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Abstract: With the launch of the Sentinel-1 mission, for the first time, multitemporal and dual-polarization C-band 
SAR data with a short revisit time is freely available. How can we use this data to generate accurate vegetation 
cover maps on a local scale? Our main objective was to assess the use of multitemporal C-Band Sentinel-1 data 
to generate wetland vegetation maps. We considered a portion of the Lower Delta of the Paraná River wetland 
(Argentina). Seventy-four images were acquired and 90 datasets were created with them, each one addressing a 
combination of seasons (spring, autumn, winter, summer, complete set), polarization (VV, HV, both), and texture 
measures (included or not). For each dataset, a Random Forest classifier was trained. Then, the kappa index values 
(κ) obtained by the 90 classifications made were compared. Considering the datasets formed by the intensity 
values, for the winter dates the achieved kappa index values (κ) were higher than 0.8, while all summer datasets 
achieved κ up to 0.76. Including feature textures based on the GLCM showed improvements in the classifications: 
for the summer datasets, the κ improvements were between 9% and 22% and for winter datasets improvements 
were up to 15%. Our results suggest that for the analyzed context, winter is the most informative season. Moreover, 
for dates associated with high biomass, the textures provide complementary information.

Key words: grey level co-occurrence matrix, synthetic aperture radar, vegetation cover, land cover, classification. 

Clasificiación de coberturas en humedales utilizando datos de Sentinel-1 (Banda C): un caso de 
estudio en el delta del río Paraná, Argentina
Resumen: Con el lanzamiento de la misión Sentinel-1, por primera vez, datos SAR de banda C multitemporales y de 
polarización dual, con un tiempo de revisión corto, están disponibles de forma gratuita. ¿Cómo podemos utilizar 
estos datos para generar mapas precisos de cobertura vegetal a escala local? Nuestro principal objetivo fue 
evaluar el uso de datos multitemporales de banda C Sentinel-1 para generar mapas de vegetación en humedales. 
Consideramos una porción del humedal del Bajo Delta del Río Paraná (Argentina). Utilizamos setenta y cuatro 
imágenes y creamos noventa conjuntos de datos distintos con ellas, cada uno abordando una combinación 
de estaciones (primavera, otoño, invierno, verano, conjunto completo), polarización (VV, HV, ambas) y medidas 
de textura (incluidas o no). Para cada conjunto de datos, se entrenó un clasificador Random Forest. Luego, se 
compararon los valores de índice kappa (κ) obtenidos por las 90 clasificaciones realizadas. Teniendo en cuenta 
los conjuntos de datos formados por los valores de intensidad de la señal del radar, para las fechas de invierno los 
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1. Introduction

The study of wetlands has become increasingly 
important since they host a large part of the world's 
biodiversity, play a key role in biogeochemical and 
hydrological cycles, and provide important social 
benefits (Millenium Ecosystem Assessment, 
2005). Also, these ecosystems are subject to 
growing pressures mainly due to changes in land 
use (Lehner and Döll, 2004). Remote sensing is a 
suitable tool for studying wetlands where getting 
in-situ measurements is difficult and expensive 
due to their frequently constrained field access 
(Gallant, 2015). Remote sensing offers a wide 
range of spatial and temporal scales and is less 
costly than fieldwork-based research (Brisco 
et al., 2011; Gallant, 2015). Also, although the 
acquisition of satellite images can be expensive, 
since 2014, the ESA Copernicus programme offers 
free and open satellites from all over the world.

Satellite scenes from Synthetic Aperture Radars 
(SAR) are being used for wetland characterization 
and monitoring (Hess et al., 2003; Salvia et al., 
2009; Arsen et al., 2013). These images provide 
information about the geometric and dielectric 
characteristics of the observed target. Depending 
on the sensor and target characteristics, the SAR 
signal can penetrate through the vegetation and 
provide information about soil, flood conditions, 
and underneath vegetation (Meyer, 2019). In 
high biomass wetlands, the radar signal interacts 
with multiple scatters within the natural medium 
(volume scatter) resulting in a rise of the cross-
polarization backscatter (Martí-Cardona et al., 
2010; Tsyganskaya et al., 2018; Meyer, 2019). 
The scattering mechanisms may change over time 
according to the vegetation phenology, flooding 
events, and other environmental conditions 

(Kandus et al., 2001; Betbeder et al., 2015). Thus, 
SAR may enable wetlands land-cover classes 
identification through the temporal change in the 
backscattering mechanisms (Dabboor and Brisco, 
2018; Grimson et al., 2019).

In the last years, access to C-band SAR data has 
been provided by the European Space Agency 
due to the launch of the Copernicus Sentinel-1 
constellation (Sentinel-1A and Sentinel-1B). SAR 
imagery are usually expensive mainly due to 
their active system (it generates its own energy). 
In contrast, Copernicus programme provides 
free SAR multitemporal images for all over the 
world. This mission provides multitemporal 
and multipolarization (VH, VV) SAR images. 
Multitemporal C-Band data can enhance wetland 
classification schemes, by accounting flood 
changes and vegetation phenology (Salvia 
et al., 2008; Vanama et al., 2020). However, 
characterizing vegetation types in high-vegetated 
wetlands using C-band data has been challenging 
due to the modest potential of this band to penetrate 
forest canopies (Sivasankar et al., 2018; Meyer, 
2019; Numbisi and Coillie, 2020; Morandeira 
et al., 2021). In areas where the vegetation is 
sufficiently dense, backscatter mean values may 
be similar between different vegetation types. 

