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A B S T R A C T

We propose a new time-bucket MILP model for lot-sizing and scheduling problems arising in chemical batch
plants. The main idea behind time-bucket models is to partition time into fixed-length macroperiods and
flexible length microperiods, that lie within the macroperiods. We show that the time-bucket model benefits
from advantages of both continuous and discrete time representations. It allows to include important real-
world constraints, can be solved with moderate computational effort, and thus promotes MILP for large-scale,
industrial problems. We investigate the scalability of the model and apply it to a formulation and filling process
from an industrial agrochemical production with 7 formulation lines, intermediate buffer tanks, and 7 filling
lines. We optimize a one month period with 50 intermediates, and 83 finished products. A comparison of the
MILP solution to a discrete event simulation solution shows that 17% of production capacity can be freed up
and significant improvement in on-time delivery.
1. Introduction

Production scheduling of large-scale, industrial processes is widely
recognized as a challenging optimization task both by academic and
industrial researchers. With an increasing availability of real-time pro-
cess data, ever-growing computational capabilities, and the advance of
digital twins, optimal production scheduling has gained new relevance.
However, there is still a large gap between industrial reality and
academic research. As pointed out in Harjunkoski (2016), practitioners
are confronted with many different challenges, when building their
solutions in an industrial environment. While mixed-integer program-
ming (MIP) is a well established optimization technique in asset-heavy
industries such as petrochemicals (Castro et al., 2018) and discrete
manufacturing industries such as semiconductors (Qin et al., 2019) and
automotive (Gnoni et al., 2003), it is relatively new to industries such
as specialty chemicals (Borisovsky et al., 2019), pharma (Sarin et al.,
2014; Costa, 2015), and consumer goods (Sel et al., 2015; Clark et al.,
2011). New, industry-specific requirements for scheduling solutions
arise, which have to be harmonized with the natural drawbacks of MIP:
Since MIP models suffer from the curse of dimensionality, they are lim-
ited in modeling depth and quickly grow to intractable size. However,
optimal decisions in real-world production environments require suf-
ficiently detailed models. In addition, setting up and maintaining MIP
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models is a difficult task as model formulations often are abstract and
hard to understand intuitively. Alternatives such as discrete event simu-
lation (DES) allow high-fidelity modeling and fast solution times, but do
not provide bounds on the solutions. Therefore the quality of simulation
results can only be assessed by applying exhaustive search strategies,
for instance by exploring sets of dispatching rules. Optimality criteria
to terminate the solution process prematurely cannot be used with DES.
Despite extensive research efforts with MIP and DES (Castro et al.,
2011; Frazzon et al., 2016; Nikolopoulou and Ierapetritou, 2012), real-
world scheduling problems with dozens of products and machines,
secondary resources, changeover costs, and lot-sizing still can only be
solved sub-optimally or require massive computational resources.

Herein we propose a new time-bucket mixed-integer linear pro-
gramming (MILP) model for lot-sizing and scheduling problems arising
in multistage production processes. The main idea behind time-bucket
models is to partition time into fixed-length macroperiods and flexible
length microperiods, that lie within the macroperiods. This model
formulation allows to include important real-world constraints and can
be solved with moderate computational resources.

To investigate the properties of the proposed time-bucket formula-
tion we run 50 random instances for different model configurations,
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and discuss solution time as well as convergence of the bounds. Sub-
sequently, we apply our approach to a real-world case study of a
large-scale industrial make-and-fill process of an agrochemical produc-
tion plant. We show that our modeling approach is able to capture the
different characteristics of the problem efficiently and provides near-
optimal schedules of a 1-month production data set with moderate
computational effort. To validate the MILP results, we reconcile them
with a validated DES model of the process. We then compare the re-
sulting schedule to the real production schedule, which was developed
by production experts using the DES model only.

The rest of the article is structured as follows: In Section 2 we
provide a problem classification, and an overview of the recent liter-
ature. In Section 3 we describe the generic flow shop MILP model,
the two-step solution procedure, and introduce the terminology. In
Section 4 we discuss the scalability of the model. We analyze solution
times and the convergence of upper and lower bound for different
model configurations. In Section 5 we discuss a real-world case study.
We introduce the make-and-fill process of an agrochemical production
plant and apply our modeling approach to a one-month production
period. Thereafter, we reconcile the MILP results with a validated DES
model of the process and compare the reconciled result to a real-word
production plan. In Section 6 we give a conclusion and an outlook for
future work.

2. Literature

2.1. General classification

Scheduling problems are traditionally classified by the triplet 𝛼 / 𝛽
/ 𝛾, where 𝛼 stands for the machine environment, 𝛽 for the processing
characteristics and constraints and 𝛾 for the choice of the objective
function (Pinedo, 2008). Accordingly, we introduce our scheduling
problem as (𝛼) a flexible flow shop with (𝛽) sequence-dependent setup
times, machine availability and eligibility constraints given the objec-
tives (𝛾) of total weighted tardiness minimization and changeover cost
minimization.

The authors of Méndez et al. (2006) suggest a detailed classification
of batch scheduling problems with respect to the (1) process topology,
(2) equipment assignment, (3) equipment connectivity, (4) inventory
storage policies, (5) material transfer, (6) batch size, (7) batch pro-
cessing time, (8) demand patterns, (9) changeovers, (10) resource con-
straints, (11) time constraints, (12) cost, and (13) degree of certainty. In
this framework our problem classifies as a (1) multistage flowshop with
(2) variable equipment assignment, (3) restricted equipment connectiv-
ity, (4) finite, shared intermediate storage, (5) instantaneous material
transfer, (6) variable batch size, (7) product-, equipment-, and batchsize
dependent processing time, (8) multiproduct demand with multiple due
dates, (9) sequence- and equipment-dependent changeover times, (10)
discrete equipment and personnel resource constraints, (11) individual
shift schedules per stage, (12) backlog and changeover costs, that is
(13) deterministic.

In addition to these two classifications, the authors of Georgiadis
et al. (2019) highlight the importance of (1) the optimization decisions,
and (2) time representation, which we will review in the following
sections.

2.2. Optimization decisions: Simultaneous lot-sizing and scheduling

Optimization decisions refer to the decision variables of a model
and are directly related to model depth and solution effort. While
scheduling is the task of selecting a product, a processing resource and
the timing of production, lot-sizing is the task of defining the batch
size or the quantity of a production campaign. This additional degree
of freedom adds significant complexity to conventional scheduling
problems because continuous variables are introduced, that must be
taken into account by the time representation. Simultaneous lot-sizing
2

and scheduling is an active research area in the operations research and
process system engineering community. We review the state-of-the art
of problem formulations and solution approaches as well as use cases
in the following.

In operations research, especially in supply chain management
and logistics, simultaneous lot-sizing and scheduling have been stud-
ied over a long time. The multi-level capacitated lot-sizing problem
(MLCLSP) (Tempelmeier and Helber, 1994) describes interactions of
lot-sizing decisions across multiple, capacity-constrained production
stages. The authors of Meyr (2004) define the generalized lot-sizing
and scheduling problem for multiple production stages (GLSPMS). The
authors of Seeanner and Meyr (2013) suggest several enhancements to
this framework to make it more flexible for different problem settings of
the consumer packaged goods industry. A recent overview of lot-sizing
and scheduling with resource constraints can be found in Wörbelauer
et al. (2019).

Due to the model complexity, the application of deterministic math-
ematical optimization algorithms lead to prohibitive solutions times.
Instead, heuristic or meta-heuristic solution approaches are being used
frequently. In Berretta et al. (2005) a multilevel lot-sizing problem
with general product structures, setup times, and lead times is solved
using heuristics to find good solutions efficiently. Tabu search with
simulated annealing components are adopted to refine the solutions.
In Toledo et al. (2013) a hybrid multi-population genetic algorithm
applied to solve the multi-level capacitated lot-sizing problem with
backlogging. In Wu et al. (2013), a MIP formulation for an instance of
the same problem as in Toledo et al. (2013) is adopted and a solution
algorithm based on temporal decomposition is suggested. The authors
of Qin et al. (2019) use ant-colony optimization in a two-state solution
procedure to address a flow-shop scheduling problem with lot-sizing
and calendar constraints in printed circuit board assembly. The authors
of Clark et al. (2011) consider a lot-sizing and scheduling problem with
sequence-dependent changeover times of an animal nutrition plant as
an asymmetric traveling salesman problem and propose an iterative
solution approach based on subtour elimination and patching steps.

In the process system engineering community, different real-world
case studies have recently been solved.

