having a high lead time. The
difference between these combinations is small, especially in the mean lead time. This
could be due to the fact that the robot mostly falls along one of its axes, thus leading to
no complex rotations where the fused angles would be an advantage. Furthermore, the
gimbal lock issues of Euler angles only come into play when the robot has already fallen.
Therefore, the data of Euler angles and fused angles is very similar leading up to the fall
(compare Figure 4.15). The joints and cop data types can not be used as a sole source
of data as their FPs are too high. Combining either of them with the well-performing
imu+euler combination does not provide any improvements.

The best compromise between mean lead time, min lead time, and FP is provided
by imu+fused with the MLP classifier. Still, the difference to the baseline TB classifier
that uses the same data is small.
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Figure 4.15: An exemplary plot of two falls to the front from the evaluation set. On the
left the robot was standing, and on the right it was walking. The colors correspond
to the axis of the robot frame (x: blue, y: red, z: yellow). For the CoP the dashed
line indicates the right foot and the other the left foot. The vertical black line indicates
the moment when the robot was caught just before impact. Data after this point is not
used for the evaluation.
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Figure 4.16: Mean lead time (higher is better) and number of FPs (lower is better) for
different classifiers and sensor inputs on the validation set. Combinations of imu+euler
or imu+fused data types with MLP and KNN classifiers provide the best results.
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Figure 4.17: Mean lead time (higher is better) and number of FPs (lower is better) for
different classifiers and sensor inputs on the validation set. Combinations of imu+fused
data types provide the best results. The baseline TB classifier is only slightly worse.
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Figure 4.18: Mean lead times for the different classifiers separated into the fall directions.
It can be observed that, generally, falls to the front are detected later than to the other
sides. This may be related to the fact that the robot was leaned to the front during the
experiments due to the walking parameters.
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Figure 4.19: Computing time of different classifiers with imu+fused input. Naturally,
the threshold-based classifier has the fastest and most constant performance due to its
simplicity.

To see if the fall detection works uniformly well for all directions, the mean lead
times for each data-classifier combination were separated into the four fall directions (see
Figure 4.18). The front fall direction seems to be more difficult to detect, which could
be influenced by the fact that the robot was leaned to the front during the experiments
due to the used walk parameters.

The fall detector has to be evaluated in every cycle of the HCM (preferably with
1,000Hz). Therefore, it should take as little time as possible. To investigate this, the
time necessary for every prediction in the validation set was measured on the robot’s
computer (ASUS PN51-E1). The results are shown in Figure 4.19. The threshold-based
classifier performs best, MLP and SVM are both slightly inferior, while KNN performs
worst. It should also be noted that KNN and SVM runtime is dependent on the number
of samples used to fit the classifier, while MLP and TB are not. Therefore, using a
larger dataset to create more accurate results would also worsen their runtime.

These results show that it is still possible to improve fall detection by using more
sophisticated methods. Still, the difference is not large, and the minimal lead time of
the TB classifier is still well enough. Furthermore, the TB solution has an additional
advantage, especially when using it in a competition scenario. Its parameters can be
manually re-tuned to different conditions, e.g., different floor covers, in a few minutes
without the need to record new training data. By changing these thresholds, it is also
possible to directly tune the trade-off between lead time and false positives. The classifier
choice should also be based on how much time is needed to get into a safe position. If
this time is short, a solution with a lower false-positive rate can be picked.
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4.5 Summary and Future Work

This chapter described the detection and handling of falls. Different approaches and
modalities for detecting falls were evaluated, showing that a simple TB classifier already
achieves a sufficient performance. However, MLP and SVM based solutions can achieve
slightly higher lead times. In our experiment, adding further modalities besides the IMU
did not improve the detection. The fall detection and handling were integrated into the
software stack using a new architectural approach called HCM. This approach achieves
an abstraction from the fact that the robot is humanoid and, therefore, allows easier
control. Furthermore, it removes the necessity of monolithic motion nodes and, thereby,
allows a clear separation of motion skills. The HCM is implemented using a novel
decision-making framework called DSD. This allows a simple and clear structuring of
the many tasks that the HCM needs to perform. Finally, it was shown that the message
latency that is introduced by the HCM approach is low enough for it to be usable. It
was also shown how the Linux scheduler has to be configured to allow such low latencies.

Still, there are some points which could be improved in the future. The dataset for
the falling detection could be improved by including more falls and other robots. It
could also be recorded again with a higher data rate since the newest version of the
hardware interface allows this now (see Section 3.6.1). The labeling of the data could be
automated using an external sensor to reduce inaccuracy from manual labeling. Since
the HCM also knows when it has fallen, it could continuously gather information and
use lifelong learning to improve its classifiers over time. The current classifiers rely on a
single measurement sample. Using multiple previous data samples might improve their
performance.

The protective measures are currently very simple. More sophisticated solutions
may further reduce the impact force or allow faster standing up afterward. A more
human-like approach would be to use the arms for softening the impact. However, new
solutions need to be found that ensure that no gears break during such movements.



Chapter 5

Quintic Spline based Motion

Skills

An autonomous humanoid robot needs a set of basic skills to achieve goals in the world
[JM03]. These can be invoked by higher-level behaviors and produce a motion output
(see Section 4.3.2). One naturally given way to classify these skills is based on the type
of motion that they produce. This can either be continuous, e.g., walking, or discrete,
e.g., standing up. Additionally, we propose the following classification based on their
purpose.

Locomotion: A crucial task for a humanoid robot is locomotion [SJAB19]. It al-
lows the robot to change its position in the world, e.g., to move to an object of interest.
Locomotion can be implemented by different omnidirectional walking approaches.

Recovery: A humanoid robot is inherently unstable due to its high CoM and its
small support polygon, which leads to falls. Since the robot can not perform any mean-
ingful task while lying on the ground, it needs to perform a recovery motion to get up
again. Additionally, the robot might already perform a motion during the fall to prevent
it or to minimize damage to the hardware.

Manipulation: For most tasks, the robot needs to interact with objects in the
world. This includes, most notably, manipulation using the arms and hands, but usage
of other body parts, e.g., pedipulation, is also possible.

This chapter presents a general approach (called OptiQuint) for creating humanoid
skills of all three presented categories by using optimized Cartesian quintic splines. It
is inspired by the walk controller of Rouxel et al. [RPH+15]. To show the general
applicability of this approach, it is demonstrated for the following skills that cover all
classes:

• Walk (continuous, locomotion)

• Stand up (discrete, recovery)

• Kick (discrete, manipulation)

The structure of the chapter is as follows. First, related works to this field are
presented in Section 5.1. Then the general approach is explained in Section 5.2. In
Section 5.3, the implementation of the walk skill will be discussed in most detail, as
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Figure 5.1: A pattern can theoretically be directly applied to a robot (top). However, for
most real-life scenarios, additional stabilization based on the sensor feedback is required.
This can be added by a dedicated stabilizer (center), or both parts can be integrated
into one module, for example, in a RL policy (bottom). Based on [KHHY14, p.106].

it is the most crucial and complex one. Additionally, the analog implementation of a
stand-up and a kick skill will be discussed in Sections 5.4 and 5.5. Finally, a summary
is given in Section 5.6.

5.1 Related Work

This section presents related works for the control of humanoid motion skills. Most
research works don’t use a holistic approach that covers all motion skills, but focus on
one, with locomotion being the most researched area. Nevertheless, we will organize
them in the following by the type of approach rather than the type of skill.

Generally, any motion skill for humanoid robots needs to define a trajectory of one
or more endeffectors over time. This trajectory is sometimes, especially for locomotion,
called pattern. Theoretically, this pattern is enough to perform the skill, but due to
the unstable nature of humanoid robots, typically, additional stabilization is necessary
(see Figure 5.1). These modify the pattern based on sensor data, e.g., to compensate
for uneven floors or external forces that are applied to the robot. It is also possible to
have both pattern generation and stabilization in one unit. This is often the case for RL
trained policies. In the following, we present different approaches for pattern generation
(Section 5.1.1), stabilization (Section 5.1.2), and learned approaches that combine these
(Section 5.1.3). Still, the focus will be on the pattern generation as this will be used
as reference motion for the RL approach (see Chapter 6). Since our approach uses
parameter optimization, we also present related work in this field (Section 5.1.4).
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5.1.1 Pattern Generators

Besides the division in the following subcategories, pattern generators can also be dif-
ferentiated based on the used space in which the pattern is generated. Typically, either
joint or Cartesian space is used, but other custom application-specific space represen-
tations are also possible, e.g., the leg space [MB13]. If the joint space is used, no IK is
necessary, but the approach is less transferable to other robots as it relies on a certain
kinematic configuration.

Central Pattern Generators

The central pattern generator (CPG) is a biologically inspired approach that mimics how
rhythmic movements are generated in humans and animals. Biological CPGs consist
of multiple connected neurons that can be activated with a non-rhythmic signal and
then continue to create rhythmic output even without phasic sensor feedback [BHW09,
p.650]. Artificial CPGs try to mimic this by using artificial neural networks. Due to
their rhythmic nature, they are especially interesting for continuous motion skills like
locomotion [DABI18]. Typically, the produced oscillations each control the goal position
of one joint, which is close to how CPGs work in animals, but they can also be used to
generate patterns in Cartesian space [PHK10] [PHK13].

CPGs can not only be used to generate patterns but also to stabilize them directly as
it is possible to incorporate sensor feedback as input. This input can also be preprocessed
before feeding it into the CPG network. An example of this is the work of Auddy et
al. [AMW19], which created a locomotion for a humanoid robot using CPGs. In their
approach, the CPG network is combined with a MLP that processes the state of the
robot’s torso into a high-level control signal for the CPG network. Additionally, the
current joint angle positions are directly given to the CPG network.

Splines

The basics of splines are already discussed in Section 2.4. They have been used early in
robotics research for other types of robots, e.g., to control robotic arms [Pau72]. They
have also been used for humanoid robots due to their ability to generate smooth motions,
which are more stable [TZS03].

Seiwald et al. used Cartesian quintic splines to describe the movement of the CoM
of a humanoid robot during locomotion [SSSR19]. Using a quintic spline instead of a
cubic spline improved their stability. They stabilized the generated pattern using hybrid
position/force control.

Rouxel et al. developed a spline-based walk engine for their small humanoid robot
Sigmaban [RPH+15] [Rou17], which was also the basis for this work. Quintic splines were
chosen to create smooth motions of the robot without sudden changes in acceleration.
All parameters for the splines were tuned manually, and the skill was only applied to
one robot type.

Liu et al. created a kick motion using Cartesian B-Splines [LLL+21]. They concluded
that this method leads to better kicks than their previously used method, which is not
clearly described but seems to be a keyframe animation.

Splines can also be created by using Bézier curve for each segment. This has been
used to create a kick skill for the NAO robot, which was further stabilized with a
proportional integral derivative (PID) controller [MLR10].

Keyframe Animations

A similar approach to splines are keyframe animations which have been used for com-
puter graphics for a long time [BW71]. As the name suggests, this approach works by
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defining certain keyframes. In robotics, these are poses of the robot at specific time
points. All poses for the other time points are then generated by interpolating between
these keyframes, which can be done linearly or by using other functions. The main
difference to splines is that for keyframe animations a complete pose of the robot is
defined for a time point, while spline-based solutions can define knots for certain splines
at a given time point. These poses are typically defined in joint space through a set of
joint positions. This clear definition of full robot poses simplifies the creation of motion
skills for the developer, as the different movement dimensions are always synchronized.
It also allows the creation of such animations directly on the robot by putting it man-
ually in these keyframe poses, which allows an intuitive balancing of these poses. On
the downside, the forced synchronized definition of all movement dimensions limits the
expressiveness of this approach, and it is difficult to use sensor data for stabilization.
Still, it is often used due to its simplicity.

Keyframe animations have been used in HSL for a long time [SSB06]. Based on a
survey we conducted during the RoboCup 2022, all other teams in the HSL still used
keyframe animations for their stand-up skill, and only one other team used something
different for their kick motion. Before using the OptiQuint approach, the Hamburg
Bit-Bots also relied on keyframe animations for stand-up and kick.

Generally, it can be observed that keyframe animations are being used for discrete
skills but not for continuous ones.

Motion Capture

Instead of creating motion patterns purely programmatically, they can also be recorded
from a human demonstration using motion capture (MOCAP). This approach is often
used in computer games [Men00]. Similarly to the keyframes, this enables a more
intuitive way to describe a complex motion. Since the poses are not recorded directly
on the robot, they need to be transferred. This can be complicated as most humanoid
robots have fewer DoF than humans and can not imitate all movements, e.g., due to
missing toes. Furthermore, due to different mass distributions between the recording
human and the goal platform, the recorded movements may be unstable. Despite its
downsides, it has been used, e.g., by Mistry et al., who realized a sit-to-stand skill for a
humanoid robot sitting on a chair [MMYH10]. They used MOCAP data from a human
demonstration which included contact forces.

Model Based

The previously presented methods used various ways to directly describe the movements
of the robot. Another approach is to make a model of the robot and use this to generate
the motion. This has the advantage that this motion can be directly described in a
physically stable fashion, but it also requires exact modeling of the robot, which is espe-
cially problematic for low-cost robots. One of the earliest pattern generators for bipedal
walking used the ZMP to define a stable movement trajectory [VS72]. The originally
used algorithm was later sped up by solving the central equation in the frequency do-
main [TTT+89]. Another classic example is the linear inverted pendulum model (LIPM)
[KHHY14, 120-135] [KKK+01], which describes the position and velocity of the CoM in
relation to the support foot like an inverted pendulum. To allow for a constant height of
the torso, the length of the pendulum can be changed linearly, which is a simplification
of the leg length change due to knee movement.
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5.1.2 Stabilization

Similarly to the pattern generation, the stabilization can also work in different space
representations. For locomotion patterns in the joint space, the hip, and the ankle
strategy proved their usefulness [NN08, JLO+19]. Other strategies include foot-tilting
strategy and stepping strategy [PCDG06]. Simply stopping the walk can also be used
[RB06].

Missura et al. [MBB20] modified the walk pattern with capture steps in case of
instabilities. They successfully applied this on a real Nimbo-OP2.

Since Euler angles have multiple issues, e.g., gimbal locks, fused angles were proposed
as an alternative orientation representation [AB15]. They were also used to stabilize a
locomotion skill [AB16].

RL has also been applied to generate stabilization. Yang et al. [YKL17] used a
combination of a high-level learned neural network and low-level PD controller. They
were able to learn stabilizing movements on a simplified humanoid robot simulation
model. Similarly, Yang et al. [YYM+18] learned different strategies for push recovery
by combining neural networks and PD controller. Pankert et al. [PKA18] learned
capture steps for push recovery by mapping human demonstrations via RL to the robot.

5.1.3 Learning Approaches

Peng et al. [PBYVDP17] used a two-level hierarchical approach to learn walking and
dribbling on a simulated biped using neural networks. The lower-level network generates
a stable walk for a given step target, while the higher-level network processes a terrain
map to generate step targets for the lower network.

Melo et al. [MMdC19] learned kicking and walking on a simulated NAO robot by
using supervised learning. Their dataset consisted of keyframe-based movement patterns
that were taken from existing solutions. In another work, Melo et al. [MM19] used
Proximal Policy Optimization (PPO) to learn running skills for a simulated humanoid
without prior knowledge with an action in joint space.

Further approaches that combine RL with reference motions are described in Sec-
tion 6.1.1.

5.1.4 Parameter Optimization

Approaches for pattern generation and stabilization often have parameters, e.g., the
P, I, and D values for a PID controller. The performance of the approach is typically
connected to the quality of these parameters. Therefore, finding optimal, or at least
sufficiently good, values is important. These parameters can often be tuned manually,
either through intuition or by applying a formalized method, e.g., the Ziegler–Nichols
method [ZN+42] for PID controllers. Still, automatic methods are to be preferred as
they propose less work and may find better parameters. In the following, we present
different approaches to optimize the parameters of motion skills.

Shafii et al. [SLR15] optimized the seven parameters of a locomotion skill in simu-
lation using covariance matrix adaptation evolution strategy (CMA-ES) [HO01]. This
algorithm was also used by Seekircher et al. [SV16] to optimize the ten model parameters
of a LIPM based locomotion on the NAO robot.

Rodriguez et al. [RBB18] applied Bayesian optimization to optimize up to four
parameters of their locomotion skill stabilization. They used a combination of simulated
and real experiments for the optimization process.

Kasaei et al. [KLP19] optimized eight parameters of a two-mass model-based loco-
motion skill on a simulated NAO robot. They applied a genetic algorithm to optimize
eight parameters.
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Silva et al. [SPCB17] applied RL to optimize two parameters of their locomotion
approach.

5.2 Approach

The OptiQuint approach uses parameterized quintic splines to generate a model-free
Cartesian open-loop trajectory which is then transformed into joint space by using a
general IK. Therefore, it is possible to apply this on any bipedal robot, if the correct pa-
rameters are found. Since these parameters are few and in direct relation to the robot’s
movement (e.g. how high the foot is lifted), it is possible to tune them manually. Nev-
ertheless, we provide a simulator-based optimization technique to find a set of them for
any given bipedal robot model. To stabilize the open loop trajectory, we apply different
stabilization methods, such as phase modification and PID control. See Figure 5.2 for
an overview.

5.2.1 Spline Creation

The first step in the approach is to create splines that describe the movement of robot
links, e.g., the left foot, in Cartesian space over time. Therefore, for each skill, it
is necessary to decide which links of the robot should be moved in relation to which
reference frame. For example, for a walk skill, it makes sense to describe the movement of
the torso and the moving foot in relation to the support foot. For each of those parts, we
need six splines to describe the complete pose using Euler angles (x, y, z, roll, pitch, yaw).
We will call such a combination of six splines a pose-spline. Since we only use quintic
splines in the following, the pose-spline will be denoted with Q(t).

Q(t) = (Sx(t), Sy(t), Sz(t), Sroll(t), Spitch(t), Syaw(t)) (5.1)

Note that this is not the same as a multidimensional spline since the splines do not
need to have the knots at the same time points. Typically, a motion skill is controlling
multiple endeffectors in a humanoid robot. Therefore, the state of the robot at time t
can be described by using multiple pose-splines. We denote such a combination of pose
spline with QR(t). The usage of different pose splines is possible. One natural example
is given in Equation 5.2.

QR(t) = (Ql foot(t), Qr foot(t), Ql hand(t), Qr hand(t)) (5.2)

For all splines, the time t is normalized as t ∈ [0, 1] where 0 denotes the start of the
motion and 1 the end. This time representation is called the phase of the motion and
allows simple scaling of the speed that a motion is performed in.

To define these pose-splines, it is necessary to define their knots K = {k0, k1, ..., kn}.
In the case of a quintic spline, for each knot, the position (p), velocity (v), and acceler-
ation (a) needs to be defined (see Section 2.4). We will describe these three categories
of defined knot values as dk ∈ Dk in the following. Each dk is, therefore, one of the
following types of tuple.

dk =











(p, t)

(v, t)

(a, t)

(5.3)

The set Dk can be constructed from four sources:

Dk = DN ∪DS ∪DC ∪DP (5.4)
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Figure 5.2: Steps of the approach. The skill is invoked by some higher-level behavior.
First, the quintic splines are generated based on natural definitions, the current robot
state, the command, and the parameters. Then, these splines are continuously interpo-
lated to get the current Cartesian poses. These may then be modified for stabilization.
An IK computes the corresponding representation in joint space based on a given URDF
description of the robot. These joint positions are then sent to the hardware interface,
which executes them on the robot. This process is continued until the phase is com-
pleted. If the skill is continuous, the next splines are created. Otherwise, the skill is
finished.