Image textures are measurements that provide 
valuable information about the spatial variation of 
the spectral brightness of a pixel in an image (Hall-
Beyer, 2017). Although the land-cover classes 
may have similar backscatter mean values, they 
may be identified by their textures (Oliver and 
Quegan, 2004). One of the most popular methods 
to calculate texture in remote sensing is based on 
the Grey Level Co-occurrence Matrix (GLCM) 
(Haralick, 1979). The GLCM describes the spatial 

valores κ obtenidos fueron superiores a 0,8, mientras que los conjuntos de datos de verano obtuvieron κ menores 
a 0,76. La inclusión de los atributos de texturas basados en las matrices de GLCM mostraron mejoras en las 
clasificaciones: para los conjuntos de datos de verano, las mejoras de κ estuvieron entre un 9% y un 22% y para 
los de invierno, las mejoras fueron de hasta un 15%. Nuestros resultados sugieren que para el contexto analizado, 
el invierno es la temporada más informativa. Además, para las fechas asociadas con alta biomasa, las texturas 
proporcionan información complementaria.

Palabras clave: matriz de co-ocurrencia de nivel de gris, radar de apertura sintética, cobertura vegetal, cobertura 
terrestre, clasificación. 
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relationship of image pixel values with their 
spatial distribution in the landscape by describing 
the frequency with which different combinations 
of brightness values occur for each pixel in its 
predefined neighborhood (Hall-Beyer, 2017). 
Including GLCM textures measurement derived 
from SAR images had shown an improvement in 
vegetation discrimination when using single-date 
SAR data (Treitz et al., 2000; Arzandeh and Wang, 
2002; Krishna et al., 2018; Panuju et al. 2019) or 
single-polarization SAR data (Kurvonen et al., 
1999; Lin et al., 2018). SAR texture measurements 
may change according to the phenological 
vegetation state. Thus, multitemporal textures may 
provide information that improves multitemporal 
backscatter classifications. The combination of 
spectral brightness with texture characteristics 
has great potential for remotely sensed images 
classifications (Lloyd et al., 2004; Kupidura, 
2019; Pulella et al., 2020). Caballero et al. (2020) 
showed that including multitemporal GLCM 
textures derived from Sentinel-1 improved the 
agricultural crops classification in the Bonaerense 
Valley of the Colorado River (Buenos Aires, 
Argentina). Also, Numbisi et al. (2019) showed 
that texture-based maps from multi-season 
Sentinel-1 imagery for forest classification in 
Cameroon outperformed the maps obtained using 
optical imagery.

The performance of remote sensing image 
classification is determined by the selection and 
manipulation of remote sensing data, as well as 
the classification method (Lu and Weng, 2007). A 
wide range of classifiers have been investigated 
for land-cover classification using remote 
sensing data, including Support Vector Machines 
(Huang et al., 2002), Decision Tree (Otukei and 
Blaschke, 2010), Neural Networks (Ball et al., 
2017), among others. Random Forest (RF) has 
become one of the most widely used supervised 
algorithms for wetlands mapping in recent years 
(Mohammadimanesh et al., 2018; Larocque 
et al., 2020; Mahdianpari et al., 2020) due to its 
high accuracy of its classification results, its 
ability to handle high data dimensionality and 
multicollinearity, its resistance to overfitting, and 
its training and prediction procedures are fast 
(Belgiu and Drăguţ, 2016).

Our aim was to identify the most appropriate set of 
Sentinel-1B scenes and to study the contribution 

of C-Band SAR textural data for vegetation cover 
classification in a densely vegetated wetland. We 
hypothesized that including textures could be 
beneficial in this context. We also evaluated if the 
GLCM textures introduce improvements to the 
classifications made with one or more polarization, 
with scenes from one or more seasons of the year. 
We used as a case of study a section of the Lower 
Delta of the Paraná River (Argentina) wetland, 
where the environment is characterized by having 
phenological and hydrological variability. 

Figure 1. Study area. (a) Location in South America; (b) 
Location of the study area in the Paraná River Delta; (c) 
Study area on a representative Sentinel-1 scene subset, date 
20th August 2018. The image is a RGB band composition 
of the Sentinel-1 scene (Red channel = VH/VV ratio; Green 
channel = VV polarization; Blue channel = VH polariza-
tion).

2. Materials

2.1. Case Study: the Lower Delta of the 
Paraná River

Our case study area was selected because of the 
existence of a ground-truth database, previous 
classifications with optical imagery (Kandus 
et al., 1999), and a wide expert knowledge by 
two specialists in the vegetation of the studied 
region. The study area corresponds to a portion 
of the Lower Delta of the Paraná River wetland, 
located in Buenos Aires, Argentina (Figure 1), 
encompassing approximately 100 km2 (central 
coordinates: 34.35°S 58.55°W). The climate is 
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temperate, with a mean annual temperature of 
16.7°C, and humid; the annual mean precipitation 
rounds 1000 mm. The hydrological regime is the 
result of combined moon tides and wind surges. 
The tidal amplitude is lower than 1 m. However, 
tides can reach 3 m above mean sea level during 
south-east winds (Kandus et al., 2003).

