
 i

City-Scale Traffic Simulation
-- Performance and Calibration

Yan Xu

(B. Eng., HIT, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

 ii

SUMMARY

Road congestions in a city-scale (or urban) traffic system are largely determined by the

equilibrium between the demand (people's requirement for travel) and the supply (the

capacity of the traffic system). In general, there are two types of solutions to manage road

congestions in a city-scale traffic system: transport planning and traffic control schemes.

Due to the high complexity in a city-scale traffic system and the limited modelling

capability of mathematical models, city-scale traffic simulation turns out to be an

appealing toolkit to evaluate the holistic impact of transport planning and traffic control

schemes to the entire city-scale traffic system. However, a successful deployment and

maintenance of a city-scale traffic simulation is not trivial, and limits the feasibility of

city-scale traffic simulations in real-world traffic systems. The thesis investigates and

then proposes solutions on two challenges in the process of deploying and maintaining a

city-scale traffic simulation: the performance optimization of a city-scale traffic

simulation and the calibration algorithm to estimate variables (e.g. model parameters and

model inputs) in a city-scale traffic simulation.

The key problem in the performance optimization of city-scale traffic simulations is

the lack of a systematic methodology to optimize the performance of city-scale traffic

simulations. This thesis proposes a three-step methodology to improve the computational

complexity and scalability of city-scale traffic simulations. These steps are framework

optimization, serial bottleneck optimization, and scalability optimization. Following the

three-step methodology, this thesis illustrates: 1) an Entry Time based Supply Framework

(ETSF), which optimizes the performance and the computational complexity to simulate

congested traffic scenarios; 2) an efficient two-dimensional spatial index (Sim-Tree),

which reduces the time cost of a serial bottleneck in the spatial index and improves the

scalability of parallel traffic simulations; and 3) a framework to execute city-scale traffic

simulations on the CPU/GPU Platform. The three-step methodology is demonstrated to

support the simulation of the Singapore expressway network from 7:00AM to 8:00AM

with a total 106,386 vehicles. The total execution time is improved from 6690.2ms to

894.0ms. The three-step performance optimization methodology is suitable to be used as

 iii

a guideline to optimize the performance of both existing and ongoing city-scale traffic

simulations.

The key problem in the calibration of city-scale traffic simulations is the lack of an

effective algorithm to calibrate a large number of variables in demand models and supply

models in city-scale traffic simulations (e.g. the OD Matrix). As the traffic road network

size grows, we found that the state-of-the-art calibration algorithm (SPSA) deteriorates.

The reason lies in the systematic error to incorporate uncorrelated measurements in the

method of estimating gradients of calibration variables. Motivated by this, we propose

W-SPSA ('W' means Weighted). The key idea of W-SPSA is to incorporate a 2-D weight

matrix in the calibration algorithm, to assist the estimation of the gradient. The 2-D

weight matrix represents correlations between variables and measurements. The idea is

successfully demonstrated to calibrate 373,646 time-dependent OD flows in one day on

Singapore Expressway Network. In the big research framework of traffic simulation

calibration, the idea of weighted gradient approximation provides an effective

methodology to calibrate variables in city-scale traffic simulations.

In summary, this thesis proposes frameworks, algorithms and data structures in

computer science, to solve problems (execution performance and calibration) associated

with the development and maintenance of city-scale traffic simulations.

 iv

DECLARATION

I hereby declare that the thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

2014

 v

ACKNOWLEDGEMENT

There are lots of people whom I would like to thank for a variety of reasons. I sincerely

acknowledge all those whom I mention, and apologise to anybody who I might have

forgotten.

Firstly, thanks to my supervisor A/P Gary Tan, for the guidance, support and

friendship, to bring me up from an undergraduate to a computer science researcher. What

impressed me most is that he never gives up on his students. Secondly, thanks to my

parents, my wife and my sister, for supporting me during the last 5 years. I love them

very much. Thirdly, thanks to A/P Constantinos Antoniou. “Do what I believe”, that is a

phrase I learned from him and I will always remember it.

Thanks to the guidance from Prof Li-Shiuan Peh and Prof Moshe E. Ben-Akiva. It is

a great honor to work with them. Thanks to Prof Lee Der-Horng and A. Prof Chin Hoong

Chor. Their modules led me from computing science to the transportation field.

Thanks to my wonderful friends (there is no order). Li Lu, Zhang Fan, Wang Pidong;

Seth Hetu, Bogdan Marius Tudor, Carbunaru Cristina, Vinh An Vu, Le Duy Khanh,

Saeid Montazeri, Linh Luong Ba; Lu Lu, Song Xiao, Melani Jayasuriya, Weng Zhiyong,

Saber Hamishagi Vahid, Harish Loganathan, Randy Tandriansyah, Yao Jin, Wang Dong,

Lu Yang, Zhang Huai Peng; Zhang Wenjia, Wang Bin and many friends in SMART. You

made my PhD life easier and more enjoyable.

Lastly but not the least, thanks to the great Project Managers: Kakali Basak, Stephen

Robinson and Francisco Pereira.

 vi

RELATED PUBLICATIONS

Journal Publications:

1. Yan Xu, Xiao Song, Zhiyong Weng and Gary Tan, “An Entry Time based Supply

Framework (ETSF) for Mesoscopic Traffic Simulations”, Journal: Simulation

Modelling Practice and Theory, 2014.

2. Lu Lu, Yan Xu, Constantinos Antoniou and Moshe Ben-Akiva, "W-SPSA: An

Enhanced SPSA Algorithm for the Calibration of Dynamic Traffic Assignment

Models", Journal: Transportation Research Part C: Emerging Technologies, 2013.

Conference Publications:

1. Yan Xu and Gary Tan, “Sim-Tree: Indexing Moving Objects in Large-Scale Parallel

Microscopic Traffic Simulation”, ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation (PADS), 2014.

2. Yan Xu, Gary Tan, Xiaosong Li and Xiao Song, “Mesoscopic Traffic Simulation on

CPU/GPU”, ACM SIGSIM Conference on Principles of Advanced Discrete

Simulation (PADS), 2014.

3. Kakali Basak, Seth Hetu, Zhemin Li, Carlos M. Lima Azevedo, Harish Loganathan,

Tomer Toledo, Runmin Xu, Yan Xu, Li-Shiuan Peh, Moshe Ben-Akiva, “Modeling

Reaction Time within a Traffic Simulation Model”, In Proceedings of the 16th

International IEEE Annual Conference on Intelligent Transportation Systems (ITSC),

2013 (Best paper award nominee).

4. Yan Xu and Gary Tan, “An Offline Road Network Partitioning Solution in

Distributed Transportation Simulation”, IEEE/ACM International Symposium on

Distributed Simulation and Real Time Applications (DS-RT), 2012.

5. Yan Xu and Gary Tan, “hMETIS-based Offline Road Network Partitioning", Asia

Simulation Conference, 2012.

Poster and Short Papers:

1. Yan Xu and Gary Tan, “Workload Estimation Algorithms in Parallel Traffic

Simulation", International Conference on Parallel and Distributed Systems

(ICPADS), 2013, accepted as a poster paper.

2. Yan Xu and Gary Tan, "Offline Road Network Partitioning in Distributed

Transportation Simulation", ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation (PADS), 2012, accepted as a short paper.

 vii

TABLE OF CONTENTS

SUMMARY --- ii

DECLARATION --- iv

ACKNOWLEDGEMENT -- v

RELATED PUBLICATIONS -- vi

TABLE OF CONTENTS -- vii

LIST OF TABLES -- xi

LIST OF FIGURES -- xii

1. Introduction --- 1

1.1 The Need for City-scale Traffic Simulations -- 1

1.2 The Challenges and Thesis Scope --- 4

1.3 Objectives and Contributions -- 5

1.4 Thesis Outline --- 7

2. Literature Review -- 8

2.1 Traffic Simulation -- 8

2.1.1 General Structure -- 8

2.1.2 Demand Models -- 9

2.1.3 Supply Models--- 11

2.2 Classification of Traffic Simulations -- 12

2.2.1 Macroscopic Traffic Simulation --- 12

2.2.2 Microscopic Traffic Simulation -- 14

2.2.3 Mesoscopic Traffic Simulation --- 16

2.2.4 Nanoscopic Traffic Simulation --- 17

2.2.4 Summary --- 18

2.3 Performance Optimization of City-scale Traffic Simulations --------------------------- 19

2.3.1 Three-step Performance Optimization Methodology ------------------------------ 19

2.3.2 Framework Optimization --- 22

2.3.3 Serial Bottleneck Optimization -- 24

2.3.4 Scalability Optimization --- 27

 viii

2.4 Calibration of City-scale Traffic Simulations --- 35

2.4.1 Calibration Variables --- 36

2.4.2 Disaggregate Calibration -- 36

2.4.3 Aggregate Calibration --- 39

3. ETSF: An Entry-Time based Supply Framework for City-scale Traffic Simulation ---- 41

3.1 Key Concepts in ETSF -- 41

3.2 The Simulation Procedure -- 44

3.3 Tradeoff in ETSF -- 48

3.4 Synthetic Tests -- 49

3.4.1 Experimental Design --- 49

3.4.2 Length of Links -- 51

3.4.3 Demand Level --- 52

3.4.4 Simulation Time Step -- 52

3.4.5 Integrated Scenarios --- 54

3.5 Case Study --- 55

3.5.1 Experiment Setting --- 55

3.5.2 Results -- 57

3.6 Summary --- 57

4. Sim-Tree: A Two-Dimensional Spatial Index for City-scale Traffic Simulation -------- 59

4.1 The Problem --- 59

4.2 The Key Ideas -- 61

4.3 Sim-Tree -- 63

4.3.1 Data Structure --- 63

4.3.2 Functional Design -- 66

4.3.3 The Rebalance Function -- 67

4.3.4 The Bottom-Up Region Query Function --- 68

4.4 Qualitative Analysis -- 70

4.5 Case Study --- 71

4.5.1 Experimental Setting -- 71

 ix

4.5.2 Efficiency --- 72

4.5.3 Scalability --- 73

4.5.4 The Rebalance Function -- 75

4.6 Summary --- 76

5. Scalable City-scale Traffic Simulation on the CPU/GPU Platform ------------------------ 77

5.1 The CPU/GPU Platform --- 77

5.2 ETSF on the CPU/GPU Platform --- 79

5.2.1 The Framework --- 79

5.2.2 Road Network and Vehicle Modeling on the GPU ---------------------------------- 82

5.2.3 Supply Simulation on the GPU --- 86

5.2.4 Double-Buffer Data Channel on the GPU --- 87

5.3 Simulation Results on the GPU -- 88

5.3.1 Problem Definition --- 88

5.3.2 Boundary Processing Method --- 89

5.3.3 The Rollback Method -- 91

5.4 Synthetic Tests -- 92

5.4.1 Experimental Design --- 92

5.4.2 Speedup and Analysis --- 92

5.5 Case Study --- 95

5.5.1 Experimental Setting -- 95

5.5.2 Results -- 95

5.5.3 Discussions --- 96

5.6 Summary --- 96

6. An Enhanced Calibration Algorithm for City-scale Traffic Simulation ------------------- 98

6.1 Problem Formulation -- 98

6.2 The SPSA Algorithm -- 99

6.3 Motivation and The W-SPSA Algorithm -- 102

6.4 Synthetic Tests --- 105

6.4.1 Experimental Design -- 105

 x

6.4.2 Effectiveness -- 107

6.4.3 Sensitivity --- 107

6.5 Case Study -- 109

6.5.1 Experiment Setting -- 110

6.5.2 Data Consistency Check -- 112

6.5.3 Calculation of the Weight Matrix -- 114

6.5.4 Choice of Algorithmic Parameter Values --- 115

6.5.5 Results --- 115

6.6 Summary -- 118

7. Conclusions and Future Research --- 119

7.1 Conclusions --- 119

7.2 Future Research --- 121

Bibliography -- 124

Appendix I: Terminology Definition -- 138

Appendix II: Calculation of k in Sim-Tree --- 141

 xi

LIST OF TABLES

Table 1: An example Origin-Destination (OD) matrix from 07:00AM to 08:00AM 10

Table 2: A general procedure of a macroscopic traffic simulation 14

Table 3: A general procedure of a microscopic traffic simulation 16

Table 4: A general procedure of a mesoscopic traffic simulation 18

Table 5: Functions and performance of three traffic simulation frameworks 19

Table 6: The simulation procedure in Entry Time based Supply Framework (ETSF) 44

Table 7: OD Pairs and Paths in the prototype network ... 51

Table 8: Evaluation of the ETSF on Singapore expressway network 57

Table 9: The interface of the Sim-Tree ... 67

Table 10: Qualitative Comparison of the Sim-Tree and the State-of-the-Arts 70

Table 11: Performance comparison of four tree-based spatial indexes 73

Table 12: The performance of the rebalance function in the Sim-Tree 76

Table 13: The time cost of running ETSF on the CPU and the GPU 93

Table 14: Profiling of major GPU/CUDA kernel functions ... 94

Table 15: An example 2D weight matrix in a small example network 103

 xii

LIST OF FIGURES

Figure 1: The work flow to deploy a city-scale traffic simulation 3

Figure 2: A general structure of traffic simulation models ... 9

Figure 3: Road network related terminologies.. 11

Figure 4: An example section of a road network in macroscopic traffic simulations 13

Figure 5: Vehicles in a lane of a link in a mesoscopic traffic framework 17

Figure 6: A region query using a two-dimensional spatial index (a plan view) 26

Figure 7: Four layers in map decomposition algorithms .. 29

Figure 8: Map decomposition of the Singapore network using two algorithms 30

Figure 9: The boundary area between two partitions .. 32

Figure 10: An example of vehicles in a lane of a link in the ETSF 42

Figure 11: The entry_time_to_pass (tp) of a lane .. 43

Figure 12: The update of the entry_time_to_pass (tp) of a lane .. 45

Figure 13: Four rules to determine whether a vehicle can pass a lane 46

Figure 14: Comparison of n and f in different levels of traffic demand 48

Figure 15: The Singapore expressway and a prototype network (node: 1-6) 51

Figure 16: The execution time of ETSF and the length of a link 53

Figure 17: The execution time of ETSF and the demand level .. 53

Figure 18: The execution time of ETSF and the simulation time step 53

Figure 19: Comparisons of ETSF and the current mesoscopic simulation framework 55

Figure 20: The Singapore expressway road network .. 56

Figure 21: The distribution of the length of the segments in Singapore expressway 56

Figure 22: An example two-dimensional R*-tree based spatial index 60

 xiii

Figure 23: The observed road density on a Singapore expressway section 62

Figure 24: The region query function and the location update function........................... 63

Figure 25: The Sim-Tree data structure .. 64

Figure 26: An example bottom-up region query by a vehicle (v2)................................... 69

Figure 27: The Singapore road network ... 71

Figure 28: The total time cost of simulating the traffic scenario in a parallel way 74

Figure 29: Mesoscopic traffic simulation framework on the CPU/GPU platform 80

Figure 30: Road network and vehicles modeling on the CPU and the GPU 83

Figure 31: An example road network and the data structure in the GPU memory 85

Figure 32: A node and its upstream links are updated on the same GPU thread 87

Figure 33: An example double-buffer data channel on the GPU...................................... 88

Figure 34: The Rollback Method .. 91

Figure 35: A small network for the illustration of gradient estimation error in SPSA ... 103

Figure 36: Performance comparison of SPSA and W-SPSA.. 108

Figure 37: Performance of W-SPSA using inaccurate weight matrices 108

Figure 38: The relationship between network correlation and calibration performance 109

Figure 39: The distribution of the road congestion level .. 111

Figure 40: A detection camera that measures traffic flow on Singapore expressways .. 112

Figure 41: Three scenarios in the flow data consistency check 113

Figure 42: Comparison of W-SPSA and SPSA on a real-world traffic scenario............ 116

Figure 43: Fit to sensor counts in two different intervals ... 117

 1

1. Introduction

1.1 The Need for City-scale Traffic Simulations

Road congestions in a city-scale (or urban) traffic system are largely determined by the

equilibrium between the demand (people's requirement for travel) and the supply (the capacity of

the traffic system). In general, there are two types of solutions to manage road congestions in a

city-scale traffic system: transport planning and traffic control schemes. Transport planning deals

with the long-term (e.g. 10 years) solutions (e.g. by building new highways and bridges), while

traffic control schemes look for short-term solutions (e.g. by using adaptive signal control).

However, the difficulty is how to evaluate the holistic impact of transport planning and traffic

control schemes to the entire city-scale traffic system.

In general, mathematical models (e.g. link performance functions) cannot adequately capture

the impact of transport planning and traffic control schemes, because of the high complexity in a

city-scale traffic system. Thus, city-scale traffic simulation turns out to be an appealing toolkit to

evaluate the holistic impact of transport planning and traffic control schemes to the entire city-

scale traffic system with high accuracy, high confidence and visual demonstration. City-scale

traffic simulation is useful in the following scenarios:

1) Evaluating the impact of existing or newly proposed road infrastructures, traffic control

technologies, policies and events to the entire city-scale traffic system.

2) Real-time analysis and response assistance of special events (e.g. incidents).

3) Extracting surrounding traffic when working on a piece of a city-scale traffic system.

4) Visual demonstrations and studies of a city-scale traffic system.

City-scale traffic simulations have been receiving industrial attention in the last 10 years.

First, in 2008, researchers in Minnesota (Hourdos & Michalopoulos, 2008) conducted a series of

interviews with transport-related departments and firms about their need for a city-scale traffic

 2

simulation platform. The interview found strong interests in a city-scale traffic simulation

platform from engineers in the regional transportation management center and transportation

consultants. Second, Aimsun deployed pioneer city-scale traffic simulation based traffic control

systems in Singapore (in 2006) and Madrid (in 2008) for real-time decision making in support of

the regional traffic management system. Caliper recently developed a city-scale traffic

simulation model for the Maricopa Association of Governments (TransModeler, 2014).

There are several reasons that pushed the progress of city-scale traffic simulations. (1) City-

scale traffic systems are becoming more and more complex with the emergence and development

of traffic information systems, incident management systems, adaptive signal control systems

and others. Mathematical models have limited capability to formulate the details of individual

system and the complex interactions among these systems. It makes city-scale traffic simulation

more attractive. (2) Researchers in traffic modeling are continuously pushing the capability of

modeling people's decision making in route choice behaviors (Prato, 2009), parking behaviors

(Boyles et al., 2014), response to traffic information (Ben-Elia & Shiftan, 2010), etc. It makes it

more and more practical to simulate complex traffic scenarios in a city-scale traffic simulation

platform. (3) The number of cores in the CPU and the GPU in one machine is increasing fast in

the last 10 years while the prices of machines are stable. It makes the computational resources,

which is required to support city-scale traffic simulation, much affordable than before. (4) New

technologies to collect traffic data. Two pioneer technologies are camera-based traffic collection

technology and smart-phone based traffic data collection technology. Combining these new

technologies and traditional ways (e.g. loop detectors) increases the accuracy and the coverage of

traffic data collection, making it possible to calibrate and evaluate city-scale traffic simulations.

The general work flow to deploy a city-scale traffic simulation system is shown in Figure 1.

The first step is to define problems and objectives. As explained previously, problems can be to

evaluate an innovative traffic control technology, to investigate the impact of a new train station,

or to offer real-time operation suggestions to congestion management and incident response.

Traffic simulators are not designed to replicate every detail in real-world traffic systems. In

contrast, traffic simulators are designed to capture the most critical components which are

important for answering the target problem. Thus, a clear definition of problem bounds the scope

 3

1: Problem Definition

2: Choose or Build a Traffic

Simulator

3: Data Collection

4: Calibration

Calibrated?

5: Validation

Validated?

6: Performance Optimization

7: Deployment

yes

no

no

yes

feedback

Figure 1: The work flow to deploy a city-scale traffic simulation

of a traffic simulator. The second step is to choose an existing traffic simulator or to build a new

traffic simulator. There are a number of industrial and academic traffic simulators, e.g. AIMSUN

(Barcelo, 2002), Commuter (Commuter, 2014), DynaMIT (Ben-Akiva et al., 1998), MITSIMLab

(Yang et al., 2000), PARAMICS (Cameron et al., 1995), VISSIM (Fellendorf and Vortisch,

2014), etc. The classification of traffic simulators is introduced in Section 2.2. The third step is

data collection, including the road network, traffic surveillance data, origin-destination (OD)

matrix, drivers' characters and problem specified parameters, like road pricing setting and signal

control setting. A traffic database, with a high accuracy, a high internal consistence, and a full

spatial and temporal coverage, is vital to the success of deploying a city-scale traffic simulation

system but also expensive and in many cases impossible. A data consistency checking method is

introduced in Section 6.5.2. After that, variables (including model parameters and model inputs)

are calibrated, in order that the traffic simulator has an acceptable accuracy to replicate the real-

world traffic system. Then, the traffic simulator is validated, in order that the traffic simulator

 4

has the capability to solve the target problem. The sixth step is performance optimization.

Performance, which is the execution time of simulating the target traffic scenario, is also an

important factor to choose a traffic simulator. Finally, the traffic simulator is deployed to solve

the real-world problem. Note that the process from problem definition to deployment is not one-

off, but that the deployed model provides feedback to the problem definition, so that the process

can be refined and improved.

1.2 The Challenges and Thesis Scope

Even though the concept of a city-scale traffic simulation has been demonstrated in the real-

world traffic system (in Singapore and Madrid), there is still a large research area to be

investigated and fulfilled. A trend for city-scale traffic simulation is to enhance the functional

capability and execution performance of traffic simulators, in order to lower the barrier and make

it easier for end-users (e.g. government agencies, consultants and academic researchers) to

develop and maintain a city-scale traffic simulation platform.

Currently, there are a number of challenges in the process of deploying and maintaining a

city-scale traffic simulation:

1) The high modeling complexity in simulating a city-scale traffic system

2) An accurate, consistent and sufficient traffic database

3) The traffic simulator's execution performance

4) A calibration method to estimate variables in a city-scale traffic simulation

In this thesis, the traffic models and the traffic database are assumed given. Then, the thesis

focuses on the following two challenges: performance and calibration. To be exact, the thesis is

to propose frameworks, data structures and algorithms in computer science, to solve problems

related to the performance optimization and the calibration of a city-scale traffic simulator.

In this thesis, the performance of a traffic simulator means the execution time of simulating

a traffic scenario. Performance optimization means to optimize the underlying frameworks, data

structures and algorithms in a traffic simulator to reduce the execution time. The execution

performance is more important for simulating a city-scale traffic scenario than simulating a small

 5

area traffic scenario. First, as the simulated trips increase and the simulated road network grows,

the required execution time of simulating a traffic scenario increases rapidly. Second, the level of

uncertainty (e.g. the randomness in the route choice model) in a city-scale traffic system is high.

Thus, a larger number of simulation runs is required to get reliable simulation results. Third, for

real-time city-scale simulation-based system, simulated-based assistance (e.g. a detour plan for

incident management) has to be fed back to decision makers or drivers in a short period before

the simulated-based assistance becomes invalid. However, performance optimization of a city-

scale traffic simulator is complex. There is a theoretical lack of a systematic methodology to

optimize the performance of a city-scale traffic simulator.

In this thesis, the calibration of a traffic simulator means to estimate variables (e.g. model

parameters and model inputs), in order to match model outputs with real-world traffic

surveillance measurements. This calibrated set of variables forms a historical database, which is

the fundamental of the traffic simulation for future applications in the road network. However, as

the simulated road network grows, the number of variables (e.g. OD flows) grows fast. To

calibrate a large number of variables in a city-scale traffic simulation is not trivial. For example,

when deploying a state-of-the-art academic traffic simulator DynaMIT (Ben-Akiva et al., 1998,

2001) in Beijing and Singapore, the calibration of the traffic simulator took more than one year;

when deploying a state-of-the-art industrial traffic simulator Aimsun in Singapore in 2006, great

effort and a long time were spent on calibrating hourly O/D matrices. There is a theoretical lack

of an effective methodology to calibrate a large number of variables in city-scale traffic

simulations.

1.3 Objectives and Contributions

This thesis has two objectives:

 To propose a systematic methodology to optimize the execution performance of a

city-scale traffic simulator.

 To propose an effective algorithm to calibrate model parameters and model inputs in

city-scale traffic simulations.

 6

This thesis has two major contributions:

 We propose a systematic three-step performance optimization methodology. These

steps are: framework optimization, serial bottlenecks optimization and scalability

optimization. The three-step performance optimization methodology is successfully

demonstrated to reduce the execution time to simulate the Singapore expressway road

network from 7:00AM to 8:00AM with in total 106,386 vehicles.

 We propose an enhanced calibration algorithm for city-scale traffic simulations. The

algorithm outperforms the state-of-the-art SPSA algorithm in terms of convergence

rate and long run achievable goodness-of-fit. The proposed algorithm is successfully

demonstrated to calibrate 373,646 time-dependent OD flows in one day in Project

DynaMIT on Singapore expressway network.

The detailed contributions of the thesis are listed below:

 Simulating a city-scale congested traffic scenario is time costly. We propose an Entry

Time based Supply Framework (ETSF) to reduce the execution time to simulate

congested traffic scenarios. The computational complexity of the proposed ETSF

framework is less sensitive to the level of congestions. Experiment results show that

ETSF outperforms the current supply framework, by reducing the execution time by

50% - 95% in city-scale road networks and congested traffic scenarios.

 A spatial index is a data structure that manages locations of objects (e.g. a vehicle, a

pedestrian, etc.) in a traffic simulation. When the number of objects increases in a

city-scale traffic scenario, the maintenance cost to rebalance a spatial index becomes

a serial bottleneck. We propose Sim-Tree, which is a more stable spatial index, whose

balance depends only on the average road density and thus is insensitive to individual

vehicles' changing locations. The results of experiments simulating a city-scale traffic

scenario on a 6-core machine show that the Sim-Tree performs significantly better

than the R*-tree family of spatial indexes.

 One trend in performance optimization is to execute a traffic simulation on multiple

processing units (e.g. cores and machines) using parallel simulation technologies and

distributed simulation technologies. A new type of hardware, the GPU, which has

 7

hundreds of cores, is gaining popularity in high performance computing, because of

its massive computational performance compared to the CPU. A research question is

whether the GPU can be a potential high-performance platform for city-scale traffic

simulations. This thesis proposes a comprehensive simulation framework to run the

proposed ETSF framework on the CPU/GPU platform. The proposed simulation

framework is demonstrated on a large-scale artificial grid road network and a real-

world Singapore expressway road network.

 As the traffic road network size grows, we found that the state-of-the-art calibration

algorithm (SPSA) deteriorates. The reason lies in the systematic error in the method

to estimate the gradients. Motivated by this finding, we propose W-SPSA ('W' means

Weighted). The key idea of W-SPSA is to incorporate a 2-D weight matrix in the

calibration algorithm, to reduce the systematic error in the estimation of the gradients.

The 2-D weight matrix represents the correlations between calibration variables and

observed measurements. The proposed W-SPSA calibration algorithm is successfully

demonstrated to calibrate 373,646 time-dependent OD flows in one day in Project

DynaMIT on Singapore Expressway Network.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents a review of the major

components in a traffic simulation, the classification of traffic simulations, the performance

optimization methodology and the calibration algorithms of a city-scale traffic simulation. Then,

Chapter 3 introduces an Entry Time based Supply Framework (ETSF), which computational

complexity and execution performance is less sensitive to the level of congestion. Chapter 4

proposes an efficient two-dimensional spatial index for city-scale traffic simulations. Chapter 5

investigates a comprehensive framework to run city-scale traffic simulations on the CPU/GPU

Platform. After that, Chapter 6 presents an enhanced calibration algorithm for city-scale traffic

simulations. Finally, conclusions and directions for further research are explained in Chapter 7.

 8

2. Literature Review

2.1 Traffic Simulation

2.1.1 General Structure

A transportation system can be modeled in a software traffic simulator in many ways, depending

on the target questions, the available computational resources and the coverage and the accuracy

of road network data and traffic surveillance data. However, the "Demand-Supply" methodology

has been proven to be successful in the development of a traffic simulator and the study of a

traffic system. As shown in Figure 2, a traffic simulator consists of two components: ‘Demand’

and ‘Supply’. Modeling from the travelers’ point of view, the 'Demand' is to understand how

travelers’ decisions are made, such as the choice of origin and destination, mode choice,

departure time choice, route choice and response to information. Modeling from the road

network's point of view, the 'Supply' is to understand the capacity of a road network, and also the

corresponding traffic control systems, incident management systems. The interaction between

the 'Demand' and the 'Supply' assigns the demand to available road resources to study the

equilibrium status. The interaction between the 'Demand' and the 'Supply' can be modeled as:

static traffic assignment, if the demand and the supply are assumed to be constant during the

study period; and dynamic traffic assignment, if the demand and the supply are time-dependent.

Traffic simulators are mainly used for evaluating a target traffic scenario. A traffic scenario

can be an innovative congestion management scheme to reduce the total travel delay in the AM

peak of a typical day in a city or a new motorway to satisfy the increasing demand in future. A

traffic scenario is configured by model parameters (e.g. parameters in the route choice model)

and model inputs (e.g. the road network and the OD matrix). Generally, model parameters are

pre-configured or calibrated by simulator developers and model inputs are set by end-users. The

output of traffic simulation varies, depending on the required measures of effectiveness. Example

measures of effectiveness are mean delay per vehicle and mean travel time per vehicle.

 9

A Traffic Scenario

Simulated Traffic Network Performance

Demand

Origin-Destination (OD)

Route Choice

Response to Information

Traffic Simulation Models

Supply

Road Network

Traffic Control

Incidents & Events

Figure 2: A general structure of traffic simulation models

2.1.2 Demand Models

The demand can be modeled in different ways. The activity-based demand modeling is a more

detailed way of describing demand in term of the activities generating the need to move persons

and freight. The activity-based demand modeling is introduced in (Bhat and Koppelman, 1999).

However, so far, the most widely used way to model the demand in traffic simulations is in terms

of an aggregate representation by means of an origin-destination (OD) matrix.

A traffic road network is divided into a number of traffic analysis zones (TAZs or zones).

Each zone generates (or as the origin) and attracts (or as the destination) trips. The size and shape

of a zone varies, depending on the size of the traffic road network and the target problem. Each

zone is represented using a dummy node (or a centroid), and then connects to the traffic road

network through dummy links (or centroid connections). The demand is then modeled as an OD

matrix, whose rows are origin zones and whose column are destination zones. Each number in

the matrix represents the number of trips going from an origin zone to a destination zone during

a period. In most cases, the demand contains a number of OD matrix tables, representing

different vehicle types in different periods. Table 1 synthesizes an OD representation of 3 zones

from 07:00AM to 08:00AM. Tij is the number of trips from the origin zone i to the destination

zone j during the hour; TSS is the total number of trips during the period. Given an OD matrix and

an assumed distribution of the departure time (e.g. uniform distribution), vehicles are generated

and inserted into the road network at the origin zone.

