9 research outputs found

    Clasificación de coberturas en humedales utilizando datos de Sentinel-1 (Banda C): un caso de estudio en el delta del río Paraná, Argentina

    Get PDF
    [EN] With the launch of the Sentinel-1 mission, for the first time, multitemporal and dual-polarization C-band SAR data with a short revisit time is freely available. How can we use this data to generate accurate vegetation cover maps on a local scale? Our main objective was to assess the use of multitemporal C-Band Sentinel-1 data to generate wetland vegetation maps. We considered a portion of the Lower Delta of the Paraná River wetland (Argentina). Seventy-four images were acquired and 90 datasets were created with them, each one addressing a combination of seasons (spring, autumn, winter, summer, complete set), polarization (VV, HV, both), and texture measures (included or not). For each dataset, a Random Forest classifier was trained. Then, the kappa index values (k) obtained by the 90 classifications made were compared. Considering the datasets formed by the intensity values, for the winter dates the achieved kappa index values (k) were higher than 0.8, while all summer datasets achieved k up to 0.76. Including feature textures based on the GLCM showed improvements in the classifications: for the summer datasets, the k improvements were between 9% and 22% and for winter datasets improvements were up to 15%. Our results suggest that for the analyzed context, winter is the most informative season. Moreover, for dates associated with high biomass, the textures provide complementary information.[ES] Con el lanzamiento de la misión Sentinel-1, por primera vez, datos SAR de banda C multitemporales y de polarización dual, con un tiempo de revisión corto, están disponibles de forma gratuita. ¿Cómo podemos utilizar estos datos para generar mapas precisos de cobertura vegetal a escala local? Nuestro principal objetivo fue evaluar el uso de datos multitemporales de banda C Sentinel-1 para generar mapas de vegetación en humedales. Consideramos una porción del humedal del Bajo Delta del Río Paraná (Argentina). Utilizamos setenta y cuatro imágenes y creamos noventa conjuntos de datos distintos con ellas, cada uno abordando una combinación de estaciones (primavera, otoño, invierno, verano, conjunto completo), polarización (VV, HV, ambas) y medidas de textura (incluidas o no). Para cada conjunto de datos, se entrenó un clasificador Random Forest. Luego, se compararon los valores de índice kappa (k) obtenidos por las 90 clasificaciones realizadas. Teniendo en cuenta los conjuntos de datos formados por los valores de intensidad de la señal del radar, para las fechas de invierno los valores k obtenidos fueron superiores a 0,8, mientras que los conjuntos de datos de verano obtuvieron k menores a 0,76. La inclusión de los atributos de texturas basados en las matrices de GLCM mostraron mejoras en las clasificaciones: para los conjuntos de datos de verano, las mejoras de k estuvieron entre un 9% y un 22% y para los de invierno, las mejoras fueron de hasta un 15%. Nuestros resultados sugieren que para el contexto analizado, el invierno es la temporada más informativa. Además, para las fechas asociadas con alta biomasa, las texturas proporcionan información complementaria.Rajngewerc, M.; Grimson, R.; Bali, L.; Minotti, P.; Kandus, P. (2022). Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina. Revista de Teledetección. (60):29-46. https://doi.org/10.4995/raet.2022.1691529466

    Estimation of change in forest variables using synthetic aperture radar

    Get PDF
    Large scale mapping of changes in forest variables is needed for both environmental monitoring, planning of climate actions and sustainable forest management. Remote sensing can be used in conjunction with field data to produce wall-to-wall estimates that are practically impossible to produce using traditional field surveys. Synthetic aperture radar (SAR) can observe the forest independent of sunlight, clouds, snow, or rain, providing reliable high frequency coverage. Its wavelength determines the interaction with the forest, where longer wavelengths interact with larger structures of the trees, and shorter wavelengths interact mainly with the top part of the canopy, meaning that it can be chosen to fit specific applications. This thesis contains five studies conducted on the Remningstorp test site in southern Sweden. Studies I – III predicted above ground biomass (AGB) change using long wavelength polarimetric P- (in I) and L-band (in I – III) SAR data. The differences between the bands were small in terms of prediction quality, and the HV polarization, just as for AGB state prediction, was the polarization channel most correlated with AGB change. A moisture correction for L-band data was proposed and evaluated, and it was found that certain polarimetric measures were better for predicting AGB change than all of the polarization channels together. Study IV assessed the detectability of silvicultural treatments in short wavelength TanDEM-X interferometric phase heights. In line with earlier studies, only clear cuts were unambiguously distinguishable. Study V predicted site index and stand age by fitting height development curves to time series of TanDEM-X data. Site index and age were unbiasedly predicted for untreated plots, and the RMSE would likely decrease with longer time series. When stand age was known, SI was predicted with an RMSE comparable to that of the field based measurements. In conclusion, this thesis underscores SAR data's potential for generalizable methods for estimation of forest variable changes

    Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia

    Get PDF
    The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas

    ASSESSING FOREST BIOMASS AND MONITORING CHANGES FROM DISTURBANCE AND RECOVERY WITH LIDAR AND SAR

    Get PDF
    This dissertation research investigated LiDAR and SAR remote sensing for assessing aboveground biomass and monitoring changes from anthropogenic forest disturbance and post-disturbance recovery. First, waveform LiDAR data were applied to map forest biomass and its changes at different key map scales for the two study sites: Howland Forest and Penobscot Experimental Forest. Results indicated that the prediction model at the scale of individual LVIS footprints is reliable when the geolocation errors are minimized. The evaluation showed that the predictions were improved markedly (20% R2 and 10% RMSE) with the increase of plot sizes from 0.25 ha to 1.0 ha. The effect of disturbance on the prediction model was strong at the footprint level but weak at the 1.0 ha plot-level. Errors reached minimum when footprint coverage approached about 50% of the area of 1.0 ha plots (16 footprints) with no improvement beyond that. Then, a sensitivity analysis was conducted for multi-source L-band SAR signatures, to change in forest biomass and related factors such as incidence angle, soil moisture, and disturbance type. The effect of incidence angle on SAR backscatter was reduced by an empirical model. A cross-image normalization was used to reduce the radiometric distortions due to changes in acquisition conditions such as soil moisture. Results demonstrated that the normalization ensured that the derived biomass of regrowth forests was cross-calibrated, and thus made the detection of biomass change possible. Further, the forest biomass was mapped for 1989, 1994 and 2009 using multi-source SAR data, and changes in biomass were derived for a 15- and a 20-year period. Results improved our understanding of issues concerning the mapping of biomass dynamic using L-ban SAR data. With the increase of plot sizes, the speckle noise and geolocations errors were reduced. Multivariable models were found to outperform the single-term models developed for biomass estimation. The main contribution of this research was an improved knowledge concerning waveform LiDAR and L-band SAR’s ability in monitoring the changes in biomass in a temperate forest. Results from this study provide calibration and validation methods as a foundation for improving the performance of current and future spaceborne systems

    Estimation of biophysical parameters in boreal forests from ERS and JERS SAR interferometry

    Get PDF
    The thesis describes investigations concerning the evaluation of ERS and JERS SAR images and repeat-pass interferometric SAR images for the retrieval of biophysical parameters in boreal forests. The availability of extensive data sets of images over several test sites located in Sweden, Finland and Siberia has allowed analysis of temporal dynamics of ERS and JERS backscatter and coherence, and of ERS interferometric phase. Modelling of backscatter, coherence and InSAR phase has been performed by means of the Water Cloud Model (WCM) and the Interferometric Water Cloud Model (IWCM); sensitivity analysis and implications for the retrieval of forest biophysical parameters have been thoroughly discussed. Model inversion has been carried out for stem volume retrieval using ERS coherence, ERS backscatter and JERS backscatter, whereas for tree height estimation the ERS interferometric phase has been used. Multi-temporal combination of ERS coherence images, and to a lesser extent of JERS backscatter images, can provide stem volume estimates comparable to stand-wise ground-based measurements. Since the information content of the interferometric phase is strongly degraded by phase noise and uncorrected atmospheric artefacts, the retrieved tree height shows large errors