The islands in this region have levees in their 
perimeter; these result from the accumulation of 
sediments produced by the Paraná distributary 
rivers (Kandus et al., 2006). Figure 2 presents a 
description of the vegetation of the area. Over 
the natural levees, there are Willow (Salix spp.) 
and Poplar (Populus spp.) forest plantations, fruit 
orchards, and secondary forests (that grow after 
the abandonment of fruit or forest plantations). 
Towards the islands’ interior, Ceibo forest 
(Erythrina crista-galli) or isolated Ceibos can be 
found with Cortadera marshes (Scirpus giganteus) 
in the understory. In the islands’ centre, where 
the soil is permanently saturated, Cortadera 
(S. giganteus) is the dominant species. Junco 
(Schoenoplectus californicus) beds are established 

on the edge of watercourses forming narrow strip 
marshes (Kandus et al., 2006). 

2.2. Remote Sensing Data

2.2.1. SAR Multitemporal Data

Sentinel-1 is a European Spatial Agency mission 
formed by a constellation of two C-Band 
(5.405 GHz) SAR satellites: Sentinel-1A and 
Sentinel-1B. In this study, we used a total of 
74 Sentinel-1B images. The acquisitions span 
from October 2016 to April 2019 with a revisit 
time of 12 days, except for four missing dates 
(2017-03-22, 2018-08-08, 2019-02-28, and 2019-
03-12). Sentinel-1 scenes were acquired in the 
Interferometric Wide Swath (IW) mode in VV 
and VH polarizations. All the acquisitions have 
near incidence angles of 29.5° and far incidence 
angles of 45.3°. The scene product type was 
Level-1 High-Resolution Ground Range Detection 
(GRD) with a pixel spacing of 10 m × 10 m. The 
data is available via the Copernicus website 
(https://scihub.copernicus.eu/dhus/). Scenes were 
pre-processed within SNAP software using the 
Sentinel-1 Toolbox (ESA Sentinel Application 
Platform, 2019).

Pre-processing steps included: thermal noise 
removal, border noise removal, orbit file 
application, radiometric calibration, speckle 
filtering (Refined Lee), terrain flattening, and 
terrain correction. The refined Lee speckle filter 
was selected based on its wide use in wetland 
SAR applications and on its good performance 
according to a previous assessment (Morandeira, 
et al., 2016). After processing, the final production 
was of a geocoded SAR backscattering γ0 
coefficient image for each scene (Filipponi, 2019). 
Although the topography of the considered study 
area is extremely flat and does not play a central 
role, the preference for the γ0 coefficient was the 
possibility of adapting the procedure used in this 
study to areas in which the topography plays a key 
role.

2.3. Texture Data

One of the most used methods to calculate texture 
in remote sensing is based on the Grey Level 
Co-occurrence Matrix (GLCM) (Haralick, 1979; 
Hall-Beyer, 2017). In this study, GLCM matrices 

Figure 2. Classes description. Land cover types of the 
Lower Delta of the Paraná River and their main character-
istics descriptions (Kandus et al., 1999; Grings et al., 2006; 
Kandus et al., 2006).

https://scihub.copernicus.eu/dhus/
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were generated using a 5×5 window size, in 
eight directions (the four pixels’ neighbours and 
the four pixels’ in the diagonal), and one-pixel 
displacement. The GLCM texture measures were 
calculated over the 74 images for both polarizations 
using the Sentinel-1 Toolbox from SNAP (ESA 
Sentinel Application Platform, 2019). According 
to Hall-Beyer (2017), the following texture 
measurements were computed from the GLCM: 
Contrast, Entropy, Variance and Correlation.

2.4. Wetland cover types

The Lower Delta of the Paraná River is a densely 
vegetated wetland and its five major cover classes 
are Water, Ceibo Forest, Willow Plantation, 
Cortadera Marsh, and Junco Marsh (Kandus 
et al., 2006). Considering previous studies in the 
area (Kandus et al., 2003; Kandus and Malvárez, 
2004; Kandus et al., 2006), two high-resolution 
optical images (Planet Team, 2017), a database 
of ground-truth data and expert knowledge in the 

area, a total of 496 Regions of Interest (ROIs) 
were obtained (between 98 to 100 ROIs, for each 
class). Each ROI corresponds to a single pixel in 
the Sentinel-1B stacks.

The backscatter multitemporal series from each 
vegetation class are presented in Figure 3. The 
multitemporal GLCM series are presented in 
Figure 4 and Figure 5.