Natural Definitions DN Some members of Dk are given by the nature of the motion.
For example, during a walk motion, the pose-spline of the moving foot at the phase where
the foot is on its apex is given by v = a = 0. An apex is, by definition, the highest point
where the movement switches from a rising to a descending movement. Such natural
definitions should be used as much as possible to reduce the number of parameters.

State DS A second source is the current pose of the robot. This is especially useful to
define the knots at the start of the motion (t = 0). It does not only reduce the number
of parameters but also ensures that the movement at the start is smooth.

Command DC The command that invokes the skill can be another source for values
for Dk. In manipulation skills, it often contains information about the object’s pose
that we want to manipulate. For example, for a kick skill, the ball position is provided
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in the command, thus defining p of the knots that represent the moment where the ball
is touched. But the command can also be used in locomotion skills, as the movement of
the foot is also related to the commanded velocity.

Parameters DP Typically, not all values for Dk can be defined through the above-
mentioned sources. For example, it was shown above that v, and a of the foot’s apex
point during walking are naturally defined. This is not true for the p value of the same
knot (the height of the foot above the ground), as this value depends on the kinematics
and dynamics of the robot as well as the type of ground, e.g., tall grass requires higher
values than a flat floor. These values are represented as parameters of the skill which
need to be optimized. Their number (|DP |) should be kept as low as possible since
the complexity of the optimization will grow exponentially with this number (curse of
dimensionality).

5.2.2 Spline Interpolation

After the splines are created, the skill runs in a control loop with a given frequency f to
provide the current joint position commands. While the splines are smooth by definition,
we need to discretize them over time which leads to interpolation errors. A high value for
f is, therefore, desirable since the time between two loop steps ∆t = tn − tn−1 becomes
smaller, and thus the interpolation is smoother.

In each step of the loop, first, all pose-splines are interpolated at the current phase
time t by solving the spline equation (see Equation 2.4). This will provide a set of
Cartesian goal poses with one for each controlled link of the robot.

Ct = QR(t) (5.5)

The spline trajectories are only providing an open-loop pattern generation. It is possible
to adapt these Cartesian goals to stabilize the motion and to achieve closed-loop control.
This is possible through different established control strategies, e.g., by using a PID
controller, resulting in a set of stabilized Cartesian end effector goal poses C∗

t . Finally,
these are solved by an IK to get the joint goal positions of the robot.

Jt = IK(C∗
t ) (5.6)

These are then given to the hardware or simulator interface.
This process is executed at each time step until t = 1. If the skill is periodic (e.g.

locomotion), then the phase is reset to t = 0, and the splines for the next cycle are
generated. Otherwise, the skill is finished. It is also possible to add phase modifications
that end a skill early, e.g., to end a locomotion step early when the foot makes contact
with the ground. These also need to be checked at each time step.

5.2.3 Parameter Optimization

As stated in Section 5.2.1, the splines are partially defined by parameters. The quality of
these parameters highly influences the performance of the skill. Therefore, it is necessary
to find good sets of parameters. This can be done manually through trial and error.
Since the parameters are directly related to the movement of the robot, it is comparably
simple for a human to find good values for them. Still, this requires manual work and
will probably not yield an optimal parameter set as humans tend, in our experience,
to focus on the first working values and thus run into a local optimum. Additionally,
the parameters need to be adjusted if the kinematic or dynamic properties of the robot
change. Thus resulting in additional work after changes in hardware which could deter
users from hardware developments.
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This issue can be mitigated by using a fully automated black-box parameter opti-
mization approach to find a good parameter set for a given robot. The stabilization
approaches also rely on parameters. We do not optimize these since they are either sim-
ple to find, i.e., the thresholds for the phase manipulations, or have established methods
to tune them, i.e., the Ziegler-Nichols method [ZN+42] for the PID controller.

The optimization process can be expressed formally as finding a parameter set Θ∗

out of the set of possible parameter sets Ψ that maximizes either a single objective
function f(Θ) (single objective optimization)

Θ∗ = argmax
Θ∈Ψ

f(Θ) (5.7)

or multiple objective functions f1(Θ), f2(Θ), ..., fn(Θ) (multi-objective optimization).

Θ∗ = argmax
Θ∈Ψ

(f1(Θ), f2(Θ), ..., fn(Θ)) (5.8)

These objective functions quantify how good a given parameter set is for a skill, e.g.,
for a kick, how far the ball is moved. The objective function is not necessarily naturally
given and needs to be designed for each skill. The used objective functions will be
discussed in detail in the corresponding skill sections below.

In multi-objective optimization, there is typically not a single parameter set that is
the best for all objectives. Instead, the result is a Pareto front of parameter sets. Each
of these has one objective function whose value is not surpassed by any other parameter
set without reducing the value of another objective function. As only one parameter
set can be used, it is necessary to choose one of them. This can be done by choosing
manually or by computing a single objective value by taking a weighted sum of the
values (scalarization).

In addition to the objective function, it is also necessary to define the parameter space
Ψ. We use a continuous range for each parameter. The bounds of some parameters are
universal for all used robots, but some are also directly related to the kinematics of
the robot, e.g., how far a foot can be raised during a step. Still, these are simple to
define, e.g., by testing how far the robot can raise its foot. Furthermore, these ranges
do not need to be exact but can be larger. This may prolong the optimization process
but will still yield results. Additionally, it is also possible to artificially narrow the
parameter ranges to achieve a certain type of motion, e.g., force the robot to raise its
feet to a certain height for walking on artificial grass. The detailed parameter ranges
are described in the corresponding sections below.

The general optimization process consists of sequentially trying different parameter
sets in simulation and computing their objective values by measuring the performance
of the executed skill (see Algorithm 1). This might encompass multiple tries of the
same parameter set since the skill may not be deterministic due to sensor noise and
randomness in the IK solution. The decision of which parameter set is to be evaluated
next is made by an optimization algorithm.

5.2.4 Implementation

In this subsection, we will discuss how a skill using this approach can be implemented,
relying on established software libraries and frameworks.

Middleware

Our approach tries to create skills that can be put onto a new robot with as least work
as possible. This requires easy integration into the robot’s software stack, independence
from the robot’s kinematics, and a simple tuning process. To allow easy integration on
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Algorithm 1 Parameter Optimization

choose sampler //e.g. MOTPE
define parameter space for each parameter // e.g. θ1 ∈ [−1, 3]
parameter sets = [ ]
objective values = [ ]
for i < number trials; i++ do

sample parameter set
parameter sets.append(parameter set)
execute skill in simulation
compute objective values
objective values.append(objective values)

end for

choose parameter set by scalarization or a posteriori
return parameter set

many robots, we rely on the widespread ROS (2) middleware (see Section 2.3), URDF
and MoveIt [CSC12] configurations. Each skill can be programmed as a single ROS
node, thus resulting in modularity. The node publishes the computed joint goals on a
topic. These are then executed on the hardware by ros control [CMEM+17] or in the
simulation via a ROS simulation interface. The commands for the skill node can either
come from action calls, for discrete motions, or from a command topic, for continuous
motions. The walking, for example, can then be directly controlled from Nav2 stack
[8]. One of our applied stabilization methods are PID controllers. These are based on
the control toolbox [19] package is used. The naming and placing of coordinate frames
(including the odometry) in the URDF follow REP-120 [16]. This simplifies the usage
with other robot models.

However, for some purposes (optimization and learning), the asynchronous commu-
nication of ROS is not well fitted. Therefore, we also provide a Python interface based
on PyBind11 [28], which allows direct calls of the skill’s internal methods and blocks till
the result is computed.

IK

To achieve independence from the concrete kinematic configuration of the robot, our
approach works in the Cartesian space. However, this requires an IK solver to transfer
the goals from Cartesian space to joint space. Since the goal is to allow the usage of
different platforms, MoveIt [CSC12] was chosen as an interface for the IK. It provides
multiple different IK implementations. Orocos KDL [13] is the default IK solver which
is based on the inverse Jacobian algorithm. TrackIK [BA15] combines an extension
to the Newton-based convergence algorithm with Sequential Quadratic Programming.
Both run in parallel, and a solution is provided as soon as one approach converges.
This makes it more robust. BioIK [RHSZ18] uses a memetic approach that integrates
gradient methods with evolutionary and particle swarm optimization. It allows to specify
multiple different goal types and was shown to successfully avoid getting stuck in local
minima.

Some of the used platforms, i.e., the Wolfgang-OP and the NUgus, don’t have an
analytic IK solution for the legs since the hip joint axes are not intersecting. Therefore,
analytic IKs were not used. MoveIt also provides a plugin for IKFast [Dia10], which
automatically tries to find an analytic algorithm for a given robot model, which is then
saved and allows to compute IK solutions quickly during runtime. This plugin did not
work for the Wolfgang-OP (maybe due to the not intersecting axes in the hip) and was
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therefore not further considered as a possible IK solver.

Visualization

An often overlooked factor is providing good additional visualization to the user. In
cases where the skill does not perform as required, it can be difficult for the user to
understand where the issue lies. If it is only possible to obtain information about the
input and output of the skill node, it can be seen as a black box. It is not distinguishable
from which step of the approach (spline creation, spline interpolation, stabilization, IK)
the error is arising. A simple way to solve this issue is to provide additional debug topics
from the skill node that display the internal state. It is possible to only compute and
publish this debug data if there are subscribers on these topics, thus not influencing the
computational performance otherwise. Two main ROS tools can be used for this. First,
RViz allows a 3D visualization of the robot together with additional custom markers.
This can, for example, be used to show the spline’s knots in 3D space. Second, PlotJug-
gler allows the simple generation of online plots for data on ROS topics. This can be
used to plot the interpolated splines over time.

Parameter Optimization

The Optuna library [ASY+19] provides a clear interface to run an optimization process
(called study) for a set of different optimization strategies (called samplers). These
include covariance matrix adaptation evolution strategy (CMA-ES) [HO01], Tree-struct-
ured Parzen Estimator (TPE) [BBBK11], Multi-objective Tree-structured Parzen Esti-
mator (MOTPE) [OTWO20], Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[DAPM00] and random sampling. Optuna allows the distributed execution of a study,
which significantly decreases the time necessary to find good parameters. To do this,
multiple instances are created which communicate via a Structured Query Language
(SQL) database. When a sampler starts the evaluation (called trial) of a new parameter
set, it writes the used parameters into the database so that the other instances know
which parameters are already explored. When the trial finishes, the resulting objective
values are added to the parameter set in the database. This allows each sampler to
use the combined experiences of all instances when sampling the next parameter set.
Optuna also provides visualization tools that show the current progress of a study based
on the data in the database.

5.3 Walk

This section describes the application of the OptiQuint approach to a locomotion skill
(see Figure 5.3 for an overview). Walking is a continuous motion that can also be seen as
a sequence of discrete step motions. Still, it is complex since the support foot switches
at each step, the desired walk velocity may change, and special motions are required for
starting and stopping the walk. Additionally, we apply phase modulation techniques to
increase the stability of the robot. This is handled by a state machine (Section 5.3.1) that
tracks the support foot and decides on what kind of step to perform. The spline engine
(Section 5.3.2) creates the splines at the start of a step and these are then interpolated to
provide the Cartesian goal poses. These are modified by PID controllers (Section 5.3.3)
and then solved by an IK. The resulting joint goal positions are published and further
processed by the hardware or simulation interface.
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Figure 5.3: Overview of the walk skill implementation. First, the FSM decides on the
step type and current phase based on the command and the stabilization methods.
Then, the spline engine generates the current Cartesian poses. These are stabilized by
a PID controller. Finally, the IK computes the corresponding joint goals and sends
them to the hardware interface. Parallelograms represent model information, rectangles
represent sensor data, and rhombuses represent parameters. Parts that don’t belong to
the walking node are dashed. [BZ22]

5.3.1 Finite State Machine

The walk engine has to do different types of steps, e.g., the first step to start walking
differs from the following ones. Furthermore, two stability features are added, which
can end the step early (Phase Reset), prolong a step (Phase Rest), or request a break
during double support to let oscillations of the robot settle (Stability Stop), see also
Section 5.3.3. As we use this approach in RoboCup soccer, a small dribbling kick is also
integrated. This behavior is implemented as a FSM which uses the information about
the previous step, the commanded velocities, and the feedback from the stabilization
methods to provide which type of step should currently be applied and what the phase
is. An overview of the FSM can be seen in Figure 5.4.

Before the first lifting of a foot can be performed, the CoM needs to be moved
over the support foot as it will otherwise leave the support polygon and the robot will
fall. Therefore, the walk always starts with the Start Movement. Then the first step is
performed with a phase offset between the torso and foot (Start Step) to initialize the
lateral swinging motion of the torso. After this, the walk controller will perform the same
kind of step, which is only modified by the commanded walk velocity (Walking). While in
this state, a brief stop can be made to stabilize the robot if it begins oscillating (Pause).
Furthermore, small dribbling kicks can be performed, which alter the movement of the
flying foot (Kick). A similar procedure to the start is done when the robot wants to
come to a complete stop. This ensures stopping stably and results in a centered pose
which is more stable and allows the execution of other skills, e.g., the kick skill.
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Figure 5.4: Visualization of the FSM, which controls the state of the walk skill. The
orange state transitions are executed when a step ends, while the black transitions are
executed whenever the corresponding event happens. [BZ22]
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Figure 5.5: Illustration of the walk pattern creation. The next step pose (left) is
defined by the goal walk velocity (blue) and the parameters (orange). Based on this
and further parameters, the movement during a walk cycle is defined (right). A phase
variable represents the current time in the cycle (bottom). The double support ratio
is exaggerated for clarity. The parameter which defines a phase shift between the torso
and foot movement is not displayed. [BZ22]
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Figure 5.6: Exemplary splines of a simple walk forward with 0.4m
s . One double step

over, represented by one phase cycle, is shown. The light gray area indicates that the
left foot is the support foot, while the darker area indicates the double support phases.
Since the splines are defined in the support foot frame, it looks like there is a break
during step exchange. However, from the corresponding reference frame, it leads to a
smooth movement. The orientation splines are not shown, as these are constant when
the robot is not moving in yaw direction or changing its velocity.

5.3.2 Pattern Generation

The walk spline engine is partly based on IKWalk by Rouxel et al. [RPH+15] but has
been almost completely rewritten, and the spline definitions have been changed, e.g. by
the introduction of a vertical torso movement. It defines the splines for the different
step types as required by the FSM. For simplicity, we will only discuss the normal step
spline (state Walking) in the following, but the other splines are very similarly defined,
and their differences have been discussed in the previous section.

The quintic splines are used to represent the Cartesian trajectories of the moving
foot Qfoot and the torso Qtorso in the support foot frame (see Figure 5.6 for an exam-
ple). Each trajectory is represented with one pose-spline (consisting of six splines that
represent one dimension of translation or rotation). These splines are newly created for
every single step to adapt to eventually changed commanded velocities.

Qfoot = (Sfoot x, Sfoot y, Sfoot z, Sfoot roll, Sfoot pitch, Sfoot yaw) (5.9)

Qtorso = (Storso x, Storso y, Storso z, Storso roll, Storso pitch, Storso yaw) (5.10)

As described in Section 5.2.1, there are different sources for the definitions of the knot
values D. The values for the knots at t = 0 of both splines Si ∈ {Qfoot, Qtorso}
at the current time step i are given by the corresponding last pose of the previous
spline. During the step transition, the support foot changes. Therefore, the values need
to be transformed from the previous step’s coordinate frame to the current one by a
transformation function ffk() that can be solved by using forward kinematic (FK).

pSi

0 = ffk(Si−1(1)) (5.11)

vSi

0 = ffk(Ṡi−1(1)) (5.12)

aSi

0 = ffk(S̈i−1(1)) (5.13)
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The actual current poses, as provided through joint encoders and FK, are not used.
The delay between commanding the joint position and the joint actually reaching this
position, as well as the additional delay of reading the sensor and the modification of the
spline goal through the PID controller would result in a difference to the last commanded
pose, thus violating the smoothness of the trajectory.

Naturally, the foot should stay on the ground until the end of the double support
phase. Therefore an additional knot is necessary. The end time of the double support
phase (td) is defined through a parameter (θ) and represented in the normalized phase
time (a value in [0, 1]).

td = θstep duration ∗ θdouble support ratio (5.14)

Since the foot should not move, the further values are naturally defined.

p
Sfoot

td
= p

Sfoot

0 (5.15)

v
Sfoot

td
= 0 (5.16)

a
Sfoot

td
= 0 (5.17)

Naturally, the foot needs to rise from the ground during a step. This is easily
described by defining the apex point. The time of the apex (ta) is in the center of the
single support phase to allow equal time for rising and descending the foot.

ta = (1− td)/2 (5.18)

Only the movement in z dimension needs to be defined. The velocity and acceleration
at this point need to be zero since the foot changes its movement direction. How far the
foot rises is defined by a parameter.

p
Sfoot z
ta = θfoot rise (5.19)

v
Sfoot z
ta = 0 (5.20)

a
Sfoot z
ta = 0 (5.21)

The three dimensions for the end position of the foot spline are provided by the
commanded velocity (vcmd) and parameters (see Figure 5.5).

p
Sfoot x

1 = vcmd x ∗ θstep duration (5.22)

p
Sfoot y

1 = vcmd y ∗ θstep duration + θfoot distance (5.23)

p
Sfoot yaw

1 = vcmd yaw ∗ θstep duration (5.24)

The other three dimensions of position are naturally defined as zero since the pattern is
generated for walking on generally flat ground.

p
Sfoot z

1 = 0 (5.25)

p
Sfoot roll

1 = 0 (5.26)

p
Sfoot pitch

1 = 0 (5.27)

The velocity and acceleration of the foot are naturally defined as zero at the end of the
step for all dimensions.

v
Sfoot

1 = 0 (5.28)

a
Sfoot

l = 0 (5.29)

These definitions are sufficient to describe the motion of the foot. The movement of
the torso is defined with the same procedure.
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5.3.3 Stabilization Approaches

To increase the stability of the walking, different loop-closure approaches based on dif-
ferent modalities are implemented. All of these are model-free approaches that only rely
on parameters. We don’t use the CoP as a ZMP criterion, as this is not applicable for
uneven ground [KHHY14, p.101]. Furthermore, we do not explicitly enforce that the
projection of the CoM is not always in the support polygon since this would not allow
any dynamic walking [KHHY14, p.105]

We apply two phase modulation approaches for stability. The phase reset uses the
data of the foot pressure sensors or the joint torque sensors to detect when the moving
foot makes contact with the ground. At this moment, the support foot is changed, and
the phase is set to the start of the step. This means the step is ended early, which
prevents the moving foot from pushing further into the direction of the ground, thus
introducing a force on the robot. Similarly, the phase rest prevents the starting of a
new step until contact is made with the ground. It is possible to rely solely on the
joint torque data, but this data is noisy as the servos only estimate the torque based on
the applied motor current. Additionally, friction in the joints can differ between robots,
e.g., due to wear and tear, therefore leading to different sensor values on different robots.
The foot pressure data is more reliant and should be preferred if the robot is equipped
with this type of sensor.

The stability stop detects if the robot is becoming unstable in the walk, based on the
IMU, and pauses the walking at step change for a short amount of time. During this,
the oscillations of the robot can settle themselves. When the robot is not oscillating
anymore, it starts to walk again. Naturally, this slows the robot down due to the inserted
pauses. Still, it is faster than doing a stand-up motion after a fall. Additionally, it is
also better for the hardware, as falls are minimized.

