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ABSTRACT

With the competition becoming more severe within the construction industry, the importance
of supply chain management for construction projects has been aroused. However, unlike the
supply chain in other industries, the attributes of construction supply chain (CSC) is largely
dependent on the construction projects, and the relationships between stakeholders are temper-
ate and vulnerable. Therefore, the optimization of CSC is tightly associated with the proper
management of construction projects, more specifically, the project planning and scheduling.
In this thesis, I analyze the problem of improving the performance of construction supply chain
(CSC) and identify the key influencer as the optimization of project scheduling. In order to
systematically resolve the construction supply chain optimization problem (CSCOP), I propose
mathematical models and meta-heuristic algorithms for coping with three sub-problems under
different scenarios, which are deterministic single objective optimization problem, stochastic
optimization problem and multi-objective optimization problem respectively.

In Chapter 1, I present a brief review on construction supply chain management and con-
struction project scheduling.

In Chapter 2, I introduce some of the most popular and widely implemented meta-heuristic
algorithms.

In Chapter 3, I consider a deterministic construction supply chain optimization problem
(DCSCOP). As an extended version of resource constrained project scheduling problem, the
DCSCOP aims to minimize the total cost related to CSC that includes material handling cost
and labour cost. In this sub-problem, parameters such as activity duration, material demand
and workforce allocation are defined as deterministic. Classic constraints including precedence
relations and resource constraints are considered. An genetic algorithm (GA) with sequence-
based representation of chromosome is proposed for dealing with our proposed DCSCOP. A
case study based on a scaffolding construction project is conducted for testifying our proposed
mathematical model and GA algorithm. The result of case study indicates that our proposed
method is feasible and applicable for resolving the practical problems. The comparisons of
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computational results obtained by different parameters and various meta-heuristic algorithms
are presented as well.

In Chapter 4, I investigated the CSCOP with three characteristics: stochastic activity du-
rations, budget constraint and alternative solutions for specific operation tasks caused by the
selection of rental resources. The proposed stochastic construction supply chain optimization
with rental resource selection (SCSCO) problem aims to minimize the total makespan by con-
sidering the uncertainty in activity composition of the project and activity duration. A chance-
constrained mathematical model is proposed and a hybrid algorithm that integrates sample av-
erage approximation (SAA) and particle swarm optimization (PSO) is developed for resolving
this sub-problem. A case study based on a maintenance project in a LNG plant is conducted
for validating the feasibility and practicability of our prosed model and algorithm. Sensitivi-
ty analysis is studied by comparing the results obtained by implementing different values of
parameters, and the comparison of performance of different meta-heuristic algorithms is also
presented.

In Chapter 5, the third sub-problem specifically focuses on the multi-objective optimization
for scaffolding construction project. A multi-objective model is established based on a practical
scenario of a mega scaffolding construction project with objectives of minimizing the total
project makespan and total supply chain cost and maximizing the workforce utilization rate. A
modified non-dominating sorting genetic algorithm (NSGA-II) is developed for searching for
the optimal solutions of this problem. The proposed NSGA-II is tested on a case study and
the results manifest that accurate and feasible solutions can be produced through our method to
assist managers with designing the optimal schedules.

In Chapter 6, some remarkable findings and directions of future research are presented.
To sum up, this thesis provides a thorough review of the characteristics of construction sup-

ply chain and previous research about the construction supply chain management and construc-
tion project scheduling problems. Based on these background information, this thesis studies
the construction supply chain optimization problems under different scenarios, namely, deter-
ministic scenario, stochastic scenario and multi-objective scenario. For resolving these three
problems, this thesis proposes three real project-based mathematical models and correspond-
ing meta-heuristic algorithms. The methodology presented by this thesis provides a systematic
guideline of implementing mathematical modeling and optimization with real-life industrial
application problems, which in this case is the construction supply chain optimization.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Construction Supply Chain

As one of the largest industries in the world, construction industry has long been criticized for
being less efficient and economical compared to other industrial sectors such as manufacturing
industry [1] [2]. Statistics from a marketing report indicate that over 70% of the construction
projects suffered from delay, and among these projects, 75% of them spent 50% more than their
initial budget [3]. Project delay and budget overrun have been two main prevailing issues that
plague the project developers and owners continuously. Over the last few decades, the necessity
and needs for implementing the philosophy and methods of supply chain management (SCM)
to the construction sector for improving the performance of construction project management
and reducing the costs caused by inefficiency have been emphasized by many researchers and
industrial professionals [4]. Originated in the manufacturing industry, SCM was initially im-
plemented in the Just-in-Time (JIT) system by Toyota which aimed to regulate the material
ordering plan in order to reduce the inventory and manage the production line efficiently [5].
Since then, more and more companies have tended to adopt the supply chain management ex-
perience from manufacturing industry in order to drive efficiencies and improvements to the
project managements [6]. However, simply transferring the SCM concepts and methodologies
initiated in manufacturing industry to construction industry is more difficult than expectation.
In contrast to manufacturing which has a comparatively fixed production process, construction
is by nature a project-based industry that is characterized with attributes such as labour inten-
siveness and uncertainty which are caused by the short term relationships among stakeholders,
and fragmented structure of the construction supply chain as well as its dependency with opera-
tions [7]. Moreover, nowadays, construction projects have become more complex and big than
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ever before and these projects generally involve large scaled investments and widely dispersed
participants including many contractors and subcontractors [6]. Therefore, due to all these char-
acteristics of construction industry, the efficiency of construction supply chain is lagging behind
other industries such as manufacturing and the implementation of supply chain management in
construction sector is yet challenging.

To our knowledge, the current studies of construction supply chain management (CSCM)
have been conducted from two main aspects, namely, management philosophy implementa-
tion and information system technology. Speaking of management philosophy, in recent year,
lean management has been adopted for improving the supply chain performance in construc-
tion industry. Lean management, which was initially developed based on the Toyota production
system, represents a series of approaches to continuously eliminate the waste in operations and
improve the efficiency and performance of an organization or a system [8]. Erik (2010) investi-
gated the core elements of lean management in construction section which consist of waste re-
duction, process planning and control, satisfaction of customer needs, continuous improvements
and partnership of participants [9]. In order to verify the applicability of lean management in
CSCM, the author conducted a pilot study by engaging in a construction project as a facilita-
tor and implemented the core elements in the management of CSC. The results of this study
indicated that the construction project was well executed with a high satisfaction in budget and
schedule management due to the implementation of lean management [9]. Aziz et al. (2013)
examined the perceptions of lean management principles in construction and evaluated the ef-
fectiveness of implementing the Last Planner System which is a technique of lean management
[10]. Similarly, Deshpande et al. (2011) [11] applied the techniques of lean management in the
construction project design including project planning and supply chain design and Shewchuk
and Guo (2011) [12] proposed a lean approach for minimizing the quantity of stacks and materi-
al handling distance in order to improve the performance of supply chain. Another management
improvement methodology that has been developed and applied extensively is six sigma. Six
sigma focuses on the reduction of variations, defects measurement and quality improvement
for processes, production and supply chain services [13]. In the construction supply chain con-
text, six sigma can contribute to improve the delivery efficiency and cost effectiveness through
decreasing the project delays, re-working rate of completed jobs, and the variation of quantity
of materials delivered to the construction site [14]. On the other side, with the developmen-
t of information system (IT), various technologies of IT have been used for CSCM. Building
information system (BIM) is a technology that could be used to manage the life cycle of a
construction project including design, operation execution, process management, material man-
agement and maintenance with visualized representations [15]. Irizarry et al. (2013) integrated
BIM and geographic information system (GIS) which is a technology for managing geograph-
ic data to track the status of construction supply chain and ensure the supply of materials [4].
Maki and Kerosuo (2015) described the procedure of using the BIM tools and applications for
construction site management such as material delivery and inventory storage and provided a
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guideline of BIM implementation for project managers [16]. There are also other IT technolo-
gies that have been used for CSCM, such as radio frequency identification (RFID) [17] [18]
and global positioning system (GPS) [19]. Through reviewing these previous studies, I find
out that the aforementioned management philosophies and IT technologies seem promising for
improving the efficiency and management of construction management, nevertheless, difficul-
ties and problems of implementing these methodologies in CSCM still remain. First of all, the
benefits brought by these methodologies might exceed the cost of implementation. Generally,
widely adoption of lean and six sigma requires extensive and considerable inputs in terms of
personnel training, consulting support, organization and management system restructuring, and
information management. According to a report, the average training cost of lean management
of an employee is about $50,000 [20]. These investments also apply for IT applications, for
example, deploying a RFID system would normally include hardware cost, setup cost, and sys-
tem service cost [21]. In addition, many of these management philosophies are originated and
initially designed in manufacturing industry with the characteristics of assets intensiveness and
operations repetitiveness. Notwithstanding some operations within a construction project are
repeatable, none of these operations would be executed in the same way with the same perfor-
mance due to the uncertainty and low level of automation in construction. Hereby, it would be
difficult to ensure the accuracy of data collection, process analysis and evaluation of either lean
management or six sigma in the construction industry.

In order to adopt a more effective and economically efficient method to improve the per-
formance of construction supply chain, it is vital to identify the goals of construction supply
chain management and optimization and the root causes for inefficiency. According to the per-
ception suggested by Vrijhoef et al. (2000), CSCM should focus on the goal of reducing the
costs and duration of project activities with the considerations of ensuring the flow of materials
and workforce, achieving concurrent execution of activities, and controlling the inventory [22].
Time and cost are commonly recognized as two most critical criteria for evaluating the perfor-
mance of a supply chain. In the context of CSC, time refers to the duration of a construction
project while cost generally stems from material management cost, labour cost and transporta-
tion cost. As shown in Figure 1.1, construction supply chain integrates various stakeholders of a
construction project including project developers, contractors and subcontractors, and materials
and equipment suppliers. In terms of the function, CSC directs construction resources includ-
ing materials, equipment and workforce from suppliers and contractors to construction sites
and manages the allocation of these resources in the construction sites. However, from the per-
spective of information flow, the demand of resources which is determined at the design phase
influences the decision on project planning and scheduling. Afterwards, the subcontractors and
suppliers would execute the construction operations and resource arrangement accordingly. It
can be concluded that CSC is a project-based supply chain whose performance has a significant
interdependency with the effectiveness of project management, especially project planning and
scheduling. An appropriate project schedule would avoid the problems in the project manage-
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ment such as project delay and budget overrun. For this reason, optimizing the schedule of a
construction project would consequently result in establishing a timely and economically CSC.

Figure 1.1: Flowchart of Construction Supply Chain

1.1.2 Construction Project Scheduling

Project scheduling deals with the problem of sequencing and planing the project activities and
allocating the resources accordingly [23], and it is an important task of project management
for ensuring that the project could be completed on time and the cost is controlled within the
budget. During the process of scheduling, the availability of resources such as labour and equip-
ment is often limited due to site space restrictions and project budget. These project scheduling
problems that consider resource limitations are known as resource constrained project schedul-
ing problems (RCPSP) which have been extensively studied [24]. The objective of RCPSP is
normally set as minimizing the total cost or project duration by determining the optimal sched-
ule of activities and allocating the available resources to each activities with the obedience of
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both the logical relations between activities and the resource constraints.

As a subdivision of RCPSP, construction project scheduling (CPS) shares the similar ob-
jectives and considerations. Composed of labour intensive operations, construction projects are
characterized by their complexity and difficulties in management [3]. Shorter duration and less
expenditure enable the project developers to increase their return on capital and the contractors
to gain more profit and avoid the risk of inflation [25]. Therefore, contractors always strive to
beat the deadline of project completion and endeavor to crash a project’s duration. However, as
a consequence, more resources are expected to allocate which could lead to a rise in the total
expenditure on project. Hence, the trade-off between time and cost is one of the main chal-
lenges for project managers when they encounter the problem of resource constrained project
scheduling for a complex project. On most occasions, the project planners would set up their
objective of scheduling based on their priority between makespan and expenditure. One of
the most adopted objectives is minimizing the total makespan of the project where the total
makespan is normally represented as the completion time of the last activity. For example, Van
Peteghem and Vanhoucke (2010) [26], Coelho and Vanhoucke (2011) [27] and Cheng et al.
(2015) [28] proposed to minimize the total makespan of the project with the consideration of
the constraints for both renewable and nonrenewable resources. There are also other time-based
objectives for CPS, for example, minimization of weighted tardiness where tardiness means the
delay of operations in execution [29] and minimization of the sum of earliness and tardiness
[30]. On the other hand, various cost-based objectives have been proposed and studied for CPS.
Generally, the total cost of a construction project consists of equipment and resource renting,
materials acquisition and transportation, and labor cost [25]. Chen et al. (2010) constructed
their mathematical model with the objective to minimize the final net present value (NPV) of
the project using discounted cash flow analysis [31]. The delay penalty is another cost-based
criterion that would be considered in the real world project management and the objective of
minimizing the total cost of tardiness penalty is commonly proposed for the project scheduling
[32]. Apart from these single objective formulations, many research have been conducted for
multiple objective project scheduling problems as well. For example, Hadjiconstantinou and
Klerides (2010) [33], Hazir et al. (2010)[34] and Kazemi and Tavakkoli (2011) [35] studied
the discrete time-cost trade-off problems with the objectives of minimizing the total cost and
makespan simultaneously, while Al-Fawzan et al. (2005) [36] and Abbasi el al. (2006) [37]
considered robustness and makespan as the two objective criteria for their project scheduling
problems where robustness represents the ability to cope with the variations in the construction
projects. There are also some other formulations of multi-objective project scheduling prob-
lems such as time-resource [38] and time-cost-quality [39] [40]. Moreover, while planning the
schedule of construction projects, various considerations should be deliberated. Precedence
relationship of project activities is one of the most basic factors in a construction project that
would affect the results of scheduling. In reality, some activities always have a higher priority
of execution compared to others when project scheduling is being conducted [24]. Another
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type of relationship between activities which is known as mutual exclusion relationship is usu-
ally considered[41]. The mutual exclusion relationship means that the execution or selection
of one activity will lead to the exclusion of another activity, and likewise, there exists mutual
inclusion relationship which means that the selection of one activity will incontestably result in
the selection of certain other activities. Resource constraint is undoubtedly the most influential
factor for CPS as the execution of any activity is strongly relied on the availability of resources,
especially the labours on site. Various resource constraints have been adopted in the research
such as renewable and nonrenewable resources [26] [27], cumulative resources [42] and dy-
namic resource capability [43]. In addition, there are also other factors that would be taken
into considerations for CPS including time lags between activities [44] and uncertain activity
durations [45] [46].

Critical path (CP), proposed in late 1950s, is one of the most commonly adopted methods
for project planning and scheduling in construction industry up to the present. Based on the
information of project activities in terms of activity durations and dependencies, CP determines
the critical activities by calculating the longest path of project execution from starting activity
to the end activity, and the earliest and latest starting time of each activity [25]. Even though CP
has been developed and evolved by comprising the representation of resource constraints [47]
and various exact algorithms have been applied including dynamic programming [48], branch
and bound [49] and minimum bounding algorithm [50], the restrictions of these algorithms lim-
it their applications on large scale construction project with multiple objectives or in uncertain
environment. Nowadays, construction projects are becoming more complex and it can be pre-
dicted that more mega-projects will be invested in infrastructure sector and energy industry for
the next few decades[51]. Besides, as mentioned earlier, CPS is an extended version of RCPSP
which is a complicated optimization problem that belongs to the class of NP-hard [52] [53]. It
is suggested by Demeulemeester and Herroelen (1997) that the RCPSP with over 60 activities
would not able to be solved by exact methods [54]. Therefore, methods that are more intelligent
should be adopted for resolving complex CPS problems. In this thesis, meta-heuristic methods
are developed and utilized to cope with the proposed construction supply chain optimization
problems. The introduction of meta-heuristic optimization is detailed in the Chapter 2.

1.2 Research Objective and Scope

The construction supply chain optimization and construction project scheduling share the same
goals according to the above discussion. To be more specific, the performance of a project-
specific CSC is largely dependent on the appropriateness of project scheduling in terms of
material management and resource allocation. In this research, the construction supply chain
optimization problem (CSCOP) is described under three different scenarios and the correspond-
ing mathematical models are constructed with the objective to develop an optimal schedule of
the construction project in order to optimize the performance of CSC. These sub-problems
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represent three main types of optimization problem, namely, deterministic single objective op-
timization problem, stochastic optimization problem and multi-objective optimization problem
respectively. Meta-heuristic algorithms are selected and modified to resolve these three sub-
problems, and real project-based case studies are conducted for validating our models and al-
gorithms. The objective of each sub-problem studied in this thesis is introduced as follow:

Deterministic Construction Supply Chain Optimization
The deterministic construction supply chain cost optimization problem (DCSCOP) describes

a general scenario of supply chain of a construction project which consists of a series of activi-
ties. In the environment of construction, construction materials such as scaffolding components
are continuously demanded, and the cost spent on material management including transporta-
tion, material leasing cost and inventory holding cost is the main contributor to the total cost of
CSC. Therefore, this sub-problem aims to construct a general mathematical model of CSCOP
with the objective of minimizing the CSC cost including material handling cost and labour cost
based on the RCPSP. In order to generalize the modeling of CSCOP, the parameters of material
management cost, activity duration, material demand and workforce requirement are assumed
as deterministic. Considering the complexity of DCSCOP, a genetic algorithm is developed and
applied. In addition, a case study based on the real world scaffolding construction project is
conducted by applying our proposed model and algorithm.

Stochastic Construction Supply Chain Optimization with Rental Resource Selection
The stochastic construction supply chain optimization with rental resource selection (SC-

SCO) problem considers the fact that the selection of rental resources including equipment and
temporary structures could alter the way of executing a targeted task. In reality, a construction
task can be conducted in various methods that are triggered by adopting different equipment
or materials, and most of these resources are rented instead of purchased. In addition, for a
construction project, the budget is always limited and the duration of construction activity is
not fixed. Therefore, this sub-problem aims to minimize the total makespan of a construction
project under the uncertain environment and control its CSC cost including resource leasing cost
and labour cost within the budget. In order to achieve this objective, a hybrid meta-heuristic
algorithm that integrates sample average approximation and particle swarm optimization is de-
veloped to resolve this stochastic problem.

Multi-objective Optimization for Scaffold Supply Chain of a Mega Construction Project
As a temporary structure, scaffolding has been extensively used in construction industry

and has a significant contribution to the total cost of construction projects. Especially for a
mega construction project, enormous amount of scaffolding materials is continuously delivered
between the supplier’s warehouses and construction sites. The leasing cost of scaffolding ma-
terials is charged based on their amount and time within the construction site. Therefore, it is
vital to work out an optimal schedule of the scaffolding construction that could consequent-
ly determine the supplying of scaffolding materials in order to improve the performance of
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scaffold supply chain. In this sub-problem, the performance of scaffold supply chain (SSC) is
expected to be optimize through three aspects: total cost minimization, makespan minimiza-
tion and workforce efficiency maximization. A multi-objective optimization model for SSC is
formulated and a meta-heuristic algorithm based on non-dominated sorting genetic algorithm
(NSGA-II) is developed for coping with this problem.

1.3 Structure of Thesis

In previous section, a brief background of construction supply chain (CSC) and construction
project scheduling (CPS) is presented and three construction supply chain optimization prob-
lems (CSCOP) are also introduced briefly. The purpose of this thesis is to propose novel math-
ematical models of supply chain optimization problems in construction industry and develop
meta-heuristic algorithms for solving these problems. The rest of this thesis is organized as
follow.

In Chapter 2, several existing meta-heuristic algorithms are introduced. The mechanisms
of three popular and widely used meta-heuristics including genetic algorithm (GA), ant colony
optimization (ACO) and particle swarm optimization (PSO) are detailed, and their applications
in CPS are presented from the aspects of single objective optimization, uncertainty and multi-
objective optimization. The studies regarding to other most recent meta-heuristics are also
introduced.

In Chapter 3, a deterministic construction supply chain optimization problem (CSCOP) is
considered. This problem describes a general scenario of CSC of a construction project which
consists of a series of activities. The parameters of activity duration, material demand and
workforce requirement are defined as constant values, and the precedence relations between
activities and the limitations on resources are considered in this problem as well. The math-
ematical model of CSCOP is constructed as a extended version of RCPSP with the objective
of minimizing supply chain cost, and a genetic algorithm (GA) is developed and modified to
solve this problem. A case study based on a scaffolding construction project is conducted for
verifying the feasibility of the model and algorithm.

In Chapter 4, a budget constrained stochastic construction supply chain optimization with
rental resource selection (SCSCO) problem is studied. Based on the deterministic CSCOP
described in Chapter 3, a more complex construction supply chain optimization problem is
formulated by combining stochastic project scheduling with resource selection problem, and
the activity duration is considered as a stochastic parameter with a predefined distribution. A
chance constrained model of SCSCO with the objective of minimizing the project duration is
constructed, and a hybrid algorithm that integrates sample average approximation (SAA) and
particle swarm optimization (PSO) is proposed. A case study based on a construction project in
a LNG plant is conducted for verifying the feasibility and effectiveness of proposed algorithm
and a sensitivity analysis is presented.
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In Chapter 5, a multi-objective scaffold supply chain optimization problem is studied. The
scenario of scaffold supply chain (SSC) of a mega construction project that comprises several
sub-projects is illustrated, and a multi-objective optimization model is constructed with goals
of minimizing the total cost, minimizing the project duration and maximizing the workforce
efficiency. A non-dominated sorting genetic algorithm (NSGA-II) is modified and proposed for
solving this problem, and a real project based scaffolding case study is conducted.

In Chapter 6, the main contributors and the potential directions of future research are pre-
sented.
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CHAPTER 2

LITERATURE REVIEW:
META-HEURISTIC OPTIMIZATION

Undoubtedly, optimization exists in many aspects of our life, from engineering designing to
financial planning and from organization management to flight scheduling. People strive to
achieve the best results or generate optimal solution for their targeted problems such as budget
control, duration management and resource utilization [55]. For some optimization problems,
the best solutions can be obtained through using the aforementioned exact algorithms. However,
they may not be efficient enough in solving large scale combinational, complex and non-linear
optimization problems, and the CSCOP and RCPSP discussed in this thesis are typical exam-
ples of these optimization problems. With the increment of the complexity of these problems,
especially practical problems that comprise many considerations and restrictions, it is nearly
impossible to search and testify every possible solutions and select the optimal one. Therefore,
heuristic algorithms which solve problems based on the previous experience are developed to
find the good solutions instead of best solutions in a reasonable computational time [56]. Ac-
cording to Beheshiti et al. (2013), meta-heuristics are high-level heuristic procedures which
guide the subordinate heuristics by adopting intelligent strategies for exploring and exploiting
the searching areas and finding the near optimal solutions efficiently [57]. Meta-heuristics can
often generate good solutions with less computational costs compared to simple heuristics, and
many of the current meta-heuristic algorithms are inspired by the social or biological behaviors
[25]. In this section, a review of several popular meta-heuristic algorithms and their applications
in construction project scheduling (CPS) problems is presented.
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2.1 Genetic Algorithms

The genetic algorithm (GA) is one of the most well known meta-heuristic algorithms that has
been extensively studied and applied in various fields. Developed by John Holland, GA mimics
the process of chromosome evolution through genetic operators of selection, crossover and mu-
tation in order to produce better offsprings [58]. According to Juang (2004) [59], GA starts with
the problem encoding and chromosome representation. In GA, a chromosome or an individual
normally represents a candidate solution for the optimization problem and is formed by a gene
string. A fitness function that evaluates the fitness value of each chromosome is defined. In the
first stage of GA, a initial population of a certain number of chromosomes will be processed
through genetic operations including selection, crossover and mutation, and as a consequence,
a new population will be produced and each generated population is called as a generation. The
selection operator chooses the higher ranked chromosomes in the current population accord-
ing to their fitness values and passes these chromosomes to the offspring. The crossover is the
process of generating new offsprings by exchanging and combining the genes from their parent
chromosomes. The mutation operator changes the value of some genes from a chromosome that
are chosen randomly with a probability. The new generation that is obtained through applying
these three genetic operators will be assessed by evaluating the criteria of termination. If the
criteria are reached, then the solutions can be decoded from the obtained population, otherwise,
the GA will be repeated. The general procedure of GA is presented in the Algorithm 1.