 10

Table 1: An example Origin-Destination (OD) matrix from 07:00AM to 08:00AM

Origin \ Destination 1 2 3 Sum

1 T11 T12 T13 T1S

2 T21 T22 T23 T2S

3 T31 T32 T33 T3S

Sum TS1 TS2 TS3 TSS

After a vehicle is generated, various travelers' decision makings are simulated, including

departure time choice, mode choice and route choice for both pre-trip and en-route. Pre-trip

decisions include travelers' choice of mode, departure time, as well as route under the expected

travel conditions before taking the trip, while en-route decisions are made by travelers based on

real time information and travel condition during the trip. The most widely used theory to model

travelers' behavior models is "discrete choice method" (Ben-Akiva et al., 1985). Taking the route

choice model as an example, drivers are modeled as independent decision makers, who choose

one single route from a set of alternative routes from an origin to a destination in a road network.

The first step is to generate alternative routes. In a real network, there might be a huge number of

candidate routes between an OD pair. For computational efficiency, different choice set

generation algorithms (Ben-Akiva et al., 1984; Azevedo, 1993; Bovy et al., 2006) are developed

to build a smaller subset of routes that includes as much as possible the routes actually chosen by

drivers in reality while eliminating routes that are never selected. Once the alternative routes are

generated, a route choice model is developed. In the model, each driver is described by a vector

of characteristics (e.g. driving age) and each alternative route in the choice set is described by a

vector of attributes (e.g. total distance and historical time cost). Each driver perceives a utility

associated with each route, which is a real number mapped from the characteristics of the driver

and the attributes of the route. Discrete choice method assumes that each individual driver will

select the route that has the maximum perceived utility. In reality, however, the utilities are not

directly measured. Random utility theory captures the discrepancy between the systematic model

utilities and the "true" utilities using an error term, where the systematic utility is calculated as a

linear function of the characteristics of a driver and the attributes of an alternative route.

Different models assume different distributions of the error term. The Multinomial Logit (MNL)

model is one of the most attractive models in real applications due to its simple assumption on

 11

identically and independently distributed Gumbel errors and its closed-form formula to compute

the probability of selecting an alternative in the alternative routes. Then, C-Logit model

(Cascetta et al., 1996) and Path Size Logit model (Ben-Akiva et al., 1999) were proposed to

capture the overlapping between candidate routes. Travelers' behavior models are furthered

explained in (Ben-Akiva et al., 1985).

2.1.3 Supply Models

The current trend to model a road network is to translate a real-world road network into a

directed graph in a two-dimensional coordinate space. However, a road network can be modeled

with different granularities. For example, an intersection can be modeled as one node, ignoring

detailed drivers' behaviors in the intersection. On the other hand, an intersection can also be

modeled as a set of nodes and links, with the capability to capture drivers' behaviors at all

turnings in the intersection. In this thesis, as shown in Figure 3, a road network is modeled as a

directed graph including nodes, links, segments and lanes. The nodes correspond to intersections

of the actual network, while links represent unidirectional pathways between nodes. Each link

may be divided into many segments because of geometrical differences. Each segment contains a

number of physical lanes. Nodes, links, segments and lanes have specific attributes, reflecting

their facility characteristic. Centroid nodes (if existing) are modeled as a special type of nodes.

Figure 3: Road network related terminologies

Based on the level of detail, there are four general approaches to model traffic movements

(or traffic dynamics) on a road network: macroscopic, microscopic, mesoscopic and nanoscopic.

Macroscopic simulators, such as METANET (Wang et al., 2001), use an aggregate point of view

based on a hydrodynamic analogy by representing traffic flow as a fluid process whose state is

characterized by aggregate macroscopic variables: density, volume and speed. Microscopic

simulators, such as MITSIMLab (Yang et al., 2000), PARAMICS (Cameron et al., 1995),

 12

VISSIM (Fellendorf and Vortisch, 2014), AIMSUN2 (Barcelo, 2002), can provide more details

by modeling vehicular interactions with surrounding individual vehicles, various transportation

facilities and traffic information. Mesoscopic traffic simulators, such as DynaMIT (Ben-Akiva et

al., 1998), DYNASMART (Mahmassani et al., 1992), Mezzo (Burghout et al., 2006),

CONTRAM (Taylor, 2003), and MATSIM (Cetin, 2005), are designed as a combination of

microscopic traffic simulators and macroscopic traffic simulators. Capturing the most essentials

of the traffic flow dynamics, they are computationally more efficient than microscopic traffic

simulators. Nanoscopic traffic simulators, such as Commuter (Commuter, 2014), can provide the

most detail by capturing the decision making process in people's mind and modeling person-

oriented door-to-door trips. These four approaches are further explained in Section 2.2.

Traffic control is another critical component in the Supply models. Examples of traffic

control systems are: intersection control (or signal control), ramp metering control, road pricing

control, variable message signs (VMS), variable speed limit signs (VSLS) and reversible lanes.

In general, traffic control systems are implemented as optional modules in traffic simulators,

which can dynamically modify the configuration (e.g. the speed limit), the capacity (e.g. red

signal and lane close), the usage cost of the road network (e.g. road pricing), etc.

2.2 Classification of Traffic Simulations

This section discusses the four types of traffic simulators: macroscopic, microscopic, mesoscopic

and nanoscopic. They have different capabilities and solve different problems.

2.2.1 Macroscopic Traffic Simulation

The idea of macroscopic traffic simulations is to model a traffic system as a particular fluid

process and to capture the time-space evolution of the fluid. As shown in Figure 4, a traffic

network is divided into a number of sections. Each section x at each time t is represented in a

macroscopic way as its speed u(x,t), density k(x,t) and flow q(x,t). Vehicles are assumed to be

evenly distributed in the section and moving using the same speed. Besides, each section might

have a generation (or dissipation) flow.

 13

Xi-1 Xi Xi+1

Figure 4: An example section of a road network in macroscopic traffic simulations

The simulation period is divided into a number of time intervals. The traffic movement in

each time interval is conducted using three rules. The first rule is the fundamental relationship:

q(x,t) = u(x,t) * k(x,t) (2.1)

The second rule is the hypothesis that speed is a function of density, which is also known as the

speed-density relationship. A general form of the speed-density relationship (May et al., 1976) is

shown below:

b a

0

jam

k
v = v * (1- ())

k

 (2.2)

where, 0v is the free-flow speed, jamk is the jam density, α, β are configurable parameters to be

determined through calibration. However, the hypothesis is only valid in equilibrium conditions.

Extensions and evaluations of this speed-density relationship are available in (Payne, 1979;

Messmer et al., 1990). To account for dynamic efforts of flow behavior, the third rule represents

the evolution of the density of a road section with the immediately adjacent sections (both the

upstream and the downstream) at the current time step. An example formula is shown below:

1 Δt Δtt+1 t t t t t tk = (k + k) - (q - q) + (g + g)
j j+1 j-1 j+1 j-1 j+1 j-12 2Δx 2Δx

 (2.3)

where, tk
j
, tq

j
are the density and flow on road section j at time t; t , x are the size of a time

interval and the length of a road section; tg
j
is the generation (or dissipation) rate on section j at

time t. If no sinks or sources exist on the section, tg
j
is 0.

A general macroscopic traffic simulation procedure is shown in Table 2. The procedure

consists of 2 layers of loops. First, it is a loop of simulation time steps. Second, during each time

step, the framework has a loop of sections. For each section, the density of the section is updated

 14

using the third rule. After the density is determined, the speed at this time step is calculated using

the second rule. Then, the flow is calculated using the fundamental relationship.

Table 2: A general procedure of a macroscopic traffic simulation

Inputs: A road network, a traffic scenario, parameters of flow models

Outputs: Aggregate road measurements (e.g. speed) at each time step;

1 Initialize a macroscopic traffic simulation environment

2 for each time step do

3 … load new vehicles;

4 … for each section in the network do

5 … ... update density of the section; (using the third rule)

6 … ... update speed of the section; (using the second rule)

7 … ... update flow of the section; (using the first rule);

8 … end for // section loop

9 … output simulated traffic condition at this time step;

10 end for // time loop

One example macroscopic traffic simulation is METANET (Wang et al., 2001), which was

developed in 1989 for motorway network simulation. In METANET, a motorway network is

converted into a directed graph with links and nodes. Links should have homogeneous geometric

characteristics such as number of lanes. Links are divided into sections of equal length (typically

500 meters). A typical time step in METANET is 10 seconds. The demand is modeled as inflows

in boundary links. The route choice behavior is described by use of splitting rates at nodes. The

overall modeling approach allows for simulation of traffic conditions (e.g. free-flow, congested)

and capacity-reducing events (e.g. incidents) in a motorway network. Due to low computational

cost, METANET can be used for real-time simulation-based decision support. The drawback in

macroscopic traffic simulations is the insufficient capability to model individual driver’s route

choice behavior.

2.2.2 Microscopic Traffic Simulation

The idea of microscopic traffic simulations is to capture the detailed actions (e.g. acceleration,

deceleration, lane changing, and giving ways) of each individual driver in response to the

surrounding traffic. The core behavior models include car following models (e.g. the Pipes' safe

driving model in (Pipes, 1953), the Gipps car following model in (Gipps, 1981) and the NGSIM

model in (Hwasoo et al., 2009)), lane changing models (e.g. the Gipps lane changing model in

(Gipps, 1986)) and gap acceptance models (Ahmed et al., 1996).

 15

A car following model captures drivers' response (acceleration or deceleration) to a stimulus

(e.g. relative distance, relative speed) from the leading vehicle. The simplest linear car following

model assumes that acceleration of the following car is directly proportional to the relative speed

(the speed of the leading car - the speed of the following car). If the relative speed is positive, the

response is acceleration; otherwise, the response is deceleration. Gazis et al. (1959) proposed an

enhanced model assuming that the response is inversely proportional to the relative distance.

Gipps (1981) developed an empirical model consisting of two components: the first component

represents the intention of a vehicle to achieve its desired speed; the second component

represents the limitation imposed by the leading vehicle to drive safely. The Gipps car following

model is widely used in current traffic simulations (e.g. Aimsun). An overall view of advantages

and disadvantages of different car following models are in Panwai and Dia (2005). A lane

changing model is a decision model that approximates a driver’s behavior to change lanes or not.

The driver's lane changing behavior depends on the distance from the driver's locations to the

next turning. If the distance is long, a lane changing only happens if the driver cannot achieve its

target speed and one of the neighboring lanes provides a better situation downstream (It is also

known as Discretionary Lane Change). If the distance is short, a lane changing happens if the

driver is not moving on the correct lane in order to follow its path (It is also known as Mandatory

Lane Change). Car following models and lane changing models are integrated in some traffic

simulations (e.g. MITSIMLib). A gap acceptance model is used to model the give-way behavior.

It determines whether a lower priority vehicle approaching an intersection can or cannot cross

depending on the circumstances of high priority vehicles (positions and speed). The model takes

into account of the distance of vehicles to the hypothetical collision point, their speeds and their

acceleration. It then determines the time needed by the vehicles to clear the intersection.

A general microscopic traffic simulation procedure is shown in Table 3. The procedure

consists of 4 layers of loops. First, it is a loop of simulation time steps. Second, during each time

step, the framework has a loop of links and lanes. Then, each vehicle on a lane is updated. First,

a vehicle fetches the surrounding traffic (e.g. the leading vehicle), applies corresponding models

(e.g. car-following and lane-changing), and then updates its speed and location. The procedure

also outputs aggregate attributes (e.g. density and queue) of links and lanes in the road network.

 16

Table 3: A general procedure of a microscopic traffic simulation

Inputs: A road network, a traffic scenario, parameters of user behavior models

Outputs: Trajectories of vehicles at each time step;

 Aggregate road measurements (e.g. density and queue) at each time step;

1 Initialize a microscopic traffic simulation environment

2 for each time step do

3 … load new vehicles;

4 … for each link in the network do

5 … ... for each lane in the link do

6 … ... … for each vehicle on the lane do

7 … ... … … fetch its surrounding traffic; //e.g. the leading vehicle

8 … ... … … apply corresponding behavior models: //e.g. car-following

9 … ... … … update the vehicle's speed and location;

10 … ... … end for

11 … ... end for

12 … ... update aggregate measurements (e.g. density and link travel time);

13 … end for // end of link loop

14 … output simulated traffic condition at this time step;

15 end for // end of time loop

2.2.3 Mesoscopic Traffic Simulation

The idea of mesoscopic traffic simulations is to efficiently capture both individual drivers' trip

behaviors and aggregate speed-density relationships. Figure 5 illustrates vehicles in a lane of a

link in a mesoscopic traffic framework, which explicitly or implicitly split the lane into two

parts: the moving part and the queue part. The location of a vehicle is modeled as <lane_ID,

offset>. The moving part is the part of the link where vehicles are not yet delayed by the queue at

the downstream node. In Figure 5, vehicles 1-4 are in the moving part. X1 is the offset of V1 and

L1 means V1 is moving in lane L1. The queue part is the part of the link where vehicles are

blocked in the downstream. Vehicles 5-9 are in the queue part. X5 is the offset of V5. In the

process of simulating the vehicle movement, vehicles on a link are updated in a reverse order

from the downstream end to the upstream end.

According to the vehicle’s status (moving or in queue), its location is updated using different

rules. If a vehicle is located in the moving part of a link, its speed is determined by a speed-

density relationship on the density of the moving part and its location is then updated using the

speed. If a vehicle is located in the queue part of a link, there are two possible conditions:

 17

V1 V2 V3

X1,L1 X2,L1 X3,L1

V6 V7

X6,L1 X7,L1

V8 V9

X8,L1 X9,L1

moving part queue part

V4

X4,L1

V5

X5,L1

upstream downstream

Figure 5: Vehicles in a lane of a link in a mesoscopic traffic framework

 If the vehicle is at the head of the queue (at the exit of the link), it can leave the queue

only if the current link has output capacity left and the downstream link has sufficient

empty space and sufficient input capacity. If conditions are satisfied, the vehicle can pass

the current link to the downstream link. Otherwise, the vehicle stays in the queue.

 If the current vehicle is not first in the queue (i.e., there are other queuing vehicles ahead

of it), it can only advance as far as vehicles in front of it do (assuming no space is left

between any two consecutive queuing vehicles). The distance is then determined by how

many vehicles have left the head of the queue during the same time step.

A general mesoscopic traffic simulation procedure is shown in Table 4. The procedure

consists of 4 layers of loops. First, the framework has a loop of simulation time steps. Second,

during each time step, the framework has a loop of simulating the traffic dynamics in each link.

Third, each link contains multiple lanes. Fourth, the framework computes and updates the

locations and status of each individual vehicle in each lane. The process of simulating a lane is

shown in steps 6-14. In the beginning of the process, the speed of the lane is calculated using

Formula 2.2. Then, each vehicle on the lane is simulated to change its location on the current

lane or pass to the next lane.

2.2.4 Nanoscopic Traffic Simulation

Nanoscopic traffic simulations are comparatively new. The general idea of a nanoscopic traffic

simulation is to model the traffic system in the view of people, instead of vehicles. There are two

main features: to capture the decision making process in people's mind and to capture the most

detailed person's door-to-door behavior. First, rules in the decision making process are derived

from the knowledge of human perception and cognition. Second, each person may travel using

 18

different modes of transport (e.g. driving, walking, cycling, or be a passenger on a train, bus or

taxi). One example nanoscopic traffic simulation is Commuter (Duncan et al., 2014), which is

designed for evaluating alternative infrastructure plans. To the best of our knowledge, the

computational framework of nanoscopic traffic simulations is not available in the literature and

is thus not discussed in this section.

Table 4: A general procedure of a mesoscopic traffic simulation

Inputs: A road network, a traffic scenario, parameters of user behavior models

Outputs: Aggregate road measurements (e.g. speed and queue) at each time step;

1 Initialize a microscopic traffic simulation environment

2 for each time step do

3 … load new vehicles;

4 … for each link in the network do

5 … ... for each lane in the link do

6 … ... … update speed of the lane

7 … ... … for each vehicle on the lane do

8 … ... … … if the vehicle is in the queue part then

9 … ... … … … pass the vehicle to next lane or update its location in the queue part;

10 … ... … … else//then the vehicle is in the moving part

11 … ... … … … update the vehicle’s location in the moving part

12 … ... … … end if

13 … ... … end for // vehicle loop

14 … ... end for // lane loop

15 … ... update aggregate measurements (e.g. density and queue);

16 … end for // link loop

17 … output simulated traffic condition at this time step;

18 end for // time loop

2.2.4 Summary

Table 5 shows the comparison of these four traffic simulations in functional capability, use cases

and simulation network scale. Macroscopic traffic simulation is the most time efficient to

simulate the traffic flow movement. However, it lacks some critical functions, e.g. drivers' route

choices. Microscopic traffic simulation has more functions, e.g. acceleration/deceleration, lane

changing, giving way. It enables microscopic traffic simulation to be able to evaluate a range of

existing traffic control systems (e.g. signal control, ramp metering control, road price control and

incident response). Mesoscopic traffic simulation achieves a reasonable balance between

functions and computational complexity. It reserves key functions (e.g. route choices) in

 19

microscopic traffic framework, and performs much more efficiently than microscopic traffic

simulation. Mesoscopic traffic simulation has been widely used in city-scale traffic simulation

(Cetin, 2005; Ben-Akiva et al., 2012). Nanoscopic traffic simulation captures the most detail in

decision making process in peoples' mind and peoples' door-to-door behavior. It is mainly used

in traffic safety related study and infrastructure planning (e.g. to build a new airport). In this

thesis, we focus on mesoscopic traffic simulations and microscopic traffic simulations.

Table 5: Functions and performance of three traffic simulation frameworks

 Functional Capability Use Cases Scale

Macroscopic

flow movement traffic flow study city-scale

Mesoscopic
drivers’ route choices,

flow movement

evaluate new technologies

and policies

(e.g. road pricing)

city-scale

Microscopic

acceleration/ deceleration,

lane changing,

drivers’ route choices,

flow movement

evaluate new technologies

and policies

(e.g. signal control)

region-scale

Nanoscopic

decision making process,

acceleration/ deceleration,

lane changing,

multi-model route choices,

flow movement

safety related study,

infrastructure planning
small area

2.3 Performance Optimization of City-scale Traffic Simulations

2.3.1 Three-step Performance Optimization Methodology

The performance of a city-scale traffic simulation is measured by two criteria:

Computational Complexity: A typical peak-hour city-scale traffic scenario contains a large

number of intersections, links and drivers. Computational complexity measures the sensitivity of

the execution performance of simulating a traffic scenario to the number of intersections, links

and drivers. The big-O notation is used in the analysis of the computational complexity. The big-

O notation is explained in (Cormen, 2009).

 20

Hardware Scalability: Hardware scalability is a measure of using additional processing units

(cores and machines) to reduce the execution time of a traffic simulation. Time speed-up, which

is equal to the ratio of the execution time of a traffic simulation on 1 processing unit and the

execution time of the traffic simulation on N processing units, is utilized to measure the

hardware scalability. In this thesis, scalability is the same as hardware scalability and speed-up is

the same as time speed-up, unless otherwise specified.

If a city-scale traffic simulation has a low computational complexity, the traffic simulation is

defined as efficient; if a city-scale traffic simulation has a high speed-up (e.g. near-to-linear), the

traffic simulation is defined as scalable. If a city-scale traffic simulation is efficient and scalable,

the traffic simulation is defined as high-performance.

In this thesis, a systematic three-step performance optimization methodology is proposed to

optimize the performance of a city-scale traffic simulator. These three steps are:

1) Framework optimization

2) Serial bottleneck optimization

3) Scalability optimization

"Framework optimization" aims to optimize the computational complexity of simulating a

city-scale traffic scenario to the number of intersections, segments and drivers. It is essentially a

compromise between the functional capability of the traffic simulation and the computational

complexity of the traffic simulation. An extremely high fidelity traffic simulation, which

captures behaviors and motivations of all objects in a traffic scenario in a fine-grained time step

(e.g. 0.1 seconds), is able to simulate complex phenomenon in a traffic system. However, such a

framework is computationally expensive. On the other hand, an extremely low fidelity traffic

simulation, which captures only the fluid process of traffic flows in a large time step (e.g. 60

seconds) and ignores behaviors of individual drivers, is computationally efficient. However, such

a framework tends to be functionally limited to mimic practical solutions to real-world problems.

"Framework optimization" aims to reduce the computational complexity of the framework, while

the traffic simulation is still able to simulate the traffic scenarios with an acceptable accuracy.

"Serial bottleneck optimization" and "scalability optimization" aim to improve the hardware

scalability of a city-scale traffic simulation on parallel & distributed platforms. Traditionally,

 21

traffic simulations (e.g. PARAMICS (Cameron et al., 1995) and MITSIM (Yang, 1999)) have

been written for serial computation. Traffic frameworks and models are constructed and

implemented as a serial stream of instructions. These instructions are executed on a central

processing unit (CPU) on one computer. Only one instruction may execute at a time - after that

instruction is finished, the next is executed. One of the features of CPUs has been its steadily

increasing computational performance in the last century. However, in the 2000s, this increase

came to a stop. At the same time, parallelism appears to be a sustainable way of increasing

computational performance. However, assigning more computational resources to a traffic

simulation does not naturally reduce the execution time of simulating a traffic scenario.

Amdahl's law is a model for the relationship between the expected speedup of parallelized

implementations of an algorithm relative to the serial algorithm, under the assumption that the

problem size remains the same when parallelized. Amdahl's law is shown as Formula 2.4.

(1) (1) 1
()

1 1()
(1)* (1)*(1)* (1)

T T
S n

T n
T B T B B B

n n

 (2.4)

where S(n) is the speedup when using n processing units, T(1) is the execution time of simulating

a traffic scenario on 1 processing unit, T(n) is the execution time on n processing units and B is

the time cost of the serial part of the source code. As n tends to infinity, the maximum speedup

tends to (1/B). As an example, if B is 10%, the maximum speedup is 10; if B is 90%, the

maximum speedup is 10/9, no matter how many processing units are utilized. Serial bottleneck

optimization is to reduce B. Amdahl's law also assumes the problem is evenly divided into

available processing units, without causing additional cost. However, parallelism always comes

with a cost f(n). As n becomes larger, f(n) tends to be more costly. The practical speedup is

calculated as Formula 2.5.

1
()

1
(1)*f()

S n

B B n
n

 (2.5)

The aim of scalability optimization is to reduce the cost f(n),by improving load balance, reducing

the communication cost and adapting new hardware (e.g. the GPU).

 22

The order of these three steps in the performance optimization methodology is fixed. First,

"framework optimization" is done before "serial bottleneck optimization". Otherwise, "serial

bottleneck optimization" may become useless, because a serial bottleneck in the previous

framework may not exist after framework optimization. Second, only if "framework

optimization" and "serial bottleneck optimization" are completed, the maximum speedup can be

estimated. The distance between the practical speedup and the maximum speedup is an important

indicator of the effectiveness and completion of "scalability optimization".

2.3.2 Framework Optimization

There are three types of well-studied traffic simulation frameworks: macroscopic, microscopic

and mesoscopic. These three types of traffic simulation frameworks were explained in Section

2.2. This section analyses the computational complexity of these three types of traffic simulation

frameworks and then explains the existing researches in framework optimization. Besides, to the

best of our knowledge, there is no clear definition of the computational framework of the

nanoscopic traffic simulation framework, thus, the computational complexity of the nanoscopic

traffic simulation framework is not included in this section.

The simulation framework of macroscopic traffic simulations was introduced in Section

2.2.1. The computational complexity of a macroscopic traffic simulation framework is shown as:

3(* *)
2

TT NS C
t

 (2.6)

-> (*)
2

TT NS
t

 (2.7)

where, TT is the total simulation period, 2t is the simulation time step (e.g. 1-10 seconds), NS

is the number of sections in a road network, and 3C is the constant amortized time cost to update

the density, speed and flow of a section following the three rules in Section 2.2.1. "An amortized

time cost" is a concept in the big-O notation to describe that while certain operations may be

extremely costly, they cannot occur at a high enough frequency to weigh down the entire

framework. In this thesis, "an amortized time cost" can be understood as "a constant mean time

cost". Thus, the computational complexity of a macroscopic traffic simulation framework is

proportional to the number of sections, and is inversely proportional to the simulation time step.

 23

The simulation framework of microscopic traffic simulations was introduced in Section

2.2.2. The computational complexity of a microscopic traffic simulation framework is shown as:

1 2(*NLi*NLa*(C *))
1

TT C n
t

 (2.8)

-> (*NLi*NLa*())
1

TT n
t

 (2.9)

-> (*)
1

TT n
t

 (2.10)

where, TT is the total simulation period, 1t is the simulation time step (e.g. 0.1-1.0 seconds),

NLi is the number of links, NLa is the average number of lanes in each link, n is the average

number of vehicles on a lane, 1C is the constant amortized time cost to update the status (e.g.

density and speed) of a lane, 2C is the constant amortized time cost to apply drivers' behavior

models to update the status (e.g. speed and location) of a vehicle, NLi*NLa*()n is actually the

aggregate number of vehicles in the road network. If we use n to denote this total number, the

time complexity is (*)
1

TT n
t

. Thus, the computational complexity of a microscopic traffic

simulation framework is directly proportional to the number of vehicles, and is inversely

proportional to the simulation time step.

The simulation framework of mesoscopic traffic simulations was introduced in Section

2.2.3. The computational complexity of a mesoscopic traffic simulation framework is shown as:

4 5(*NLi*NLa*(C C *))
3

TT n
t

 (2.11)

-> (*NLi*NLa*())
3

TT n
t

 (2.12)

-> (*)
3

TT n
t

 (2.13)

where 3t is the simulation time step (e.g. 1-10 seconds), NLi is the number of links, NLa is

the average number of lanes of each link, n is the average number of vehicles on a lane, 4C is

the amortized time cost to update the status (e.g. density) of a lane, 5C is the amortized time cost

to update the status (e.g. location) of each vehicle. NLi*NLa*()n is actually the aggregate

number of moving vehicles in the road network. If we use n to denote this number, the time

 24

complexity is (*)
3

TT n
t

. Thus, the computational complexity of a mesoscopic traffic

simulation framework is directly proportional to the number of vehicles, and is inversely

proportional to the simulation time step.

Even though the computational complexity formulas of a microscopic traffic simulation

framework and a mesoscopic traffic simulation framework are similar, a microscopic traffic

simulation tends to be much more time costly than a mesoscopic traffic simulation. First, the

simulation time step in a microscopic traffic simulation is smaller. For example, in microscopic

traffic simulations, the default time step in Paramics (Cameron et al., 1995) is 0.5 seconds and the

default time step in Transmodeler (TransModeler, 2014) is 0.1 seconds. However, in mesoscopic

traffic simulations, the default time step in DynaMIT (Ben-Akiva et al., 1998) is 5 seconds.

Second, the time cost of updating individual vehicle's movement at each time step in microscopic

traffic simulations (using disaggregate car-following model, lane changing model and gap

acceptance model) is higher than the time cost of updating individual vehicle's movement at each

time step in mesoscopic traffic simulations (using aggregate speed-density relationship).

Another noticeable methodology in framework optimization is the hybrid traffic simulation

framework (Laval, 2004; Burghout et al., 2006). The idea is to choose a high-resolution

simulation framework (e.g. microscopic) in the area of interests to evaluate new systems or

technologies, which often require the detailed modeling of vehicles, combined with a low-

resolution simulation framework (e.g. mesoscopic) in the surrounding areas to capture network

effects of local phenomena.

2.3.3 Serial Bottleneck Optimization

There are three general serially costly components in a traffic simulation framework:

1) Synchronization

2) Inputs & outputs

3) Dynamic spatial index

Synchronization is common in parallel & distributed traffic simulations. Synchronization of

processors (or threads) mean that multiple processes (or threads) are to join up or handshake at a

certain point, in order to reach an agreement or commit to a certain sequence of action. There are

two common types of synchronization: locks (or mutex) and barriers. First, locks are used to

 25

protect against data races to allow thread-safe synchronization of data between threads. Each

time a thread accesses data (e.g. a file or a memory space), the thread waits for the data's lock,

locks the data, modifies the data and then unlocks the data. If the data's lock is not available, the

thread is blocked. Lock reduces the level of parallelism and should be avoided if possible.

(Kumaret al., 1994) discusses methods to efficiently use locks in parallel systems. Second, a

barrier is another type of synchronization between multiple processes (or threads). A barrier is

configured for a particular number of processes (n), and as processes reach the barrier they must

wait until all n processes have arrived. Once the n-th process has reached the barrier, all the

waiting processes can proceed, and the barrier is reset. Barriers widely exist in parallel &

distributed traffic simulation frameworks. There are two general methods to optimize the

performance of barriers. The first method is to increase the workloads between successive

barriers. It is achievable by increasing the problem size or reducing the frequency of using

barriers. The second method is to optimize the load balance of workloads in processes or threads.

Load balancing algorithms are introduced in Section 2.3.4.

Input & Output (I/O) is a widely existing serially costly component in parallel & distributed

traffic simulation frameworks. I/O sources include files (text or binary), XML, databases and the

internet. For example, in the initialization phrase of a traffic simulation, a road network and the

configuration parameters are loaded from files or databases. In each time step within a traffic

simulation, the simulated results are written back to files or databases. In real-time simulation-

based applications, the traffic surveillance data is periodically loaded from files or the internet.

Generally, there are three methods to optimize the I/O performance. The first method is a

connections pool (Ramakrishnan and Gehrke, 2003). Creating a connection to a file or a database

is time costly. Connections pool is a technology that is widely used to avoid the creation and

release of large number of connections. The second method is data buffer. If a write (or update)

operation does not require an immediate effect (e.g. on the disc), buffering the operations can

significantly improve the I/O performance. If the I/O performance is not satisfied, even if the

disc or the internet reaches its maximum speed, parallel I/O technologies (Jin, 2001; May, 2001)

should be considered. The idea of parallel I/O technologies is to spread the I/O operations across

multiple machines and each machine executes a portion of the I/O operations simultaneously.

 26

Dynamic spatial index is another serially costly component. Dynamic spatial index is a data

structure that manages locations of moving objects (e.g. a vehicle) in a simulated road network.

The major responsibility of a dynamic spatial index is to allow any object to query its

surrounding traffic (e.g. the leading vehicle), which is a fundamental function to support various

traffic behavior models to determine a vehicle’s speed and location. Based on the number of

dimensions in objects’ locations, the spatial index is classified into one-dimensional spatial

indexes (e.g. linear referencing (Noronha et al., 2002)) and two-dimensional spatial indexes. In

one-dimensional spatial indexes, the location of an object is formulated as <lane_ID, offset>.

Each object’s location is associated with a lane. In two dimensional spatial indexes, the location

of an object is formulated as <latitude, longitude>, which does not depend on its underlying

geometries. One-dimensional spatial indexes are widely used in both mesoscopic simulation

frameworks and microscopic simulation frameworks. However, two dimensional spatial indexes

are receiving more attention recently, in order to model more complex traveler's behaviors (e.g.

cooperation driving, driving in an intersection, the interaction between pedestrians and drivers).

An example two-dimensional region query is shown in Figure 6.