3. Methods

3.1. Datasets

A total of 90 multitemporal datasets were derived 
from the 74 Sentinel-1 scenes, by combining the 
variables and categories described in Table 1. Each 
dataset was named using the following format: in 
the first place the selected set of dates was specified 
(FullYear, Summer, Spring, Autumn, or Winter), 
in the second place the type of polarizations was 
specified (XP: cross-polarization, CP: copol, 
DP: dual polarization) and on the third place the 

Table 1. Variables of the 74 Sentinel-1 scenes, determining the 90 datasets assessed. Each dataset in this work is formed by 
a type of polarization, season and pixel data. This table shows the description of each category.

Variables Categories Description
Polarization DP VH and VV polarizations

XP Cross-polarization (VH) polarization

CP Copolarization (VV) polarization

Season Spring Images corresponding to the following dates: 2016-10-05 2016-10-17 2016-10-29 2016-
11-10 2016-11-22 2016-12-04 2016-12-16 2017-09-30 2017-10-12 2017-10-24 2017-11-
05 2017-11-17 2017-11-29 2017-12-11 2018-09-25 2018-10-07 2018-10-19 2018-10-31 

2018-11-12 2018-11-24 2018-12-06 2018-12-18
Summer Images corresponding to the following dates: 2016-12-28 2017-01-09 2017-01-21 2017-

02-02 2017-02-14 2017-02-26 2017-03-10 2017-12-23 2018-01-04 2018-01-16 2018-01-
28 2018-02-09 2018-02-21 2018-03-05 2018-03-17 2018-12-30 2019-01-11 2019-01-23 

2019-02-04 2019-02-16
Autumn Images corresponding to the following dates: 2017-04-03 2017-04-15 2017-04-27 2017-

05-09 2017-05-21 2017-06-02 2017-06-14 2018-03-29 2018-04-10 2018-04-22 2018-05-
04 2018-05-16 2018-05-28 2018-06-09 2018-06-21 2019-03-24 2019-04-05 2019-04-17 

2019-04-29
Winter Images corresponding to the following dates: 2017-06-26 2017-07-20 2017-08-01 2017-

08-13 2017-08-25 2017-09-06 2017-09-18 2018-07-03 2018-07-15 2018-07-27 2018-08-
20 2018-09-01 2018-09-13

Full Year Images correspond to all the season's dates.

Pixel data NoText The γ0 backscatter values.

Contrast The γ0 backscatter values and the GLCM-Contrast values.

Correlation The γ0 backscatter values and the GLCM-Correlation values.

Variance The γ0 backscatter values and the GLCM-Variance values.

AllText The γ0 backscatter, the GLCM-Contrast, GLCM-Correlation, GLCM-Entropy and GLCM-
Variance values.
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Figure 3. Multitemporal series profiles of Sentinel-1 backscatter values for the dominant vegetation cover classes of the 
studied portion of the Lower Delta of the Paraná River wetland. The plot shows for each date, the mean backscatter values 
per class. (a) Shows the VH polarization values; (b) shows the VV polarization values.The background colour is associated 
with the corresponding dates’ season. Green is used for summer dates, lightgreen for spring dates, lightred for autumn dates 
and red for winter dates.
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type of textures was specified (NoText, Variance, 
Entropy, Correlation, Covariace, or AllText). 
For example: the Summer_XP_NoText dataset 
corresponds to the one formed by the summer 
dates of the Cross-polarization Images using the 
Intensity values without texture measurements; 
the Summer_XP_Variance corresponds to the 
dataset formed by the summer dates of the 

Cross-polarization Images using the Intensity 
values and the GLCM-Variance texture 
measurements.

3.2. Classification algorithm

Random forest (RF) algorithm is an ensemble of 
decision trees (Breiman, 2001) widely used for 
classification tasks (Pal, 2005; LaRocque et al., 

Figure 4. Multitemporal series profiles of the GLCM-Contrast, GLCM-Correlation, GLCM-Entropy and GLCM-Variance 
values from the vegetation cover classes of the studied area. This Figure shows the values obtained using the VH polarization.
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2020). Each tree is formed by a random subset of 
features and is trained using a random subset of the 
training samples. The main benefit of these random 
steps is that this way, the algorithm generates 
different trees. Therefore, we obtain a decrease in 
the variance of the forest estimator. Once all the 
trees are trained, we can predict an input class. 
First, the algorithm predicts the input class in each 

tree of the forest and then selects the most repeated 
class as the RF classifier's predicted class.

In this study, the RF algorithm was applied to all 
the datasets described in the previous section. 
The number of trees was adjusted using a cross-
validation procedure. RF was carried out using 
the implementation provided by the scikit-learn 
(Pedregosa et al., 2011) package in Python 3.6.

Figure 5. Multitemporal series profiles of the GLCM-Contrast, GLCM-Correlation, GLCM-Entropy and GLCM-Variance 
values from the vegetation cover classes of the studied area. This Figure shows the values obtained using the VV polarization.
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3.3. Accuracy Assessments
For each dataset classification, accuracy 
assessments were performed using a random test 
set of 200 (40 per class) out of 496 ground truth 
pixels. The pixels that form the test set correspond 
to different ROIs than the ones corresponding 
to the training set. Four measurements were 
considered for classification evaluations: Overall 
Accuracy (OA), the Kappa Index value (κ), 
the user’s accuracy (UA), and the producer’s 
accuracy (PA) (Congalton and Green, 2005). 
First, the comparison between the classifications 
was evaluated by OA and κ, and then a McNemar 
statistical test (McNemar, 1947) was applied to 
study differences between the OA of the classifiers.