Algorithm 1 Pseudo Code of GA
1: For objective function f (x), x = (x1,x2, ...xn)

T

2: Encode the objective function and the representation of chromosome
3: Define fitness function F(x)
4: Generate initial population and define GA parameters
5: while t < maximum number of iteration
6: Select the parent chromosomes
7: Perform Crossover with probability of pc
8: Perform Mutation with probability of pm
9: Evaluate the fitness of offsprings

10: Select the best for the next generation
11: End while
12: Decode the solutions

GA has been developed and applied for solving various construction project scheduling
problems since it was introduced. Chan et al. (1996) utilized GA for dealing with the resource
scheduling problem in construction which encompasses considerations of both resource level-
ling and resource restriction [60]. Shadrokh and Kianfar (2007) proposed a resource investment
problem in construction with the objective of minimizing the total resource cost and tardiness
penalty and applied GA with a schedule generation scheme [32]. In their description of GA,
each individual is constructed by the combination of two strings that represents the sequence

11



of activities and the resource capacities respectively [32]. Chen and Weng (2009) introduced a
two-phase GA to select the execution mode of each activity and generate a feasible schedule for
a resource constrained construction project scheduling problem [61]. The two subsystems of
the two-phase GA, namely time-cost trade-off subsystem and resource scheduling subsystem,
deal with the cost minimization problem and resource allocation problem respectively [61]. In
practical construction projects, uncertainty exists all the time and this would impede the imple-
mentation of traditional GA. Ke et al. (2009) adopted GA for solving two stochastic time-cost
trade-off models for construction project scheduling problems with uncertainty, which were
based on chance-constrained programming and dependent-chance programming respectively
[62]. In both of their models, the duration of activity was defined as a stochastic parameter. Ke
et al. (2009) integrated stochastic simulation and GA for solving this stochastic problem where
stochastic simulation was used for estimating the functions of project cost and makespan [62].
Similarly, GA was implemented for solving uncertain project scheduling problem by Huang
and Zhao (2014), while in their model, the risk of investment was considered [63]. In addition,
reaching a balance between several criteria including time, cost and quality is another challenge
for project manager. In this case, GA has also been utilized for resolving multi-objective con-
struction scheduling problems. Proposed by Srinivas and Deb (1994), non-dominated sorting
genetic algorithm (NSGA) has been developed for dealing with multi-objective optimization
problems [64]. El-Rayes and Kandil (2005) applied the NSGA on a multi-objective model
for the highway construction project scheduling problem with the objectives of minimizing
the construction time and cost and maximizing its quality [65]. In 2002, Deb improved NS-
GA by introducing a new procedure of non-dominated sorting and the new algorithm is called
as NSGA-II [66]. NSGA-II has been adopted for coping with various multi-objective project
scheduling problems, such as finance-based construction project scheduling problem [67] and
multi-mode bi-objective construction project scheduling problem [68].

2.2 Ant Colony Optimization

Proposed by Dorigo in 1992, ant colony optimization (ACO) was inspired by the food searching
behaviors of ant colonies [69]. During the process of foraging, ants would leave a chemical
pheromone on their paths to mark their trace which would guide the selection of paths for the
subsequent ants. Ants tend to follow the routes that have more pheromone and this tendency
is normally represented as a probability that changes with the number of ants that have chosen
the same route [70]. Consequently, with the paths are searched iteratively, the shortest paths
would be marked with the most pheromone. According to Gendreau and potvin (2010) [71],
the general procedure of ACO consists of three main stages. In the first phase, the parameters
of ACO should be set and the initial pheromone of all paths are assigned to a value τ0. The
parameters of ACO normally include the parameter that controls the influence of pheromone
trails (α), the parameter that controls the influence of heuristic values (β ), and evaporation
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rate (ρ). After the initialization of ACO, a set of ant solutions need to be constructed. In the
context of project scheduling problems, the solutions are mostly represented by a sequential list
of activities. At each step of solution construction, the activity j is selected and placed at ith
order in the list with a probability of pi j. The ants that select the path (i, j) will then leave the
corresponding pheromone τi j on their track. The probability of choosing path (i, j) is widely
accepted as:

pi j =
(τi j)

α(ηi j)
β

∑(τi j)α(ηi j)β
(2.1)

where ηi j stands for a heuristic information that is defined based on specific problems. For
example, Zhang (2011) defined the minimum total slack time and the shortest feasible mode
of execution as heuristic information in his proposed resource constrained project scheduling
problem [70]. After the construction of solutions, the pheromone on each selected path should
be updated according to:

τi j = (1−ρ)τi j +∆τi j (2.2)

where ρ represents the evaporation rate of pheromone deposited by previous ants over time.
Practically, the consideration of pheromone evaporation could avoid the convergence of the
algorithm being too fast [71]. ∆τi j indicates the increment of pheromone on the selection of
(i, j). The general procedure of ACO is illustrated in Algorithm 2.

Algorithm 2 Pseudo Code of ACO
1: Initialize parameters α , β , ρ and pheromone values
2: while termination condition not satisfied do
3: For k = 1 until the number of ants
4: Construction a solution based on the probability equation 2.1
5: Update local pheromone based on equation 2.2
6: End For
7: Update pheromone for global best solution
8: End while

ACO is a powerful mega-heuristic algorithm for solving combinational and practical op-
timization problems due to its attributes of versatility and problem dependency. Up to date,
ACO has been adopted to deal with various project scheduling problems. Zhou et al. (2009)
applied ACO for solving classic resource constrained project scheduling problems and defined
the heuristic information based on the priority rule [72]. Chen et al. (2010) integrated ACO
with serial schedule generation scheme (SSGS) for dealing with the construction scheduling
problem that takes indirect costs and a bonus-penalty mechanism into consideration [73]. In
their work, the performance of eight different heuristics that included two precedence-relation-
based heuristics, two time-based heuristic, two cost-based-heuristics and one hybrid heuristic
were tested and compared [73]. Huang et al. (2015) discussed the applications of ACO in single
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resource projects and multiple resource projects [74]. Except for deterministic problems, ACO
has also been implemented for tackling problems with uncertainties. Abdallah et al. (2009)
developed a ant colony system (ACS) for resolving probabilistic critical path method (CPM)
network with fuzzy activity durations for a complex construction project [75], and Huang et al.
(2010) modified the definition of pheromone by taking both transportation cost and stockout
cost into consideration for coping with the scheduling problem with uncertain demand [76].
In terms of multi-objective problems, Ng and Zhang (2008) optimized a time-cost trade-off
problem in construction project scheduling by using ACO [77]. The modified adaptive weight
approach was used to transfer the multi-objective problem into a single objective one and a local
updating rule and a global updating rule were proposed in their ACO [77]. A non-dominated
archiving ant colony algorithm (NA-ACO) was proposed by Kalhor et al. (2011) for solving
stochastic time-cost trade-off problems under uncertain activity durations and costs [78]. Their
bi-objective model was constructed based on fuzzy sets theory and two colonies which consid-
ered the minimization of project’s fuzzy cost and the minimization of the project’s fuzzy time
were comprised [78].

2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a global search based optimization algorithm that is in-
spired by the social behavior of swarms such as bird flocking and bees buzzing [79] [80]. PSO
searches the best solutions through iteratively updating the movement of each particle based on
its previous local best and global best positions [80]. Each particle posses two key attributes
including its position and velocity that adjust the movement of particle towards the best solu-
tion. The detailed procedure of PSO is introduced in Chapter 4. Because of the simplicity of
implementation and effectiveness in convergence, PSO has become popular for being applied
in solving optimization problems including construction project scheduling problems [79]. Guo
et al. (2010) modified the conventional PSO by merging a crossover operator and applied the
algorithm for optimizing the schedule of a coal mine construction [81]. A justification PSO was
proposed by Chen (2011) for dealing with the RCPSP and a mapping scheme which adjusts the
position of a particle was designed to improve the efficiency of algorithm [82]. Xu and Feng
(2014) presented a priority based PSO which combines the priority representation of particle
positions and a schedule generation scheme for a large scare construction project scheduling
[83]. Moreover, PSO has been frequently applied for multi-objective problems. Zhang and
Li (2010) developed a Pareto-oriented PSO that combined a scheme for determining the best
solution from a Pareto front for a construction project scheduling problem with objectives of
minimization of time and cost [84]. A hybrid GA-PSO algorithm was introduced by Ashuri and
Tavakolan (2011) for tackling a time-cost-resource trade-off problem in construction project
planning under a uncertain environment [85].
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2.4 Other Meta-heuristics

Apart from the aforementioned algorithms, many other meta-heuristics have been developed
and applied for solving project scheduling problems in construction. Simulated annealing (SA)
is a probabilistic heuristic algorithm that approximates the global optimum in a given search
space [86]. Yannibelli and Amandi (2013) integrated SA algorithm into the framework of an
evolutionary-based searching algorithm in order to solve the time-resource trade-off problem
in construction planning [87]. In order to overcome the low search efficiency of SA, Bettemir
and Sonmez (2014) hybridized SA with GA for coping with the RCPSP and the computational
results indicated that the hybrid algorithm outperformed the sole meta-heuristic [88]. Similar
to SA, tabu search (TS) is a single-solution-based meta-heuristic for global optimization, and
its performance is largely dependent on the quality of initial solutions [80]. Skowronski et al.
(2013) adopted two modified TS algorithms with different neighbourhood generation methods
for solving a project scheduling problems that considered the constraints of workforce with
various skills [89]. The results illustrated that swap-based neighbourhood method could provide
better solutions in makespan minimization while random-based neighbourhood method could
be more effective in cost optimization [89]. With more research has been conducted in meta-
heuristics, there are other algorithms lately developed, such as shuffled frog-leaping algorithm
(SFLA) [90], firefly algorithm (FA) [91] [92], harmony search (HS) [93] and bee algorithm (BA)
[94]. In the following chapters, various meta-heuristics are selected to optimize the proposed
construction supply chain under different scenarios.

2.5 Comprehensive Summary

Table 2.1 summarizes the meta-heuristic algorithms that are applied in the above-mentioned
papers. These papers are classified by the types of problems they are dealing with and the meta-
heuristic algorithms they developed. There are three main types of project scheduling problems
studied in the previous research, namely, single objective problem, multiple objective problem
and uncertainty problem. These research provide a great deal of background knowledge for
project scheduling problems and meta-heuristic algorithms which are beneficial to the study of
this thesis. However, this thesis exhibits its improvement and contribution on the research of
supply chain optimization and project scheduling from the following aspects. Firstly, most of
the papers I have studied focus on the single objective problem with the objective of minimizing
the duration or the cost. However, in reality, the criteria for evaluating the performance of a
project are varied and many. As we can observe from Table 2.1, some papers have proposed the
multi-objective models to solve time-cost trade-off problems [68] [85]. Nevertheless, workforce
utilization is always ignored by these studies. Construction is a labour intensive industry where
workforce management is vital. The inappropriate and inefficient workforce scheduling and
planning would result in the workforce idling and waste in resources. Therefore, in this thesis,
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workforce utilization rate will be considered as one of the objectives when resolving the multi-
objective optimization for construction supply chain. Secondly, the durations of activities can
not be precisely estimated beforehand due to the complexity and uncertainty of projects. Hence,
in this thesis, the stochastic activity duration is considered when dealing with the stochastic
construction supply chain optimization. Thirdly, few studies have ever conducted regarding
to the management of scaffolding activities, even though it is well-known that scaffolding is
very important for the safety of a construction project. In order to close this gap, in this thesis,
scaffolding construction cases are conducted for evaluating our proposed mathematical models.
In a nutshell, this thesis is a comprehensive and systematic study for construction supply chain
optimization problems under different scenarios.
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Table 2.1: Meta-heuristics for CPS
Meta-heuristic References Single-objective Multi-objective Uncertainty

GA

Chan et al.(1996) Y \ \
Shadrokh & Kiafarn (2007) Y \ \
Chen & Weng (2009) Y \ \
Ke et al.(2009) Y \ Stochastic Programming

Huang & Zhao (2014) Y \ Stochastic Programming

El-Rayes & Kandil (2005) \ Y \
Fathi & Afshar (2010) \ Y \
Vanucci et al.(2012) \ Y \

ACO

Zhou et al.(2009) Y \ \
Chen et al.(2010) Y \ \
Zhang (2011) Y \ \
Huang et al.(2015) Y \ \
Abdallah et al.(2009) Y \ Fuzzy Sets

Huang et al.(2010) Y \ Stochastic Programming

Ng & Zhang (2008) \ Y \
Kalhor et al.(2011) \ Y Stochastic Programming

PSO

Pandey et al.(2010) Y \ \
Guo et al.(2010) Y \ \
Chen (2011) Y \ \
Xu & Feng (2014) Y \ \
Zhang & Li (2010) Y \ \
Ashuri & Tavakolan (2011) \ Y Fuzzy Sets

SA

Damodaran & Velez-Gallego (2012) Y \ \
Yannibelli & Amandi (2013) Y \ \
Bettemir & Sonmez (2014) Y \ \

TS Skowronski et al.(2013) Y \ \

SFLA Fang & Wang (2012) Y \ \

FA Rizk-Allah et al.(2013) Y \ \

HS Pan et al.(2011) Y \ \

BA Ziarati et al.(2011) Y \ \
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CHAPTER 3

DETERMINISTIC CONSTRUCTION
SUPPLY CHAIN OPTIMIZATION

3.1 Introduction

One of the main contributors for inefficiency and budget overrun of construction industry is
the unappropriate management of construction material, workforce and other resources includ-
ing heavy equipment. Hence, a lot of attention has been aroused for the construction supply
chain optimization (CSCO). According to Vrijhoef and Koskela (2000), the goal of construc-
tion supply chain management is to reduce the total cost of construction project and duration
of activities by ensuring the sufficient material supply and appropriate workforce arrangemen-
t [22]. However, the management on material flow and workforce deployment is affected and
even determined by the project scheduling to a great extent because the demand of materials and
workers during a specific time period would vary due to different project schedules. Thereby,
the construction supply chain is dependent and interrelated with project scheduling.

In this chapter, a general scenario of the supply chain for a construction project is described.
The construction supply chain (CSC) integrates the flow of materials, money and information
in the process of a construction project [95]. It is a temporary and make-to-order supply chain
that intends to direct all required materials to various locations inside the construction site [22].
Generally, a CSC involves many participants that provide different construction services, es-
pecially for a mega project, and it is formed based on the selection of material and equipment
suppliers, management contractors and subcontractors through tendering phase organized by
project developers [1]. Figure 3.1 indicates the roadmap of a general construction supply chain
including material flow and information flow. As indicated by this roadmap, there are four key
stakeholders involved in the CSC, namely project developers, management contractors, subcon-
tractors and material suppliers. To launch a major construction project, the project developers
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would normally cooperate with large engineering management or consulting companies. These
engineering companies would take the responsibilities of planning and managing the project
process and monitoring and controlling the budget of project. The developers and management
contractors would also divide the whole project into many small parts and choose specific sub-
contractors as well as material suppliers to take over these tasks through tendering process. In
most cases, suppliers would use their own logistics for supplying their products to site which
hinders the integration of construction supply chain as a whole. However, the basic elements
and flows that form a general construction supply chain are similar. In terms of material flow,
construction materials and equipment are transported from corresponding suppliers to the con-
struction site. These resources would normally be stored in a on-site distribution centre or a
temporary warehouse. The workers from subcontractors would then retrieve the materials they
need from the warehouse and deliver the materials to the workfront area for construction tasks.
From the perspective of information flow, subcontractors would be responsible for construction
project design and scheduling under the supervision of management contractors and project
developers. During the process of scheduling, project managers from subcontractors would
take various factors and requirements into consideration, such as cost budget, resource limita-
tions and due dates. Based on the schedule, the subcontractors would then send their material
requests to the suppliers and the suppliers would response accordingly.

Figure 3.1: Roadmap of a General CSC

On the basis of the scenario of CSC described above, in this chapter, a deterministic math-
ematical model of construction supply chain optimization problem (DCSCOP) based on the
RCPSP is constructed . The aim of DCSCOP is to minimize the total cost related to CSC
which incluedes material handling cost and labour cost. A modified genetic algorithm based
on a permutation-based encoding method is introduced and proposed, and a new fitness func-
tion is adopted. The DCSCOP discussed in this chapter lays the foundation for the studies of
more complex construction supply chain optimization problems in the following chapters. The
reminder of this paper is organized as follows: in Section 3.2, previous studies about construc-
tion project scheduling, especially resource constrained project scheduling, and applications of
genetic algorithm (GA) are introduced. Section 3.3 presents the formulation of mathematical
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model for DCSCOP and Section 3.4 illustrated the detailed procedure of our proposed GA. In
Section 3.5, our model and algorithm are testified on a real world construction projet and the
results are discussed. In Section 3.6, the conclusion of this chapter is indicated.

3.2 Literature Review

Composed of labour intensive operations, construction projects are characterized by their com-
plexity and difficulties in management [3]. While planning the schedule of construction projects,
various considerations including working conditions, workforce availability and equipment al-
location should be deliberated. As I know, time and cost are the two most critical criteria for
evaluating the performance of a project execution and therefore have a significant impact on
the decision making for project management. Shorter duration and less expenditure enable the
project developers to increase their return on capital and the contractors to gain more profit
and avoid the risk of inflation [25]. Therefore, contractors always strive to beat the deadline
of project completion and endeavor to crash a project’s duration. However, as a consequence,
more resources are expected to allocate which could lead to a rise in the total expenditure on
project. Hence, the trade-off between time and cost is one of the main challenges for project
managers when they encounter the problem of resource constrained project scheduling (RCP-
SP) for a complex project. Generally, RCPSP aims to generate an optimal schedule for project
activities with the objective of minimizing the makespan of whole project, and simultaneous-
ly satisfying the precedence relationship between activities and the resource constraints [96].
The precedence relation between activities refers to the sequential order of executing activities
or operations. For example, if activity A is a predecessor of activity B, then B can only be
conducted after A is completed. Resource availability is another factor that a project manager
would encounter in a project, especially for scarce resources such as workers with special skills.
On most occasions, the objective of project scheduling is set up based on the priority between
makespan and expenditure perceived by the project managers. The general mathematical model
of RCPSP can be represented as follow. The objective function is to minimize the total duration
of project while equation 3.2 and 3.3 represent the resources constraint and precedence con-
straint respectively. In this model, rt

k is the consumption of type k resource at time t while Uk is
the maximum usage of resource k. Si and di stand for the starting time and duration of activity i

and activity i and j comply the precedence relations denoted by V which indicated that activity
j must start after the completion of activity i.

min f = SI+1 (3.1)

subject to

rt
k ≤Uk (3.2)
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S j ≥ Si +di,(i, j) ∈ V (3.3)

As discussed earlier in Chapter 1, one of the most adopted objectives of RCPSP is mini-
mizing the total makespan of the project and the total makespan is normally represented as the
starting time of the dummy node I +1 as shown in equation 3.1, and this formulation has been
widely adopted in many research such as [26], [27] and [28]. Cost-based objectives are also
set for dealing with RCPSP, for example, minimization of net present value [31], minimization
of total operational costs [25] and minimization of total late penalty [32]. Following Alcaraz
et al.(2003) [97], RCPSP is a strong NP-hard problem which is very complicated to be solved.
Exact methods for enumerating the schedules such as the precedence tree [98] and exact branch
and bound [99] [100] have been proposed and successfully applied for solving RCPSP. How-
ever, these exact algorithms are unable to find optimal solutions for a large-sized problem. In
this case, meta-heuristic algorithms have been developed and applied for achieving optimal so-
lutions for complex RCPSP within a predefined maximum number of iterations or a limitation
of computational time [90]. Genetic algorithm (GA) is one of the most widely studied and used
meta-heuristic algorithms. Goncalves et al.(2008) [101] presented a genetic algorithm for an
extended version of RCPSP which considered a new project performance measurement. In his
GA, a random key alphabet composed by a series of number within the range of [0,1] was used
for chromosome representation and a parameterized active schedule generation procedure was
introduced [101]. Wuliang and Chengen (2009) [102] modified the traditional genetic algorithm
by proposing a priority based encoding method and applied their GA for solving RCPSP with
objective of minimizing the total project cost. In order to improve the efficiency of solution
searching, Proon and Jin (2011) [103] incorporated GA with a neighbourhood search strategy
which improves the feasibility of solutions by adjusting the scheduling of some activities. A GA
was applied for optimizing the construction project scheduling by Faghihi et al.(2014) which
is similar to our scenario in this chapter. There are also other meta-heuristic algorithms that
have been studied and used for solving various RCPSP over last few years, such as simulated
annealing (SA) [104], particle swarm optimization (PSO) [105] and tabu search (TS) [89].

3.3 Problem Mathematical Formulation

In our proposed DCSCOP problem, a construction project that consists of a series of activities
is considered and each activity is conducted without interruption. Assuming that activities are
represented by a set I = {1,2, ...i, ..I}, where i stands for activity i. For any activity i, there
is a set of predecessor activities which have a higher priority for scheduling. The precedence
relations among these activities are presented by an activity-on-node network. In our instance,
I define that set V indicates the immediate precedence relations between activities (i, j) where
(i, j) ∈ V means that activity j must start after the completion of i. The duration of each activi-
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ty, denoted by εi, is given with a known value. There are m types of materials required for this
construction project, and the demand of each type material for activity i, dm

i is estimated at the
design phase of project as well as the workforce requirement for each activity, ui. The objective
of our model is to minimize the total cost involved in the construction supply chain manage-
ment which mainly includes the material life cycle management cost and total labour cost. The
material life cycle management cost denotes the general cost in relation to construction materi-
al management including material purchasing or leasing cost, inventory holding cost, material
transportation cost and material maintenance cost. It is worth mentioning that material mainte-
nance cost would occur even when the materials have been used for construction as protections
and maintenance are still necessary until the construction project is completed. Besides, these
costs are normally spent at different phases of a construction project. For the purpose of gener-
alization, in our model, a unit cost of material life cycle management lm is defined. The project
is assumed to be scheduled on a discrete time horizon where t is an integer parameter. Hereby,
the scheduling of activities on a discrete time line is actually the time allocation process for
each activity with the premise that there is no interruption within the procedure of conducting
each activity. Therefore, the decision variable for project scheduling in our proposed model is
set as a binary variable xt

i . When xt
i = 1, it indicates that activity i is selected for execution at

time t, otherwise, xt
i = 0. Another decision variable that determines the material ordering plan

is defined as the quantity of each type material delivered to the site at time t, represented as pt
m.

The other notations including sets and indices, parameters and decision variables used in our
mathematical model are shown in Table 3.1.

According to the assumptions and notations described above, the mathematical model for
DCSCOP is formulated as a mixed integer programming model as follow:

min CTotal =
M

∑
m=1

T

∑
t=1

(T − t +1)pt
mlm +

T

∑
t=1

I

∑
i=1

uixt
iγ (3.4)

Subject to

S j ≥ Si + εi,∀(i, j) ∈ V (3.5)

Ci ≥ xt
i ∗ t,∀i ∈I ,∀t ∈T (3.6)

I

∑
i=1

uixt
i ≤U,∀i ∈I ,∀t ∈T (3.7)

T

∑
t=1

xt
i = εi,∀i ∈I ,∀t ∈T (3.8)
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Table 3.1: Notations for Mathematical Model
Sets and indices:

I = {1, · · · , I} set of all project activities indexed by i, j.

V ⊆I 2
Immediate precedence relations among project activities,

where (i, j) ∈ V indicates activity j must start after activity i’s completion.

M = {1, · · · ,M} set of material types indexed by m.

T = {1, · · · ,T} set of discrete time slots indexed by t which represents time interval [t−1, t).

Parameters:

dm
i demand of material m for activity i

εi duration of activity i.

ui workforce required for activity i.

lm material life cycle management cost per unit time per unit of material type m.

γ labour cost per unit time per person.

U Maximum available workforce at any time of the project.

Variables:

Si start time of activity i.

Ci completion time of activity i.

Pt
m quantity of material m delivered at time t.

xi ∈ {0,1} xi = 1, if activity i is executed at time t; otherwise, xi = 0.

T

∑
t=1

pt
m =

m

∑
i

dm
i ,∀i ∈I ,∀m ∈M (3.9)

xt
i ∈ {0,1} ,∀i ∈I ,∀t ∈T (3.10)

pt
m =

I

∑
i=1

(dm
i /εi)xt

i,∀i ∈I ,∀t ∈T (3.11)

si ≥ 0,ci ≥ 0,∀i ∈I (3.12)

The objective function 3.4 aims to minimize the project operational cost which in this case
comprises the total material handling cost and total labour cost. The material handling cost is
charged for all materials delivered on site per unit quantity per unit time. For example, when
the time horizon T = 4, the total cost for type m material over this discrete time period would
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be {4p1
m + 3p2

m + 2p3
m + p4

m}lm. Constraints 3.5 and 3.6 shows that the precedence relations
among all activities should be satisfied. If activity i is the predecessor of activity j, the starting
time of activity j should be greater than the completion time of activity i. Constraint 3.7 defines
that the total number of active workers working on site at any time of project should not exceed
the limitation of maximum number of workforce U . Constraint 3.8 ensures that the execution
of any activity is continuous and every activity is selected while constraint 3.9 makes sure
that the demand of materials is fulfilled. Constraints 3.10, 3.11 and 3.12 are intrinsic variable
constraints. According to constraint 3.11, the materials are assumed to be delivered at the end
of every unit time t and the amount of delivery equals to the total demand over that period.

3.4 Genetic Algorithm Implementation

Genetic Algorithm (GA) is one of the most widely applied meta-heuristic algorithms and has
been proven to be effective for solving complex optimization problems by obtaining optimal or
sub-optimal solutions [106]. According to Deb et al. (2000) and Detta et al. (2011), the search-
ing mechanism of GA is inspired by Darwinian Evolution theory which states the concept of
survival of fittest [107] [108]. Generally, a GA starts with a randomly generated population
which consists of N individuals or chromosomes. An individual or a chromosome in the GA
represents a solution for the optimization problem. The initial population evolves by applying
the selection operator and genetic operators including cross-over operator and mutation opera-
tor over a predefined iterations until better solutions are achieved. The selection operator selects
the individuals with better fitness for the further genetic operations. The fitness of an individual
is evaluated through calculating the value of a objective function. After the operations of cross-
over and mutation, an offspring population that inherits the genes from its parental population
is generated. By repeating this evolutionary process, the population with the optimal objective
value is expected to be obtained. In this section, a modified genetic algorithm is proposed for re-
solving CSCCOP problem. A sequence-based representation for chromosome is introduced and
the detailed procedure of algorithm which includes algorithm initialization, fitness evaluation,
cross-over and mutation operations is presented as follow.