In Elzakker et al. (2012), a short-term scheduling problem aris-
ing from a multiproduct, mix-and-pack process in the fast-moving
consumer goods industry is solved. The authors adopt a unit-specific
continuous time representation and additionally define dedicated time
intervals, which only allow specific groups of products to be produced.
Furthermore, the time intervals of the mixing and packing stage are
coupled to model the intermediate buffers efficiently. However, with
8 products and only one mixing and two packaging lines the problem
size is limited.

In Georgiadis et al. (2020), a multistage real-life food processing
plant with 35 products and sequence-dependent changeover times is
considered. The authors reduce model complexity by reformulating a
production stage, that consists of batch processing units and cannot
become the bottleneck, as a simpler resource constraint. The problem
is solved by a decomposition approach in which the products to be
scheduled are optimized iteratively, which has the disadvantage that
the order between already scheduled products is fixed and may lead
to suboptimal solutions. In Basán et al. (2019), an efficient MILP-
based decomposition strategy is introduced to solve a flexible flow shop
problem arising from the two-stage discrete manufacturing process of
vessels for the offshore oil and gas industry. Instead of tackling the
full problem size at once, first, in a solution construction phase, all
jobs are successively inserted into a schedule that is then re-optimized
every time. Secondly, in a solution improvement phase, all jobs are
successively rescheduled until no improvement is achieved.

In Elekidis and Georgiadis (2021), a make-and-pack process with
intermediate buffer from the consumer goods industry is formulated
as a continuous-time, precedence-based MILP. The authors present a

high granular process model featuring explicit mass balances of the
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intermediate storage vessels and byproduct capacity constraints. They
propose an order-based decomposition method, in which subsets of
orders are successively inserted in a constructive solution step, and then
re-inserted into the schedule in an improvement step.

Although different real-world problems have been solved recently,
the contributions also show that great improvement potential in terms
of efficient model formulations and solution procedures exist. Most of
the contributions decompose the original problem to obtain a tractable
problem size. However, we aim to schedule all products (orders) at
once, that means, monolithically, without any order-based decompo-
sition or similar heuristics.

2.3. Time representation

The aspect of time representation is of fundamental importance for
an efficient model formulation. The concepts of discrete versus contin-
uous time representation (Floudas and Lin, 2004) are well established
and have been developed further in numerous examples (Klanke et al.,
2021; Lee and Maravelias, 2018). While a discrete time representation
requires a large number of variables to define fixed, equal-length
time intervals, a continuous time representation usually requires less
variables to define flexible, variable-length time intervals. On the other
hand, the continuous time approach usually comes with precedence
variables, global or unit-specific event points and constraints to en-
force the chronology of time intervals. Although time representation
has been extensively studied in the context of process representa-
tion concepts such as the state-task network (STN) (Kondili et al.,
1993; Maravelias and Grossmann, 2003) and resource-task network
(RTN) (Pantelides, 1994; Schilling and Pantelides, 1996) it remains
an active topic of research. For instance, in Castro (2022), the chal-
lenging scheduling problem of a multiproduct batch chemical plant
featuring sequence-dependent changeovers and their possibility to be
interrupted, alternative recipes, and unstable intermediates is solved to
optimality using a discrete-time RTN formulation.

Continuous-discrete time representations benefit from the advan-
tages of both continuous and discrete time formulations while over-
coming their shortcomings. To this end, authors suggest to embed a
discrete time grid into a continuous time frame, or vice versa.

The authors of Georgiadis et al. (2020) model the main production
decisions in a continuous timeframe and map the resulting allocation of
resources onto a discrete time grid. An order-decomposition approach
is used to solve the MILP model. In Kopanos et al. (2011), a similar mul-
tistage diary production process is modeled using a discrete-continuous
time representation. The discrete time grid consists of 1-production-day
intervals, on which mass balances are enforced. Within each interval
operations are scheduled in continuous time. There are 23 product
families considered and the model is solved in a monolithical fashion.
The production of each product family must be finished at the end
of the day and is not allowed to reach over to the next production
day. In Seeanner and Meyr (2013), a micro-macro-period time structure
is proposed for the multi-stage lotsizing and scheduling problem. The
structure is based on variable-length small time buckets in which
different operations take place, and fixed-length big-time buckets which
enforce material balance equations and resource constraints. The model
allows operations to be split across consecutive big-time buckets to
obtain a tighter problem formulation. The authors suggest different
solution methods such as relax-and-fix and heuristic approaches. In Lee
and Maravelias (2018), a sequential discrete-continuous time represen-
tation is proposed. First, a discrete time model is solved to obtain an
approximate solution quickly. The solution is mapped onto a continu-
ous time model, which is then solved again. The authors study literature
scheduling problems and solve both the discrete and continuous time
model monolithically.

In this paper, we follow the time bucket approach from Seeanner
and Meyr (2013) and embed continuous time intervals (microperiods)
3

into a discrete time grid (macroperiods). We extend the approach M
of Seeanner and Meyr (2013) by adding real-world constraints like
personnel and shift constraints as well as batch size and shelf life
constraints which are required for chemical batch process scheduling.
Together with the developed monolithic 2-step solution approach, we
show that we obtain feasible, near-optimal solutions in reasonable
solutions times.

3. Problem statement

3.1. Illustrative example

We illustrate the task of simultaneous lot-sizing and scheduling
using a 2-stage chemical process. The lot-sizing task is to define optimal
lot sizes, that is, the lengths of uninterrupted production campaigns of
specific products. At the same time the scheduling task is to find the
optimal timing for these lots given changeover costs, due dates and
other constraints. Simultaneous lot-sizing and scheduling for multistage
processes with multiple processing resources per stage and intermediate
storage is particularly complex. Lot sizes and schedules in each stage
must be synchronized by mass balances, while lots may be split up
when transferring from one stage to the next. Operator resources may
limit the number of processing resources that are available simulta-
neously. Product and resource specific production rates as well as
sequence-dependent changeover times exist. In hybrid environments,
one intermediate product can be converted into different finished prod-
ucts. Therefore production decision must be made taking into account
the due dates.

An example of a 2-stage process is shown in Fig. 2. For simplicity,
we assume 1 line per stage and 1 buffer unit exist. In stage 1 two
different bulk products A, and B are produced each of which yields two
different finished products A1, A2, B1, and B2 in stage 2. Sequence-
dependent changeover times in stage 1 from product 𝑖 to product 𝑗
are assumed. Furthermore, we assume a demand of 2 finished products
associated with due date 1 and 3 finished products associated with due
date 2. The task of lot-sizing and scheduling is to define lots for stage
1 and 2 and to schedule them in such a way that backlog is avoided.
We use the term backlog to refer to produced quantities that violate
due dates. In addition, we define the minimization of changeover times
as objective function. In the illustrative example, we assume that the
changeover times cause stage 1 to be the bottleneck. In the proposed
schedule to avoid backlog by due date 1, product A must be produced
before product B in stage 1. This however causes long changeover times
when switching back to product A. Therefore, large lot sizes of bulk
product A, which can be stored in the buffer unit for later release
into stage 2, are preferable. Since the buffer unit is limited in capacity
additional bulk product A has to be produced to satisfy the demand of
finished products A1 and A2 associated with due date 2.

The example shows that lot-sizing and scheduling for multi-stage
systems is a difficult task with many sources of complexity, which
consequently must be included in optimization models. Since time
representation is the cornerstone for precise and efficient model for-
mulations, we introduce the time-bucket model in the following.

3.2. Time formulation

In the time-bucket model, we combine the advantages of a flexible
and a fixed time grid to efficiently model challenging constraints. While
mass balances, resource allocations, shift schedules, and due dates are
modeled in the fixed time grid, production quantities and changeover
times are modeled in the flexible time grid. The fixed time grid consists
of marcoperiods, while the flexible time grid consists of microperiods.
Macroperiods are fixed time intervals with uniform length, that are
defined globally. As shown in Fig. 1, there is the same fixed number
of microperiods 𝑠 ∈ 𝑆𝑡 in each macroperiod 𝑡 ∈ 𝑇 . The number of

icroperiods can be adjusted to achieve the desired modeling depth.

icroperiods are flexible time intervals with variable length, that are
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Fig. 1. Time representation example of 2 macroperiods each featuring 4 microperiods.
Fig. 2. Simultaneous lotsizing and scheduling for a 2-stage example process with intermediate buffer.
Fig. 3. Micro- and macroperiods provide a flexible time structure to model different production modes.
defined per processing resource. Since microperiods have a variable
length, one microperiod can cover a full macroperiod, which implies
that the other microperiods in this macroperiod have lengths of 0.
Binary changeover variables 𝑦𝑝𝑝′𝑙𝑠 indicate changeovers from product
𝑝 to 𝑝′ on processing resource 𝑙 in microperiod 𝑠. Each microperiod
consists of a fixed sequence of 4 phases, set-up start, production, idle,
and set-up end as shown in Fig. 3(a).