100 meters20 meters

2
0

m
e
t
e
r
s

Figure 6: A region query using a two-dimensional spatial index (a plan view)

Indexing moving objects in a two-dimensional space is a hot research topic in spatial

simulations (Koh et al., 2011; Othman et al., 2013), computer games and spatial databases

(Navathe et al., 2010). R-Tree (Guttman, 1984), R*-Tree (Beckmann et al., 1990) and extended

B+-Tree (Jensen et al., 2004) are three of the most popular two-dimensional tree-based spatial

indexes and remain a focus of attention in the research community. The key idea of tree-based

two-dimensional spatial index is to map spaces into nodes on a tree, and objects within a space

are linked to the corresponding node. A region query in a city-scale road network is then

transferred into an efficient region query on a tree, which scans only a smaller portion of the road

 27

network. Considerable work has been done to reduce the I/O cost of tree-based spatial indexes

(Navathe et al., 2010). In current city-scale microscopic traffic simulations, in most cases, data

can fit into the main memory. So, this thesis focuses on two-dimensional spatial indexes in the

main memory. The major drawback of using tree-based spatial indexes in main memory (e.g. R-

Tree and R*-Tree) is the heavy time cost of update operations. In the case of frequent location

update operations in city-scale traffic simulations, there will be lots of node splitting and node

merging, making the time cost of update operations high. To support frequent updates in the R-

family trees, (Kwon et al., 2002) proposes the LUR-tree. The main idea of the LUR-tree is to

update the structure of the index only when an object moves out of the corresponding node. If a

new position of an object is in the same leaf node, it changes only the position of the object in

the same leaf node. Besides, a secondary index (a hash table) is introduced in the LUR-tree to

allow starting an update operation from the bottom. This method can update positions of an

object quickly and reduce the update cost. The work in (Lee et al., 2003) proposes a similar

bottom-up update function to reduce the cost of frequent updates. Another branch of work

(Jensen et al., 2004) maps two-dimensional data to a one-dimensional space by using a recursive

space-filling curve and then inserts the data to a B+-Tree. As these works are based on B+-Tree,

it can be easily integrated to existing DBMSs. The most relevant recent work to our research is

MOVIES (Dittrich et al., 2009). This approach does not require a sophisticated index structure to

be adjusted for each incoming update. Instead, it constructs conceptually simple short-lived

throwaway indexes which are only kept for a very short period of time (sub-seconds). A recent

summary of tree-based spatial index can be found in (Ilarri et al., 2010).

A particular city-scale traffic simulation tends to have specific serially costly components.

For example, in DynaMIT-R, which is a real-time simulation-based traffic flow prediction

system, real-time OD estimation is a specific serially costly component. Optimization of system-

dependent serial components is not disscussed in this thesis. Besides, (Wen, 2009) introduces

some general optimization thoughts, which are also important in serial bottleneck optimization.

2.3.4 Scalability Optimization

Parallel & distributed traffic simulation received much attention in the last decade in both

academic traffic simulations (Lee et al., 2002; Liu et al., 2004; Wen, 2009; Aydt et al., 2013) and

 28

commercial traffic simulations (Cameron et al., 1996; Nagel at al., 2001; Nokel et al., 2002). The

target in parallel & distributed traffic simulations is "scalability optimization". There are four key

areas in scalability optimization: map decomposition, workload estimation, boundary processing

and investigating emerging hardware.

Map Decomposition Algorithms

Map decomposition algorithms are fundamental to scalability optimization of a city-scale traffic

simulation. The purpose of map decomposition algorithms is to divide a large traffic road

network into small partitions, so that each thread or process simulates only a partial road

network. As shown in Figure 7, the problem of map decomposition can be divided into four

layers. The bottom layer is the road network level. This layer represents traffic facilities that

constitute the road network. This layer can be modeled as nodes and links. The second layer is

the vehicle movement level. This layer represents vehicle behaviors on the road network. This

layer can be modeled as speed, flow and density on links (or segments). The third layer is the

traffic control level. This layer represents various traffic control systems to control the demand

and the supply. The top layer is the partitioning level. This layer represents the solution to divide

the road network. This layer can be modeled as the list of cells in each partition. Different types

of cells can be defined for different requirements. In this example, each cell is centered by one

node and cuts neighbor links in the middle. The benefit of road network partitioning is that each

computer simulates only the vehicle movement and traffic control in its own partial road

network, which might reduce the total simulation time. The cost of road network partitioning

comes from the need to send messages between partitions, if for example, one vehicle moves

from one partition to another, or the traffic signal control in one partition needs the data in

neighbour partitions. A good road network partitioning solution should maximize the benefits

and minimize the costs at the same time.

 29

Figure 7: Four layers in map decomposition algorithms

While getting an optimal map decomposition solution is difficult, there are three algorithms

that work pretty well in most cases: the orthogonal recursive bisection algorithm, METIS

algorithms (Karypis et al., 1999; LaSalle et al., 2013), and hMETIS algorithms (Karypis et al.,

1999; Xu et al., 2012). In the orthogonal recursive bisection algorithm, a road network is divided

into a number of cells and each cell is centered by one node and cuts its neighbor links. Each

node gets a weight corresponding to the workload of all of its attached half-links. Nodes are

located at their geographical coordinates. A vertical or horizontal straight line is searched so that

roughly half of the computational load is on each half. Then the larger of the two pieces is picked

and cut again, by a vertical or horizontal line. This is recursively done until a sufficient number

of partitions are generated. The major benefit of the orthogonal recursive bisection algorithm is

its simplicity. However, it has three weaknesses. First, the orthogonal recursive bisection

algorithm is not efficient for partitions which are not a power of 2. Second, the workloads of

nodes are inaccurate, which deteriorates the load balance when the number of partitions is large

(e.g. >10). Third, the orthogonal recursive bisection algorithm does not try to minimize the

communication cost between partitions. An example map decomposition of the Singapore

network using the orthogonal recursive bisection algorithm is shown in Figure 8(A). METIS

algorithms, and hMETIS algorithms are a group of advanced and complex algorithms, compared

to the orthogonal recursive bisection algorithm. Similar to the orthogonal recursive bisection

algorithm, a road network is divided into a number of cells and each cell is centered by one node

and cuts its neighbor links in the middle. However, the output of METIS algorithms and

 30

hMETIS algorithms are a mapping table between node IDs and partition IDs, instead of vertical

or horizontal lines in the orthogonal recursive bisection algorithm. An example map

decomposition of the Singapore network using hMETIS algorithms is shown in Figure 8(B). As

shown in Figure 8, hMETIS algorithms succeed to avoid cutting the Singapore road network

through the city center. METIS algorithms can always quickly produce high-quality partitions

for city-scale road networks. However, the limitation is that it does not guarantee that the

partitions are contiguous, even though in most cases they will be.

(A) An example map decomposition using the orthogonal recursive bisection algorithm

(B) An example map decomposition using hMETIS algorithms

Figure 8: Map decomposition of the Singapore network using two algorithms

 31

Workload Estimation Algorithms

Network decomposition algorithms take weights of links, nodes, or both as inputs. To obtain the

best results, the weights should accurately represent the actual workload associated with each

link and/or node. However, it is generally difficult to get precise measurements of workloads.

Even if one can break down the simulation into low level machine instructions, and compute

exactly how many instructions are used to move individual vehicles at all circumstances, the

actual computation time is still unknown. This results from factors such as the cache and the

branch prediction technology, which are common to modern processors.

There are two practical methods to estimate workloads in a traffic scenario: agent-based

estimation and network-size based estimation. In agent-based workload estimation, the workload

of simulating a link is assumed to be linear with the number of agents (e.g. vehicles) on the link.

(Nagel at al., 2001; Wen, 2009) give evidence that the number of vehicles on a link is a good

indicator of the computational cost of the link. The number of vehicles on a link is commonly

estimated by multiplying the historical road density and the length of the link. In network-size

based workload estimation, the workload of simulating a link is assumed to be linear with the

total lane length of the link. The second method is simpler. However, it is effective only if the

workload is evenly distributed on all lanes in the road network.

When simulating a traffic scenario with a long period, the distribution of workloads on the

road network might change significantly during the traffic scenario. Thus, the simulation period

should be divided into multiple periods (e.g. AM-Peak, Non-peak, PM-Peak and Mid-Night). A

separate set of workloads are estimated for each period, and the corresponding workloads are

used to generate network partitions for that period. Wen, (2009) proposed an adaptive workload

estimation method, which changes the network partition periodically (every 15 minutes), and

concluded that adaptively changing the partitions on-the-fly significantly improved the load

balancing especially when unusual events occur.

Boundary Processing Method

In parallel & distributed traffic simulations, multiple network partitions are simultaneously

simulated. One key problem is that objects in different partitions should be visible to each other.

It means a vehicle in one partition should be able to access nearby objects, even if the objects are

 32

in another partition. Besides, if a vehicle moves from one partition to another partition, all

information of the vehicle should be transferred automatically. As shown in Figure 9, a road

network is divided into two partitions. In this example, the road network is cut by a line crossing

the middle of links. The left side is named the upstream partition and the right side is named the

downstream partition. The boundary area (the red dash links) is the area between these two

partitions, which should be "seen" by agents in both sides. The size of the boundary area depends

on the looking forward distance (e.g. in car-following models), the looking backward distance

(e.g. in lane changing models) and the synchronization frequency (e.g. 2 time steps).

Upstream
Partition

Downstream
Partition

Figure 9: The boundary area between two partitions

There are three types of communication between network partitions: forward ownership

transfer, backward proxy transfer and global information interchange. First, when a vehicle

crosses a cut line (e.g. the dash line in Figure 9), the ownership of the vehicle is transferred from

the upstream partition to the downstream partition. All information of the vehicle is transferred.

Second, when a vehicle needs to access the information of another vehicle, which is located in

another partition, the information of that vehicle will be backward transferred to the partition.

However, only a few information (e.g. speed and location) of the vehicle is transferred. Third,

the global information (like: link-based travel time) is exchanged between partitions periodically.

Boundary processing forces processors to stop to synchronize and communicate, which

makes the system vulnerable to load imbalance. The faster processors have to wait until the

slower ones finish their work. Wen, (2009) investigated ways to reduce the frequency of

boundary processing. First, the size of the boundary zone is enlarged, in order that the upstream

partition knows more traffic conditions on the downstream partition. Second, since boundary

processing does not happen at each time step, vehicles on the upstream partition are simulated

 33

without a perfect knowledge of the downstream partition. A feedback method is designed to

reduce the bias. However, unless the boundary processing takes place at each time-step, the

result could be inconsistent with the sequential simulation, where perfect knowledge about the

previous time-step is available before moving any vehicle in the current time-step.

Emerging Hardware

Traditionally, traffic simulations were written to be executed on single-core hardware. However,

the computational performance of the CPU is increasing slowly during the last decades. At the

same time, parallelism appears to be a sustainable way of increasing computational performance.

PARAMICS is one of the earliest parallel traffic simulators. As explained in (Gordon et al.,

1996), the PARAMICS project is originally designed for a Thinking Machines CM-200, a 16-K

processor SIMD machine. In the SIMD model, performance is gained by exploiting the very high

number of simple processors that are connected in a tightly coupled, high speed network. The

important thing is that each processor on the machine is executing the same piece of code. The

authors describe that, to make good use of the CM-200, the data must be in a parallel array form

so that operations can occur in parallel on the elements of the array. The approach used to build a

parallel data framework for the simulation process was to associate a number of queues with

each of these unidirectional links. A queue was used as the parallel item of data on the CM-200.

The parallel array is a one-dimensional array consisting of a large number of these queues, and

can be operated concurrently. The concepts in this pioneering work are also applied in recent

works on traffic simulations on GPUs. AIMSUN (Advanced Interactive Microscopic Simulator

for Urban and Non-Urban Networks) is another pioneering parallel traffic simulation program,

which was originally developed as a sequential simulator but later ported to parallel computers

(Barcelo et al., 1998). A road network is divided into blocks and layers. Firstly, entities that are

updated together are grouped into blocks that may be allocated to a single thread. Blocks are

grouped into layers, in order that blocks in the same layer can be simulated simultaneously.

Thus, different layers are simulated in a sequential order, while within a layer, multiple threads

can be started simultaneously.

Computer clusters, which consist of a set of loosely/tightly connected computers that work

together, are also receiving attention in this decade. Wen, (2009) investgated to run a mesoscopic

 34

traffic simulation in a distributed way. First, algorithmic analyses are first used to identify the

system bottlenecks in a serialized large-scale traffic simulation. Then, scalable approaches are

developed to solve the bottlenecks. Distributed traffic simulation with an adaptive network

decomposition framework is proposed to achieve better load-balancing and improved efficiency

on a computer cluster. Besides, a synchronization-feedback mechanism is designed to ensure the

consistency of traffic dynamics across computers while keeping communication overheads

minimal. Cetin, (2005) studied the parallel queue model, which includes domain decomposition,

message exchanging and communication. A parallel queue model was used to implement

distributed event-driven traffic simulations (e.g. MATSIM). Another branch of research work,

which does not require modifying the source code of current traffic simulations, is studied in

(Lee et al., 2002; Liu et al., 2004). They both presented a general distributed traffic simulation

architecture. It involves dividing the network into regions and simulating each region under a

separate instance of the program (e.g. PARAMICS). Inter-process communication techniques are

employed to exchange data between different regions and synchronize time among the different

regions. By using the API supported by off-the-shelf PARAMICS software, the computational

load of microscopic simulation is distributed to multiple single-processor PCs without accessing

the proprietary source codes of the simulation program. Besides, cloud-based traffic simulation

(like: Cube Cloud) might greatly reduce the cost (both time and money) of deploying a city-scale

traffic simulation, and encouranges collaboration between teams in different regions and

countries. Cloud-based traffic simulations can be viewed as traffic simulations on a large loosely

connected cluster.

Graphics processing unit (GPU) is gaining popularity, because of its massive performance

compared to the CPU. While GPUs were primarily meant to do three-dimensional rendering in

graphics applications, rapid developments in their architectures have enabled their use in

scientific computing (Michalakes et al., 2008), computational finance (Buck et al., 2007),

computational biology, simulations (Denis et al., 2012; Park et al., 2011) and high performance

computing (Fan et al., 2004). Moreover, the development of direct computing application

protocol interfaces (APIs), such as CUDA and OpenCL, has greatly reduced the programming

effort. However, fundamental differences in the GPU and the CPU architectures mean that the

traditional technique of converting serial implementations to parallel using standards such as

 35

OpenMP and MPI is inapplicable. Thus, a research question is whether the GPU can be a

potential high-performance platform for traffic simulations. There has been some research work

to enhance the solution to traffic simulation on GPUs. Perumalla et al., (2009) introduced a

method to simulate the vehicle movement on GPU by using a field based model. This model

maps the real world road data onto a 2D lattice, with each element in lattice representing the

possibility of turning either left/right or up/down. By using this possibility data, the vehicles will

be directed from one position in the 2D array to another position. The proposed field based

model is similar to the classic Cellular Automata Model. However, the contribution of this work

in the global traffic simulation research framework is not clarified. The MATSIM team recently

released a research work to implement an event-driven mesoscopic traffic simulation framework

on the GPU (Strippgen et al., 2009). The paper introduced two kernel functions ("moveLink" and

"moveNode") to implement the core queue simulation. They also talked about three different

implementations of the vehicle array in the GPU memory. Their work is pioneering and obtained

a speedup over serial applications between 5.5 and 60 times depending on different data

structures and NVIDIA GPU series. However, the paper did not confirm the correctness of

running MATSIM on the GPU and also did not explain how to migrate a real-world mesoscopic

traffic simulation from the CPU to the GPU.

2.4 Calibration of City-scale Traffic Simulations

The calibration of a traffic simulator is essentially a process of determining variables (e.g. model

parameters and model inputs) in order to minimize the difference between simulated outputs and

observed measurements. The procedure of calibrating a city-scale traffic simulator consists of

two phases: disaggregate calibration and aggregate calibration. In the disaggregate calibration

phase, parameters of a particular model (e.g. the route choice model) or a particular model input

(e.g. the OD matrix) are calibrated using specified types of observed measurements. In the

aggregate calibration phase, different types of model parameters and model inputs are jointly

calibrated using mixed types of observed measurements.

 36

2.4.1 Calibration Variables

Calibration variables are divided into variables in demand models and variables in supply

models. The main calibration variables in demand models are the time-dependent OD matrix and

parameters in the travel behavior models. As explained in Section 2.1.2, an OD matrix is a 2-D

table, which indicates the number of vehicles to generate for each origin-destination pair during a

period in a traffic simulation. Calibration variables in travel behavior models include parameters

in choice set generation algorithms, utility functions (e.g. the weights of time and money in the

utility function) and choice making functions (e.g. parameters in Path Size Logit model). The

calibration variables in supply models depend on the used traffic models (e.g. mesoscopic,

microscopic, macroscopic and nanoscopic). In microscopic traffic simulations, supply-side

calibration focuses on parameters in car-following models, lane-changing models and gap

acceptance models (these three models were introduced in Section 2.2.2). In mesoscopic and

macroscopic traffic simulations, supply-side calibration focuses on segments' capacity and

parameters in the speed-density relationship (they were introduced in Section 2.2.1). Finally, a

traffic simulation tends to have specific calibration variables, such as the length of vehicle, the

default vehicles' speed in queues, the default turning speed, reaction time, etc.

There are three major types of data used in the calibration of a traffic simulator: survey data

(e.g. Household Travel Survey (Cheong et al., 2008) in countries like Singapore and Australia),

point-based surveillance data (e.g. loop detectors and cameras) and route-based trajectory data

(e.g. on-board units and GPS devices). In this thesis, point-based surveillance data (segment-

based traffic flow) in the Singapore expressway network is the major data source for calibration.

2.4.2 Disaggregate Calibration

In the disaggregate calibration phrase, the OD matrix, parameters in travelers' behavior models,

and parameters in supply-side models are calibrated separately. Travel survey is a common and

effective way to give prior values of an OD matrix. However, travel survey has limitations due to

its high cost of data gathering, low population coverage and limited accuracy. A high fidelity OD

matrix is often obtained by aggregate calibration. Currently, a direct city-scale measurement of

travelers' departure times is missing. A practical solution is to assume that travelers' departure

times follow a Normal distribution or a Poisson distribution. Parameters in the distribution are

 37

estimated based on field studies in small regions. Disaggregate data that reveal individuals' route

choice behaviors are used to estimate parameters in route choice models. The sources of data

include traditional surveys, such as mail, telephone, and the Internet (Ben-Akiva et al., 1984;

Prato,2004), or emerging technologies, such as GPS trajectories (Frejinger, 2007). The

parameters to estimate are the weights in the systematic utility function and they are estimated by

maximizing the probability of the actual selected route in the choice set. More rigorous

mathematical derivations in discrete choice analysis can be found in (Ben-Akiva et al., 1985).

The OD estimation studies can be divided into two groups: static OD estimation and time-

dependent OD estimation. In the static OD estimation, it assumes that the OD flows are static

across a time period (e.g. the AM peak hours). Example studies on static OD estimation include

(Cascetta, 1984), (Hazelton. 2000), and (Li, 2005). This thesis focuses on time-dependent OD

estimation, where the OD flows may change significantly across different time periods. The most

widely applied dynamic OD estimation approach is the generalized least square (GLS)

framework proposed in (Cascetta et al. 1993; Cascetta et al. 2013). The OD estimation problem

is expressed through a fixed-point model and a programming-based optimization method is

proposed to solve it. The authors propose two methods under the GLS framework. The

sequential method solves for the OD flows one interval at a time and the simultaneous method

optimizes the OD flows in multiple intervals simultaneously. Although the simultaneous method

is able to capture the influence of the OD flow in one interval on all subsequent intervals, it

requires the calculation and storage of a large assignment matrix and has been found to have

significant computational overhead on large networks in (Toledo et al., 2003) and (Bierlaire et

al., 2004). Then, Ashok (1996) formulates the OD flow estimation problem with a state-space

representation, where the interval-to-interval evolution of network states is captured by transition

equations (autoregressive process) and the sensor counts are incorporated using measurement

equations that links states with measurements. Then, the author further proposes a Kalman Filter

solution approach. In both the GLS and the state-space framework, the assignment matrix is a

key element for OD flow estimation. There are two approaches to obtain assignment matrices

outlined in Ashok (1996): 1) load the current best OD flows into a traffic simulator, keep

tracking the vehicles from different OD pairs, record and count their appearances at sensor

locations, and 2) analytically calculate the fractions using knowledge of network topology, time-

 38

dependent travel times as well as route choice models. Balakrishna (2006) argues that the latter

approach can provide more accurate results because the simulation based method requires small

starting flows to prevent artificial bottlenecks and therefore results in highly stochastic and small

fractions due to the limited number of vehicles being loaded into the network.

Recent researchers proposed a number of new OD calibration methods. (Nie et al., 2008)

formulates the OD estimation problem as a single-level framework based on variational

inequality. Travel time is incorporated into this framework by (Qian et al., 2011) to further

improve its performance. (Djukic et al., 2012) applies principal component analysis (PCA) to

pre-process OD data. This methodology can significantly reduce the size of time series of OD

demand without sacrificing much of the accuracy, which leads to an impressive reduction of

computational costs. There are also attempts to formulate the OD estimation problem as a

stochastic optimization problem and use meta-heuristic approaches as the solution algorithms.

For example, (Stathopoulos et al., 2004) experiments with three different meta-heuristic

optimization algorithms: a genetic algorithm (GA), a simulated annealing algorithm (SA), and a

hybrid algorithm (GASA) based on GA and SA. The authors argue that GASA outperforms the

other two algorithms in terms of convergence rate and final goodness-of-fit; (Kattan et al., 2006)

applies evolutionary algorithms (EA) in a parallel computing framework to improve the

computation efficiency as well as the solution quality.

In mesoscopic and macroscopic traffic models, capacities are mostly estimated using

observed flows. For example, in the approach proposed by (Mufioz et al., 2004) to estimate the

parameters in a Cell Transmission Model (CTM), capacities for non-bottleneck cells are chosen

to be slightly larger than the maximum observed flows while capacities for bottleneck cells are

computed to match the observed mainline and ramp flows. The Highway Capacity Manual has

also been widely used as a reference for determining the capacities for different types of links.

Parameters in the speed-density relationship are estimated by fitting appropriate curves to

observed traffic data. Due to the usually low level of sensor coverage rate in reality, (Van Aerde

et al., 1995) proposes an approach to group links in the network based on their characteristics.

In microscopic traffic models, parameters in driving behavior models are estimated based on

surveys and historical projects in similar cities. (Darda, 2002) applies the Box-Complex (Box,

1965) algorithm to calibrate car-following and lane-changing models in MITSIMLab given fixed

 39

demand model parameters. However, convergence is not able to be ascertained in this study.

(Brockfeld et al., 2005) calibrates a small number of supply parameters in a variety of

microscopic and macroscopic simulation systems using a gradient-free downhill algorithm. (Kim

et al., 2004) applies genetic algorithms (GA) to calibrate driving behavior parameters in

CORSIM and TRANSIMS. However, given the small scale of the problem in their studies, there

are still computational constraints. More studies on applying these methods on real-world scale

networks should be done to test their efficiency and ability to handle city-scale problems.

2.4.3 Aggregate Calibration

There are two types of aggregate calibration methods: iterative demand-supply joint calibration

and simultaneous demand-supply joint calibration. In the first method, demand calibration and

supply calibration are done iteratively until convergence is reached with the observed values. In

demand calibration, the parameter values in the supply model are fixed when OD flows and

parameters in behavior models are calibrated using aggregate traffic data, for example, sensor

counts, travel times, etc. Then, using the calibrated demand parameters, supply models are

calibrated and simulated traffic conditions that are used in the calibration of demand models are

updated, for example, the weight of time delay in route choice models. In the second method,

demand calibration and supply calibration are done simultaneously. The second method has

received significant attention due to its ability to fully consider the interactions between demand

models and supply models as well as their huge savings in computation time. This thesis focuses

on simultaneous demand-supply joint calibration.

The simultaneous demand-supply joint calibration is modeled as an optimization problem.

The objective function is to maximize the goodness-of-fit of simulated traffic quantities to their

observed values. The objective function is explained in Section 6.1. This stochastic optimization

framework was first proposed by (Balakrishna, 2006). The author applied this simultaneous

demand-supply calibration methodology in DynaMIT, a mesoscopic simulation simulator.

Parameters considered in the decision vector included time-dependent OD flows, parameters in

travel behavior models, parameters in speed-density functions, and segment capacities.

Goodness-of-fit to sensor flows and segment speed data are used in the objective function. As in

most cases, the number of measurements is far less than the number of parameters to estimate,

 40

the distances between estimated parameter values and their priori, or historical values are also

included as a part of the objective function. In this work, three algorithms were tested as the

solution algorithm of the stochastic optimization problem: the Box-Complex (Box, 1965), stable

noisy optimization by branch and fit (SNOBFIT) (Huyer et al., 2008), and simultaneous

perturbation stochastic approximation (SPSA) (Spall, 1998). A synthetic case study and a full

scale real world case study in Los Angeles, California were used to test the simultaneous

demand-supply calibration framework as well as the three different solution algorithms. The

results showed that SPSA was the most suitable algorithm due to its extremely high efficiency

and satisfactory convergence performance. Successful attempts have been made to modify or

extend the existing SPSA algorithm to improve its performance. Balakrishna et al., (2007)

extended this methodology to the off-line calibration of microscopic traffic simulation models by

applying it in MITSIMLab; Cipriani et al. (2011) proposed asymmetric estimation and adopting

polynomial interpolation to the step size in the SPSA algorithm; Cantelmo et al. (2014) proposed

a second order SPSA algorithm to deal with difficulties in optimizing functions with variables of

different magnitude orders.

Appiah et al., (2010) presents a framework that jointly calibrates OD flows and driving

behaviors in microscopic supply simulators using aggregate intersection turning movement

counts. Similar to (Balakrishna, 2006), the framework formulates the calibration as an

optimization problem. However, a GA was adopted as the solution algorithm. A case study in a

small arterial network using VISSIM, a microscopic simulation software package was conducted

in this study. The results showed appropriate final goodness-of-fit but the GA algorithm showed

high computational cost as it took the algorithm 2 months and 18,000 iterations to converge,

given the small scale of the problem. Ben-Akiva et al., (2012) applied the simultaneous

calibration methodology to a city-scale highly congested urban network in the city of Beijing.

The network consists of 1,698 nodes connected by 3,180 directed links in an area of

approximately 35 square miles. There are as many as 3000 OD pairs in the study network. Time

dependent OD flows, route choice parameters, speed-density relationships and segment

capacities were calibrated. Sensor counts in expressways and travel times from GPS equipped

floating cars were used as measurements in the calibration. However, the experiment results

showed room for improvement in terms of the goodness-of-fit to observed values.

 41

3. ETSF: An Entry-Time based Supply

Framework for City-scale Traffic

Simulation

The computational complexity of mesoscopic traffic simulations is directly proportional to the

number of vehicles in the simulated traffic scenario (Wen, 2009). It makes simulating congested

traffic scenarios much more costly than simulating uncongested traffic scenario. To tackle the

problem of high computational cost when simulating congested traffic scenarios, we proposed a

novel simulation supply framework named ‘Entry Time based Supply Framework (ETSF)’.

ETSF has lower a computational complexity than the current mesoscopic supply framework and

more importantly, the computational complexity of ETSF is not sensitive to the number of

vehicles in the simulated traffic scenario (Xu et al., 2014). This chapter firstly introduces the key

concepts and the simulation procedure in ETSF. Then, the trade-off in ETSF is discussed.

Finally, ETSF is investigated and evaluated in an artificial road network and a real-world city-

scale road network.

3.1 Key Concepts in ETSF

Entry Time based Supply Framework (ETSF) is an extension of time-stepped mesoscopic traffic

framework. Similar to the mesoscopic traffic simulation framework (in Section 2.2.3), a road

network in ETSF is modeled as nodes, links, segments and lanes. Figure 10 shows an example of

vehicles moving in a lane in ETSF. The key idea is to model vehicles as a traffic fluid, when

vehicles stay in the lane, and as individual vehicles, only when vehicles need to change lanes.

Key concepts include: a speed table of a lane, entry time of a vehicle, the accumulated movement

distance (t)acmD , entry_time_to_pass of a lane (tp) and entry_time_to_queue of a lane (tq).

 42

V1 V2 V3 V5 V6V4

time speed

T 60

T-1 60

T-2 80

T-3 80

T-1 T-3 T-4

T-4 90

entry_time_to_pass

lane 1

V7 V8

T-5

V9

entry_time_to_queue

T-5 90

upstream downstream

Figure 10: An example of vehicles in a lane of a link in the ETSF

First, each lane of the link has a speed table, which contains the speed of the lane at recent

time steps. In a time step, all vehicles on the lane move using the corresponding speed in the

table. For instance, at simulation time T, vehicles’ speeds are 60 km/h. Second, each vehicle on

the lane has an attribute: entry_time, which refers to the simulation time when the vehicle enters

the lane. Third, given the speed table of a lane and the entry time of a vehicle on the lane, the

accumulated movement distance (or offset) of the vehicle is calculated by:

'
(t') ((t)* t) ((t')*(t' t'))acm t t T

D v v

 (3.1)

where, t’ is the entry time of the vehicle, 't
 is the following time step after the vehicle enters the

lane, T is the current time, ∆t is the simulation time step, and v(t) is the speed of the lane at time

t. The first half represents the movement distance between 't
 and T; The second half represents

the movement distance during the time step when the vehicle enters the lane. Fourth, vehicles in

a lane are ordered based on their entry time. Since all vehicles are moving using the same speed,

the vehicle order is not changed. Besides, lane changing behaviours are not allowed in ETSF.

Fifth, each lane has a key attribute: entry_time_to_pass (tp), which means that "if the entry time

of a vehicle is earlier (or smaller) than tp, its accumulated movement distance is bigger than the

length of the lane and then the vehicle has the potential to pass the current lane". It is used to

determine whether a vehicle can pass to the next link. The accumulated movement distance at

time tp is equal to the length of the lane. For example, in Figure 10 the current time is T and tp on

the lane is T-5. It means that vehicle V9 might pass to the next link if other conditions are also

 43

satisfied (these other conditions are explained later). Sixth, each lane has another key attribute:

entry_time_to_queue (tq), which means that "if the entry time of a vehicle is earlier (or smaller)

than tq, the vehicle either passes the lane or enters the queue". It is used to determine whether a

vehicle is in a queue. The accumulated movement distance at time tq is equal to the length of the

non-queue part of the lane. For example, in Figure 10 the current time is T and tq on the lane is

T-4. It means that vehicles 5-9 are in the queue. Note that the accumulated movement distance of

V5 is smaller than the lane’s length, but V5 is in the queue, because it reaches the end of the

queue.