3.4.1 Solution Encoding

In GA, the way how solutions are represented has a significant impact on the performance of
the algorithm [97]. In our proposed DCSCOP problem, even though the objective aims to min-
imize the total expenditure on material handing and workforce, the schedule of the project is
actually the determinant. Therefore, every individual or chromosome in the GA should repre-
sent a feasible schedule. In this section, a permutation-based encoding method which translates
each individual as a priority list of activities is adopted. The permutation-based encoding is
widely used for project scheduling problems. For example, Paraskevopoulos (2012) [109] and
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Bettemir (2014) [88] solved the multi-mode resource constrained project scheduling problem
by representing the project schedule as a two-row activity list in which the first row indicates
the order of activities while the other row stands for their corresponding mode selections. In our
CSCOP problem, as the single mode situation is considered, hereby, the solution is encoded as
an priority list of activity λ = { j1, j2, ..., jn, ..., jN} where jn ∈ {1,2,3, ..., i, ..., I} and |N|= |I|.
For example, a individual {2,6,3,5,1,4} represents the ordering of 6 activities in which activity
2 should start first while activity 4 is the last one to be executed.

Due to the restriction of activity precedence relations and resource constraints, the randomly
generated individuals might be infeasible. Therefore, with the method of individual represen-
tation determined, a schedule generation scheme (SGS) for initializing a feasible individual
should be developed and applied. In the proposed DCSCOP problem, the precedence rela-
tions among activities is presented in the form of an activity-on-node network, as shown by
the example in Figure 3.2. The activities are represented by the nodes while the arrows stand
for the sequence of activity execution. For example, activity 4 can not start if activity 2 has
not completed and activity 5 has the same level of priority with activity 6. The numbers in
the boxes indicate the duration and workforce demand for each activity from left to right re-
spectively. In this section, the activity network is encoded into two lists, namely an available
activity list AAL and a predecessor list of activity i, PLi. The available activity list is initialized
as AAL = {0,1,2, ..., i, ..., I, I +1} which contains all available activities that can be chosen for
scheduling. Activity 0 and I +1 are two dummy nodes which indicate starting and finishing of
project respectively. AAL would update with the process of scheduling by excluding the select-
ed activities. The predecessor list PLi consists of the immediate predecessors of activity i which
would update after each selection as well. Activity i would be available for selection only when
all its immediate predecessors are selected, in this case, PLi = /0. For dummy activity 0 and
I +1, the respective predecessor lists are PL0 = /0 and PLI+1 = {0,1,2, ..., i, ..., I}.

During the process of schedule generation, an activity should be selected and executed at
its earliest starting time with respecting to the precedence relations and workforce constrains in
our proposed CSCOP problem. The detailed procedure of SGS is described as follow:

1. Step 1: Assign the first element of priority list with dummy node 0 with starting time and
completion time equal to 0, denoted by j1 = 0 and S0 = 0. Initialize the λ = {0} ( j0 = 0),
AAL = {1,2, ..., i, ..., I, I +1} and PL.

2. Step 2: For n = 1, starting from activity 1 in AAL, search for the activity i with PLi = /0
and assign the first found activity to j1, calculate the starting time S j1 , completion time
C j1 = S j1 + ε j1 and the residual workforce for time interval [0, C j1]: R(t) =U−u j1 .

3. Step 3:For n ≥ 2, starting from the first element i in AAL, evaluate predecessor list of i,
PLi; If PLi = /0, then goes to Step 4; Otherwise, repeat Step 3 for activity i+1.

4. Step 4: Calculate the early start time of activity i, Si = maxC j; j ∈ PLi; evaluate the work-
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Figure 3.2: Example of an Activity-on-node Network

force availability by comparing R(Si) with ui, if R(Si) ≥ ui, then assign activity i to ele-
ment jn and update S jn , C jn , R(t), AAL, PL and λ ; otherwise update start time of activity
by adding one unit time: Si = Si +1 and repeat Step 4.

5. Step 5: Repeat Step 3 and Step 4 until AAL = /0, record the starting time and completion
time for each jn.

In order to illustrate the procedure of SGS, an example of generating a feasible individual is
presented. According to the activity network shown in Figure 3.2, the AAL= {0,1,2,3,4,5,6,7}
in which activity 0 and 7 are dummy nodes and the maximum number of workers is set as
8. At the beginning, activity 0 is assigned to the first element in the priority list, hereby I
have λ = {0} and AAL = {1,2,3,4,5,6,7}. Then, I check the feasibility of activity 1 through
Step 3 and Step 4. As PL1 = /0 and the workforce demand of activity 1 is less than 3, there-
fore, activity 1 is selected. By selecting the activity 1, the available activity list is updated as
AAL = {2,3,4,5,6,7} and the priority list is updated as λ = {0,1}. The residual workforce
is calculated as R(t) = U − u1 = 8− 3 = 5 where t ∈ [0,2]. Activity 2 is the next one with its
predecessor list empty and its workforce demand less than R(t), hence, activity 2 is selected
with starting time S2 = 0 and C2 = 3. Similarly, I repeat the step 3 and 4 for the rest of activities
and I can have the final priority list of the example. The schedule of this example is presented
in Figure 3.3 which indicates the starting time of each activity.
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Figure 3.3: A Feasible Schedule of the Example

3.4.2 Initialization

Generally, in the phase of initialization, there are two tasks that need to be taken into consid-
eration. First of all, before running the GA algorithm, various parameters including model pa-
rameters and algorithm parameters are required to be defined. Typically, the model parameters
normally include the number of constraints and number of decision variables while the GA pa-
rameters would consist of the size of population, maximum number of iteration, cross-over rate
and mutation rate. Secondly, initial population is expected to generate. According to Ahn and
Ramakrishana (2002), two approaches are usually adopted for population initialization, namely
random initialization and heuristic initialization [110]. Obviously, the individuals generated by
random initialization might be infeasible which consequently increases the complexity of com-
putation. As described in Section 4.1, the SGS performs as a way of heuristic initialization to
generate a feasible initial population and helps to converge to the optimal solution more easily
due to the high fitness for feasible individuals.

3.4.3 Fitness Evaluation and Selection

With the initial population generated, the performance and quality of each individual should
be evaluated through computing its corresponding fitness value. Hereby, the fitness function is
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introduced for fitness computation. In our proposed DCSCOP problem, the fitness value can
obviously represented by the total project operational cost which comprises material handling
cost and labour cost. In order to formulate a fitness function that accords with the objective
function of the mathematical model and the representation form of chromosome, I assume that
the population of individuals is defined as H = {1,2, ...,h, ...,H}, and the hth individual is
expressed as λh = { jh

1, jh
2, ..., jh

N}. Let ϕ t
jhn

denotes the execution status of activity jh
n at time t. If

ϕ t
jin
= 1, then activity ji

n is being executed at time t; otherwise, ϕ t
jin
= 0. In this case, the fitness

function is formulated as below:

f (h) =−CTotal(h) =−{
M

∑
m=1

S
jhN+1

∑
t=1

N

∑
n=1

d jhn
ϕ

t
jhn

lm +

S
jhN+1

∑
t=1

N

∑
n=1

u jhn
ϕ

t
jhn

γ} (3.13)

where S jhN+1
denotes the finish time of hth individual and fitness function f (h) gives the

negative value of total project cost under the solution represented by hth individual. The indi-
vidual with a higher fitness value is better performed than others, and the fitness value provides
a criterion for parent individuals selection.

The selection operation is the process of selecting the individuals from the population for
producing better offsprings through genetic operations. Generally, the selection operation de-
termines the which individuals would be preserved and which ones would be eliminated in a
population [111]. Several selection strategies have been developed and extensively used for
GA. Roulette wheel selection is one of the most frequently adopted strategy of individual se-
lection in GA which decides the probability of selecting a individual into offspring generation
based on the proportion of the fitness values of this individual to the total fitness values of w-
hole population [112]. Razali (2011) [113] introduced a linear ranking selection strategy which
ranks the individuals according to their fitness values and allocates the selection probabilities
linearly to these individuals. Similarly, exponential ranking selection is another method of
ranking selection which differs with linear ranking on the calculation of selection probabilities
[111]. Tournament selection strategy is a different selection scheme because it does not contain
any arithmetical computation related to fitness values which significantly eliminates the disad-
vantages of proportionate selection strategies mentioned earlier [112]. The conceptual idea of
tournament selection is to compare the fitness values of s randomly picked individuals from the
population and select the one with better fitness value. The selected individual is then put into a
mating pool for further operations. In this section, due to the high efficiency and low complexity
of implementation, the binary tournament selection strategy with tournament size s equals to 2
is applied in our proposed GA.

3.4.4 Crossover and Mutation

Crossover operation is the process of generating feasible offspring individuals by exchanging
and inheriting the genes from two parental individuals. In this operation, two parental indi-
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viduals are chosen randomly with a probability of pc from the mating pool generated from
the selection operation. Here, pc is the crossover rate. Subsequently, the characteristics from
parental individuals are combined according to the mechanism of the designed crossover opera-
tor and a new offspring individual is produced resultantly. In this section, a one-point crossover
described by Montoya-Torres et al. (2010) [114] and Sastry (2014) [115] is adopted. Firstly, two
parental individuals λa = { ja

1, ja
2, ..., ja

N} and λb = { jb
1, jb

2, ..., jb
N} are selected randomly with a

probability of pc and an integer number q is selected randomly within the range [1,N]. The first
q elements from parental individual λa are preserved in the offspring individual λc with their
positions unchanged. As in the project scheduling problem, each activity can only be scheduled
once. Therefore, the rest N−q positions in λc can only simply inherit the last N−q elements
from individual λb. In order to ensure that the generated offspring individual is feasible, the
last N − q elements of λc is filled by the elements of λb excluding the q selected elements
from λa, { ja

1, ja
2, ..., ja

q}, with their corresponding positions unchanged. A simple example is
presented for illustrating the procedure of crossover. Assuming that λa = {1,3,2,6,4,5,7},
λb = {2,4,1,7,6,3,5} and q = 3, the generated offspring individual λc = {1,3,2,4,7,6,5}. As
I can observe, the first 3 elements of λc is directly inherited from its parental individual λa. By
eliminating the selected elements, the individual λb = {4,7,6,5} and these elements are filled
into the last 4 positions in λc with sustaining their original sequence.

Thereafter, mutation operation that alters one or more elements in the selected individuals is
executed. The mutation operator could enhance the diversity of new generations and might cre-
ate the schedules that could not be engendered by crossover [106]. The mechanism of mutation
adopted in this section is elucidated as follow: for every elements in λc, two adjacent elements
jc
i and jc

i+1 exchange their positions with a probability of pmu where pmu is the mutation rate of
GA. However, as I know, the resulting sequence might not comply to the precedence relations.
Therefore, a checking procedure based on the SGS is required after each mutation operation.
If the offspring individual violates the precedence constraints, the mutation operation would be
repeated until a feasible individual is generated.

3.4.5 Termination Criteria

The GA algorithm terminates under different preset termination criteria which normally include
the number of iterations, the pre-defined objective value and the optimal solutions are reached.
The procedure of proposed GA algorithm is interpreted in Figure 3.4. The procedure starts
from the initialization of parameters of the algorithm which include the size of population,
maximum number of iteration, cross-over rate and mutation rate. The determination of these
parameters can be changed based on different scenarios. The second phase is encoding and
generating feasible individuals. The chromosome is encoded as a two-row activity list which
represents the sequence of activities. The initial population will then be processed through
GA operations including cross-over and mutation. During the process, the performance of
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individuals is evaluated through fitness function. When the termination criteria is reached, the
circulation will stop and the best individuals will be selected. Otherwise, the circulation will
keep going.

Figure 3.4: The Procedure of Proposed GA
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3.5 Case Study

In this section, I validate the feasibility of our proposed genetic algorithm (GA) by solving
a designed case study problem based on the practical scaffolding construction project. The
proposed GA has been coded and complied in MATLAB R2015a on a computer under windows
7 system with Intel i5 CPU and 4GB RAM. First of all, the case study problem is described
in detail in terms of the scenario of project and the corresponding data that is required for
solving this problem. Secondly, the GA is applied for solving the case study problem and the
optimal solution is presented. In addition, the influence of parameter U , the maximum number
of workers, on the results of the case study problem is analyzed.

3.5.1 Case Study Description

Scaffolding is a temporary structure extensively applied in construction industry, which pro-
vides the platform for material placement and supports aerial construction activities [116]. As
the scaffolding structures would not remain after the completion of a construction project, there-
fore, people held the belief that scaffolding is not as important as other construction resources.
As a consequence, less attention has been given to the the supply chain cost optimization of
scaffolding materials. However, due to the great amount of scaffold materials for a construc-
tion project, the impact of scaffolding supply chain management on the total cost of project
is enormous. Hence, in our case study, I design a scenario of scaffolding supply chain cost
optimization problem and implement our proposed GA to solve this problem thereafter. In our
case study, a scaffolding construction project that consists of 15 activities is considered. The
information in regard to the workforce demand, the planned duration and the demand of each
category of scaffolding material for each activity is provided. Table 3.2 shows the workforce
demand and duration for each activity while Table 3.3 indicates the demand of 6 categories of
scaffolding material for each activity. The precedence relation among these activities is present-
ed by an activity-on-node network as shown in Figure 3.5 and Table 3.4 displays the immediate
predecessors for each activity. The maximum number of workers for project is set as 12 which
means that the total number of active workers at any time during this project should less or
equal to 12. The cost related to the management of scaffolding materials including material
leasing cost, material handling cost and transportation cost is defined as 60 per ton per day and
the labour cost is set as 80 per worker per day.

3.5.2 Computational Results

Before running our proposed genetic algorithm for solving the case study problem described
above, parameters of the GA should be configured. The maximum number of iteration and
population size is initiated as 100 respectively. The crossover rate pc and mutation rate pmu

are set as 0.7 and 0.1. The optimal solution of the case study problem obtained through
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Figure 3.5: The Activity-on-node Network for Scaffolding Construction

Table 3.2: Workforce Demand and Duration for Each Activity

Activity Workforce Duration(day)

1 6 3

2 2 15

3 7 12

4 3 25

5 9 7

6 3 21

7 7 7

8 2 4

9 3 18

10 1 14

11 6 14

12 7 20

13 5 23

14 4 11

15 6 7

implementing our proposed GA indicates that the minimum scaffolding supply chain cost is
CTotal = 2.067×106 with the optimal scheduling of scaffolding activities represented by the pri-
ority list λ = {1,2,4,3,7,5,6,9,10,8,11,12,13,14,15}. The project schedule is decoded from
the priority list λ based on the aforementioned SGS and the resulted optimal project schedule
is presented by Figure 3.6. As we can observe from the Figure 3.6, activities are planned in a
manner that no interruption occurs and the starting time of an activity equals to the latest com-
pletion time of its predecessors. The areas marked by yellow lines indicate that only activity
4 and activity 10 are being conducted during that periods due to the precedence constraints.
Activities can be operated at the same time if they satisfy both precedence relations and the
workforce constraint, for example, activity 2, 3 and 4 start at the same time and the workers
arranged for these three activities equals to 12 at the peak time. The total duration of the scaf-
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Table 3.3: Demand of Scaffolding Materials for Each Activity (Tonnage)

Activity Tube Board Hyplank Coupler Hook Fencing

1 1.02 2.21 4.22 1.28 3.07 2.91

2 2.71 4.35 1.32 1.59 0.59 4.69

3 3.22 2.39 3.19 2.72 3.23 2.72

4 2.61 3.61 4.97 1.09 0.53 0.55

5 0.38 2.23 2.24 1.82 3.82 3.14

6 3.86 4.66 4.86 0.96 0.69 3.48

7 0.47 2.62 2.65 4.31 2.42 1.97

8 3.36 3.71 2.6 1.74 0.75 2.93

9 1.32 0.22 3.77 1.21 2.12 3.44

10 1.79 3.68 1.97 3.42 3.52 2.21

11 0.97 1.65 2.12 1.35 0.98 4.11

12 2.14 4.43 1.95 3.84 1.98 4.04

13 3.77 1.88 1.08 3.95 4.75 1.63

14 3.36 2.2 4.17 3.84 0.84 4.31

15 4.95 2.57 4.42 2.94 0.77 0.99

folding construction is 138 days. The project duration might not be the shortest as the objective
of our mathematical model prioritize the optimization of total cost of supply chain. However,
in reality, a deadline of project is always preset due to the estimation on project scheduling.

Figure 3.6: Optimal Project Schedule for the Case Study
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Table 3.4: Immediate Predecessors for Each Activity

Activity Immediate Predecessors

1 –

2 1

3 1

4 1

5 2,3,4

6 5

7 2,3,4

8 7

9 2,3,4

10 9

11 6,8,10

12 11

13 12

14 12

15 13,14

3.5.3 Algorithm Performance Analysis

There are many factors that would have an impact on the performance of the genetic algorithm
including problem parameters such as maximum number of workers as well as algorithm pa-
rameters such as population size. Therefore, to analyze the influence of these parameters on
our proposed GA, four experimental instances which consist of 15, 20, 25 and 30 activities
respectively with randomized activity durations, workforce demands and material demands are
designed and abbreviated as J15, J20, J25 and J30. The objective values under different max-
imum number of workers and different population size are calculated and compared. Table 3.5
shows the optimal cost for four instances with different value of workforce limitation U while
Table 3.6 indicates the optimal cost under different population size of GA. By analyzing these
results, I find that the total cost would decrease with the increment of the maximum number
of workers and reach a lowest point when U = 12or13. After that, the cost would increase
and tend to be stable when U is big enough. This comparison illustrates that when a restricted
limitation of available workforce is imposed, that is when U is small, there is little flexibili-
ty for scheduling and activities would need to be planned one by one. As a consequence, the
makespan of project would be extended and the cost would be high. The cost and the duration
can both be reduced when the workforce constraint is getting loose, and there is an optimal val-
ue of U which makes the total cost minimum. However, when U is big enough, the workforce
constraint would have no restriction or influence on the result of project scheduling and the to-
tal cost would stay unchanged. Nevertheless, in real world construction project, the maximum
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number of workers is normally represented by the budget of labour cost. Instead of being stable
for the total cost, allocating excessive budget on labour usage would result in the high idling
rate of workforce and contribute to the overall cost consequently. Therefore, it is important
to estimate the accurate labour budget which could not only assist our proposed algorithm to
produce a better solution but also prevent the budget overrun in a construction project. Table
3.6 gives the comparison between the objective values (×106) obtained by different population
size of GA. It is clear that, in general, the total cost falls when the population size raises. Figure
3.7 and Figure 3.8 show the variation of total cost (×106) with different workforce limitation
and population size respectively.

Figure 3.7: Results Comparison with Different Workforce Limitation

The performance of our proposed GA is compared with other meta-heuristic algorithms,
which in this case, are ant colony optimization (ACO) presented by Zhang (2011) [70] and
particle swarm optimization (PSO) introduced by Chen (2011) [82]. For GA, the crossover
rate pc and mutation rate pmu are set as 0.7 and 0.1 and population size is 100. For the PSO
algorithm, the cognitive parameter and social parameter are defined as c1 = c2 = 1, and the
population size is set as 100. For the ACO algorithm, the parameter of pheromone trails (α),
the parameter of heuristic values (β ) and the evaporation rate (ρ) are defined as 1, 5 and 0.5
respectively. Table 3.7 lists the results of best objective value, standard deviation of objective
values and computational time obtained by applying each algorithm to randomly generated in-
stances with 30, 40, 50 and 60 activities. As I can observe, all these three algorithms lead to
similar best objective values while ACO method has a lowest computational time and PSO has a
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Figure 3.8: Results Comparison with Different Population Size

Table 3.5: Results of J15, J20, J25, J30 with different U

U J15 J20 J25 J30

9 5.622 7.157 8.275 9.193

10 5.613 7.155 8.266 9.177

12 5.586 7.124 8.251 9.145

13 5.587 7.141 8.263 9.164

14 5.595 7.163 8.290 9.182

15 5.601 7.138 8.288 9.175

16 5.598 7.190 8.251 9.212

18 5.601 7.191 8.247 9.202

20 5.603 7.188 8.249 9.203
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Table 3.6: Results of J15, J20, J25, J30 with different Population Size

Population Size J15 J20 J25 J30

50 5.622 7.155 8.325 9.238

100 5.62 7.164 8.275 9.225

150 5.617 7.160 8.267 9.191

200 5.611 7.155 8.242 9.183

250 5.608 7.142 8.235 9.210

300 5.606 7.126 8.258 9.206

lowest standard deviation. The computational performance of our proposed GA stands between
the other two algorithms. However, when dealing with deterministic construction supply chain
optimization problems, GA has a clear and straight-forward representation of solutions, which
is the sequence of activities. In addition, PSO and ACO are normally used for solving con-
tinuous problems, while in this chapter, the DCSCOP is formulated as a mix-integer problem.
Therefore, even though GA does not outperformed PSO and ACO in terms of computational
performance, it is more convenient to implement GA for solving the DCSCOP in a practical
context.

Table 3.7: Comparison among GA, PSO and ACO Methods

GA PSO ACO

Instance Best Obj (106) Stad.Dev CPU(s) Best Obj (106) Stad.Dev CPU(s) Best Obj (106) Stad.Dev CPU(s)

30 12.92 0.52 19.82 12.83 0.61 22.63 12.93 1.02 12.53

40 27.41 1.69 25.63 27.53 1.55 28.5 27.55 2.25 18.61

50 31.19 2.25 32.45 30.61 1.92 34.53 31.07 3.61 25.37

60 33.51 3.77 42.87 32.35 2.64 45.17 33.42 3.87 33.4

3.6 Conclusion

This chapter interprets the proposed deterministic construction supply chain optimization prob-
lem (DCSCOP) as an extended version of resource constrained project scheduling problem (R-
CPSP), which aims to minimize the supply chain cost of a construction project with restrictions
of activity precedence relation and available workforce. A mathematical model with a binary
variable for DCSCOP is formulated and a genetic algorithm (GA) is developed for resolving this
problem. In our GA, the solution is encoded as a priority list and a schedule generation scheme
(SGS) is introduced for generating feasible individuals. A case study based on a scaffolding
construction project is conducted for verifying the feasibility of the proposed mathematical
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model and genetic algorithm. The impact of different values of both problem parameters and
algorithm parameters on the performance of GA is identified. Through analyzing the results of
a comparison of four experimental instances, it can be demonstrated that the best configuration
of maximum number of workforce, which is represented by the budget of labour cost in reality,
could assist the project managers or planners to obtain a better project schedule. In addition, the
performance of our proposed GA is compared with ACO and PSO. By running four groups of
instances, the results indicate that GA shows a moderate performance while ACO performance
better in terms of computational time and PSO has a lower standard deviation. Nevertheless,
the implementation of GA is much easier to be achieved.
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CHAPTER 4

BUDGET CONSTRAINED STOCHASTIC
CONSTRUCTION SUPPLY CHAIN
OPTIMIZATION WITH RENTAL

RESOURCE SELECTION

4.1 Introduction

In Chapter 1, the construction supply chain optimization problem (CSCOP) focuses on the con-
struction projects with fixed activity tasks and durations. However, in reality, the activity tasks
involved in a project and their corresponding durations would actually change due to various
factors. On one hand, in a real project, especially a complex construction project, there are al-
ways several potential solutions to choose from for accomplishing a particular task. As I know,
for applying different methods or solutions, the activities involved might be different, which
would eventually lead to different activity durations and resource requirements for completing
the same task. At most of the time, these solutions are related to the adoption of different e-
quipment or resources. In addition, most equipment utilized in a construction project, including
temporary materials such as scaffolding and fences, are rented instead of purchased or owned.
Therefore, the adoption of different equipment would result in a variation on the resource leas-
ing cost. Furthermore, due to the high amount of equipment rented in a complex construction
site, such as cranes and trucks, the decisions on equipment selection could consequently have
an crucial impact on the total project cost. In this case, the proper selection of rental resources
including equipment and temporary materials could not only produce a better project schedule
but also reduce the total project cost. Moreover, it is worth mentioning that the budget for a
construction project is normally estimated before the commencement of operations and plays a
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vital role in controlling the expenditure on equipment rental and other resources such as work-
force. The project contractors strive to accomplish the tasks on time without overrunning the
budget in order to impress the project owners or developers and make more profit out of the
project. Hence, in real life project management, complying with the estimated budget is one of
the main criteria for making decisions on the aforementioned equipment and resources selec-
tion. On the other hand, construction projects are less predictable compared to other industries
in terms of project makespans due to their complexity and highly heterogenous activities [117].
Each project is unique in nature and its performance is affected by many factors, such as human
behaviors and weather conditions. Therefore, the duration of a activity should not be deemed
as fixed, conversely, it is a uncertain parameter. This uncertainty may caused by unexpect-
ed severe weather, inappropriate human behaviors or delays of material transport [118]. Hence,
taking uncertain activity durations into consideration would make the CSCOP more reliable and
realistic. However, to our knowledge, even though few studies have been conducted for solving
the resource renting problem in project scheduling which could provide us some relevant and
useful references which are introduced in Section 2, none of the studies in regard to the inte-
grated problem of stochastic project scheduling and rental resources selection can be found. In
order to close this gap, in this chapter, an extended problem of CSCOP considering the alterna-
tive operating methods which are caused by selecting different rental resources, project budget
limitation and stochastic activity durations is proposed and studied. This extended problem is
named as budget constrained Stochastic Construction Supply Chain Optimization with Rental
Resource Selection Problem and abbreviated as SCSCO problem.