Two PID controllers are applied to adapt the Cartesian poses of the robot’s torso
based on input from the IMU. One controls the robot’s fused pitch angle and the other
the fused roll angle based on the estimated orientation of the IMU in fused angles (see
also Section 5.1.2). The controllers reduce oscillations of the torso that can arise during
the walk and can stabilize external pushes, e.g., from bumping into another robot.

Other PID controllers were tried during the implementation of this approach but
were not further used due to inferior results during preliminary experiments. Therefore,
the focus was set on the fused angle based controller. The following is a list of the tested
PID controllers.

• Torso Euler angles based on IMU measured Euler angles

• Torso Euler angles based on angular velocity from the gyroscope

• Final foot pose of the current step based on IMU measured Euler angles (similar
to capture steps)

• Hip joint positions based on IMU measured Euler angles (hip strategy)

• Ankle joint positions based on IMU measured Euler angles (ankle strategy)

The arms of the robot are not used for stabilization, although this would be possible.
There are two reasons for this. First, there are RoboCup rules (especially in the HLVS),
e.g., ball holding, that could be violated accidentally. Second, the hardware of the
Wolfgang-OP is optimized to withstand falls, but it requires the arms to be in certain
poses. Although the HCM could move the arms to this pose if a fall is detected, the
time for this is short. Thus only small movements of the arms would be possible, and,
therefore, this was not further investigated.
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5.3.4 Odometry

An important additional information that needs to be provided about the locomotion
of the robot is the odometry. It represents the measured route that the robot has taken
since the start. It can either be used directly for dead reckoning or as information for
the update step of a Bayesian localization approach. In the following, we discuss how
this information is measured in the presented approach.

There are different ways to measure the traveled route. The simplest one is to just
use the given goal walk velocities (vcmd) and integrate them over time. Naturally, the
resulting values will have an error, as the robot will not exactly follow the given goal
velocities. There are multiple reasons for this. First, the approach only changes the
walk velocity when new splines are created, i.e., when a step is finished. Second, the
joint servos will not exactly follow their goal position due to the servo’s PD controller
and the link inertias. Thus, a step is not exactly executed. How much these two factors
influence the error of the odometry is also related to the walk parameters, e.g., a higher
step frequency leads to the walk velocity being changed more often.

Due to these issues of using the goal velocity directly, a different approach is typically
applied, which computes the transform of each step through FK and thus tracks the pose
of the current support foot. Since the odometry needs to present the current pose of
the base link frame (see Section 5.2.4), an additional transform between the support
foot and the base link needs to be added. This is also possible through FK. Still, this
approach assumes that the support foot is always perfectly aligned with the ground, i.e.
the robot is not tilted to any side. This estimation can be improved by including the
orientation estimation from the IMU. Since the yaw that is provided by the IMU (which
does not contain a magnetometer due to RoboCup rules) drifts over time, it is not used.
The yaw, which is computed through the forward kinematics, is more reliable. The IMU
is only used for the roll and pitch orientation of the robot. Since this computation is a
general problem of bipedal robots, the computation is done by a separate ROS 2 node
that can easily be reused for other walk controllers, e.g., the one described in Chapter 6.
The walk node itself only publishes the current support foot using a standardized ROS
message, thus informing the odometry node that a step was finished.

5.3.5 Parameter Optimization

A simple objective function for bipedal locomotion is how fast the robot can walk without
falling down. This is especially interesting for the domain of RoboCup soccer since
walking faster than the opponent team will provide an advantage in a game. Since the
walk skill is omnidirectional, there is not just one walk direction that we can maximize.
The walk velocity is a vector with three entries (x, y, yaw) which are all continuous,
leading to an infinitive number of possible directions. By trying out different objective
functions, it became clear that optimizing the walk speed for four directions (forward,
backward, sideward, turn) is sufficient to reach a parameter set that also works on the
combined velocities, e.g., walking to the back and left while turning clockwise. The
sideward and turn movements are symmetrical, and therefore only one direction each
needs to be evaluated. This results in the objective functions ff (Θ) (forward), fb(Θ)
(backward), fs(Θ) (sideward), ft(Θ) (turn).

To evaluate these objective functions, we first evaluate if the robot is able to stand
with these parameters (see Algorithm 2). If this is not the case we return ff (Θ) =
fb(Θ) = fs(Θ) = ft(Θ) = 0. Otherwise, we measure the maximal distance d(vcmd)
that a robot can travel in 10 s for a given goal walk velocity vcmd. This includes an
acceleration and deceleration phase, which is necessary because it is not possible to go
from standing to high speeds directly. Additionally, the procedure waits two seconds
after stopping the walk to verify that the robot does not fall down during stopping. The
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commanded goal velocity is not used as an objective criterion as the parameters may
lead to slower walking than commanded, thus vcmd may represent the actually walked
velocity inaccurately. Instead, we use the end position provided by the simulator but
only take the distance from the start position in the commanded walk dimension. This
prevents the robot from getting a high objective value by walking forward while it should
only walk sideward.

We increase the vcmd stepwise linearly.

vcmd(x) = a ∗ x, x ∈ N (5.30)

This is done until the robot has either fallen down or the traveled distance has not
increased.

d(vcmd(i)) ≤ d(vcmd(i− 1)) | vcmd(i) > vcmd(i− 1) (5.31)

Before each trial, the robot is reset by letting it walk a few steps in the air. This ensures
that the robot starts in a fitting pose to the used parameters. Otherwise, bad parameters
in the trial before could lead to an unstable start pose and thus wrongly attribute a low
objective value to the current parameters.

The presented optimization process provides the four objective values for ff (Θ),
fb(Θ), fs(Θ), ft(Θ). We can either scalarize the objectives to a single one or use a
multi-objective optimization approach and then use an a posteriori function to choose
one set from the Pareto front (see Section 5.2.3). For both approaches, we use the
following function:

f(Θ) = ff (Θ) + fb(Θ) + 2 ∗ fs(Θ) + 0.2 ∗ ft(Θ) (5.32)

The weights are chosen based on the observed typical maximum velocities that are
reached in the different directions, i.e., most robots only manage to walk half as fast
sidewards compared to forward. Since the turn direction is in rad

s instead of m
s , scaling

is necessary to get values of a similar dimension. This scalarization ensures that all four
directions are contributing equally to the objective value and, thus, that none of these
directions is preferred in the optimization process.

By choosing this objective, we value speed and stability over accurately reaching
the commanded velocity. Therefore, the resulting parameter set typically leads to a
walk which does not exactly reproduce the given command. We solve this by adding
a factor to the walk engine for each direction that scales it accordingly. Still, small
differences may exist, but in our experience, these were small enough to be handled by
the navigation algorithm of the robot.

As described in Section 5.2.3, some parameter range boundaries can be defined iden-
tically for all robots, while others depend on the robot, e.g., the length of the legs. The
used parameter ranges are shown in Table 5.1. Boundaries that apply to all robots are
written in black, while the others are written in gray. For the latter ones, the value used
for the Wolfgang-OP is shown exemplarily.

5.3.6 Other Humanoids

A set of humanoid robot models was prepared to show that the walk skill and the
parameter optimization work on different platforms. Two things are needed for each
platform. First, a simulation model to be able to run the optimization process. Sec-
ond, a MoveIt configuration and an URDF model for the IK. The currently largest
set of simulation models for humanoids robot platforms is coming from the HLVS for
the Webots simulation (see also Section 2.5). Additionally, there are some models of
widespread commercial platforms already integrated in the Webots simulation. There-
fore, a combination of these two sets of models was chosen for the evaluation of the walk
skill.
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Algorithm 2 Optimization Process for Walk Skill

1: procedure ResetRobot

2: Deactivate gravity
3: Put robot in the air
4: Walk multiple steps
5: Stop walk
6: Activate gravity
7: Set robot on the ground
8: end procedure

9: objective values=[ ]
10: ResetRobot()
11: Wait 1 second
12: if robot has fallen then

13: return [0,0,0,0]
14: else

15: for direction in [forward, backward, sideward, turn] do
16: vcmd = [0,0,0]
17: travelled distance = 0
18: while true do

19: Increase cmd vel linearly in walk direction
20: ResetRobot()
21: while robot not fallen and not 12 seconds passed do

22: Walk with 0.25 ∗ vcmd for 1 second
23: Walk with 0.5 ∗ vcmd for 1 second
24: Walk with vcmd for 6 seconds
25: Walk with 0.5 ∗ vcmd for 1 second
26: Walk with 0.25 ∗ vcmd for 1 second
27: Stop walk
28: end while

29: Measure traveled distance in walk direction
30: if robot has fallen or traveled distance did not increase then

31: Break while loop
32: end if

33: end while

34: objective values.append(travelled distance)
35: end for

36: return objective values
37: end if
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Table 5.1: Ranges of the optimized parameters.

Parameter
Lower Upper

Unit
boundary boundary

step frequency 1.00 3.00 Hz
double support ratio 0.00 0.50
foot distance 0.15 0.25 m
foot rise 0.05 0.15 m
torso height 0.39 0.43 m
torso phase offset -0.50 0.50
torso lateral swing ratio 0.00 1.00
torso rise 0.00 0.05 m
torso x offset 0.05 0.05 m
torso y offset 0.05 0.05 m
torso pitch -0.50 0.50 rad
torso pitch proportional to vcmd x -2.00 2.00 rad s

m

torso pitch proportional to vcmd yaw -0.50 0.50 rad s
m

Webots includes a method to automatically create a corresponding URDF for a
given robot model in the simulator’s proto format. This URDF still needs some manual
modifications to obey the REP 120 (see Section 5.2.4). The creation of the corresponding
MoveIt configuration can then simply be done using the MoveIt Setup assistant [7]. Most
importantly, two kinematic solvers need to be defined for legs.

This collection is made public [1] and can therefore be used by other researchers
to evaluate their approaches and compare them to the baseline we provide. Images of
the used simulator models can be seen in Figure 5.7 and further specifications of these
robots can be found in Table 3.1.

5.3.7 Evaluation

Different aspects of the walk skill were investigated. First, the parameter optimization
is evaluated to show that the OptiQuint approach is feasible. Then, the generalization
to other robot models is shown, and baseline values are provided. This is followed by
a comparison of the different IK solvers of MoveIt. Finally, a qualitative evaluation of
the walk skill is given.

Parameter Optimization

We evaluated the different optimization approaches provided by the Optuna library (see
Section 5.2.4) to see if they all are applicable and to find out which of them performs best.
We also tested the multivariate versions of the MOTPE and TPE sampler, as it is claimed
that these perform superiorly [FKH18]. For each sampler, 1,000 trials were conducted.
Additionally, 1,000 and 10,000 trials were chosen randomly to see if similar good results
could also easily be achieved by random sampling. To ensure that the used robot type
does not bias this experiment, it was conducted for three different robots, the Wolfgang-
OP, the OP3, and the Bez. These were chosen since they have different sizes, weights,
foot shapes, and degrees of realism. Each combination of sampler and robot type was
only executed once due to the long runtime of the experiment. Since the optimization
process is not deterministic (the first trials are always chosen randomly), the results can
be influenced by noise. Still, in our experience in preliminary optimization experiments,
the variance in achieved objective values for studies with such a high number of trials
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(a) Bez (b) Chape (c) Darwin-OP (d) KAREN (e) NAO

(f) NUgus (g) OP3 (h) RFC2016 (i) Wolfgang-OP

Figure 5.7: Collection of the used Webots simulator models to test generalization.

was low. The parameter ranges are chosen as displayed in Table 5.1. The results are
displayed in Table 5.2 and Figure 5.8.

The independent MOTPE sampler finds the parameter set with the highest scalar-
ized objective value. The results of its multivariate version are inferior for all robots.
Similarly, the independent TPE implementation finds in two out of three a better so-
lution than the multivariate one. Additionally, it can be observed that the indepen-
dent MOTPE provides better results for all three robots in comparison to the inde-
pendent TPE. The NSGA-II sampler performed just slightly inferior to MOTPE, but
the CMA-ES sampler provided clearly inferior results. Still, all of them outperform the
baseline of the 1,000 trials random sampling.

Interestingly, the execution time of these approaches also varies. This is due to the
structure of the objective function. Since the trial stops when the robot has fallen in
each walking direction, the length it needs to be computed is inversely proportional to

Table 5.2: Scalarized objective values for different robot-sampler combinations (higher
is better). Based on [BZ22]

Name Wolf. OP3 Bez
Multivariate MOTPE 1,000 1.33 1.81 0.24
Independent MOTPE 1,000 1.39 1.89 0.72
Multivariate TPE 1,000 1.25 1.83 0.31
Independent TPE 1,000 1.35 1.81 0.55
CMA-ES 1,000 0.90 1.53 0.69
NSGA-II 1,000 1.39 1.78 0.63
Random 1,000 0.64 1.36 0.17
Random 10,000 1.09 1.48 0.36
MOTPE Combined 1,500 1.52 1.95 0.74
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Figure 5.8: Plot of the optimization history of different samplers for the Wolfgang-
OP. It can be seen that MOTPE already finds good solutions after a few trials. Both
TPE and NSGA-II need more trials to find a similarly good parameter set but improve
on it till the end of the trials. CMA-ES becomes stuck at around trial 300 and does
not manage to further improve the parameters. Randomly trying parameters does not
yield significantly lower results and thereby shows that it is not simple to find good
parameters.
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Figure 5.9: Comparison between independent MOTPE and multivariate MOTPE. The
independent MOTPE sampler tries more parameter sets that are similar to the current
best set, which has, therefore, also a high objective value. The multivariate version
diverges more from the current best, thus also creating many sets with low or zero
objective values.



CHAPTER 5. QUINTIC SPLINE BASED MOTION SKILLS 113

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4
0

200

400

600

800

#Trials

Parameter Value Parameter Value

O
bj

ec
tiv

e 
Va

lu
e

Figure 5.10: Comparison of the sampling between multivariate MOTPE (left) and
independent MOTPE (right). Here, the θdouble support ratio parameter is shown as an
example. It can be observed that the independent version focuses on a certain area in
later trials. The multivariate version also samples more equally in later trials resulting
in many objective values of zero. Based on [BZ22].

the quality of the tested parameters. The time that the samplers need to compute the
next parameter set based on the current knowledge is insignificant in comparison to the
time that is necessary to compute the physical simulation. Therefore, samplers that test
many low-quality parameters can test more in the same amount of time. This is espe-
cially interesting when regarding the multivariate and the independent MOTPE/TPE
samplers. The multivariate MOTPE approach needed ca. 8 hours for 1,000 trials on
a machine with an AMD Ryzen 59000x 12-core CPU. The independent version thrice
as long (ca. 24 hours). The reason for this is the difference in objective values that
are achieved in later trials (see Figure 5.9). This is again a result of the difference in
sampling strategy. While the independent MOTPE focuses on high-value areas in later
trials, the multivariate version explores more of the parameter space (see Figure 5.10).
Choosing between the multivariate and independent versions seems to be a trade-off
between exploration and exploitation while at the same time influencing the run time
of the experiment. We tried to get the best of both worlds by first sampling 1,000 trials
using the multivariate approach and then 500 trials using the independent version. This
results in a similar runtime as only using the independent approach while providing
better results (see MOTPE Combined in Table 5.2).

We optimized 13 parameters for each robot. These are more than have been opti-
mized in the related work (see Section 5.1.4). Furthermore, we have optimized not only
one walking direction but all of them. Our results seem to indicate that it is possible
to optimize all necessary parameters of an omnidirectional walk engine without issues
due to the curse of dimensionality. Furthermore, we used a complete black box ap-
proach that needed no knowledge of the walk approach. Therefore, we can assume that
this optimization approach will also work on other walk skills with a similar amount of
parameters.

Generalization

One point of the OptiQuint approach is the usage of Cartesian splines to achieve gener-
ally usable skills that do not depend on a certain kinematic configuration. To prove that
this goal was actually achieved, the walking skill was applied to the collection of Webots
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Table 5.3: Maximal walk velocities for different robots [BZ22]

Robot Platform Team/Company Height Forward Backward Sideward Turn
[m] [m/s] [m/s] [m/s] [rad/s]

Bez UTRA 0.50 0.21 0.05 0.12 2.45
Chape ITAndroids 0.53 0.30 0.36 0.10 2.09
Gankenkun CITBrains 0.65 - - - -
KAREN MRL-HSL 0.73 0.54 0.48 0.18 3.10
NUgus NUbots 0.90 0.38 0.42 0.26 1.97
RFC2016 01.RFC Berlin 0.73 0.37 0.40 0.36 1.99
Wolfgang-OP Hamburg Bit-Bots 0.83 0.48 0.51 0.22 1.89
Darwin/OP2 Robotis 0.45 0.29 0.29 0.12 2.47
OP3 Robotis 0.51 0.45 0.54 0.13 2.01
NAO Aldebaran 0.57 0.43 0.58 0.25 0.85
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Figure 5.11: Relationship between robot size and achieved walk velocities for the values
in Table 5.3. The turn speed is given in rad

s and the other directions are given in m
s . The

robots with unrealistic models have triangular markers. No clear correlation is visible.
This could also be due to the different degrees of realism in the models.

robot models (see Section 5.3.6). For each robot, the parameters were optimized using
the combined MOTPE approach with overall 1,500 trials (see Section 5.3.7). The results
are displayed in Table 5.3 and the optimized parameters can be found in Table 8.1.

The approach was successfully applied to nine out of ten tested robots. The Ganken-
kun robot was the only one which did not work. The reason for this is that it is the
only robot in the collection that uses parallel kinematics. Since the used IK solvers
rely on URDF as a description for the robot, it was not possible to apply them to the
Gankenkun. It is generally impossible to model a parallel robot with URDF. We assume
that the walk skill could be applied to the robot if a custom IK solver is implemented,
but we did not test it.

We also compared the achieved velocities with the size of the robots (see Figure 5.11).
There seems to be no clear correlation. This might be influenced by the fact that
the models which are not from the HSL are unrealistic, especially in regard to their
joint parameters. Therefore, the comparably small OP3 robot achieves comparable
performances as larger platforms.

It is difficult to compare the achieved speeds to existing results since other researchers
have not used the same simulation environment with the simulated artificial grass. Fur-
thermore, there are no baseline values for most of the robots from the other RoboCup
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Table 5.4: Darwin-OP forward speed

OptiQuint
Robotis Silva et al. Zhang et al.
[26] [SPCB17] [ZJF+22]

Forward [ms ] 0.29 0.24 0.288 0.488
Used Webots ✓ ✗ ✓ ✓

Table 5.5: NAO forward speed

OptiQuint
Kulk et al. Gouaillier et al. Gil et al. Kasaei et al
[KW+08] [GHB+09] [GCS19] [KLP19]

Forward [ms ] 0.43 0.139 0.1 0.049 0.805
Used Webots ✓ ✗ ✗ ✓ ✗

teams. Therefore, we only compare the results of forward walking for the Darwin-OP
and the NAO, where previous work exists (see Tables 5.4 and 5.5).

For the Darwin-OP, the OptiQuint approach achieves a higher velocity than the
claimed maximal speed given by the manufacturer. It also slightly surpasses the speed
achieved by Silva et al. [SPCB17], which also used the Webots simulator but with
a harder floor, therefore, in a simpler environment. Zhang et al. [ZJF+22] achieved
a higher speed also using the Webots simulation but also did not use a soft ground.
Furthermore, they only optimized to walk as fast as possible in the forward direction
without exactly following a given command velocity.

For the NAO, the OptiQuint approach outperforms the works of Kulk et al. [KW+08]
and Gouaillier et al. [GHB+09], which were tested on the real robot. It also surpasses the
speed of Gil et al. [GCS19], which used the Webots simulator. Only the work of Kasaei
et al. [KLP19] manages to achieve a higher velocity than our approach. However, this
was done in the Simspark simulator, which uses a very unrealistic model of the robot.