4. Results

For each multitemporal dataset, a RF classifier 
was trained using labeled data from the five-
dominant cover classes in the Lower Delta of the 
Paraná River. The OA and κ of each classification 
are presented in Table 2. 

4.1. Multitemporal analysis of the 
Intensity datasets

In this section, we will present the results of the 
Intensity datasets.

4.1.1. Winter and Complete datasets 
comparisons

The classifications results using the Winter_DP_
NoText, Winter_XP_NoText, FullYear_DP_NoText, 
and FullYear_XP_NoText datasets showed similar κ 
values, between 0.91-0.94.

In Figures 6 (a), (d), (g), and (j) we can observe 
that the Intensity-Complete and Intensity-Winter 
datasets show similar performances for the 
Ceibo forests, Willow plantations, and Cortadera 
marshes classes; differences can be observed 
in the small watercourses where, in the case of 
FullYear_XP_NoTex and Winter_XP_NoTex, 
more pixels are classified as Junco marsh class.

In the case of the VH polarization, the PA (Figures 7) 
values from the Complete dataset were 2.5% 
higher than the Winter dataset for the Cortadera 

Table 2. Classification results. From 74 Sentinel-1 images, 90 datasets were created, each one addressing a combination 
of seasons (spring, autumn, winter, summer, complete set), polarization (VV, HV, both), and texture measures (included or 
not). For each dataset, a Random Forest (RF) classifier was trained. This table shows, for each dataset, the overall accuracy 
(OA) and Kappa Index value (κ) values obtained by the corresponding RF classifier.

Polarization Season

Intensity
Intensity + 
All textures

Intensity + 
GLCM Contrast

Intensity 
+ GLCM 

Correlation

Intensity 
+ GLCM 
Entropy

Intensity 
+ GLCM 
Variance

κ
OA
(%) κ

OA
(%) κ

OA
(%) κ

OA
(%) κ

OA
(%) κ

OA
(%)

DUAL 
(VH, VV)

Full Year 0.94 95.50 0.96 97.00 0.95 96.00 0.94 95.00 0.94 95.00 0.96 96.50

Spring 0.80 84.00 0.92 94.00 0.85 88.00 0.83 86.50 0.84 87.50 0.96 97.00

Summer 0.76 80.50 0.90 92.00 0.78 82.50 0.76 80.50 0.79 83.00 0.90 92.00

Autumn 0.90 92.00 0.91 93.00 0.89 91.00 0.89 91.50 0.89 91.50 0.93 94.50

Winter 0.94 95.50 0.96 97.00 0.96 96.50 0.96 96.50 0.94 95.50 0.96 97.00
VH Full Year 0.94 95.50 0.97 97.50 0.95 96.00 0.94 95.50 0.93 94.00 0.97 97.50

Spring 0.80 84.00 0.91 93.00 0.79 83.00 0.78 82.50 0.81 84.50 0.91 93.00

Summer 0.70 76.00 0.84 87.50 0.74 79.50 0.71 77.00 0.71 76.50 0.78 82.50

Autumn 0.82 85.50 0.88 90.50 0.82 85.50 0.78 82.50 0.81 85.00 0.89 91.00

Winter 0.91 93.00 0.94 95.00 0.91 94.00 0.92 93.50 0.91 92.50 0.95 96.00
VV Full Year 0.87 89.50 0.94 95.50 0.89 91.00 0.91 92.50 0.87 89.50 0.92 93.50

Spring 0.76 81.00 0.88 90.50 0.81 84.50 0.79 83.50 0.77 81.50 0.84 87.50

Summer 0.68 74.00 0.83 86.00 0.74 79.00 0.68 74.50 0.65 72.00 0.76 81.00

Autumn 0.78 82.50 0.89 91.50 0.82 85.50 0.84 87.00 0.77 81.50 0.84 87.50

Winter 0.80 84.00 0.92 93.50 0.88 90.50 0.89 91.50 0.79 83.50 0.84 87.50
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marsh and Junco marsh classes. In the case of the 
Willow Plantation class the PA corresponding to 
the Complete dataset was 7.5% higher than the one 
corresponding to the Winter dataset.

In the case of the Dual polarization, Complete and 
Winter datasets showed very similar PA and UA 
values (Figures 7 and 8). The highest difference 
was observed for the Ceibo Forest class, the 

Figure 6. Classification results of the Random Forest algorithm. The figure shows the obtained classifications applied over 
the lower part of the study area correspondig to the following datasets: (a) FullYear_DP_NoTex; (b) FullYear_DP_AllTex; 
(c) FullYear_DP_Variance; (d) FullYear_XP_NoTex; (e) FullYear_XP_AllText; (f) FullYear_XP_Variance; (g) Winter_
DP_NoTex; (h) Winter_DP_AllTex;(i) Winter_DP_Variance; (j) Winter_XP_NoTex; (k) Winter_XP_AllTex; (l) Winter_
XP_Variance; (m) Summer_DP_NoTex; (n) Summer_DP_AllTex; (o) Summer_DP_Variance; (p) Summer_XP_NoTex (q) 
Summer_XP_AllTex; (r) Summer_XP_Variance.
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Winter_DP_NoTex dataset had a PA of 92.5% 
whereas the FullYear_DP_NoTex resulted in 
87.5%.