In our proposed mathematical model for SCSCO, the objective aims to minimize the project
makespan with fulfilling the budget constraint. The total cost of a construction project in this
chapter is assumed to consist of resource renting cost and labor cost, which should not exceed
the total budget. Activities involved in a project are divided into necessary activities and op-
tional activities, where necessary activities are those mandatory activities that would not be
influenced by the decisions on resource selection and optional activities are those triggered and
required by different rental resources. Precedence relations between all activities are required
to be met and the parameter of activity duration is defined as a stochastic variable with ran-
domly generated distribution. Encompassing all these considerations, the SCSCO has become
a NP-hard problem as a extension of RCPSP [119]. Therefore, an hybrid metaheuristic algo-
rithm based on sample average approximation (SAA) and particle swarm optimization (PSO)
is developed to cope with this problem. The main contributions of this chapter would be that I
extend the RCPSP by presenting a novel mathematical model that integrates stochastic schedul-
ing problem with resource selection problem. This novel model and the proposed algorithm
could provide a more reliable and practical approach of project scheduling problem to project
managers.

The rest of this chapter is organized as follows. In Section 4.2, relevant researches on
project scheduling with uncertain activities, equipment selection and applications of SAA and
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PSO are reviewed. Section 4.3 describes the SCSCO problem in detail and proposes the formu-
lated mathematical model. The hybrid algorithm that integrates SAA and PSO is introduced,
proposed and applied for coping with the SPSRS in Section 4.4. In Section 4.5, a case study
is conducted for validating the proposed model and algorithm. Finally, the conclusion of this
chapter is presented in Section 4.6.

4.2 Literature Review

For a construction project, the demand of nonrenewable materials such as concrete and pipes
is generally determined in design phase, hereby, the cost on these materials would not change
significantly. On the contrary, the expenses spent on construction equipment and other renew-
able resources, such as scaffolding materials and mobile work platforms, would contribute to a
higher project cost if the duration of operations is greatly extended. This is because that most of
these rental resources, especially heavy equipment and large trucks, are normally rented instead
of purchased and owned. In this case, the longer duration the project lasts, the higher rental
cost is expected to spend. Similarly, the labor cost would also vary with the extension of project
makespan. In this chapter, our target is to minimize the total project makespan with the con-
straint that the operation cost including resource rental cost and labor cost does not excess the
budget. As indicated in many papers, rental resource including equipment and manpower is de-
noted by renewable resource which is associated with time dependent costs such as leasing cost
and labour cost. Therefore, resource renting problem is tightly bound with project scheduling
which has drawn attentions from both industrial professionals and academics. Yamashita et al.
(2006) studied a project scheduling problem with the objective of minimizing the total resource
renting cost which considered the deadline of project and precedence relations simultaneous-
ly [120]. Ranjbar et al. (2008) solved an extended problem on the basis of Yamashita’s work,
however, in their models, fixed demand of resources and zero time lag among activities were as-
sumed [121]. Ballestin (2008) modified the traditional resource renting problem by defining the
maximum and minimum time lags between two activities [122]. The objective of his model was
to generate an optimal renting policy for minimizing the total renting cost and this renting policy
is determined by the schedule of activities [122]. Apart from defining the minimization of direct
resource cost as the goal of problem, optimizing the net present value (NPV) of discounted cash
flow is commonly taken into consideration. Najafi and Niaki (2006) constructed a resource in-
vestment problem which set the decision variable as the availability level of renewable resource
and the objective as maximizing the NPV of project cash flow [123] [124]. With more works
regarding to resource renting problem have been conducted, researchers have been endeavoring
to improve the mathematical model of the problem by considering more realistic and practical
scenarios. Inflation as a unavoidable factor that could have a non-negligible impact on project
scheduling is contained in the study of Shahsavar et al. (2010) as well as the bonus-penalty
policy that stimulates the project to be completed before due date [125]. Multi-mode which in-
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dicates that each activity can be conducted in various modes is another popular scenario studied
throughout last decade, and it is similar with the our proposed scenario that each rental resource
would trigger a series of activities. Afshar-Nadjafi (2014) [126] and Qi et al. (2014) [127]
solved the multi-mode resource renting problem with the objective of minimizing the resource
availability cost of a project with a given due date. Most recently, Afshar-Nadjafi et al. (2017)
presented a novel model for resource renting in project scheduling problem which encompasses
the considerations of the availability cost of rental resource and the tardiness penalty of project
[96]. In contrast to the fixed rental cost, the authors assumed that the renting cost is associated
with the availability length of the resource.

Unfortunately, all these studies deemed the duration of an activity as a deterministic pa-
rameter. In contrast to fixed duration, in reality, the durations of activities can not be precisely
estimated beforehand due to the complexity and uncertainty of projects. One of the most ac-
cepted approaches for dealing with uncertain activity duration is assuming that the parameter
of activity duration is a stochastic variable with a predefined probability distribution [128]. Ke
and Liu (2005) discussed a stochastic project scheduling problem (SPSP) with the objective of
minimizing the total cost of project with taking interest rate and limited completion time into
consideration [129]. They presented three most frequently adopted models for SPSP: expect-
ed cost model (ECM) for minimizing the expected cost of project [130], chance constrained
model (CCM) with a predetermined confidence level for constrains [131] and probability max-
imization model (PMM) for maximizing the probability that the total cost would not exceed
the budget [129]. In this chapter, the a chance constrained model for SCSCO problem is con-
structed. Another challenge for coping with stochastic durations is seeking for appropriate
methods. Sample average approximation (SAA) method is an approach for solving large s-
cale stochastic optimization problem based on Monte Carlo simulation, it approximates the
expected value of objective function by a sample average generated from a group of random
samples [132]. SAA has been widely used for various stochastic problems, such as resource
constrained project scheduling problem [128], stochastic routing problem [132], and supply
chain design [133]. Other than SAA, estimation of distribution algorithm (EDA) which predicts
the promising search area based on statistical information is also used for solving stochastic
optimization problem, for example, EDA is applied for stochastic resource constrained project
scheduling problem [134] [135]. As alternatives for these sampling methods, meta-heuristic
algorithms such as tabu search (TS) [136] [137], genetic algorithm (GA) [138] and particle
swarm optimization (PSO) [139] have also been implemented for solving uncertainty problem-
s. Considering the complexity of our SCSCO problem, a hybrid method that integrates SAA
and PSO algorithm is adopted. The exterior SAA method transfers the stochastic problem into
its corresponding sample average optimization problem, and this sample average optimization
problem will be resolved by the interior PSO algorithm.
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4.3 Problem Statement and Mathematical Modeling

This chapter aims to deal with the integrated problem of stochastic project scheduling and rental
resource selection under the restriction of estimated project budget. In our proposed scenario,
resource selection should subject to the budget constraint and consequently triggers a series
optional activities that need to be conducted. These optional activities along with the necessary
activities of the project will then be planned and scheduled according to their precedence re-
lations. By knowing these interaction and interior relations among these three considerations,
which in this case are project schedule, resource selection and project budget, I are able to solve
these two problems as a whole. In this section, the scenario of SCSCO problem is described
and the corresponding mathematical model is proposed.

4.3.1 Problem Statement

In this chapter, a complex construction project that consists of various activities and tasks is con-
sidered. For some particular tasks, they can be completed by various methods through adopting
different rental resources. As a consequence, each alternative method would lead to a series of
new activities which may vary with the selection of different rental resources. Therefore, there
will be two sets of activities involved in the construction project, namely, necessary activities
and optional activities. Here, necessary activities refer to those not influenced by the decisions
on the resource selection for different tasks, while the optional activities are those triggered
by alternative rental resources. Once the decision on resource selection is made, the involved
optional activities would need to be scheduled along with necessary activities and only one al-
ternative resource can be selected for each task. During the process of activity scheduling, the
precedence relations among both necessary activities and optional activities should be satisfied.
In order to better explain this scenario, an example of pipe valve replacement is illustrated. In
a liquefied natural gas (LNG) plant, pipe valve replacement is one of the most regular tasks
for facility maintenance. However, as most of the pipes in a gas plant are suspended in the air,
hereby, workers have to be lifted to a height where they can access to the valves. In reality,
several methods for height access can be adopted. For example, scaffolding structure can be
built to provide a working platform, alternatively, mobile elevator can be used for lifting up
the operators. Apparently, in order to apply either of these two methods, scaffold components
and mobile elevators should be rented and the different optional activities for utilizing these
two resources are triggered consequently. The optional activities for implementing scaffolding
and mobile elevator are shown in Table 4.1, and Figure 4.1 presents a real life example of scaf-
folding construction for LNG facility maintenance. The photo was taken inside a LNG plant
in Karratha, Australia. As I can see that, 6 optional activities are triggered if scaffold is ap-
plied while only 4 optional activities are required for using a mobile elevator. Apart from these
alternative activities, some activities involved in valve replacement are mandatory for either
option. For example, inspecting the working condition before and after the valve replacement
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are necessary for ensuring the quality of work. As each activity may possess different duration
and workforce requirement, and the leasing cost of these two resources are different, hence,
the selection of resources will have a substantial impact on the total cost and duration of the
task. In addition, the precedence relations among these activities should be considered as well.
For instance, scaffolding platform has to be built from bottom to top, hereby, activity 1 should
definitely be executed before activity 5. Therefore, two considerations should be taken into con-
siderations for scheduling the work of value replacement, and they are resource selection and
activity ordering. Figure 4.2 shows the activity network for this example, and the activities are
represented by the numbers in the circles. The yellow circles represents the optional activities
for scaffolding while the red circles are the activities triggered by using mobile elevator. Nec-
essary activities are shown by blue circles. The priority of activities are indicated by the arrows
and dummy node 15 in the network stands for the finish of the task. From the network, I can
find out that there are two alternative schedules for valve replacement. The determination on
selection of best schedule is based on the performance of objective for these two alternatives,
which in this case is the shortest duration. This example only presents us the scenario of a
single task, while in a complex project, many tasks as such are involved and plenty of decisions
of resource selection need to be made. Hereby, the network for a complex project will be more
sophisticated and the alternative solutions for project scheduling are manifold. Before proceed-
ing to the mathematical modeling of SCSCO, there are several assumptions and premises need
to be clarified:

(a) At each decision making moment, only one type of alternative resources can be selected.

(b) Each decision making moment is independent from others, therefore, the former decision
on resource selection would not interfere the latter ones.

(c) The workforce requirement for adopting each alternative resource for a specific task is
assumed as a known parameter as well as the demand of each resource.

(d) The duration of each activity is assumed as a stochastic parameter with a known distribu-
tion.

4.3.2 The deterministic model

Before considering the uncertainty conditions, I start with the construction of the deterministic
model for SCSCO problem. In our instance of the deterministic SCSCO problem, a construction
project that contains a set of activities is considered. Here, both necessary activities and optional
activities are integrated into a set of activities represented by I = {1, · · · , I}, where i stands for
activity i. Dummy activities 0 and I + 1 which represent the starting and completing of the
project respectively are added in the set of project activities. Therefore, the set of activities is
extended as I = {0,1, · · · , I, I +1}. The precedence relations among different activities are
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Table 4.1: Example of Rental Resource Selection.

Rental Resource Optional Activity

Scaffold

1. Erect the scaffold level (0-1)
2. Set up drop objective protection level (0-1)
3. Erect the scaffold level (1-2)
4. Set up drop objective protection level (1-2)
5. Erect the scaffold level (2-3)
6. Dismantle scaffold platform

Mobile Elevator

7. Set up the base
8. Locate and secure the mobile elevator
9. Lift up the elevator
10. Remove the base and return the elevator

Necessary Activity

Scaffold/Mobile Elevator
11. Clear the working area
12. Inspect the condition of failed valve
13. Replace the valve
14. Testify the condition of new valve

Figure 4.1: Scaffolding Construction for Facility Maintenance
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Figure 4.2: Activity Network for Example

shown by an Activity on Node graph G = (I ,V ), where each activity is represented by a node
i ∈ I correspondingly. As I can find in the Figure 4.2, point A represents the task or the
moment that the decision on resource selection needs to be made. In our model, these decision
making moments are defined as decision points m ∈ M . The set of options of alternative rental
resources at decision point m is described as Om⊂N , where N = {1, · · · ,N} represents the set
of all types of potential rental resources. As I explain above, by adopting each rental resource,
a set of optional activities would be required to operate. Hence, I assume that Hn ⊂I stands
for the set of optional activities when resource n is selected. Workforce is the most important
resource that need to be considered throughout the project scheduling process, and the number
of workers available for a specific job is always limited due to the restricted working space and
budget allocation. In our model, the workforce is restricted by the project budget L. The other
notations including sets and indices, parameters and variables used in the deterministic model
are listed as Table 4.2 below.

Time and cost are always the most straightforward criteria for evaluating the performance
of a project. In our model, the aim is to minimize the total makespan of a project with the
total operation cost which consists of resources renting cost and labour cost controlled under
the budget. Rather than these two costs, in reality, the sources that contribute to the total cost
of a project are many. However, in our scenario, the resource leasing cost and labour cost
are the main compositions that would vary with the changes of resource selection and project
schedule in a wide range. Therefore, I set our decision variables as Si, xi and yn, which represent
the starting time of activity, the selection of activities and the selection of rental resources
respectively. In this case, the objective function and constraints can be expressed as:

min f = SI+1 (4.1)

Subject to

CTotal =Clease +Clabour ≤ L (4.2)
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Table 4.2: Notations for Mathematical Model
Sets and indices:

I = {1, · · · , I} set of all possible project activities indexed by i, j.

V ⊆I 2
Immediate precedence relations among project activities,

where (i, j) ∈ V indicates activity j must start after activity i’s completion.

M = {1, · · · ,M} set of decision point indexed by m.

N = {1, · · · ,N} set of all candidate alternative resources indexed by n.

T = {1, · · · ,T} set of time slots indexed by t which represents time interval [t−1, t).

Parameters:

Om ⊂N The set of candidate alternative resources at decision point m.

Ei ∈ {0,N } The rental resources that activity i belongs to. If activity i is necessary, Ei = 0; otherwise, Ei ∈N .

Hn ⊂I The optional activities when resource n is selected.

dm
n demand of resource n if n is chosen at decision point m.

εi duration of activity i.

ui workforce required for activity i.

ln leasing cost per unit time per unit of resource n.

γ labour cost per unit time per person.

L Operation budget.

Variables:

Si start time of activity i.

fi completion time of activity i.

Pt Set of activities that are underway at time t.

xi ∈ {0,1} xi = 1, if activity i is selected; otherwise, xi = 0.

yn ∈ {0,1} yn = 1, if the alternative resource n is selected; otherwise, yn = 0.
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Clease =
M

∑
m=1

∑
n∈Om

∑
i∈{Hn}

dm
n ∗ εi ∗ yn ∗ ln (4.3)

Clabour =
M

∑
m=1

∑
n∈Om

∑
i∈{Hn}

un
i ∗ εi ∗ γ (4.4)

(Si + εi)∗ xi ∗ x j ≤ S j,∀(i, j) ∈ V (4.5)

∑
n∈Om

yn = 1, i ∈I ,m ∈M ,n ∈N (4.6)

xi = yEi,∀Ei 6= 0, i ∈I (4.7)

Si ≥ 0, i ∈I (4.8)

xi ∈ {0,1} ,∀i ∈I ,m ∈M (4.9)

yn ∈ {0,1} ,∀n ∈N (4.10)

In the objective function 4.1, the aim of minimizing the total makespan is expected to be
achieved with the premise that the total operation cost should not exceed the budget. Hence,
constraint 4.2 should be satisfied, where the leasing cost and labour cost are presented in con-
straint 4.3 and 4.4. Constraint 4.5 shows that activity j can only start when activity i is com-
pleted if activity i and j are all selected, this constraint makes sure that the precedence relations
among all possible activities are satisfied. Constraint 4.6 means that only one rental resource
can be selected at each decision point. When a resource is selected, the optional activities trig-
gered by this resource should also be selected. Hence, the selection of activities and selection
of resources should be kept consistent, which is represented by constraint 4.7. The definitions
of decision variables are identified in constraint 4.8, 4.9, 4.10.

4.3.3 The chance-constrained model

The chance constrained programming (CCP) was initially proposed by Charnes and Cooper in
1959 for dealing with optimization problems with uncertainty [140]. Over the past few decades,
CCP has been constantly applied for coping with stochastic project scheduling problems. For
example, Bruni et al. (2011) [45] and Ma et al. (2016) [141] proposed the chance-constrained
models for resource constrained project scheduling problems with stochastic activity durations.
The main feature of CCP method is that the constraints with uncertainty will hold with a confi-
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dence level, which is denoted as 1−α [128]. The constraints 4.2 and 4.5 can then be replaced
by following constraints:

Pr{Clease +Clabour ≤ L}> 1−α,∀i ∈I ,∀n ∈N ,∀m ∈M (4.11)

Pr
{

xi · x j · (Si + εi)6 S j
}
> 1−α,∀i ∈I ,(i, j) ∈ V (4.12)

Constraints 4.11 and 4.12 states that the probability of the satisfaction of either budget con-
straint or precedence constraint should be greater or equal to confidence level 1−α respective-
ly. εi stands for the duration of activity i, which is a stochastic parameter with a randomized
probability distribution. By altering the constraints, the chance-constrained model for SCSCO
problem is presented as: minimize 4.1 subject to 4.3, 4.4, 4.6 - 4.10, 4.11 and 4.12.

4.4 Proposed Hybrid Algorithm

In this section, a hybrid algorithm that incorporates sample average approximation (SAA)
method and particle swarm optimization (PSO) algorithm is proposed and described in de-
tail. Firstly, the brief introduction on general procedures of SAA method and PSO algorithm
are illustrated in subsection 4.1 and 4.2. Then, the detailed description of our proposed hy-
brid algorithm is stated in subsection 4.3 which includes the solution encoding and decoding,
algorithm initialization, PSO implementation, objective value estimation and optimal solution
selection.

4.4.1 General SAA Algorithm

The Sample Average Approximation (SAA) Method is commonly used for solving large s-
cale stochastic optimization problems by converging the objective values and optimal solutions
of problems with probabilistic conditions from a set of scenarios [139][142] . In traditional
SAA method, M independent and random samples are generated and each sample consists of
N scenarios with independent and identically distribution. In the first stage, the optimization
problems from these samples will be solved and the optimal solutions will be recorded. In the
second stage, the recorded optimal solutions will be brought into a sufficiently larger set of
samples for further testing. In this case, the better performing solutions obtained in the second
stage will be selected as the final optimal solutions. In this section, the conventional procedure
of SAA is introduced.

The general stochastic optimization problem with probabilistic constraints is present by the
form of equation 4.13 as follow, where W is a random vector with a predefined probabili-
ty distribution P. H(x,W ) is the objective function with variables of x and w. Assuming that
W1,W2, ...WN be a random sample from M with N scenarios, the stochastic optimization problem
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can be transferred into a sample average approximation (SAA) problem as shown in equation
4.14. In the equation, I define that v∗ = min f (x) denotes the optimal value of objective func-
tion of problem (12) and v̂N = min f̂N(x) represents the optimal value of objective function for
problem 4.14. After solving the SAA problem in 4.14 for each sample m = 1,2, ...M, I can have
the objective value v̂m

N and optimal solution x̂m
N . The average of all sample objective function

values v̄M is then calculated, and according to Kleywegt et al.[142], the average objective values
of SAA problem could provide a statistical lower bound of v∗. The optimal solutions obtained
earlier will then be applied into a sample with a much larger size, N′. In order to testify the
quality of the obtained results, the optimality gap need to be estimated as well as the variance
value. When the stop criteria is reached, which in this case is that the optimality gap is small
enough, the optimal solution x∗ can be selected from all potential solutions x̂m

N . The procedure
of general SAA is shown in Algorithm 3.

min f (x) = H(x,W ) (4.13)

min f̂N(x) = 1
N

N
∑
j=1

H(x,Wj) (4.14)

Algorithm 3 Procedure of SAA
1: Generate M independent random samples m = 1,2, ...M with sample size of N
2: Select a reference sample with a large sample size N′ where N′� N
3: Stage 1
4: For m = 1,2, ...M, solve the SAA problem min f̂N(x) and record the optimal objective value

v̂m
N and the optimal solution x̂m

N
5: Compute the average of all obtained sample optimal objective values, v̄M

6: v̄M = 1
M

M
∑

m=1
v̂m

N :

7: Stage 2
8: Estimate the objective value of the SAA problem in a large sample N′ by applying feasible

solutions x̃ selected from x̂m
N :

9: ṽN′ = min f̃N′(x̃) = 1
N′

N′

∑
j=1

H(x̃,Wj)

10: Stage 3
11: Compute the optimality gap as ṽN′− v̄M

12: If the gap is small enough, then stop; Otherwise, increase the sample size N and repeat
Stage 1 and Stage 2

13: Choose the best solution x∗ from the solutions with the best objective value ṽN′ generated
in Stage 3

14: End
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4.4.2 General PSO Algorithm

In the Stage 2 of SAA method described above, an stochastic optimization problem min f (x) =

H(x,W ) is expected to be solved. In the context of the SCSCO problem discussed in Section
4.3, the problem encompasses the considerations of precedence relations, budget constraints and
stochastic durations that makes it a rather complex NP-Hard problem. Therefore, an intelligent
algorithm should be fitted in the Stage 2 and Stage 3 of SAA method in order to resolve the
SCSCO problem. In this section, particle swarm optimization (PSO) algorithm is introduced
and integrated with SAA method.

PSO is an evolutionary computation technique initially developed in 1995 by Eberhart and
Kennedy [143], the concept of which was inspired by social behaviors such as bird flocking.
Similar to other evolutionary algorithm, GA for instance, PSO initializes with a population of
solutions which is called as swarm and each solution is called as individuals or particles. How-
ever, the method of searching for optimal solutions for PSO is different from the cross-over and
mutation operations of GA. In PSO, each particle possesses two main characteristics, which are
position and velocity. During the process of searching for optima, particles will move towards
best known positions which are attained by any other particle of the swarm [144]. Therefore, P-
SO has the advantage to explore the global optimal solutions because of the information sharing
among particles from the swarm and the experience inherited from previous generations [145].

Assuming that the size of swarm is M, hence, there are M particles and each particle i

can be represented as a point in a N-dimensional space with two main characteristics, namely
position Xi and velocity Vi. For each iteration, the position and velocity of each particle will
be updated based on its previous velocity, the best position it has ever obtained (local best) and
the best global position from its group (global best). The mechanism of updating the particles’
velocities and positions is presented as the equations below respectively [144]:

V t
i = wtV t

i (t−1)+ c1r1(pt
best i−X t

i )+ c2r2(gt
best−X t

i ) (4.15)

X t
i =V t

i +X t−1
i (4.16)

where X t
i = {xt

i1,x
t
i2, ...,x

t
iN} and V t

i = {vt
i1,v

t
i2, ...,v

t
iN} represent the N-dimensional position

and velocity for ith particle at tth generation. pt
best i, called as local best position, is the best

position of ith particle for all previous t generations, while the global best position, gt
best , is the

best position of the whole swarm for all previous t generations. wt stands for inertia weight that
controls the effect of previous velocities on the current ones and balance between the abilities
of exploring the global optima and local optima. Positive constants c1 and c2 are cognitive
parameter and social parameter, while r1 and r2 are random numbers in the range of [0,1].
According to above description, the procedure of PSO algorithm can be illustrated as shown in
Algorithm 4:
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Algorithm 4 Procedure of PSO
1: Step 1: Initialization
2: Generate a population of particles with size of M, confirm their initial positions and veloc-

ities in the feasible region.
3: Evaluate the fitness of each particle through objective function f (X), record the local best

p0
best i and global best g0

best .
4: Step 2: Position and Velocity Updating
5: For iteration t ≥ 2, update the velocities and positions of each particle through formula 4.15

and 4.16.
6: If the updated position of the particle violates the limits of position range, then the position

of this particle is fixed to its maximum or minimum bound.
7: Update particle best local position pt

best i and global local position gt
best by evaluating the

fitness of each particle.
8: Step 3: Termination Criteria
9: The algorithm stops if a maximum number of iterations or a sufficiently good fitness is

reached, otherwise, repeat Step 2.