IK Comparison

As stated in section 5.2.4, different IK options are available through the MoveIt interface.
While earlier work [RHSZ18] already compared these IKs for different robot models,
it was always done for random poses. We wanted to investigate this special case of
following spline trajectories, where the solution is always near the current position. Our
hypothesis is that simple IK approaches, e.g., using a Jacobian, might outperform more
complex approaches in this case because they have less initialization overhead.

We evaluated the KDL, TracIK, and BioIK solvers. The latter also provides a gradi-
ent and Jacobian mode, with single- and multi-threaded solving, which we also tested.
We evaluated each solver for three different robots (Wolfgang-OP, Darwin-OP, NAO) to
avoid a bias in our results. The resolution was set to 0.01mm and the timeout to 10ms
for each leg. Each solver-robot-combination was tested by running it for 100 s while the
robot is walking with 0.1 m

s forward. The first iterations were removed from the data
since these were always high outliers and they can be avoided by adding an initializa-
tion procedure to the walk skill. The time to solve both foot positions was measured.
All tests were performed on the same ASUS mini PC (see Table 3.3). Furthermore,
the combination of running on isolated CPU cores with the round-robin scheduler, as
described in Section 4.4.2, was used. The walk engine was given access to two cores to
allow testing of the multi-threaded solvers.

The results of the experiment are displayed in Figure 5.12 and Table 5.6. The simple
KDL solver performs best in terms of mean and maximal solving time. We don’t know
why the BioIK in Jacobian mode has high outliers for the Wolfgang-OP but not for
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Figure 5.12: Note that this only shows a part of the plot for better visibility. Some
outliers are therefore not shown. See Table 5.6.

Table 5.6: Comparison of different IK solvers

IK Name
Wolfgang-OP NAO Darwin-OP
mean max mean max mean max

KDL 0.12 0.24 0.12 0.33 0.11 0.29
Trac IK 0.21 0.60 0.23 0.75 0.23 0.79
BioIK memetic 0.27 0.73 0.33 0.84 0.33 0.79
BioIK gradient 1 0.66 1.83 1.11 2.95 0.74 2.21
BioIK gradient 2 0.62 1.84 1.09 2.17 0.74 1.97
BioIK Jacobian 1 0.21 57.22 0.12 0.22 0.12 0.23
BioIK Jacobian 2 0.13 0.27 0.13 0.58 0.13 0.27
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Figure 5.13: Simulated Darwin-OP walking up the stairs for the Running Robot Com-
petition.

the others. One explanation would be the not intersecting axes in the hip joint of the
Wolfgang-OP, which make solving the IK more difficult. Otherwise, we could not see
large differences between the used robot models.

Not running the IK on isolated cores leads to outliers with a long solving duration.
The maximal time for solving both legs using BioIK increased from 0.73ms to 15.58ms.
This aligns with our findings in Section 4.4.2 and highlights again the strong influence
of the Linux scheduler.

In summary, we can conclude that the KDL solver performed best for this special
domain of Cartesian poses that are close to each other. BioIK might perform better
for arbitrary poses and includes other types of goals that the IK can solve, but both of
these factors are not relevant in our case.

Qualitative Evaluation

The Hamburg Bit-Bots applied the walk skill in both in simulation and on the real
robot. In the simulation, the team scored third place in the RoboCup 2021, first place
in the RoboCup Brazil Open 2021, and second place in the HLVS 21/22. Furthermore,
the team also used it in the Running Robot Competition [21] in 2020 and 2021. In
this competition, a simulated Darwin-OP robot had to be navigated through a parkour.
This included walking on stairs, on a slope, and over a narrow bridge. We were able
to modify the walk skill to allow stepping on stairs (see Figure 5.13). The slope was
automatically solved by the PID controller stabilization. The narrow bridge was solved
by optimizing parameters with a limited θfoot distance. In one year, the navigation was
done by using a RL approach using footstep planning, and in the other year, using the
ROS navigation stack with velocity control.

Earlier versions of the walk skill with manually tuned parameters have been used by
us on multiple RoboCup competitions in 2018 and 2019 on the Minibot and Wolfgang-
OP (see Figure 5.14). In 2019, the push recovery technical challenge was won by using
this walk skill (see Figure 5.16). We also used the walk skill with optimized parameters
on the real robot in the RoboCup 2022 on the Wolfgang-OP. Generally, we observed that
the optimized parameters from the simulation were not directly applicable to the real
robot. Typically, the balance in the sagittal direction was not correct, and θtorso pitch

needed to be manually corrected. This may be due to inaccuracies in the mass dis-
tribution of the simulation model or to the real robot having more backlash than the
simulated one. However, making the pre-optimized parameters usable on the real robot
is less work than manually tuning them from scratch. Furthermore, the automatic op-
timization found better solutions than our previous manual tuning, especially by using
quicker steps.
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Figure 5.14: Images of the Wolfgang-OP walking during a RoboCup competition. See
[1] for the video.

Figure 5.15: Images of the NUgus walking during a RoboCup competition using the
OptiQuint approach. See [1] for the video.

Figure 5.16: Images from the RoboCup push-recovery challenge. In the first image, the
deflection of the weight (a bottle filled with sand) is measured, as this is the basis of the
points that can be achieved. In the second image, the robot is hit by the weight. In the
third image, the robot stopped walking and stabilized itself. See [1] for the video.
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Still, the real Wolfgang-OP robot falls significantly more often than the simulated
one. We assume that this is also influenced by the backlash of the servos, which further
increases over time (see Section 3.6.4).

The team NUbots also used our walk skill on the simulated since 2019 [DHI+22] and
successfully used it on their real robot in the RoboCup 2022 (see Figure 5.15). Parts of
the walk skill have also been used as a basis for the work of Putra et al. [PMFC20].

5.4 Stand Up

The stand-up skill is based on the OptiQuint approach but implemented by
Sebastian Stelter in his Bachelor’s thesis supervised by me [Ste20]. The

parameter optimization for the stand-up skill was completely done by me. The
experiments were done collaboratively and published in [SBHZ21]. Therefore,
the focus of this section will be the parameter optimization and the evaluation,

while the implementation will be only described very briefly.

This section presents a discrete recovery skill implementation using OptiQuint. First,
its implementation is described in Section 5.4.1. Since it is done analogously to the walk
skill the section focuses on the differences. Then, the applied parameter optimization
and its objective function are described in Section 5.4.2. Finally, the skill is evaluated
in Section 5.4.3.

5.4.1 Implementation

There are three main differences to the walk skill. First, the stand-up skill is discrete
and therefore ends its spline interpolation when t = 1 instead of beginning a new cycle.
Due to this, it is started by using a ROS action instead of constantly listening to a ROS
topic like the walk. The action also specifies in which direction the robot should stand
up.

Second, the stand-up does not only move the legs of the robot but also the arms.
Therefore, it uses four pose splines instead of two. All of them are in the frame of
the robot’s torso. The first knots for all splines are defined by the current pose of the
robot. The last knots are defined by a predefined goal pose which allows the robot to
start walking afterward directly. The remaining knots are defined by using the same
procedure as in the walking, i.e., first relying on natural definitions and then using
parameters for the remaining values.

Third, the stabilization is only performed during the last part of the motion. The
robot is first lying on the ground, and then it makes ground contact with its arms
and legs. During this time, the support polygon is large, and therefore the robot is
inherently stable. Furthermore, it is difficult to compute the exact correct orientation
for the robot’s torso during this period, making any PID control complicated. Therefore,
the stabilization is only used during the last phase of the stand-up motion, in which the
robot only stands on its two feet.

A visualization of the splines can be seen in Figure 5.17. More details on the imple-
mentation can be found in [SBHZ21] and [Ste20].

´

5.4.2 Parameter Optimization

The parameters in the stand-up skill can be grouped into timing parameters and Carte-
sian parameters. The first group defines how long different parts of the motion take (see
also Figure 5.17) while the second group defines the poses of the endeffectors. There are
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Figure 5.17: Visualization of the splines for the stand-up motion from the front (top) and
back (bottom), together with images from the PyBullet simulation. The plot shows the
right arm and foot in relation to the robot’s torso with the coordinate system indicated
in the first image. The trajectories for the left side of the robot are the symmetric
equivalent. The black vertical lines indicate the timing of the different phases of the
motion, which is defined by parameters. [SBHZ21]

nine timing parameters and six Cartesian parameters for the front motion. Analogously,
there are six timing parameters and nine Cartesian parameters for the back motion. The
high amount of timing parameters is understandable as the stand-up consists of multiple
phases, while the walk only consists of double and single support phases. The Cartesian
parameters of the front motion define the lateral and sagittal position of the hands dur-
ing the pushing up of the torso, the minimal distance of the feet when they are pulled
towards the torso, as well as the angles of the legs and torso during the center phases.
The back parameters are similar, but they also define how high the torso is pushed from
the ground as well as the positioning of the CoM before the last phase.

The parameters for the front and back motion were optimized independently from
each other. This reduces the number of parameters for one optimization process (curse
of dimensionality) and has no disadvantages as these motions are also independent of
each other. The optimization of these parameters was done in PyBullet since these ex-
periments were conducted before the HLVS was created. The simulation uses a random
height map of 1cm to simulate the slightly uneven ground of a RoboCup field. Due to
this height map and the randomness in the IK solver, the execution of the stand-up
motion is not deterministic. Therefore, each parameter set is evaluated three times,
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and the objective value is based on the mean of the three repetitions. Similarly to the
walking, the execution of the skill is interrupted if a fall has happened or if the IK finds
no solution. The latter case can happen if, for example, the goal poses of the hands are
at positions that the arms can never reach. An overview of the optimization process is
detailed in Algorithm 3.

Algorithm 3 Optimization Process for Stand-up Skill

1: procedure ResetRobot

2: Deactivate gravity and self-collision
3: Place robot in the air
4: Move joints to initial pose
5: Place robot on the ground
6: Activate gravity and self-collision
7: end procedure

8: procedure ExecuteStandup

9: Start stand-up
10: while True do

11: Execute simulation step
12: if fallen then

13: return False
14: end if

15: if finished then

16: return True
17: end if

18: end while

19: end procedure

20: successes = 0
21: for i = 0; i < 3; i++ do

22: Randomize terrain
23: ResetRobot()
24: success = ExecuteStandup()
25: if success then
26: successes += 1
27: end if

28: Compute objective values
29: if multi objective optimization then

30: return objective values
31: else

32: Scalarize objective values
33: return single objective value
34: end if

35: end for

The naturally given objective function for a stand-up motion is a simple binary deci-
sion if the robot is standing afterward or not. While this is generally correct and simple
to compute, it does not provide a clear gradient which makes optimization difficult.
Another measurement is the time that the skill takes, as a quicker stand-up is generally
better. This metric has a clear gradient but does not help to guide the optimization
algorithm in finding successful stand-up motions. Therefore, we propose two additional
objectives. The first uses the minimal achieved fused pitch angle to provide a gradient
on how upright the robot is, and the second uses the maximal achieved height of the
robot head to create a gradient on how close the robot comes to standing. This results
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in the following four objective functions that are based on the success rate (fs(Θ)), the
total time (ft(Θ)), the minimal reached fused pitch (fp(Θ)) and the maximal reached
head height (fh(Θ)).

fs(Θ) =

{

0 if successful

100 if not successful
(5.33)

ft(Θ) = 10 ∗min(time until standing [s], 10) (5.34)

fp(Θ) = min(fused pitch [deg]) (5.35)

fh(Θ) = 100−max(head height [cm]) (5.36)

In ft(Θ), the time for the robot to become stable is included. This was important,
as otherwise, the optimization learns to quickly perform the motion but lets the torso
oscillate afterward. Additionally, we use the fused angles representation in fp(Θ) to
avoid gimbal lock issues.

They are scaled in themselves to provide values of the same range ([0, 100]), although
they have different units. Thereby, a single-objective optimization can be performed by
taking the sum of them. We will investigate different combinations denoted by the
combination of the corresponding letters. In the case of multi-objective optimization,
each of the summands is returned as an individual objective value.

fst(Θ) = fs(Θ) + ft(Θ) (5.37)

fsth(Θ) = fs(Θ) + ft(Θ) + fh(Θ) (5.38)

fstp(Θ) = fs(Θ) + ft(Θ) + fp(Θ) (5.39)

fsthp(Θ) = fs(Θ) + ft(Θ) + fh(Θ) + fp(Θ) (5.40)

5.4.3 Evaluation

The OptiQuint-based stand-up skill has been successfully used together with the HCM
in the HLVS 21/22 and during the RoboCup 2022. Therefore, it has shown its general
usability. Still, we evaluate different aspects of this skill in the following. First, the
proposed objective functions and available optimization algorithms are compared. Then,
the generalization to other robot models is evaluated. Afterward, the transfer of the
optimized parameters to the real robot is evaluated. Finally, the influence of the PD
controller is shown.

Parameter Optimization

The different possible objective functions (see Section 5.4.2) were investigated regarding
two qualities. First, how fast it is possible to find a working solution where at least
one of the three executions is successful (trials till success (TTS)) and, second, the
minimal stand-up time that was achieved without falls. Additionally, different samplers
were evaluated to see if there were differences between them. In this experiment, the
NSGA-II sampler was not tested since it was not part of the Optuna library at that
time. Each optimization was run for 500 trials (see Figure 5.18 for an exemplary plot).
Each combination of objective function and sampler was run five times to account for
the randomness in the parameter sampling process. The mean and the worst run of
these five executions is compared in Figure 5.19.

Generally, it can be observed that the back motion is harder to optimize than the
front motion. This fits well with our experience with manual parameter tuning. The
back motion is more dynamic and closer to the kinematic limits, but it is also faster.
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Figure 5.18: An exemplary plot of optimization runs with the different samplers. In this
case, the stand-up from the back was optimized using fsth(Θ) as the objective function.
Each dot shows one trial result but only the fst(Θ) value since these are the ones that
are actually important and not just used for guidance. Based on [SBHZ21].

Table 5.7: Optimization results using MOTPE and fsth(Θ)

front back
Time [s] TTS Time [s] TTS

Wolfgang 2.7 21.0 2.1 29.4
Darwin 2.9 35.8 n/a n/a
Sigmaban 2.2 34.2 2.2 62.4

The CMA-ES algorithm performs clearly inferior to the TPE and MOTPE sampler
for both metrics of optimal time and TTS. Even in comparison to the random sampler
baseline, it does not perform well.

The MOTPE and TPE perform both well and clearly superior to the random base-
line. Between them, the MOTPE has a slightly better performance, especially in regards
to the achieved optimal time.

Regarding the different objective functions, it can be observed that fst(Θ) has the
highest variance and is the only objective where the TPE and MOTPE did not always
find a solution. This was expected due to the missing gradient and supports our initial
motivation of adding further objectives. Both of the options (fh(Θ) and fp(Θ)) work
in guiding the optimization algorithm, although the results of fh(Θ) seem to be slightly
superior. Combining both of them seems to lead to no further benefit.

Generalization

To see how well the skill generalizes to other humanoids, it was also tested on the
Sigmaban and Darwin-OP robot in PyBullet, as these experiments were performed
before the creation of the HLVS. For all robots, the MOTPE sampler and the fsth(Θ)
objective function were chosen since they performed best in the previous experiment.
The results are displayed in Table 5.7. The Darwin robot was not able to stand up from
the back due to limited movement of the hip joint but was able to stand up from the
front. The Sigmaban was able to stand up from both sides.
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Figure 5.19: Results of five times optimizing the parameters for standing up from the
front (left) and back (right). In subfigure c the marker for the fst(Θ) combined with
TPE and MOTPE is missing since it did not find a solution. Based on [SBHZ21].

Sim2Real Transfer

The optimized stand-up skill was also tested on the real robot to see if a Sim2Real
transfer is possible. Two other stand-up motions were used as a baseline. First, a
keyframe-based motion that was used by the Hamburg Bit-Bots previous to the in-
troduction of the spline-based skill. Second, the same spline-based solution but with
manually tuned parameters.

Not all of the optimized parameter sets were applicable to the real robot. Therefore,
multiple optimizations were done to see how many of them could be used. Each objective
function was used three times, resulting in twelve parameter sets for each direction.
These were tested on the robot, and the best one was chosen manually based on its
performance on the robot. Of the twelve parameter sets for the front motion, two
worked directly on the robot, five needed small fine-tuning, and five were not usable.
As expected, the back direction performed worse as it is less stable. Here, no parameter
sets were directly applicable, six could be made to work by minor tuning, and six were
not usable. Out of these, the one which needed only a change of one parameter was
used for further evaluation.

The largest issue was an unrealistic motor model, which assumed a too-high motor
speed. Thus, the motion could not be performed on the robot as quickly as in the
simulation and, therefore, failed during the dynamic phases due to being too slow. This
could be solved for some parameters by increasing the length of some of the parameter
phases.
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Figure 5.20: Performance comparison between the different stand-up skills for both
directions in terms of mean time and success rate. Additionally, the values that the
optimized motion achieves in simulation are plotted transparently to visualize the sim-
to-real gap. The optimized parameters need the least time but are not as stable as the
manually tuned ones. Furthermore, they are less stable than in simulation. Still, the
automatically optimized parameters as well as the manually tuned ones, outperform the
keyframe animation. Based on [SBHZ21].

All three motions (keyframe, manually, and automatically optimized splines) were
evaluated 30 times each for front and back direction with the same Wolfgang-OP robot
on the artificial turf with a 3cm blade length. The time was measured till the robot was
standing with angular velocities smaller than 0.15rad/s. The results are displayed in
Figure 5.20.

Stabilization

The influence of the stabilizing PD controller is visualized in Figure 5.21. During the
unstable part of the motion (around second two in Figure 5.21c), the PD controller
starts to manipulate the torso goal orientation (and thereby the joint goal positions).
The correction of the torso pitch orientation can be seen in Figure 5.21d. This allows
a very fast motion as the robot can move dynamically from one pose to another and
has fewer oscillations of the torso orientation at the end. The open-loop keyframe
animation had to perform the same motion more slowly and include small pauses that
settle oscillations.

5.5 Kick

Based on the OptiQuint approach, a kick skill was implemented by Frederico
Bormann, Timon Engelke, and Finn-Thorben Sell in a project supervised by me
[BES19]. The parameter optimization was done by Timon Engelke, based on my
implementation of the other skills. Since my contribution to this was small, the
kick skill will only be presented very briefly. Still, it is presented here to show

that the OptiQuint generalizes to all three types of motion skills (see the
introduction of this chapter).

A kick is a discrete motion skill like the stand-up. Still, it has a complex goal, like
the walking. This consists of the position of the ball, the direction in which the ball
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Figure 5.21: Comparison of a stand-up from the back using the keyframe-based motion
(a) and the spline-based solution with manually tuned parameters (c). For both, the leg
pitch joint positions (blue is the ankle, red is the knee, yellow is the hip) are plotted
together with the joint goal positions as a dashed line. Additionally, the corresponding
torso orientation is shown in b and d. The stabilization by the PD controller is visible
at around two seconds in c and the influence on the torso pitch is visible in d. [SBHZ21]

should be kicked, and with what speed. This information can be used to define the knots
of the foot spline at the impact point. Here, the ability of quintic splines to define the
velocity at a certain point is especially interesting. This greatly facilitates the control of
the kicking speed. Thereby, the most important knot in the motion is already defined.
Additionally, the start knots can be defined by the robot’s pose when the skill is invoked,
and the end knots can be set to the same values so that the robot returns its original
pose. The robot also needs to raise its foot before the kick and retract it afterward.
The corresponding knots are partially defined by naturally given values and partially
by parameters. An image sequence of a forward kick on the real robot can be seen in
Figure 5.22, and a sequence of a simulated sideward kick can be seen in Figure 5.23.

