3,322 research outputs found

    Meta-heuristic based Construction Supply Chain Modelling and Optimization

    Get PDF
    Driven by the severe competition within the construction industry, the necessity of improving and optimizing the performance of construction supply chain has been aroused. This thesis proposes three problems with regard to the construction supply chain optimization from three perspectives, namely, deterministic single objective optimization, stochastic optimization and multi-objective optimization respectively. Mathematical models for each problem are constructed accordingly and meta-heuristic algorithms are developed and applied for resolving these three problems

    Field Study and Multimethod Analysis of an EV Battery System Disassembly

    Get PDF
    In the coming decades, the number of end-of-life (EoL) traction battery systems will increase sharply. The disassembly of the system to the battery module is necessary to recycle the battery modules or to be able to use them for further second-life applications. These different recovery paths are important pathways to archive a circular battery supply chain. So far, little knowledge about the disassembling of EoL batteries exists. Based on a disassembly experiment of a plug-in hybrid battery system, we present results regarding the battery set-up, including their fasteners, the necessary disassembly steps, and the sequence. Upon the experimental data, we assess the disassembly duration of the battery system under uncertainty with a fuzzy logic approach. The results indicate that a disassembling time of about 22 min is expected for the battery system in the field study if one worker conducts the process. An estimation for disassembling costs per battery system is performed for a plant in Germany. Depending on the plant capacity, the disassembling to battery module level is associated with costs between EUR 80 and 100 per battery system

    Proactive-reactive, robust scheduling and capacity planning of deconstruction projects under uncertainty

    Get PDF
    A project planning and decision support model is developed and applied to identify and reduce risk and uncertainty in deconstruction project planning. It allows calculating building inventories based on sensor information and construction standards and it computes robust project plans for different scenarios with multiple modes, constrained renewable resources and locations. A reactive and flexible planning element is proposed in the case of schedule infeasibility during project execution

    Autonomous Acquisition of Natural Language

    Get PDF
    An important part of human intelligence is the ability to use language. Humans learn how to use language in a society of language users, which is probably the most effective way to learn a language from the ground up. Principles that might allow an artificial agents to learn language this way are not known at present. Here we present a framework which begins to address this challenge. Our auto-catalytic, endogenous, reflective architecture (AERA) supports the creation of agents that can learn natural language by observation. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime mock television interview, using gesture and situated language. Results show that S1 can learn multimodal complex language and multimodal communicative acts, using a vocabulary of 100 words with numerous sentence formats, by observing unscripted interaction between the humans, with no grammar being provided to it a priori, and only high-level information about the format of the human interaction in the form of high-level goals of the interviewer and interviewee and a small ontology. The agent learns both the pragmatics, semantics, and syntax of complex sentences spoken by the human subjects on the topic of recycling of objects such as aluminum cans, glass bottles, plastic, and wood, as well as use of manual deictic reference and anaphora

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field

    A novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem

    Get PDF
    This paper deals with the long-term Military Flight and Maintenance Planning problem. In order to solve this problem efficiently, we propose a new solution approach based on a new Mixed Integer Program and the use of both valid cuts generated on the basis of initial conditions and learned cuts based on the prediction of certain characteristics of optimal or near-optimal solutions. These learned cuts are generated by training a Machine Learning model on the input data and results of 5000 instances. This approach helps to reduce the solution time with little losses in optimality and feasibility in comparison with alternative matheuristic methods. The obtained experimental results show the benefit of a new way of adding learned cuts to problems based on predicting specific characteristics of solutions.French Defense Procurement Agency of the French Ministry of Defense (DGA)

    Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

    Get PDF
    Distributed rate-based real-time systems, such as process control and avionics mission computing systems, have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources are often under-utilized in the average case, and the resulting systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review the implications of these factors on rate-based distributed systems, and posits the necessity to combine static and dynamic approaches to exploit the strengths and compensate for the weakness of either approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in middleware, that can employ both static and dynamic components. This approach provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing resources and to enforce a wider range of application-specified execution requirements. This approach also meets additional constraints of an increasingly important class of rate-based systems, those with requirements for robust management of real-time performance in the face of rapidly and widely changing operating conditions. To support these requirements, we present a middleware framework that implements the hybrid scheduling and dispatching approach described above, and also provides support for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several scheduling strategies to improve real-time performance in the face of changing operating conditions. Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability to change the rates of execution of at least some operations, and may occur under the control of a higher-level middleware resource manager. Different rates of execution may be specified under different operating conditions, and the number of such possible combinations may be arbitrarily large. Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application components. It is therefore desirable to handle variations in operating conditions entirely within the scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application, or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable real-time performance through self-adaptation. Reflective alternation among scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational support for this approach. In particular, run-time observable information such as that provided by our metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is underperforming the level of service another could provide. Furthermore we present empirical results for our framework in a realistic avionics mission computing environment. This forms the basis for guided adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching infrastructure framework composed of fine-grained primitives, and describe how appropriate configurations can be generated automatically based on the output of the scheduling framework. Third, we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting for rate selection and priority assignment. Fourth, we provide timely and efficient performance information through an optimized metrics-feedback framework, to support higher-level reflection and adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the performance of alternative canonical scheduling heuristics, across a range of load and load jitter conditions. These studies were conducted within an avionics mission computing applications framework running on realistic middleware and embedded hardware. The results obtained from these studies (1) demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest performance factors of interest for future work on adaptive control policies and mechanisms using this framework

    Responsible sourcing of rare earth elements

    Get PDF
    Rare earth elements (REE) are considered to be critical raw materials due to the combination of their high importance in a range of low-carbon technologies and the concentration of supply, which is dominated in China. The REE industry has a legacy of environmental damage and the mining, processing, and separating out of the REE requires a significant quantity of energy and chemicals. Life cycle assessment (LCA) is a method to quantify the environmental impacts of a product or process and can be applied to the raw materials production sector. This thesis presents how LCA can be applied for REE projects in development. The results can help identify environmental hotspots for a project, and analyse alternatives to help reduce the environmental impacts of REE production. Mineral processing simulation are commonly used in REE project development and data generated from these studies can be used to carry out a LCA. This approach was presented with the Songwe Hill REE project in Malawi. The mineral processing simulation output data which includes energy and chemical flows is used as the life cycle inventory data (LCI) and calculated with characterization factors to generate life cycle impact assessment (LCIA) results such as global warming potential. This data can inform future engineering studies or process simulations. REE projects, like all mining projects, can last decades and extract different ore compositions throughout this life-time. A method is presented to generate tempo- rally explicit LCA results. The Bear Lodge REE project, which is in the prefeasibility stage of development and located in the United States, is used as a case study. LCIA results highlight that grade and mineralogy can influence the LCIA results. The relationships between environmental impacts and grade and mineralogy are explored. Thirdly, a method is presented to include LCA data in the mine scheduling pro- cess. LCIA data can form an environmental block model alongside the economic block model for a deposit. These spatially explicit data can then be used as a constraint within long-term mine scheduling simulations. The results indicate that significant reductions in global warming impact can be achieved at a small economic cost. Finally advances to the current resource depletion impact categories are achieved, advancing the previous methods which neglect socio-economic, regulatory and geopolitical aspects, nor do they include functionalities such as material recycling or reuse that control the supply of raw materials. I examine the economic scarcity potential (ESP) method and make advances based on recent developments in material criticality. ESP criticality scores for 15 REE with the addition of Au, Cu, platinum-group metals (PGM), Fe and Li are measured and a case study is presented to for the inclusion of REE ESP scores for the materials that form a NdFeB permanent magnet. This thesis has a focus on utilising LCA in a proactive manner and incorporating it into the planning stages of REE projects to encourage responsible production of REE
    corecore