4.4.3 Hybrid SAA-PSO Algorithm for BCSPSRS Problem

The proposed hybrid SAA-PSO algorithm that applies PSO as the inner layer algorithm for
obtaining the candidate optimal solution for SAA method is developed in this chapter to deal
with SCSCO problem. In reality, the distribution of uncertain activity durations is deduced
from historical data on most occasions. Hence, in our SAA method, I represent the original
distribution of the activity durations by an empirical distribution concluded from a random
sample based on the method presented by Luedtke and Ahmed [128] [146] [147]. A set of
scenarios K = {1,2, ...,K} and the vector εk = {εk

1 ,ε
k
2 , ...,ε

k
I } are generated by Monte Carlo

simulation method. εk
i represents the duration of activity i in scenario k where i ∈ I . For

each activity duration εi, there is a predefined range [εmin
i ,εmax

i ] that limits the variation of the
parameter. For each scenario, εk

i is generated as a integer varied between the range with a
randomized possibility and the equation ∑

K
k=1 p(εk

i ) = 1 holds for each activity. For example,
the duration of activity 1 varies between the range of [3,6] and the possible activity durations
can be {3,4,5,6} with the possibilities of {0.2,0.5,0.1,0.2}. Therefore, the chance constraint
4.11 and 4.12 can be transferred into 4.17 and 4.18 respectively:

(1−δk)(
M

∑
m=1

∑
n∈Om

∑
i∈{Hn}

dm
n ∗ ε

k
i ∗ yn ∗ ln +

M

∑
m=1

∑
n∈Om

∑
i∈{Hn}

un
i ∗ ε

k
i ∗ γ)6 L,

∀i ∈I ,∀n ∈N ,∀m ∈M ,∀k ∈K

(4.17)

(1−βk) · xi · x j ·
(

si + ε
k
i

)
6 s j,∀i ∈I ,(i, j) ∈ V ,∀k ∈K (4.18)

where βk and δk are two binary variables which represent the feasibility of precedence con-
straint and budget constraint. When βk = 1 and δk = 1, the precedence relations and budget
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constraint are not fulfilled in scenario k, otherwise, these two variables should equal to 0. Mean-
while, the chance constraints 4.11 and 4.12 are constructed with the confidence level of 1−α ,
hence, the infeasibility (number of infeasible scenarios) for both precedence constraint and bud-
get limitation should be lower than K ·α:

∑
k

βk 6 K ·α,∀k ∈K (4.19)

∑
k

δk 6 K ·α,∀k ∈K (4.20)

βk,δk ∈ {0,1},∀k ∈K (4.21)

In this case, the chance constrained model is transferred into a SAA problem: minimize
(4.1) subject to (4.3) - (4.4), (4.6) - (4.10), (4.17) - (4.21).

Solution Encoding and Decoding

Based on the transformation scheme proposed by Zhang et al. [144], the solutions of SCSCO
problem discussed in this chapter should be presented with two characteristics that could be
transformed into feasible schedules, namely, the selection of potential activities and the start-
ing time of each activity. According to the description of SCSCO problem in section 4.3, the
activity-on-node (AON) network is known before scheduling, and one of the alternative meth-
ods should be selected at each decision making point. Therefore, the schedule of project can be
generated directly from the selection of activities. In this section, a priority value qi would be
assigned to each activity i based on the precedence constraints and the higher value of qi stands
for a higher priority level. The vector of priority value at tth iteration in sample h can be indicat-
ed as Qt

h = {q1ht ,q2ht , ...,qIht}. On the other hand, the selection of activities is interpreted as a
vector Θ = {θ1,θ2, ...,θI}, where θi = 1 means that activity i is selected, otherwise, θi = 0. For
necessary activities, they should always be selected and therefore, their corresponding value of
θi should equal to 1 at any time. Besides, it is worth mentioning that some optional activities
are mutually exclusive to others according to the premise (a) of SCSCO problem which states
that only one method or rental resource can be selected at any decision point. At decision point
m, there are |Om| alternative equipment or rental resources available for selection. For a rental
resource n ∈ Om, the optional activities belonging to n, Hn is mutually exclusive to activities
triggered by other resources. Therefore, Hn∩Hn=Om\{n} = /0, hence, I define these activity sets
as homogeneous groups which work for same tasks but are also mutually exclusive. There is
another special occasion that should be taken into consideration. Sometimes, different activi-
ties/methods may be triggered by choosing the same resource. For example, resource n would
trigger two sets of optional activities for operating a same task. In this case, I assume that these
two sets of activities are caused by two different resource or equipment with same characteris-
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tics in terms of unit cost, notated as n1 and n2. These two sets of optional activities would be
represented by Hn1 and Hn2 which are mutually exclusive. With all aforementioned premises
and definitions, a schedule generation scheme (SGS) is developed as follow:

1. Step 1: Generate a activity set I = H0∩Hn where H0 represents the necessary activity
set and Hn indicates the optional activity sets for different rental resource. Identify the
set of homogenous groups for decision point m as Hn=Om .

2. Step 2: Generate a priority value vector Qt
h = {q1ht ,q2ht , ...,qIht} based on the predefined

precedence relations and a activity selection vector Θ = {θ1,θ2, ...,θI} with all elements
equal to 0 at the beginning. The duration of activity i is assumed as ϕi.

3. Step 3: Search from the activities with higher priority value, if activity i is mandatory,
then assign θi with 1; For optional activity i, check the selection status of its immediate
predecessor bi. If none of its immediate predecessors is selected, then repeat Step 3;
Otherwise, go to Step 4.

4. Step 4: Check the selection status of the activities from homogenous group Hn=Om\{Ei}, if
any activities with a higher priority value are selected, assign θi with 0; Otherwise, θi = 1;
Record the starting time of i, Si = Sbi +ϕbi and the rest of budget L−Clease−Clabour,
update the selected activity set P. Here, Clease and Clabour represent the leasing cost and
labour cost that have been spent for selected activities till time ∑i∈P ϕi.

5. Step 5: Repeat Step 4 until all decision points m are scanned and make sure the budget
constraint is satisfied.

As PSO algorithm is selected as the inner algorithm for computing the SAA problem s-
tated above, the project schedule in SCSCO problem should be able to be translated from the
particle represented solutions. In our algorithm, the particle position is presented as a vec-
tor with 2I elements. The particle position for hth particle at tth generation is set as X t

h =

{xt
h1,x

t
h2, ...,x

t
hI, ...,x

t
h2I}, where the first I elements stand for the priority values for activities

and the last I elements present the selection status for activities. Here, xt
hi indicates the decision

on the selection of activity i at t generation in sample h. As the updating of velocities and posi-
tions of particles is based on the calculation of equation 4.15 and 4.16, the results of calculation
are not necessarily binary integers. Hence, I assume that the value of xt

hi would vary between
[-1, 1]. By doing this, the decoding process that translates the particle representation into a
selection list of activity is fairly easy and straightforward. For the first I elements, the higher
value the element is, the higher priority the corresponding activity has. However, the activity
selection status should be represented as binary numbers in Θ, hence, for the last I elements in
the particle position, I define that when xt

hi ∈ (0,1], θi = 1, on the contrary, θi = 0 if xt
hi ∈ [−1,0].

The example of solution encoding and decoding is shown in Figure 4.3. As I can find out, two
adjustments are conducted for an initial representation of a particle position. In the first stage,
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the particle position values for the last 5 elements are adjusted to 0 and 1 based on the rule
described above. In stage 2, the values of first I elements are adjusted to integers based on their
priority ranking in a descending order. In the example, activity 1 has the highest priority values
which is ranked as the fifth position in a descending order, therefore, the particle position value
for activity 1 is assigned as 5. In addition, the activity selection interpreted from the original
particle position may not be feasible. Therefore, the selection status is amended in the example
and a feasible solution can be generated.

Figure 4.3: Example of Particle-represented Solution

Initialization

In the first phase of hybrid SAA-PSO algorithm, H independent random samples with sample
size of K are generated, where these K scenarios are independently and identically distributed
(i.i.d.). A reference sample with a larger size K′ is selected for evaluating the best solutions
obtained, where K′� K. In this phase, the parameters for PSO algorithm should also be ini-
tialized. These parameters may include the maximum number of iterations, values for cognitive
parameter c1 and social parameter c2, inertia weight wt , values for random numbers r1 and r2,
and confidence level 1−α .

Candidate Optimal Solutions obtained by PSO

PSO algorithm is adopted to obtain the candidate optimal solutions for the SAA problem for
every sample h with K scenarios. For each scenario k, the duration of activity i, εi, is randomly
generated within the range [εmin

i ,εmax
i ]. The vector ε̂ = (ε1,ε2 · · · εK) is independently and

identically distributed (i.d.d). Considering there are H independent samples with the sample
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size of K, the computation will be extremely complex and tedious if PSO algorithm is applied
for each scenario. In order to reduce the complexity of calculation, in this part, I define that
the discrete duration of activity i, denoted as ϕi , equals to the maximum value of the potential
duration from a randomly selected scenario set in sample h [147]. The selected scenario set in
sample h is denoted as ˆKh, and the cardinality of scenario set should comply the confidence
level as shown in constraint 4.23. Under such circumstance, for sample h, PSO algorithm
would be applied for solving the following deterministic problem: minimize (4.1) subject to
(4.6) - (4.10), (4.22) - (4.25).

ϕi = max{εk
i },∀i ∈I ,∀k ∈ ˆKh (4.22)

| ˆKh|> K · (1−α) (4.23)

M

∑
m=1

∑
n∈Om

∑
i∈{Hn}

dm
n ∗ϕi ∗ yn ∗ ln +

M

∑
m=1

∑
n∈Om

∑
i∈{Hn}

un
i ∗ϕi ∗ γ 6 L,∀i ∈I ,∀n ∈N ,∀m ∈M

(4.24)

xi · x j · (si +ϕi)6 s j,∀i ∈I ,(i, j) ∈ V (4.25)

Based on the particle representation described in Section 4.3.1, all elements of particle
position should be limited to [−1,1]. During the process of particle movement, the particles
with their positions fall out of the limitation should be adjusted as follow [144]: if xt

hi > 1, then
I assume xt

hi = 1; if xt
hi < −1, then xt

hi = −1. Similarly, the particle velocity should also be
limited in order to prevent the particles move beyond the feasible region. In this section, the
maximum velocity Vmax 6 Xmax, hence, the particle velocity is controlled with in the range of
[−1,1]. The procedure of implementing PSO algorithm for each sample consists of 5 steps,
which is similar to the general PSO discussed in section 4.2. However, as the updated particles
may not necessarily be feasible, a checking and adjusting process should be conducted when a
new particle is generated to ensure the accuracy of our solutions, and the procedure of particle
checking and adjusting is shown in Algorithm 5. The details of PSO algorithm in SAA method
is shown as below:

1. Step 1:Initialization: Generate a selected scenario set ˆKh randomly and identify the
discrete duration of activities ϕi. Generate M particles with feasible initial positions and
velocities limited to [−1,1] based on the SGS presented in Section 4.3.1. Evaluate the
fitness value for each particle according to the objective function (4.1) and record the
local best p0

best i and global best g0
best .

2. Step 2:Position and Velocity Updating: For iteration t ≥ 2, update the velocities and
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positions of each particle through formula 4.15 and 4.16. Go to Step 3.

3. Step 3:Checking and Adjusting: For each new particle generated in Step 2, decode the
particle solutions based on the process described in Section 4.3.1 and assess the feasibility
of each particle. Three criteria are applied in this step: 1) The range of velocity and
position should be limited to [-1, 1]; 2) Precedence constraints including the mutually
exclusive conditions for homogenous groups should be satisfied; 3) The operational cost
should be controlled under budget. The detailed checking and adjusting procedure is
presented in Algorithm 5.

4. Step 4:Fitness Evaluation: For the adjusted particles, evaluate their fitness values and
update the local best pt

best i and global best gt
best . Then t = t +1, repeat Step 2 to 4.

5. Step 5:Stop Criteria: The algorithm stops when maximum iteration is reached and the
optimal solutions for sample h is obtained.

Algorithm 5 Procedure of Particle Checking and Adjusting
1: Step 1: Limitation Check and Adjust
2: Check every element of the chosen particle position X t

h and velocity V t
h .

3: If any xt
hi > 1, then adjust the value of xt

hi as 1; if xt
hi <−1, then xt

hi =−1.
4: Similarly, for any vt

hi, if vt
hi > 1 or vt

hi <−1, then vt
hi = 1 or vt

hi =−1.
5: If none of these particle exist, go to step 2.
6: Step 2: Precedence Constraint Check and Adjust
7: Rank the last I elements according to their corresponding priority values in a descending

order.
8: Check the selection status for necessary activities and amend xt

h(I+ j) to 1 if j ∈H0.
9: For the first optional activity i in the order, check the selection status of its resource group

Hn where n = Ei.
10: If xt

hi(i ∈HEi) = 1, then amend the values for its homogenous group Hn=Om\{Ei} as 0.
11: Otherwise, check if any of its homogenous group satisfies xt

hi(i ∈Hn=Om\{Ei}) = 1.
12: If none of such group Hn=Om exist for decision point m, calculate the selection rate of each

group:

13: λn=E j =
∑xt

h(I+ j)
|HE j |

14: Chose the group with highest selection rate, and assign 1 to its corresponding elements. For
its homogenous groups, amend their selection status as 0.

15: Step 3: Cost Budget Check
16: Calculate the CTotal and compare it with budget L
17: If CTotal > L, for each m, replace the selected group with its homogenous groups and recal-

culate the CTotal .
18: Repeat Step 1 to 3 until a feasible particle is generated
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Objective Value Estimation

In this phase, the optimal solutions x̂h
K and optimal objective values v̂h

K obtained by solving
the discrete SAA problem with PSO algorithm are evaluated in a sufficiently large sample K′.
Before that, the average v̄H of all obtained sample optimal objective values is calculated by
equation 4.26 which provides a lower bound of the final optimal objective value v∗. In the next
step, the objective value of original problem in the sample K′,ṽK′ , is evaluated by applying the
optimal solutions x̂h

K obtained by PSO, as shown in 4.27. The evaluated value ṽK′ provides a
upper bound for optimal objective value.

v̄H =
1
H

H

∑
h=1

v̂h
K (4.26)

ṽK′ = min
1
|K′|

|K′|

∑
k=1

Sk
I+1 (4.27)

Optimal Solution Selection

The optimal solution x∗ is selected from the obtained optimal solutions x̂1
K, x̂

2
K, ..., x̂

H
K for H sam-

ples of SAA problem. In this chapter, I selected the solution x̂h
K that has the smallest objective

value in the large sample K′, which is represented by 4.28. The optimality gap is the differ-
ence between upper and lower bound of objective values, which in this case is the difference
between ṽK′ and v̄H . The SAA-PSO algorithm stops when the optimality gap is small enough or
the maximum number of iterations is reached, otherwise, repeat the algorithm until the stopping
criteria are achieved. The flowchart of SAA-PSO algorithm is presented in Figure 4.4.

x∗ = x̂h
K|h = arg min

h=1,2,...,H
ṽK′ (4.28)

Gap = ṽK′− v̄H (4.29)

4.5 Computational study

In this section, our proposed mathematical model and intelligent algorithm are applied on a
case study which is constructed partially based on a real maintenance project in a LNG plant.
The computational results of the example are discussed and the sensitivity analysis regarding
to the parameters of our proposed algorithm is conducted. The code of SAA-PSO algorithm
is compiled in MATLAB R2015a on a computer under windows 7 with Intel i5 CPU and 4GB

RAM.
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Figure 4.4: Flowchart of SAA-PSO Algorithm
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4.5.1 Case Study Description

As aforementioned in the example of valve replacement in Section 4.3, there are several meth-
ods that can be adopted for accessing to height. For each method, the utilized equipment or
rental resource and the involved activities are varied. As a consequence, by choosing different
methods for the same task, the resulted makespan and total cost would be different. In the case
study, a maintenance project that consists of 25 activities including mandatory and optional ac-
tivities is expected to be planned through choosing the optimal methods of height access for
each task that minimizes the total makespan of this project. Figure 4.5 indicates the network of
the project where the circles represents the activities and the arrows shows their precedence rela-
tions. Optional activities are illustrated by yellow circles while blue circles stand for mandatory
circles. As I can see, there are three decision making point (tasks) indicated by orange paral-
lelograms. In this case study, there are six alternative methods for tasks 1, 2 and 3, namely s-
caffolding structure, podium step, mobile elevated work platform (MEWP), remote operated air
vehicle (ROAV), rope access and magnetic anchoring. Table 4.3 lists the demand of equipment
or rental resources for each method for different tasks, the optional activities for each method
and the corresponding leasing cost for each equipment. As predefined in our assumptions, the
duration of each activity is deemed as stochastic. Hence, in this case study, I present the dura-
tion of each activity as an integer that varies between its range [Min(duration),Max(duration)]

and the probability of each possible integer is generated randomly. The range of each activity
along with the workforce required for each activity are listed in Table 4.4 and the difference
between Min(duration) and Max(duration) is set as the same value 5 for each activity. The
possibility of each potential duration is generated randomly and Table 4.5 gives an example of
the randomly generated possibilities for the durations of first 10 activities. In this project, the
total budget for operational cost which includes resource rental cost and labour cost is limited
to 2000 and the unit labour cost is set as 1.5 per worker per unit time.

4.5.2 Case Study Analysis

The proposed SAA-PSO algorithm is applied to generate an optimal schedule for the problem
described above by selecting the best rental resources or equipment to access to height for
facility maintenance. Before running the algorithm, the values of various parameters need to
be set up. For solving this particular problem, I initialize the number of samples as H = 100
with the sample size of K = 100. As the obtained solutions will be tested in a sufficiently large
sample K′ where |K′| � |K|, therefore, I set N′ = 10000. For the inner PSO algorithm, the
maximum number of iterations is designed as 100 while the inertia weight w = 0.6. The other
parameters such as cognitive parameter and social parameter are presented in Table 4.6.

By implementing the SAA-PSO algorithm on the case study, the optimal solution can be
obtained. The optimal duration of the case study project is S26 = 52 with the activity selection
vector {1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1 }. The Network of
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Figure 4.5: Activity Network of Case Study

Table 4.3: Information of Alternative Methods
Tasks Method/Rental-Equip Optional Activities Demand Unit Cost

Task-1

Podium Step (1) 10, 21 4 2

MEWP (2) 11, 21 3 5

ROAV (3) 12, 21 2 8

Rope Access (4) 13 6 2

Magnetic Anchoring (5) 14 4 3

Task-2

Podium Step (1) 15 3 2

MEWP (2) 16 2 5

ROAV (3) 17 1 8

Task-3

Scaffolding (1) 8, 18, 22, 23 3 3

Scaffolding (2) 8, 19, 22, 23 2 3

ROAV (3) 9, 20, 24 2 8
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Table 4.4: Duration of Activities
Activity Min Duration Max Duration Workforce Activity Min Duration Max Duration Workforce

1 3 8 7 14 9 14 1

2 8 13 2 15 3 8 7

3 3 8 7 16 7 12 3

4 2 7 8 17 6 11 4

5 7 12 3 18 6 11 4

6 5 10 5 19 9 14 1

7 5 10 5 20 3 8 7

8 7 12 3 21 4 9 6

9 8 13 2 22 2 7 8

10 4 9 6 23 10 15 1

11 7 12 3 24 7 12 3

12 5 10 5 25 5 10 5

13 9 14 1

Table 4.5: Possibility of possible durations

Activity P1 P2 P3 P4 P5 P6

1 3(0.1767) 4(0.1505) 5(0.1789) 6(0.1503) 7(0.1993) 8(0.1444)

2 8(0.5241) 9(0.1153) 10(0.0558) 11(0.0579) 12(0.0335) 13(0.2134)

3 3(0.1147) 4(0.0935) 5(0.1952) 6(0.1606) 7(0.1974) 8(0.2386)

4 2(0.3714) 3(0.0733) 4(0.0530) 5(0.2658) 6(0.0358) 7(0.2006)

5 7(0.1440) 8(0.2338) 9(0.1317) 10(0.1068) 11(0.1823) 12(0.2013)

6 5(0.2722) 6(0.1820) 7(0.0785) 8(0.3068) 9(0.1372) 10(0.0233)

7 5(0.2342) 6(0.0753) 7(0.1372) 8(0.2134) 9(0.1114) 10(0.2284)

8 7(0.1533) 8(0.2654) 9(0.2734) 10(0.1718) 11(0.0076) 12(0.1285)

9 8(0.1400) 9(0.0892) 10(0.0650) 11(0.2711) 12(0.1418) 13(0.2929)

10 4(0.1118) 5(0.2199) 6(0.1134) 7(0.2311) 8(0.2159) 9(0.1079)

Table 4.6: Parameters Initialization of SAA-PSO for Case Study

Parameter Value Parameter Value

H 100 c1 2

K 100 c2 2

K′ 10000 r1 0.5

α 0.01 r2 0.5

Max Iteration 100 w 0.6
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Figure 4.6: Activity Network of Optimal Solution

activity selection is illustrated in Figure 4.6 by eliminating the unselected activities. As I can
observe, at the first decision point m = 1, the method of MEWP is selected for conducting the
first task after activity 6. Therefore, mobile elevators are the rental resource that is needed and
activity 11 and 21 are the optional activities triggered by the method of MEWP. As the premises
have stated that only one method or rental resource can be selected for each task, therefore,
for task 1 (m = 1), the activities that are triggered by other methods should be eliminated from
the network. Similarly, podium step is selected for task m = 2 and remote operated air vehicle
(ROAV) is selected at decision point m = 3 respectively. As a consequence, activities included
by these two methods, which are activity 15, 9, 20, 24, are selected and scheduled. The schedule
of this maintenance project is presented in a form of Gantt Chart as shown in Figure 4.7. The
total operational cost, which consists of resource leasing cost and labour cost, should always
be less than the budget L = 2000. By calculating with the possible maximum duration for each
chosen activity, the maximum operational cost for the optimal selection is 1857. Apparently,
the optimal solution might be different when the total budget varies as the budget limits the
maximum usage of rental resources and workforce. Table 4.7 shows the optimal duration for
this case study under different budgets. As I can see, in general, the average makespan of project
would decrease with the increment of budget. The ‘Nil’ in the Table 4.7 means that there is no
feasible solution can be found when the project budget is 1000. In addition, when the budget is
over 2000, the average makespan stays unchanged. That means the budget is greater than the
maximum cost for the project. Therefore, having an accurate and appropriate budget estimation
would have an important impact on the project scheduling and rental resource selection. The
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project managers make their decisions on resource selection and project scheduling subject to
their preference and priority between cost and time.

Figure 4.7: Schedule of Case Study

Table 4.7: Makespan under Different Budget Constraint

Budget Average Makespan

1000 Nil

1200 62.12

1400 62.17

1600 58.82

1800 56.59

2000 52

2200 52

4.5.3 Algorithm Performance Analysis for Parameters

The performance of an algorithm would largely be influenced by the values of parameters,
therefore, in order to testify the performance of our proposed SAA-PSO algorithm, a randomly
generated instance with 15 activities is constructed for the computational experiment. I will
analyze the computational results of the instance under different values of three key parame-
ters which are sample size K, number of samples H and confidence level 1−α . The activity
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network for this instance is presented in Figure 4.8 and the parameters of duration of activi-
ties εi, workforce requirement ui and demand of rental resources dm

n are generated randomly in
Matlab. Two criteria will be utilized for this analysis, namely objective value and proportion of
infeasible solutions. The objective value is indicated by average makespan and the proportion
of infeasible solutions is the average of the proportion of infeasible solutions to all generated
solutions. In this experiment, I only change the value of one parameter at a time while oth-
er parameters keep unchanged and hold their initial values. The initial values for these three
parameters are K = 100, H = 100 and α = 0.01.

Figure 4.8: Activity Network for Testing Example

Table 4.8 presents the results for different sample size K which varies from 10 to 100 with a
interval of 10. As I can observe, the values of proportion of infeasible solutions for K = 10 and
K = 20 are 0, which means that all generated solutions are feasible. This could be resulted from
limited number of initial solutions generated under small sample size. Starting from K = 30, the
average proportion of infeasible solutions increases along with the ascending of sample size K.
When the sample size K = 100, the infeasibility is 0.01 which is a comparatively small figure.
Therefore, as I can expect, when the sample size K is big enough, the algorithm will perform
well in generating feasible solutions. From Table 4.8, there is not a significant correlation
between the sample size K and objective value (makespan).

Table 4.9 presents the results for different number of samples H which varies from 10 to 100
with a interval of 10. It is clearly indicated that the average proportion of infeasible solutions
decreases generally with the increment of the number of samples H. When the number of sam-
ples H = 10, the proportion of infeasibility equals to 63.14% which indicates that the algorithm
fails to converge to feasible regions. However, the value of infeasibility drops dramatically with
the increasing H. When H = 100, the proportion of infeasible solutions is 3.8%. In addition, the
average makespan reduces with the rise of H. Hence, the proposed algorithm will have a bet-
ter performance on both achieving smaller objective value and searching for feasible solutions
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Table 4.8: Analysis Results for Sample Size K

K Makespan
Proportion of

Infeasible Solutions

10 50 0

20 51.25 0

30 48.7 0.093

40 50.825 0.072

50 50.54 0.088

60 49 0.065

70 50.17 0.057

80 49.03 0.042

90 49.19 0.024

100 50.13 0.01

when a large number of samples is applied.