The stabilization is also done using a PID controller that modifies the orientation
of the torso. Unlike in the other presented skills, the CoP of the support foot is used
as input data which works well as the support foot never leaves the ground. The PID
control is especially useful to compensate for the additional forces of hitting the ball
with the foot.

Previously, a keyframe-based solution was used. This consisted of two independent
motions for kicking straight ahead with the left foot and the right foot. It did not allow
other kicking directions, and the robot needed to be positioned exactly in relation to
the ball so that the foot hit it.

The new skill has been integrated into the HCM-based architecture and has been
used in the HLVS 21/22 and on the RoboCups in 2019 and 2022. The ability for side
kicks also allowed to implement a new soccer strategy where the robot kicks the ball to
one of its teammates if an opponent is standing in front of it. It was not yet tested on
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(a) Before the kick (b) Raise a foot (c) Kick the ball (d) Retract the foot

Figure 5.22: Photos of a forward kick motion on the real Wolfgang-OP robot. [Eng21]

Figure 5.23: Images from a sideward kick in the Webots simulation. [Eng21]

other robots, but we expect it to generalize similarly well as the walk skill, since it also
only uses the legs. One limitation of transferring it to other platforms is that it requires
an estimation of the CoP and, therefore FPSs. Using IMU based stabilization would
allow it to be used by a wider range of robots as these are included in every humanoid
(see also Table 3.1).

5.6 Summary and Future Work

This chapter presented the OptiQuint approach, which uses Cartesian quintic splines
to generate movement patterns for motion skills. A classification of humanoid motion
skills into three classes was proposed. Then it was shown that the OptiQuint approach
is able to create skills for all of these by using a walk, a stand-up, and a kick skill as
examples.

The main novelty of the approach is the automatic optimization of the spline pa-
rameters. Different optimization algorithms were investigated to identify the best choice
for this task. This showed that using a posteriori scalarization with multi-objective op-
timization leads to better results than a priori scalarization with single-objective opti-
mization. Furthermore, the TPE algorithm proved to perform superior to the CMA-ES
approach. The optimized skills were able to outperform manually searched parameters
in simulation. We also optimized a larger number of parameters than in previous works.

The transfer to the real robot was also investigated. Due to the sim-to-real gap, the
optimized parameter sets performed worse on the real robot than in simulation. Still,
some of them were directly applicable, and a large proportion could be fixed by minimal
tuning, thus still reducing the amount of manual work. The accurate modeling of the
motor parameters proved to be especially important for the transferability to the real
robot.

It was also shown that the OptiQuint approach is not limited to the Wolfgang-OP
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platform by applying the optimization to various other humanoids in simulation. The
walk skill worked on nine out of ten tested robots and only had problems with parallel
kinematics. Since the implementation of the locomotion skill was done in ROS and it
works for all humanoid robots with serial kinematics, it can be easily used by others.
This is especially interesting for new teams that want to start participating in the HLVS
or HSL.

Still, there are many points which could be improved in the future. The walk skill
could be tested on larger humanoids which was not possible as no models from the HLVS
adult-size were made open source yet. The other presented skills could also be tested
on a larger set of models. Here, we expect the stand-up skill to have more problems
as it also uses the arms. Identifying these issues could lead to an improvement of this
skill. It could also be tested if higher order splines would further improve the motions
by limiting jerk.

While the parameter optimization works well, the computation time could be further
improved. Instead of linearly increasing the commanded velocity for each parameter set,
a binary search approach could be chosen. For this, first, the currently highest velocity
would be tested. If it works, we can assume that all slower speeds also work and directly
start optimizing from there. If it does not work, the velocity is halved, and the procedure
is done again.

Another improvement for the optimization would be a better handling of kinemat-
ically unsolvable parameter sets. Before evaluating a new parameter set in simulation,
it could be tested if a cycle of the resulting pattern is solvable by the IK. If this is not
the case, a negative objective value could be returned to guide the optimizer away from
this area of the parameter space. This would also reduce the computation time as IK
solving a single cycle is much faster than running the full simulation with a not working
parameter set.



Chapter 6

Reinforcement Learning

Bipedal walking is one of the most critical problems in humanoid robotics. It is chal-
lenging to solve due to the high center of mass, the changing support polygon, the
complex dynamics, and the contact forces with the ground. Still, walking abilities have
been achieved with various approaches in the past (see Section 5.1). In recent years,
deep reinforcement learning has become a popular approach. First proving its viability
in simulation [SML+15, PBYVDP17] and more recently also on the actual hardware
[LCP+21, RB21].

One key contributor to achieving feasible policies has been the introduction of a
reference motion [PALvdP18], which simplifies the problem and leads to less exploita-
tion of simulation inaccuracies. Typically, these reference motions are created by using
MOCAP of humans or animals. Instead, we created a novel approach (called DeepQuin-
tic) which generates reference actions during training by using the OptiQuint approach
(see Chapter 5). This reference is only used during training and is not further required
afterward. Additionally, we investigated different design choices for training the policy,
for example, the used action space and the type of reward.

We will only discuss bipedal walking in this chapter, but the DeepQuintic approach
can also be applied for other motions, e.g., by using the OptiQuint-based implementation
of a stand-up (see Section 5.4). Timon Engelke used the DeepQuintic approach in
his Bachelor’s thesis to learn a kick motion based on the OptiQuint-based kick (see
Section 5.5) [Eng21], but it will not be discussed further as it just applies the same
approach on a different reference motion.

Originally, it was planned to train the policy (partly) on the real robot. Therefore,
the robustness of the hardware was improved (see Chapter 3), and an independently
working fall management was implemented (see Chapter 4). Finally, this plan was
dropped due to the long training times of the policy and the resulting wear of the
hardware. Furthermore, the possibilities for accurate simulation improved with the
addition of backlash and modeled artificial grass in Webots.

The structure of the chapter is as follows. First, the related work is presented in
Section 6.1. Then, the DeepQuintic approach is presented in Section 6.2 and evaluated
in Section 6.3. Finally, a summary is given in Section 6.4.

6.1 Related Work

This section presents related works in the field of RL for robot motions. Many of these
works were published while this thesis was created, and it was, therefore, not possible
to build up on these. We already discussed general learning approaches for motions
in Section 5.1.3 and, therefore, we will focus on work that is closely related to the

129
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DeepQuintic approach. The remainder of this section is structured as follows. First, we
show different other approaches that utilize reference motions for RL in Section 6.1.1.
Then, different choices for action and state space are discussed in Section 6.1.2.

6.1.1 RL with Reference Motions

In recent years, many RL approaches utilized reference motions to guide the learning
process for robotic motions. Different sources for these references are possible. One is
the usage of MOCAP or manually created keyframe animations [PALvdP18, YYH+20,
EPY+22, BTB+22]. Since this requires a comparably high effort, the automatic extrac-
tion of motions from videos was investigated in [PKM+18]. These references have not
been recorded on the robot itself but on humans or animals with other kinematic and
dynamic properties. Therefore, they are generally not optimal for the target platform.

To circumvent this issue, references that are optimized for the target platform can
be used. Li et al. [LCP+21] used a library of fifth-order Bézier curves in joint space
as a reference and as part of the policy’s input. They were optimized using CFROST
[HHH+19] for the target platform, but no further investigation on the influence of the
quality of this motion was performed. Xie et al. [XBC+18] restricted the policy to learn
only corrections to a reference motion in joint space. Similarly, Zhang et al. [ZJF+22]
let their policy learn an action offset to the reference motion. Melo et al. [MMdC22]
learned corrections to their walk engine to keep stable during pushes. They tried to
imitate the ankle and hip strategy for push-recovery by working in joint space, and
further restricting the policy to some of the leg joints.

Rodriguez et al. [RB21] successfully learned an omnidirectional walk policy without
reference motion. They defined a nominal pose which is used as a regularization term
in the reward function. This could also be interpreted as using a single-frame reference.
To achieve this, they needed to apply curriculum learning by gradually increasing the
velocity. They also used a beta function to limit the actions, which are represented in
joint space relative to the current position, to the possible joint positions.

6.1.2 Choice of Action and State Space

Different choices of action space (i.e. joint torque, joint velocity, joint position, and
activation for musculotendon units) were investigated by Peng et al. [PvdP17]. While
they included Cartesian information in the state (i.e. the positions of all links), they
did not investigate actions in Cartesian space nor states in joint space. They suggested
that high-level action parameterization, e.g., by using a PD controller, improves the
performance of the policy in most motions. In recent years, such PD controller-based
joint positions became a common choice when using a reference motion [LCP+21, RB21,
PALvdP18, YYH+20] although their usage may lead to inferior performance without
reference motion [RTvdP20].

Even though the definition of actions in Cartesian space seems intuitive, the research
on this is sparse. Duan et al. [DDG+21] defined their action in a task space represented
by a combination of Cartesian positions of the feet relative to the base and joint positions
of their hip yaw and foot pitch joints. This action, together with a reference action from
a spring-mass model and additional information of the state, is then processed by an
inverse dynamics controller to compute the torque that should be applied to the joints.
Their state includes, among others, the orientation of the robot’s base, which is given
as a quaternion, the position of the feet in Cartesian space without their orientation, as
well as the position and velocities of all joints. While this work has a partial Cartesian
action, it did not investigate complete Cartesian actions, and the trained policy could
only walk forward with different velocities.
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Outside of bipedal locomotion, Bellegarda et al. [BB19] showed that a policy in
Cartesian space outperforms one in joint space for creating a skating controller for a
quadruped. The actions in both spaces were modeled as discrete offsets rather than in a
continuous space. Mart́ın-Mart́ın et al. [MMLG+19] demonstrated the benefits of using
variable impedance in Cartesian spaces instead of joint positions or torques for control-
ling robotic arms. Actions described as Cartesian offsets from a reference trajectory
were used to create a jumping motion [BN20] for a quadruped robot. The same robot
learned to walk using absolute Cartesian actions with impedance control [BCLN22].
The results were compared to actions in joint space and simple PD control qualitatively,
and it was observed that using a joint-space-based action leads to unnatural motions
when transferring to another simulator. In all four works, the stated dimensionality of
the actions indicates that Euler angles have been used, although it was not explicitly
discussed.

The importance of choosing the optimal state representation was investigated, show-
ing, among others, that including Cartesian coordinates can improve learning, especially
for complex environments [RTvdP20, KH20].

In summary, while different Cartesian-space-based actions have already been inves-
tigated, a direct comparison between absolute, continuous Cartesian, and joint space
actions has not been made yet. Furthermore, different orientation representations have
not been investigated. Another commonly used way for representation are quaternions.
These don’t have the gimbal lock issue of Euler angles, but their discontinuity can lead to
issues if they are used for learning approaches [SDN09]. Another option are fused angles
[AB15], which work similarly to Euler angles but are also not continuous. As a solution
for the continuity issue, a 5D and 6D representation have been proposed [ZBL+19]. It
was shown that the 5D and 6D representation improves learning tasks for object orienta-
tion estimation and inverse kinematics. In both tasks, the 6D representation performed
better than the 5D representation.

6.2 Approach

The problem of omnidirectional bipedal walking can be modeled as a Markov Decision
Process (MDP) [SB18], where the robot interacts with an environment. During each
time step t, the robot is given the current state of the environment st and uses its
policy π(at|st) to choose an action at. This action is applied to the environment, and
the subsequent state st+1 is given together with a scalar reward rt that describes the
desirability of this transition. There are different methods to learn a policy π that
maximizes the reward. We apply Proximal Policy Optimization (PPO) [SWD+17], an
on-policy, model-free algorithm that has proven its applicability in this domain [LCP+21]
and has become the current de facto standard.

We compare two different approaches utilizing a policy in Cartesian space πc and one
in joint space πj , as illustrated in Figure 6.1. We hypothesize that mapping states to ac-
tions is more straightforward for πc than for πj . Both policies use a quintic-spline-based
walk engine to generate a reference action at each time step, based on the commanded
velocity vcmd and a phase φ that synchronizes it with the policy. The reference action is
represented by positions pref and orientations oref of the feet in Cartesian space. These
are not part of the control loop, as in other recent works [LCP+21, DDG+21], but only
part of the reward function during training. To improve comparability, the Cartesian
actions of πc are transformed to joint space and applied to the same PD controllers as
the actions of πj , rather than directly applying Cartesian control. The details of this
approach are described in the following sections.
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Figure 6.1: Overview of the approach and comparison between Cartesian policy πc (top)
and joint space policy πj (bottom). They run at 30Hz (blue), while the PD controllers
run at the same frequency as the simulation (orange), i.e., 240Hz in PyBullet. The walk
engine receives as input the commanded velocity and the phase (dashed), which are
also part of the policy’s state. Both share the same walk engine to generate reference
actions. [BZ23]

6.2.1 Reference Motion Generation

The reference actions are created online at each training step by calling the walk engine
with the currently commanded velocity vcmd and phase φ, which represents the progress
of one walk cycle. This engine is the one described in Section 5.3. Only the spline
generation and interpolation are used to create the movements of the robot in Cartesian
space. None of the stabilization approaches is used since this may bias the learning of
the stabilization strategy. We only want to guide the RL process towards a good walk
pattern but force it to explore the stabilization since we don’t want to exactly reproduce
the spline-based approach. The used parameters are the result of the optimization
process as described in Section 5.3.5.

In comparison to other approaches using reference motions (see Section 6.1.1), this
has multiple advantages. The most important one is that the reference motion is already
optimized for the robot. In other cases, e.g., when using human motion capture data,
it is not optimal and could lead the reinforcement learning to a suboptimal solution.
Since the reference motion is parameterized, certain characteristics can be freely chosen
by the user through the fixation of some parameters during optimization. This allows,
for example, to create a walking with feet close to each other for going over a narrow
bridge. Common problems when learning walking in simulation, e.g., lifting the foot
not high enough from the ground, can be avoided by limiting the search space of the
parameters. A comparison between the different approaches for reference motions is
given in Table 6.1.

6.2.2 State

The state only includes information that is available on a real robot. Two entries, the
commanded walk velocity vcmd ∈ R

3 and the current phase φ, are shared with the
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Table 6.1: Comparison of Sources for Reference Motions

Motion Capture Keyframe Animation Spline-based Engine

Only possible for human
or animal-like robots

Possible for any kind of
robot

Possible for any kind of
robot

Transfer to different kine-
matics needed

Designed for one specific
platform

Adapts to different plat-
forms

Reference not executable Reference may be exe-
cutable

Reference executable, pro-
vides baseline

Not optimal Difficult to optimize Can be optimized for the
platform

One walk velocity One walk velocity Any walk velocity
Represents state Represents state Represents Action
Data recording needed Manual creation needed Programming needed

walk engine to synchronize the reference action. In previous work, the phase was either
represented by a single value (R) [PALvdP18], which resets to 0 at the end of a walk
cycle, or by the sine and cosine value of this (R2) [YYH+20]. The latter approach tries
to achieve a continuous phase input to the network and thus prevents the introduction
of non-smoothness to the network’s learning behavior. To the best of our knowledge,
no direct comparison of the two approaches has been made yet. Therefore we evaluated
both methods (see Section 6.3.5).

Additionally, the state encompasses the orientation of the robot’s base Rb in the
world frame without the yaw component, as this can not be measured reliably by an
IMU that complies with the HSL rules. This value is not directly taken from the simu-
lation, but computed by a complementary filter using simulated accelerometer and gy-
roscope values. Since we want to evaluate different kinds of orientation representations,
the dimensionality of Rb depends on which of them is chosen. Generally, quaternions
(R4) are chosen in robotics, but it has been observed that artificial neural networks have
difficulties processing them [ZBL+19]. Therefore, we also evaluated Euler angles (R2

since only roll and pitch are used), fused angles [AB15] (R2 since only roll and pitch are
used), and 6D [ZBL+19] (R6). Fused angles were chosen as they were specifically de-
signed for keeping balance with bipedal robots, and 6D was chosen since it was designed
for usage with artificial neural networks (see also Section 6.1.2). Furthermore, the state
includes the angular velocity of the robot’s base ωb ∈ R

3.
If the Cartesian policy is used, the state includes the Cartesian positions of both feet

ps ∈ R
6 and their orientations os ∈ R

{4,8,12}, which are again represented by one of the
earlier mentioned methods, relative to the robot’s base. Otherwise, the current leg joint
positions qs ∈ R

12 are added for joint space policies.

6.2.3 Action

For the Cartesian policy, the action is defined as the absolute goal position of both
feet pa ∈ R

6 and the absolute orientation oa ∈ R
{6,8,12} (depending on the choice

of representation, see Section 6.2.2) in relation to the robot’s torso. For each foot, the
actions are limited to a convex Cartesian space that is defined in reference to the robot’s
base (see Table 8.3 for exact values). These limits are defined by sampling poses in this
space and ensure that at least two-thirds are solvable by the IK. Still, not all poses in
this space can have a valid IK solution due to the low number of degrees of freedom in
the robot’s leg. Therefore, invalid actions can occur and need to be handled. This can be
done either by using a negative reward for such actions, terminating the episode early, or



CHAPTER 6. REINFORCEMENT LEARNING 134

V

Figure 6.2: Structure of the used neural network. The policy and value functions are
two separate networks with similar structures but no shared weights. The first layers use
a tanh activation function (orange), and the final layer a linear activation (blue). The
output of the last layer is used as a mean for a multi-dimensional Gaussian distribution
with a fixed Σ that is treated as a hyperparameter. The distribution output is squashed
using a tanh function to ensure action bounds. [BZ23]

by using an approximate IK solution. Due to early experiences during the development
of the approach, we chose the approximation approach. Using an early termination is
problematic as the choice of the action in training is partially random due to the used
stochastic distribution. Therefore, it will too often produce non-solvable poses at the
beginning of the training. In the end, it does not really matter if an approximation has
been used, as only the result counts.

When using the joint space policy, the action is defined as joint goal positions for
the leg joints qact ∈ R

12. For each joint, the action range is bound to the joint limits.
Therefore, all actions are possible, and no further measures need to be taken to ensure
this.

In both spaces, the policy output is normalized between [−1, 1] and then scaled
accordingly. This is important as we use Gaussian distributions with the same fixed
variance for explorations. If the action magnitudes would differ, the exploration would
not work well.

6.2.4 Neural Network Architecture

The policy π consists of an artificial neural network that takes a state st as input
and provides an action at as output. The exact network structure is considered a
hyperparameter. All possible architectures consist of two or three fully connected layers
with 64, 128, 258, 512, or 1024 neurons each, with tanh activation function and then
a linear layer (see Figure 6.2). The action distribution is modeled as Gaussian with a
mean µ that is given by the network’s output and a fixed diagonal covariance matrix Σ,



CHAPTER 6. REINFORCEMENT LEARNING 135

0 1 2 3 4 5
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
No

rm
al

ize
d 

Ac
tio

n
Left ankle pitch
Left ankle roll
Left hip pitch

Left hip roll
Left hip yaw
Left knee

0 1 2 3 4 5
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Ac

tio
n

Left ankle pitch
Left ankle roll
Left hip pitch

Left hip roll
Left hip yaw
Left knee

Figure 6.3: Normalized actions of an untrained policy without (left) and with (right)
initial network bias. The difference in the initial exploration is clearly visible. Below
the corresponding pose of the robot is displayed. [BZ23]

similar to [PALvdP18]. The variance is fixed to prevent an early decrease in exploration.
The output of the Gaussian sampling is squashed with a tanh function to ensure action
bounds. Otherwise, boundary effects can degrade the learning performance [CMS17].
Using a tanh function was also later advised by Andrychowicz et al. [ARS+20]. An
alternative would be the usage of a different distribution type, i.e., a beta distribution
[CMS17], but in our preliminary experiments, this did not perform as well. The reason
is not clear, but it might be due to having two parameters that need to be specified,
and none of them directly represents the deterministic action. The value network is
separated but has the same size of fully connected layers as the policy.