4.1.2. Season datasets comparisons

For each polarization, in the Intensity datasets, 
we observed that the Winter dates achieved 
higher κ values than using Summer, Spring, and 
Autumn datasets. Furthermore, the Winter_DP_
NoTex dataset got a κ values 15% higher than 
the Summer_DP_NoTex, Summer_XP_NoTex, 
Summer_CP_NoTex, Spring_DP_NoTex, Spring 
_XP_NoTex, Spring_CP_NoTex, Autumn_XP 
_NoTex, Autumn_CP_NoTex, and Winter_CP_
NoTex datasets. The McNemar test confirmed a 
statistical difference between the classification 
obtained using the Winter_DP_NoTex dataset and 
the ones obtained with each of the aforementioned 
datasets (Table 3).

Figures 6 (m) and (p) show the classification results 
obtained using the Summer dataset where we can 
observe a noisy pattern. The Summer_DP_NoTex, 

Summer_XP_NoTex, and Summer_CP_NoTex 
datasets got κ values between 0.68 and 0.76, 
resulting in the lowest achieved for the Intensity 
datasets.

The Summer_DP_NoTex, Summer_XP_NoTex, 
and Summer_CP_NoTex PA values (Figure 7) 
from the Ceibo, Willow Plantation, and Junco 
Marsh classes, were lower than the ones obtained 
in the Winter, Complete, and Autumn datasets. The 
Summer_DP_NoTex, Summer_XP_NoTex, and 
Summer_CP_NoTex showed PA and UA values 
lower than 70% either for the Ceibo Forest and for 
the Willow Plantation classes (Figures 7 and 8).

Moreover, when we compared a classification 
using an Summer_DP_NoTex, Summer_XP_
NoTex, and Summer_CP_NoTex dataset with 
classifications obtained using only Winter_XP_
NoTex, Winter_DP_NoTex, FullYear_DP_NoTex, 
and FullYear_XP_NoTex datasets, the McNemar 
test reveals that the classifications have a statistical 
significance difference (Table 4).

Table 3. McNemar test for Winter dataset. The McNemar 
statistical test was used to study the difference between 
the Overall Accuracy values of the classifications obtained 
with different datasets. The null hypothesis is that the two 
compared model’s performances are equal. The McNemar 
test will reject this null hypothesis if the p-value is less than 
0.05 (considering a 95% confidence level).

Dataset Dataset p-value
Summer_DP_

NoTex
Winter_XP_NoTex 1.20 × 10-4

Winter_DP_NoTex 3.00 × 10-7

FullYear_XP_NoTex 2.60 × 10-6

FullYear_CP_NoTex 2.70 × 10-3

FullYear_DP_NoTex 6.60 × 10-7

Summer_XP_
NoTex

Winter_XP_NoTex 3.50 × 10-7

Winter_CP_NoTex 4.10 × 10-2

Winter_DP_NoTex 6.80 × 10-9

FullYear_XP_NoTex 1.50 × 10-8

FullYear_CP_NoTex 7.34 × 10-5

FullYear_DP_NoTex 1.50 × 10-8

Summer_CP_
NoTex

Winter_XP_NoTex 4.80 × 10-7

Winter_CP_NoTex 2.70 × 10-3

Winter_DP_NoTex 9.00 × 10-10

FullYear_XP_NoTex 4.10 × 10-9

FullYear_CP_NoTex 2.80 × 10-6

FullYear_DP_NoTex 9.00 × 10-10

Table 4. McNemar test for Summer datasets. The McNe-
mar statistical test was used to study the difference between 
the Overall Accuracy values of the classifications obtained 
with different datasets. The null hypothesis is that the two 
compared model’s performances are equal. The McNemar 
test will reject this null hypothesis if the p-value is less than 
0.05 (considering a 95% confidence level).

Dataset Dataset p-value
Winter_DP_

NoTex
Spring_XP_NoTex 1.3 × 10-4

Spring_CP_NoTexI 2.2 × 10-6

Spring_DP_NoTex 2.3 × 10-5

Summer_XP_NoTex 6.9 × 10-9

Summer_CP_NoTex 9.0 × 10-10

Summer_DP_NoTex 3.0 × 10-7

Autumn_XP_NoTex 3.3 × 10-4

Autumn_CP_NoTex 2.3 × 10-6

Winter_CP_NoTex 2.3 × 10-5

Winter_XP_
NoTex

Spring_XP_NoTex 2.7 × 10-3

Spring_CP_NoTex 1.9 × 10-4

Spring_DP_NoTex 8.6 × 10-4

Summer_XP_NoTex 3.5 × 10-7

Summer_CP_NoTex 4.8 × 10-7

Summer_DP_NoTex 1.2 × 10-4

Autumn_XP_NoTex 1.4 × 10-2

Autumn_CP_NoTex 2.0 × 10-4

Winter_CP_NoTex 1.3 × 10-3
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4.2. Texture analysis
We compared the performance of the Intensity 
datasets with the ones that combine Intensity and 
GLCM-textures.