Table 4.9: Analysis Results for Number of Samples H

H Makespan
Proportion of

Infeasible Solutions

10 49.34 0.6314

20 49.36 0.1314

30 48.6 0.0622

40 49.08 0.089

50 49.69 0.077

60 48.21 0.066

70 48.55 0.07

80 48.23 0.066

90 48.55 0.055

100 47.23 0.038

Table 4.10 presents the results for different significance level α which varies from 0.05 to
0.5 with a interval of 0.05. Obviously, the increase of significant level α will result in a larger
proportion of infeasible solutions. Therefore, in other word, the confidence level α and rate
of feasibility for generated solutions share a positive correlation. Figure 4.9 and 4.10 show the
variation of average makespan and average proportion of infeasible solutions, the value in the
bracket represents the value of 1−α . Through analysis, I can found out that larger sample size
K, greater number of samples H and larger confidence level 1−α would enable the proposed
SAA-PSO to have a better performance on searching for feasible solutions.
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Table 4.10: Analysis Results for Significance Level α

α Makespan
Proportion of

Infeasible Solutions

0.05 50.09 0.024

0.10 49.35 0.03

0.15 49.35 0.022

0.20 46.85 0.022

0.25 49.52 0.033

0.30 50.79 0.09

0.35 50.65 0.088

0.40 48.77 0.093

0.45 50.25 0.12

0.50 49.36 0.14

Figure 4.9: Makespan under different values of parameters
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Figure 4.10: Proportion of Infeasible Solutions under different values of parameters

4.5.4 Comparison with Other Meta-heuristics

In our proposed hybrid SAA-PSO algorithm, PSO plays a role of the inner algorithm for solv-
ing the discrete deterministic problem for each sample. However, there are other meta-heuristic
algorithms that can be utilized as an alternative for solving the proposed SCSCO problem.
Hence, in this section, the performance of SAA-PSO should be evaluated by comparing to oth-
er algorithms. Two typical and well-known meta-heuristic algorithms, which are the genetic
algorithm (GA) proposed in Chapter 3 and the ant colony algorithm (ACO) proposed by Zhang
(2011) [70], are selected to substitute PSO in our hybrid algorithm for comparison. There-
fore, three hybrid algorithms, namely SAA-PSO, SAA-GA and SAA-ACO, are implemented
for coping with five pre-designed experiments with 50, 75, 100, 125 and 150 activities respec-
tively. Four criteria including the average objective value (Avg.), standard deviation of objective
value (Std.), infeasibility rate (Inf) and computational time (CUP) are utilized to indicate the
performance of these three algorithms.

Table 4.11: Performance Comparison among SAA/PSO, SAA/GA and SAA/ACO

SAA-PSO SAA-GA SAA-ACO

Inst. Avg. Std. Inf CPU Avg. Std. Inf CPU Avg. Std. Inf CPU

50 80.15 2.7464 0.0132 557.92 82.16 7.5381 0.010453 548.39 82.85 7.9625 0.0128 208.78

75 146.31 6.1112 0.047071 1149.99 147.37 7.8672 0.074133 969.43 146.64 8.6673 0.077151 414.84

100 186.53 6.5226 0.051247 1401.04 182 18.245 0.067797 1218.7 192.64 22.9257 0.072885 505.44

125 227.54 8.4798 0.045555 1667.37 228.45 22.8203 0.034242 1471.95 225.16 23.3997 0.052731 722.68

150 248.5 19.6235 0.041409 2241.78 252.17 32.4593 0.047135 1738.69 251.43 31.0158 0.056671 1106.04
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Table 4.11 represents the results of three hybrid algorithms with different instances. With
the increment of number of activities involved in an experiment, the complexity of the problem
increases dramatically which leads to the rise of the computational time for all algorithm. As I
can observe, in terms of computational time, SAA-PSO is the most time consuming algorithm
followed by SAA-GA and SAA-ACO. When the number of activities equals to 150, the CPU
for SAA-PSO is 2241.78 which is greater than 1738.69 for SAA-GA and double of the time for
SAA-ACO. As for the standard deviation of objective value, the values for all three algorithms
rise with the increasing of the complexity of instances. Amid these algorithms, SAA-PSO has a
comparatively lower standard deviation. For example, when the number of activities is 125, the
standard deviation for SAA-PSO is 8.4798 while the figures for SAA-GA and SAA-ACO are
22.8203 and 23.3997 respectively. This implies that SAA-PSO tends to generate more stable
and convergent solutions comparing to other two algorithms. As indicated by the table, these
three algorithms have little difference on the performance of infeasibility rate. However, to be
more precise, the SAA-PSO produces less infeasible solutions than the other two algorithm-
s. For instance, when the number of activities is 100, the infeasibility rate for SAA-PSO is
0.051247 which is slightly smaller than 0.067797 for SAA-GA and 0.072885 for SAA-ACO.
Similarly, for instance 150, the infeasibility rate for SAA-PSO is the smallest with the value of
0.041409. Therefore, on the basis of this comparison, I can reach the conclusion that SAA-PSO
has a better performance comparing to SAA-GA and SAA-ACO in the aspect of generating so-
lutions especially for large complex problem, but with the sacrifice of computational efficiency.

4.6 Conclusion

A mega construction project management normally comprises the arrangement and deployment
of various resources and workforce. Instead of purchasing and owning all resources needed for
the project, many resources such as heavy equipment and temporary scaffolding materials are
rented from suppliers. While it is commonly known that various methods based on the adoption
of different rental resources are available for selection for dealing with the same tasks and each
method would trigger a series of optional activities, hereby, the selection of rental resources
would have a significant influence on the project scheduling. Therefore, in this chapter, I stud-
ied the budget constrained construction supply chain optimization with rental resource selection
(SCSCO) problem. Firstly, this chapter proposes a novel mathematical model of this extended
resource constrained project scheduling problem (RCPSP) by having three main factors into
considerations: 1) the policy of rental resources selection: in contrast to the traditional RCPSP
where all activities are encompassed in the project, two sets of activities including necessary
activities and optional activities that are triggered by the selected resources are required for
scheduling and only one type of rental resources can be chosen for a single task; 2) stochastic
activity durations: in our proposed model, activity durations are defined as stochastic variables
with known probability distributions; 3) budget constraint: in reality, the arrangement of either
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workforce or other resources is generally restricted by the estimated budget, hereby, instead of
setting up the resources constraints, the constraint for project budget is considered in our mathe-
matical model. The second contribution of this chapter is that a hybrid algorithm that integrates
Sample Average Approximation (SAA) method with Particle Swarm Optimization (PSO) algo-
rithm is proposed for coping with the SCSCO problem. A case study based on a maintenance
project in a LNG plant is conducted for verifying the effectiveness and feasibility of our pro-
posed hybrid algorithm and a sensitivity analysis based on a randomly generated problem is
proceeded. The results manifest that the proposed mathematical model and hybrid algorithm
could solve complex stochastic project scheduling problem effectively and the configuration
of parameters including project budget, sample size, number of samples and confidence level
would affect the performance of proposed algorithm dramatically. In addition, the method de-
scribed in this chapter could help project planners and managers with generating an appropriate
schedule and resource allocation plan which consequently reduces the total makespan and cost
of project.
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CHAPTER 5

MULTI-OBJECTIVE OPTIMIZATION FOR
SCAFFOLD SUPPLY CHAIN OF A MEGA

CONSTRUCTION PROJECT

5.1 Introduction

Over the last decade, especially in recent years, the worldwide business environment has be-
come more competitive and the benefits of supply chain management (SCM) have been em-
phasized by both industry professionals and academic researchers. The philosophy of SCM
has been introduced to and applied in various industries, such as construction industry, for im-
proving the performance of product or material management and eliminating the corresponding
wastes [4]. The supply chain of a construction project, known as construction supply chain
(CSC), concatenates each component from suppliers, contractors to the project owners, and
associates the flow of materials, equipment, resources and the transformation of information
through each stage [148] [149]. The CSC has drawn a great attention in the construction indus-
try as the need to tackle the challenges such as low productivity, excessive inventory, resource
waste and inefficient management of materials has been recognized throughout the industry [4]
[149]. Scaffolding system, as a kind of temporary structure applied in construction industry,
provides the platform for material placement and supports workers for aerial construction ac-
tivities [150]. It is commonly known that scaffolding system would not be remained within the
final construction structure, therefore, the importance and necessity of scaffolding construction
management have not been realized by industry practitioners and researchers. In fact, scaffold-
ing activities have a substantial impact on the safety, quality, productivity and total operational
cost of a construction project. According to the report by Construction Industry Institute (CII),
the construction and disassembly of scaffolding system has become one of the most wasteful
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components that contribute to the high indirect construction cost [151]. The evidence can be
found in oil and gas industry in Australia. The maintenance cost of the facilities in a LNG plant
is estimated to account for 11.47% to 15.36% of the total operational cost, and scaffolding is
one of the main contributors as scaffolding materials are needed in a great demand for building
supporting platforms [152], and approximately 15% of project budget would be assigned to s-
caffolding, while the proportion is still growing [153]. The rental of scaffold materials (leasing
cost) is one of the prominent contributors to the staggering cost of scaffolding activities. The
leasing cost will occur once the ordered scaffolding materials are delivered to the construction
areas and these materials will normally be charged by their weight and the length of leasing.
Hence, given that the total scaffold material demand of a project is fixed, the way of how to
manage the delivery of material would have a great impact on the leasing cost. Therefore, op-
timizing the material supply plan is one of the critical issues for optimizing the performance of
scaffold supply chain (SSC) and minimizing the total cost of scaffolding construction projects
consequently. As I know, the longer the scaffolding structures remain, the greater amount of
expense would be spent by the project owner. In this case, appropriate planning of scaffolding
construction and disassembly activities would manage to return the dismantled scaffolds timely
and shorten the length of a project, which hereby reduce the leasing period of scaffold mate-
rials. This leads us to another critical issue of scaffold supply chain optimization - the project
scheduling problem. Material supply strategy optimization, which can be comprehended as
material ordering optimization, is actually interrelated to project scheduling. Assuming the ma-
terial demand of each activity is fixed, the schedule of activities would alter the total demand of
the project in a given period which correspondingly affects the decision on material ordering.
Consequently, project scheduling and material ordering should be considered simultaneously
for achieving a better performance of SSC.

To our knowledge, the studies related to scaffold are very limited, let alone those related to
SSC optimization. Ratay (2004) discussed and introduced the design philosophies, construc-
tion guidance and safety requirements of scaffolding structures [154], while Rubio-Romero et
al. (2012) analyzed the relationship between the work safety conditions and the standardiza-
tion of scaffolding equipment [155]. Building Information Modeling (BIM) has been used for
scaffolding construction management in terms of safety risks mitigation [156] and automat-
ic design [131] [157]. More recently, Chai (2017) applied the Radio Frequency Identification
(RFID) technology for tracking the transportation of construction materials including scaffold
components in a Liquefied Natural Gas (LNG) plant [158]. Apart from these, few studies about
scaffold related optimization can be found. Jin et al. (2017) presented a simulation-based
optimization model and a multi-attribute utility based decision making model for scaffolding
structure space planning [159]. In their research, a two-phase scaffolding structure planning
system was proposed, where the first phase was using the multi-objective optimization for de-
termining the optimal location of scaffolding structure and the simulation model for generating
feasible scaffolding alternatives. In the second phase of this system, a multiple attribute utility
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based model was built to help the practitioners to select the best decision on scaffolding plan
[159]. Hou et al. (2016) optimized the problem of scaffolding construction scheduling and
resource allocating by applying discrete firefly algorithm. They proposed a multi-objective op-
timization model for the time-cost trade-off resource-constrained scaffolding project scheduling
which considered the precedence relationships between different working zones and the selec-
tion of modular scaffolds [153]. However, in their model, the cost function was simplified
without considering different sources of cost. In order to construct a more realistic and practical
optimization model, in this chapter, the problems of scaffolding project scheduling and material
ordering are integrated based on the scenario of a mega scaffolding construction and disassem-
bly project which can be named as multi-objective scaffold supply chain optimization problem
(MOSSCOP).

In our proposed MOSSCOP, multiple sub-projects and their corresponding scaffolding ac-
tivities are considered which makes the problem more complex than a single project scenario.
The objectives of our model comprise minimizing the total duration and total cost of the project
simultaneously, as well as maximizing the utilization rate of workforce. The total cost is bro-
ken down into several categories including material leasing cost, transportation cost and labour
cost. Precedence relationships between sub-projects and scaffolding activities are incorporated
as well as the resource constraints such as available workforce. By encompassing these afore-
mentioned considerations, this SSC optimization problem has become a rather complicated and
complex NP-Hard problem [40]. Therefore, an intelligent algorithm is proposed and applied to
solve this SSC optimization problem. With the assistance of the proposed model and algorith-
m, project manager could manage a good balance among time, cost and resource utilization of
scaffolding construction and disassembly.

The rest of this chapter is organized as follows. Section 5.2 reviews the relevant researches
on construction supply chain, resource-constrained project scheduling and material ordering. A
detailed description on general scenario of scaffold supply chain is presented in section 5.3, as
well as the formulation of a multi-objective optimization model in section 5.4. In section 5.5,
the modified non-dominated sorting genetic algorithm (NSGA-II) is introduced, developed and
applied for solving the optimization model. A real project based case study is conducted for
validating the proposed model and algorithm in section 5.6, and the conclusion of this chapter
is presented in section 5.7.

5.2 Literature Review

Scaffold Supply Chain (SSC) is an area that most researchers have not paid enough attention
to, as a consequence, the studies related to scaffolding optimization is very limited. However,
the previous studies on construction supply chain (CSC) management and optimization could
provide relevant references to our work. Material management is one of the key factors that
influence the performance of CSC management, Tesrng et al. (2006) studied the steel rebar
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production and supply chain and proposed an optimization model with the objective of mini-
mizing the integrated inventory cost of supply chain [160]. On the basis of their optimization
model, a decision making system for generating the optimal supply plan was created which
could help suppliers with reducing the inventory of construction materials [160]. Both build-
ing information modeling (BIM)and geographic information system (GIS) are two information
system technologies widely used in various industries, and they were integrated into a construc-
tion supply chain management system by Irizarry et al. (2013) for tracking the status of CSC,
especially the delivery of construction materials [4]. Liu et al. (2017) integrated the opera-
tions within CSC for prefabrication companies, such as procurement, material transportation,
inventory management, and preproduction by building up a multi-objective fuzzy optimization
model to minimize the partner costs and improve the service levels at the same time [149].
Other fields related to CSC are also studied, such as information sharing for inventory manage-
ment [161] and quality control for labour productivity improvement [162]. As described in the
last section, the SSC studied in this chapter is an integration problem of resource-constrained
project scheduling (RCPS)[163] and material ordering (MO), thus, looking into the research-
es that combine these two problems would be vital to our work. The integrated problem of
project scheduling and material ordering (PSMO) was firstly investigated by Aquilano and
Smith-Danials in 1980, and a critical path method was proposed and applied for solving this
problem [164]. After that, Smith-Daniels et al. (1987) developed mix integer programming
models for resource-constrained project scheduling and material ordering (RCPSMO) problem
under different considerations and premises, and they found that the optimal solution of R-
CPSMO can be determined by the latest starting time [165]. In recent years, the mathematical
model for RCPSMO has been developed and improved by either considering more practical
and realistic constraints and conditions or being implemented in different fields. Zoraghi et al.
(2012) presented a RCPSMO mathematical model with the objective of minimizing the total
material holding and ordering cost. In their model, starting time of activities was set as the
decision variable and constraints such as allowable completion time and precedence relation-
ships were also included [166]. Afterwards, they improved their model by applying bonus and
penalty policies when the project was completed before or after its due date respectively [167].
Shahsavar et al. (2016) studied the RCPSMO problem for nonrenewable resources and formu-
lated an optimization model with the aim of minimizing the costs related to renewable materials.
The price of nonrenewable resources is volatile and influenced by the order quantity due to their
scarcity, hence, in their model, quantity discount policy was involved [168]. In the context of
construction projects, optimization of RCPSMO problem has also been conducted. Ashuri et
al. (2013) proposed a shuffled frog-leaping model that addressed the time-cost-resource trade
off issue in a construction project, where the objectives of minimizing total cost, total duration
and variation of resource allocation were considered simultaneously [169]. A more typical and
realistic mix integer programming model of RCPSMO problem for a construction project was
presented by Fu (2014) which comprised various trade-offs among various costs such as mate-
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rial price, ordering cost, back-ordering cost, inventory holding cost and bonus-penalty cost as
well [170].

Through reviewing the above-mentioned articles related to RCPSMO , I found that time and
cost are always the most critical indicators for evaluating the performance of most construction
projects including scaffolding projects. However, in most cases, the reduction in the duration
of a project would imply the need to invest more on necessary resources, such as workforce
and equipment. For these time-cost trade-off problems in the context of construction projects,
they are normally formulated as multi-objective optimization problems that aim to screen out
the best fit balance between these objectives. Over the past decades, many researches in terms
of evolutionary algorithms have been carried out to deal with multi-objective optimization in
project scheduling. Abbasi et al. (2006) utilized the simulated annealing (SA) algorithm to
solve a bi-objective project scheduling problem with the goal to minimize the makespan and
maximize net present value of project [37]. Similarly, SA algorithm was applied for solving
multi-objective flowshop scheduling problems [171]. The multi-objective particle swarm op-
timization (PSO) algorithm was first studied by Parsopoulos and Vrahatis (2002) [172], since
then, it has been adopted and modified for solving various scheduling problems [173]. Zhang et
al. (2009) proposed a hybrid PSO for multi-objective job shop scheduling problem [174], while
Kazemi and Tavakkoli (2011) implemented PSO to optimize the resource constrained project
scheduling problem with objectives of minimizing the makespan and floating time [35]. There
are also other natural based algorithms that have been applied for similar problems, such as ant
colony optimization (ACO) [175], Binary search algorithm [176] [177], firefly algorithm (FA)
[178] and genetic algorithm (GA) [179],[180],[147]. Among these evolutionary algorithms, GA
would be one of the most popular algorithms that have been improved and modified into differ-
ent forms specifically suitable for multi-objective problems. Srinivas and Deb (1994) introduced
a non-dominated sorting genetic algorithm (NSGA) which remains the genetic operations from
conventional GA and identifies the Pareto front solutions at each iteration through fitness cal-
culation and non-dominated sorting operation [64]. Deb (2002) proposed an improved version
of NSGA, called NSGA-II, which has a lower computational complexity for non-dominated
sorting operation, and a better performance on diversity preservation and Pareto optimal solu-
tions [66]. Jensen (2003) developed a new algorithm for non-dominated sorting which reduced
the complexity of NSGA-II [181], and Wei et al. (2009) created a new chromosome selection
procedure which hereby improved the performance of NSGA-II [182] which followed by the
application of an effective data structure, called dominance tree, proposed by Shi et al. (2009)
[183]. Other studies related to the improvement and development of NSGA-II include the im-
provement on genetic operators [184] [185] and controlled elitism [186]. At the same time,
NSGA-II has been used to cope with various scheduling problems because of these merits, such
as resource constrained project scheduling [187] and robust job-shop scheduling [188]. In this
chapter, the conventional NSGA-II algorithm is modified and applied for the proposed SSC
optimization problem by introducing a new method of individual representation.
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5.3 Scenario Description

This chapter focuses on a scaffold supply chain (SSC) of a mega construction project that con-
sists of several sub-projects. From an broader perspective, a general CSC could comprise many
different stakeholders such as producers of raw materials, manufacturers, wholesalers, retail-
ers, and customers which create a complex network, and most of the related studies laid their
emphasis on the optimization of supply chain network or information sharing [161, 149]. How-
ever, from an operational perspective, the primary goal of CSC management is to optimize the
material flow associated with various operations or activities, such as designing a cost-efficient
material ordering plan and controlling the best level of inventory. Nevertheless, the designing
of such an appropriate material ordering plan is determined by the demand of materials from
construction activities. In this case, generating an optimal schedule for a mega construction
project and its corresponding material ordering plan in the scaffold supply chain (SSC) context
would be our target.

In this chapter, a mega project that consists several scaffolding construction sub-projects
is considered, and the material flow in SSC is described as shown Figure 5.1. For each sub-
project, there is a set of activities that need to be executed. Therefore, when the project manag-
er commences the task of scheduling, two classes of priority relationships should be taken into
consideration - the priorities between sub-projects and the precedence relationship between ac-
tivities for each sub-project. However, these two classes of relationships are slightly different.
The priority relationship between sub-projects in real life tends to be linear, and the sub-projects
with higher level of priority would have the right to use the resources prior to other sub-projects.
These sub-projects can be conducted at the same time. In our occasion, I assume that the se-
quence of operating these sub-projects is fixed. On the other hand, the precedence relationship
between activities determines that the successors can only be carried out after the completion
of predecessors. The SSC studied in this case would start from material suppliers and end at
construction contractors or project owners, where scaffold materials would be delivered direct-
ly from supplier warehouse to the project area and transferred around within the area for the
operations of sub-projects. In addition, as a specific example of construction supply chain, SS-
C shows its difference comparing to the general CSC shown in Figure 3.1. The scaffolding
structures would be dismantled and returned to the suppliers, hence, the scaffold supply chain
starts from suppliers and ends at suppliers which makes it a closed loop supply chain. When the
project starts, scaffold materials will be delivered from supplier to the construction area based
on the orders placed by construction contractors. Instead of transporting the whole amount of
material demand, the construction contractors would normally order the components they need
over a certain period in advance, they call this material ordering method as ’drip-feed’strategy.
The quantity of material order is decided on the basis of the estimation of construction super-
visors or team leaders. The scaffold materials would not be shipped to working area directly,
instead, they would be placed temporarily in a dedicated area, called ’Laydown Area’. These
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inventory would be distributed to the workfront areas for each sub-project and used for con-
struction. Different from most other construction materials, scaffold materials are recyclable.
When one of the construction project is completed, the scaffolding structure would be disman-
tled and the components would be sent back to the supplier. In the operational flow of SSC
described above, material ordering is vital to the management of scaffold inventory on-site and
the control of total operation costs. As a matter of fact, if excessive amount of materials are
ordered, high scaffold material leasing cost and inventory holding cost would occur. While on
the contrary, not enough inventory would result in the delay of project. Thus, increasing the
frequency of delivery would actually reduce the inventory on site at a single period. Howev-
er, as a consequence, more transportation cost is expected. Hence, planning the best time and
quantity for material delivery would ensure the operations being conducted on time by fulfilling
the demand of materials with lower cost. On the other hand, the demand of materials at any time
during the project is determined by the schedule of operations. Hence, as aforementioned, this
SSC optimization problem can be transferred to the integration of resource-constrained project
scheduling problem and material ordering problem in scaffold supply chain (SSC) context. N-
evertheless, in real life, the productivity of workers is not always consistent which would result
in the variation of material demand from time to time. Therefore, in this chapter, the assump-
tion that the productivity for each scaffolding activity remains the same over its period. As a
consequence, the material demand per unit time for each activity keeps stable over the activity
execution period.

Figure 5.1: Roadmap for general Scaffold Supply Chain
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5.4 Mathematical Model Formulation

5.4.1 Assumption and Notation

Assumption

(a) There are various types of scaffold component, and for each component, the leasing cost
per unit weight per unit time is assumed to be the same. The transportation cost per unit
weight per trip keeps the same for all scaffold materials, while it varies with the quantity
delivered each trip.

(b) At the design phase, the contractor has designed the structure of scaffolding construc-
tion and estimated the detailed demand of scaffolding materials. Hence, the demand of
scaffold materials for each activity of a particular sub-project is assumed as fixed and
known.

(c) The workforce required for each activity of a particular sub-project is assumed as fixed
and provided due to the same reason as above. There is a limitation on the total number
of workers allowed to work at the same time.

(d) This mega project is assumed to be scheduled on a discrete time horizon with a longest
allowable total duration.

(e) The demand of scaffold material per unit time for each activity is assumed to be consis-
tent.

Notation

Before proceeding the mathematical modeling for MOSSCOP, the involved notations are dis-
played in Table 5.1.

5.4.2 Mathematical Model for SSC Optimization

Objective Functions

According to the problem described in Section 5.3, in order to optimize the performance of
SSC of a mega project, an optimal scheduling for scaffolding activities associated with the the
corresponding scaffold material ordering plan should be designed. Hence, our intention in this
section is to construct a mathematical model for the resource-constrained project scheduling
problem in the scaffolding supply chain context. Time and cost are two critical indicators for
evaluating the performance of the project management, while resource utilization, especially
the workforce efficiency, is another importance consideration for project managers. Therefore,
in this chapter, a multi-objective mathematical model for SSC optimization problem is proposed
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Table 5.1: Notations for SSC Optimization Problem

Set and indices:

I = {1, · · · , I} set of scaffolding sub-projects indexed by i.

J = {1, · · · ,J} set of activities for each sub-projects indexed by j.

V1 ⊆I 2
Immediate precedence relations among sub-projects,

where (i,k) ∈ V∞ indicates sub-project k must start after sub-project i’s completion.

V2 ⊆J 2
Immediate precedence relations among activities,

where ( j,h) ∈ V∈ indicates activity j must start after activity h’s completion.

M = {1, · · · ,M} set of types of scaffold component indexed by m.

T = {1, · · · ,T} set of time slots indexed by t which represents time interval [t−1, t).

Parameters:

pm
i j demand of scaffold component m for activity j in sub-project i.

di j duration of activity j in sub-project i.

ui j workforce required for activity j in sub-project i.

lm leasing cost per unit time per unit weight for scaffold component m.

γ labour cost per unit time per person.

qt quantity of material delivery at time t.

β
transportation cost per unit weight per trip.

When qt ∈ [0,a), β = β1; when qt ∈ [a,b), then β = β2; when qt ∈ [b,+∞), β = β3.

U Maximum available workforce.