Figure 11 further explains the concept: entry_time_to_pass of a lane. The x-axis corresponds

to time (but in a reversed direction), and the y-axis corresponds to the accumulated moving

distance of a vehicle. The current time step is T. At each time step t, there is a speed v(t) on the

lane, which is also the slope during the time step in Figure 11. The height of the gray area is

equal to the accumulated movement distance, which is also the length of the lane. The time in the

right border of the gray area is named as the entry_time_to_pass of a lane at time T. Vehicles

(e.g. V9), whose entry time is in the right side of (or smaller than) tp, might be able to pass the

lane.

time

accumulated

movement

distance

T T-1 T-2 T-3 T-4 T-5 T-6

v(t-2)

v (t-
1)

v (t-
3)

v (t-
4)

v (t
-5

)

v (t-
6)

length of

the lane
entry_time_

to_pass (tp)

entry_time

of vehicle V9

Figure 11: The entry_time_to_pass (tp) of a lane

 44

3.2 The Simulation Procedure

The simulation procedure in ETSF is shown in Table 6. The simulation procedure consists of 4

layers of loops. First, ETSF has a loop of simulation time steps. Second, during a time step,

ETSF has a loop of simulating each link. Third, each link contains multiple lanes. Fourth, ETSF

simulates the traffic dynamics in each lane. These 4 layers of loops are similar to the current

mesoscopic simulation framework (see Table 4). Lanes are basic processing units in ETSF. This

section explains the calculations of tp and tq of a lane, queue length and empty space of a lane,

which are unique in ETSF.

Table 6: The simulation procedure in Entry Time based Supply Framework (ETSF)

Inputs: A road network, a traffic scenario, parameters of flow models

Outputs: Aggregate road measurements (e.g. density and queue) at each time step;

1 Initialize a macroscopic traffic simulation environment

2 for each time step do

3 … load new vehicles;

4 … for each link in the network do

5 … ... for each lane in the link do

6 … calculate density and speed of the lane and then update speed table;

7 … calculate entry_time_to_pass (tp);

8 … for i ← 1 to the output capacity do //only few vehicle in a lane

9 … reversely check vehicle passing from the downstream end;

10 … end for

11 … update entry_time_to_queue (tq) and the queue length;

12 … update empty space of the lane;

13 … ... end for // loop lanes

14 … end for // link loop

15 … output simulated traffic condition at this time step

16 end for // time loop

The speed of a lane is calculated using the speed-density relationship, which was explained

in Section 2.2.1. After that, the entry_time_to_pass (tp) of a lane is updated in Step 7. When the

simulation starts, the entry_time_to_pass (tp) of a lane is initialized to be invalid (e.g. -1), as the

accumulated movement distance is 0. When the simulation time advances, the accumulated

movement distance at time tp increases and becomes larger than the lane's length. Then, tp is

increased, so that the accumulated movement distance at tp is equal to the lane's length.

Continuing the example in Figure 11, Figure 12 shows the update of the entry_time_to_pass (tp)

 45

of a lane. As the simulation time goes from T to T+1, tp is updated that the distance between

()T

acm pD t and 1()T

acm pD t is equal to the movement distance during [T, T+1]. There is another way

to understand the procedure of updating the entry_time_to_pass (tp) of a lane. In the beginning,

when the traffic simulation starts, since no vehicle can pass the lane, tp is invalid (e.g. -1). In the

end, when the traffic simulation ends, most vehicles are able to pass the lane (if not blocked), it

means tp is near to the end of the simulation period. During the simulation period, the procedure

of updating the entry_time_to_pass (tp) of a lane is just to check whether tp can be increased to

allow more vehicles on the lane to pass.

timeT T-1 T-2 T-3 T-4

v(t-2)

v (t-
1)

v (t-
3)

v (t-
4)

T+1

v (t
)

 (tp
T) (tp

T+1)
increased

distance

accumulated

movement

distance

()T

acm pD t

1()T

acm pD t

Figure 12: The update of the entry_time_to_pass (tp) of a lane

Steps 8-10 explain how to pass a vehicle from a lane to the next lane. First, vehicles in a lane

are checked in a reverse order, from the downstream end to the upstream end. It is because the

behavior of an upstream vehicle depends on whether downstream vehicles can pass the current

lane or not. Second, the maximum number of passing vehicles is the output capacity of the lane.

Thus, only a smaller number of downstream vehicles are checked during a time step. For

example, when simulating a freeway lane, whose lane capacity is 1800 v/h, the theoretical

maximum number of passing vehicles during a time step (e.g. 2 seconds) is only 1. It means only

 46

the most downstream vehicle is checked during a time step. Third, as shown in Figure 13, there

are four rules to determine whether a vehicle can pass a lane:

1) There is available output capacity in the current lane.

2) There is available input capacity in the next lane.

3) There is available empty space in the next lane.

4) The vehicle's entry time is smaller than the entry_time_to_pass (tp) of the lane.

Fourth, if one vehicle cannot pass the current lane, all upstream vehicles are blocked. Thus, there

is no need to check the upstream vehicles. Fifth, if multiple vehicles can pass lanes and go to the

same next lane at the same time, the vehicle with the maximum waiting time, which is (entry

time - tp), is processed first. Finally, In ETSF, a vehicle’s status (e.g. entry time and next lane) is

updated only if the vehicle passes from the current lane to the next. Compared to updating each

individual vehicle’s status (e.g. locations) at each time step in the current mesoscopic supply

framework, ETSF tends to be more time efficient and less sensitive to the level of congestion.

lane 1 lane 2

check 1: output capacity of lane 1

check 2: input capacity of lane 2

check 3: empty space of lane 2check 4: entry-time of the vehicle

Figure 13: Four rules to determine whether a vehicle can pass a lane

Step 11 is the calculation of the entry_time_to_queue (tq) and the queue length of a lane. The

accumulated movement distance at time tq is equal to the length of the non-queue part of the lane.

Thus, if there is no queue on the lane, tq = tp; if there is a queue on the lane, tq > tp. In the queue's

expansion phase, the first upstream vehicle, which is not in the queue, is checked whether the

vehicle can reach the end of the queue. If yes, tq of the lane is updated to be the entry time of the

vehicle and the queue length is increased by the length of the vehicle. Otherwise, tq of the lane

and the queue length are not changed. In the queue's shrink phase (when vehicles in the queue

pass to the next lane), tq of the lane is not changed and the queue length is reduced by the length

of the vehicle.

 47

During a traffic simulation, the entry_time_to_pass (tp) of a lane is increased from 0 to the

end time step, thus, the amortized update cost at a time step is θ(1). Second, the number of

simulated individual vehicles at a time step is similar to the flow of the lane during the time step,

and constrained by the output capacity of the lane. Third, the calculation of tq and the queue

length of a lane require one to to scan the vehicles on the lane. However, each vehicle is checked

only once on the lane. Thus, the aggregate cost is actually linear to the aggregate flow of the

lane. In summary, the time complexity of ETSF framework is:

6 7(*NLi*NLa*(C *))
3

TT C f
t

 (3.2)

-> (*NLi*NLa*)
3

TT f
t

 (3.3)

-> (*)
3

TT m
t

 (3.4)

where, 3t is the simulation time step, NLi is the number of links, NLa is the average number of

lanes of each link, f is the average number of vehicles passing a lane, 6C is a constant

amortized cost to update the speed, tp and empty space of the lane, 7C is a constant amortized

cost of passing a vehicle on the lane. NLi*NLa* f is actually the aggregate number of vehicles

passing adjacent links in the road network. If we use m to denote this number, the time

complexity becomes (*)
3

TT m
t

.

Compared with the time complexity of the current mesoscopic simulation framework

(Formula 2.11 in Section 2.3.2), the cost of ETSF is not related to the number of vehicles on

lanes (n), but is sensitive to the average number of vehicles passing adjacent lanes (f). The

most important benefit is that the computational complexity of ETSF is not sensitive to the level

of congestion in the traffic scenario. Once a vehicle chooses a route, the number of passing

adjacent lanes for the vehicle is a fix number. It means that simulating a more congested traffic

scenario does not necessarily indicate a longer execution time in ETSF. Moreover, f is much

smaller than n in most cases. For example, given a 1000 meter lane whose output capacity is

1800 vehicle/hour, a time step is 2 seconds and the average occupancy length of a vehicle is 6

meters. Then, the maximum value of n is 166.7 while the maximum value of f is 1. As shown

 48

in Figure 14, in uncongested traffic scenarios, when the level of demand is much lower than the

road capacity, the computational cost of both the ETSF and the current mesoscopic simulation

framework are proportional to the level of demand. Second, in congested traffic scenarios, the

number of vehicles on lanes increases fast because of higher road densities, thus, the time cost of

the current mesoscopic simulation framework grows fast. However, the number of vehicles

passing a lane is decreased in congested scenarios, thus, the time cost of ETSF is reduced. Thus,

in congested traffic scenarios, ETSF tends to be more efficient and more importantly more

computational stable than the current mesoscopic simulation framework.

Figure 14: Comparison of n and f in different levels of traffic demand

3.3 Tradeoff in ETSF

Compared with current time-stepped mesoscopic simulation framework, ETSF makes the

computational cost of simulating a traffic scenario less sensitive to the total number of vehicles

in the traffic scenario and is proven to significantly reduce the time cost of simulating a

congested traffic scenario (in Section 3.4 and Section 3.5). Moreover, there is no loss of accuracy

in ETSF because the speed-density model and the queue model are fully supported in ETSF.

Compared with event-driven supply framework (Dynameq, Mezzo and MATSIM), ETSF might

be inefficient because it has to update the system status time step by time step, although it has

 49

decreased the computing cost in each time step. However, it has better accuracy in computing

lane speed and queue length in that it updates them every time step instead of assuming that

vehicles have exactly the same speeds after they enter the lane.

The trade-off of ETSF is that positions of individual vehicles are not explicitly calculated in

ETSF. Because in many city-scale simulation applications, the aggregate simulated results (e.g.

the speed on each link) are much more important than disaggregate simulated results (e.g. the

speed of a particular vehicle). However, there are some simulation applications, which require

the simulated locations of individual vehicles. In ETSF, a vehicle’s position can be calculated as

follows. If a vehicle’s entry time is later than (or larger than) the tq of the lane, the vehicle is in

the moving part of the lane. Then, the vehicle’s location is its accumulated movement distance,

which is calculated using the Formula 3.1. If a vehicle’s entry time is earlier than the tq of the

lane, the vehicle is in the queue part of the lane. Then, the vehicle’s location depends on its

location in the queue. The requirement to calculate individual vehicle’s location increases the

time cost of ETSF. In an extreme case, if locations of all vehicles at each time step are required,

ETSF has no benefits compared to the current mesoscopic simulation framework.

3.4 Synthetic Tests

The effectiveness and sensitivity of ETSF is investigated in a synthetic test, before it is evaluated

in a city-scale traffic simulation.

3.4.1 Experimental Design

The experiments were based on a state-of-the-art mesoscopic traffic simulation software,

DynaMIT (Dynamic Network Assignment for the Management of Information to Travelers),

which employed an experimental road network based on the Singapore expressway road network

and some typical traffic scenarios. Its source code was revised to implement ETSF and used to

carry out the following four groups of experiments. In this section, the prerequisite ‘vehicles on

the same lane are moving using the same speed at a time step’ is applied in both the current

framework and the proposed ETSF framework. So the simulation results (e.g. road-based speed

and density) are exactly the same. Thus, this section focuses mainly on the computational

 50

efficiency. The experiments were executed on a computer with a 2.83GHz Intel Core 2 Quad

processor, 4GB memory and Ubuntu Linux 12.10. To provide trustworthy results, each result in

the following graphs represents the average of 10 runs.

Figure 15 shows the computer representation of the expressway system for Singapore road

network. This expressway system consists of expressway links and ramps connecting local roads

with the expressway. The network has been modeled using a detailed representation of the

length, geometry and lanes of each link. Tailored from the above expressway network (the red

thick part), a prototype topology of the road network is illustrated in Figure 15 with bold red

links. The purpose is to control the road length and the congestion level in the experiments. The

prototype network has 6 nodes and 5 links. Each link has one lane. Each lane has the same length

(1000 meters), the same input capacity (1800 vehicles/hour) and the same output capacity (1800

vehicles/hour). As shown in Table 7, there are 4 Origin Destination (OD) pairs and each OD pair

has only one path. Vehicles are moving from {node 1 and node 2} to {node 5 and node 6}.

Vehicles from node 1 and node 2 are firstly merged at node 3 and then are split to flow to node 5

and node 6. The period of simulation scenario is 10 hours. There are three configurable

parameters: the length of a link, the demand level of each OD pair and the simulation time step.

The default length of a link is 1000 meters. Different lengths of a link {100, 200, 500, 2000,

5000, 10000 meters} are tested. The default demand level of each OD pair is 300 v/h. It means

300 vehicles are evenly loaded into the simulation for each OD pair during each hour. In this

case, the accumulated flow in lane 3 is around 1200 v/h. Different demand level {0, 100, 200,

400, 500 v/h} are tested. The default simulation time step is 2 seconds. Different simulation time

steps {4, 6, 8, 10, 12, 14, 16, 18, 20 seconds} are tested.

 51

1

2

3

5

6

4

Figure 15: The Singapore expressway and a prototype network (node: 1-6)

Table 7: OD Pairs and Paths in the prototype network

ID Origin Destination Paths

1 1 5 1->3->4->5

2 1 6 1->3->4->6

3 2 5 2->3->4->5

4 2 6 2->3->4->6

3.4.2 Length of Links

This experiment is designed to compare the execution time of the ETSF and current mesoscopic

simulation framework with different settings of link lengths. The results are shown in Figure 16.

The x-axis corresponds to the length of a link and the y-axis to the execution time of simulating

the traffic scenario. The blue solid line represents the ETSF and the red dashed line represents

the current supply framework. The time cost of the current mesoscopic simulation framework is

sensitive to the length of a link. In fact, as the length of a link increases, the number of vehicles

on the link increases and the simulation time linearly increases. On the other hand, as shown in

Formula 3.2, the cost of simulating vehicle movement in the ETSF is only related to the flow of

the link. Thus, ETSF is not sensitive to the length of a link. When the length of a link is 100

meters, the average number of vehicles on a link in this scenario is around 1.0. The execution

times of both frameworks are similar. However, when the length of a link is 5000 meters, the

average number of vehicles on a link is around 60. The execution time of the ETSF is only 25%

of the execution time of the current framework.

 52

3.4.3 Demand Level

This experiment is designed to compare the execution time of the ETSF and current mesoscopic

simulation framework with different settings of demand levels. The results are shown in Figure

17. The x-axis corresponds to the demand level of each OD pair and the y-axis to the execution

time of simulating the traffic scenario. First, both supply frameworks are sensitive to the number

of vehicles loaded into the scenario. However, the execution time of the ETSF increases much

slower than the current supply framework. Second, when the demand level is 0, which means

there is no vehicles loaded into the scenario. The execution time of ETSF is slightly worse than

the current supply framework, because ETSF needs to update tp and tq. Third, when the demand

level of each OD pair is 500 v/h, the execution time of the current mesoscopic simulation

framework increases faster, while the execution time of ETSF is more stable. It is because when

the demand level is 500 v/h, the accumulated demand to enter link {3->4} (2000 v/h) is higher

than the input capacity of the link, so congestion happen in link {1->3} and link {2->3}. It shows

that the execution time of the current mesoscopic simulation framework is sensitive to network

congestion while the execution time of ETSF is insensitive to network congestion.

3.4.4 Simulation Time Step

Both the current mesoscopic simulation framework and the ETSF are sensitive to the setting of

the simulation time step. When the simulation time step is small (e.g. 0.5 seconds), f will be

low and the computational complexity of the ETSF is proportional to the inverse of the

simulation time step. Thus, reducing the simulation time step will increase the complexity of the

ETSF. When the simulation time step is large, the computational complexity of ETSF cannot be

lower than a certain value. The certain value is the accumulated time cost to move vehicles

between links, which are not related to the size of the simulation time step.

This experiment is designed to compare the execution time of the ETSF and the current

mesoscopic simulation framework with different simulation time steps. The results are shown in

Figure 18. The x-axis corresponds to the simulation time step and the y-axis to the execution

time of simulating the traffic scenario. First, when the simulation time step increases, the

execution times of both supply frameworks decrease because the required frequency to update

the simulation system status is reduced. Second, as the simulation time step increases, the benefit

 53

Figure 16: The execution time of ETSF and the length of a link

Figure 17: The execution time of ETSF and the demand level

Figure 18: The execution time of ETSF and the simulation time step

 54

of the ETSF becomes smaller. This is because as the simulation time step increases, the number

of vehicles passing a link (f) increases. In an extreme case, if all vehicles in a link can pass the

link at a time step, ETSF has no advantage over the current supply framework. However, in real-

world mesoscopic traffic simulations, the simulation time step cannot be too large. For example,

in DynaMIT, the maximum movement distance of a vehicle during a time step should be smaller

than the minimum length of all links, so that vehicles cannot cross more than 1 link during a time

step. In DynaMIT, the simulation time step is, in most cases, smaller than 5 seconds.

3.4.5 Integrated Scenarios

This experiment is designed to compare the execution time of the ETSF and current mesoscopic

simulation framework in special scenarios. Three different lengths of a link are evaluated: long

(10000 m), medium (2000 m) and short (100 m). Three different demand levels are evaluated:

high (500 v/h), medium (300 v/h) and low (100 v/h). The results are shown in Figure 19. For

each case, both frameworks are executed. First, in the special case with short links and low level

of demands, the execution times of both supply frameworks are similar. Second, when the length

of a link increases and the level of demand increases, ETSF is more time efficient than the

current framework. Third, in the special case with medium length of links and medium level of

demands, the execution time of ETSF is around a half of the execution time of the current supply

framework. Finally, the special case with long links and high level of demands, ETSF reduces

95% of the execution time of the current supply framework. This experiment shows that ETSF

outperforms the current mesoscopic simulation framework in congested traffic scenarios.

 55

demand level

length of link

ETSF:31 ms

Current:102 ms
long

medium

short

highmediumlow

ETSF:31 ms

Current:48 ms

ETSF:31 ms

Current:30 ms

ETSF:39 ms

Current:264 ms

ETSF:38 ms

Current:80 ms

ETSF:34 ms

Current:36 ms

ETSF:47 ms

Current:1031 ms

ETSF:47 ms

Current:294 ms

ETSF:44 ms

Current:48 ms

Figure 19: Comparisons of ETSF and the current mesoscopic simulation framework

3.5 Case Study

3.5.1 Experiment Setting

The Singapore expressway system is studied in this section. As in Figure 20, the expressway

system consists of expressway segments and ramps connecting local roads with the expressway.

The network has been modeled using a detailed representation of the length, geometry and lanes

of each segment. The expressway system is made up of 831 nodes connected by 1040 links. Each

link has one or multiple segments based on the road geometry and there are 3388 segments. The

distribution of the length of the segments is shown in Figure 21. Most segments' lengths are in

the range (300, 600). There are some short segments, which are mostly on-ramps or off-ramps,

and there are also a few long segments. The simulation time step is 1 second. The demand is

modeled as trips from 4106 OD pairs. Each origin is an on-ramp, where vehicles enter the

expressway system from local roads, and each destination is an off-ramp, where vehicles depart

the network. The configuration and calibration of the OD Matrix are explained in Section 6.5,

and the calibrated OD matrices in two periods: Non-Peak-Hour (4:00AM to 5:00AM) and Peak-

Hour (7:00AM to 8:00AM) are used in this section. In particular, there are in total 32,004

vehicles loaded into the non-peak traffic scenario and 106,386 vehicles loaded into the peak

 56

traffic scenario. The routes of vehicles are pre-calculated using Path Size Logit model (Ben-

Akiva et al., 1999) and routes are not changed during the traffic scenarios. The experiments were

executed on a computer with a 2.83GHz Intel Core 2 Quad processor, 4GB memory and Ubuntu

Linux 12.10.

Figure 20: The Singapore expressway road network

Figure 21: The distribution of the length of the segments in Singapore expressway

 57

3.5.2 Results

The efficiency of ETSF is demonstrated in a real world city-scale traffic simulation. The results

are shown in Table 8. In the first non-peak traffic scenario, ETSF performs a bit worse than the

current traffic framework. This is expected, since in this scenario, the average travel time is

smaller than 20 minutes. It means there are around 10,000 vehicles moving on the road network

and there are only a few (less than 2) vehicles on each lane in average. The additional time cost

comes from the calculation of tp, tq on each lane. In the second peak traffic scenario, ETSF is

significantly better than the current traffic framework. As the number of vehicles loaded in a

traffic scenario increases from 32,004 to 106,386 (3.32 times larger), the simulation time of the

current traffic framework increase from 1863.9ms to 6690.2ms (3.59 times longer). The time

cost of the current traffic framework is almost linear to the number of loaded vehicles. Note that

there is no traffic congestion (e.g. spill-back) in the peak traffic scenario and the average travel

speed is still high. The simulation time of ETSF only increase from 1951.6ms to 3448.0ms (1.77

times longer). The additional time cost of ETSF comes from more vehicles crossing between

segments. In this traffic scenario, ETSF performs almost twice better than the current traffic

framework, which shows the efficiency of ETSF.

Table 8: Evaluation of the ETSF on Singapore expressway network

ID Time period
Total no. of

vehicles

Simulation Time (ms)

Current ETSF

1

Non-Peak-Hour

(4:00AM to

5:00AM)

32,004 1863.9 1951.6

2

Peak-Hour

(7:00AM to

8:00AM)

106,386 6690.2 3448.0

3.6 Summary

To tackle the problem of high computational cost when simulating congested traffic scenarios,

this chapter proposed a novel Entry Time based Supply Framework (ETSF). The key idea is to

model vehicles as a traffic fluid, when vehicles stay in the lane, and as individual vehicles, only

when vehicles need to change lanes. ETSF has a lower computational complexity than the current

 58

mesoscopic supply framework and more importantly, the computational complexity of ETSF is not

sensitive to the number of vehicles in the simulated traffic scenario. Experiment results showed that

ETSF outperforms the current supply framework, by reducing the execution time by 50% - 95%

in large road networks and congested traffic scenarios. In the global research framework of

mesoscopic traffic simulations, ETSF offers an innovative and time-efficient view to design the

traffic dynamics on links. Combined with the parallel/distributed simulation technologies, ETSF

is a candidate scalable supply framework for simulating city-scale traffic simulations.

 59

4. Sim-Tree: A Two-Dimensional Spatial

Index for City-scale Traffic Simulation

The spatial index was introduced in Section 2.3.3. This chapter firstly explains the shortcoming

of using state-of-the-art spatial indexes in city-scale traffic simulations, and then introduces the

motivations and the Sim-Tree. Finally, the efficiency of the Sim-Tree is demonstrated in a real-

world parallel city-scale traffic simulation (Xu et al., 2014).

4.1 The Problem

The tree-based spatial index (Guttman, 1984; Beckmann et al., 1990) is a popular candidate

solution to index moving objects in two-dimensional road networks. Figure 22(A) shows an

example R*-tree based spatial index (the fanout is 3). Each node in the tree can have child nodes.

Each leaf node is mapped to a two-dimensional area in the simulated road network and contains

a list of objects located in this area. Each parent node has a mapping area which contains all

child nodes’ mapping areas and has a pointer to the list of child nodes. With such a tree structure,

to do a region query, we do not need to check all objects in the simulated road network. Instead,

we only need to scan the tree structure to get leaf nodes whose mapping areas overlap the target

region and then check only objects in these leaf nodes. In order to make region queries efficient,

the tree structure should be balanced, which means that objects in the simulated road network are

evenly distributed under leaf nodes of the tree structure.

A drawback of tree-based spatial index is that it may adjust (or rebalance) its tree structure

when vehicles update locations. As shown in Figure 22, the example R*-tree is balanced in (A).

But when a vehicle v2 moves from R1 to R2, the tree is not balanced any more in (B). A split

operation is executed and half of the drivers are re-inserted. The mapping areas of R1 and R2

also change. The rebalanced tree structure is shown in Figure 22(C). When a vehicle v4 moves

 60

from R2 to R1, another rebalance operation is executed. The rebalanced tree structure is shown

in Figure 22(D). Rebalancing the tree structure aims to guarantee that future region queries are

efficient. However, in city-scale microscopic traffic simulation, a large number of vehicles are

updating their locations at each simulation time step, making the time cost to update vehicles’

locations and to adjust the tree structure expensive. The root of the inefficiency in R-Tree family

is that R-Tree family is designed for scenarios with a large amount of queries and a limited

number of updates, which is not true in city-scale traffic simulations. In our case studies to

simulate the whole Singapore network, the time cost to manage an R*-Tree takes 10%-30% of

the total simulation time, depending on the number of simulated vehicles. So, the question is “is

there a way to build an efficient two-dimensional tree-based spatial index without incurring

expensive update cost in a city-scale microscopic traffic simulation?”

R1 R2 R3

V1 V2 V3 V4 V5 V6 V7

v2
v5 v6v3

v7

v1

R1 R2 R3

R1 R2 R3

V1 V3 V4 V5 V6 V7V2

R1 R2 R3

V1 V2 V3 V4 V5 V6 V7

R1 R2 R3

V1 V4 V2 V3 V5 V6 V7

v4
v2 v5 v6v3

v7

v1

R1 R2 R3

v4

v2 v5 v6v3
v7

v1

R1 R2 R3

v4
v2 v5 v6v3

v7

v1

R1 R2 R3

v4

(A) (B)

(C) (D)

Figure 22: An example two-dimensional R*-tree based spatial index

There is another reason that makes this question important. Parallel microscopic traffic

simulation is becoming popular for supporting the simulation of city-scale traffic scenarios. The

main idea of parallel microscopic traffic simulation (Nagel at al., 2001, 2002) (Cameron et al.,

1996) is to assign vehicles to cores (or CPUs), and then vehicles can be simulated in parallel.

However, it is not trivial to parallelize the location update function, because parallel location

updates may conflict with each other when adjusting the tree structure. Thus, the expensive serial

 61

time cost of the location update function in two-dimensional tree-based spatial index also

reduces the scalability of parallel microscopic traffic simulation.

4.2 The Key Ideas

This section introduces two observations in real-world traffic systems and traffic simulations,

which are also the motivation to design a new spatial index.

Observation 1: During a short period (e.g. 5 minutes) and a reasonably large area (e.g. a

100 meter road), the number of vehicles in the area is stable.

For example, Figure 23(A) shows the distribution of the number of vehicles (per second) in

5 minutes on a 100 meter section of a real-world 4-lane road on the Ayer Rajah Expressway in

Singapore. The average number of vehicles in the 5 minutes is 15.8 and the standard deviation is

2.85. 94% of the numbers of vehicles in the 5 minutes are in the range [10, 20]. Figure 23(B)

shows the trend of the number of vehicles in the 5 minutes on the section. It can be seen that

whenever the number of vehicles departs from the average number of vehicles during the period,

the number of vehicles will inadvertently return to the average number of vehicles.

The traffic flow theory gives another explanation. The number of drivers in an area is

determined by the drivers’ demand on the area and the supply capacity of the area. During peak

hours, the drivers’ demand on the area is high, so the expected number of vehicles in the area is

high. If an incident happens in the area, the supply capacity of the area is reduced, so traffic

congestion might happen and the expected number of vehicles in the area is also high. If both the

drivers’ demand on the area and the supply capacity of the area are not changed, during a short

period and a reasonably large area, the expected number of vehicles in the area is stable.

This observation means that if a balanced tree structure of a spatial index is built based on

the average road density in a road network during a period, the tree structure tends to be balanced

at each simulation time step within the period. More importantly, since the road density in a road

network is not sensitive to an individual vehicle’s location, there is no need to check or rebalance

the tree when individual vehicles update their locations. Building a balanced (and stable) two-

 62

dimensional spatial index based on the average road density in a road network during a period is

the main idea behind the Sim-Tree.

(A) The distribution of the number of vehicles (per second) in 5 minutes on the section

(B) The trend of the number of vehicles (per second) in the 5 minutes on the section

Figure 23: The observed road density on a Singapore expressway section

Observation 2: The region query function and the location update function are used

separately in a simulation time step in microscopic traffic simulations.

As shown in Figure 24, there are two phases in a simulation time step in microscopic traffic

simulations. In the query phase, vehicles use the region query function to get nearby objects,

 63

apply various travelers' behavior models to determine speeds, acceleration and locations. When

all vehicles complete the travelers' behavior models, the traffic simulation goes to the update

phase. In the update phase, vehicles use the location update function to update their new

locations in the spatial index for the next simulation time step.

This observation implies two things. First, there are no location updates in the query phase.

Thus, if a tree structure is balanced in the beginning of the query phase, all region queries in the

query phase are efficient. Second, there are no region queries in the update phase. Thus, an

imbalanced tree structure is acceptable in the update phase. In summary, we only need to check

and rebalance (if required) the tree structure once at the beginning of each simulation time step.

loop of vehicles
 use the range query function
 apply travelers' behavior models

Query Phase

loop of vehicles
 use the location update function

Update Phase

loop of simulation time steps

Figure 24: The region query function and the location update function

4.3 Sim-Tree

Motivated by the observations listed in Section 4.2, this section proposes Sim-Tree, a novel two-

dimensional tree-based spatial index for city-scale parallel microscopic traffic simulations.

4.3.1 Data Structure

The data structure of Sim-Tree is shown in Figure 25. Each node in the tree structure has pointers

to its child nodes and a pointer to its parent node. Each node has a two-dimensional mapping

area (e.g. a rectangle) in a road network. The root node is mapped to the whole road network.

The inner nodes are mapped to smaller areas. Each leaf node has an object buffer, which contains

a list of objects which are located inside the leaf node’s mapping area. Locations of objects (e.g.

 64

drivers and pedestrians) are modeled as points. Leaf nodes’ mapping areas have no overlap, thus,

each object is located inside only one leaf node.

N1 N2

N11 N12 N21 N22

Q112

Q111

Root

N111 N112 N121 N122 N211 N212 N221 N222

root node

Part I:

Binary Tree

Part II:

Object Buffer

Figure 25: The Sim-Tree data structure

The innovation of Sim-Tree is not on its shape, but on its fit to the requirements of city-scale

parallel microscopic traffic simulation. First, the binary tree structure in Sim-Tree is constructed

based on the average road density in a road network during a period (observation 1). Second, the

tree structure is checked only once in the beginning of each simulation time step (observation 2).

Third, Sim-Tree is designed to minimize the time cost of the location update function (with the

cost of non-optimal range query cost) to improve the scalability of parallel microscopic traffic

simulations.

This paragraph explains why a binary tree is used in Sim-Tree. Assuming that objects are

evenly distributed in leaf nodes and a query region is inside the mapping area of a leaf node, let

w be the average number of objects in a leaf node, k be the number of child nodes in each node

and N be the total number of leaf nodes, the average cost of a region query operation can be

estimated using a formule:

average query cost *log , (k 2,w 0)N

kk w (4.1)

where, logN

k is the depth of the tree structure, *logN

kk is the cost of finding the target leaf node,

and w is the cost of check objects in the target leaf node. The cost unit is a rectangle operation,

 65

e.g. to check whether a rectangle overlaps with another rectangle. To minimize the region query

cost, the best value of k is e (the calculation is in Appendix II). In this chapter, k is 2.