The variable lengths of the phases are determined by the product
and quantity in the microperiod. The length of phase production is
determined by the lot size and the lengths of phases set-up start and
4

set-up end are determined by the changeover time. Phase idle provides
an optional idle interval. We consider the example of a processing
resource 𝑙 in a macroperiod with 4 microperiods as shown in Fig. 3(b).
In 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1 two production phases take place. In this case, 𝑝 is equal
to 𝑝′ for both 𝑦𝑝𝑝′𝑙3, and 𝑦𝑝𝑝′𝑙4. The same time structure also allows
to model 3 production phases as shown in 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒2. The changeover
times must be taken into account using the setup start and setup end
phases. In this case, the changeover from product 𝑝 in microperiod 𝑠 = 2
to product 𝑝′ in microperiod 𝑠 = 4 requires a changeover time that
covers microperiod 𝑠 = 3 fully. Generally, this time formulation allows,
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Fig. 4. 2-stage flow shop process with parallel processing resources per stage 𝐿𝑖 and
intermediate buffer units 𝐵.

that the production phase can cover full microperiods if no changeover
time is required. Similarly, long changeover times and idle times can be
modeled. Since the microperiods are defined per processing resource 𝑙
nd have variable lengths, the time bucket approach provides a highly
lexible time representation to our model.

.3. General plant setup

We consider the lot-sizing and scheduling problem arising from a
ultistage, flexible flow shop environment with product sequence and
rocessing resource dependent changeover times, finite intermediate
torage and personnel constraints given the objective to minimize the
otal changeover time and backlog quantities. As shown in Fig. 4, raw
aterials are processed in 2 process stages, each consisting of 𝐿𝑖 pro-

cessing resources. The materials can optionally be stored 𝐵 buffer units
between the process stages. Each processing resource can be seized by
one product at a time and sequence- as well as resource-dependent
changeover times are assumed. In addition, there are minimum batch
sizes for the first stage resources, which are product- and resource-
specific. The demand is defined with respect to the final products.
We consider different shift schedules for the process stages. The shift
schedules determine the maximum number of lines that can be in the
production or set-up phase at the same time due to the availability of
operators. Lastly, we generally assume that transfer times of quantities
from one stage to another are negligible compared to processing and
changeover times.

3.4. Problem formulation

We specify the sets, variables and parameters of our model in
Table 1. The variables reflect key decision aspects of (1) product,
and resource selection as well as lot-sizing, (2) product sequencing,
(3) product conversion from intermediates to finished products, and
(4) personnel allocation. In addition, we define input parameters such
as product demands with due dates, sequence dependent changeover
times, product and resource specific run rates, bill of material coeffi-
cients, minimum lot sizes, limits of operating capacity per stage, limited
inventory and backlog capacities, and others.

Objective function and solution procedure. We chose the min-
imization of backlog and changeover times as the objective. A tradi-
tional 1-step, monolithic solution approach that solves the full model
for the final objective at once can lead to long computing times.
We suggest a 2-step, monolithical solution approach with warm start
to optimize backlog and changeover times sequentially. In the first
optimization step, we define the minimization of all backlog quantities
𝐵�̂�𝑡 as the objective as shown in Eq. (1). In contrast, a multi-step,
polylithical approach solves parts of the model sequentially, which is
faster but can be difficult to set up and influence solution quality, as
discussed in Section 2.2.

min
∑ ∑

𝐵�̂�𝑡 (1)
5

�̂�∈FP 𝑡∈ 𝑇
Table 1
Description of sets, variables and parameters used in the model.

Set Description

𝑇 Set of macroperiods, indexed 𝑡 ∈ 𝑇
𝑆𝑡 Set of microperiods in macroperiod 𝑡, indexed 𝑠 ∈ 𝑆
IP Set of intermediate products, indexed 𝑝 ∈ IP
FP Set of finished products, indexed �̂� ∈ FP
P Union of IP and FP, indexed 𝑝 ∈ P
L𝑖 Set of all processing resources in stage 𝑖 indexed 𝑙 ∈ L𝑖
L Union of all L𝑖 across stages, indexed 𝑙 ∈ L

Variable Description

Continuous

𝑞𝑝𝑙𝑠 Quantity of a production order of product 𝑝 on resource 𝑙 in
microperiod 𝑠

𝐼𝑝𝑡 Inventory of a product 𝑝 at the end of macroperiod 𝑡
𝐵�̂�𝑡 Backlog quantity of product 𝑝 at the end of macroperiod 𝑡
ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠 Duration of setup start phase on resource 𝑙 in microperiod 𝑠
ℎ𝑒𝑛𝑑,𝑙𝑠 Duration of setup end phase on resource 𝑙 in microperiod 𝑠
ℎ𝑖𝑑𝑙𝑒,𝑙𝑠 Duration of idle phase on resource 𝑙 in microperiod 𝑠
𝑘𝑙𝑠 Start time of microperiod 𝑠 on resource 𝑙

Discrete

𝑦𝑝𝑝′𝑙𝑠 Binary changeover variable indicating a product switch from
product 𝑝 in microperiod 𝑠 − 1 to product 𝑝′ in microperiod 𝑠 on
resource 𝑙

𝑜𝑙𝑡 Binary variable indicating whether there is no sufficient personnel
in macroperiod 𝑡 to operate resource 𝑙

Parameter Description

𝐷�̂�𝑡 Quantity of finished product �̂� that is demanded at the end of
macroperiod 𝑡

𝑐𝑡𝑝𝑝′𝑙 Changeover time between product 𝑝 and 𝑝′ on processing resource
𝑙. Changeover time for 𝑝 = 𝑝′ is 0.

𝑎𝑝𝑙 Production coefficients expressing the processing time for 1
volumetric unit of product 𝑝 on resource 𝑙. The coefficients depend
on the product viscosity and the milling efficiency of the processing
resource.

𝑏𝑝�̂� Bill of material coefficients that describe the conversion options of
intermediate product 𝑝 into finished product �̂�

𝐶𝑚𝑎𝑥 Fixed length of one macroperiod
𝐹 𝑖
𝑚𝑎𝑥,𝑡 Staffing level in stage 𝑖 during macroperiod 𝑡 determining the

maximum number of processing resources that can be operated
simultaneously

𝐼𝑚𝑎𝑥 Maximum total quantity of all intermediate products that can be
stored as inventory between process stages

𝑞𝑚𝑖𝑛,𝑙 Minimum lotsize on processing resource 𝑙
𝛾 Maximum number of microperiods in which quantities must be

unloaded from inventory
𝐵�̂�,𝑚𝑎𝑥 Maximum backlog quantity of finished product �̂�
𝜆 Fixed number of microperiods in which the minimum lot size must

be realized.

The second optimization step is initialized with the results of the first
step. In particular, the binary changeover variables 𝑦𝑝𝑝′𝑙𝑠, which denote
the product-resource allocations, are initialized with the result of the
first step. In addition, an upper bound constraint for the total backlog
is added. The maximum allowed total backlog is enforced to be less
or equal than the objective value found in the first step, as shown
in Eq. (17). The objective of the second step is the minimization of the
total changeover time 𝑦𝑝𝑝′𝑙𝑠𝑐𝑡𝑝𝑝′𝑙 as shown in Eq. (2).

min
∑

𝑡∈ 𝑇

∑

𝑠∈𝑆𝑡

∑

𝑙∈L

∑

𝑝,𝑝′ ∈P

𝑦𝑝𝑝′𝑙𝑠𝑐𝑡𝑝𝑝′𝑙 (2)

Inventory balance for intermediate products. As shown in Eq. (3)
the inventory 𝐼𝑝𝑡 of an intermediate product 𝑝 ∈ IP in macroperiod
𝑡 ∈ 𝑇 is calculated from the inventory in the previous macroperiod
𝐼𝑝𝑡−1, all produced quantities 𝑞𝑝𝑙𝑠 of intermediate 𝑝 on resources 𝑙 ∈ 𝐿1
during the microperiods 𝑠 ∈ 𝑆𝑡 and all consumed quantities 𝑏𝑝�̂�𝑞�̂�𝑙𝑠
f intermediate 𝑝 on resource 𝑙 ∈ 𝐿2 during microperiods 𝑠 ∈ 𝑆𝑡.
The inventory balance for intermediate products is enforced for all
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macroperiods.