Variables:

F project makespan.

si j start time of activity j in sub-project i.

ci j completion time of activity j in sub-project i.

xt
i j ∈ {0,1} xt

i j = 1, if the activity j of sub-project i is executed at time t; otherwise, xt
i j = 0.

yt
m the quantity of type m scaffolding component supplied at time t.
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with goals of minimizing the total duration and total cost and maximizing the workforce usage
efficiency simultaneously. The total duration can be comprehended as the latest completion
time of the sub-projects, hereby, the first objective function can be presented as:

min Ft = sI+1, j (5.1)

Here, sI+1, j stands for the starting time of sub-project I +1 which is a artificial node.

The second objective is to minimize the total cost which consists of scaffold material leasing
cost, labour cost and transportation cost. The leasing cost is charged for the scaffold materials
either stored in the laydown areas or used for the construction. In another word, once the
scaffold materials arrive the laydown area, leasing cost would occur. Hence, the amount of
scaffold materials inside the construction area is the result of the total amount of shipment
subtracting the amount of returned materials. In this case, I have the equation for the total
leasing cost as below.

CLease =
M

∑
m=1

T

∑
t=1

[
t

∑
k=1

yk
m−

t

∑
k=1

I

∑
i=1

J

∑
j=1

max(0,−pm
i j ∗ xk

i j)]∗ lm (5.2)

The labour cost is calculated based on the active workforce at anytime of the project and
the transportation cost is the cost for delivering the materials from supplier to the laydown area
and recycling the dismantled scaffold components back to warehouse. The equations for total
labour cost and total transportation cost are displayed.

CLabour =
T

∑
t=1

I

∑
i=1

J

∑
j=1

ui j ∗ xt
i j ∗ γ (5.3)

CTransp =
T

∑
t=1

I

∑
i=1

J

∑
j=1

M

∑
m=1

max(0,−pm
i j ∗ xk

i j)∗β +
T

∑
t=1

M

∑
m=1

yk
m ∗β (5.4)

Therefore, I have the second objective function is minimizing the sum of total leasing cost,
total labour cost and total transportation cost.

min CTotal =CLease +CLabour +CTransp (5.5)

In addition to the time and cost, the efficiency of resources utilization, especially the work-
force arrangement, is a critical indicator for the performance of both project management and
supply chain management. In the mathematical model, the fluctuation of workforce usage is
expected to keep stable, which helps project manager to arrange appropriate number of workers
on site and reduce the budget for labour cost correspondingly. The utilization rate of workforce
at time t is calculated as follow:

rt =
1
U

I

∑
i=1

J

∑
j=1

ui j ∗ xt
i j (5.6)
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Hence, the third objective function is to maximizing the workforce utilization rate, which
equals to minimizing the variation of workforce utilization rate:

min Fr =
T

∑
t=1

(rt− 1
T

T

∑
t=1

rt)2 (5.7)

Precedence Constraints

As aforementioned, in a mega construction project, some sub-projects need to be executed
before the others because of the considerations related to locations, safety requirements and
functions of different facilities. This kind of precedence relationship also applies to scaffolding
activities, as there is a restricted procedure for scaffolding construction and disassembly. In
our model, the precedence constraints between different sub-projects is considered, as well
as the relationships between different scaffolding activities for each sub-project are taken into
consideration, which are shown by the inequalities as below. It needs to be mentioned that, in
our model, the time horizon is assumed to be discrete.

si j ≥ ck j +1,∀(i,k) ∈ V1 (5.8)

si j ≥ cih +1,∀( j,h) ∈ V2 (5.9)

ci j ≥ xt
i j ∗ t, i ∈I , j ∈J , t ∈T (5.10)

Workforce Constraints

Due to the restricted working space and budget allocation, the maximum number of workers
that can be assigned to the project is limited, therefore, the availability of workforce should be
considered when schedule of project is being planned. The active workers at any time during
the project should not exceed the limitation.

I

∑
i=1

J

∑
j=1

ui j ∗ xt
i j ≤U , i ∈I , j ∈J , t ∈T (5.11)

Intrinsic Variable Constraints
T

∑
t=1

yt
m =

I

∑
i=1

J

∑
j=1

pm
i j, i ∈I , j ∈J ,m ∈M (5.12)

T

∑
t=1

xt
i j = di j, i ∈I , j ∈J , t ∈T (5.13)

xt
i j ∈ {0,1} , i ∈I , j ∈J , t ∈T (5.14)
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si j ≥ 0,si j ≥ 0, i ∈I , j ∈J (5.15)

Constraint (12) ensures the demand of scaffold materials is always satisfied, while con-
straint (13) makes sure that every activity is executed. Constraint (14) and (15)are binary and
non-negative constraints.

Integrated SSC Optimization Model

To sum up, the integrated SSC optimization problem can be formulated as a multi-objective
model displayed as follow

min Ft = sI+1, j,

min CTotal =CLease +CLabour +CTransp,

min Fr =
T
∑

t=1
(rt− 1

T

T
∑

t=1
rt)2.

s.t. (2)− (4),(6),(8)− (15)

(5.16)

5.5 Modified Non-dominated Sorting Genetic Algorithm (NSGA-
II)

The multi-objective optimization model described above has transferred the scaffold supply
chain optimization problem into a time-cost-resource trade-off problem in the context of scaf-
folding construction. Total duration, total cost and the workforce usage fluctuation are con-
ceived to be minimized simultaneously by searching for optimal schedules of project and better
plan of material ordering. Nevertheless, in most cases of a multi-objective problem, some cri-
teria are actually conflicting with others. For example, in our SSC problem, shortening the
duration of project may lead to more workers involved in order to improve the total workload
per day, which could result in higher labour cost consequently. Instead of obtaining a single
best solution, for a multi-objective optimization model, there usually exists a set of optimal
solutions (also well known as non-dominated solutions or Pareto-optimal solutions) as it is not
necessarily possible to find out a single solution that satisfies all objectives and criteria [66],
and the Pareto-optimal solutions are obtained when there is not any objective functions can be
improved in values without deteriorating any other objectives. In order to address the proposed
multi-objective SSC optimization problem, a modified elitist non-dominated sorting genetic
algorithm (NSGA-II) is introduced and applied.

NSGA-II was initially introduced by Deb et al. (2002), which aims to search for a set of
solutions that are sorted and organized in Pareto fronts [66]. As aforementioned in the section
of literature review, NSGA-II has several advantages compared to other evolutionary algorithm
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(EA) for solving multi-objective problems, such as fast computation, elitism incorporation and
better convergence in the Pareto fronts [189]. Traditionally, NSGA-II starts with an initialization
procedure where a population of feasible solutions with size N is generated randomly, which
is call the parent population Pt . Genetic Algorithm (GA) operations - individual selection,
crossover and mutation - are conducted for creating an offspring population Qt from the parent
population Pt . A larger population Rt with size 2N is then generated by combining Pt and Qt ,
followed by selection procedure using non-dominated sorting and crowding distance sorting
to filter out the population of elitist individuals with size N. Non-dominated sorting is the
procedure of ranking the individuals into different fronts with different non-domination levels,
while crowding distance sorting refers to the ranking between different individuals in a front
[190]. In the procedure of selection, the solutions that are better ranked and more dispersive
are preferred. The new generation of feasible solutions would repeat the procedure of NSGA-II
until there is no more improvement or alterations can be seen in the Pareto fronts or the pre-set
maximum iterations have reached. In this chapter, I make some modifications on the procedure
of NSGA-II in order to fit the proposed SSC problem better.

5.5.1 Parameters Initialization

Before the algorithm is implemented for SSC optimization, various parameters including the
model parameters and NSGA-II parameters need to be set up, and the corresponding data should
be gathered and sorted. The model parameters could include the number of objective function-
s, the number of constraints and the number of decision variables, and the size of population,
maximum number of iteration for algorithm termination as well as the crossover rate and mu-
tation rate need to be pre-defined as NSGA-II parameters. The data required would vary from
different projects, which in this case, could refer to project parameters including the number
of sub-projects, the number of scaffolding activities, number of scaffolding component types,
duration of each activity in different sub-projects, demand of each scaffold component for each
activity in different sub-projects, workforce demand for each activity and various unit costs.

5.5.2 Solution Encoding

The precedence relationships among different activities from different sub-projects can normal-
ly be displayed in a form of network. In this section, the precedence network is encoded as three
lists: A)An activity pool list for sub-project i at time t, which can be represented as PLi,t . The
activity pool list includes the available activities that can be selected for scheduling at time t.
PLi,t is initially formed by including all activities at time t = 0, and each activity in the pool can
be repeated. As in this chapter, time t is considered as discrete and integral, hereby, the number
of same element for a specific activity appears in PLi,t is based on its duration. For example, if
activity j of sub-project i has a duration of 5t, there will be 5 elements that represent activity j

included in the initial pool list; B) A selected activity list for sub-project i at time t, which can

83



be represented as SLi,t . The selected activity list is updated by adding the selected activities at
time t; C) A predecessor list of activity j for sub-project i, which can be represented as Oi, j.
For each activity j from sub-project i, it can only be chosen when the activities included in the
list Oi, j are all completed. The predecessor list Oi, j would be updated after each selection by
eliminating the completed activities from the list. Hence, activity j is available for scheduling
when Oi, j = /0. A dummy node 0 is set as the starting point of this list, where Oi, j = 0 means
that activity j can be scheduled as the first activity for sub-project i.

In the procedure of activity selecting, two rules are worth mentioning. First of all, only one
activity for any sub-project can be selected at time t. Secondly, as each activity is duplicated
into several same elements in the activity pool list, in order to keep the process of job consistent,
the same elements are preferred to be selected and placed next to each other if this particular
activity has not completed yet, which makes sure that one single activity would not be operated
separately. Thirdly, when scheduling the activities, the priority relationships between different
sub-projects as well as between activities have to be satisfied.

The solution of SSC optimization problem, which in this chapter is the schedule of the
mega project, can be encoded as a time axis matrix, T S = [ai,t ] ∈RI×T . The time axis matrix
has I rows and T columns, where each element ai,t represents an activity from sub-project i

entitled with the series number ai,t that is conducted at time t. For example, ai,t = j means
that activity j from sub-project i is selected for operation at time t. None of the activities
would be carried out for sub-project i at time t when ai,t = 0. A simple example is provided
to illustrate the procedure of solution encoding. Assuming that there are two sub-projects, and
the precedence relationships among their activities are represented as networks shown in Figure
5.2, the numbers in the circles represent the codes of activities while the numbers in boxes
above stand for the duration and the workforce demand for each activity respectively. From the
networks, I can have the predecessor lists for each activity from both sub-projects. For instance,
the predecessor list for activity 1 from sub-project 1 is O1,1 = {0} and the predecessor list for
activity 4 from sub-project 2 is O2,4 = {1,2,3}.

In this example, I assume that the maximum allowable duration T = 12, and the duration
of each activity is assumed to be constant. In this case, the activity pool lists for these two
sub-projects at time t = 1 are PL1,1 = {1,1,2,3,3,4,4,4,5,5} and PL2,1 = {1,2,2,3,3,4,4}
respectively. Consequently, the time axis matrix T S = [ai,t ] ∈R2×12, and the structure of the
time axis matrix can be illustrated by the example in Figure 5.3. In this example, the length of
the time axis matrix is T and all the elements from the pool lists are selected and placed in each
row of the matrix accordingly. The unselected positions of the matrix is filled with the dummy
node 0.

84



Figure 5.2: Example Activity Netwroks

Figure 5.3: Example of Time Axis Matrix
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5.5.3 Initial Feasible Population

For conventional NSGA-II, the initial population of solutions, which in this case is the time
axis matrices, is created with the size of N randomly. In order to generate better offsprings,
in our algorithm, a random population with the size of 2N is generated at the initial stage. To
transfer this initial population into feasible solutions, a new schedule generation scheme (SGS)
is presented and applied.

As mentioned previously, the priority relationship between sub-projects tends to be linear,
therefore, sub-projects are ranked based on their priority levels in the time axis matrices. For
example, sub-project i = 1 in the time axis matrix means the sub-project that has the highest
priority level. Starting from the first element in the time axis matrix, a1,1, the feasibility of each
element need to be verified by three criteria: 1) Suitability, the element ai,t should be included
in the activity pool list PLi,t and consistent with element ai,t−1 if the chosen activity has not
been completed by time t; 2) Priority, the element ai,t must satisfy the precedence relationship
with its predecessors. Hence, in another word, ai,t can only be placed when the activities from
its predecessor list Oi,ai,t are all selected, which means its updated list Oi,ai,t = /0; 3) Resource
Availability, the total number of workers working at any single time during the project should
be limited under the maximum allowable workforce. The starting time of time axis matrix is
set as t = 1 and the suitability, priority and resource availability for each element ai,t should be
checked in the sequence in terms of time and priority of sub-projects. The original ai,t will be
kept in the feasible time axis matrices only when ai,t satisfies all three criteria. If there is not
any such activities in the activity pool list PLi,t , then ai,t = 0. When the activity pool list PLi,t

is empty, all the unfilled elements are assigned with zeros, and a feasible solution is generated.
The pseudo code of the procedure of generating a feasible solution is shown in Algorithm 6.

Following up with the example mentioned above, in this case, I define that the maximum
available workforce equals to 5. The detailed procedure of generating a feasible solution is
presented as below:

1. Step 1: Generate a initial time axis matrix randomly.

2. Step 2: For t = 1, check the feasibility of current elements a1,1 and a2,1. For a1,1 = 2, it
satisfies three criteria, hereby, it stays unchanged. The remaining available workforce is
U−u1,2 = 5−1 = 4. For a2,1 = 4, it violates the priority constraint. Hence, a2,1 should
be replaced by an activity with highest priority level from PL2,1. In this case, a2,1 = 1.
As u2,1 = 1 < 4, a2,1 satisfies the resource availability constraint. Figure 5.4 shows the
procedure of solution updating.

3. Step 3: Repeat step 2 for every elements (t > 1) of the time axis matrix until all activities
are selected. The third Time Axis Matrix in Figure 5.4 shows the generated feasible
solution.
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Algorithm 6 Pseudo code of generating a feasible solution
1: Initialize activity pool list PLi,t , selected activity list SLi,t , predecessor lists Oi,ai,t , maximum

available workforce U and maximum time horizon T
2: Generate initial population with size of 2N randomly
3: Select one candidate individual randomly
4: For i ∈ {1, ..., I}, t ∈ {1, ....,T}
5: Check the suitability, priority and resource availability for each element ai,t
6:
7: (a) Suitability
8: If ai,t−1 ∈ PLi,t
9: replace ai,t with ai,t−1

10: Otherwise
11: If ai,t ∈ PLi,t
12: ai,t stays, goes to stage (b)
13: Otherwise replace ai,t with the next element from PLi,t , goes to stage (b)
14:
15: (b) Priority
16: If Oi,ai,t= /0
17: ai,t stays, goes to stage (c)
18: Otherwise, replace ai,t with the next element from PLi,t
19: Goes to stage (c)
20:
21: (c) Resource Availability
22: Calculate total workforce allocated at time t
23: If ∑

I
i=1 ui,ai,t ≤U

24: ai,t stays, update PLi,t , SLi,t and Oi,ai,t

25: start to check the criteria for element ai+1,t
26: Otherwise, replace ai,t with the next element from PLi,t
27: repeat stage (a), (b) and (c) until such element is found
28: Otherwise, assign ai,t with 0
29:
30: Until PLi,t = /0
31: Assign unfilled elements with zeros
32: Stop, a feasible individual is generated
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Figure 5.4: Illustration of Individual Upgrading

5.5.4 Fitness Evaluation

In the process of algorithm implementation, the values of objective functions are required to
be computed for selecting better solutions. There are three objective functions stated as above:
the total duration Ft , the total cost CTotal and the workforce efficiency Fr. As the schedule
is encoded as a time axis matrix, the latest finish time of sub-projects actually represent the
total duration. Hence, I search for the last element that is greater than zero from each row of
the matrix, the time t associated with the last non-zero element ai,t is the finish time of sub-
project i. The greatest t I find among all sub-projects equals to the value of the first objective
function. The total cost CTotal is comprised of the leasing cost, the transport cost and the labour
cost. For every unit time horizon, the increasing leasing cost is contributed by the previous
delivery materials that are either used for construction or stored in the laydown area and the
newly delivery materials at the beginning of time t. Transportation fee is charged every delivery
based on the amount of materials, therefore, a decision on the unit transportation cost will be
made each time I update the transportation cost. Finally, the work efficiency Fr is estimated by
calculating the variance of workforce utilization rate.
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5.5.5 Selection

The way of selection may vary from different algorithms, and the selection mechanism for
NSGA-II proposed by Deb et al. (2002) is adopted in our algorithm [66]. All individuals from
initial feasible population are ranked into different dominated fronts based on non-dominated
sorting procedure. For each individual q from this 2N population, the number of individuals that
dominate q and the set of individuals that q dominates are calculated. By updating these two en-
tities for every individual, the solutions are classified into different fronts and ranked from better
to worse [191]. The qualities of individuals from a same front is estimated by their crowding
distances, where a greater crowding distance gives a better quality. The crowding distance of a
individual measures the density of its surrounding solutions, which can be calculated by using
the following algorithm. Algorithm 7 shows the Pseudo code of crowding distance sorting. In
the algorithm 7, F is a Pareto front that consists of N individuals, while F [i]m represents the
mth objective value for ith individual in this front. f max

m and f min
m stand for the maximum and

minimum values for mth objective value.
Once non-dominated sorting is completed, the tournament selection mechanism would start

to be performed. A new parent population with N individuals is expected to generated through
selection procedure from the initial feasible solution with size of 2N. Individuals from different
non-dominated fronts are selected based on the rankings of these fronts, where better ranked
fronts will be selected before others until N individuals are all achieved. If the size of last
selected front is greater than the the number of individuals needed, individuals with better qual-
ities, which in this case is greater crowding distances, will be chosen first. Figure 5.5 shows the
selection procedure.

Algorithm 7 Pseudo code of crowding distance sorting
1: Initialize F , i, m, and F [i]distance
2: Set F [i]distance = 0
3: For each objective m
4: Sort(F , m) based on the objective function value in ascending order
5: F [1]distance = F [N]distance = ∞

6: For i = 2toN−1
7: F [i]distance = F [i]distance +(F [i+1]m−F [i−1]m)\( f max

m − f min
m )

8: End

5.5.6 Genetic Algorithm Operators

Crossover Operator and Mutation Operator

In our proposed algorithm, the single-point crossover proposed by Hartmann (2001) [192] and
Ghoddousi et al. (2013) [189] is applied. As the solutions are encoded as time axis matrices and
each column represents the activity arrangement for each sub-project at the same time, there-
fore, only one integer q1 is selected randomly. The elements from first q1 positions in the father
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Figure 5.5: Selection Procedure

chromosome would pass to the daughter chromosome with positions and values unchanged.
The positions from q1 + 1 to T in the daughter chromosome are inherit from mother chromo-
some by excluding the the chosen elements that are transferred from father chromosome. The
crossover procedure for generating daughter chromosome is illustrated in Figure 5.6, assuming
that q1 = 4. The mutation operation will be applied for every row in the time axis matrix. For
all elements ai,t , t = 1,2,3...T of each sub-project i = 1,2,3...I, two adjacent activities ai,t and
ai,t+1 would exchange with a probability of pmutation [192]. In this case, a new solution that
might not be obtained by crossover is generated through mutation, and the diversity of solutions
is improved consequently.

Feasible Offspring Generation

The solutions produced by crossover and mutation are not necessarily feasible as they might not
satisfy all three criteria described above. Therefore, every individual obtained through crossover
and mutation need to be checked and modified by applying the procedure of feasible solution
generation presented in Section 5.3, and a feasible offspring population with size N will be
produced. By combining the parent population and the offspring population, I could have a
combined population with size 2N. This combined population will stay in the loop of algorithm
for evolution until an optimal solution is produced or the termination conditions are reached.

5.5.7 Procedure of Modified NSGA-II

The procedure of modified NSGA-II is shown in Figure 5.7. Five main processes are included
in this algorithm, which are parameters initialization, solution encoding, fitness evaluation, in-
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Figure 5.6: Example of Crossover

dividual selection and GA operations. The iteration process in the procedure, which comprises
fitness evaluation, individual selection and GA operations, is kept ongoing as long as the Pareto
front solutions are obtained or the termination conditions are reached.

5.6 Scaffolding Project Case Study

5.6.1 Scaffolding Project Description

In order to verify the feasibility of our proposed mathematical model and algorithm, an industri-
al scaffolding project conducted for maintenance purpose in a LNG plant in Western Australia
is selected as a case study. According to our observation on site, I have discovered that there are
excessive unnecessary scaffold materials stored inside the gas plant which resulted in a great
waste in terms of cost on material leasing and the space utilization. In addition, the inappropri-
ate material management and project scheduling would consequently cause operation delays.

In order to reduce the overall cost on scaffolding construction and disassembly, an optimal
schedule with a demand driven material ordering plan should be designed. In this case study,
three scaffolding sub-projects are considered, namely A04, A03 and A02. As the scaffolding
construction for these three sub-projects follow a standard design, therefore, the scaffolding
activities are assumed to be the same for all sub-projects. The information regarding to the
demand of workers, planned duration as well as the demand of different types of scaffold com-
ponents for each activity is provided. Table 5.2 presents the number of required workers and the
total working hours for each activity from each sub-project. These activities are classified into
five stages, which are JCA-1 preliminary activity, JCA-2 scaffold construction, JCA-3 facility
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Figure 5.7: Flowchart of NSGA-II

Figure 5.8: Precedence Network of Scaffolding Activities
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Table 5.2: Workforce and Duration
Workforce Requirement Duration(Hour)

Stage Activity Series No. Activity Description
A04 A03 A02 A04 A03 A02

JCA-1

JCA-1-1 (1) Sign onto Permit 1 1 1 1 1 1

JCA-1-2 (2) Complete temporary access 2 2 2 2 3 2

JCA-1-3 (3) Mobilise tools and equipment 3 3 3 3 3 2

JCA-1-4 (4) Erect suitable barricading 2 2 2 2 2 2

JCA-2

JCA-2-1 (5) Erect scaffold level (0-2) 10 5 10 55 157 46

JCA-2-2 (6) Erect scaffold sair access to loading bay 3 5 5 184 243 173

JCA-2-3 (7) Erect scaffold tubing for DOP level (0-2) 10 1 10 2 14 2

JCA-2-4 (8) Drop objective protection level (0-2) 10 1 10 3 25 5

JCA-2-5 (9) Erect scaffold level (2-3) 10 5 10 79 308 85.5

JCA-2-6 (10) Erect scaffold tubing for DOP level (2-3) 10 1 10 2.5 27 3

JCA-2-7 (11) Drop objective protection level (2-3) 10 2 10 4 24 9

JCA-2-8 (12) Erect scaffold level (3-4) 10 5 10 38 137 23

JCA-2-9 (13) Erect scaffold tubing for DOP level (3-4) 1 10 10 12 1 1

JCA-2-10 (14) Drop objective protection level (3-4) 1 10 10 19 2 2

JCA-2-11 (15) Conduct final inspection 2 2 2 1 2 1

JCA-3 JCA-3 (16) Scaffold inspection and maintenance 0 1 1 952 498 500

JCA-4

JCA-4-1 (17) Sign onto Permit 1 1 1 1 1 1

JCA-4-2 (18) Complete temporary access 2 2 2 1 2 1

JCA-4-3 (19) Mobilise tools and equipment 3 3 3 2 2 1

JCA-4-4 (20) Erect suitable barricading 2 2 2 1 2 1

JCA-5

JCA-5-1 (21) Remove drop objective protection level (3-4) 10 10 10 1 1 1

JCA-5-2 (22) Dismantle scaffold tubing for DOP level (3-4) 10 10 10 1 1 1

JCA-5-3 (23) Dismantle scaffold level (3-4) 10 9 9 19 39 13

JCA-5-4 (24) Dismantle scaffold sair access to loading bay 3 4 4 92 155 95

JCA-5-5 (25) Remove drop objective protection level (2-3) 10 9 9 2 3 5

JCA-5-6 (26) Dismantle scaffold tubing for DOP level (2-3) 10 9 9 1 2 2

JCA-5-7 (27) Dismantle scaffold level (2-3) 10 9 9 40 86 48

JCA-5-8 (28) Remove drop objective protection level (0-2) 10 9 9 2 2 3

JCA-5-9 (29) Dismantle scaffold tubing for DOP level (0-2) 10 9 9 1 1 1

JCA-5-10 (30) Dismantle scaffold level (0-2) 10 9 9 28 44 26

JCA-5-11 (31) Stack scaffold material and send back to warehouse 2 2 2 3 3 2
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Table 5.3: Unit Weight for Scaffold Components

Series No. Component Type Unit Weight(KG) Series No. Scaffold Type Unit Weight (KG)