We observed that the network initialization influences the initial starting point for
exploration significantly. A Cartesian action space has its natural center with the feet
centered below the upper body and the soles parallel to it. It does therefore provide
a comparably stable starting pose for exploration. A joint-based action space is more
dependent on the exact kinematic structure of the robot. Still, one common feature in
most bipeds is a knee that only bends in one direction. Therefore, the zero point of the
knee angle is typically at around 90◦ when this action space is normalized between the
joint limits. This leads to an initial exploration around an unstable pose. Furthermore,
this pose typically differs significantly from the robot’s pose at the start of the episode.
Thereby, the joint goal positions of the first action differ from the current positions,
leading to the PD controllers commanding high torques and thus to the robot falling
quickly.

We tackled this problem by initializing the bias of the neurons that represent the µ
value in the network (the last linear layer) so that the initial exploration is done around
the pose of the reference motion at φ = 0 and vcmd = (0, 0, 0) (see Figure 6.3 and video
at [1]). It would also be possible to achieve a similar bias by adding it to the output
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Figure 6.4: Exemplary plot of the radial basis function kernel for different values of κ.

of the policy. However, this does not allow the network to change this value during
training. An evaluation of this approach is provided in Section 6.3.2.

6.2.5 Reward

We use a straightforward definition for the reward without additionally shaping it. It
consists of two equally weighted parts, the actual goal rg and an imitation reward for
the reference motion ri.

r =
1

2
· rg +

1

2
· ri (6.1)

A radial basis function kernel is used to bound each partial reward to r ∈ [0, 1], where
x̂ is the vector of desired values, x the vector of actual values, and κ a scaling hyperpa-
rameter.

K(x̂, x, κ) = e−κ(∥x̂−x∥)2 (6.2)

The influence of the κ parameter can be seen in Figure 6.4. It has been chosen manually
for the following functions (which have input vectors of different dimensions) to achieve
a similar scaling. Handling the κ as a hyperparameter and optimizing it is not possible
as it would naturally choose small values, as they always increase the reward.

The goal reward rg is computed by how accurately the robot achieves the given
command velocity vcmd in x, y, and yaw direction.

rg = K(vcmd
t , vstatet , 5) (6.3)

The imitation reward can be defined in two different ways. In previous works, the
state of a robot after executing an action was compared to a reference motion [LCP+21,
PALvdP18]. This makes sense if the reference is a trajectory of recorded states. In our
case, the reference is provided by a walk engine and can therefore be interpreted as a
reference action. Even if the policy chooses at time point t the same action areft , this
does not necessarily reflect in the state st+1 since this depends on further factors such
as the previous foot positions pt and orientations ot. Furthermore, the correct state st+1

could have also been reached due to an approximated IK solution of an action at that
can not exactly be solved. We define both an action-based imitation reward ria and
a state-based imitation reward ris for the Cartesian and joint space to evaluate if this
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design choice influences the learning performance (see Section 6.3.4). In the following,
the double plus operator (++ ) denotes a concatenation of vectors. An example is given
below in Equation 6.4.

(1, 2) ++ (3, 4) = (1, 2, 3, 4) (6.4)

rcartesiania = K(preft ++ oreft , pactt ++ oactt , 1) (6.5)

rjointia = K(qreft , qactt , 2) (6.6)

rcartesianis = K(preft ++ oreft , pstatet+1 ++ ostatet+1 , 50) (6.7)

rjointis = K(qreft , qstatet+1 , 2) (6.8)

Note that we used the geodesic distance when we compared two orientations since
directly taking the difference between values of two quaternions does not reflect the
actual distance between them.

6.2.6 Environment

Training is done in simulation using the earlier described model of the Wolfgang-OP (see
Section 3.5). Each training episode is started using reference state initialization (RSI)
[PALvdP18] by choosing randomly φ ∈ [0, 1], vcmd ∈ ([−0.6, 0.6]ms , [−0.25, 0.25]ms ,

[−2, 2] rads ) (different for other robots see Table 8.3) and resetting the robot’s pose to the
corresponding reference action. The randomly chosen vcmd is tested (without running
the simulation) for one complete gait cycle to check if the robot is able to kinematically
solve the reference motion completely. If this is not the case, another vcmd is chosen
randomly until one is found that is solvable.

Additionally, different methods of domain randomization can be applied. The start
pose can be randomized by applying a random offset of up to 0.1 rad to each joint to
improve generalization [RTvdP20]. The model can be modified by varying all masses,
inertias, maximal motor torques, maximal motor velocities, restitution, as well as lateral,
rolling, and spinning friction coefficients. A terrain can be created using randomized
squares of 0.01m2 in a height range of [0, 0.05]m. To simulate external forces and to
increase difficulty, a random force of up to 10N and a torque up to 20Nm in each
direction can be applied to the robot’s base at each time step of the environment.

During training, the policy runs at 30Hz while the simulation and PD controllers
run at 240Hz. The episode is either terminated early when the robot is fallen down
(measured by its orientation) or after 10 s. We use bootstrapping to handle the time
limit issue [PTLK18].

6.2.7 Implementation

We implemented our approach following the standard OpenAI Gym interface [BCP+16],
which defines that training is done in an environment with step and reset functionalities.
Our environment is kept modular to allow changes and comparisons, e.g., by using two
different reward functions. An overview of it can be seen in Figure 6.5. Two objects of
the robot class are used. One for the agent robot and one for the reference motion model
without any physics or collisions. This has the advantage that the reference motion can
be displayed alongside the agent. For additional debug purposes, a ROS-based debug
interface was created. This allows further insight into the system through standard ROS
tools like PlotJuggler.
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+ reset()
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+ render()
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Figure 6.5: Simplified overview of the environment implementation as a class diagram.
The main component is the RL environment (DeepQuinticEnv). This implements the
Gym interface and is used during training, but it can also be used to run a trained
model as a ROS node. In this case, the internal simulation and reference motion are
deactivated.

Different simulators can be used. For this, a common interface is defined that allows
a simple exchange of the simulation. We implemented a PyBullet and Webots version
based on the model described in Section 3.5. The Webots version is more accurate
since it includes a simulation of the joint backlash and the torsion springs in the knee
joints. However, it needs more computational resources of the training computer and
therefore allows less parallel training. Furthermore, it exhibited simulation glitches
which happened especially during hyperparameter optimization. Therefore, most of the
experiments were conducted in PyBullet.

The walk engine to generate the reference motion pattern uses the OptiQuint-based
approach described in Section 5.3. It uses the direct Python interface instead of using
any ROS (see Section 5.2.4).

The PPO implementation of Stable Baselines3 [30] was used, and training was done
with RL Baselines3 Zoo [29]. Pueue [14] was used to start the experiments andWeights &
Biases [27] was used to track the experiments during training. Optuna’s implementation
of TPE was used for optimizing the hyperparameter of PPO.

The trained agent can be executed in ROS with a custom node that internally holds
the environment without simulation. It subscribes to multiple topics and, thereby,
aggregates the data for the policies state. The chosen action is then published again to
the ROS system.
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6.3 Evaluation

We evaluated different design choices for the RL environment to show which of them
influences the achieved performance of the trained policy. Most of the experiments were
performed using the PyBullet simulation as it took fewer resources (see Section 6.2.7).
We compared the results for the different configurations with each other but not directly
to the results of researchers for two reasons. First, since we used a custom environment
with our own robot and different action definitions, there was no comparable research
for most experiments. Second, the influence of the used PPO implementation is high
[EIS+20] and, therefore, it can not be ensured that differences in the reward are not due
to these differences.

As described above, we handled the network structure and the variance of the Gaus-
sian distribution as hyperparameters. Additionally, PPO itself has multiple hyperparam-
eters. We optimized these using TPE with 100 trials (the first ten are chosen randomly).
Each trial was trained for 5M steps and evaluated each 0.5M steps for 100 episodes. The
high number of episodes is necessary to reduce the noise that comes from choosing the
goal velocity randomly. During this evaluation, the actions were chosen deterministi-
cally to avoid biases from different variance parameters. Additionally, median pruning
was applied to remove not promising trials earlier. In the following experiments, the
hyperparameters were optimized separately for different experiment configurations to
ensure that the observed difference between configurations does not stem from the hy-
perparameters being more fitting for one of the cases. First, the hyperparameters were
optimized for the default Cartesian Euler angles policy (see Section 6.3.1). The hyper-
parameters for the other policies were optimized in the same procedure, but the best
parameter set of the Euler policy was given as an initial guess. This should prevent the
case where the optimization of another policy does not find a similar good parameter set
and therefore performs worse than the Euler in the following experiment. As a down-
side, this could mean that the other policies further improve on this parameter set and
are thereby at an advantage against the Euler policy. Therefore, the same procedure
of optimizing the hyperparameters with the best set as initial guess was also performed
for the Euler policy but did not further improve on this parameter set. See Table 8.2
for a complete list of the optimized hyperparameters. The most interesting finding in
this is the network structure. For most cases, it is notably smaller than previous works
[PALvdP18, RB21].

If not otherwise stated, each policy was trained for 25M steps using PPO. During
the training, they were evaluated each 0.5M steps 100 times using deterministic actions
(same as during the optimization). Note that a reward (for both imitation and goal)
of 300 was the maximum that could be achieved since the episode time was limited to
10 s and the policy was executed with 30Hz. The computation for this (using PyBullet
simulation) takes around 24 hours on a computer with AMD Ryzen 9 3900X CPU and
Nvidia Titan X GPU. Depending on the environment configuration, the policy typically
already converges at around 5M steps and therefore can already be used after around 5
hours of training.

The following subsections discuss our further experiments in detail.

6.3.1 Choice of Action and State Space

One of our hypotheses is that a policy in Cartesian space can learn the task easier as
it does not need to learn the kinematics of the robot. To investigate if this is true, we
compared the joint space and Cartesian policies, as well as the different representations
of orientation (Euler angles, fused angles, quaternion, 6D). Each space representation
was used for both state and action. Although it would also be possible to represent the
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state in one space and the action in another, this was not evaluated as we expect it to
perform inferiorly due to the additional space transfer in the policy.

We trained each configuration five times with different random seeds. The results
are displayed in Figure 6.6. While the goal reward is of most interest, the other rewards
and the episode length are also shown. The fused angle policy performs best for overall
reward and goal reward. The Euler angle and joint policies achieve equal but slightly
lower rewards than the fused angle policy. The 6D policy receives an again slightly
lower reward. Finally, the quaternion-based policy achieves the lowest reward with a
large difference. All policies achieve similar episode lengths, although the quaternion
and 6D policies need more training steps to achieve the same level. Still, all policies
were able to produce a working omnidirectional walk.

To further eliminate possible influence on the results due to better hyperparameters,
the same training was executed with the hyperparameters of the fused angle policy as it
performed best in the previous experiment. We will denote these in the following as FA
hyperparameter. In this experiment, each policy was trained with only three different
seeds since the difference between training runs was small in the previous experiment.
The results are displayed in Figure 6.7, and an exemplary video is available at [1]. It can
be seen that with the same parameters, the Euler angle policy performs identically to
the fused angle-based one. This indicates that the difference in the first experiment was
only due to the difference in hyperparameters. The fused angles have, to the best of our
knowledge, not yet been used with RL. Although they were specially designed for the
problem of bipedal walking, they seem to provide no advantage over simple Euler angles
in RL. Both Euler and fused angles policies perform better than the joint policy. The
6D and quaternion-based policies take longer to converge but achieve a higher reward
than with the previous parameters. Still, both can not outperform the Euler angles
policy.

As mentioned before, quaternions are not well suited for neural networks, and there-
fore, a comparably bad performance was expected. This also aligns with previous results
[ZBL+19]. The 6D representation, on the other hand, was specially designed to be easy
to learn for neural networks. Still, it performed worse than the simple Euler angles. We
identified two reasons for this. First, the 6D representation needs six action values for
each rotation, while Euler only needs three, thus resulting in a larger action dimension.
Second, the action bounds for the Euler and fused angles were set so that the robot’s
foot can only be rotated by 30◦, as higher rotations are not necessary during walking.
This was not done with the 6D representation, as it can not be represented easily by
limiting each of the numbers. The quaternions have the same disadvantage. This is also
visible in the IK error (see Figure 6.8). Euler and fused angle policies already have very
small errors in the first evaluation. Quaternion and 6D policies need to first learn which
rotations are possible and never achieve such a low error. Interestingly, both policies
still achieve a working walk by exploiting the approximation of the IK.

This result may not apply to other motion skills. In bipedal locomotion, all rotations
(Rb, os, and oa) are very limited walking. The feet only rotate slightly in roll and pitch
for stabilization and in yaw for walking in curves. If the torso is rotated too much,
it will fall, and in the training, the episode is terminated early. Therefore, the typical
issues of Euler angles, i.e., gimbal locks and non-linearities due to sequential rotations,
are not encountered. This would be different for a stand-up skill. Here, the body is
typically rotated by 90◦ at the start, and the feet may also rotate more in the pitch
axis. Therefore, the Euler angles might perform worse in this case. Still, other skills
that have no strong rotations, e.g., a kick (see Section 5.5), should perform similarly.
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Figure 6.6: Comparison of the different action spaces. For each configuration, the results
of the five trainings with standard deviation are shown. The right column provides a
magnified plot to improve visibility. The fused angles policy clearly outperforms the
other in terms of goal and overall reward. No difference in the finally achieved episode
length can be observed. Based on [BZ23].
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Figure 6.7: Comparison of different action spaces using the same hyperparameter. The
Euler and fused angle policies perform equally well and outperform all others in goal
and overall reward. Based on [BZ23].
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and the fused angles (FA) hyperparameters (right). Note that the error of the Euler
and fused angles policies is so small that it is not displayed well. [BZ23]
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Figure 6.9: Comparison between using the initial network and not using it for the
individually optimized and the FA hyperparameters. Based on [BZ23].

6.3.2 Network Initialization

In the previous experiments, all policy networks were initialized as described in Sec-
tion 6.2.4 since this provides a more comparable start initialization. We perform an
additional experiment to ensure that it does not reduce the achieved performance. Fur-
thermore, we test our hypotheses that the network initialization procedure accelerates
the learning of the policy. We optimized the hyperparameters for the policy without
initial bias and trained it. To ensure that the difference between both is not only due
to different hyperparameter, both policies were also trained using the FA hyperparam-
eters. The Cartesian policies were not evaluated without an initial bias as their zero
initialization is already a stable pose close to the one that is created by the network
initialization (see Section 6.2.4). Therefore, the difference is small. The results are
displayed in Figure 6.9, and an exemplary video is available at [1].

The policy without initial bias starts on a lower reward and episode length. This
was expected as this policy first needs to learn to stand. It still manages to achieve
the same imitation reward, although later. Still, it does not converge to the same goal
reward as the other policy. The discrepancy in goal reward after training for 25M steps
is higher than most of the other Cartesian policies in the last experiment.

The performance difference is even larger if the FA hyperparameters are used. In
this case, the policy with network initialization performs exactly the same as with the
parameters that were optimized for this policy. In contrast to this, the policy without
initial initialization performs worse and has a large discrepancy between trainings with
different random seeds. This can be an indicator for using not fitting hyperparameters.

These results show two interesting points. First, the discrepancy in achieved rewards
between the initialized and not initialized joint policy is higher than the one between the
initialized joint policy and most Cartesian policies. Second, the FA hyperparameters
work well for the initialized joint policy but not for the not initialized joint policy.
These two points might indicate that the difference in used space (between Cartesian
and joint space) is smaller than the difference due to the different initializations of the
network. Previous works, e.g., [BB19], have not taken the initialization into account,
and, therefore, their result may be influenced by the different initializations.
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We performed another experiment to ensure that this result is not limited to the used
robot model or the fact that a reference trajectory is used. We chose the Walker2D-
BulletEnv-v0 gym environment since it also has the goal of learning bipedal walking but
with a much simpler robot that only learns to walk forward and can not fall in the lateral
direction. It normally uses torque control. Therefore, we created a modified version that
uses position control. To ensure that both environments are comparable, the maximal
torques of the PD controllers were given the same limits as the torque control uses.

The environment uses no reference motion, which can be used to define the initial
bias pose. Therefore, we tested two poses which both let the robot stand stably. The
first keeps the legs exactly straight, which is also the starting pose of the agent. The
second bends the knees by 0.6rad and the hip/ankle joints by 0.4rad, which resembles
roughly the start pose that we used in the experiments with the Wolfgang-OP. The pose
was not optimized in any way, instead, the first stable pose with bent knees was taken.

Since the original environment uses torque control, we also investigated if the usage
of an initial bias improves the training. However, we can not use the same technique of
using a stable standing pose since we can not define a pose by torque values. Instead, we
chose to initialize the actions to the mean torque values that a trained policy produces.

We compared the achieved reward of these different configurations. Each configura-
tion was trained three times for only 5M steps since the simplicity of this environment
enabled quicker training. Similarly to the previous experiments, we optimized the hy-
perparameters individually but also trained all environment configurations with the
best-performing hyperparameter set. We did not find better hyperparameters for the
straight leg configuration than one that we used for the bent configuration. Therefore,
the straight leg configuration is only shown once in the results using these parame-
ters. For the torque-based environment, we used the hyperparameters provided by the
rl-baselines3-zoo [29].

The results (see Figure 6.10 and exemplary video [1]) show a large difference between
the different configurations. This difference is especially visible between the differently
initialized position-based control configurations. The one using a pose with bent knees
outperforms all others. Using a straight leg pose leads to lower rewards but it is still
better than not using any initial bias. This is interesting since it indicates that the
initial action should be close to a high reward achieving motion rather than being close
to the initial pose at the episode start. Using the original torque-based control almost
reaches the same reward as the uninitialized position control configuration. Using an
initialization for the torque-based policy does not seem to lead to any improvements.

The experiments indicate that our approach of setting an initial bias to the network
is advantageous, as it converges to a higher reward. Additionally, the number of falls
during the training is reduced drastically. This is especially interesting if the training
should be performed on a real robot. The joint space policy with initial bias performed
similarly well as the best Cartesian policies. Therefore, the performance difference
between Cartesian and joint space seems to arise mostly from the different initial poses
and not from the different complexity of the space representation.

The presented approach provides an alternative to the utilization of pre-trained
weights, which was shown to be inefficient for reinforcement learning [RTvdP20]. Andry-
chowicz et al. [ARS+20] also stated that the initial policy has a high impact. They
observed that a small standard deviation and a mean of 0 are crucial for achieving high
performances in multiple gym environments, including a humanoid. It is important to
consider that these environments use direct torque control and not position control like
the DeepQuintic one. Therefore, the mean of the action is not directly related to its
position. Our results seem to indicate that this rule does not generalize to environments
with position control. Additionally, a change of the policy network to ensure a small
standard deviation is not necessary in our case, as we treat the standard deviation of
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Figure 6.10: Training of the Walker2DPybullet gym environment for different control
types and initial biases. The position-based policy which was initialized with bent knees,
performs best. Using a straight leg initialization still performs inferior to it but still gives
a benefit in comparison to no initialization. The not initialized position configuration
did not work, resulting in near-zero rewards. [BZ23]

the policy as a hyperparameter and do not set it via the policy output. Other works,
e.g., [RB21], may have circumvented this issue by using relative position goals instead
of absolute ones. Thereby, an initial position action of zero is more similar to a zero
torque action.