There are two types of road densities used in Sim-Tree: pre-simulation road density and in-

simulation road density. Pre-simulation road density indicates that the density on each road at

each time step for a similar traffic scenario is available before simulating a traffic scenario. Pre-

simulation road density is firstly divided into multiple periods, in order that the density pattern

within each period is not significantly different. For example, the road density in a normal day

can be divided into six periods: morning {pre-peak, peak, post-peak} and afternoon {pre-peak,

peak and post-peak}. Then, the average road density during each period is used to build the

initial balanced binary tree for that period. In-simulation road density indicates that the average

road density during a recent period (e.g. 5 minutes) is available when simulating a traffic

scenario. It is true for most microscopic traffic simulations (Yang, 1999; Cameron et al., 1996),

because the density of each road is an important output of traffic simulations.

This paragraph explains how to build a balanced binary tree in Sim-Tree, given the average

density on each road during a period. Firstly, the road network is evenly divided into a number of

cells (e.g. 1 m
2
). Then, each road is associated to multiple overlapping cells. Assuming vehicles

are evenly distributed on a road, the average densities on roads are transformed into the average

density in cells, according to the portion of road length in each cell. The relationship between

roads and cells is pre-calculated before simulating a traffic scenario and is not changed during

the simulation. Given the average density in cells at a time step (e.g. the simulation time is 0)

during the simulation, Sim-Tree starts with only a root node, which is mapped to the whole road

network (all cells) and contains all objects in the road network. Then, the node is divided into

two child nodes vertically or horizontally. Each child node is mapped to a smaller area and

contains half of the objects in the road network. These two child nodes’ mapping areas do not

overlap with each other. The division process is similar to the orthogonal recursive bisection

algorithm (see Section 2.3.4). After that, each child node is divided into two nodes using the same

method. The node division process is repeated until:

1. The average number of objects in one node is smaller than 5.

2. The size of one node’s mapping area is smaller than a pre-defined threshold.

 66

Rule 1 means that if there are no more than 4 objects in a node, there is no benefit to divide

the node into 2 child nodes. If the node is divided into 2 child nodes, the depth of the branch is

increased by 1 and the cost of finding the correct leaf node is increased by two rectangle

operations. At the same time, the benefit comes from checking less number of objects. In the best

case, if objects are evenly distributed in the two child nodes, the benefit is also two rectangle

operations. Thus, if the number of objects in a node is not more than 4, there is no benefit to

divide the node. In traffic simulations, drivers are configured to use the same-sized rectangles in

the region query function. Rule 2 means that if the mapping area of a node is smaller than a pre-

defined threshold (e.g. ¼ of the rectangle’s size), a driver’s region query tends to contain the

mapping area of the node. In this case, all objects contained in the node can be returned

immediately without additional checking. Thus, there is no benefit to divide the node. If the time

cost of range queries from pedestrians is significant, the rectangle size of pedestrians’ query

region should be used instead.

4.3.2 Functional Design

As shown in Table 9, Sim-Tree has five public functions and two private functions. The first

function is InitializeTreeStructure. It is used before a simulation run. This function builds a

balanced tree structure based on the historical road density in a road network. The second public

function is Insert. It is used to insert a new object in Sim-Tree. After inserting an object in Sim-

Tree, other objects can query (or can see) this object using the region query function. Besides, an

object is automatically removed from Sim-Tree when the object is removed from the simulation.

The third public function is RegionQuery. Given a target rectangle, this function scans the tree

structure from the root node and finds all leaf nodes whose mapping areas overlap the target

rectangle. Then, this function checks objects in these leaf nodes to determine which objects are

in the target rectangle. The next is BottomUpRegionQuery. This function has the same purpose

as the function RegionQuery, but it is implemented in a different way. The bottom-up region

query function is explained in Section 4.3.4. The last public function is UpdateAll. This function

is used once in each simulation time step to update objects’ new locations in the Sim-Tree. If a

vehicle’s new location is still inside its current leaf node, there is no need to update anything.

Otherwise, the vehicle will be moved to the appropriate leaf node. The two private functions are

used by Sim-Tree to check and rebalance its tree structure. The rebalance function is explained in

 67

Section 4.3.3. Note that the function InitializeTreeStructure is not a strictly mandatory function,

because Sim-Tree can rebalance its tree structure. However, starting from a reasonable tree

structure and reducing (even disabling) rebalancing is always better than starting from an empty

tree structure.

Table 9: The interface of the Sim-Tree

public functions:

1 InitializeTreeStructure ()

2 Insert (OneObject)

3 RegionQuery (A Rectangle)

4 BottomUpRegionQuery (OneObject, A Rectangle)

5 UpdateAll ()

private functions:

1 MeasureBalance ()

2 Rebalance ()

4.3.3 The Rebalance Function

Although the target of Sim-Tree is to avoid rebalancing the tree structure, there are two

conditions where Sim-Tree has to adjust its tree structure. First, if there is no prior information

about the average road density in a road network before simulating a traffic scenario, the Sim-

Tree has to learn the road density while the simulation is ongoing and adjust its tree structure.

Second, if road density in the road network changes significantly during a traffic scenario (e.g.

an incident happens), Sim-Tree has to learn new road densities and adjust its tree structure. To be

exact, a rebalance operation happens if any of the follow rules is true.

1. The average number of objects in all leaf nodes is smaller than 2.

2. The average number of agents in all leaf nodes is larger than 32 and the average rectangle

 size of all leaf nodes is larger than a pre-defined threshold.

3. The imbalance ratio of the tree structure is larger than 0.3.

Rule 1 means that if the depth of a Sim-Tree is too high and many leaf nodes have only 1

object or even have no object, the Sim-Tree needs to be rebalanced. Rule 2 means that if the

depth of a Sim-Tree is too low (there are a large number of agents in most of the leaf nodes) and

the average rectangle size of leaf nodes is larger than a pre-defined threshold (e.g. half of the size

of a driver’s query rectangle), the Sim-Tree needs to be rebalanced. If the average number of

agents in all leaf nodes is larger than 32, but the average rectangle size of the leaf nodes is

 68

smaller than the threshold, it means there is congestion in the road network. Since a typical

driver’s region query tends to contain leaf nodes’ mapping area and objects in leaf nodes can be

directly returned without checking individually, the region query function is still efficient and

there is no need to rebalance the tree structure. Rule 3 means that if the depth of Sim-Tree is

acceptable, but objects are not evenly distributed in leaf nodes, the Sim-Tree needs to be

rebalanced. Note that parameters in the 3 rules are configurable. The imbalance ratio of a tree

structure is measured by a formula:

() ()

 ratio
()

n N

n N

Objects n E N

The imbalance
Objects n

 (4.2)

where, N is the list of leaf nodes, Objects (n) means the number of objects in node(n)’s mapping

area, E(N) is the average number of objects in all leaf nodes. An imbalance ratio is a variable in

[0, 1]. A smaller imbalance ratio means that the tree structure is more balanced. For example, if

the imbalance ratio of a tree structure is 0, the tree structure is perfectly balanced.

There are three variables affecting a rebalance operation. The first variable is the checking

frequency (f), which controls the frequency to check the three rules. The second variable is the

imbalance ratio threshold (u). If the imbalance ratio of a tree structure is larger than u, the tree

structure is judged as imbalanced (the default value is 0.3). The last variable is the confirmation

threshold (c). Only if a tree structure is continuously judged as imbalanced more than c times, a

rebalance operation is started. A rebalance operation is to throw away the previous imbalanced

Sim-Tree and to re-build a new Sim-Tree using the average density on road during a recent

period and the pre-calculated relationship between roads and cells, which was explained in

Section 4.3.1. The sensitivity of these three variables to the performance of a rebalance operation

is studied in Section 4.3.4.

4.3.4 The Bottom-Up Region Query Function

A key step in a region query operation is to find a node whose mapping area is just large enough

to contain the target region. This node is named as the root proxy node of the region query

operation. Starting a region query operation from the root proxy node will achieve the same

result as starting the region query operation from the root node. As shown in Figure 26, a vehicle

 69

v2 queries nearby objects in a rectangle and N1 is the lowest node containing the rectangle.

Thus, N1 is the root proxy node of this region query. In case of a region query in city-scale

traffic simulation, the depth of the Sim-Tree is high and the distance from leaf nodes to the root

proxy node is much smaller than the distance from the root node to the root proxy node.

Motivated by this, we design a bottom-up region query function. The idea of a bottom-up region

query is to find the root proxy node of a vehicle’s region query operation from the leaf node of

the vehicle in a bottom-up direction, instead of from the root node of the tree structure in a top-

down direction.

（root proxy）N1

N11 N12

Root

v2
v1

v3

v4

v5

v6

(1
)

(2
) (3)

Figure 26: An example bottom-up region query by a vehicle (v2)

The bottom-up region query function consists of three steps. The first step is to check

whether the vehicle’s leaf node’s rectangle overlaps the vehicle’s query region. If not, a normal

region query function starting from the root node is executed. If yes, the next step is to find the

root proxy node of the region query in a bottom-up direction. The last step is to initiate a normal

region query starting from the root proxy node. As shown in Figure 26, a vehicle v2 queries

nearby objects in a rectangle. Firstly, the query rectangle overlaps with the vehicle’s leaf node

(N11), so a bottom-up region query is suitable. Second, an upward step is required to find the

root proxy node N1 from the leaf node N11. Finally, a normal region query is initiated from N1.

The bottom-up region query function is more efficient than a normal region query in city-

scale traffic simulation. There are two reasons. First, the query region of a vehicle is a rectangle

 70

surrounding the location of the vehicle. So, starting from the leaf node of the vehicle is a

reasonable choice. Second, as explained in Section 4.3.2, the mapping area of leaf nodes cannot

be much smaller than a vehicle’ query region. Thus, in most cases, only a small number of

upward steps are required to find the root proxy node in a bottom-up direction. In our

experiments to simulate 69,567 vehicles in the whole Singapore network, the average number of

upward steps is smaller than 3.

4.4 Qualitative Analysis

As shown in Table 10, the main difference between the Sim-Tree and the state-of-the-art

techniques is the criteria to rebalance its tree when the tree becomes imbalanced and inefficient.

First, a R*-Tree needs a balance check when any vehicle changes its location, a LRU-Tree needs

a balance check when a vehicle changes its location and the new location is outside of its

corresponding leaf nodes’ mapping area, a Sim-Tree needs a balance check only when all

simulated vehicles change their locations at the end of a simulation time step. Second, a R*-Tree

and a LRU-Tree need a rebalance if vehicles are not evenly distributed in the network, even in

the middle of a time step; a Sim-Tree needs a rebalance only if links’ mean densities change

significantly after a number of time steps. Given an example of simulating 1000 vehicles moving

on a road network in one time step, the R*-Tree needs to check its balance 1000 times; the LRU-

Tree needs to check its balance 50 times, assuming 5% of vehicles move out of the

corresponding leaf nodes’ mapping area; the Sim-Tree needs to check its balance only once.

Table 10: Qualitative Comparison of the Sim-Tree and the State-of-the-Arts

 Criteria of balance check Criteria of rebalancing

R*-Tree
Any vehicle changes its location Vehicles are not evenly distributed

in the network

LRU-Tree
A vehicle changes its location and the new

location is outside of its corresponding leaf

nodes’ mapping area

Vehicles are not evenly distributed

in the network

Sim-Tree
The end of a simulation time step Links’ mean densities change

significantly

 71

4.5 Case Study

4.5.1 Experimental Setting

This section introduces three major components of the testbed: a microscopic traffic simulator,

the Singapore road network and a city-scale traffic scenario.

SimMobilityST is an microscopic traffic simulator, developed by the Future Urban Mobility

in Singapore-MIT Alliance for Research and Technology (SMART). SimMobilityST is based on

the concept of agent-based or micro-simulation. Representation of individuals as agents in the

model is necessary to simulate how people will react in the future to new infrastructures, new

technologies and innovations in system management and policy changes. It simulates two kinds

of behaviors: (1) Decision-making behavior (like route choice) is taken when agents are at some

decision point e.g., a bus stop, and (2) Agent movement behavior occurs during the movement

(lateral or longitudinal) e.g., "Car Following" and "Lane Changing". SimMobilityST is also a

parallel microscopic traffic simulator to for simulating city-scale traffic scenarios. Vehicles in a

road network are evenly distributed on cores (or CPUs), so that vehicles are simulated in parallel.

The default simulation time step is 0.1 seconds.

Singapore is a country that is well-known for its advanced transportation system. Figure 27

shows the Singapore road network. The Singapore road network consists of expressways, major

arterial roads, collector roads and local roads. In this testbed, the Singapore road network is

modeled as a map with 10,702 nodes and 20,918 segments.

Figure 27: The Singapore road network

 72

A city-scale traffic scenario is created. The time is from 8:00AM to 8:30AM on a weekday.

69,567 trips are generated during this period, based on Singapore’s Household Interview Travel

Survey (HITS). The Singapore government conducts the HITS Survey every four to five years to

give transport planners and policy makers insights into residents’ travelling patterns. Note that

the purpose of this thesis is not to generate the exact trips on the Singapore road network, but to

generate a reasonable city-scale traffic scenario. The first 10 minutes are the warm up period.

4.5.2 Efficiency

This experiment evaluates the time cost of the region query function and the location update

function in Sim-Tree. The traffic scenario is to simulate 69,567 trips during a typical morning

period in the Singapore road network. The microscopic traffic simulator SimMobilityST is used

to simulate the traffic scenario using 1 worker thread. It means that the 69,567 trips are simulated

using only 1 thread on 1 core. Four tree-based spatial indexes are evaluated in this experiment:

the R*-tree, the LUR-tree, Sim-Tree and Sim-Tree-No-BU. The R*-tree and the LUR-tree were

introduced in Section 2.3.3. The only difference between Sim-Tree and Sim-Tree-No-BU is that

there is no bottom-up region query function (in Section 4.3.3) in Sim-Tree-No-BU.

The results are shown in Table 11. Four tree-based spatial indexes are evaluated and the

measurements are the cost of the location update function, the cost of the region query function

and the total cost of simulating the traffic scenario. First, and most importantly, the location

update cost of the Sim-Tree is significantly lower than both the R*-Tree and the LUR-tree. This

is expected, because the major target of Sim-Tree is to reduce the cost of the location update

function (based on observations 1 and 2). Compared with Sim-Tree, both the R*-Tree and the

LUR-tree spend time on operations (e.g. re-insert, split, merge, shrink and expand) in order to

rebalance the tree structure. In addition, when using Sim-Tree in this case study, for more than

90% of location updates, the vehicles’ new locations are still in the same leaf node, which

generates very little additional overhead. Second, the region query cost of Sim-Tree is also better

than the R*-Tree and the LUR-tree. This is an interesting finding. In the R*-Tree, one of the key

parameters is the fanout of a node (the number of child nodes). If the fanout is large, a node is

mapped to a large area in a road network, so the cost of the location update function is reduced

(because vehicles’ new locations tend to be in the same node). However, the cost of the region

 73

query function is also increased (as explained in Formula 4.1). Thus, the fanout of a node is a

compromise between the cost of the location update function and the cost of the region query

function. Based on the experiments, the fanout of a node in the R*-Tree in this case study is set

to 50 to minimize the total simulation cost. However, in Sim-Tree, there is no need to worry

about the fanout of a node, which is set to be 2, in order to optimize the region query function.

Third, compared with Sim-Tree-No-BU, the bottom-up region query function (in Sim-Tree)

reduces the cost of the region query function by 10.6%. Finally, Sim-Tree does not significantly

reduce the total simulation cost. This is expected, since Sim-Tree is designed to reduce the time

cost of the serial location update function and improve scalability.

Table 11: Performance comparison of four tree-based spatial indexes

 The location

update (sec)

The region

query (sec)

The total simulation

cost (sec)

The R*-Tree 9,643 2,660 32,047

The LUR-tree 1,266 2,633 23,741

Sim-Tree-No-BU 34 2,139 22,172

Sim-Tree 34 1,920 21,970

4.5.3 Scalability

This section evaluates the scalability of Sim-Tree. The traffic scenario is the same as the traffic

scenario in the first experiment. But the scenario is simulated using multiple threads (1-5 worker

threads). Each worker thread is executed exclusively on a core and the master thread is executed

on the sixth core. The results of simulating the traffic scenario in a parallel way using the R*-

Tree, the LRU-Tree and the Sim-Tree are shown in Figure 28. The x-axis corresponds to the

number of worker threads and the y-axis corresponds to the total time cost of simulating the

traffic scenario. The blue bar is the measured time cost and the yellow bar is the time cost if a

linear speedup (or a linear scalability) is achieved. If the blue bar is close to the yellow bar, it

means a close-to-linear speedup. For the R*-Tree, there is a gap between the blue bar and the

yellow bar. For example, the speedup of using 5 worker threads is only 2, because of the heavy

serial cost in the location update function. For the LUR-Tree, the speedup of using 5 worker

threads is improved from 2 to 3, due to reduced serial cost in the location update function. For

the Sim-Tree, the blue bar is close to the yellow bar, which shows the Sim-Tree significantly

improved the scalability of the parallel traffic simulation.

 74

(A) The total time cost of simulating the traffic scenario using the R*-Tree

(B) The total time cost of simulating the traffic scenario using the LUR-Tree

(C) The total time cost of simulating the traffic scenario using the Sim-Tree

Figure 28: The total time cost of simulating the traffic scenario in a parallel way

 75

4.5.4 The Rebalance Function

This experiment evaluates the rebalance function. The traffic scenario is the same as the traffic

scenario in the first experiment. However, there is no prior information about the average road

density in the road network. Thus, Sim-Tree needs to adjust its tree structure when the simulation

is ongoing. This traffic scenario is simulated using 5 worker threads. As explained in Section

4.3.3, there are three variables controlling the rebalance function: the checking frequency (f), the

imbalance ratio threshold (u) and the confirmation threshold (c). Based on our knowledge, the

imbalance ratio threshold (u) is the most critical parameter. In this case study, the checking

frequency (f) is 10, which means Sim-Tree checks its tree structure every 10 simulation time

steps (or 1 second). The confirmation threshold (c) is 1, which means a rebalance operation is

triggered only if Sim-Tree is imbalanced in two continuous checking. In this case study, different

imbalance ratio thresholds (u) are evaluated. The cost of the rebalance function consists of three

parts. The first part (Part 1) comes from checking whether a rebalance operation is required. The

second part (Part 2) comes from aggregating the road density in the road network during a

previous period. The third part (Part 3) comes from rebalancing a tree structure based on the

aggregate road density in the road network in the previous period.

Table 12 shows the performance of the rebalance function using different imbalance ratio

thresholds (u). The measurements are the number of the rebalance operations, the cost of the

rebalance function and the cost of the region query function. First, the cost of rebalancing the

tree structure (Part 3) dominates the cost of the rebalance function. Both the cost of checking

whether a rebalance operation is required (Part 1) and the cost of aggregating the road density in

the road network (Part 2) are small. Second, the cost of the rebalance operation (Part 3) is

sensitive to the imbalance ratio threshold (u). As u increases from 0.15 to 0.35, the number of the

rebalance operation is reduced from 632 to 2 and the cost of the rebalance operation is reduced

from 849 seconds to 2 seconds. The cost of a rebalance operation depends on the number of

vehicles in the road network. In this case study, the cost of a rebalance operation is around 1.0-

1.5 seconds. Besides, the cost of the region query function is not sensitive to u when u is smaller

than 0.3. Third, the rebalance operation is used twice (when u is 0.35), which is the same with

the case when u is 0.3. However, the time cost of the region query function when u is 0.35 is

higher. The reason is that the rebalance operations when u is 0.35 are triggered later, which

 76

makes region queries before the rebalance operations inefficient. In summary, in this experiment,

when there is no prior information about the road density in the road network, the rebalance

function (when u is 0.3) enables the Sim-Tree to do region queries efficiently with small

additional time cost.

Table 12: The performance of the rebalance function in the Sim-Tree

imbalance

ratio threshold

(u)

No. of

rebalance

The rebalance function

(sec)

The region query

function (sec)

Part 1 Part 2 Part 3

0.15 632 143e-6 449e-6 849 399

0.20 373 209e-6 499e-6 498 401

0.25 45 138e-6 469e-6 61 404

0.30 2 129e-6 436e-6 2 408

0.35 2 121e-6 434e-6 2 446

4.6 Summary

Motivated by observations in a real-world microscopic city-scale traffic simulation, this chapter

proposed a new two-dimensional spatial index: Sim-Tree. The main idea of Sim-Tree is to build

a tree structure based on the average road density in a road network. The key feature of Sim-Tree

is that there is no need to check or rebalance its tree structure when individual vehicles

frequently update their locations. In experiments to simulate a city-scale traffic scenario, Sim-

Tree performed significantly better than the state-of-the-art R*-tree family of spatial indexes.

Sim-Tree reduced the time cost of a serial bottleneck in the location update operation by 97%

(compared to the LUR-tree) and achieved a near linear speed-up.

There are three ways to enhance Sim-Tree in future. First, the current rebalance function is

reactive, which means that a rebalance operation is triggered only if the tree structure is already

imbalanced. The rebalance function can be changed to be proactive. Second, in some traffic

conditions, there is no need to update a vehicle’s surrounding traffic every simulation time step

(e.g. 0.1 second). Reducing the frequency of updating a vehicle’s surrounding traffic tends to

reduce the total time cost of region query operations. Third, Sim-Tree, as a two-dimensional

spatial index, can also be used as a supplement to a one-dimensional spatial index (e.g. a linear

reference).

 77

5. Scalable City-scale Traffic Simulation on

the CPU/GPU Platform

5.1 The CPU/GPU Platform

Originally designed as a specialized hardware to accelerate the creation and the rendering of

images for output to a display, modern graphics processing units (or GPUs) have evolved into a

highly parallel, multi-core processor with tremendous computational power and very high

memory bandwidth. The key to the popularity of GPU computing has been its massive

performance when compared to the central processing units (or CPUs). Today, there is a

performance gap of roughly seven times between the two when comparing theoretical peak

bandwidth and gigaflops performance (Brodtkorb et al., 2013). This performance gap has its

roots in physical restraints and architectural differences between the two processors. The CPU is

in essence a serial von Neumann processor, and is highly optimized to execute a series of

operations in order, while the GPU is specialized for compute-intensive, highly parallel

computation - exactly what graphics rendering is about - and therefore designed such that more

transistors are devoted to data processing rather than data caching and flow control. More

specifically, the GPU is especially well-suited to address problems that can be expressed as data-

parallel computations - the same program is executed on many data.

The computational performance of GPUs is growing due to their massive parallelism.

However, increased parallelism will only increase the performance of parallel code sections,

meaning that the serial part of the code soon becomes the bottleneck. Thus, most applications

benefit from the combination of a massively parallel GPU and a fast multi-core CPU. In this

thesis, this combination is named as the CPU/GPU platform. There are three major GPU vendors

today, Intel being the largest. However, Intel is only dominant in the integrated and low-

performance market. For high-performance graphics, AMD and NVIDIA are the sole two

 78

suppliers. In academic and industrial environments, NVIDIA appears to be the clear predominant

supplier, and we thus focus on GPUs from NVIDIA in this thesis, even though most of the

concepts and techniques are also directly transferable to GPUs from AMD.

The key concepts in order to execute traffic simulations on the CPU/GPU platform include:

1) Heterogeneous programming

2) The thread hierarchy in the GPU

3) The memory hierarchy in the GPU

Heterogeneous programming means that the GPU (or CUDA) threads are assumed to be

executed on a physically separate device from the CPU threads, which has its own processors

and memory space. The GPU program is launched by the CPU program, and then the CPU

program and the GPU program run simultaneously and communicate through the GPU/CUDA

APIs. In the CPU/GPU platform, the CPU/GPU are also named as host/device. The memory

spaces are named as host/device memory (or the CPU/GPU memory). The processors are named

as host/device cores (or the CPU/GPU cores).

The thread hierarchy in the GPU consists of grids, blocks and warps. The execution of a

kernel function on the GPU launches a grid of blocks. Each block consists of a number of wraps.

Each warp contains a fix number of threads (the number is 32 in the current NVIDIA GPU

architectures (Nvidia, 2013)). Threads within the same warp can synchronize and cooperate

using fast shared memory. The aim of the massively threaded architecture of the GPU is to hide

memory access latencies. A full utilization is achieved when there is always a warp that is ready

to be executed at every clock cycle.

The memory hierarchy in the GPU consists of registers, shared memory, and global

memory. Registers are the fastest memory units on a GPU, and each GPU has a limited register

space. Registers are private for each thread. The second fastest memory type is shared memory,

and shared memory can be just as fast as registers if accessed properly. Shared memory is

accessible to all threads within one block, thus enabling cooperation. However, its size is limited

and it can be a limitation to the number of launched threads per block. The third, and slowest

type of memory is the global memory, which is also the largest memory in the GPU. Even

though it has an impressive bandwidth, it has a high latency. Finally, different from the CPU

programming, GPU programming has to specify which type of memory space to load data into.

 79

5.2 ETSF on the CPU/GPU Platform

In this section, the proposed Entry Time-based Supply Framework (ETSF), which was discussed

in Chapter 3, is re-designed to be executed on the CPU/GPU platform. To the best of our

knowledge, this is a pioneer work on running a real-world city-scale traffic simulation on the

CPU/GPU platform (Xu et at., 2014).

5.2.1 The Framework

The major motivation to design a new simulation framework is to make full use of two types of

computational resources: the CPU and the GPU. In this framework, the GPU is responsible for

the supply part of a mesoscopic traffic simulation. A key feature of supply simulation is that the

simulation of a segment in a road network is only related to its surrounding segments, which fits

the GPU’s data parallel requirement. The CPU is responsible for the demand part and the I/O

part of a mesoscopic traffic simulation. A key feature of demand simulation is that vehicles are

making decisions based on the information on the global road network, which fits the CPU's

random memory access feature. The supply and the demand of a mesoscopic traffic simulation

were introduced in Section 2.1 and Section 2.2. Figure 29 shows the framework to execute a

mesoscopic traffic simulation on the CPU/GPU platform. Compared to a traditional mesoscopic

traffic simulation framework on the CPU, there are three key differences:

1) Asynchronous time management

2) Division of simulation components on the CPU and the GPU.

3) Data structure in the GPU memory

 80

Start
CPU GPU

1: CPU initialization

simulation time tick = Δt;

simulation end = T;

demand time (td) = 0;

supply time (ts) = 0;

I/O time (tio) = 0;

set information delay;

2: GPU initialization

td > T && ts > T && tio > T

(td -Δt)>= ts && ts <= T

&& GPU is idle

td <= T && td < (ts + delay)

tio <= T && tio < ts

8: td = td + Δt

3: start GPU supply simulation at ts

4: copy GPU results to CPU Memory

supply simulation on GPU at ts

5: ts = ts + Δt

6: start demand simulation on CPU at td

7: copy new vehicles to GPU Memory

9: output results at tio to files

10: tio = tio + Δt

End

yes
no

yes

yes

yes

no

no

no

Figure 29: Mesoscopic traffic simulation framework on the CPU/GPU platform

 81

The traditional simulation time, which controls the turnover of the system status, is divided

into three components: a demand time step (td), a supply time step (ts) and an I/O time step (tio).

A traffic simulation is completed only if td, ts and tio all reach the simulation end. In this

framework, these three time steps advance in an asynchronous way. At any instantaneous time,

these three time steps can be different. The time management in this framework is controlled by

three basic rules:

1) td >= ts

2) ts >= tio

3) td <= ts + information delay

First, td is always not smaller than ts, because only if vehicles entering the simulation at time t are

generated, the supply simulation at t can start. Second, ts is always not smaller than tio, because

only if the supply simulation at t is completed, the simulation results at t can be outputted to files.

The third rule involves a concept in traffic simulation: information delay. Vehicles generated at

time t requires simulated traffic conditions with a delay (e.g. for route choices). The minimum

value of information delay is 1, which means vehicles have real-time instantaneous information

about the global traffic status in last time step (e.g. 1 second). However, information delay tends

to be larger in real-world traffic systems (e.g. 15 minutes).

In the simulation procedure in Figure 29, step 1 and 2 initialize the required data structures

on the CPU and the GPU, including the road network, traffic scenario configurations and other

parameters. After initialization, the CPU controls time management. Besides, without breaking

the three rules in time management, the following tasks are executed in parallel:

1) The supply simulation at time ts on the GPU (step 5).

2) The demand simulation at time td on the CPU (step 6-8).

3) Write simulation results at time tio to files (step 9-10).

The CPU firstly checks whether the GPU has finished the supply simulation at time ts. If yes, the

simulation results on the GPU (e.g. segment-based speed and density) are copied to the CPU and

the supply time ts is advanced. Then, the supply simulation at next time step is started on the

GPU. Note that the CPU will not wait for the GPU supply simulation to finish. If the supply

simulation on the GPU is ongoing, the CPU checks whether the demand simulation can be

started. If the simulation results required for demand simulation are available, the demand

 82

simulation is started on the CPU (e.g. multithreading in the CPU). Otherwise, the CPU checks

whether there are available simulation results that need to be written into files. The CPU will

continue the loop until the three times ts, td and tio all reach the simulation end. The demand

simulation on the CPU was explained in Section 2.1, and the supply simulation on the GPU is

explained below in Section 5.2.3.

5.2.2 Road Network and Vehicle Modeling on the GPU

For high performance, the data structure in the GPU memory is completely different from the

CPU, due to the thread hierarchy and the memory hierarchy in the GPU. Figure 30(A) shows the

road network and vehicle on the CPU memory. A road network is composed of a list of links and

a list of nodes. Each link consists of a number of segments and each node consists of a list of

upstream links and downstream links. Each segment consists of multiple lanes and each lane

contains a number of lane connections. Each lane also has access to vehicles, which are moving

on the lane. Figure 30(B) shows a similar road network and vehicle modeling on the GPU

memory. The aim of Figure 30 is to show the difference between network modeling and vehicle

modeling on the CPU memory and the GPU memory.

There are two key differences between the data structures in the CPU memory and the GPU

memory. First, on the CPU memory, the large number of road elements and vehicles are stored

in random separated memory spaces and the objects are connecting with each other using

pointers. While on the GPU memory, these elements are kept in arrays in a continuous memory

space and different elements are connecting each other using the index inside the array. The

reasons of doing this on the GPU memory are to make it easy to copy the entire road network

from the CPU memory to the GPU memory and more importantly to allow efficient coalesced

memory access, which means a group of GPU threads in a warp tend to access continuous

memory space. Second, on the CPU memory, dynamic memory allocation (e.g. std::vector,

which applies for a memory space when it is immediately required) is widely used in the data

structure of a road network and vehicles, because of its flexibility and efficiency. However, on

the GPU memory, dynamic memory allocation has to be replaced by static memory allocation,

which applies a sufficient large amount of memory space in the beginning. It is a limitation of

GPU programming, because it is not efficient to do random memory access. In this framework, it

 83

uses "start & end indexes" to store the containing relationships. For example, as shown in Figure

30(B), each segment has two attributes lanes_start_index and lanes_end_index, pointing to the

indexes of the first inner lane and the last inner lane; each lane has two attributes

vehicles_start_index and vehicles_end_index, pointing to indexes of the first vehicle space and

the last vehicle space in the lane. Given an index of a lane and an index of a vehicle, the object

can be found in the lane pool and vehicle pool on the GPU memory.