1 Scaffold Tube 0300 1.35 2 Scaffold Tube 0600 2.7

3 Scaffold Tube 0900 4.05 4 Scaffold Tube 1200 5.4

5 Scaffold Tube 1500 6.75 6 Scaffold Tube 1800 8.1

7 Scaffold Tube 2100 9.45 8 Scaffold Tube 2400 10.8

9 Scaffold Tube 2700 12.15 10 Scaffold Tube 3000 13.5

11 Scaffold Tube 3300 14.85 12 Scaffold Tube 3600 16.2

13 Scaffold Tube 3900 17.55 14 Scaffold Tube 4200 18.9

15 Scaffold Tube 4500 20.25 16 Scaffold Tube 4800 21.6

17 Scaffold Tube 5100 22.95 18 Scaffold Tube 5400 24.3

19 Sole Board 2.57 20 Hyplank 900 5.13

21 Hyplank 1200 6.84 22 Hyplank 1500 8.55

23 Hyplank 1800 10.26 24 Hyplank 2100 11.97

25 Hyplank 2400 13.68 26 Hyplank 2700 15.39

27 Hyplank 3000 17.1 28 Coupler Double 1.3

29 Coupler Girder 1.5 30 Coupler Putlog (Hook) Square 0.6

31 Coupler Putlog (Half) 0.7

maintenance, JCA-4 preliminary activity (2) and JCA-5 scaffold dismantling. As the time t

considered in our mathematical model is defined as an integer, therefore, the duration of each
activity is rounded up to its nearest integer. Table 5.3 indicates the unit weight for 31 types of
scaffold components used for the scaffolding project, and each type of component is assigned
with a series number. The demands of 31 types of scaffold component for each activity from
each sub-project are shown in Tabel 5.4, Table 5.5 and Table 5.6 respectively in the form of
sparse matrices where only none-zero entries are presented. The position (a,b) in these Tables
represents the demand of bth scaffold component for ath activity. For example, position (5,1)
and value 6 in Table 5.4 means the demand of 1st component for 5th activity in sub-project
A04 is 6 pieces. The series numbers for activities and components can be found in Table 5.2
and Table 5.3. The leasing cost is defined as 4.5 dollars per ton per hour and the labour cost
γ equals to 90 dollars per hour per worker. For transportation cost β , when a = 3 and b = 6,
I have β1 = 65, β2 = 55 and β3 = 45. The maximum number of available workers is set as
U = 20 and the maximum project makespan is F = 2000 where the unit time is defined as an
hour. The precedence network of scaffolding activities for each sub-project is shown in Figure
5.8. One activity can only be conducted when all its predecessors are completed, for example,
only when activity JAC-3 is finished can activity JAC-4-1 be started.
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Table 5.4: Material Demand for Each Activity of A04

A04

Position Value Position Value Position Value Position Value Position Value

(5,1) 6 (9,6) 33 (9,11) 77 (10,17) 8 (31,24) -55

(9,1) 11 (12,6) 12 (12,11) 63 (13,17) 6 (5,25) 11

(12,1) 6 (31,6) -67 (31,11) -173 (31,17) -20 (9,25) 33

(31,1) -23 (5,7) 6 (5,12) 33 (6,19) 38 (12,25) 11

(5,2) 110 (6,7) 48 (9,12) 77 (31,19) -38 (31,25) -55

(9,2) 220 (9,7) 11 (12,12) 68 (5,20) 6 (5,26) 11

(12,2) 13 (12,7) 6 (31,12) -178 (9,20) 11 (9,26) 33

(31,2) -343 (31,7) -71 (5,13) 55 (12,20) 6 (12,26) 11

(5,3) 6 (5,8) 33 (9,13) 165 (31,20) -23 (31,26) -55

(9,3) 11 (9,8) 77 (12,13) 30 (5,21) 6 (5,27) 165

(12,3) 6 (12,8) 58 (31,13) -250 (9,21) 11 (9,27) 385

(31,3) -23 (31,8) -168 (5,14) 11 (12,21) 6 (12,27) 232

(5,4) 22 (5,9) 6 (9,14) 11 (31,21) -23 (31,27) -782

(7,4) 22 (9,9) 11 (12,14) 7 (5,22) 6 (5,28) 1551

(9,4) 33 (12,9) 6 (31,14) -29 (9,22) 11 (6,28) 296

(10,4) 24 (31,9) -23 (5,15) 33 (12,22) 6 (7,28) 42

(12,4) 12 (5,10) 22 (9,15) 77 (31,22) -23 (10,28) 45

(13,4) 20 (7,10) 6 (12,15) 4 (5,23) 6 (13,28) 42

(31,4) -133 (9,10) 33 (31,15) -114 (9,23) 11 (31,28) -1976

(5,5) 6 (10,10) 6 (5,16) 22 (12,23) 6 (5,29) 343

(9,5) 11 (12,10) 12 (9,16) 33 (31,23) -23 (31,29) -343

(12,5) 6 (13,10) 6 (12,16) 19 (5,24) 11 (5,30) 220

(31,5) -23 (31,10) -85 (31,16) -74 (9,24) 33 (6,30) 40

(5,6) 22 (5,11) 33 (7,17) 6 (12,24) 11 (31,30) -260

(5,31) 1155

(31,31) -1155
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Table 5.5: Material Demand for Each Activity of A03

A03

Position Value Position Value Position Value Position Value Position Value

(5,1) 11 (31,8) -11 (5,14) 66 (31,21) -22 (31,27) -1760

(31,1) -11 (5,9) 55 (9,14) 88 (5,22) 11 (5,28) 550

(5,2) 110 (9,9) 110 (12,14) 23 (6,22) 10 (6,28) 200

(6,2) 61 (12,9) 58 (31,14) -177 (9,22) 11 (7,28) 35

(9,2) 330 (31,9) -223 (5,15) 110 (31,22) -32 (9,28) 1650

(12,2) 114 (5,10) 33 (9,15) 165 (5,23) 11 (10,28) 32

(31,2) -615 (7,10) 6 (12,15) 55 (6,23) 10 (12,28) 1342

(5,3) 11 (9,10) 77 (31,15) -330 (9,23) 11 (13,28) 35

(6,3) 61 (10,10) 6 (5,16) 55 (31,23) -32 (31,28) -3844

(31,3) -72 (12,10) 9 (9,16) 46 (5,24) 11 (5,29) 110

(5,4) 11 (13,10) 6 (31,16) -101 (9,24) 11 (7,29) 42

(7,4) 24 (31,10) -137 (7,17) 10 (12,24) 4 (9,29) 330

(10,4) 21 (5,11) 55 (10,17) 8 (31,24) -26 (10,29) 35

(13,4) 24 (9,11) 110 (13,17) 10 (5,25) 11 (12,29) 114

(31,4) -80 (12,11) 51 (31,17) -28 (9,25) 33 (31,29) -631

(5,5) 11 (31,11) -216 (5,19) 40 (12,25) 11 (5,30) 55

(9,5) 44 (5,12) 88 (6,19) 62 (31,25) -55 (9,30) 110

(12,5) 12 (9,12) 132 (31,19) -102 (5,26) 22 (12,30) 55

(31,5) -67 (12,12) 88 (5,20) 11 (9,26) 22 (31,30) -220

(5,6) 11 (31,12) -308 (6,20) 10 (12,26) 11 (5,31) 330

(31,6) -11 (5,13) 44 (9,20) 11 (31,26) -55 (9,31) 770

(5,7) 11 (9,13) 66 (31,20) -32 (5,27) 330 (12,31) 394

(31,7) -11 (12,13) 46 (5,21) 11 (9,27) 990 (31,31) -1494

(5,8) 11 (31,13) -156 (9,21) 11 (12,27) 440
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Table 5.6: Material Demand for Each Activity of A02

A02

Position Value Position Value Position Value Position Value Position Value

(5,1) 11 (5,6) 11 (31,12) -79 (6,19) 62 (9,26) 33

(9,1) 17 (9,6) 11 (5,13) 33 (31,19) -62 (31,26) -55

(31,1) -28 (12,6) 11 (9,13) 33 (5,20) 11 (5,27) 220

(5,2) 11 (31,6) -33 (12,13) 33 (6,20) 10 (9,27) 550

(6,2) 61 (5,7) 11 (31,13) -99 (9,20) 11 (12,27) 85

(9,2) 11 (6,7) 48 (5,14) 11 (31,20) -32 (31,27) -855

(12,2) 11 (9,7) 11 (9,14) 33 (5,21) 11 (5,28) 440

(31,2) -94 (12,7) 11 (12,14) 12 (9,21) 11 (6,28) 296

(5,3) 11 (31,7) -81 (31,14) -56 (31,21) -22 (7,28) 34

(6,3) 61 (5,8) 24 (5,15) 55 (5,22) 11 (9,28) 550

(9,3) 11 (9,8) 33 (9,15) 110 (6,22) 10 (10,28) 35

(12,3) 11 (12,8) 22 (12,15) 36 (9,22) 11 (12,28) 163

(31,3) -94 (31,8) -79 (31,15) -201 (31,22) -32 (13,28) 34

(5,4) 11 (5,10) 11 (5,16) 33 (5,23) 11 (31,28) -1552

(7,4) 23 (7,10) 6 (9,16) 110 (6,23) 10 (5,29) 220

(9,4) 11 (9,10) 28 (12,16) 32 (9,23) 11 (9,29) 220

(10,4) 24 (10,10) 6 (31,16) -175 (31,23) -32 (12,29) 35

(12,4) 11 (13,10) 6 (5,17) 11 (5,24) 22 (31,29) -475

(13,4) 24 (31,10) -57 (7,17) 8 (9,24) 33 (5,30) 55

(31,4) -104 (5,11) 13 (9,17) 11 (31,24) -55 (6,30) 40

(5,5) 11 (31,11) -13 (10,17) 8 (5,25) 22 (9,30) 55

(9,5) 11 (5,12) 24 (12,17) 11 (9,25) 33 (31,30) -150

(12,5) 11 (9,12) 33 (13,17) 8 (31,25) -55 (5,31) 110

(31,5) -33 (12,12) 22 (31,17) -57 (5,26) 22 (9,31) 220

(12,31) 132

(31,31) -462

97



5.6.2 Scaffold Case Study Analysis

The proposed optimization model presented in Section 4.2 and the NSGA-II algorithm de-
scribed above are applied to generate the optimal solutions for the scaffold case study. The
model and algorithm has been programmed in Matlab R2015a with the population size of 100
and maximum iteration of 100. Table 5.7 shows the various parameters that need to be initial-
ized before running our proposed algorithm. As the maximum duration of project makespan is
preset as F = 2000, therefore, the optimal schedule generated would be produced in the form
of a time axis matrix, T S = [ai,t ] ∈R3×2000, which is too large to present in this chapter, here-
by, a compiled timetable is presented instead. The best 30 solutions obtained by the proposed
NSGA-II algorithm for the scaffold case study is shown in Table 5.8, and the range of project
duration, total cost and the variation of workforce usage in the these solutions are 1791−1803,
6.6003−6.603 and 0.0532−0.0546 respectively. It has to be mentioned that the value of total
cost presented in Table 5.8 is the logarithm to base 10 of the actual total cost. Figure 5.9 indi-
cates the dispersion of these 30 solutions correspondingly, and the figure on the right shows the
Pareto-optimal solutions for scaffold case study.

Table 5.7: Parameters Initialization
Model Parameters:

Number of objective functions: 3

Number of constraints: 12

Number of decision variables: 3

Algorithm Parameters:

Number of Population: 100

Maximum number of iterations: 100

Crossover rate: 0.7

Mutation rate: 0.1

Problem Parameters:

Number of sub-projects: 3

Number of activities for each sub-project: 31

Duration of each activity: di j

Demand of scaffold component: pm
i j, shown in Table 5.4

Demand of workforce: ui j

Leasing cost: $ 4.5 per ton per hour

Labour cost: $ 90 per worker per hour

Transport cost: β1 = $65,β2 = $55,β3 = $45 where a = 3,b = 6

As it can be seen from the Table 5.8, the optimal durations for these 30 solutions varies be-
tween 1791−1803. For achieving a shorter makespan, it tends to have either a higher total cost
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Table 5.8: Results for Scaffold Case Study

Solution No. Duration Variation of Workforce Efficiency Total Cost

1 1791 0.053574681 6.6025259

2 1792 0.053674626 6.6005049

3 1791 0.054610771 6.6015335

4 1794 0.053704123 6.6004969

5 1798 0.053473899 6.6003281

6 1792 0.053582112 6.6013129

7 1798 0.053353285 6.6003603

8 1795 0.053754458 6.6003725

9 1799 0.053388927 6.6003386

10 1800 0.053475072 6.6003177

11 1798 0.053640827 6.6003030

12 1802 0.053269486 6.6003762

13 1791 0.053506637 6.6025371

14 1796 0.053608927 6.6004005

15 1801 0.053292614 6.6003748

16 1791 0.054146469 6.6031579

17 1793 0.053645575 6.6005079

18 1791 0.053875408 6.6026596

19 1793 0.053611832 6.6015111

20 1801 0.053552894 6.6003071

21 1802 0.053542447 6.6003123

22 1801 0.053378482 6.6003374

23 1803 0.053444234 6.6003348

24 1798 0.053444905 6.6003438

25 1798 0.053483229 6.6003184

26 1800 0.053589207 6.6003035

27 1797 0.053581609 6.6003693

28 1794 0.053624123 6.6005071

29 1797 0.053371497 6.6003373

30 1791 0.053420938 6.6028026
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Figure 5.9: Pareto front solutions of the scaffold case study

or a greater variation of working efficiency. For example, the comparison between the results
of solution 1 and solution 23 demonstrate this trend. Solution 1 provides the shortest project
duration of 1791 while solution 23 has the longest duration of 1803. However, the total project
cost for solution 23 is 6.6003 which is smaller than 6.6025 for solution 1 and the variation of
working efficiency for solution 23 is slightly smaller than that of solution 1. Similarly, as indi-
cated by Figure 5.9, it can be also found that, when the duration is the same, the total project
cost would increase when the variation of working efficiency decreases. For example, solution
20 has a higher variation of working efficiency but a lower total cost comparing to the results of
solution 22 while they have the same duration of 1801. Therefore, the selection of the best so-
lution to be executed can be dependent on the priority among duration, working efficiency and
total cost. Figure 5.10 presents the compiled timetable of the scaffolding case study for solution
1 with duration of 1791. It can be found that the sub-project A03 has the latest completion time
while sub-project A02 would be finished first. There are interruptions within the sub-project
A02 and A04, which indicate that during these periods, the workforce resource is not enough
for operating 3 sub-projects simultaneously. As commonly understood, the best material order-
ing plan is delivering the exact amount of demand. With the timetable generated, the demand of
scaffold material at any time can be estimated by adding the demand for all activities scheduled
at that time. In order to show the variation of demand over the project, Figure 5.11 presents the
demand of scaffold material in tonnage per day during the scaffolding construction phase. As
I can see from Figure 5.10, the construction phase in this case would be the first 1000 hours,
and I assume that the available working hours per day are 10 hours. These results reveal that
our model and algorithm is feasible to solve the practical problems and achieve the expected
solutions.
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Figure 5.10: Timetable for Scaffold Case Study

Figure 5.11: Demand per day for Scaffold Material
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5.6.3 Parameter Sensitivity Analysis

In order to verify the performance of the proposed algorithm, I generated 10 best solutions re-
sulting from running the algorithm after the 10th, 20th, 30th, 40th, 50th and 100th iterations,
which are shown in Figure 5.12, Figure 5.13 and Figure 5.14 respectively. Throughout com-
parison, it can be seen that the results converge towards the Pareto-optimal fronts with keeping
the diversity in solutions with the increasing of iterations. Better solutions are produced with
the running of the algorithm and the dominated solutions are eliminated until the Pareto-optimal
solutions are obtained. As shown in Figure 5.14, most of the non-dominated solutions are found
after 50th generation.

Figure 5.12: 10 Best solutions after 10th and 20th generation

Figure 5.13: 10 Best solutions after 30th and 40th generation

The maximum number of available workers is one of the most important constraints in the
proposed SSC optimization model, and it has a critical impact on the optimal solutions gener-
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Figure 5.14: 10 Best solutions after 50th and 100th generation

Table 5.9: Results under Different Available Workforces
Maximum Workforce Duration Variation of Workforce Efficiency Total Cost

15 1893 0.046675 6.52838

16 1865 0.048139 6.540316

17 1811 0.050706 6.549362

18 1812 0.05214 6.571704

19 1791 0.053352 6.583021

20 1791 0.053296 6.602984

21 1791 0.053573 6.620042

22 1791 0.053788 6.636457

23 1791 0.054436 6.650454

24 1791 0.06093 6.665693

25 1791 0.096416 6.680481
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Figure 5.15: Objective values under different workforce allocations

ated through our algorithm. In order to verify the flexibility of our model and algorithm and
investigate the influence of different workforce constraints on the generation of solutions, I cal-
culated the values of objective functions with different U , where U varies from 15 to 25. For
each U , I select one of the best Pareto-optimal solutions, and the variations of the values are
shown in Table 5.9 and Figure 5.15. In Figure 5.15, the X axis represents the number of maxi-
mum workforce while the Y axes represent the variation of workforce efficiency, the logarithm
to base 10 of the total cost, the logarithm to base 10 of the total duration respectively. As I can
see that, with the increase of U , the total duration of the scaffold project would decrease first
and then keep unchanged, while the variation of workforce efficiency and the total cost would
increase steadily. This comparison reveals the fact that when there are more available resources
to be utilized and allocated, more activities can be conducted simultaneously and the total du-
ration of project could be reduced. As a consequence, the total cost would increase caused by
the increment of the investment on resources. However, on the other hand, providing excessive
amount of available resources would result in the wastes, such as idling workforce, which is
demonstrated by the increasing of the variation of workforce efficiency in Figure 5.15. It is
worth mentioning that, providing more available resources would not necessarily reduce the
duration of project. For example, in real life, the number of workers assigned to a construction
activity is restricted by many factors, such as the working space. Even though more workers can
be utilized for the job, the working space limits the maximum number of workforce allocated.
This comparison also demonstrates that our proposed model and algorithm could not only help
the project managers with the scheduling of activities but also the designing of project parame-
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ters. The managers could choose the the proper solutions according to their preference between
time, cost and the efficiency of resource utilization.

5.7 Conclusion

This chapter studies the supply chain optimization problem in a scaffolding construction and
disassembly context. The proposed scaffold supply chain (SSC) optimization problem aims
to deal with the resource constrained project scheduling problem and material ordering prob-
lem simultaneously. A multi-objective optimization model for SSC optimization problem is
constructed to generate optimal solutions of project scheduling with the goals to minimize the
project makespan, total cost and maximize the efficiency of resource utilization. According to
the characteristics of our proposed optimization model, a modified non-dominated sorting ge-
netic algorithm (NSGA-II) is presented to seek for the Pareto-optimal solutions. Based on a real
life scaffolding project, the effectiveness and feasibility of our proposed model and algorithm
for solving practical problems are verified. A comparison between the values of objectives
under different limitations of available workforce has been conducted, which indicates that by
providing more available resources, the duration of project and the workforce efficiency would
reduce correspondingly while the total cost would increase. However, the duration tends to
keep unchanged when the excessive resources are provided. These results manifest that the
proposed SSC optimization model and the modified NSGA-II are practical in solving the time-
cost-resource trade-off problems and would be beneficial to the project managers.
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CHAPTER 6

CONCLUSION AND FUTURE
RESEARCH

6.1 Findings and Contributions

In this thesis, I identified that optimizing the construction project scheduling is the key to
improve the performance of construction supply chain (CSC). On this basis, three practical
sub-problems of construction supply chain optimization are considered, and the corresponding
mathematical models are proposed with the intention of optimizing the values of CSC perfor-
mance indicators such as time and cost. These three sub-problems are described under different
scenarios and considerations respectively, and meta-heuristic algorithms are developed to gen-
erate the most effective project schedules. Our main contributions are summarized as follow.

In Chapter 3, I considered a general problem of the construction supply chain optimization.
In our description of general CSC, construction materials flow from the suppliers to the con-
struction projects, while contractors take the responsibilities of the construction project manage-
ment. Based on this scenario, the deterministic construction supply chain optimization problem
(CSCOP) was formulated, which considered the precedence relations between activities and the
resource constraints. In our proposed mixed integer programming model, the objective was set
as the minimization of total CSC cost which included material management cost and labour cost.
As the extended version of RCPSP, the CSCOP is a NP-hard problem. Therefore, I proposed
a modified genetic algorithm (GA) that introduced a sequence-based representation of chromo-
some and a schedule generation scheme for generating feasible individuals. A case study based
on a practical scaffolding construction project was conducted, and the results indicated that our
proposed model and algorithm can solve real world problems in relation to construction supply
chain cost optimization. In addition, the impact of parameters including the maximum number
of workforce on-site and population size of GA was identified. By conducting four experimen-
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tal instances which consisted of 15, 20, 25 and 30 activities, the results illustrated that the best
allocation of the budget on labour cost could assist the project managers to produce a better
project schedule. The formulation of the deterministic CSCOP discussed in this chapter identi-
fied the main contributors of the total CSC cost and the general constraints that should be taken
into consideration in the context of construction supply chain optimization.

In Chapter 4, I considered the integration of the CSCOP and resource selection problem in
an uncertain environment. In reality, for accomplishing the same task, there are always several
alternative methods available. Especially for construction operations, these alternative methods
are normally based on the selection of different resources including equipment and materials,
and each method would trigger a series of activities. Based on this scenario, the budget con-
strained construction supply chain optimization with rental resource selection (SCSCO) prob-
lem was formulated. The SCSCO extended the model of CSCOP by considering the resource
selection, stochastic activity durations and budget constraint. A stochastic mathematical model
of SCSCO was constructed based on the chance-constraint programming with the objective of
minimizing the total makespan while the total CSC cost was controlled within the budget. A
hybrid algorithm that integrated sample average approximation (SAA) and particle swarm op-
timization (PSO) was proposed for dealing with the SCSCO. The SAA acted as the external
algorithm for sampling and the scenarios of our proposed SCSCO and converting the stochas-
tic model into the deterministic model, while the PSO was utilized as the internal algorithm
to cope with the deterministic SAA problems. A novel representation of particle for PSO was
introduced and a checking and adjusting procedure was designed for generating feasible parti-
cles. A case study that consists of five optional rental equipment was conducted and the results
showed that our proposed model and algorithm were effective for dealing with the practical
SCSCO problems. The formulation of SCSCO problem was the upgraded version of CSCOP
which considered the uncertainty in construction projects and alternative execution methods
for construction operations, which could assist the project managers to make the decisions on
the selections of execution methods and generation of appropriate project schedules that could
optimize the CSC.

In Chapter 5, I considered a multi-objective problem of the construction supply chain op-
timization, specifically for scaffolding construction projects. The expenditure on scaffolding
construction has long been regarded as one of the main contributor for the operational cost of
construction projects, especially for mega-projects that consist of multiple sub-projects. Based
on this scenario, a multi-objective scaffold supply chain optimization problem (MOSSCOP) that
considered the recycling of scaffolding materials was formulated. In our mathematical model,
three criteria were proposed for evaluating the performance of scaffold supply chain (SSC),
namely, time, cost and workforce efficiency. The composition of total SSC cost was identi-
fied as the sum of material leasing cost, transportation cost and labour cost. A non-dominated
sorting genetic algorithm (NSGA-II) was modified and applied for resolving MOSSCOP which
introduced the time axis matrix for solution encoding. A real project based case study that com-
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prises 31 activities was conducted and the results manifested the feasibility and effectiveness of
our proposed model and algorithm. As the extended version of CSCOP, our model and algorith-
m for MOSSCOP provided the solution for tackling the time-cost-efficiency trade-off problems
in SSC, and even in CSC and construction project management.

In summary, this thesis investigated the problems existed in CSC and the methodologies
for optimizing the performance of CSC. The nature of CSC, that is the dependency with spe-
cific construction projects, reveals the fact that a better construction project schedule could
lead to a efficient management of CSC. In this case, I developed three mathematical models
of CSCOP that contain the deterministic single-objective model, stochastic model and multi-
objective model respectively, and each model was formulated based on practical scenarios.
Meta-heuristic algorithms were chosen as the methodology for resolving these three models
with data input from real life projects. Hence, this thesis will contribute in providing a practical
solution for optimizing the performance of CSC under different scenarios and with different
considerations.

6.2 Directions of Future Research

This thesis represents three formulations of construction supply chain optimization problem
(CSCOP), which has resulted in a new path and a novel solution to improve the integration
and performance of CSC. It can be observed that our three proposed mathematical models
contain the main practical considerations in the context of construction projects and the adopted
meta-heuristic algorithms are computationally effective for solving these three sub-problems of
CSCOP. Despite these contributions, this research also has some limitations that need to be
addressed in the future research in order to make a further advancement.

First of all, the lateness of materials or resources supply are not considered. In the three
sub-problems discussed in this research, I assumed that all required materials were delivered
on time regardless of the ordering plan. However, in reality, there might exist the early or late
arrival of construction materials. Therefore, the research can be extended by considering the
penalty of lateness of material delivery. Secondly, none of the three sub-problems considered
uncertainty and multi-objective simultaneously. The SCSCO problem in Chapter 4 was for-
mulated as a single objective model with stochastic activity durations, while the MOSSCOP
in Chapter 5 considered three objectives with fixed activity durations. As such, in our future
research, an extended model that comprises the considerations of multi-objective and uncertain
duration activities will be developed. Last but not least, new meta-heuristic algorithms with bet-
ter performance are expected to be developed and implemented. The meta-heuristic algorithms
adopted in this research were based on classic algorithms such as GA and PSO, however, there
are also many newly developed meta-heuristics that can be applied to deal with our CSCOP. In
this case, I will develop and testify these novel meta-heuristics on our problems and select the
best performed ones.
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