One result of Reda et al. [RTvdP20] was that using PD controller goal positions
instead of directly using torque has a limited advantage. Our experiments contradict
their results since we could observe a large difference between both types of policies. We
hypothesize that they did not take the initial action of their position control network
into consideration. In fact, our result of the unbiased policy also results in a comparably
small advantage. However, when the initial action is set to a bent pose, the position-
based policy outperforms the torque-based one clearly.

6.3.3 State

We also investigated if adding further data to the state might improve the training. One
typical addition is the joint velocity, as this provides the policy information on how fast
the robot is moving, which it can not directly know by having only the current positions.
Therefore, we trained a joint space based policy with this additional information and
compared it to the earlier described joint space policy (see Figure 6.11). Both were
trained using the same hyperparameter of the joint space policy for 25M steps each.
The additional does not improve the policy (see Figure 6.11). The imitation reward
remains similar, but the goal reward decreases slightly.

We also evaluated an additional modality by adding FPSs based data to the state.
The simulated sensors provide eight unidirectional forces for the corners of both feet,
similar to the sensor of the real robot (see Section 3.4.1). We trained it using the
previously mentioned method and compared it to the same policy without FPS data
(see Figure 6.12). The additional FPS data seems to provide no advantage for the policy
as it leads to lower rewards. It could be possible that the hyperparameters need to be
optimized separately for this scenario. However, it is more likely, that the policy does
not require any FPS data on flat terrain. This also aligns with previous findings from
[KH20, RTvdP20]. Another test with terrain is done in Section 6.3.6.
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Figure 6.11: Investigation of using the joint velocity in the state. The additional data
does not lead to a higher reward and, therefore, provides no advantage.

6.3.4 Action and State Based Reward

We presented two different approaches for defining the reward either based on the action
or the state of the robot (see Section 6.2.5). Our hypothesis was that an action-based
reward might perform superior since the state-based reward might be influenced by the
previous state of the robot as well as approximate solutions of the IK. To evaluate this,
we trained the Cartesian policy with Euler angles using both rewards. To eliminate any
influence from the hyperparameters, we trained with optimized parameters and with the
FA hyperparameters. Each combination was trained three times for 25M steps.

The action-based reward ra and the state-based reward rs both manage to train a
walking policy in a similar amount of time steps (see Figure 6.13). They converge to the
same goal reward if the same set of hyperparameters is used. Therefore, we assume that
the slight difference between both approaches when using the individually optimized
parameters is only due to differences in these hyperparameters.

The results of this experiment seem to indicate that there is no difference in using
a state- or action-based reward as the achieved goal reward is similar. However, the
actions that the trained policies choose are different (see figure 6.14). The state reward
based policy’s actions oscillate more. Our hypothesis is that the inertness of the system
allows such oscillations in the actions as the robot’s state only changes slowly. Such
oscillations are not possible with the action-based reward since the action is directly
compared with the reference. These oscillations lead to no significant reduction of the
achieved goal reward. Still, they might be of interest for some domains, e.g., when this
oscillating behavior works in simulation but does not transfer well to the real robot.

An action-based reward might additionally have an advantage as it is slightly faster
to compute. The state-based reward requires querying the state from the simulation,
while the action-based one can be solely computed by the output of the network. This
difference is very small, though.

6.3.5 Phase Representation

We compared a non-cyclic phase representation using a single scalar value to a cyclic
representation with the sine and cosine value of this scalar (as described in Section 6.2.2).
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Figure 6.12: Investigation of using the FPS data in the state. Adding this leads to
slightly lower rewards and less stable convergence. This indicates that the FPS data
provides no advantage.
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Figure 6.13: Comparison of using a state based reward (red) instead of an action based
one (blue). The dashed lines indicate that the FA hyperparameters have been used.
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Figure 6.14: Action plot of policies with action (left) and state rewards (right). For
both, only the actions for the left foot are plotted, but the right foot acts similarly. The
state reward based policy produces more oscillations.
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Figure 6.15: Comparison of cyclic (blue) and non-cyclic (red) phase representations, as
well as training the policy without any phase representation (yellow). The dashed lines
indicate that the FA policy’s hyperparameters have been used. There is only a difference
in goal reward between the cyclic and non-cyclic policy if not the same hyperparameters
are used. The phaseless policy achieves equal goal rewards but is not able to imitate
the reference motion correctly.

Additionally, we also trained a policy without any phase representation in the state to
demonstrate the necessity of this information. Similarly to the previous experiments,
we compared the achieved reward using individually optimized hyperparameters and
using the best-performing hyperparameter set from the experiment in Section 6.3.1. All
trained policies use the Cartesian Euler space representation.

In our experiment, the cyclic and non-cyclic phase policies achieve a similar reward
when the same hyperparameters are used (see Figure 6.15). Using the individually opti-
mized parameters results in worse goal rewards with only a slight difference. Therefore,
we assume that this is only due to the difference in hyperparameters. We can not val-
idate the hypotheses that there is a benefit in using a cyclic phase representation as it
was stated in [YYH+20].

The policy without phase representation in the state still achieves comparably high
rewards. However, it only manages this by exploiting the simulator. It generates ac-
tions that let the robot vibrate over the floor instead of performing actual steps (see
Figure 6.16). This type of policy would not transfer well into a real-world scenario, and
it also does not imitate the reference motion correctly. The result was expected.
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Figure 6.16: A plot of the actions of a trained policy without phase representation in
the state. Note the difference to Figure 6.14. Only small vibrating movements are
generated. Only the left foot is shown, but the right one is equivalent. See also [1] for
a video.

6.3.6 Adaptive Phase

The presented DeepQuintic approach has a fixed gait cycle length. This is a disadvantage
compared to the OptiQuint walk skill, which can modify the phase. Theoretically, it is
possible for the policy to diverge from the reference motion to, for example, end a step
earlier by moving the foot differently. However, the policy will not be able to start a
new step and would need to stay in this pose. Otherwise, it would desynchronize with
the reference motion, which would lead to a bad imitation reward. Additionally, since
the state only includes the current phase and the policy has no information about past
actions, it would not know in the next time step that it has ended a step early.

This issue of having a forced cycle length due to the synchronization with the ref-
erence motion also exists in other works (see Section 6.1.1) but has not been discussed
yet. We propose a novel approach that allows the policy to modify the phase and,
therefore, might improve its performance since the phase is not fixed anymore. For this,
an additional action is added to the policy, which decides how much the phase of the
reference motion is advanced. This allows the policy to learn if it wants to finish a step
earlier or prolong it. The bias of this action in the policy’s network is initialized with
the otherwise used value for achieving 30Hz.

We tried two versions of this approach. In the first, no reward is given based on
the value of the phase action, thus only guiding the learning of this action through the
existing goal and imitation reward. In the second, the phase action is included in the
imitation reward with the default value of 30Hz as a reference. All were trained using
the FA hyperparameters. The results are shown in Figure 6.17 and an exemplary video
is available at [1]. No significant difference between the different configurations can
be observed in terms of the achieved reward. Additionally, the policy’s outputs were
compared to see if the adaptive phase is actually used (see Figure 6.18).

Both adaptive policies use their phase action in a cyclic pattern. Not providing an
imitation reward results in a higher variance of this action and the usage of long time
steps. When the imitation reward is applied, the action stays closer to the original time
step and mostly shortens it.

One reason for the adaptive phase not increasing the performance of the policy is that
it provides no advantage if the robot walks on even ground. Therefore, we performed
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Figure 6.17: Influence of using the adaptive phase with an 30Hz reward and without.
No difference in achieved reward can be observed between the different versions of the
adaptive reward, as well as in comparison to a fixed-cycle policy.
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policy as a baseline. The robot was walking slowly forward during the recording of the
action outputs. The action is shown as the corresponding time step length. It can be
observed that both adaptive policies use the ability to change the phase step in a cyclic
pattern. The imitation reward leads to a smaller variance of the phase action.
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FPS. No increase in achieved reward can be observed for the adaptive phase policy.
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Figure 6.20: Comparison of the training using reference motions with different qualities
of parameters. The previously used policy with the best parameter set is displayed in
blue.

a second experiment with terrain and FPSs input, which should allow the policy to
recognize when the foot makes contact with the ground (see Figure 6.19). Still, the
performance of the different configurations remains the same.

It can be concluded that the adaptive phase approach does not improve the policy’s
performance.

6.3.7 Quality of Reference Motions

One of our main hypotheses for building the DeepQuintic approach was that the quality
of the reference motion influences the achieved reward of the trained policy (see Sec-
tion 6.1.1). It is difficult to quantify the quality of a reference motion, especially if it
was generated using MOCAP data. In our case, we have an advantage as our reference
motion is generated by a parameterized walk skill. We have already shown in Chapter 5
that the quality of these parameters defines how well the walk skill performs. There-
fore, we can use intentionally bad or suboptimal parameters for our reference motion to
lower its quality. Furthermore, it is possible to quantify their quality using the objective
function that we used for their optimization (see Section 5.3.5).

We generated 10,000 sets of parameters using random sampling to ensure that the
similarity between these sets is not influenced by the optimization algorithm. Due to
the inferior performance of the random search approach, the best-performing parameter
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Figure 6.21: Relationship between the objective value of the used reference motion
and the reached reward of the policy after 20M steps. In this experiment, all policies
only executed command velocities that were kinematically solvable by their reference
motions.
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Figure 6.22: Relationship between the objective value of the used reference motion and
the reached goal reward. In this experiment, all policies were evaluated using the same
command velocities as the policy with the best parameter set. [BZ23]

set had an objective value of 1.58, which is lower than the 2.48 that was achieved by
the parameter set that we used in all previous experiments. Additionally, we took one
parameter set for each 0.1 step of objective value, to get equally distributed samples.
This was not exactly possible for the higher objective values, as there were too few sets
that reached these values. We then trained a Cartesian Euler angles policy with the FA
hyperparameters for each parameter set. Each policy was trained for 20M steps. The
results are shown in Figure 6.20 and 6.21. See [1] for an exemplary video showing the
qualitative differences between the policies.

The results show that the policies indeed perform differently when using different
parameter sets for the goal reward, imitation reward, the episode length, and also for
the IK error of the policy. Still, they don’t show a clear linear relationship. Some bad
parameter sets even manage to achieve almost equal performance as the best parameter
set, which has a significantly higher objective value. We assume that these results are
influenced by the choice of vcmd. Since we only train the policy for velocities that are
kinematically solvable, some parameters might result in having lower values for vcmd

and, thereby, an easier evaluation. Three of the low-quality parameter sets led to gaits
that were not solvable by the IK without large errors and, therefore, never found any
command velocities that fit. They are displayed with achieving a zero reward and
episode length.

We evaluated the goal reward of the trained policies again using the same range for
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Figure 6.23: Comparison of the training using reference motions with different qualities
of parameters but using the same possible command velocities. The previously used
policy with the best parameter set is displayed in blue.

vcmd that the policy with the best parameter set has. Since the reference motion is not
used for the execution of a trained policy, it does not matter if it can be solved by the IK
without errors. The result shows that the previous experiment was, indeed, influenced
by having different vcmd (see Figure 6.22).

This result could still be unfair to the other parameter sets since they did not en-
counter some of the command velocities during training. Therefore, we also trained
policies again with a deactivated check for kinematic solvability. Thereby, all policies
were trained with the same velocities even if the reference motion could not completely
solve them. The results are displayed in Figure 6.23 and Figure 6.24. The performance
difference between low- and high-quality parameters is more distinctive. This is expected
since the reference motions are partially giving wrong poses since there is no kinematic
solution.

We can conclude from these experiments that reference motions of lower quality re-
duce the achieved performance of the trained policy. However, the relationship between
the achieved goal reward and the objective value of the parameter set is not perfectly
linear. Some parameters with similar objective values lead to different goal rewards.
This might also be influenced by the algorithm that we use to determine the objective
value, which only depends on the achieved maximal velocity. A parameter set might
lead to an early fall due to a single bad parameter, e.g., the torso being leaned too
much forward. The rest of the motion might be good, so the RL policy can easily adapt
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Figure 6.24: Relationship between the objective value of the used reference motion and
the reached reward. In this experiment, all policies were trained and evaluated using the
same command velocities as the policy with the best parameter set. Based on [BZ23]

the orientation of the torso and thus achieve a high reward. Using a different objective
function might lead to clearer results. Still, overall the policy with the best reference
motion was not outperformed by any of the others.

6.3.8 Usage of Arms

The arms of a humanoid robot can be used for stabilization during walking. We have
already argued why we don’t want to allow arbitrary arm movements in our case (see
Section 5.3.3). Still, smaller arm movements would be possible without further issues.
In contrast to other approaches that rely on MOCAP, we don’t have goals for the
arms in our reference. Therefore, it is interesting to see if the policy still achieves a
sensible motion for the arms. Additionally, we want to test how the network initialization
influences the movement of the arms.

We tested three scenarios. In the first scenario, we added the default pose of the
arms to the reference motion and used it in the imitation reward. The arm actions in
the network were also initialized to this pose. Therefore, the arms should learn to keep
close to this pose. In the second scenario, we also initialized the network as before but
did not give any imitation reward based on the arm movements. In the third scenario,
we did not initialize the network and gave no imitation reward for the arms. Thus, we
expected them to move more freely. Additionally, we use the joint space policy without
arm movement as a baseline. All experiments were trained for 25M steps using the
same hyperparameters of the joint policy and including network initialization for the
legs. The results are shown in Figure 6.25. Actuating the arms through the policy leads
to no increase in the achieved goal reward. Other researchers have also removed actions
for the arms in their RL locomotion policies due to their small influence [ZJF+22].

We also investigated if the arms are moved differently based on the usage of imita-
tion reward and network initialization (see Figure 6.26). It is interesting to see how the
network’s initialization influences the arms’ pose. In both cases, the policy learns a solu-
tion close to the action of the untrained network. Therefore, the policy without network
initialization uses an unnatural pose while the other stays close to the typical poses of
the robot’s arms. Naturally, it would also be possible to provide a more sophisticated
imitation reward if the reference motion includes splines for the movement of the arms.
However, we do not expect that this would improve the performance significantly.

6.3.9 Comparison to Spline Approach

We have already shown that the OptiQuint-based walking that we use as reference
motion can also directly be used as a walk skill (see Section 5.3). The additional effort
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Figure 6.25: Influence of actuating the arms, with and without imitation reward for these
actions, as well as with and without initial network action bias. Actively controlling the
arm joints decreases the achieved goal reward in all cases.
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Figure 6.26: Plot of the normalized arm joint actions. It can be observed that the usage
of the initial network bias strongly influences the resulting motion. A video showing
these different policies can be seen at video [1].

that is needed to train the RL policy is only sensible if the resulting skill is superior to the
reference skill. Therefore, we compared the performance of the OptiQuint-based walk
skill with the best policy (the Euler angles one with the fused angles hyperparameter set).
We evaluated the OptiQuint skill once without stabilization to show how much the RL
policy can improve in comparison to its reference motion. Additionally, we evaluate the
OptiQuint skill with activated PID stabilization. Four different scenarios were tested.
The default environment without changes, additional random head movements (similar
to the behavior of the head during RoboCup), random forces acting on the robot’s base,
and a random terrain with a high difference of 5cm. Each combination was tested for
100 episodes. The results are displayed in Table 6.2.

The stabilized reference motion only slightly improves on the open-loop one and
mostly in terms of fewer falls (longer episode length). The RL policy clearly outperforms
the reference motion both in following the commanded velocity and in preventing falls.
This also shows that the RL does not only learn to replicate the reference motion but
actually improves on them. An exemplary comparison between the reference action and
the corresponding action of the RL policy is shown in Figure 6.27.

6.3.10 Generalization

It was already shown that the OptiQuint-based reference motion is applicable to other
robot types as long as they don’t use parallel kinematics (see Section 5.3.7). Similar
to this, it was evaluated if the DeepQuintic approach also generalizes to all of these
robots. Since these models are only available in Webots, the training was performed in
this simulator. For each robot, the Euler angle-based policy with FA hyperparameters
was trained one time without further hyperparameter optimization. Since the robots
have different sizes, their Cartesian action spaces need to be defined individually. Addi-
tionally, the speed these platforms can achieve is different. Therefore, the commanded
velocities were also set differently (see Table 8.3). Otherwise, the same training proce-
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Table 6.2: Comparison between reference and policy

Ref.
Stab.

Pol.
Ref.

No Change
Goal rew. 141 141 275

Ep. length 292 293 300

Head
Goal rew. 140 140 272

Ep. length 290 292 300

Force
Goal rew. 129 130 262

Ep. length 281 289 300

Terrain
Goal rew. 19 22 211

Ep. length 59 68 288
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Figure 6.27: Exemplary plot of the actions produced by the policy πc for the left foot.
The Cartesian position (top) and orientation (center) are displayed together with the
corresponding reference action (dashed). Furthermore, the resulting joint position com-
mands (bottom) are shown. The robot was walking with vcmd = (0.2m

s , 0.1
m
s ,−0.5 rad

s ).
It is visible that the policy diverges from the reference trajectory to stabilize the robot.
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dure as described in Section 6.3.1 was used. The training is shown in Figure 6.28. The
achieved walk velocities of the trained policies are displayed in Table 6.3 together with
the results from the OptiQuint approach (from Table 5.3).

The training of all robots is successful, showing the generalization of the approach.
The RL-based approach outperforms the spline-based one for most robots and directions.
The other cases might be explained by not well-chosen action spaces for some robots or
the hyperparameters not being optimized for the individual robots.

6.3.11 Domain Transfer

Training a RL policy in simulation has many benefits, e.g., no wear of the hardware.
However, it does not guarantee that the result is also applicable to the real robot. This
problem is also called the sim-to-real transfer [ZQW20]. There are multiple factors that
lead to the performance difference between the simulation and the real robot. These
can be inaccuracies of the robot model, e.g., wrong values for the link masses or the
joint torques, as well as inaccuracies of the environment model, e.g., wrong friction
values of the ground. Additionally, the policy is often trained using discrete steps in
which the policy’s state is computed from the current simulator state. On a real robot,
especially one that uses a message passing based middleware like ROS, the policy’s
state is always lagging behind the actual state of the robot. Furthermore, some of the
sensor information may have different latency than others, based on how the system is
designed.

In recent years, domain randomization has been used frequently [ZQW20]. This
method changes model and simulation parameters randomly for each training episode.
Thereby, a policy is learned that performs well in all of these configurations, and it is
expected that the real system is one of these. Additionally, some authors have introduced
a latency in the training environment by providing a state to the policy that is always
a certain number of time steps behind [RB21].

We also applied these methods by randomizing the link masses and inertias, as well
as the joint maximal torques and velocities. Additionally, we randomized the contact
properties of the feet and floor by changing the restitution as well as lateral, spinning,
and rolling friction values. To model sensor noise, we added Gaussian noise to the state
orientation and angular velocity entries in the state. Finally, we used the state of the
previous time step to model a latency of 33ms, which should be sufficient based on our
previous experiments (see Section 4.4.2). Although we applied all of this, the final result
on the robot was not satisfactory. Therefore, we separated the sim-to-real transfer into
three steps in order to better understand where the problem stems from.

As a first step, we trained our policy in the PyBullet simulation and then executed
it in the Webots simulation while still directly accessing the simulation without the
message passing of ROS. This was successful and showed us that the policy can handle
the difference between the simulations. Especially interesting is that the Webots model
includes a simulated backlash and the knee torsion spring (see Section 3.3.1), which are
not included in the PyBullet model. The usage of PD controllers instead of direct torque
control might have helped to simplify the transition. Especially the different behavior
of the knee joint is probably directly compensated by the PD controller.