𝐼𝑝𝑡 = 𝐼𝑝𝑡−1+
∑

𝑙∈𝐿1

∑

𝑠∈𝑆𝑡

𝑞𝑝𝑙𝑠−
∑

�̂�∈FP

∑

𝑙∈𝐿2

∑

𝑠∈𝑆𝑡

𝑏𝑝�̂�𝑞�̂�𝑙𝑠 ∀𝑝 ∈ IP, 𝑡 ∈ 𝑇 (3)

Inventory balance for finished products. As shown in Eq. (4) the
inventory 𝐼�̂�𝑡 of a finished product �̂� ∈ FP in macroperiod 𝑡 ∈ 𝑇 is
calculated from the inventory in the previous macroperiod 𝐼�̂�𝑡−1, all
produced quantities 𝑞�̂�𝑙𝑠 for product �̂� on resources 𝑙 ∈ 𝐿2 during
microperiods 𝑠 ∈ 𝑆𝑡, the demand quantities 𝐷�̂�𝑡, and the backlog
quantities 𝐵�̂�𝑡, and 𝐵�̂�𝑡−1 in the current and previous macroperiod. Since
inventory levels cannot be negative, 𝐷�̂�𝑡 ensures the minimum demand
quantity is kept in stock at the demand date. This demand satisfaction is
relaxed by backlog variables 𝐵�̂�𝑡, and 𝐵�̂�𝑡−1. If positive, the backlog 𝐵�̂�𝑡
represents delayed quantity of product �̂� in macroperiod 𝑡. 𝐵�̂�𝑡 is added
to the right-hand side of Eq. (4) to compensate the deficit of the demand
𝐷�̂�𝑡, inventory 𝐼�̂�𝑡−1, and the produced quantities 𝑞�̂�𝑙𝑠. At the same time,
the backlog 𝐵�̂�𝑡−1 from the previous macroperiod must be substracted
on the right-hand side of Eq. (4). If positive, 𝐵�̂�𝑡−1 represents the deficit
that is carried over from the previous macroperiod. The inventory
balance for finished products is enforced for all macroperiods.

𝐼�̂�𝑡 = 𝐼�̂�𝑡−1 +
∑

𝑠∈𝑆𝑡

∑

𝑙∈𝐿2

𝑞�̂�𝑙𝑠 −𝐷�̂�𝑡 + 𝐵�̂�𝑡 − 𝐵�̂�𝑡−1 ∀�̂� ∈ FP, 𝑡 ∈ 𝑇 (4)

Changeover constraint. We assume an unique setup state of a re-
source in a microperiod, that is determined by the running product.
Consequently, a changeover between two setup states takes place when
switching products in subsequent microperiods. The binary changeover
variable 𝑦𝑝𝑝′𝑙𝑠 is an indicator of a transition between setup states
of products 𝑝 and 𝑝′ on line 𝑙 in microperiod 𝑠. The corresponding
changeover time will be imposed based on 𝑦𝑝𝑝′𝑙𝑠. As shown in Eq. (5),
the changeover variable must be equal to 1 for a specific product
pairs 𝑝𝑝′, which means that a unique setup state must exist in each
microperiod and on each resource. The constraint is imposed on all
microperiods 𝑆𝑡 of all macroperiods 𝑡 ∈ 𝑇 .
∑

𝑝∈P

∑

𝑝′ ∈P

𝑦𝑝𝑝′𝑙𝑠 = 1 ∀𝑙 ∈ L, 𝑠 ∈ 𝑆𝑡, 𝑡 ∈ 𝑇 (5)

Enforce setup constraint. Production of 𝑝 ∈ P can only take place on
a processing resource 𝑙 ∈ L if the resource is set up for this product in
microperiod 𝑠. As shown in Eq. (6), the production phase 𝑝 on resource
𝑙 expressed by 𝑎𝑝𝑙𝑞𝑝𝑙𝑠 is bounded by the binary changeover variable
𝑦𝑝′𝑝𝑙𝑠 and a big-M factor 𝐶𝑚𝑎𝑥. This factor is equal to the length of a
macroperiod to enable producing for a full macroperiod if the resource
is set up for product 𝑝. The enforce setup constraint is imposed on all
macroperiods.
∑

𝑠∈𝑆𝑡

𝑎𝑝𝑙𝑞𝑝𝑙𝑠 ≤
∑

𝑝′ ∈P

𝑦𝑝′𝑝𝑙𝑠𝐶𝑚𝑎𝑥 ∀𝑝 ∈ P, 𝑙 ∈ L, 𝑡 ∈ 𝑇 (6)

Consistent changeover constraint. To relate changeover variables
of two subsequent microperiods, a consistent changeover constraint
is defined in Eq. (7). The changeover to a product 𝑝 in microperiod
𝑠 − 1 must imply the changeover from the same product 𝑝 in the next
microperiod 𝑠 on a resource 𝑙. Defining a transition product 𝑝′ between
two products 𝑝1, 𝑝2 of subsequent microperiods rather connecting prod-
ucts directly has shown a better computational performance during the
model development. The consistent changeover constraint is imposed
on all micro- and macroperiods.
∑

𝑝1∈P

𝑦𝑝1𝑝′𝑙𝑠−1 =
∑

𝑝2∈P

𝑦𝑝′𝑝2𝑙𝑠 ∀𝑝′ ∈ P, 𝑙 ∈ L, 𝑠 ∈ 𝑆𝑡, 𝑡 ∈ 𝑇 (7)

Off-Shift constraint. No production or changeover is possible without
operator personnel which is modeled by a shift schedule. A binary vari-
able 𝑜𝑙𝑡 indicates whether there is no sufficient personnel in macrope-
riod 𝑡 to operate resource 𝑙. As shown in Eq. (8), the duration of the
6

production phase 𝑎𝑝𝑙𝑞𝑝𝑙𝑠, as well as the setup start phase ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠, and
the setup end phase ℎ𝑒𝑛𝑑,𝑙𝑠 is bounded by the indicator 𝑜𝑙𝑡 multiplied
with the big-M factor 𝐶𝑚𝑎𝑥 in all microperiods 𝑠 of a macroperiod 𝑡.
Consequently, if personnel does not suffice to operate resource 𝑙 in a
macroperiod, 𝑜𝑙𝑡 is equal to 1 and the duration of production and setup
activities must be equal to 0. The off-shift constraint is imposed on all
macroperiods.

ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠 + ℎ𝑒𝑛𝑑,𝑙𝑠 +
∑

𝑝∈P

𝑎𝑝𝑙𝑞𝑝𝑙𝑠 ≤ 𝐶𝑚𝑎𝑥(1 − 𝑜𝑙𝑡) 𝑙 ∈ L, 𝑠 ∈ 𝑆𝑡, 𝑡 ∈ 𝑇 (8)

Microperiod constraint. We use microperiods to model 4 different
production phases, in which a processing resource 𝑙 can be. As shown
in Eq. (9), the starting time 𝑘𝑙𝑠 of microperiod 𝑠 on a resource 𝑙 is
enforced to be equal to the starting time of the previous microperiod
𝑘𝑙𝑠−1 plus the lengths of the setup start phase ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠, the production
phase 𝑎𝑝𝑙𝑞𝑝𝑙𝑠, the idle phase ℎ𝑖𝑑𝑙𝑒,𝑙𝑠 and the setup end phase ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠.
The microperiod constraint is imposed on all processing resources,
microperiods and macroperiods.

𝑘𝑙𝑠 = 𝑘𝑙𝑠−1+ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠+
∑

𝑝∈P

𝑎𝑝𝑙𝑞𝑝𝑙𝑠+ℎ𝑖𝑑𝑙𝑒,𝑙𝑠+ℎ𝑒𝑛𝑑,𝑙𝑠 ∀𝑙 ∈ L, 𝑠 ∈ 𝑆𝑡, 𝑡 ∈ 𝑇

(9)

Setup split constraint. In order to flexibly model the product-
dependent changeovers, the changeover times 𝑐𝑡𝑝𝑝′𝑙 can be split into a
first part that takes place in the setup end phase of microperiod 𝑠−1 and
a second part that takes place in the setup start phase of the subsequent
microperiod 𝑠 as shown in Eq. (10). Due to the variable lengths of
the setup phases, a changeover time can occupy two full, subsequent
microperiods, and consequently two full macroperiods if required. If
the changeover time can be realized within ℎ𝑒𝑛𝑑,𝑙𝑠−1, the subsequent
setup start phase ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠 takes on a value of 0. The setup split constraint
is imposed on all processing resources, microperiods and macroperiods.

ℎ𝑒𝑛𝑑,𝑙𝑠−1 + ℎ𝑠𝑡𝑎𝑟𝑡,𝑙𝑠 =
∑

𝑝,𝑝′ ∈P

𝑦𝑝𝑝′𝑙𝑠𝑐𝑡𝑝𝑝′𝑙 ∀𝑙 ∈ L, 𝑠 ∈ 𝑆𝑡, 𝑡 ∈ 𝑇 (10)

Micro-macro connector constraint. The start time of every first
microperiod in a macroperiod must be equal to the start time of the 𝑡th
macroperiod, where 𝐶𝑚𝑎𝑥 denotes the fixed length of a macroperiod.
As shown in Eq. (11) the micro-macro connector constraint is imposed
on all processing resources and macroperiods.