Road Network

 vector<Link*>
 vector<Node*>

Link

PK link_ID

 start Node*
 end Node*
 vector<Segment*>

Node

PK node_ID

 node_position
 vector<uppersteam Links*>
 vector<downstream Links*>

Segment

PK segment_ID

 vector<Lane*>

Lane

PK lane_ID

 vector<connected Lane*>
 vector<Vehicle*>
 vector<Buffered Vehicle*>
 input_capacity
 output_capacity

AllVehicle

 vector<Vehicle*>

Vehicle

PK vehicle_ID

 moving_on_Lane*

(A) The road network and vehicles modeling on the CPU memory

RoadNetworkOnGPU

 nodes[NODE_SZIE]
 segments[SEGMENT_SIZE]
 lanes[LANE_SIZE]

NodeOnGPU

PK node_Index

 node_ID
 upsteam_segment_connect_start_index
 upsteam_segment_connect_end_index
 node_position

SegmentOnGPU

PK segment_Index

 segment_ID
 start_node_index
 end_node_index
 lane_start_index
 lane_end_index

LaneOnGPU

PK lane_Index

 lane_ID
 lane_connection_start_index
 lane_connection_end_index
 vehicles_start_index
 vehicles_end_index
 buffered_vehicles_start_index
 buffered_vehicles_end_index
 on_road_vehicle_num
 buffered_vehicle_num
 input_capacity
 output_capacity

VehicleOnGPU

PK vehicle_Index

 move_on_lane_index
 move_on_link_index
 path_indexes[MAX_LENGTH]
 next_path_index
 vehicle_ID

LaneConnectionOnGPU

PK from_lane_Index
PK to_lane_Index

VehiclesLoader

PK time_step

 load_size[LANE_SIZE]
 Vehicles[LANE_SIZE][InputCapacity]

VehicleSpace1

PK space_index

 vehicle_ID

BufferedVehicleSpace

PK space_index

 vehicle_ID

(B) The road network and vehicles modeling on the GPU memory

Figure 30: Road network and vehicles modeling on the CPU and the GPU

 84

An example road network is illustrated to further explain the data structure in the GPU

memory. Figure 31(A) represents a real-world road network. The road network consists of a

main road with one on-ramp and one off-ramp. The road network is then modeled as 6 nodes and

5 segments in Figure 31(B). The two nodes of interest are node 1 and node 2 (as N1 and N2 in

Figure 31(B)). Node 1 has two upstream segments and one downstream segment; node 2 has one

upstream segment and two downstream segments. The main road has 2 lanes; the on-ramp and

off-ramp roads have 1 lane. The length of segment 3 (S3) is 200 meters; the length of all other

segments are 100 meters. The length of a vehicle is 5 meters. Then, the data structure of the road

topology in the GPU Memory is shown in Figure 31(C). First, continuous memory spaces (e.g.

tables) are used to keep nodes, segments, lanes, etc. Second, each element has a special ID (or

index), which indicates its location in the table. For example, the segment S1 is the first element

in the segment table. Third, a pair of start/end indexes are used to store the relationship between

nodes and segments, segments and lanes, lanes and vehicles. Fourth, complex lane connection

rules are directly modeled in this memory model. For example, as shown in the lane-connection

table, the on-ramp segment 2 contains only one lane (lane3), and lane3 is only connected to one

lane of segment 3 (lane5). It means, in this example, vehicles on the segment 2 cannot pass to the

other lane of segment 3. Finally, each lane in segment 3 has a space for 40 vehicles, while the

other lanes has a space for 20 vehicles. Thus, each lane in segment 3 reserves 40 vehicle ID

space. An attribute "on_road_vehicle_num" is used to determine how many vehicles are on the

lane and thus which vehicle IDs are valid.

 85

(A) An example road topology

N1 N2

S1

S2

S3
S7

S9

(B) The simulated road topology in traffic simulation

NodeOnGPU

ID up_start_index up_end_index

N1 S1 S2

N2 S3 S3

SegmentOnGPU

ID start_node end_node

S1 N* N1

S2 N* N1

lane_start_index lane_end_index

L1 L2

L3 L3

S3 N1 N2 L4 L5

LaneOnGPU

ID conn_start_index conn_end_index

L1 LC1 LC2

L2 LC3 LC4

vehicle_start_index vehicle_end_index

V1 V20

V21 V40

L3 LC5 LC5 V41 V60

L4 LC6 LC8

L5 LC9 LC10

V61 V100

V101 V140

LaneConnectionOnGPU

ID from_Lane_ID to_Lane_ID

LC1 L1 L4

LC2 L1 L5

LC3 L2 L4

LC4 L2 L5

LC5 L3 L5

LC6 L4 L*

LC7 L4 L*

LC8 L4 L*

(C) The data structure in the GPU Memory (* means the ID does not exist in the figure)

Figure 31: An example road network and the data structure in the GPU memory

 86

5.2.3 Supply Simulation on the GPU

The supply simulation on the GPU consists of four kernel functions:

1) cpu_update()

2) pre_vehicle_passing()

3) vehicle_passing()

4) copy_simulation_results_to_cpu()

The first kernel function allows the CPU to change the status of the traffic simulation, before

starting the supply simulation at the next time step. For example, if an incident happens, the road

capacity is reduced. The CPU updates the new capacity to the road network on the GPU memory

before simulating the next time step. Another example is en-trip route choices. En-trip route

changing behavior is simulated on the CPU and then the new routes are copied to the GPU.

The second kernel function updates the status of each lane (e.g. density, speed and tp), before

passing vehicles to the downstream lanes. The update unit of this kernel function is a lane, which

means each lane is simulated on a GPU thread. This kernel function firstly loads vehicles, which

passed to this road at the previous time. After that, it loads new generated vehicles into the lane.

Then, the kernel function calculates the speed of the lane based on the speed density relationship

(as in Formula 2.2). After that, the kernel function calculates tp. The method to calculate tp was

explained in Section 3.2.

The third kernel function scans vehicles on the lane and passes a number of downstream

vehicles to the next lane. The update unit of this kernel function is a node. Each node and its

upstream lanes are simulated on a GPU thread. It is because vehicles from upstream lanes might

conflict with each other when crossing the node to the same next lane. One example is shown in

Figure 32. In this small road network, node 1 has two upstream lanes: lane 1 and lane 4. Thus,

vehicles on lane 1 and lane 4 are processed on the same GPU thread, to remove the potential

conflicts. On the other hand, since each lane has only one upstream node, from where vehicles

might pass through, there is no conflict when updating nodes in parallel. There are four rules to

determine whether a vehicle can pass a lane to the next lane, which were explained in Section

3.2. If a vehicle crosses from the current lane to the next lane, the corresponding output capacity

 87

of the lane, the input capacity and empty space of the next lane are updated. Finally, the vehicle

ID should be removed from the current lane and inserted to the next lane.

link 1 link 2 link 3

li
n

k
 4

li
n

k
 5node 1 node 2

Figure 32: A node and its upstream links are updated on the same GPU thread

The last kernel function copies the simulated results, which include the speed, density, flow,

queue length and empty space of each road, from the GPU memory to the CPU memory. As

shown in Figure 30(B), these data are stored in a contiguous GPU memory space, in order to

reduce the time cost of data transfer from the GPU memory to the CPU memory.

5.2.4 Double-Buffer Data Channel on the GPU

The process of copying simulation results from the GPU memory to the CPU memory at each

time step (step 3 in Figure 29) is time costly in the CPU/GPU platform. As shown in Figure 33, a

double-buffer data channel is designed on the GPU to minimize the data communication cost.

There are two optimizations in the double-buffer data channel. Firstly, the frequency to copy

simulation results from the GPU memory to the CPU memory is reduced. For example, in this

case, each buffer keeps simulation results of up to 8 time steps (known as “buffer size”). When

the buffer is full, the supply simulation on the GPU starts to write simulation results to the other

buffer space. At the same time, the simulation results in this buffer are copied to the CPU

memory. Secondly, the data transfer from the GPU to the CPU is done asynchronously. It means

the supply simulation on the GPU does not wait for the data transfer to finish. However, the

double-buffer data channel brings two additional rules in time management.

1) buffer size <= information delay

2) ts < tio + 2 * buffer size

 88

Double-Buffer Data Channel

GPU

t-1 t

t-9 t-8 t-7 t-6

t-5 t-4 t-3 t-2

supply simulation at time t

Figure 33: An example double-buffer data channel on the GPU

If the buffer size is larger than the information delay, there will be a deadlock in time

management. The buffer waits for additional supply simulation results before transferring its data

to the CPU. At the same time, the demand simulation on the CPU is waiting for the simulation

results from the GPU to generate future vehicles, and the supply simulation on the GPU is

blocked because of the lack of new vehicles. The mutual waiting between the three components

is a deadlock. The suggested buffer size should be much smaller than the information delay. In

this thesis, a typical information delay is 15 minutes and a typical buffer size is 1 minute (or 60

ticks, if the simulation time step is 1 second). Besides, the supply simulation on the GPU cannot

write simulation results to a buffer, if the data in the buffer has not been transferred to the CPU.

It means a slow data transfer or I/O will finally force the supply simulation on the GPU to stop

and wait.

5.3 Simulation Results on the GPU

5.3.1 Problem Definition

A challenging problem that arise when executing a mesoscopic traffic simulation in a massive

parallel way on the CPU/GPU platform is that a mesoscopic traffic simulation in a road network

cannot be naturally spatially divided into a large number of independent traffic simulations in

sub-networks. The reason is the "upstream-downstream dependence". As shown in Figure 13,

when a vehicle crosses from one lane to the next lane, there are four conditions to check: the

output capacity of the lane, the input capacity and empty space of the next lane, and the

 89

entry_time of the vehicle. The requirement to know the input capacity and empty space of

downstream lanes when simulating traffic movement in a lane is defined as "upstream-

downstream dependence".

When a mesoscopic traffic simulation is executed in a sequential way, lanes are sorted in a

order that downstream lanes are processed before upstream lanes. Thus, the input capacity and

empty space of downstream lanes are known when processing a upstream lane. However, when a

mesoscopic traffic simulation is executed in a parallel way, lanes are processed simultaneously

without any order. It becomes a challenge to comply with upstream downstream dependencies.

As explained in the third kernel function in Section 5.2.3, each node and its upstream lanes are

simulated on a GPU thread. When processing a vehicle passing from a lane to the next, the

output capacity of the lane is known. Besides, the downstream lane is processed by only this

GPU thread. It means there is no data race to access input capacity of the downstream lane and

thus the input capacity of the downstream lane is known. However, the empty space of the

downstream lane depends on the traffic movement of the downstream lane at the same time step,

which is unknown. Without a perfect knowledge of empty spaces in downstream lanes, the

upstream lane has to move vehicles based on its best estimation. This could lead to two types of

unrealistic vehicle movements (Wen, 2009):

Pessimistic biased movement: If vehicles’ movement in a upstream lane is based on overly

conservative estimate of the downstream empty space, when the empty space of the downstream

lane at time t is estimated to be the empty space of that link at the previous time t-1, vehicles

might move slower than the sequential simulation.

Optimistic biased movement: If vehicles’ movement in a upstream lane is based on overly

optimistic estimate of the downstream empty space, when the empty space of the downstream

lane is assumed to be always large enough to allow new vehicles, the simulator may fail to

capture exactly the same queuing and spill-backs from the sequential traffic simulation.

5.3.2 Boundary Processing Method

The concept of boundary processing has been introduced in Section 2.3.4. The boundary area

means a portion of a road network which connects the traffic flow from different partitions. In

most cases, traffic movement in a boundary area requires a different procedure compared with

 90

traffic movement on a normal road. In this thesis, when running traffic supply simulation on the

GPU and each node of a road network is simulated on a separate GPU thread, the boundary area

is in fact the entire road network.

The empty space of a lane is calculated using Formula 5.1. The empty space at a time step t

depends on three variables: the empty space of the lane at the previous time step t-1, the speed of

the lane at time t and the queue length of the lane at t.

empty_space(t) = min{empty_space(t-1) + v(t)*Δt , road_length - q(t)} (5.1)

where, t is the simulation time step, empty_space(t-1) + v((t)*Δt) reflects the traffic movement

on the lane, and (road_length - q(t)) reflects the queue feedback of the lane. The key idea of the

proposed boundary processing method is to share the speed of each lane before calculating the

empty spaces. First, given speeds of downstream lanes, it becomes easier for the upstream lane to

estimate empty-spaces of downstream lanes and reduce the simulation error. Second, speed and

empty-space are calculated in different kernel functions. Thus, there is no additional barrier in

the proposed boundary processing method. The secondary idea of the proposed boundary

processing method is to predict queue lengths of lanes in the current next step using Formula 5.2:

q(t) = max{q(t-1) + a*(q(t-1) - q(t-2)) , road_length} (5.2)

where, q(t-1) - q(t-2) reflects a short-term trend of the queue length in the last two time steps and

a is a parameter, which indicates how strongly the predicted queue length depends on the short-

term trend.

Simulation results of the proposed mesoscopic traffic simulations on the CPU/GPU platform

using the proposed boundary processing method are different from simulation results of a serial

traffic simulation on the CPU platform, only if:

1) The estimated empty-space of a lane using Formula 5.1 is wrong.

2) The empty-space becomes a key factor to determine whether a vehicle can pass lanes.

First, the estimated empty-space of a lane will be wrong, only if the empty-space is dominated by

its queue length and the predicted queue length is different from the true queue length. Second,

the four factors to determine whether a vehicle can pass lanes were introduced in Section 3.2.

The empty-space of a downstream lane becomes a key factor, only if the empty-space is smaller

than the required space from the upstream lanes. For example, if the simulation time step is 1

 91

second, the input capacity of a lane is smaller than 1 vehicle per time step. So, the empty-space is

a key factor only if the empty-space is smaller than the length of a vehicle (e.g. 5 meters).

5.3.3 The Rollback Method

If simulation results of the proposed mesoscopic traffic simulations on the CPU/GPU platform

are different from simulation results of a serial traffic simulation on the CPU platform, a rollback

method is triggered. The rollback method is an important component of the proposed traffic

simulation framework on the CPU/GPU platform and it guarantees the correctness and therefore

the validity of the proposed framework.

In the rollback method, the estimated empty space and the "true" empty space are compared

at the end of each simulation time. If the empty-space of a downstream lane is used as a key

factor to determine whether a vehicle can pass lanes, and the used empty space and the "true"

empty space of the downstream lane are different (e.g. the "true" empty space allows one more

vehicles to pass through), a rollback method is triggered, using the "true" empty spaces in

replacement of the estimated empty-spaces. An example is shown in Figure 34. In this example,

the estimated empty-space of lane 2 is wrong and then it forces the most downstream vehicle in

lane 1 to stay in lane 1, even though the "true" empty space is enough to keep one more vehicle.

The rollback method is triggered to correct the wrong behavior.

Lane 2Lane 1

Lane 2Lane 1

Lane 2Lane 1

Lane 1 Lane 2

(1)

(2)

(3)

(4)

(Lane 2 is estimated to remain blocked)

(The estimated empty space of lane 2 is wrong)

(The rollback method is triggered)

(The correct empty space is used and simulation results are corrected)

Figure 34: The Rollback Method

 92

5.4 Synthetic Tests

The performance of the mesoscopic traffic simulation framework on the CPU/GPU platform is

investigated in a synthetic test, before it is evaluated in a real-world city-scale traffic simulation.

5.4.1 Experimental Design

An artificial large grid road network is used as the testbed, with 10201 nodes and 20200

unidirectional links. Each node has an index from 0 to 10200, indicating the store location on the

GPU memory. Each link also has an index from 0 to 20199. 100,000 vehicles are loaded into the

road network during 1000 simulation time steps (each time step is 1 second). Vehicles are loaded

into the road network from nodes in the top and the left, which are moving to the bottom and the

right. Each vehicle randomly picks a route from the pre-calculated candidate routes. En-trip route

choice is not simulated in this traffic scenario. The traffic scenario is simulated on two types of

platforms: the CPU platform and the CPU/GPU platform. Only the total time cost of the supply

simulation during the 1000 simulation ticks is measured in this experiment. The CPU platform

includes an Intel E5-2620, 32 GB main memory and a 500GB SATA 7.2K RPM. The CPU/GPU

platform includes the CPU and an additional GPU, which is a GeForce GT 650M. The GPU has

384 CUDA cores and 2 GB global memory. The supply simulation on the CPU and the GPU

follow the same logic. The source codes are both implemented using C++ on Ubuntu 12.04 and

compiled using g++_4.6.3 and CUDA 5.5. The release version executable file is used.

5.4.2 Speedup and Analysis

The results are shown in Table 13. Five configurations are investigated. Each configuration is

executed 5 times and the average time cost is shown. The speedup is measured by comparing the

time cost of supply simulation on a GPU to the time cost of supply simulation on a CPU core. In

the first configuration, executing the supply simulation on a CPU core takes 4720.88 ms. In the

second configuration, directly executing the proposed supply simulation on a GPU takes 704.72

ms, which means a speedup of 6.7. The performance is sensitive to the configuration of the

kernel functions. When the number of threads in a block is 192, the maximum performance is

achieved. In the third configuration, the double-buffer data channel on the GPU is enabled to

allow asynchronous data transfer between the CPU and the GPU. We found that the double-

 93

buffer data channel is efficient and the data transfer cost is almost hidden by the supply

simulation on the GPU. The total time cost is reduced by 35% and the speedup is significantly

improved from 6.7 to 10.3. After that, we found that the registers are not efficiently used in the

third configuration. In the fourth configuration, internal variables, which will not be shared

between kernel functions and not transferred to the CPU, are moved from the global memory to

the registers. The speedup is slightly improved to 10.7. Finally, there are parameters which are

never changed during the traffic simulation, such as the length of a simulation time step. In the

fifth configuration, constant parameters are moved from the global memory to the constant

memory for efficient memory access. The speedup is slightly improved to 11.2.

Table 13: The time cost of running ETSF on the CPU and the GPU

Case ID Configuration Description
Time Cost

(ms)
Speedup

1 Supply simulation on a CPU core 4720.88 1.0

2 Supply simulation on the GPU 704.72 6.7

3
Case 2 +

Double-buffer data channel optimization on the GPU
457.29 10.3

4
Case 3 +

Push internal variables to the registers
439.29 10.7

5
Case 4 +

Push constant parameters to the constant memory
423.37 11.2

Table 14 shows the profiling of two kernel functions in the framework: pre_vehicle_passing

and vehicle_passing. First, the simulation units in these two kernel functions are roads and

nodes. In this traffic scenario, these two kernel functions launched 20200 GPU threads and

10201 GPU threads. The occupancies of these two kernel functions are high, which indicates the

GPU cores are fully utilized. Besides, even after moving internal variables from the global

memory to registers, registers are not a bottleneck. Second, as explained in Section 5.2.2, the

road network and vehicles are stored into a contiguous memory space. Thus, threads in a warp

tend to access a contiguous memory space, which is also known as coalesced memory access.

The number of memory transaction per request (both load and store) for these two kernel

functions are small (<2), which indicates the memory access is well coalesced. Third, the branch

taken ratio (within threads in the same warp) for the first kernel function is 72%. Threads in the

first kernel function do not take exactly the same branch, because roads have different number of

 94

entering vehicles and different number of passed vehicles. The branch taken ratio for the second

kernel function is much lower (41.7%). It is expected, because in the second kernel function the

source code to find and pass vehicles to downstream roads varies in different types of road

topologies. The number of upstream links and the number of vehicles on nodes are different.

However, there is not much branch divergence in these two kernel functions. The instruction

serialization ratio of these two kernel functions are 15.5% and 18.6%. It means that the branch

taken ratio does not cause performance loss in this case. Fourth, the numbers of instruction per

clock (IPC) for these two kernel functions are 0.9 and 1.0, which are far below the hardware’s

peak value (4.0). As shown below, the major reason for low instruction issue efficiency is the

execution dependency. Based on our knowledge of the framework, it is because most data (e.g.

the road network and vehicles) is stored in the global memory, which causes high memory access

latency. The memory access latency is not completely hidden by thousands of threads. Finally,

the achieved GLOPS for the two kernel functions are also lower than the hardware’s peak, which

is also related to high global memory latency.

Table 14: Profiling of major GPU/CUDA kernel functions

ID Measurement
kernel function:

pre_vehicle_passing

kernel function:

vehicle_passing

1 Launched GPU threads 20200 10201

2 GPU occupancy 81% 90%

3 Registers (used / available) 3072 / 65536 1920 / 65536

4
Transaction per request

(load/store)

1.73/1.49 1.67/1.83

5 Branch taken ratio (%) 72.1% 41.7%

6 Instruction serialization 15.5% 18.6%

7
Instruction per clock (IPC)

(measurement/ maximum)

0.9 / 4.0 1.0 / 4.0

8
Warp issue efficiency

(no eligible %)

49.7% 36.1%

9
Issue Stall Reasons

(execution dependency)

92.3% 88.4%

10 CUDA achieved GFLOPS 14.8 6.0

 95

5.5 Case Study

In this section, the proposed ETSF framework on the CPU/GPU Platform is evaluated on a real-

world city-scale traffic road network.

5.5.1 Experimental Setting

As shown in Figure 20, the Singapore expressway road network is used in this section. The

Singapore expressway system is modeled as a network with 831 nodes, 1040 links, and 3388

segments. The demand is modeled as trips in 4106 OD pairs. Origins are set to be the beginning

of on-ramps where traffic gets onto the expressway system from local roads and destinations are

set to be the end of off-ramps where traffic gets out of the expressway system. The simulation

time step is 1 second. and the simulation period is 60 minutes. The calibration of the OD Matrix

is explained in Section 6.5, and the calibrated OD Matrix from 7:00AM to 8:00AM is used in

this scenario. In particular, there are in total 106,386 vehicles loaded into the traffic scenario, and

departure times of these vehicles are uniformly distributed. After a vehicle is generated, the

vehicle chooses a route using the Path Size Logit model (Ben-Akiva et al., 1999). En-trip route

choice is not simulated in this traffic scenario. As with the synthetic test, the traffic scenario is

simulated on two types of platforms: the CPU platform and the CPU/GPU platform.

5.5.2 Results

The supply simulation of this traffic scenario takes 3448.0ms on the CPU and 894ms on the

GPU, which means a speedup of 3.86. Compared with the speedup (11.2) on the artificial large

grid road network, the speedup on the Singapore expressway is much lower. There are three

major reasons. First, in the artificial grid road network, roads have the same length and vehicles

on roads are directly stored inside roads. However, in the Singapore expressway, roads have very

different lengths from 50 meters to 2000 meters (see Figure 21). Instead of directly storing the

vehicles, the "start & end indexes" was introduced in Section 5.2.2. The "start & end indexes"

makes the usage of memory space more flexible. It is important for loading the whole city-scale

traffic simulations into the GPU memory. However, accessing a vehicle on a road requires twice

memory accesses. More memory accesses make the proposed framework less efficient. Second,

the number of GPU threads (3388) launched on the Singapore expressway is smaller than the

 96

grid road network (20200). It makes the GPU occupancy lower (65%). Third, the artificial grid

road network is more structured. For example, most nodes have two downstream links and 2

upstream links. However, the Singapore expressway network topology is more complicated. It

makes the memory access less coalesced.

5.5.3 Discussions

This section discusses additional thoughts about running mesoscopic traffic simulations on the

CPU/GPU platform. First, it is beneficial to run the demand simulation on the CPU, the supply

simulation on the GPU and the data communication between the CPU and the GPU in an

asynchronous way. In the proposed framework, the supply simulation on GPU is the bottleneck

and the time costs of the other two tasks are almost hidden. Second, this thesis demonstrates a

supply simulation framework (ETSF) on the CPU/GPU platform. Running the ETSF supply

framework on the GPU gets a speedup from 3.5 to 11.2, compared with running the same logic

on the CPU. However, when generalizing the conclusion to other supply simulation frameworks,

it should be noted that ETSF naturally guarantees a good load balance on each road. In ETSF,

the workload of a road is not sensitive to the number of vehicles on the road and the length of the

road. This feature may not exist in other supply simulation frameworks, in which case, load

balancing should be considered. Third, the memory access latency is a bottleneck in the proposed

mesoscopic traffic simulation framework. In mesoscopic simulation frameworks, the update of a

road depends on majorly its own road status (e.g. road density and queue status) and requires a

small number of parameters from its downstream roads. There is few shared data access among

nearby roads and nodes, which limits the usage of the more efficient shared memory in the GPU.

We think this is the bottleneck that prevents us from achieving a higher simulation speedup on

the GPU.

5.6 Summary

The GPU is gaining popularity, because of its massive performance compared to the CPU. In this

section, we investigated whether the GPU can be a potential high-performance platform for

future mesoscopic traffic simulations. First, we proposed a comprehensive mesoscopic traffic

 97

simulation framework on the CPU/GPU platform. After that, we designed a boundary processing

method and a rollback method to guarantee the correctness of simulation results. Then, the

performance of the proposed simulation framework was evaluated in an artificial grid road

network (getting a speedup of 11.2) and also a real-world city-scale traffic scenario (getting a

speedup of 3.86), compared with running the same logic on the CPU. Based on our view, the

proposed mesoscopic traffic simulation framework on the CPU/GPU platform provides an

innovative and potential solution for high-performance mesoscopic traffic simulations.

Further research on the topic of traffic simulation on the CPU/GPU platform includes four

directions. First, the proposed framework needs to be improved to make better use of the shared

memory in the GPU. Second, the performance cost of the rollback method in congested traffic

scenarios needs to be further investigated. Third, the proposed framework needs to be expanded

to support the multi-GPU platform. Finally, the proposed framework needs to be modified if the

CPU and the GPU are using shared global memory in future.

 98

6. An Enhanced Calibration Algorithm for

City-scale Traffic Simulation

The state-of-the-art algorithm simultaneous perturbation stochastic approximation (SPSA)

proposed a comprehensive gradient descent calibration framework to calibrate all types of

variables simultaneously using multiple data sources. However, we found that the SPSA

algorithm deteriorates when the scale of the problem becomes larger, in terms of the network

size and the length of the simulation period. This chapter begins with a problem formulation of

calibration. Then, an in-depth analysis of the state-of-the-art SPSA algorithm is presented.

Finally, an enhanced calibration algorithm
1
 for city-scale traffic simulations is introduced,

investigated and evaluated.

6.1 Problem Formulation

Let the time period of interest be divided into intervals H = {1, 2, ..., h}. The calibration problem

is formulated using the following notations:

 x: calibration variables, e.g. OD flows, parameters in route choice models.

 xa
: Priori values of calibration variables.

 Mo
: Observed aggregate time-dependent measurements

 Ms
: Simulated aggregate time-dependent values

 G: Road network

1
 The enhanced calibration algorithm is a collaborated research work (Lu et al., 2014). The author of this thesis

contributed in the idea of 0/1 weight matrix, data cleaning method and also the real-world case study.

 99

The off-line calibration problem is formulated as the minimization of an objective function

over the variable space:

1 2(x) z (M ,M) z (x,x)o s az ; (6.1)

subject to the following constraints:

M (G,x)s simulate ; (6.2)

x xl x u ; (6.3)

Equation 6.1 is the objective function, where z1() is a function which measures the difference

between observed measurements and simulated values, z2() is a function which measures the

difference between estimated values and priori values. The value of M
s
 requires one execution of

traffic simulation. Besides, in many cases, the number of calibration variables is larger than the

number of independent observed measurements. Thus, priori values and bounds (upper bounds

and lower bounds) are introduced to constrain the calibration algorithm. Note that x, x
a
, M

o
, M

s

are vectors, which contains values of different variables at different locations and different time

intervals.

6.2 The SPSA Algorithm

Stochastic approximation (SA) methods are a family of iterative stochastic optimization

algorithms used in error function minimization when the objective function has no known

analytical form and can only be estimated with noisy observations. It iteratively perturbs a

sequence of variables in different directions and estimates the gradients for these variables until

converging to an acceptable objective function value. The general iterative form of SA is:

1 ()k k kk k
x x a g x (6.4)

where kx is estimated values of calibration variables in the kth iteration, ()kk
g x is estimated

gradient of calibration variables in the kth iteration, ka is the movement step size in the kth

iteration. The value of ka gets smaller as k becomes larger. One example is shown below.

 100

(A k)
k b

a
a

 (6.5)

where A and b are algorithm parameters.

The estimation of gradients is one critical step in calibration. Different approaches have

been proposed to approximate gradients. In the finite-difference method (FDSA), the gradient is

estimated by perturbing the variables in the decision vector one at a time, evaluating the object

function values and computing the gradient as:

() ()
()

2

k kki ki
kki

ki

z x c z x c
g x

c

 (6.6)

where ()kki
g x is the estimated gradient of the ith variable, kic is the perturbation size of the ith

variable, z() is the target function (as shown in Formula 6.1). A simple example is given to

understand the usage of ()kki
g x . Say: kx =6, ka =1, kic =1, z(k kix c) = z(7) = 2 and z(k kix c) =

z(5) = 4. Then, the gradient ()kki
g x is -1 and the calibrated value of 1kx is 7. Note that a smaller

z() value (or the target function value) means a better fit to observed measurements. Thus, the

calibrated set of variables tends to reduce the target function value. This approach is capable of

estimating high quality gradient vectors in non-analytical problems with noisy observations. It is,

however, not efficient for city-scale traffic simulations. The number of objective function

evaluations within one algorithm iteration is 2P, where P is the total number of variables in the

decision vector. In simulation-based calibration algorithms, one objective function evaluation

involves a run of the city-scale traffic simulation, which may take minutes or hours. Considering

there are a large number of calibration variables (e.g. the OD Matrix) in city-scale traffic

simulations, the method becomes infeasible.

Spall (1992, 1994, 1998, 1999) proposes an innovative solution to the calibration of city-

scale traffic simulations: simultaneous perturbation stochastic approximation (SPSA). SPSA

efficiently estimates the gradient by perturbing all the variables in the decision vector

simultaneously and the approximation of gradient needs only two function evaluations regardless

of the number of variables:

 101

() ()
()

2

k kk k
kki

ki

z x c z x c
g x

c

 (6.7)

Formula 6.6 and 6.7 are similar. The only difference between FDSA and SPSA is kic and kc . In

FDSA, the estimation of the gradient of each calibration variable requires two runs of the traffic

simulation, while in SPSA, the estimation of gradients of all calibration variables requires

constant (only two) runs of the traffic simulation. SPSA provides a huge saving of computational

time. A random perturbation vector (Spall, 1998) is also introduced into the SPSA algorithm to

allow the perturbation of a portion of parameters. In terms of convergence performance, Spall

(1998) argues that SPSA follows a path that is expected to deviate only slightly from that of

FDSA. In other words, SPSA performs as good as FDSA. SPSA may have approximated

gradients that differ from the true gradients, but they are almost unbiased.