As the second step, we executed the policy again in the Webots simulation but
accessed the simulation through the ROS software stack. For this, we used the ROS
interface of the policy (see Section 6.2.7). This was again successful (see video [1]). It
shows that the latency that is introduced by the message passing does not pose an issue
to the policy. This also shows that there are no errors coming from the implementation
of the policy’s ROS interface or different IMU filter behavior.

As a final step, we executed the policy using the ROS interface on the real robot
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Figure 6.28: Training of different robots in Webots. It can be seen that the training
works similarly well on all platforms. Note that the goal reward is not directly compa-
rable as the robots have different possible goal velocities. An exemplary video of the
trained policies can be seen at [1].

Figure 6.29: The trained policy walking a few steps forward. Note that the robot needs
to be slightly stabilized by a rope at its back. The corresponding video can be seen at
[1].
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(see Figure 6.29). While the robot was able to perform walking motions with the com-
manded directions, it was not stable and kept tilting forward. Investigating this issue
further showed that the IMU of the robot is always slightly offset due to its mounting.
Even this small orientation difference made a large impact on the policy’s action. This
was unexpected since we used random noise on the IMU orientation during training.
However, this was Gaussian distributed and sampled for each time step. Therefore, it
was not a constant offset. We solved this problem by adding parameters that could be
tuned manually to correctly calibrate the IMU orientation offsets. This resolved the
behavior of constant tilting. However, the policy was still not able to walk stably (see
video [1]).

We also observed that the policy constantly operated the servos at full load, so
they were running hot after just a brief moment of walking. This has not been the
case with the OptiQuint approach. We assume that this is due to oscillations of the
goal joint positions that are generated by the policy since it always just reacts to the
current state. This might be one issue for not being able to walk stably since the servo’s
performance degrades if it becomes hot. Since this motor behavior is not simulated, it
did not create any issues when running the policy in the simulation. There are multiple
possible solutions for this. The actions could be filtered, e.g., by a butterworth filter
[B+30] to reduce their oscillation as it was done by Rodriguez et al. [RB21]. It would
also be possible to adapt the reward function to include a term that punishes oscillating
actions or power consumption. Finally, using a different network for the policy, e.g., a
long short-term memory (LSTM), might improve this since the action would not only
rely on the current state and thereby might oscillate less. Another issue that leads to
the walk being unstable is the large backlash in the robot’s legs (see Section 3.6.4).
Unfortunately, this could not be resolved as it would have required a complete redesign
of the platform.

Although we were not able to achieve a completely stable walk on the real robot, we
observed that different measures had a qualitatively observable positive influence. We,
therefore, list them here as advice for further research. Since the policy only runs at
30Hz, limiting the step frequency of the reference motion is crucial. Otherwise, it only
has very few actions for every single step, which leads to jerky motions. Executing the
policy with a higher frequency than it was trained, e.g., 60Hz instead of 30Hz, seemed
to lead to smoother movements. Using a reference motion with a wide lateral distance
between the foot is important as the policy otherwise might positions them close to
each other, making them collide due to the backlash. For the domain randomization,
we advise not to randomize the joint values, i.e., maximal velocity and torque, upwards
but only downwards, since the real servos basically never perform better than their
values in the data sheet but are often worse especially if they are older. The above-
mentioned calibration of the IMU orientation offset is also important. Furthermore, it
is necessary to use a complementary filter to estimate the robot’s orientation during
training instead of directly getting these values from the simulator (see Section 6.2.2).
The filter introduces a latency to the estimated orientation, which will also be present
on the real robot.

The sim-to-real transfer of the OptiQuint approach (see Section 5.3.7 and 5.4.3) was
simpler as it was possible to change parameters manually while executing the approach
on the real robot. This was only possible because the parameters of the approach were
few, and their influence on the motion is easily understandable for a human. This is not
the case for the RL policy since it has a higher number of parameters and their relation
to the motion is not directly understandable. A different network design for the policy,
which enforces more structure, might simplify manual changes post after training.

We did not change the command velocity during an episode in the training of the
policy. Therefore, it never explicitly learned to change its walk velocity. Still, it was able



CHAPTER 6. REINFORCEMENT LEARNING 164

to walk stably in simulation with changing commands as long as no extreme changes
to the command were made. This also fits our observation of the OptiQuint approach,
which did not do this either during optimization but still performed well.

6.4 Summary and Future Work

Our approach of combining optimized quintic-spline-based reference actions with deep
reinforcement learning achieved omnidirectional walking and generalized to multiple
different other robot platforms. This was done with a minimal reward function and
without curriculum learning. The optimization of the reference motion could also be
seen as an optimization of the reward function.

We investigated different design choices for training bipedal walking with reinforce-
ment learning. Specific effort was made to prevent influences due to the hyperparameters
of PPO. In our opinion, this has been a neglected point in some previous publications.
First, we evaluated policies with different orientation representations in Cartesian space
and compared them to joint-based policies. The Euler and fused angles performed best
in the tested scenario since all rotations are limited, but we do not expect that this
holds true for all types of motions. Still, it may be preferable to use them for bipedal
walking or other motions with limited rotations on the end effectors. Second, we showed
that the achieved reward correlates to the quality of the reference motion. This is an
important finding since most previous approaches relied on motion capture data from
humans, which is not optimal for the robot and thus may limit the achieved performance
of the policy. Third, we showed that the initial action of an untrained policy has a large
influence if position control is used. This might be the most interesting result since it
may have long-reaching implications for the training of policies position control. It was
also interesting to see that many changes in the environment, e.g., adding more sensor
information to the state, did not change the achieved reward of the policy.

All our experiments were done using PPO, and the results could differ for other RL
algorithms. Therefore, further experiments with other RL algorithms would be good
to verify the results. Moreover, a comparison between using the optimized reference
motion and one from human motion capture data should be made. The orientation
representations need to be investigated for other humanoid motions, e.g., standing up, to
see if the Euler angles still perform best in these cases where gimbal locks can be an issue.
It should be investigated if optimizing the hyperparameters only based on the achieved
goal reward leads to further improvements. Furthermore, different other approaches
that lead to non-fixed-cycle policies should be investigated, e.g., a binary action that
decides if a step is done could be used. The approach of giving an initial bias to the
policy’s action could be verified on further RL problems that have a similar problem like
locomotion. An increase in the policy’s control rate should also be investigated, as this
might lead to quicker reactions to external forces. However, during the work on this,
we recognized that it is more difficult to train the policy with a higher frequency since
the effects of the policy’s action on the state are smaller. The software framework’s
structure and the Sim2Real transfer might be improved by using the EagerX framework
[vdHLF+22]. Finally, (partial) training on the real robot is something that should be
further considered as most ground works have been created by this thesis. However, the
problem of wear on the robot’s hardware must be solved for this.
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Conclusion

The aim of this thesis was to contribute to the field of humanoid robotics by setting
up a robust low-cost robot platform and by investigating the learning of motion skills,
especially bipedal locomotion. This was achieved, and further, we were able to advance
the state of the art in multiple research areas. The most important finding advances
reinforcement learning with reference motions by investigating their influence on the
training outcome. We have shown that non-optimal reference motions can limit the
performance of the trained policy and should, therefore, be avoided. We hypothesize
that these non-optimal references lead to non-optimal specifications of the reward in the
imitation term. This finding is especially relevant since previous approaches have exten-
sively relied on MOCAP data and keyframe animations that were not optimized for the
target platforms. We also devised an approach to generate optimized reference motions
for different motion skills and showed that it generalizes well to various robots. The
usage of these optimized motions as references significantly improved the performance
of our policy.

During our experiments, we identified another important factor influencing the train-
ing of policies that use position-based actions with PD controllers. This factor is the
initial action bias used by the policy at the start of the training. We could show in
two different bipedal walking environments that an initial action close to a good motion
not only accelerates the training but also leads to a better performance in the trained
policy. We were also able to outperform the previous baseline in a standard gym en-
vironment. This finding has a great impact as the combination of RL policies with
PD joint controllers are often used to aid in the sim-to-real transfer. Furthermore, our
results indicate that previous works that used position control have not considered this
design choice carefully enough and have, therefore, attributed it a too-low performance.

We investigated different design choices for the training of a bipedal locomotion skill
using PPO. We identified the choice of the space in which the policy operates as the most
important one. Using Cartesian space instead of joint space leads to better-performing
policies. We hypothesize that this difference arises from the more direct relationship
between the state and the action. In joint space, the policy might need to implicitly
learn the IK. Although we only tested it for the problem of bipedal walking, we assume
that the usage of Cartesian space might be beneficial for other motion skills, too.

To allow the execution of the aforementioned RL experiments, we needed to solve
multiple other issues, which led to further findings and contributions. We compared
the performance of different black-box optimization algorithms for the parameter opti-
mization of our motion skills. Thereby, we discovered that the usage of multi-objective
optimization with a posteriori scalarization performs superior to single-objective opti-
mization with a priori scalarization. The optimized motion skills could be transferred to
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the real robot and were used in different competitions. Further, the approach is already
in use by other researchers, showing the benefit of such a simple-to-use approach.

Originally, we planned to train motion skills directly on the real hardware. Although
these plans were later changed due to the high wear, research was made to create an
autonomous handling of falls that would allow such automatic learning on real hard-
ware. The devised HCM approach turned out to be useful in general. It simplifies the
deliberative layer of the robot to a wheeled-robot-like complexity. To ensure that the
fall protection can be invoked early enough, we investigated how falls can be detected
by comparing various approaches and modalities. It turned out that a simple threshold-
based classifier using IMU data is sufficient. However, the usage of an MLP classifier
can further improve the lead time for detecting falls. We also showed how the latencies
introduced by the ROS message transfer can be reduced and compared different versions
of ROS in this regard. Furthermore, a novel decision-making framework, the DSD, was
created as a basis for the HCM approach. This framework also turned out to be gener-
ally useful and was already applied in other contexts, e.g., for a blackjack dealer robot
[FGN+23].

As an experimental platform, the Wolfgang-OP was developed. To improve its bus
communication, the problems of existing approaches were investigated, and a novel solu-
tion was found that outperforms all previous works. This work already impacted other
researchers, who then used our approach in their hardware. Additionally, an equation
was devised to compute the optimal torsion spring strength for a PEA minimizing the
load on the robot’s knee joints. Its validity was confirmed by experiments with the real
robot.

7.1 Future Work

While most of the set goals were reached, there are still parts that require further
improvements. We tried to transfer our trained policy from the training environment to
the real robot using domain adaption. The policy was successfully transferred to another
simulator and integrated into the existing ROS stack, but its transfer to the real robot
was only partially successful. While the policy was able to walk omnidirectional, it was
not stable enough. We identified the backlash of the robot’s joints as one of the main
issues that remain to be solved. This can only be done by changing the used servo type
to another one, e.g., a brushless DC servo with a planetary-style gearbox. This comes
with the additional benefit that the different gear ratio might allow faster movements.
Due to the typical dimensions of the gearbox type, further changes to the robot would
be necessary to integrate them. The new BRUCE robot [LSZ+22] features low backlash,
faster joints, and is able to produce dynamic movements. A 3D printed approach, i.e.,
[UARM22], might allow achieving lower costs.

Our RL based approach was only tested for bipedal walking and kicking. Test-
ing further skills, especially standing-up, is necessary to ensure that the advantage of
a Cartesian policy generalizes to various types of motions. A direct comparison be-
tween using optimized reference motions and MOCAP data might show the resulting
performance difference more clearly. All of our experiments were conducted using the
PPO algorithm. Therefore, similar experiments should also be conducted using other
approaches, e.g., Soft Actor-Critic (SAC) [HZAL18].

While the usage of approximate solutions to approach unreachable Cartesian poses
was successful, it should be investigated if this issue could be resolved in a better way.
One alternative is the description of the action space as a polytope, exactly describing
the space of valid solutions. The action output of the policy could still remain as
normalized values between -1 and 1 if a mapping to the polytope can be described.
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We showed that the initial action of an untrained network has a large influence on
the resulting performance and provided a method to set a bias to it. Nonetheless, this
was only tested on two environments with bipedal walking skills. Therefore, it should
be further tested with other motion types to evaluate whether our findings generalize
to all motion skills.

We tested both of our approaches on a wide variety of simulated robots. However,
none of those had the size of an adult human, as no such model was available. In the
future, these approaches should be tested on larger humanoids to ensure that they also
generalize to these.

The fall detection could be improved by a more generalized dataset that is recorded
on more than one robot type. Furthermore, lifelong learning could be applied to improve
the performance of the HCM in this regard over time. More sophisticated solutions for
the fall protection actions could further reduce the impact forces. This would be espe-
cially interesting for larger robots where passive elastic elements might not be sufficient
for damage prevention.



Chapter 8

Appendix

Algorithm 4 Check Falling

1: procedure FallQuantification(angle, ang vel)
2: moving more upright = sign(angle) ̸= sign(ang vel)
3: over point of no return = abs(angle) > angle threshold
4: if not moving more upright or over point of no return then

5: skalar = max((angle threshold - abs(angle)) / angle threshold, 0)
6: if ang vel threshold * skalar < abs(ang vel) then
7: return abs(ang vel) * (1 - skalar)
8: end if

9: end if

10: return 0
11: end procedure

12:

13: roll quantification = FallQuantification(roll angle, roll ang vel)
14: pitch quantification = FallQuantification(pitch angle, pitch ang vel)
15: if roll quantification == 0 and pitch quantification == 0 then

16: result = “stable”
17: else

18: if pitch quantification > roll quantification then

19: if pitch angle < 0 then

20: result = “back”
21: else

22: result = “front”
23: end if

24: else

25: if roll angle < 0 then

26: result = “left”
27: else

28: result = “right”
29: end if

30: end if

31: end if

32: return result
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tan Girgin, Raphaël Marinier, Leonard Hussenot, Matthieu Geist, Olivier
Pietquin, Marcin Michalski, et al. What matters for on-policy deep actor-
critic methods? a large-scale study. In International conference on learn-
ing representations, 2020.

[ASSV16] Saminda W. Abeyruwan, Dilip Sarkar, Faisal Sikder, and Ubbo Visser.
Semi-automatic extraction of training examples from sensor readings
for fall detection and posture monitoring. IEEE Sensors Journal,
16(13):5406–5415, 2016.

172



BIBLIOGRAPHY 173

[ASY+19] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 2623–2631, 2019.

[AvS20] Minoru Asada and Oskar von Stryk. Scientific and technological chal-
lenges in robocup. Annual Review of Control, Robotics, and Autonomous
Systems, 3:441–471, 2020.

[B+30] Stephen Butterworth et al. On the theory of filter amplifiers. Wireless
Engineer, 7(6):536–541, 1930.

[BA15] Patrick Beeson and Barrett Ames. TRAC-IK: An open-source library for
improved solving of generic inverse kinematics. In International Confer-
ence on Humanoid Robots (Humanoids), pages 928–935. IEEE, 2015.

[BB19] Guillaume Bellegarda and Katie Byl. Training in task space to speed
up and guide reinforcement learning. In International Conference on
Intelligent Robots and Systems (IROS), pages 2693–2699. IEEE, 2019.
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chi, Giulio Sandini, and Giorgio Metta. The Design of the iCub Humanoid
Robot. International Journal of Humanoid Robotics, 09(04), 2012.

[Poo89] Harry H. Poole. Fundamentals of robotics engineering. Springer Science
& Business Media, 1989.

[PTLK18] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time
limits in reinforcement learning. In International Conference on Machine
Learning, pages 4045–4054. PMLR, 2018.

[PvdP17] Xue Bin Peng and Michiel van de Panne. Learning locomotion skills
using deeprl: Does the choice of action space matter? In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 1–13, 2017.
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Inteligente, 2017.

[SSB06] Jörg Stückler, Johannes Schwenk, and Sven Behnke. Getting back on two
feet: Reliable standing-up routines for a humanoid robot. In IAS, pages
676–685, 2006.



BIBLIOGRAPHY 186

[SSS+12] Max Schwarz, Michael Schreiber, Sebastian Schueller, Marcell Missura,
and Sven Behnke. NimbRo-OP humanoid teensize open platform. In
Workshop on Humanoid Soccer Robots, International Conference on Hu-
manoid Robots (Humanoids). IEEE, 2012.

[SSSR19] Philipp Seiwald, Felix Sygulla, Nora-Sophie Staufenberg, and Daniel
Rixen. Quintic spline collocation for real-time biped walking-pattern
generation with variable torso height. In International Conference on
Humanoid Robots (Humanoids), pages 56–63. IEEE, 2019.

[Ste20] Sebastian Stelter. Creating dynamic stand-up motions for bipedal robots
using spline interpolation. Bachelor’s thesis, Universität Hamburg, 2020.

[Ste22] Sebastian Stelter. Learning error-corrections for series elastic actuators
on humanoid robots. Master’s thesis, Universität Hamburg, 2022.

[SV16] Andreas Seekircher and Ubbo Visser. A closed-loop gait for humanoid
robots combining LIPM with parameter optimization. In Robot World
Cup, pages 71–83. Springer, 2016.

[SvD19] Marcus M. Scheunemann and Sander G. van Dijk. ROS 2 for robocup.
In Robot World Cup, pages 429–438. Springer, 2019.

[SWC+14] Sangok Seok, Albert Wang, Meng Yee Chuah, Dong Jin Hyun, Jongwoo
Lee, David M Otten, Jeffrey H Lang, and Sangbae Kim. Design principles
for energy-efficient legged locomotion and implementation on the MIT
cheetah robot. IEEE/ASME Transactions on Mechatronics, 20(3):1117–
1129, 2014.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[SZC+02] Manny Soltero, Jing Zhang, Chris Cockrill, et al. 422 and 485 standards
overview and system configurations. Texas Instruments Application Re-
port, pages 1–33, 2002.

[TP11] Kok Kiong Tan and Andi Sudjana Putra. Drives and control for industrial
automation. Springer Science & Business Media, 2011.

[TTT+89] A Takanishi, M Tochizawa, T Takeya, H Karaki, and I Kato. Realiza-
tion of dynamic biped walking stabilized with trunk motion under known
external force. In Advanced Robotics: 1989, pages 299–310. Springer,
1989.

[TZS03] Zhe Tang, Changjiu Zhou, and Zenqi Sun. Trajectory planning for smooth
transition of a biped robot. In International Conference on Robotics and
Automation, volume 2, pages 2455–2460. IEEE, 2003.

[UARM22] Karthik Urs, Challen Enninful Adu, Elliott J Rouse, and Talia Y Moore.
Design and characterization of 3d printed, open-source actuators for
legged locomotion. In International Conference on Intelligent Robots and
Systems (IROS), pages 1957–1964. IEEE, 2022.

[Urb16] Gerald Urban. Jacob fraden: Handbook of modern sensors: physics,
designs, and applications, 2016.



BIBLIOGRAPHY 187

[vdHLF+22] Bas van der Heijden, Jelle Luijkx, Laura Ferranti, Jens Kober, and Robert
Babuska. Eagerx: Engine agnostic graph environments for robotics.
GitHub repository, 2022.

[VDX15] Roberto G Valenti, Ivan Dryanovski, and Jizhong Xiao. Keeping a good
attitude: A quaternion-based orientation filter for imus and margs. Sen-
sors, 15(8):19302–19330, 2015.

[VGBZ21] Florian Vahl, Jan Gutsche, Marc Bestmann, and Jianwei Zhang. YOEO
– you only encode once: A CNN for embedded object detection and se-
mantic segmentation. In 2021 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pages 619–624. IEEE, 2021.
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