𝑘𝑙,𝑠=1 = (𝑡 − 1) ⋅ 𝐶𝑚𝑎𝑥 ∀𝑙 ∈ L, 𝑡 ∈ 𝑇 (11)

Personnel constraint. As shown in Eq. (12), the maximum number
of processing resources in processing stage 𝑖 that can be operated
simultaneously in a macroperiod 𝑡 is limited by the overall staffing
level 𝐹 𝑖

𝑚𝑎𝑥,𝑡. This parameter allows to model shift schedules for each
processing stage 𝑖 with a time granularity of macroperiods. In practice,
shifts often do not overlap and the staffing level is constant within a
shift. In this case, the length of a macroperiod can be chosen as the
length of a shift. Otherwise, the length of a macroperiod must be chosen
smaller to be able to model the staffing level accurately. The term |L𝑖|

denotes the number of processing resources in stage 𝑖, while the term
∑

𝑙∈L𝑖
𝑜𝑙𝑡 denotes the number of processing resources in stage 𝑖 that are

not staffed with personnel in macroperiod 𝑡. Consequently, the term
|L𝑖| −

∑

𝑙∈L𝑖
𝑜𝑙𝑡 represents the number of processing resources that

are staffed and ready-to-operate as expressed by Eq. (8). The personnel
constraint is imposed on all macroperiods.

|L𝑖| −
∑

𝑙∈L𝑖

𝑜𝑙𝑡 ≤ 𝐹 𝑖
𝑚𝑎𝑥,𝑡 𝑤𝑖𝑡ℎ 𝑖 = 1, 2 ∀𝑡 ∈ 𝑇 (12)

Maximum inventory constraint. As shown in Eq. (13), the inven-
tory of intermediate product 𝐼𝑝 is limited by a maximum inventory
parameter 𝐼𝑚𝑎𝑥, which represents the total buffer capacity of all buffer
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tanks. If 𝐼𝑚𝑎𝑥 = 0 quantities of intermediate that are produced in a
acroperiod 𝑡 have to be finalized in the subsequent macroperiod. With
𝑚𝑎𝑥 > 0 a limited quantity can be carried over as inventory between
he macroperiods. The maximum inventory constraint is imposed on all
acroperiods 𝑡 ∈ 𝑇 .

∑

∈ IP

𝐼𝑝𝑡 ≤ 𝐼𝑚𝑎𝑥 ∀𝑡 ∈ 𝑇 (13)

inimum lot size constraint. The lot size for intermediate products
ust be greater or equal to the minimum batch-size on the processing

esource. Since the minimum lot size still might take longer to produce
han the length of one macroperiod, a fixed number of 𝜆 microperiods,
ach of which can occupy a full macroperiod, is assumed. However the
inimum lot size must be realized within the total time horizon and
+𝜆 ≤ |𝑇 |. As shown in Eq. (14), the quantity of product 𝑝 on resource
in microperiods 𝑠 to 𝑠+ 𝜆 must be greater than the minimum lot size
𝑚𝑖𝑛,𝑙, if changeover from another product 𝑝′ to product 𝑝 took place in
. The minimum lot size constraint is imposed on all resources 𝑙 ∈ L1,
ntermediate products 𝑝 ∈ IP, microperiods, and macroperiods.
𝑠+𝜆

𝑣=𝑠

𝑞𝑝𝑙𝑣 ≥
∑

𝑝′ ∈ IP
𝑝′≠𝑝

𝑦𝑝′𝑝𝑙𝑠𝑞𝑚𝑖𝑛,𝑙 ∀𝑝 ∈ IP , 𝑙 ∈ L1, 𝑠 ∈ 𝑆𝑡, 𝑡 ∈ 𝑇 (14)

aximum shelf life constraint. A maximum shelf life constraint is
pecified in Eq. (15), which enforces the limited shelf life of agro-
hemicals in production. Inventory 𝐼𝑝𝑡 of an intermediate product 𝑝
n macroperiod 𝑡 is limited by the production of associated finished
roduct quantities in a fixed number of 𝛾 subsequent macroperiods. For
he choice of 𝛾, 𝑠+𝜆 ≤ |𝑇 | must hold. The maximum shelf life constraint
s imposed on all intermediate products 𝑝 ∈ IP and macroperiods.

𝑝𝑡 ≤

𝑡+𝛾
∑

𝑣=𝑡

∑

𝑠∈𝑆𝑣

∑

𝑙∈L2

∑

�̂�∈FP

𝑏𝑝�̂�𝑞�̂�𝑙𝑠 ∀𝑝 ∈ IP , 𝑡 ∈ 𝑇 (15)

dditional constraints. All backlog variables 𝐵�̂�𝑡 must be greater or
qual to 0 as shown in Eq. (16). This ensures that only positive backlog
deficit quantity) is propagated from one macroperiod to the next and
hat surplus quantity can only be created by building up inventory.

�̂�𝑡 ≥ 0 ∀�̂� ∈ FP , 𝑡 ∈ 𝑇 (16)

acklog quantities of all products �̂� ∈ FP are allow to build up to
maximum 𝐵�̂�,𝑚𝑎𝑥 as shown in Eq. (17). Backlog quantities can be

revented entirely by setting 𝐵�̂�,𝑚𝑎𝑥 = 0. This constraint is enforced
n the second optimization step.

𝑡∈ 𝑇

∑

�̂�∈FP

𝐵�̂�𝑡 ≤ 𝐵�̂�,𝑚𝑎𝑥 (17)

o initialize inventories and backlogs, a microperiod 𝑠 = 0 is defined.
ince the setup split constraint (10) is enforced for all microperiods
ncluding the initialization microperiod, an additional constraint is
equired to ensure that no setup activities can take place in 𝑠 = 0 as
hown in Eq. (18). This similarly applies to the backlog variables 𝐵�̂� 0
s shown in Eq. (19). The initialization constraints are imposed in the
irst macroperiod 𝑡 = 1, and for all resources 𝑙.

𝑒𝑛𝑑,𝑙 0 = 0 𝑤𝑖𝑡ℎ 𝑡 = 1 ∀𝑙 ∈ L (18)

�̂� 0 = 0 𝑤𝑖𝑡ℎ 𝑡 = 1 ∀�̂� ∈ FP (19)

. Results

Time and computational resources often are limiting factors for in-
ustrial applications of optimization models. Therefore, we investigate
he scalability of the time-bucket model with respect to (1) solution
ime, (2) convergence of bounds, and (3) solution quality. We consider
7

he following problem size parameters. e
1. We vary the number of processing resources in each stage to
analyze the influence of more complex production systems.

2. We vary the number of macroperiods to analyze the influence of
optimizing longer production periods.

3. We vary the number of microperiods per macroperiod to ana-
lyze the influence of a finer time structure within a macrope-
riod, which allows for more production changeovers within a
macroperiod.

4. We vary the number of products to analyze the influence of a
fragmented production demand and production changeovers.

n addition, it is important to assess variability of (1) and (2) when
olving models with the same size parameters but different input
arameter sets, for instance, different production demand sets, pro-
uction coefficients or shift schedules. Therefore we solve a set of 50
andomly generated instances for each model configuration. To gener-
te the instances, we sample the following parameters from uniform
istributions.

1. We vary the production demand 𝐷�̂�𝑡, which contains a subset
of 25% of all finished products �̂� ∈ FP. First, we compute
a conservative estimate of the total production capacity. For
that, we multiply the minimum run rate for each production
stage with the number of resources per stage, and take the
minimum capacity of all stages. Second, we assume that 30%
of the products are high runners, which occupy 50% of the total
production capacity equally. The other products are low runners,
which occupy the remaining capacity equally.

2. We vary the changeover times 𝑐𝑡𝑝𝑝′𝑙 for all products 𝑝 ∈ P and
resources 𝑙 ∈ L. We take a uniform sample from [2, 16] hours.

3. We vary the production coefficients 𝑎𝑝𝑙 of all products 𝑝 ∈ P
and for all resources 𝑙 ∈ L. For the first stage we take a
uniform sample 𝑎𝑝𝑙 from [1.5, 15] h∕volumetric unit and for the
second stage from [0.5, 10] h∕volumetric unit.

4. We vary the staffing levels 𝐹 𝑖
𝑚𝑎𝑥,𝑡. We assume that all production

stages are staffed with 70% on average.
5. We vary the minimum lot-size 𝑞𝑚𝑖𝑛,𝑙 for all stage 1 processing re-

sources 𝑙 ∈ L1. We take a uniform sample from [5, 20] volumetric
units.

urthermore we set the following parameters as fixed.