    GNSS reflectometry for land remote sensing applications

    Get PDF
    Soil moisture and vegetation biomass are two essential parameters from a scienti c and economical point of view. On one hand, they are key for the understanding of the hydrological and carbon cycle. On the other hand, soil moisture is essential for agricultural applications and water management, and vegetation biomass is crucial for regional development programs. Several remote sensing techniques have been used to measure these two parameters. However, retrieving soil moisture and vegetation biomass with the required accuracy, and the appropriate spatial and temporal resolutions still remains a major challenge. The use of Global Navigation Satellite Systems (GNSS) reflected signals as sources of opportunity for measuring soil moisture and vegetation biomass is assessed in this PhD Thesis. This technique, commonly known as GNSS-Reflectometry (GNSS-R), has gained increasing interest among the scienti c community during the last two decades due to its unique characteristics. Previous experimental works have already shown the capabilities of GNSS-R to sense small reflectivity changes on the surface. The use of the co- and cross-polarized reflected signals was also proposed to mitigate nuisance parameters, such as soil surface roughness, in the determination of soil moisture. However, experimental evidence of the suitability of that technique could not be demonstrated. This work analyses from a theoretical and an experimental point of view the capabilities of polarimetric observations of GNSS reflected signals for monitoring soil moisture and vegetation biomass. The Thesis is structured in four main parts. The fi rst part examines the fundamental aspects of the technique and provides a detailed review of the GNSS-R state of the art for soil moisture and vegetation monitoring. The second part deals with the scattering models from land surfaces. A comprehensive description of the formation of scattered signals from rough surfaces is provided. Simulations with current state of the art models for bare and vegetated soils were performed in order to analyze the scattering components of GNSS reflected signals. A simpli ed scattering model was also developed in order to relate in a straightforward way experimental measurements to soil bio-geophysical parameters. The third part reviews the experimental work performed within this research. The development of a GNSS-R instrument for land applications is described, together with the three experimental campaigns carried out in the frame of this PhD Thesis. The analysis of the GNSS-R and ground truth data is also discussed within this part. As predicted by models, it was observed that GNSS scattered signals from natural surfaces are a combination of a coherent and an incoherent scattering components. A data analysis technique was proposed to separate both scattering contributions. The use of polarimetric observations for the determination of soil moisture was demonstrated to be useful under most soil conditions. It was also observed that forests with high levels of biomass could be observed with GNSS reflected signals. The fourth and last part of the Thesis provides an analysis of the technology perspectives. A GNSS-R End-to-End simulator was used to determine the capabilities of the technique to observe di erent soil reflectivity conditions from a low Earth orbiting satellite. It was determined that high accuracy in the estimation of reflectivity could be achieved within reasonable on-ground resolution, as the coherent scattering component is expected to be the predominant one in a spaceborne scenario. The results obtained in this PhD Thesis show the promising potential of GNSS-R measurements for land remote sensing applications, which could represent an excellent complementary observation for a wide range of Earth Observation missions such as SMOS, SMAP, and the recently approved ESA Earth Explorer Mission Biomass.La humedad del suelo y la biomasa de la vegetaci on son dos parametros clave desde un punto de vista tanto cient co como econ omico. Por una parte son esenciales para el estudio del ciclo del agua y del carbono. Por otra parte, la humedad del suelo es esencial para la gesti on de las cosechas y los recursos h dricos, mientras que la biomasa es un par ametro fundamental para ciertos programas de desarrollo. Varias formas de teledetección se han utilizado para la observaci on remota de estos par ametros, sin embargo, su monitorizaci on con la precisi on y resoluci on necesarias es todav a un importante reto tecnol ogico. Esta Tesis evalua la capacidad de medir humedad del suelo y biomasa de la vegetaci on con señales de Sistemas Satelitales de Posicionamiento Global (GNSS, en sus siglas en ingl es) reflejadas sobre la Tierra. La t ecnica se conoce como Reflectometr í a GNSS (GNSS-R), la cual ha ganado un creciente inter es dentro de la comunidad científ ca durante las dos ultimas d ecadas. Experimentos previos a este trabajo ya demostraron la capacidad de observar cambios en la reflectividad del terreno con GNSS-R. El uso de la componente copolar y contrapolar de la señal reflejada fue propuesto para independizar la medida de humedad del suelo de otros par ametros como la rugosidad del terreno. Sin embargo, no se pudo demostrar una evidencia experimental de la viabilidad de la t ecnica. En este trabajo se analiza desde un punto de vista te orico y experimental el uso de la informaci on polarim etrica de la señales GNSS reflejadas sobre el suelo para la determinaci on de humedad y biomasa de la vegetaci on. La Tesis se estructura en cuatro partes principales. En la primera parte se eval uan los aspectos fundamentales de la t ecnica y se da una revisi on detallada del estado del arte para la observaci on de humedad y vegetaci on. En la segunda parte se discuten los modelos de dispersi on electromagn etica sobre el suelo. Simulaciones con estos modelos fueron realizadas para analizar las componentes coherente e incoherente de la dispersi on de la señal reflejada sobre distintos tipos de terreno. Durante este trabajo se desarroll o un modelo de reflexi on simpli cado para poder relacionar de forma directa las observaciones con los par ametros geof sicos del suelo. La tercera parte describe las campañas experimentales realizadas durante este trabajo y discute el an alisis y la comparaci on de los datos GNSS-R con las mediciones in-situ. Como se predice por los modelos, se comprob o experimentalmente que la señal reflejada est a formada por una componente coherente y otra incoherente. Una t ecnica de an alisis de datos se propuso para la separacióon de estas dos contribuciones. Con los datos de las campañas experimentales se demonstr o el bene cio del uso de la informaci on polarim etrica en las señales GNSS reflejadas para la medici on de humedad del suelo, para la mayor a de las condiciones de rugosidad observadas. Tambi en se demostr o la capacidad de este tipo de observaciones para medir zonas boscosas densamente pobladas. La cuarta parte de la tesis analiza la capacidad de la t ecnica para observar cambios en la reflectividad del suelo desde un sat elite en orbita baja. Los resultados obtenidos muestran que la reflectividad del terreno podr a medirse con gran precisi on ya que la componente coherente del scattering ser a la predominante en ese tipo de escenarios. En este trabajo de doctorado se muestran la potencialidades de la t ecnica GNSS-R para observar remotamente par ametros del suelo tan importantes como la humedad del suelo y la biomasa de la vegetaci on. Este tipo de medidas pueden complementar un amplio rango de misiones de observaci on de la Tierra como SMOS, SMAP, y Biomass, esta ultima recientemente aprobada para la siguiente misi on Earth Explorer de la ESA