SPSA and its variations have been applied extensively in calibration. Ma et al. (2007)

compare the performance of SPSA against the genetic algorithm (GA) and the trial-and-error

iterative adjustment algorithm (IA) for the calibration of a microscopic simulation model in a

northern California network and conclude that SPSA can achieve the same level of goodness-of-

fit as the other two do but it has a significantly shorter running time. Lee and Ozbay (2008)

propose a Bayesian calibration methodology and applied a modified SPSA algorithm to solve the

calibration problem of a cell transmission based macroscopic simulation model. Paz et al. (2012)

calibrate all the parameters in CORSIM models simultaneously using SPSA and demonstrate its

effectiveness.

These applications of SPSA, however, are all limited to networks with small scale in terms

of size and number of time intervals. In a case study for the entire expressway system in

Singapore, which is discussed in detail in Section 6.5, it was found that although SPSA kept its

computational efficiency, its performance in terms of convergence rate and long run goodness-

of-fit deteriorated significantly when the problem scale increased. The target function stopped to

decrease at relatively high values. Different values of algorithm parameters and step sizes were

implemented. However, no significant improvement was made. The next section analyzes the

reasons for SPSA's performance deterioration.

 102

6.3 Motivation and The W-SPSA Algorithm

The reason for the performance deterioration of SPSA in the calibration of city-scale traffic

simulations was found to be the way SPSA estimated gradients. In each iteration of the SPSA

algorithm, the gradient estimation process essentially tries to find a direction for each variable

value to move. This is achieved by comparing the influences to the system caused by perturbing

the variable values in two opposite directions. Given our formulation in equation 6.7, in SPSA

the influences caused by perturbing the value of a specific variable are determined by the target

function (or the sum of all the distances between model outputs and corresponding observed

measurements). The key question is that the change of the target function may or may not be

sensitive to all variables. This problem can be alleviated by perturbing a small portion of

variables, however, it will significantly downgrade the calibration speed of SPSA.

This may not be a major issue in systems where each variable is highly correlated to most of

the observed values. However, in the calibration of city-scale traffic simulations, correlations

between model parameters and observed values are mostly sparse. Figure 35 shows a small

network for the illustration of gradient estimation error in SPSA. In the network, there is 1 OD

pair (A -> B) and 6 sensors. Assume the length of an interval is 15 minutes and the simulation

period consists of 4 intervals (60 minutes). Assume there is no congestion and the longest travel

time in this network is 15 minutes. Therefore in this small calibration problem, there are 4 OD

flows to calibrate and there are 24 observed values. In SPSA, gradients of these 4 OD flows are

calculated based on the aggregate difference of these 24 observed values and 24 simulated

values. However, in this example, the value of each OD flow only affects the values of sensors 3

and 4 during the current and the next intervals. It means the gradient of each OD flow should

only be related to 4 observed values, instead of 24 observed values. In this thesis, incorporating

unrelated observed values into the gradient estimation of a calibration variable is called as the

systematic error in SPSA. W-SPSA is proposed as an enhancement of SPSA, in order to remove

the systematic error, without downgrading the calibration speed of SPSA.

 103

Figure 35: A small network for the illustration of gradient estimation error in SPSA

The idea of Weighted-SPSA (or W-SPSA) is to introduce a 2D weight matrix in the process

of gradient estimation in SPSA. The 2D weight matrix represents the relationship between

calibration variables and observed values. Continuing the example in Figure 35, the 2D weight

matrix is shown in Table 15. The vertical dimension represents calibration variables while the

horizontal dimension represents observed values. ABti means the OD flow from A to B in the ith

time interval. Sj,ti means the value of sensor j in the ith time interval. Values in the 2D weight

matrix are either 1 or 0, which means the corresponding calibration variable and observed value

are correlated or not. In this example, only 15% values in the 2D weight matrix are 1.

Table 15: An example 2D weight matrix in a small example network

 S1,t1 S2,t1 S3,t1 S4,t1 S5,t1 S6,t1 S1,t2 S2,t2 S3,t2 S4,t2 S5,t2 S6,t2

ABt1 0 0 1 1 0 0 0 0 1 1 0 0

ABt2 0 0 0 0 0 0 0 0 1 1 0 0

ABt3 0 0 0 0 0 0 0 0 0 0 0 0

ABt4 0 0 0 0 0 0 0 0 0 0 0 0

 S1,t3 S2,t3 S3,t3 S4,t3 S5,t3 S6,t3 S1,t4 S2,t4 S3,t4 S4,t4 S5,t4 S6,t4

ABt1 0 0 0 0 0 0 0 0 0 0 0 0

ABt2 0 0 1 1 0 0 0 0 0 0 0 0

ABt3 0 0 1 1 0 0 0 0 1 1 0 0

ABt4 0 0 0 0 0 0 0 0 1 1 0 0

After obtaining the weight matrix, the gradient estimation of variable i in the kth iteration in

W-SPSA is done using the following formula:

 104

1 2(x) z (M ,M ,W) z (x,x)o s a

i iz (6.8)

() ()
()

2

k ki k i k
kki

ki

z x c z x c
g x

c

 (6.9)

where (x)iz is the object function of variable i, Wi
is the correlation between the ith variable and

all observed values. Note that different calibration variables use different target functions when

calculating gradients, while calculating these target functions requires executing the traffic

simulation only twice. In the example network, it means the estimated gradient of ABt1 is only

related to values of sensors {3 and 4} in intervals {1 and 2}, which removes the systematic error

in SPSA.

The weight matrix is a qualitative (not quantitative) measurement of the correlation between

calibration variables and observed values. There are two major benefits. First, a quantitative

correlation between calibration variables and observed values is not easy to estimate. Second, a

quantitative correlation between calibration variables and observed values is dynamic during

different time intervals. It makes it even harder to estimate the weight matrix. Comparably, a

qualitative (0 or 1) correlation is more easy-to-generate and more stable. However, a quantitative

correlation, if available, is always beneficial in W-SPSA.

In this thesis, two approaches are proposed to generate the weight matrix: analytical

approximation and numerical approximation. Analytical approximation is an approach to

estimate the weights based on available network knowledge (e.g. network topology, paths choice

set, equilibrium link travel time, route choice model) and simplified traffic assignment methods

(e.g. assumed divergence ratios and free-flow speeds). Numerical approximation uses the traffic

simulator to approximate the weight matrix. A number of simulation runs (with different

calibration variables or different random seeds) are started. After running N independent

experiments, the estimated weights are obtained by averaging the result (or correlation) from

each experiment. If the averaged correlation is larger than a pre-defined threshold (e.g. 10%),

the weight is 1; otherwise, the weight is 0. However, the best way to estimate weight matrices is

problem-specific and requires a good understanding of the characteristics of the problem, in-

depth analysis of variables and measurements, and some engineering judgments.

 105

6.4 Synthetic Tests

The effectiveness and sensitivity of W-SPSA is investigated in a synthetic test, before it is

evaluated in the calibration of a city-scale traffic simulation.

6.4.1 Experimental Design

In the synthetic test system, time-dependent OD flows are calibrated using time-dependent traffic

counts. Instead of using a traffic simulator to evaluate OD flows and get its simulated counts,

linear functions are used to map OD flows to sensor counts. The true values of the OD flows are

randomly generated numbers with magnitudes comparable to real world cases. The initial OD

flows (prior values) are generated by randomly perturbing the true OD flows. The observed

sensor counts are computed using the true OD flows and randomly generated linear

relationships:

1

p

j ij i

i

M x

 (6.10)

where ix is the ith time-dependent OD flows in one interval, jM is the jth observed sensor value,

ij is a randomly generated coefficient according some rules. If ij is 0, it means jM and ix have

no correlation; otherwise, jM and ix are correlated. The OD flow in one interval is assumed to

be only related to sensor counts in the same interval. It means jM and ix in different intervals

are not correlated. The dimension of the problem is 1000 OD pairs and 100 sensors, with, at

every interval, one value for each OD flow and sensor count. The ratio between the number of

OD pairs and sensors is comparable to the real world case studies (e.g., in Balakrishna (2006)).

There are two additional concepts: variable correlation and network correlation. Variable

correlation quantifies the degree a variable correlates to all the observed values. The network

correlation is the average over all variable correlations in the network. All variables have

different variable correlations generated randomly with a mean value that equals the network

correlation. The variable correlations are limited to a range centered at the network correlation.

For example, if the network correlation is 10%, each OD flow is randomly correlated to 1-20

 106

sensors and weights are randomly generated values between 0.1 and 1 (the weights for

uncorrelated sensors are 0).

The root mean square normalized error (RMSN) is used to measure the goodness-of-fit of

the calibration algorithm:

2

1

1

()
S

i i

i

S

i

i

S y y

RMSN

y

 (6.11)

where iy is the ith observed value,
iy is the corresponding simulated value. S is the total

number of observed values. The experiments are done in the Matlab (R2011b) environment. Part

of the algorithm parameters in both SPSA and W-SPSA were determined based on Balakrishna

(2006): b = 0:602, = 0:101, A = 50. For a and c, which are the perturbation and advance step

size, linear search was performed to find their best values for each case in the experiments. The

following dimensions are considered in these experiments:

 Algorithm: SPSA vs. W-SPSA;

 Number of time intervals: 1, 2, 4, or 8 intervals were considered;

 Weight matrix: five different types of weight matrices were considered: (i) a “perfect”

matrix, which has a quantitative correlation between variables and measurements, (ii) a

weight matrix in which all correlations were converted to 0 or 1, (iii) a weight matrix in

which all correlations were converted to 0 or 1 and then 30% received the wrong side

(from 0 to 1), (iv) same as (iii) but the 30% that received the wrong value were from 1 to

0, (v) all correlations equal to one (equivalent to SPSA);

 Network correlation: the degree of network-scale average correlation between ODs and

measurements, taking the following values: 10%, 20%, 40%, 80%.

 107

6.4.2 Effectiveness

This first experiment tests the scalability of SPSA and W-SPSA by comparing their performance.

The network correlation is 10%. Random weights are assigned to the sensors between 0.1 to 1. In

W-SPSA, accurate weight matrices are known and used. The results are shown in Figure 36,

where the horizontal axis represents the number of algorithm iterations during the calibration

process, and the vertical axis represents the RMSN after a specific number of iterations.

W-SPSA outperforms SPSA in terms of convergence rate and final achieved goodness-of-fit

independently of the number of intervals. The convergence rate of SPSA and W-SPSA decrease

with the increase of the number of intervals, because of increased problem scale. However, W-

SPSA achieves similarly good long run goodness-of-fit with different number of intervals. The

results show that while SPSA is scalable in term of computational time (two objective function

evaluations regardless of the problem scale), it is not scalable enough in terms of convergence

and goodness-of-fit. W-SPSA achieves significantly better scalability in both computational

performance and goodness-of-fit. The additional calculation in the gradient approximation

process of W-SPSA is negligible compared to the running time of the simulator.

6.4.3 Sensitivity

Accurate weight matrices are extremely hard to get in real-world traffic systems. In the second

experiment, inaccurate weight matrices are investigated. Tests were again performed assuming

1000 OD pairs and 100 measurements per interval. Each OD pair was correlated with 1 to 20

measurements (the number was uniformly distributed). 4 intervals were considered in this test.

Figure 37 shows the performance of W-SPSA using inaccurate weight matrices. The dark blue

line represents SPSA. The light blue line corresponds to the performance of W-SPSA with the

perfect weight matrix. The red line is the result when the magnitude information of the weights

was not available and only 0 or 1 was assigned to the weight matrix based on the knowledge

about correlated or uncorrelated observation. For the pink line, 30% of the uncorrelated pairs

were mistakenly decided to be correlated and therefore assigned value 1 instead of 0 in the

weight matrix and the green line represents the opposite situation, when 30% of correlated pairs

were believed to be uncorrelated.

 108

W-SPSA was thus shown to work well without any knowledge about the relative correlation

magnitudes, when at least the decision between 0 and 1 was correct. The algorithm became

slightly unstable with 1 to 0 mistakes when significant correlations were neglected and relatively

better with 0 to 1 mistakes. This means whenever a decision about correlation is hard to made,

setting it as 1 will be a safer way. In conclusion, even without any magnitude information and

with errors when deciding correlations, W-SPSA still achieves better goodness-of-fit than SPSA.

Figure 36: Performance comparison of SPSA and W-SPSA

Figure 37: Performance of W-SPSA using inaccurate weight matrices

 109

The degree of network correlation is also expected to play a significant role in the

performance of W-SPSA. The third experiment is designed to investigate different network

correlations. This test was done with 1000 OD pairs and 100 measurements per interval and 4

intervals in total. Figure 38 shows the relationship between network correlation and calibration

performance. When the network correlation is increased, the performance of SPSA increases,

while that of W-SPSA decreases. With an 80% network correlation, SPSA achieved long run

goodness-of-fit similar to W-SPSA, although the convergence rate of W-SPSA was still much

higher than SPSA, because W-SPSA still had an advantage in the temporal dimension.

Theoretically, SPSA has the same performance as W-SPSA with a 100% network correlation and

1 simulation interval. This is easy to understand, because SPSA is essentially a limiting case of

W-SPSA when all the weights in the weight matrix are 1, which means 100% correlation

between all the variables and measurements. In other words, W-SPSA is a generalization of

SPSA.

 (A) Calibration performance of SPSA (B) Calibration performance of W-SPSA

Figure 38: The relationship between network correlation and calibration performance

6.5 Case Study

In this section a case study of the entire expressway network in Singapore is discussed to

demonstrate the performance of W-SPSA in the calibration of a real-world city-scale traffic

simulation.

 110

6.5.1 Experiment Setting

A state-of-the-art mesoscopic traffic simulator, DynaMIT, was used in the case study to model

the expressway system in Singapore. DynaMIT (Ben-Akiva et al., 1997, 2001, 2010) is designed

for traffic managers to evaluate surveillance and traffic management design, as well as plan

future system and network modifications. Used in real-time, DynaMIT can provide consistent

and unbiased estimation and prediction of traffic conditions to drivers and traffic control centers

to assist them with route guidance and evaluations of different control strategies. DynaMIT has

been successfully applied in a variety of cities, including Los Angeles, California (Wen et al.,

2006), Lower Westchester County, New York (Rathi et al., 2008, Antoniou et al., 2011a), and

Boston, Massachusetts (Balakrishna et al.; 2008). DynaMIT’s ability to model highly congested

urban networks was shown in a recent case study in the city of Beijing (Ben-Akiva et al., 2012).

Figure 20 shows the Singapore expressway road network. This expressway system consists

of expressway segments and ramps connecting local roads with the expressway. The network has

been modeled as 831 nodes, 1040 links and 3388 segments. The isolated expressway system has

clearly defined origins, which are the beginnings of on-ramps, and destinations, which are the

ends of off-ramps. Thus, the classic "Zone - Centroid" method, which was explained in Section

2.1.2, is not used. In total, there are 831 on-ramps and 830 off-ramps. Heuristic rules are used to

eliminate unreasonable short, unreasonable long and similar-located OD pairs. In the end, 4106

OD pairs are chosen among the 831 * 830 possible node combinations. The simulation period is

set from 0:15 to 23:00, split into 91 intervals of 15 minutes each. Thus, there are in total 373,646

time-dependent OD flows.

Observed counts are available from 216 detection cameras located across the expressway

system. The counts data are provided by the Land Transport Authority of Singapore for every 5-

minute interval and are aggregated to 15-minute intervals to match the simulation interval length.

In this case study, the data is averaged across the 31 days in August 2011 to reduce the influence

of incidents and possible sensor failures. Figure 39 presents the distribution of the (estimated)

congestion level (illustrated through the volume to capacity ratio, v/c) for the entire network: the

top subfigure presents the congestion level of the segments with sensors, while the bottom

subfigure presents the congestion level of all segments. It is noted that ramps (included in the

 111

bottom subfigure of Figure 39) are more congested, but there are no sensor measurements on the

ramps (as the data collection cameras are in the middle of Expressway segments).

(A) the congestion level of the segments with sensors

(B) the congestion level of all segments

Figure 39: The distribution of the road congestion level

 112

While the presented approach and solution algorithm is aimed at the joint demand-supply

calibration process, in this case study we have only used it to calibrate the OD flows using sensor

counts. Balakrishna and Koutsopoulos (2008) show that a good seed OD can significantly

improve the final goodness-of-fit in terms of fit to measurements. However, in this case study, no

seed OD is available and the starting ODs are assigned with reasonable, but not necessarily

highly reliable, values with the assistance of local traffic researchers from the Land Transport

Authority of Singapore. Therefore, the distance between historical variable values and calibrated

variable values is not included in the objective function and the calibration process.

6.5.2 Data Consistency Check

The traffic surveillance data is provided from the EMAS system (Expressway Monitoring and

Advisory System). The flow data is obtained from detection cameras (see Figure 40), which are

mounted on street lamps at distances of approximately 500 meters. The detection cameras are

able to "count" vehicles passing on the road below. Every 5 minutes the cameras report the flow

back to the central system. The central system then estimates the flow on the road segment using

specific algorithms, even for those without sensors on them.

Figure 40: A detection camera that measures traffic flow on Singapore expressways

 113

We investigated the flow data carefully due to the fact that they are fusion data generated by

unknown algorithms and the exact location of some cameras are not available to us. The data

consistency check is based on "daily accumulated sensor flows", which sums all flow values of

each sensor during one day. In this case, each sensor (or camera) gets 288 values during a day.

Three consistency tests were done to detect possible inconsistencies within the data. Figure 41

shows the three scenarios that were covered in our tests. The solid circles represent nodes. A line

between two nodes is a link. Rectangular boxes represent sensors. The arrows show the direction

of traffic flow.

Figure 41: Three scenarios in the flow data consistency check

In case 1, there is no on-ramp or off-ramp between the two sensors, which means no vehicle

is entering or exiting between these two sensors and these two sensors are supposed to give

similar daily accumulated sensor flows. If there is a big discrepancy between the measured flow

at sensor 1 (S1) and that at sensor 2 (S2), these two sensors are determined to be inconsistent. In

case 2, there is an on-ramp between sensor 1 and sensor 2. It means the daily accumulated sensor

flows at sensor 1 should be no bigger than sensor 2. Otherwise, these two sensors are determined

to be inconsistent. In case 3, there is an off-ramp between sensor 1 and sensor 2. It means the

daily accumulated sensor flows at sensor 1 should be no smaller than sensor 2. Otherwise, these

two sensors are determined to be inconsistent. Once a pair of inconsistent sensors are detected,

manual check is done to remove one of them.

 114

6.5.3 Calculation of the Weight Matrix

In this case study, time-dependent traffic counts on 216 segments were used to calibrate time-

depend OD flows for 4106 OD pairs in 91 intervals. The weight matrix had 4106 * 91 rows and

216 * 96 columns with each element reflecting the relative correlation between an OD flow and

an observed count. These correlations were calculated using the network topology, historical

travel time on each link and a route choice model. DynaMIT includes a path choice-set

generation algorithm to generate a set of reasonable paths a driver could choose from for each

OD pair. The probability to choose each path is decided by a route choice model (Frejinger,

2007, provides a detailed review for path choice set generation and route choice models).

Reasonable experiential values of the parameters in the route choice model can be assigned

before the calibration as the initial value and to generate weight matrix. Key inputs to the route

choice model are historical travel times on each link. These historical travel times will also be

used in a later step to calculate correlations in the weight matrix. If no such data is initially

available, usually free-flow travel time on each link is used. It should be noted that the traffic

conditions may vary significantly across the whole simulation period (peak vs. off-peak), so do

the weights. Therefore, three different weight matrices are generated to be used in traffic

conditions in AM-Peak, PM-Peak and Non-Peak.

This calculation is similar to the calculation of the assignment matrix in a network,

potentially giving rise to the following question: why not directly use an assignment matrix to

calculate OD flows with the traditional general least square (GLS) approach? Two reasons can

be given for this. The first reason is that this approach has the potential to incorporate different

types of data and calculate different types of variables simultaneously, while GLS estimation

with assignment matrix can only use traffic flow data to estimation OD flows (incremental

methodological extensions have been suggested, but they are limited and cumbersome; see e.g.

Antoniou et al., 2006). The second reason is that GLS estimation is based on direction

calculations using the assignment matrix. The accuracy of its results depends heavily on the

quality of the assignment matrix. However, W-SPSA is a stochastic searching approach and is

not as sensitive to the quality of the weight matrix (either 1 or 0).

 115

6.5.4 Choice of Algorithmic Parameter Values

Part of the parameters in W-SPSA was determined based on Balakrishna (2006): b= 0.602, γ=

0.101, A = 50. These parameters control the rate of perturbation and advance step size reduction

and can be determined based on standard guidelines and adjusted during the calibration practice.

By outputting the input parameter values and RMSN after each run of the model (three times in

an iteration: after the two perturbations and after obtaining the updated variable values), it can be

decided if the step size reduction is too fast or too slow. In this case study, it was found that

using the values from standard guidelines was good enough.

Compared with b, γ, and A, it was found in this case study that the algorithm was more

sensitive to a and c, which are the initial advance and perturbation step size, respectively. For c,

the first step is to determine an initial value based on the specific problem. In this case study, the

OD flows are the numbers of cars that leave from an origin to a destination in a 15-minute

interval. Changing this value by 1 or 2 will hardly make any meaningful change due to

stochasticity from the simulator and the algorithm. However, changing it by 100 vehicles will

have too much influence and will introduce serious congestion across the whole network.

Therefore, the number of 10 was used as the starting value of c. The starting value of a was

decided by running the calibration for a few iterations, inspecting the change of variable values

after each iteration to make sure that it is in a reasonable range. For example, in an iteration, after

perturbing the OD flow from 50 to 60 and to 40, if the updated OD flow is 100, it means that a is

too big. On the contrary, if the updated OD flow is 50.5, it means that a is too small. The values

of a and c were tested and further adjusted with preliminary runs by inspecting the performance

of RMSN reduction. In these runs, only a few intervals were calibrated to save time, before

running the calibration for the whole day.

6.5.5 Results

The performance of W-SPSA in a real world large network with a large number of simulation

intervals was demonstrated by applying it to the simultaneous calibration of DynaMIT for the

entire 91 intervals on the Singapore expressway network. As shown in Figure 42, W-SPSA has

been shown to outperform SPSA in terms of convergence rate and long run achievable goodness-

of-fit. The initial RMSN was 0.42 and after running W-SPSA for 30 iterations, it converged to a

 116

RMSN of 0.16 on average. The RMSN is reduced to 0.17 after only 10 iterations in W-SPSA. It

is noted that other measurements (e.g. reliable speed measurements) were not available for this

road network, and therefore these measurements could not be used in the calibration process.

Figure 43 shows the fit to sensor counts in two different intervals: 7:45-8:00 (morning peak),

18:00-18:15 (evening peak). The x-axis corresponds to observed counts and the y-axis to the

simulated counts after calibration. Blue points represent the simulated and observed flows at a

specific sensor. The red 45-degree line indicates a perfect match between simulated counts and

observed counts. Most points are very close to the 45-degree line, while the deviations are fairly

regularly distributed around the line, suggesting no systematic over- or under-estimation of the

counts.

Figure 42: Comparison of W-SPSA and SPSA on a real-world traffic scenario

 117

(A) AM Peak 7:45-8:00

(B) PM Peak 18:00-18:15

Figure 43: Fit to sensor counts in two different intervals

 118

6.6 Summary

The topic of calibration of city-scale simulation models is an active research field. This chapter

presented an enhancement to SPSA, a well-established solution algorithm of the state-of-the-art

joint demand-supply calibration of traffic simulation models. The original SPSA algorithm was

generalized by incorporating a 2D correlations weight matrix to reduce the gradient

approximation error and make the algorithm work better. Synthetic tests showed the advantage

of the enhanced SPSA, or W-SPSA, in terms of convergence rate, long run achievable goodness-

of-fit and its robustness when accurate weight matrices are not accessible. Furthermore, a case

study of the entire expressway network in Singapore showed the successful application of W-

SPSA to the calibration of a large network with a large number of intervals.

Theoretically SPSA has a better best-case performance, because it considers all correlations,

while W-SPSA ignores some correlations. However, the fact that SPSA considers all correlations

implies that it is also susceptible to all the noise in the system. Increasing the number of non-zero

weights considered by W-SPSA would theoretically further improve its performance, but it

would result in a computational overhead (translated into a larger number of iterations to achieve

convergence). Furthermore, W-SPSA still suffers from some of the limitations associated with

SPSA, such as the fact that it can still get trapped in local optima rather than finding the global

optimum. The importance of a good initial solution in reducing the likelihood of getting stuck in

a local optimum, especially in highly congested networks, has been pointed out by Frederix et al.

(2013). One way to overcome this limitation in practice is to re-initialize the algorithm with

different initial solutions and observe whether the same solution is reached every time.

 119

7. Conclusions and Future Research

7.1 Conclusions

Road congestions in a city-scale (or urban) traffic system are largely determined by the

equilibrium between the demand (people's requirement for travel) and the supply (the capacity of

the traffic system). In general, there are two types of solutions to manage road congestions in a

city-scale traffic system: transport planning and traffic control schemes. Due to the high

complexity in a city-scale traffic system and the limited modelling capability of mathematical

models, city-scale traffic simulation becomes an appealing toolkit to evaluate the holistic impact

of transport planning and traffic control schemes to the entire city-scale traffic system. However,

a successful deployment and maintenance of a city-scale traffic simulation is not trivial, and this

limits the usage of city-scale traffic simulations in the real-world traffic systems. The thesis

investigated and then proposed solutions on two challenges: the performance of a city-scale

traffic simulation and the calibration algorithm to estimate variables (e.g. model parameters and

model inputs) in a city-scale traffic simulation. The thesis proposed frameworks, data structures

and algorithms in computer science, to solve problems associated with performance optimization

and calibration of a city-scale traffic simulator.

The research contributions of this thesis to the state-of-the-art performance optimization of

city-scale traffic simulations are listed below:

 This thesis proposed a systematic three-step performance optimization methodology.

These steps are: framework optimization, serial bottlenecks optimization and scalability

optimization. The three-step performance optimization methodology was successfully

demonstrated to reduce the execution time to simulate the Singapore expressway road

network from 7:00AM to 8:00AM with in total 106,386 vehicles.

 120

 This thesis proposed an Entry Time based Supply Framework (ETSF) to reduce the

execution time to simulate congested traffic scenarios. The computational complexity of

the proposed ETSF framework is less sensitive to the level of congestions. Experiment

results showed that ETSF outperforms the current supply framework, by reducing the

execution time by 50% - 95% in city-scale road networks and congested traffic scenarios.

 When the number of objects (e.g. vehicles) increases in a city-scale traffic scenario, the

maintenance cost to rebalance a spatial index becomes a serial bottleneck. This thesis

proposed Sim-Tree, which is a more stable spatial index, whose balance depends only on

the average road density and thus is insensitive to individual vehicles' changing locations.

The results of experiments simulating a city-scale traffic scenario on a 6-core machine

showed that the Sim-Tree performs significantly better than the R*-tree family of spatial

indexes.

 A new type of hardware, the GPU, which has hundreds of cores, is gaining popularity in

high performance computing, because of its massive performance compared to the CPU.

A research question is whether the GPU can be a potential high-performance platform for

city-scale traffic simulations. This thesis proposed a comprehensive framework to run the

proposed ETSF framework on the CPU/GPU platform. The proposed framework was

demonstrated on a large-scale artificial grid road network and a real-world Singapore

expressway road network.

The research contributions of this thesis to the state-of-the-art calibration of city-scale traffic

simulations are listed below:

 As the traffic road network size grows, we found that the state-of-the-art calibration

algorithm (SPSA) deteriorates. in the systematic error to incorporate uncorrelated

measurements in the method of estimating gradients of calibration variables. Motivated

by this finding, we propose W-SPSA ('W' means Weighted). The key idea of W-SPSA is

to incorporate a 2-D weight matrix in the calibration algorithm, to assist the estimation of

the gradient. The 2-D weight matrix represents correlations between variables and

measurements. W-SPSA is successfully demonstrated to calibrate 373,646 time-

dependent OD flows in one day in Project DynaMIT on Singapore Expressway Network.

 121

However, there are several limitations in this research:

 Sim-Tree, as an efficient two-dimensional spatial index, cannot be directly used in traffic

simulators that use one-dimensional coordinate systems, like DynaMIT.

 The evaluation of the proposed method to run traffic simulations on the CPU/GPU

platform depends on the ETSF framework. Thus, the qualitative performance gain might

be different when the proposed method is used in a different traffic framework.

 The W-SPSA algorithm requires a 2-D weight matrix, which represents the correlations

between variables and measurements. However, the methodology to generate the 2-D

weight matrix depends on the type of variables and the type of measurements. It requires

users to determine how to generate the 2-D weight matrix in a different case study.

Besides, the lack of high quality traffic speed data in the real-world case study reduces

the practical significance of the case study.

7.2 Future Research

Future researches in performance optimization of city-scale traffic simulations are suggested:

 Applying the three-step performance optimization methodology

The three-step performance optimization methodology was proposed based on the

fundamentals in parallel computing technologies (e.g. Amdahl's law) and then was

demonstrated using academic traffic simulators (e.g. DynaMIT and SimMobility) in the

Singapore expressway network. It will be interesting to investigate the three-step

performance optimization methodology to improve the performance of existing

commercial parallel traffic simulators.

 Specialized traffic simulation frameworks

The idea of the Entry Time based Supply Framework (ETSF) comes from identifying the

most important components in city-scale traffic simulations, and then optimizing its

performance by avoiding calculating individual vehicle's locations. For other problems,

the idea of rebalancing functional capability and computational complexity can generate

 122

more efficient frameworks, than directly reusing one of the traditional traffic simulation

frameworks (microscopic, macroscopic, mesoscopic and nanoscopic).

 City-scale traffic simulations on the GPUs

This thesis proposed a simulation framework to execute a city-scale traffic simulation on

the GPUs. A speedup of 3.5-11.2 was observed when simulating the supply component

on a GPU than on a CPU. However, the high global memory access delay on the GPU

and the inefficient usage of the shared memory are bottlenecks to make full use of the

massive computational power in the GPUs.

Future research directions in the calibration of city-scale traffic simulation are suggested:

 Applying W-SPSA in simultaneous demand-supply joint calibration

The idea in weighted gradient approximation is applicable for general simultaneous

demand-supply joint calibration. However, this thesis focused on OD calibration using

aggregate flow counts on selected roads. Using W-SPSA in simultaneous demand-

supply joint calibration involves the estimation of a generalized weight matrix, a joint

usage of different types of observed data (e.g. flow and GPS data), and a higher

computational cost.

 Incorporating novel data types into the calibration

Nowadays more and more emerging types of data are available to transportation

researchers and agencies, which provide an opportunity to understand and estimate the

influence of factors that are rarely considered in previous studies. For example, with the

abundance of information on the Internet and text mining techniques, the information for

special events (e.g., concerts, sports games), including their location, time, and potential

popularity can be obtained and archived automatically. Using these data, the influence of

such events to demand and supply can be modeled and calibrated.