1. We fix the bill of material coefficients 𝑏𝑝�̂� such that each in-
termediate product 𝑝 can be converted into 3 finished products
�̂�.

2. We fix 𝐶𝑚𝑎𝑥 to 8 hours, which equals the length of one shift.
3. We fix 𝐼𝑚𝑎𝑥𝑝 to 275 volumetric units, which is limiting the to-

tal quantity of all intermediate products stored as inventory
∑

𝑝∈IP 𝐼𝑝𝑡 between the stages. This value corresponds to the sum
of all buffer tank capacities.

4. We fix 𝛾 to 6, which sets the maximum number of microperiods
in which quantities must be unloaded from inventory.

5. We fix 𝐵�̂�,𝑚𝑎𝑥 to 0, which limits the maximum backlog quantity
of finished product �̂�.

6. We fix the number of microperiods in which the minimum lot
size must be realized to 2.

.1. Solution time

Long solution times of MILP models often are prohibitive in the
ontext of real-world applications. Therefore we analyze the solution
ime of the proposed model formulation by solving randomized in-
tances and scaling up the problem size with respect to the number of
rocessing resources, micro- and macroperiods as well as products. The
ifferent model configurations are shown in Table 2. We denote that
ith 1 microperiod per macroperiod we obtain a time grid in which

ach macroperiod still contains 4 flexible phases.
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Fig. 5. Solution time distributions of model configurations with different (a) number of processing lines, (b) number of macroperiods, (c) number of microperiods per macroperiod,
(d) number of products with median (orange line) and mean (green triangle) solution time. Solution time of unsolved instances set to 9800 s.
Table 2
Model overview.

ID Proc res Macropds Micropds Products Unsolveda,c Gapb,c

1.1 5 × 5 30 1 10 × 30 0 –
1.2 6 × 6 30 1 10 × 30 0 –
1.3 7 × 7 30 1 10 × 30 4.1 5.3
1.4 8 × 8 30 1 10 × 30 2.0 12.8
1.5 10 × 10 30 1 10 × 30 14.3 19.2

2.2 5 × 5 15 1 10 × 30 4.3 12.6
2.3 5 × 5 45 1 10 × 30 8.5 5.3
2.4 5 × 5 60 1 10 × 30 21.3 12.4
2.5 5 × 5 75 1 10 × 30 36.2 16.8
2.6 5 × 5 90 1 10 × 30 66.0 18.0

3.2 5 × 5 30 2 10 × 30 0 –
3.3 5 × 5 30 3 10 × 30 0 –
3.4 5 × 5 30 5 10 × 30 8.5 14.6
3.5 5 × 5 30 7 10 × 30 49.0 16.3
3.6 5 × 5 30 9 10 × 30 78.7 33.0
3.7 3 × 3 6 2 10 × 30 0 –
3.8 3 × 3 6 3 10 × 30 0 –
3.9 3 × 3 6 4 10 × 30 0 –
3.10 3 × 3 6 5 10 × 30 0 –

4.2 5 × 5 30 1 8 × 24 0 –
4.3 5 × 5 30 1 13 × 39 24.0 7.4
4.4 5 × 5 30 1 15 × 45 50.0 9.6
4.5 5 × 5 30 1 17 × 51 65.3 10.7
4.6 5 × 5 30 1 20 × 60 98.0 18.3

aPercent of unsolved instances within a solution time of 9800 s per instance.
bAverage remaining optimality gap of unsolved instances at time out.
cUsing Gurobi 9.5.2 on a CPU with 16 cores 3.4 GHz, 64 GB RAM.

Fig. 5 shows the solution time distributions of model configurations
ith different (a) number of processing lines, (b) number of macrope-

iods, (c) number of microperiods per macroperiod, and (d) number of
8

products. We find that the solution time increases sharply as the size
of the problem increases with respect to real world parameters such
as the number of processing lines and products, as well time-bucket
parameters such as the number of macro- and microperiods. From the
high variability of solution times, we conclude that for complex models,
computational effort can be strongly influenced by input parameter sets
such as the specific production demand and shift schedules.

4.2. Bound convergence

A well-known drawback of time-bucket models is a weak LP re-
laxation due to the many binary variables and big-M formulations.
Therefore, we extend our analysis to the evolution of the upper and
lower bounds. In particular, we compute the remaining optimality
gaps for upper and lower bound as shown in Eqs. (20) and (21).
The main idea behind this is to analyze how upper and lower gaps
converge to 0 separately. While the remaining gap of the upper bound
𝐺𝑎𝑝𝑈𝐵 provides information on the incumbent solution quality, the
remaining gap of the lower bound 𝐺𝑎𝑝𝐿𝐵 provides information on the
potential improvement of the incumbent solution. This information
may ultimately be used to justify a truncated MIP search.

𝐺𝑎𝑝𝑈𝐵 =
𝑈𝐵𝐶𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑂𝑝𝑡

𝑂𝑝𝑡
(20)

𝐺𝑎𝑝𝐿𝐵 =
𝑂𝑝𝑡 − 𝐿𝐵𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝑂𝑝𝑡
(21)

We perform solution time normalization and binning in order to com-
pare instances with different absolute solution times. For that, we first
normalize absolute solution times using the total solution times from
our previous analysis in Section 4.1. Next we define 20 equal-widths
intervals, each covering 5% of normalized solution time. Thereafter,
we compute the representative average for upper and lower bounds

within each interval based on all recorded values in that interval. The
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Fig. 6. Evolution of optimality gaps of upper and lower bound for different model configurations. The gap values were averaged within 20 intervals each covering 5% of the
normalized solution time.
evolution of upper and lower bounds for 5 different model configura-
tions is presented in Fig. 6. We increase the number of processing lines
in model 1.5, the number of macroperiods in model 2.6, the number of
microperiods per macroperiod in model 3.4 and the number of products
in model 4.4, and compare these models to the baseline model 1.1.

As shown in Fig. 6 upper bounds quickly converge to the optimum,
while lower bounds slowly converge to the optimum. We observe that
this effect becomes more pronounced for increasing problem sizes in
all 4 size dimensions. First, we conclude that lower bounds of the time-
bucket model generally become weaker when increasing the problem
size in with respect to each of the 4 size parameters. This leads to slow
convergence of the optimality gap, which eventually gives rise to long
absolute solution times. Secondly, we denote that strong upper bounds
are found early in the solution process despite of increasing problem
size for all 4 parameters. Consequently, we are likely to obtain near
optimal solutions with the time-bucket model when terminating the
solution process prematurely.
9

4.3. Solution quality

Lastly, we study how the number of microperiods per macroperiod
affects solution quality. We solve all random instances to optimality
and compare the optimal changeover costs of model configuration 3.8,
3.9 and 3.10 to the costs of model configuration 3.7. As shown in
Fig. 7, up to 17% lower changeover costs can be found when using
more microperiods per macroperiod. More microperiods allow for more
changeovers which can be beneficial if the triangle inequality for
changeovers does not hold true. This situation can occur in chemical
plants where some products have cleansing effect and can be used to
shorten changeover times. In Fig. 7 we also observe similar solutions
with 3 and 4 microperiods. This can be explained by minimum lot
sizes and production rates, which limit the possible total number of
changeovers. In addition, we denote that a sufficient number of mi-
croperiods must be defined to ensure that all products in demand can
be scheduled at all. If this is not the case, the optimal total backlog
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Fig. 7. Percentage change in objective value when increasing microperiods from 1 to 4, and solution time distribution. For each model configuration 50 instances were solved to
optimality.
calculated in the first optimization step could be greater than 0. We
conclude that depending on problem-specific parameters, increasing
the number of microperiods per macroperiod can yield better solutions
in both the first and second optimization step.

5. Case study

We consider the scheduling problem of a flexible flow shop in
an industrial manufacturing plant for crop protection chemicals. The
problem originates from the last two stages in the manufacturing
process of agrochemicals, which are also known as product formulation
and filling. The formulation and filling process takes place in a multi-
product batch plant with 2 stages. In the first stage mixing, milling
and reactions of raw materials take place, which results in intermediate
products. In the second stage, the intermediate products are filled into
final containers. The plant consists of multiple redundant, but not
identical production lines per stage each capable of processing groups
of agrochemical products. Because the formulation and filling process
is the last station in the product supply chain, the process is exposed to
a large number of raw materials at the input, and a highly fragmented
demand of finished products at the output. Therefore, the production
lines are designed for a high throughput of a broad variety of products,
which results in a complex flow shop optimization problem.