    Estimating tropical forest above-ground biomass at the local scale using multi-source space-borne remote sensing data

    Full text link
    Although forest biomass estimation has attracted a great number of studies using remote sensing data, its usage still contains high uncertainties. After transitioning from deforestation to reforestation under the development of Payments for Environmental Services (PES) programmes, young forests that are dominated by numerous small regenerating understory trees are found in many areas of many developing countries. However, the lack of analysis on the effect of this understory vegetation on total AGB is one the limitations of biomass studies. Moreover, it is always challenging to estimate the biomass of tropical forest due to its complex structure, high diversity of species, and dense canopy of understory trees. Taking into account these factors, this study, therefore, aims to investigate the effect of including understory trees in accuracy of AGB estimation in complex tropical heterogeneous forest at the local scale. The research conducted three consecutive experiments, using different remote sensing data sources, being: optical data, synthetic aperture radar (SAR) data and the integration of optical and SAR data, across various forest types in different test site locations. The results provide comprehensive insights into the impact of small regenerating trees on improving AGB estimation. This major finding alone demonstrates that the role of small regenerating trees should not be automatically discounted, especially for tropical forest where a number of different tree layers is common. This is especially important in areas with a large number of small regenerating trees and where open canopy layers are young. The thesis reveals that the level of influence of small regenerating trees on each forest type is different. Therefore, the study recommends an approach to including small regenerating trees for each forest type. This thesis argues there is a need to develop local-specific allometric equations for both overstory and understory layers to improve the accuracy of biomass models. Methods required for collecting field data and calculating biomass for small regenerating trees should be considered carefully in terms of evaluating cost-effective biomass estimation for each ecological region and each species. This requirement is most critical for young forest sites where there are mixtures of mature trees and young regenerating trees
    corecore