 Parallel calibration

The proposed algorithm W-SPSA can be parallelized in many ways. The simplest way is

to execute traffic simulations with the two different perturbed variables in parallel on

two threads/processors. The second way is to allow more sets (>2) of perturbed variables

 123

in parallel and generate better estimated gradients. It will also be interesting to

investigate multiple executions of W-SPSA with different starting values, to avoid

getting trapped by the local minimal. Finally, the calculation of weight matrices might be

massively parallelized.

 124

Bibliography

[1] Ahmane M., Abbas-Turki A., Perronnet F., Wu J., Moudni A. E., Buisson J. and Zeo R.,

(2013), "Modeling and controlling an isolated urban intersection based on cooperative

vehicles", Transportation Research Part C: Emerging Technologies 28: 44-62.

[2] Ahmed K., Ben-Akiva M., Koutsopoulos H. and Mishalani R., (1996), "Models of

freeway lane changing and gap acceptance behavior", Transportation and traffic theory

(13): 501-515.

[3] Aimsun Online. (2014). http://www.aimsun.com/wp/?page_id=33.

[4] Akman V., Franklin W. R., Kankanhalli M. and Narayanaswmi C., (1989), "Geometric

computing and the uniform grid data technique", Computer Aided Design 21, no. 7: 410–

420.

[5] Antoniou C., (2004), "On-line calibration for dynamic traffic assignment", PhD thesis,

Massachusetts Institute of Technology.

[6] Antoniou C., Balakrishna R., Koutsopoulos H. N. and Ben-Akiva M., (2011),

"Calibration methods for simulation-based dynamic traffic assignment system",

International Journal of Modelling and Simulation 31, no. 3.

[7] Appiah, J. and Rilett, L. R., (2010), "Joint estimation of dynamic origin-destination

matrices and calibration of micro-simulation models using aggregate intersection

turncount data", Transportation Research Board 89th Annual Meeting.

[8] Aydt H., Xu Y., Lees M., Knoll A., (2013), "A Multi-threaded Execution Model for the

Agent-Based SEMSim Traffic Simulation", International Conference on Systems

Simulation (AsiaSim). Singapore. 1-12.

[9] Azevedo J., (1993), "An algorithm for the ranking of shortest paths", European Journal of

Operational Research 69: 97-106.

[10] Balakrishna R., (2006), "Off-line calibration of dynamic traffic assignment models", PhD

thesis, Massachusetts Institute of Technology.

 125

[11] Balakrishna R., Morgan D., Yang Q. and Slavin H., (2012), "Comparison of Simulation-

Based Dynamic Traffic Assignment Approaches for Planning and Operations

Management", 4th TRB Conference on Innovations in Travel Modeling. Florida.

[12] Balakrishna, R., Antoniou, C., Ben-Akiva, M., Koutsopoulos, H. N. and Wen, Y., (2007),

"Calibration of microscopic traffic simulation models: methods and application",

Transportation Research Record: Journal of the Transportation Research Board 1999, no.

1: 198-207.

[13] Barcelo J., (2002), "Dynamic network simulation with AIMSUN", Proceedings of the

International Symposium on Transport Simulation.

[14] Barcelo J., (2010), "Fundamentals of Traffic Simulation", Springer, New York.

[15] Barcelo, J., Ferrer J. L., García D., Florian M. and Saux E., (1998), "Parallelization of

Microscopic Traffic Simulation for ATT Systems Analysis", Massachusetts: Kluwer

Academic Publishers.

[16] Beckmann, N., Kriegel, H., Schneider, R. and Seeger, B., (1990), "The R*-tree: an

efficient and robust access method for points and rectangles", Proceedings of the 1990

ACM SIGMOD international conference on Management of data. 322-331.

[17] Ben-Elia E. and Shiftan Y., (2010), "Which road do I take? A learning-based model of

route-choice behavior with real-time information", Transportation Research Part A:

Policy and Practice, 44 (4), 249-264

[18] Ben-Akiva M. and Bierlaire M., (1999), "Discrete choice methods and their application

to short-term travel decisions", In Handbook of Transportation Science, 5-34.

[19] Ben-Akiva M., Bierlaire M., Burton D., Koutsopoulos H. and Mishalani R., (2001),

"Network State Estimation and Prediction for Real-Time Traffic Management",

Networks and Spatial Economics 1, no. 3-4: 293-318.

[20] Ben-Akiva M., Bierlaire M., Koutsopoulos H. and Mishalani R., (1998), "DynaMIT: a

simulation-based system for traffic prediction", Proceedings of the DACCORD Short-

Term forecasting workshop.

 126

[21] Ben-Akiva M., Gao S., Wei Z. and Wen Y., (2012), "A dynamic traffic assignment

model for highly congested urban networks", Transportation Research Part C: Emerging

Technologies 24: 62–82.

[22] Ben-Akiva M.,Bierlaire M.,Koutsopoulos H. and Mishalani B., (2002), "Real Time

Simulation of Traffic Demand-Supply Interactions within DynaMIT", Transportation and

network analysis: current trends.

[23] Ben-Akiva, M. and Lerman S. R., (1985), "Discrete Choice Analysis", MIT Press.

[24] Ben-Akiva, M., Bergman, M. J., Daly, A. J. and Ramaswamy, R., (1984), "Modeling

intermodeling inter urban route choice behaviour", The Ninth International Symposium

on Transportation and Traffic Theory.

[25] Bhat C. R. and Koppelman F. S., (1999), "Activity-Based Modeling of Travel Demand",

in, Hall R. W. (Ed.), "Handbook of Transportation Science", Springer, US.

[26] Bierlaire M., (2004), "An efficient algorithm for real-time estimation and prediction of

dynamic od tables", Operations Research 52: 116-127.

[27] Bovy P. H. L. and Stella F. C., (2006), "Stochastic route choice set generation: Stochastic

route choice set generation: behavioral and probabilistic foundations", Proceedings of the

11th International Conference on Travel Behaviour Research.

[28] Box, M. J., (1965), "A new method of constrained optimization and a comparison with

other methods", Computer Journal 8, no. 1: 42-52.

[29] Boyles, S. D., Tang S. and Unnikrishnan A., (2014), "Parking search equilibrium on a

network", Transportation Research Part B: Methodological.

[30] Brockfeld E., (2005), "Calibration and validation of microscopic traffic flow models",

The 84th Annual Meeting of the Transportation Research Board.

[31] Brodtkorb A. R., Hagen T. R. and Sætra M. L., (2013), "Graphics processing unit (GPU)

programming strategies and trends in GPU computing", Journal of Parallel and

Distributed Computing, 4-13.

 127

[32] Burghout, W., Koutsopoulos, H. and Andreasson, I., (2006), "A Discrete-Event

Mesoscopic Traffic Simulation Model for Hybrid Traffic simulation", Intelligent

Transportation Systems Conference.

[33] Cameron G. D. B. and Duncan C. I. D., (1995), "PARAMICS wide area micro-simulation

of ATT and traffic management", Proceedings of 28th International symposium on

Automative Technology and automation (ISATA). 475-484.

[34] Cameron G. D. B. and Duncan G. I. D., (1996), "Paramics - Parallel Microscopic

Simulation of Road Traffic", The Journal of Supercomputing, 25-53.

[35] Cantelmo, G., Cipriani, E., Gemma, A. and Nigro, M., (2014), "An adaptive bi-level

gradient procedure for the estimation of dynamic traffic demand", IEEE Transactions in

Intelligent Transportation Systems 15, no. 3: 1348-1361.

[36] Cascetta E., Inaudi D. and Marquis G., (1993), "Dynamic estimators of origin-destination

matrices using traffic counts", Transportation Science 27, no. 4: 363-373.

[37] Cascetta, E., (1984), "Estimation of trip matrices from traffic counts and survey data: a

generalized least squares estimator", Transportation Research Part B: Methodological 18:

289-299.

[38] Cascetta, E., Nuzzolo A., Russo F. and Vitetta A., (1996), "A modified logit route choice

model overcoming path overlapping problems: Specification and some calibration results

for interurban networks", Proceedings of the 13th International Symposium on

Transportation and Traffic Theory. Lyon, France

[39] Cascetta E, Papola A., Marzano V., Simonelli F., Vitiello I., (2013), "Quasi-dynamic

estimation of o-d flows from traffic counts: formulation, statistical validation and

performance analysis on real data", Transportation research Part B, vol. 55: 171-187

[40] Cetin N., (2005), "Large-scale parallel graph-based simulations", PhD Thesis,

Switzerland, ETH Zurich.

[41] Cheong C. C. and Toh R., (2008), "Household Interview Surveys from 1997 to 2008 – A

Decade of Changing Travel Behaviours", Singapore.

 128

[42] Cipriani E., Florian M., Mahut M. and Nigro M., (2011), "A gradient approximation

approach for adjusting temporal origin-destination matrices", Transportation Research

Part C: Emerging Technologies 19: 270–282.

[43] Commuter, (2014), http://project-commuter.info/gallery/

[44] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C., (2009), "Introduction to

Algorithms (3rd ed.)", MIT Press and McGraw-Hill.

[45] Daganzo C. F., (1994), "The cell transmission model: A dynamic representation of

highway traffic consistent with the hydrodynamic theory", Transportation Research Part

B: Methodological 28, no. 4: 269-287.

[46] Darda D., (2002), "Joint calibration of a microscopic traffic simulator and estimation of

origin-destination flow", Master thesis, Massachusetts Institute of Technology.

[47] Dittrich J., Blunschi L. and Salles M. A. V., (2009), "Indexing Moving Objects Using

Short-Lived Throwaway Indexes", In Proceedings of the 11th International Symposium

on Advances in Spatial and Temporal Databases.

[48] Djukic T., Lint J. W. C. and Hoogendoorn S. P., (2012), "Application of principal

component analysis to predict dynamic origin-destination matrices", Transportation

Research Record 2283: 81-89.

[49] Duncan G., Matthew N. and Twomey S., (2014), "People Simulation for BIM and

Infrastructure", White Paper, A2K Technologies

[50] Elmasri R. and Navathe S. B., (2010), "Fundamentals of database systems", Upper

Saddle River, N.J.: Pearson Education.

[51] Fellendorf M., Vortisch P., (2014), "Microscopic Traffic Flow Simulator VISSIM", in,

Barcelo J. (Ed.), "Fundamentals of Traffic Simulation". Springer, New York, 2010.

[52] Frederix R., Viti F. and Tampere C. M., (2013), "Dynamic origin–destination estimation

in congested networks: theoretical findings and implications in practice",

Transportmetrica A: Transport Science 9, no. 6.

 129

[53] Frejinger E., (2007), "Route choice analysis: Data, models, algorithms and applications",

PhD thesis, Ecole Polytechnique Federale de Lausanne.

[54] Gazis D. C., Herman R., and Potts R. B., (1961), "Car-Following Theory of Steady-State

Traffic Flow", Operations Research 7(4) , 499-505

[55] Gladkov D., Tapia J. and Roshan M. D., (2012), "Graphics processing unit based direct

simulation Monte Carlo", Simulation: Transactions of the Society for Modeling and

Simulation International, 680-693.

[56] Gipps, P. G., (1981), "A behavioural car-following model for computer simulation",

Transportation Research Board Part B, 15, 105-111

[57] Gipps, P.G., (1986), “A Model for the Structure of Lane-Changing Decisions”,

Transportation Research Part 20B, 403-414.

[58] Gurian, P. L., Villalobos, J., Chiu, Y. and Heyman, J., (2005), "Development of a multi-

resolution large-scale vehicular traffic simulation and assignment model to assess impact

of port-of-entry on regional infrastructure", Proceedings of the 2005 ASCE International

Conference on Computing in Civil Engineering.

[59] Guttman, A., (1984), "R-Trees: A Dynamic Index Structure for Spatial Searching",

Proceedings of the 1984 ACM SIGMOD international conference on Management of

data, 47-57.

[60] Hazelton M., (2000), "Estimation of origin-destination matrices from link flows on

uncongested networks", Transportation Research Part B: Methodological 34, no. 7: 549-

566.

[61] Hobbs, F. D., (1974), "Traffic planning and engineering", Oxford, New York Pergamon

Press.

[62] Hourdos, J. and Michalopoulos, P., (2008), "Access to Destinations: Twin Cities Metro-

wide Traffic Micro-simulation Feasibility Investigation", Minnesota Department of

Transportation.

[63] Huyer W. and Neumaier A., (2008), "Snobfit-stable noisy optimization by branch and

fit", ACM Transactions on Mathematical Software (TOMS) 35, no. 2.

 130

[64] Ilarri S., Mena E. and Illarramendi A., (2010), "Location-dependent query processing:

Where we are and where we are heading", ACM Computing Surveys.

[65] Jayakrishnan R., Mahmassani H. and Hu T., (1994), "An evaluation tool for advanced

traffic information and management systems in urban networks", Transportation

Research Part C: Emerging Technologies 2, no. 3: 129-147.

[66] Jensen C. S., Lin D. and Ooi B. C., (2004), "Query and update efficient B+-tree based

indexing of moving objects", Proceedings of the 30th international conference on very

large data bases. 768–779.

[67] Jin H., (2001), "High Performance Mass Storage and Parallel I/O: Technologies and

Applications (1st ed.)", Rajkumar Buyya and Toni Cortes (Eds.), John Wiley & Sons,

Inc., New York, NY, USA.

[68] Jones M. H., (1999), "Stochastic optimization, stochastic approximation and simulated

annealing", Wiley Encyclopedia of Electrical and Electronics Engineering.

[69] Kalidas A., (1996), "Estimation and prediction of time-dependent origin-destination

flows", PhD thesis, Massachusetts Institute of Technology.

[70] Karypis G. and Kumar V., (1999), "A fast and highly quality multilevel scheme for

partitioning irregular graphs", SIAM Journal on Scientific Computing, 359-392.

[71] Karypis G. and Kumar V., (1999), "Multilevel k-way Hypergraph Partitioning", 36th

Design Automation Conference. 343-348.

[72] Kattan L. and Abdulhai B., (2006), "Non-iterative approach to dynamic traffic origin-

destination estimation using parallel evolutionary algorithms", Journal of Transportation

Research 1964: 201-210.

[73] Kim S. J., (2006), "Simultaneous Calibration of a Microscopic Traffic Simulation Model

and OD Calibration", PhD thesis, Texas A and M University.

[74] Kim K. and Rilett L. R., (2004), "A genetic algorithm based approach to traffic micro-

simulation calibration using its data", The 83rd Annual Meeting of the Transportation

Research Board.

 131

[75] Kindratenko V. V., Enos J. J., Guochun S., Showerman M. T., Arnold G. W., Stone J. E.,

Phillips J. C. and Wen-Mei H., (2009), "GPU clusters for high-performance computing",

Cluster Computing and Workshops.

[76] Koh W. L. and Zhou S., (2011), "Modeling and simulation of pedestrian behaviors in

crowded places", ACM Transactions on Modeling and Computer Simulation 21, no. 3.

[77] Kumaret V., Grama A., Gupta A. and Karpis G., (1994), "Introduction to parallel

computing: design and analysis of algorithms", Redwood City, CA.

[78] Kwon D., Lee S. and Lee S., (2002), "Indexing the current positions of moving objects

using the lazy update R-tree", Proceedings of the Third International Conference on

Mobile Data Management.

[79] Lasalle D. and Karypis G., (2013), "Multi-Threaded Graph Partitioning", 27th IEEE

International Parallel & Distributed Processing Symposium.

[80] Laval, J. A., (2004), "Hybrid models of traffic flow: impacts of bounded vehicle

accelerations", PhD thesis, Department of Civil Engineering, University of California,

Berkeley, USA.

[81] Lee J. B. and Ozbay K., (2008), "Calibration of a macroscopic traffic simulation model

using enhanced simultaneous perturbation stochastic approximation methodology",

Transportation Research Board 87th Annual Meeting.

[82] Lee M., Hsu W., Jensen C. S., Cui B., and Teo K. L., (2003), "Supporting frequent

updates in R-trees: a bottom-up approach", In Proceedings of the 29th international

conference on very large data bases.

[83] Lee D. H. and Chandrasekar P., (2002), "A framework for parallel traffic simulation

using multiple instancing of a simulation program", Intelligent Transportation Systems

Journal.

[84] Li B., (2005), "Bayesian inference for origin-destination matrices of transport networks

using the em algorithm", Technometrics 47, no. 4: 399-408.

[85] Lin C. and Snyder L., (2008), "Principles of Parallel Programming", Addison-Wesley.

 132

[86] Liu H., Ma W., Jayakrishnan R. and Recker W., (2004), "Large-Scale Traffic Simulation

Through Distributed Computing of Paramics", California PATH Research Report.

[87] Lu L., Xu Y., Antoniou C. and Ben-Akiva M., (2014), "W-SPSA: An Enhanced SPSA

Algorithm for the Calibration of Dynamic Traffic Assignment Models", Journal:

Transportation Research Part C: Emerging Technologies.

[88] Ma J., Dong H. and Zhang H. M., (2007), "Calibration of microsimulation with heuristic

optimization methods", Transportation Research Record: Journal of the Transportation

Research Board 1999, no. 1: 208-217.

[89] Mahmassani H., Hu T. and Jayakrishnan R., (1992), "Dynamic traffic assignment and

simulation for advanced network informatics (DYNASMART)", Proceedings of the 2nd

International Capri Seminar on Urban Traffic Networks.

[90] May J. M., (2001), "Parallel I/O for high performance computing", Academic Press.

[91] May A. D. and Keller, H. E. M., (1967), "Non-integer Car Following Models",

Transportation Research Board, 19-32.

[92] Messmer A. and Papageorgiou M., (1990), "METANET: a macroscopic simulation

program for motorway networks", Traffic Engineering and Control 31: 466-470.

[93] Michalakes J. and Vachharajani M., (2008), "GPU acceleration of numerical weather

prediction", IEEE International Symposium on Parallel and Distributed Processing.

[94] Munoz L., Sun X., Sun D., Gomes G. and Horowitz R., (2004), "Methodological

methodological calibration of the cell transmission model", Inproceedings of Annual

Control Conference. Boston, 798-803.

[95] Nagel K. and Rickert M., (2001), "Parallel implementation of the TRANSIMS micro-

simulation", Parallel Computing, 1611-1639.

[96] Nie X. and Zhang H. M., (2005), "A comparative study of some macroscopic link models

used in dynamic traffic assignment", Networks and Spatial Economics 5, no. 1: 89-115.

 133

[97] Nie Y. and Zhang H. M., (2008), "A variational inequality approach for inferring

dynamic origin-destination travel demands", Transportation Research Part B:

Methodological 42, no. 7: 635-662.

[98] Nokel K., (2002), "Parallel DYNEMO: Meso-Scopic Traffic Flow Simulation on Large

Networks", Networks and Spatial Economics, 387–403.

[99] Noronha V. and Church R., (2002), "Linear Referencing and Alternate Expressions of

Location for Transportation", California Department of Transportation.

[100] Nvidia, (2013), "CUDA C Programming Guide".

[101] Ortuzar J. D. and Willumsen L. G., (2011), "Modelling Transport (4nd ed.)", Wiley.

[102] Othman N. B., Luo L., Cai W., and Lees M., (2013), "Spatial indexing in agent-based

crowd simulation", Proceedings of the 6th International ICST Conference on Simulation

Tools and Techniques.

[103] Panwai S. and Dia H., (2005), "Comparative evaluation of microscopic car-following

behavior ", IEEE Transactions on Intelligent Transportation Systems, 6(4), 314-325

[104] Park H. and Fishwick P. A., (2011), "An analysis of queuing network simulation using

GPU-based hardware acceleration", ACM Transactions on Modeling and Computer

Simulation.

[105] Passerat-Palmbach, J., Mazel, C. and Hill, D. R. C., (2011), "Pseudo-Random Number

Generation on GP-GPU", International Workshop on Principles of Advanced and

Distributed Simulation.

[106] Payne, H. J., (1979), "FREEFLO: A Macroscopic Simulation Model of Freeway Traffic",

Transportation Research Board 772: 68-75.

[107] Paz, A., Molano, V. and Gaviria, C., (2012), "Calibration of corsim models considering

all model parameters simultaneously", 15th International IEEE Conference on Intelligent

Transportation Systems (ITSC). 1417-1422.

 134

[108] Perumalla, K. S., Aaby B. G., Yoginath S. B. and Seal S. K., "GPU-based real-time

execution of vehicular mobility models in large-scale road network scenarios",

International Workshop on Principles of Advanced and Distributed Simulation. 2009.

[109] Pipes, L. A., (1953), "An Operational Analysis of Traffic Dynamics", Journal of Applied

Physics 24: 274-281.

[110] Prato C. G., (2004), "Latent Factors and Route Choice Behavior", PhD thesis, Politecnico

Politecnico di Torio

[111] Prato C. G., (2009), "Route choice modeling: past, present and future research

directions", Journal of Choice Modelling, 2 (1), 65-100

[112] Yang Q., (1999), "A Simulation Laboratory for Evaluation of Dynamic Traffic

Management Systems", Ph.D. Thesis, Massachusetts Institute of Technology.

[113] Yang Q., Koutsopoulos H. and Ben-Akiva M., (2000), "A simulation laboratory for

evaluating dynamic traffic management systems", Transportation Research Record:

Journal of the Transportation Research Board 1710: 122-130.

[114] Qian Z. and Michael H., (2011), "Computing individual path marginal cost in networks

with queue spillbacks", Transportation Research Record.

[115] Ramakrishnan R. and Gehrke J., (2003), "Database Management Systems", McGraw-

Hill.

[116] Rathi V., Antoniou C., Wen Y., Ben-Akiva M. E. and Cusack M. M., (2008),

"Assessment of the impact of dynamic prediction-based route guidance using simulation-

based, closed-loop framework", Transportation Research Board 87th Annual Meeting.

[117] Sidlauskas D., Ross K. A., Jensen C. S. and Saltenis S., (2011), "Thread-level parallel

indexing of update intensive moving-object workloads", Proceedings of the 12th

international conference on Advances in spatial and temporal databases. 186–204.

[118] Sidlauskas D., Saltenis S. and Jensen C. S., (2012), "Parallel main-memory indexing for

moving-object query and update workloads", Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data.

 135

[119] Sidlauskas D., Saltenis S., Christiansen C. W., Johansen J. M. and Saulys D., (2009),

"Trees or grids? Indexing moving objects in main memory", Proceedings of the 17th

ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems. 236–245.

[120] SMART, (2014), http://smart.mit.edu/

[121] Smith M., Duncan G. and Druitt S., (1995), "PARAMICS: Microscopic traffic simulation

for congestion management", Colloquium on Dynamic Control of Strategic Inter-Urban

Road Networks.

[122] Spall J. C., (1992), "Multivariate stochastic approximation using a simultaneous

perturbation gradient approximation", IEEE Transactions on Automatic Control 37, no. 3:

332-341.

[123] Spall J. C., (1998), "An overview of the simultaneous perturbation method for efficient

optimization", Johns Hopkins APL Technical Digest. 482-492.

[124] Spall J. C., (1994), "Developments in stochastic optimization algorithms with gradient

approximations based on function measurements", Proceedings of the 26th conference on

Winter simulation. 207-214.

[125] Stathopoulos A. and Tsekeris T., (2004), "Hybrid meta-heuristic algorithm for the

simultaneous optimization of the o-d trip matrix estimation", Computer-Aided Civil and

Infrastructure Engineering 19, no. 6: 421-435.

[126] Strippgen D. and Nagel K., (2009), "Multi-agent traffic simulation with CUDA",

Proceedings of International Conference on High Performance Computing & Simulation.

[127] Taylor N. B., (2003), "The CONTRAM Dynamic Traffic Assignment Model", Networks

and Spatial Economics 3: 297-322.

[128] Thomas H. C., Charles E. L., Ronald L. R. and Clifford S., (1990), "Introduction to

Algorithms (3th ed.)", The MIT Press.

[129] Toledo T., Koutsopoulos H. N., Davol A., Ben-Akiva M., Burghout W., Andreasson I.,

Johansson T. and Lundin C., (2003), "Calibration and validation of microscopic traffic

simulation tools: Stockholm case study", Transportation Research Record 1831: 65-75.

 136

[130] Tomer T., Koutsopoulos H. and Ben-Akiva M., (2007), "Integrated driving behavior

modeling", Transportation Research Part C: Emerging Technologies 15, no. 2: 96-112.

[131] TransModeler, (2014). http://www.caliper.com/transmodeler/.

[132] Van A. M. and Rakha, H., (1995), "TravTek evaluation modeling study", Technical

report, Federal Highway Administration, US DOT.

[133] Wang Y., Messmer A. and Papageorgiou M., (2001), "Freeway network simulation and

dynamic traffic assignment with METANET tools", Transportation Research Record:

Journal of the Transportation Research Board 1776: 178-188.

[134] Wen Y., (2009), "Scalability of Dynamic Traffic Assignment", PhD Thesis,

Massachusetts Institute of Technology.

[135] Wen Y., Balakrishna R., Ben-Akiva M. and Smith S., (2006), "Online deployment of

dynamic traffic assignment: architecture and run-time management", IEEE Proceedings

in Intelligent Transport Systems.

[136] Burghout W., Koutsopoulos H. N. and Andreasson I., (2006), "A Discrete-Event

Mesoscopic Traffic Simulation Model for Hybrid Traffic simulation", Intelligent

Transportation Systems Conference.

[137] Xu Y. and Tan G., (2012a), “An Offline Road Network Partitioning Solution in

Distributed Transportation Simulation”, IEEE/ACM International Symposium on

Distributed Simulation and Real Time Applications (DS-RT).

[138] Xu Y. and Tan G., (2012b), “hMETIS-based Offline Road Network Partitioning", Asia

Simulation Conference,.

[139] Xu Y., Song X., Weng Z. and Tan G., (2014), “An Entry Time based Supply Framework

(ETSF) for Mesoscopic Traffic Simulations”, Journal: Simulation Modelling Practice and

Theory.

[140] Xu Y. and Tan G., (2014), “Sim-Tree: Indexing Moving Objects in Large-Scale Parallel

Microscopic Traffic Simulation”, ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation.

 137

[141] Xu Y., Tan G., Li X. and Song X., (2014), “Mesoscopic Traffic Simulation on

CPU/GPU”, ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

[142] Yeo H., Skabardonis A., Halkias J., Colyar J. and Alexiadis V., (2009), "Oversaturated

Freeway Flow Algorithm for Use in Next Generation Simulation", Transportation

Research Record: Journal of the Transportation Research Board, 68-79.

 138

Appendix I: Terminology Definition

[1] 2-D: Two-dimensional coordinate system. Similarly, 1-D means one-dimensional.

[2] calibration: the calibration of a traffic simulator means to estimate variables (e.g. model

parameters and model inputs), in order to match model outputs with real-world traffic

surveillance measurements..

[3] city-scale: In this thesis, the scale of a traffic scenario is measured by the number of

roads (or segments) and the number of cars moving on roads. For example, a typical city-

scale traffic scenario contains more than 3000 segments and up to 1,000,000 cars.

[4] centroid node: Zones in a road network are represented in the computer models as if all

their attributes and properties were concentrated in a single point called centroid nodes. A

typical centroid node is located as the geometry center of a zone.

[5] congestion: it is a condition on a road network, which is characterized by slower speeds,

higher densities, and thus more vehicles on the road network.

[6] demand: Modeling from the travelers’ point of view, the 'Demand' is to understand how

travel decisions are made, such as origin and destination choice, mode choice, departure

time choice, route choice and response to traffic information.

[7] event-driven traffic simulation: The status of the road network and individual vehicles

in the simulation are updated only when some events (e.g. a vehicle enters a road) occur.

[8] entry-time: Each vehicle has an entry-time, which is the time when the vehicle enters the

current lane. Note that an entry-time might have decimals.

[9] flow: The number of vehicles passing a point during a time interval, and then expressed

as an equivalent hourly rate. The unit is vehicle/hour (v/h).

[10] GPU (Graphics Processing Unit): It is originally designed as a specialized hardware to

accelerate the creation and the rendering of images for output to a display, however,

modern GPUs have evolved into a highly parallel, general-purpose, multi-core processor

with tremendous computational power and very high memory bandwidth.

 139

[11] jam density: it refers to an extreme traffic density associated with a completely stopped

traffic flow, usually in the range of 185–250 vehicles per mile per lane.

[12] lane length: if a 100-meter segment has 3 lanes, the segment’s lane length is 300 meters.

[13] performance: Performance of a traffic simulator, in this thesis, means the execution time

of the traffic simulator to simulation a traffic scenario. High performance means shorter

execution time; performance optimization means reducing the execution time.

[14] OD Matrix: an OD matrix is a 2-D table, whose rows are origin zones and columns are

destination zones. Each number in the matrix represents the number of trips going from

an origin zone to a destination zone during a period.

[15] scalability: Scalability, in this thesis, means the efficiency of reducing the execution time

to simulate a traffic scenario by using multiple processing units (cores and machines). It

is the same as speed-up.

[16] spatial index: it is a data structure in traffic simulations that manages locations of objects

(e.g. a vehicle, a pedestrian, etc.) in a road network (e.g. to find the left vehicle).

[17] speed: the moving distance per unit time. The default unit is meter/second (m/s).

[18] supply: modeling from the road network's point of view, the 'Supply' is to understand the

capacity of a road network and also traffic control policies, incident response policies and

event management methods.

[19] time-stepped traffic simulation: the status of the road network and individual vehicles

in the simulation are updated at an appropriately chosen unit time. The chosen unit time

(e.g. 0.1 seconds or 5 seconds) is named the time step of a traffic simulation.

[20] time speedup: time speedup is the executing time of a traffic simulation on 1 processing

unit over the executing time of a traffic simulation on N processing units. In this thesis,

speedup is the same as time speedup.

[21] transport engineering: an overall concept of engineering in any mode of transportation,

including road traffic engineering, railway engineering, airport engineering, etc.

 140

[22] transport planning: it refers to the 4-step transport planning program: trip generation,

trip distribution, mode choice and trip/route assignment.

[23] traffic control: it refers to a variety of technologies and policies to control the demand

and the supply, e.g. signal control, ramp metering, traffic information control, incident

management, road pricing, car sharing, etc.

[24] variable and parameter: variables refer to a general concept whose value is unknown,

consisting of model parameters (e.g. parameters in route choice models) and model inputs

(e.g. the OD matrix as an input of route choice models).

 141

Appendix II: Calculation of k in Sim-Tree

The average cost of a region query operation in Sim-Tree can be estimated using the formula:

 * , (k 2, 0)
N

k
Average Query Cost k w wlog

where,

k is the number of children in a node in Sim-Tree,

w is the average number of objects in a leaf node,

N is the total number of leaf nodes,

N

k
log is the depth of the tree structure,

 *
N

k
k log is the cost of finding the target leaf node

To find the turning point (which is also the optimal solution of k),

2

(*)
0

()

()
lnln * 0
()

ln 1
ln * 0

(ln)

ln 1 0

N

k
d k wlog

d k

k
d

kN
d k

k
N

k

k

k e