The datasets that combine Intensity with All-
Textures or Variance achieved κ values higher than 
the Intensity datasets in all the polarisation and 
seasons (Table 2). In general, the datasets formed 
by the combination of Intensity with All-Textures 
or Intensity with Variance values achieved higher κ 
values than the datasets formed by the combination 
of Intensity with Entropy, Correlation, or Contrast 
values. The only exception was in the Winter_CP 
case.

The FullYear_DP_AllTex, FullYear_XP_AllTex, 
FullYear_XP_Variance, Winter_DP_AllTex, Spring 

_DP_Variance, datasets achieved the highest κ 
values (0.96) and OA (97%) values (Figure 6). The 
Winter_CP_AllTex and the FullYear_CP_AllTex, 
datasets achieved κ values lower than the ones 
corresponding to the VH and Dual polarizations.

For the Summer_DP_NoTex dataset, the κ value 
was 0.76, an 18% improvement was achieved using 
the Summer_DP_AllTex datasets or the using the 
Summer_DP_Variance dataset (Figures 6 (m), (n) 
and (o)). In the case of the Winter datasets in the 
Dual polarization, the κ difference between using 
the datasets that include any of the GLCM textures 
and the ones that do not were up to 2.2% (Figure 6).

We observed that the Spring_DP_NoTex, Spring_
XP_NoTex, Spring_CP_NoTex, Summer_DP_ 
NoTex, Summer_XP_NoTex, and Summer_CP_ 

Figure 7. Producer’s Accuracies percentage of the Intensity, Intensity+GLCM-Variance and Intensity +GLCM-All Tex-
tures datasets.
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NoTex datasets registered κ values between 
0.68 and 0.80. In these cases, using the All-
Textures and Variance dataset showed an 
improvement between 9 to 22.1% in the κ values. 
On the other hand, the FullYear_XP_NoTex, 
FullYear_DP_NoTex, Winter_XP_NoTex, and 
Winter_DP_NoTex, datasets reported κ between 
0.91 and 0.94. In these cases, using the All-
Textures and Variance datasets showed less than a 
4.4% improvement.

In the case of the Summer and Spring datasets, the 
incorporation of texture measurements showed 
an improvement in the PA and UA values for the 
vegetation classes, in particular for the Ceibo Forest 
and Willow plantation classes (Figures 7 and 8). 
The PA corresponding to the Willow Plantation 

class was 60% for the Spring_DP_NoTex, 
whereas for the Spring_DP_variance was 95%. In 
the case of the Ceibo Forest, the PA obtained in 
the Spring_DP_NoTex and Spring_DP_Variance 
datasets reached 72.5%, and 95%, respectively.

The PA corresponding to the Willow Plantation 
class was 57.5% for the Summer_DP_NoTex, 
whereas for the Summer_DP_AllTex and 
Summer_DP_Variance was 85%. In the case of 
the Ceibo Forest, the PA obtained in the Summer_
DP_NoTex and Summer_DP_Variance datasets, 
reached 67.5%, and an 85%, respectively.

The All-Textures dataset identifies the water next 
to the land as junco marshes, while the Variance 
dataset does not show this effect (Figure 6).

Figure 8. User’s Accuracies percentage of the Intensity, Intensity+GLCM-Variance and Intensity +GLCM-All Textures 
datasets.
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5. Discussion
The general objective of this work was to study the 
potential of Sentinel-1 multitemporal imagery for 
the generation of an accurate vegetation cover map 
of the Lower Delta of the Paraná River wetland at 
a local scale. Specifically, we analyzed how the 
data from different seasons and the incorporation 
of GLCM textures influence the classification 
accuracies. The use of SAR multitemporal data 
provides valuable insights for wetlands vegetation 
cover classification (Ozesmi and Bauer, 2002). 
Using multiple images from the same region can 
improve the reliability of the generated maps 
(Tsyganskaya et al., 2018). However, the selection 
of dates constitutes a decisive factor to achieve 
proper classification accuracies. We found that 
the classification performance values obtained for 
the Winter dataset were as high as those obtained 
using the Complete series, in the case of the VH 
and Dual polarizations. Classifications obtained 
for the Summer datasets showed low κ, OA, PA, 
and UA values. Moreover, noisy patterns can be 
observed in the complete scene classification 
with these datasets (Figure 6). Concerning the 
combination of SAR and GLCM texture data, 
Mishra et al. (2019) demonstrated the significance 
of textural features in improving the classification 
accuracy of heterogeneous landscapes. In line 
with these results, we observed that including 
multitemporal texture measurements in the 
intensity datasets improved the performance of 
the classifications.