5.1. Plant setup

A schematic overview of the process is shown in Fig. 8. Raw
materials are mixed and processed in a first stage (formulation), which
takes place in 7 redundant formulation lines 𝑙 ∈ L𝑓𝑜𝑟𝑚 and results in
50 different unpackaged products 𝑝 ∈ UP. In the second stage (filling),
which takes place in 7 redundant filling lines 𝑙 ∈ L𝑓𝑖𝑙𝑙, the unpackaged
products are filled into the final container, which results in 83 different
packaged products �̂� ∈ FP. We assume product- and line-specific
changeover costs, and minimum lot sizes. The changeover matrices are
not symmetrical, as the cleaning and changeover effort also depends
on the product sequence. The set of both formulation and filling lines
is denoted L and the set of both unpackaged and packaged products is
denoted P. There are 7 optional buffer tanks to decouple the two stages
and maximize their utilization. They are modeled as one capacitated
reservoir by the maximum inventory constraint in Eq. (13) and the
maximum shelf life constraint in Eq. (15). The connectivity between
lines and buffer tanks is not restricted. We consider different shift
schedules for the formulation and the filling stage. The shift schedules
determine the maximum number of lines that can be in the production
or set-up phase at the same time due to the availability of operators.
10
Table 3
Model specification.

Dimension/Feature Modeled as

Time 30 daysa as 90 macroperiods with 1 microperiod each
Unpackaged products 50 intermediate products
Packaged products 83 finished products
Formulation lines 7 processing resources as stage 1
Filling lines 7 processing resources as stage 2
Buffer tanks 1 capacitated reservoir
Changeovers Product-sequence- and resource-dependent
Production rates Product- and resource-dependent
Product conversion Bill of material data gives conversion options
Product demand Quantities of finished products with individual due dates
Operator resources 2 different shift schedules for stage 1 and 2
Minimum lot size Product- and resource-dependent, only for stage 1

aWe assume a production horizon of 30 days in the MILP model and 31 days in the
DES model, since the DES model takes into account material transfer times between
the tanks and logistics at the plant.

The bottleneck of the process varies with production demand and the
shift schedules.

We optimize the formulation and filling process for a 1 month
production period. Shift schedules are based on three 8 h shifts per day.
Therefore we choose the length of a macroperiod to be equal to 8 h.
Since no more than one production cycle can be realized within 8 h we
choose 1 microperiod per macroperiod. The model specifications are
summarized in Table 3 .

To describe formulation and filling process with our modeling ap-
proach, we make the following 2 assumptions.

1. Each formulation line and filling line is assumed to be one
allocable processing resource. In the real-world plant, processing
lines each consist of multiple machines, which are not relevant
for modeling our optimization objective.

2. The buffer tanks are considered as one capacitated reservoir.
As shown in the model constraints in Section 3.4 products can
be loaded into the buffer system and unloaded (1) obeying a
maximum shelf life constraint as shown in Eq. (15), and (2)
up to a maximum reservoir capacity as shown in Eq. (13). An
example inventory log for the capacitated reservoir can be found
in Fig. A.1.

5.2. Results

First, we discuss the solution time and the evolution of the bounds.
For that, we solve 5 different demands, of which 1 is the historic, origi-

nal demand data set and 4 are alternative demand scenarios. Secondly,
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Fig. 8. Process overview: 7 formulation lines produce 50 unpackaged products, which can be stored in 7 buffer tanks and are consumed by 7 filling lines to produce 83 packaged
products.

Fig. 9. Evolution of the remaining gaps (%) and bounds for different production demands for a solution phase of 4 h.



Computers and Chemical Engineering 177 (2023) 108341R. Wallrath et al.

w
s
M
a
W
s
p

5

d
2
.

i
c
t
o
e
c

i
N
o
b
W
s
d

Fig. 10. Schematic overview of the manual scheduling workflow (left) and MILP scheduling workflow (right). Example order lists in Tables A.1, A.2.
e compare the MILP-optimized schedule with the manually optimized
chedule of the historic demand data set. For that, we reconcile the
ILP results with a validated DES model of the process. The DES model

ssigns production quantities to the 7 buffer tanks based on heuristics.
e compare the MILP-DES schedule to the manually optimized DES

chedule with respect to production backlog and occupancy time of the
rocessing lines.

.2.1. MILP solution
For the historic demand data set, we find a solution with no pro-

uction backlog and 110 h of changeover time with a remaining gap of
7.3% after a total solution time of 1.22 h as further specified in Table 4
Optimization step 1 shows that the 1-month production demand 𝐷�̂�𝑡

can be satisfied without backlog in a makespan less than 31 days after
805 s solution time. Consequently a no-backlog constraint ∑

𝐵�̂�𝑡 = 0
s enforced in the second optimization step, which minimizes the total
hangeover time to a value of 110 h after 3600 s solution time. For
he alternative demand scenarios we observe similar results. Since the
ptimality gap is greater than 0 for all instances, we investigate the
volution of bounds and gap in the second optimization step over the
ourse of 4 h as shown in Figs. 9(b) and 9(a).

As shown in Fig. 9, the remaining gap is decreasing further for all
nstances after 3600 s due to the improvement of the lower bounds.
ear-optimal solutions are found relatively quickly which is a similar
bservation as in Section 4.2. Consequently, the solution phase can
e terminated prematurely despite relatively large remaining gaps.
e conclude that with the proposed model formulation near optimal

olutions can be computed efficiently, but a proof of optimality is costly
ue to weak lower bounds.
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Table 4
MILP results for a historic, original 1-month demand data set and 4 additional demand
scenarios.

Set Bcklg qty (%) Chgovr (h)a Gap (%)b 1st (s)c,d 2nd (s)c,d

Org 0 110 27.3 805 3600
Dmnd 2 0 130 35.1 659 3600
Dmnd 3 0 134 38.8 1033 3600
Dmnd 4 0 120 26.0 739 3600
Dmnd 5 0 120 21.8 828 3600

aIn 2. stage gap after 1 h solution time.
bRemaining 2. stage gap after 1 h solution time.
c1st stage objective shown in Eq. (1), second stage objective shown in Eq. (2).
dUsing Gurobi 9.5.0 on a CPU with 16 cores 3.4 GHz, 64 GB RAM.

5.2.2. DES solution
The 2-step MILP optimization allows to adjust input parameters,

such as sufficient staffing, shift schedules, and delivery dates for the
demand, to ensure acceptable backlog and minimal changeover costs.
The result of this MILP procedure is an optimized list of all production
orders (campaign list) for the formulation and filling lines with start
date, product type, lot size and line allocation. Example campaign
lists are shown in Tables A.1 and A.2. Additionally, operator shift
schedules can be computed based on the set-up and production phases
of the allocated lines. For validation the campaign lists are reconciled
using a validated DES model. Since the DES model is a high-fidelity
model of the process the MILP results are rendered into an actionable
production schedule. We compare the resulting MILP-DES schedule
with a manually optimized DES (manual-DES) schedule. To obtain
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Fig. 11. Manually-optimized DES schedule of 7 formulation lines (top) and 7 filling lines (bottom), production orders are color-coded with respect to unpackaged products.
Formulation line 1 and filling line 8 were not used in the original production data set.
Fig. 12. MILP-optimized DES schedule of 7 formulation lines (top) and 7 filling lines (bottom), campaigns are color-coded with respect to unpackaged products. Formulation line
1 and filling line 8 were not used in the original production data set.
the latter, production planners generate campaign lists and refine
them iteratively using the DES model. Both workflows are shown in
Fig. 10.

From the makespans of the MILP-DES schedule and the manual-DES
in Table 5, we conclude that the MILP approach is able to generate
schedules that do not violate the delivery dates at the end of the month,
while the manually optimized schedule contains backlog of approxi-
mately 2%. The adherence to delivery dates and demand quantities is
ensured by minimizing the total backlog in the first optimization step
(see Eq. (1)). When comparing the occupancy times of all lines in the
formulation and filling stage, we observe that MILP-DES approach re-
duces the number of occupancy time by a total of 1218 machine hours.
Approximately 10% formulation capacity and 27% filling capacity is
freed as a result of minimizing the total changeover times in the second
optimization step (see Eq. (2)). The additional capacity can be used to
increase throughput, schedule maintenance intervals, but also to assess
the robustness of the production schedule with regard to unplanned
downtime, and spot demand. In Figs. 11 and 12, the manually opti-
mized DES schedule and the MILP optimized DES schedule are shown.
The Gantt charts show the allocation of formulation and filling lines by
production campaigns. We observe the following differences:

1. Formulation lines
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Table 5
MILP-DES results and manual-DES results for the reference month.

Method Bcklg (% tot filled qty) Mkspan (d) Form (h) Fill (h)

MILP-DES 0 31 3309 2251
manual-DES 2 34 3674 3104

1.1. There are 10 product changeovers on the formulation
lines in the manual-DES schedule, and 9 in the MILP-DES
schedule.

