236 research outputs found

    Identifying and Harnessing Concurrency for Parallel and Distributed Network Simulation

    Get PDF
    Although computer networks are inherently parallel systems, the parallel execution of network simulations on interconnected processors frequently yields only limited benefits. In this thesis, methods are proposed to estimate and understand the parallelization potential of network simulations. Further, mechanisms and architectures for exploiting the massively parallel processing resources of modern graphics cards to accelerate network simulations are proposed and evaluated

    Virtual time-aware virtual machine systems

    Get PDF
    Discrete dynamic system models that track, maintain, utilize, and evolve virtual time are referred to as virtual time systems (VTS). The realization of VTS using virtual machine (VM) technology offers several benefits including fidelity, scalability, interoperability, fault tolerance and load balancing. The usage of VTS with VMs appears in two ways: (a) VMs within VTS, and (b) VTS over VMs. The former is prevalent in high-fidelity cyber infrastructure simulations and cyber-physical system simulations, wherein VMs form a crucial component of VTS. The latter appears in the popular Cloud computing services, where VMs are offered as computing commodities and the VTS utilizes VMs as parallel execution platforms. Prior to our work presented here, the simulation community using VM within VTS (specifically, cyber infrastructure simulations) had little awareness of the existence of a fundamental virtual time-ordering problem. The correctness problem was largely unnoticed and unaddressed because of the unrecognized effects of fair-share multiplexing of VMs to realize virtual time evolution of VMs within VTS. The dissertation research reported here demonstrated the latent incorrectness of existing methods, defined key correctness benchmarks, quantitatively measured the incorrectness, proposed and implemented novel algorithms to overcome incorrectness, and optimized the solutions to execute without a performance penalty. In fact our novel, correctness-enforcing design yields better runtime performance than the traditional (incorrect) methods. Similarly, the VTS execution over VM platforms such as Cloud computing services incurs large performance degradation, which was not known until our research uncovered the fundamental mismatch between the scheduling needs of VTS execution and those of traditional parallel workloads. Consequently, we designed a novel VTS-aware hypervisor scheduler and showed significant performance gains in VTS execution over VM platforms. Prior to our work, the performance concern of VTS over VM was largely unaddressed due to the absence of an understanding of execution policy mismatch between VMs and VTS applications. VTS follows virtual-time order execution whereas the conventional VM execution follows fair-share policy. Our research quantitatively uncovered the exact cause of poor performance of VTS in VM platforms. Moreover, we proposed and implemented a novel virtual time-aware execution methodology that relieves the degradation and provides over an order of magnitude faster execution than the traditional virtual time-unaware execution.Ph.D

    Identifying and Harnessing Concurrency for Parallel and Distributed Network Simulation

    Get PDF
    Although computer networks are inherently parallel systems, the parallel execution of network simulations on interconnected processors frequently yields only limited benefits. In this thesis, methods are proposed to estimate and understand the parallelization potential of network simulations. Further, mechanisms and architectures for exploiting the massively parallel processing resources of modern graphics cards to accelerate network simulations are proposed and evaluated

    City-Scale Traffic Simulation - Performance and Calibration

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Should we have a new engine? An automobile power systems evaluation. Volume 2: Technical reports

    Get PDF
    Alternative automotive powerplants were examined for possible introduction during the 1980-1990 time period. Technical analyses were made of the Stratified-Charge Otto, Diesel, Rankine (steam), Brayton (gas turbine), Stirling, Electric, and Hybrid powerplants as alternatives to the conventional Otto-cycle engine with its likely improvements. These alternatives were evaluated from a societal point of view in terms of energy consumption, urban air quality, cost to the consumer, materials availability, safety, and industry impact. The results show that goals for emission reduction and energy conservation for the automobile over the next 5-10 years can be met by improvements to the Otto-cycle engine and to the vehicle. This provides time for the necessary development work on the Brayton and Stirling engines, which offer the promise of eliminating the automobile as a significant source of urban air pollution, dramatically reducing fuel consumption, and being saleable at a price differential which can be recovered in fuel savings by the first owner. Specifically, the Brayton and Stirling engines require intensive component, system, and manufacturing process development at a funding level considerably higher than at present
    corecore