The lower classifications performances achieved 
with the Summer datasets could be associated 
with the high vegetation biomass during this 
season. During the summer, an increase in the 
VH polarization values of the Ceibo Forest class 
is observed, probably due to the phenological 
changes in the vegetation. The Willow Plantation 
and Ceibo Forest classes show similar intensity 
values on summer dates; both classes have 
grown leaves, so volume becomes the dominant 
scattering mechanism (Meyer, 2019). At C-band, 
most scattering comes from the canopy, having 
little to no penetration to the ground surface or 
above-ground vegetation (Bourgeau-Chavez 
et al., 2015). Therefore, all vegetation classes have 
high and similar VH values; Figure 3 shows that 
the backscatter mean values of the Ceibo forest, 
Willow plantation, and Cortadera Marsh classes 

are very close during the summer dates compared 
to what happens in other seasons, especially in 
2018.

Winter datasets showed performances comparable 
to the ones obtained using the Complete series 
dataset. Forest classes, which have similar mean 
backscatter values during the summer dates, show 
differences during the winter dates (Figure 3). 
Ceibo and Willow are forest classes that have some 
differences in their distribution in the landscape: 
the Ceibo class is characterized by being an open 
forest with a high amount of biomass underneath, 
whereas the Willow class is characterized by being 
a closed forest (Kandus et al., 2006). Mueller et al. 
(2021) showed a backscattered signal difference 
between forest patches with a dense vegetation 
density in the understory and those with a low 
vegetation density in Thuringia (Germany). In 
line with this study, a possible explanation is that 
in the case of the Ceibo forest during the winter 
the microwave radiation may be interacting with 
the stems, trunks, and, also, with the vegetation 
underneath, contrary to what may be happening 
in the Willow class. These differences in the 
interactions may be the key to distinguish between 
the Ceibo Forest and the Willow Plantation classes 
in the Winter datasets.

Tsyganskaya et al. (2018) highlight the importance 
of using SAR images from different seasons in 
wetland monitoring, however, in wetlands like 
the Lower Delta of the Paraná River using winter 
dates to generate vegetation cover maps seems 
to be promising. Our results suggest that winter 
dates seem to be important to incorporate them for 
vegetation cover classification in the Lower Delta 
of the Paraná River wetland. In line with the Curse 
of dimensionality (James et al., 2021), instead 
of using the total Complete multitemporal data, 
just using the winter dates is suggest. Moreover, 
this date selection decrease by around 25% of 
the amount of information to incorporate in the 
classification, so, less memory and processing 
time is needed.

Previous studies have shown that the incorporation 
of SAR textures improves the accuracy of the 
coverage maps (Numbisi et al., 2018; Caballero 
et al., 2020). Our results also demonstrate that 
incorporating GLCM textures outperforms 
classifications obtained using just the intensity 
values in the Lower Delta of the Paraná River. 
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Although using the datasets formed by the 
combination of Intensity and GLCM textures 
showed equal or higher performances than the 
Intensity datasets, in the case of the Summer 
and Spring datasets the performance increased 
more than 9%. As mentioned before, during the 
summer and the spring the vegetation is dense in 
the study area, the volume seems to be the main 
scattering mechanism and backscatter values are 
very similar between vegetation classes. Hence, 
the information needed to differentiate between 
classes may be stored in the image's texture due to 
the differences in the distribution patterns of each 
vegetation class in the landscape.

Regarding the choice of the GLCM texture 
measurement, we found that All-textures and 
Variance got the highest results. All the studied 
vegetation classes show the same or even higher 
PA and UA values for the datasets formed by the 
combination of Intensity and GLCM textures 
compared to the ones formed only with Intensity 
values. The GLCM-Variance deals with the 
dispersion around the mean of combinations 
of reference and neighbor pixels in a selected 
window. As All-textures are formed by 4 textures 
and Variance by one, following The Curse of 
dimensionality (James et al., 2021), the Variance 
datasets could be preferred in future works.

In Figure 6 we can observe that the All-Textures 
dataset identifies the water next to the land as 
junco marshes, while the Variance dataset does 
not show this effect. As Junco marshes are small 
homogenous zones bordering watercourses, 
selecting a large window size may introduce 
spurious transitions between neighboring land 
cover classes (Gong et al., 1992; Nyoungui et al., 
2002). Future experiments will analyze different 
window sizes for the GLCM textures generation 
in this study area.

6. Conclusions

While C-band is not usually recommended for 
coverage mapping in densely vegetated wetlands 
due to its limited capacity of penetration through 
vegetation, multitemporal C-band SAR datasets 
showed high Overall Accuracy and κ performance 
in the Lower Delta of the Paraná River. The 
combination of the intensity values and the GLCM 
textures showed improvements for all the studied 

multitemporal datasets. It is worth mentioning 
that even in summer dates, when the vegetation 
was grown and the intensity mean values between 
vegetation classes were very similar, including 
GLCM-Variance or GLCM-(All-textures) textures 
showed up to 22% of improvement. We suggest 
including multitemporal GLCM textures in future 
works since it seems to improve the performance 
of the classification, and is a fast and simple to 
compute feature. Regarding the dates selection, 
using winter dates (or incorporating these dates 
in the dataset) showed the highest accuracies, 
and summer datasets had the lowest ones. The 
winter dates selection and the inclusion of GLCM 
textures seem to be the key to improve vegetation 
cover classifications in densely vegetated areas.
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