1.2. In the MILP-DES schedule, formulation campaigns are
longer with little to no waiting times.

1.3. With the manual-DES schedule, the occupancy time of the
formulation lines is higher than in the MILP-DES schedule.
A lot of waiting time can be observed in the manual-DES
schedule, for instance on formulation line 2 between day
13 and 18, on line 3 between day 4 and 18, and on line
6 between day 8 and 14.

1.4. In the manual-DES, schedule backlog is created by the last
formulation campaign on line 3. It was not possible for
scheduling experts to place this campaign manually into
formulation and filling stage without backlog.
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2. Filling lines

2.1. There are 35 product changeovers on the filling lines
in the manual-DES schedule, and 76 changeovers in the
MILP-DES schedule.

2.2. In the MILP-DES schedule, filling campaigns are short
with little to no waiting time.

2.3. In the manual-DES schedule, the occupancy time of the
filling lines is higher than in the MILP-DES schedule.
Much waiting time can be observed in the manual-DES
schedule, for instance on filling line 5 between day 20 and
26, and on filling line 6 between day 18 and 28.

2.4. In the MILP-DES schedule, packaged products coming
from the same unpackaged product campaign (denoted
by the same color), switch filling lines frequently. This is
in contrast to the manual-DES schedule, in which long,
uninterrupted filling campaigns are observed.

From observations (2.1), (2.2), (2.4), (1.3) and (1.4), we conclude
that the MILP-DES approach uses a higher number changeovers on the
filling lines to synchronize with the formulation stage. As a result of this
synchronization, less changeover costs are incurred on the formulation
lines (1.1) and no backlog is produced (see Table 5). A high number
of changeovers on the filling lines also is justified by the fact that they
are relatively inexpensive compared to formulation changeovers as less
cleaning is required. Observation (1.4) illustrates the limits of manual
scheduling based on operator experience and heuristics for complex
problems. With the MILP-DES approach, a reduction of the total waiting
times on all lines can be observed (1.2, 2.2). Table 5 shows that 365
machine hours are freed on all formulation lines and 853 h on all filling
lines.

6. Conclusion

In this work, we developed a time-bucket MILP formulation for the
lot-sizing and scheduling problem in a two-stage flow shop environ-
ment. The model applies two time grids, a microperiod and macrope-
riod time grid, which allow to include important real-world parameters
such as lot-sizing, sequence dependent changeovers, buffer of inter-
mediate bulk product, limited shelf life of products, and operator
schedules. First, we investigated the time-bucket model with respect
to solution time and bound convergence for different model configu-
rations as well as randomized input parameters. Our analysis showed
that near-optimal or optimal solutions can be found within moderate
solution times of 1 h. Second, we demonstrated the applicability of
the time-bucket formulation in an industrial case study of a 2-stage
14
agrochemical production process, for which we proposed a 2-step
solution procedure of the MILP model followed by a DES reconcili-
ation step. We compared results of the MILP-DES approach with the
results of a DES-aided, manual optimization approach, and observed
that counterintuitive yet better schedules are found with respect to
production backlog and resource utilization. We conclude that the time-
bucket formulation represents viable industrial solution, that can be
adopted for similar problems. Future work should go into the adoption
of decomposition techniques to obtain stronger lower bounds.
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Appendix A. Attachments

The inventory log of the buffer tanks for an alternative demand
scenario of the case study is shown in Fig. A.1. The maximum inventory
constraint (see Eq. (13)) keeps the inventory level below 275 volumetric
units. The DES model assigns intermediate product quantities to indi-
vidual buffer tanks using an assignment rule. Quantities in Tables A.1,
A.2 are given as rounded percentage of total production quantity.
An example randomized model instance of model configuration ID1.1
can be found in the repository https://github.com/RoderickWR/time_
bucket_MILP_formulation_for_optimal_lot_sizing_and_scheduling.
Table A.1
Example of a formulation order list from alternative demand scenario.
Order number Line Quantity (%) Starting Product ID

0 1 0.016 2020-06-02T14:00:00 Intermediate Product 1
1 1 0.013 2020-06-06T06:00:00 Intermediate Product 2
2 1 0.01 2020-06-09T22:00:00 Intermediate Product 3
3 2 0.004 2020-06-01T06:00:00 Intermediate Product 4
4 2 0.007 2020-06-01T18:00:00 Intermediate Product 5
5 2 0.006 2020-06-03T22:00:00 Intermediate Product 6
6 2 0.188 2020-06-04T22:00:00 Intermediate Product 4
7 2 0.012 2020-06-22T18:00:00 Intermediate Product 7
8 3 0.055 2020-06-01T06:00:00 Intermediate Product 8
9 3 0.166 2020-06-08T01:27:46 Intermediate Product 9
10 4 0.212 2020-06-01T06:00:00 Intermediate Product 4
11 4 0.133 2020-06-14T14:00:00 Intermediate Product 10
12 5 0.086 2020-06-04T14:00:00 Intermediate Product 11
13 6 0.072 2020-06-17T14:00:00 Intermediate Product 12
14 6 0.018 2020-06-25T06:00:00 Intermediate Product 13

https://github.com/RoderickWR/time_bucket_MILP_formulation_for_optimal_lot_sizing_and_scheduling
https://github.com/RoderickWR/time_bucket_MILP_formulation_for_optimal_lot_sizing_and_scheduling
https://github.com/RoderickWR/time_bucket_MILP_formulation_for_optimal_lot_sizing_and_scheduling
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Fig. A.1. Inventory log of the capacitated reservoir.
Table A.2
Example of a filling order list from alternative demand scenario.

Order number Line Quantity (%) Starting Product ID

15 1 0.14 2020-06-08T22:00:00 Final Product 1
16 1 0.042 2020-06-27T14:00:00 Final Product 2
17 2 0.324 2020-06-01T14:00:00 Final Product 3
18 2 0.072 2020-06-19T06:00:00 Final Product 4
19 3 0.005 2020-06-01T14:00:00 Final Product 5
20 3 0.009 2020-06-03T06:00:00 Final Product 6
21 3 0.001 2020-06-04T06:00:00 Final Product 7
22 3 0.001 2020-06-04T22:00:00 Final Product 8
23 3 0.008 2020-06-05T14:00:00 Final Product 6
24 3 0.005 2020-06-06T14:00:00 Final Product 5
25 3 0.001 2020-06-10T06:00:00 Final Product 9
26 3 0.01 2020-06-11T06:00:00 Final Product 10
27 3 0.012 2020-06-23T06:00:00 Final Product 11
28 4 0.005 2020-06-02T06:00:00 Final Product 12
29 4 0.021 2020-06-03T14:00:00 Final Product 5
30 4 0.005 2020-06-05T06:00:00 Final Product 13
31 4 0.021 2020-06-05T22:00:00 Final Product 5
32 4 0.007 2020-06-09T14:00:00 Final Product 14
33 4 0.04 2020-06-10T06:00:00 Final Product 15
34 4 0.02 2020-06-15T14:00:00 Final Product 16
35 4 0.014 2020-06-17T06:00:00 Final Product 14
36 4 0.014 2020-06-18T22:00:00 Final Product 15
37 4 0.014 2020-06-19T22:00:00 Final Product 16
38 4 0.003 2020-06-21T06:00:00 Final Product 17
39 4 0.007 2020-06-23T14:00:00 Final Product 16
40 4 0.021 2020-06-24T06:00:00 Final Product 14
41 4 0.021 2020-06-25T14:00:00 Final Product 16
42 4 0.007 2020-06-26T22:00:00 Final Product 18
43 4 0.023 2020-06-28T14:00:00 Final Product 17
44 4 0.009 2020-06-30T14:00:00 Final Product 18
45 5 0.002 2020-06-01T22:00:00 Final Product 5
46 5 0.004 2020-06-02T14:00:00 Final Product 15
47 5 0.002 2020-06-03T06:00:00 Final Product 12
48 5 0.004 2020-06-05T06:00:00 Final Product 14
49 5 0.013 2020-06-08T06:00:00 Final Product 19
50 5 0.009 2020-06-12T06:00:00 Final Product 15
51 5 0.013 2020-06-17T14:00:00 Final Product 16
52 5 0.004 2020-06-18T22:00:00 Final Product 14
53 5 0.009 2020-06-19T14:00:00 Final Product 16
54 5 0.013 2020-06-20T14:00:00 Final Product 15
55 5 0.009 2020-06-22T22:00:00 Final Product 14
56 5 0.001 2020-06-25T14:00:00 Final Product 18
57 5 0.007 2020-06-26T06:00:00 Final Product 16
58 5 0.027 2020-06-29T06:00:00 Final Product 14
15
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