
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2002-21

2002-05-01

Flexible Scheduling in Middleware for Distributed rate-based real-Flexible Scheduling in Middleware for Distributed rate-based real-

time applications - Doctoral Dissertation, May 2002 time applications - Doctoral Dissertation, May 2002

Christopher D. Gill

Distributed rate-based real-time systems, such as process control and avionics mission

computing systems, have traditionally been scheduled statically. Static scheduling provides

assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in

the face of unanticipated overload, and treats invocation-to-invocation variations in resource

requirements inflexibly. As a consequence, processing resources are often under-utilized in the

average case, and the resulting systems are hard to adapt to meet new real-time processing

requirements. Dynamic scheduling offers relief from the limitations of static scheduling.

However, dynamic scheduling offers relief from the limitations of static scheduling. However,

dynamic scheduling often has... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Gill, Christopher D., "Flexible Scheduling in Middleware for Distributed rate-based real-time applications -
Doctoral Dissertation, May 2002" Report Number: WUCSE-2002-21 (2002). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1139

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1139?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1139

Flexible Scheduling in Middleware for Distributed rate-based real-time Flexible Scheduling in Middleware for Distributed rate-based real-time
applications - Doctoral Dissertation, May 2002 applications - Doctoral Dissertation, May 2002

Christopher D. Gill

Complete Abstract: Complete Abstract:

Distributed rate-based real-time systems, such as process control and avionics mission computing
systems, have traditionally been scheduled statically. Static scheduling provides assurance of
schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated
overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a
consequence, processing resources are often under-utilized in the average case, and the resulting
systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers
relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the
limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because
certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled
dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review
the implications of these factors on rate-based distributed systems, and posits the necessity to combine
static and dynamic approaches to exploit the strengths and compensate for the weakness of either
approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in
middleware, that can employ both static and dynamic components. This approach provides (1) feasibility
assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations
in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible
utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are
not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing
resources and to enforce a wider range of application-specified execution requirements. This approach
also meets additional constraints of an increasingly important class of rate-based systems, those with
requirements for robust management of real-time performance in the face of rapidly and widely changing
operating conditions. To support these requirements, we present a middleware framework that
implements the hybrid scheduling and dispatching approach described above, and also provides support
for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several
scheduling strategies to improve real-time performance in the face of changing operating conditions.
Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the
scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under
the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability
to change the rates of execution of at least some operations, and may occur under the control of a higher-
level middleware resource manager. Different rates of execution may be specified under different
operating conditions, and the number of such possible combinations may be arbitrarily large.
Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application
components. It is therefore desirable to handle variations in operating conditions entirely within the
scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application,
or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot
achieve acceptable real-time performance through self-adaptation. Reflective alternation among
scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational
support for this approach. In particular, run-time observable information such as that provided by our
metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is

https://openscholarship.wustl.edu/cse_research/1139?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1139?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages

underperforming the level of service another could provide. Furthermore we present empirical results for
our framework in a realistic avionics mission computing environment. This forms the basis for guided
adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and
dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and
fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while
improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching
infrastructure framework composed of fine-grained primitives, and describe how appropriate
configurations can be generated automatically based on the output of the scheduling framework. Third,
we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting
for rate selection and priority assignment. Fourth, we provide timely and efficient performance
information through an optimized metrics-feedback framework, to support higher-level reflection and
adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the
performance of alternative canonical scheduling heuristics, across a range of load and load jitter
conditions. These studies were conducted within an avionics mission computing applications framework
running on realistic middleware and embedded hardware. The results obtained from these studies (1)
demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-
time, and (2) suggest performance factors of interest for future work on adaptive control policies and
mechanisms using this framework.

Short Title: Flexible Scheduling in Middleware Gill, D.Sc. 2002

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

FLEXIBLE SCHEDULING IN MIDDLEWARE

FOR DISTRIBUTED RATE-BASED REAL-TIME APPLICATIONS

by

Christopher D. Gill

Prepared under the direction of Dr. Ron K. Cytron and Dr. Douglas C. Schmidt

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Science

May, 2002

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

FLEXIBLE SCHEDULING IN MIDDLEWARE

FOR DISTRIBUTED RATE-BASED REAL-TIME APPLICATIONS

by Christopher D. Gill

ADVISOR: Dr. Ron K. Cytron and Dr. Douglas C. Schmidt

May, 2002

Saint Louis, Missouri

Distributed rate-based real-time systems, such as process control and avionics

mission computing systems, have traditionally been scheduled statically. Static schedul-

ing provides assurance of schedulability prior to run-time and can be implemented with

low run-time overhead. However, static scheduling is brittle in the face of unantici-

pated overload, and treats invocation-to-invocation variations in resource requirements

inflexibly. As a consequence, processing resources are often under-utilized in the aver-

age case, and the resulting systems are hard to adapt to meet new real-time processing

requirements.

Dynamic scheduling offers relief from the limitations of static scheduling. How-

ever, dynamic scheduling often has a higher run-time cost because certain decisions are

enforced on-line. Furthermore, under conditions of overload tasks can be scheduled

dynamically that may never be dispatched, or that upon dispatch would miss their dead-

lines. We review the implications of these factors on rate-based distributed systems, and

posits the necessity to combine static and dynamic approaches to exploit the strengths

and compensate for the weaknesses of either approach in isolation.

We present a general hybrid approach to real-time scheduling and dispatching

in middleware, that can employ both static and dynamic components. This approach

provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend

this assurance incrementally to operations in successively lower criticality equivalence

classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-

head in cases where, for example, execution jitter is a factor or rates are not harmoni-

cally related, and (4) overall flexibility to make more optimal use of scarce computing

resources and to enforce a wider range of application-specified execution requirements.

This approach also meets additional constraints of an increasingly important

class of rate-based systems, those with requirements for robust management of real-

time performance in the face of rapidly and widely changing operating conditions. To

support these requirements, we present a middleware framework that implements the

hybrid scheduling and dispatching approach described above, and also provides support

for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation

among several scheduling strategies to improve real-time performance in the face of

changing operating conditions.

Adaptive re-schedulingmustbe performed whenever operating conditions ex-

ceed the ability of the scheduling and dispatching infrastructure to meet thecritical

real-time requirements of the system under the currently specified rates and execution

times of operations. Adaptive re-scheduling relies on the ability to change the rates

of execution of at least some operations, and may occur under the control of a higher-

level middleware resource manager. Different rates of execution may be specified under

different operating conditions, and the number of such possible combinations may be

arbitrarily large. Furthermore, adaptive re-scheduling must occur within an acceptably

predictable and narrow interval, while preserving schedulability assurances for critical

operations, and optimizing other properties such as resource utilization to the extent

possible. To address these constraints, we describe extensions to provide flexible and

efficient strategies for rate selection and priority re-assignment.

Unfortunately, adaptive re-scheduling may in turn require notification of rate-

sensitive application components. It is therefore desirable to handle variations in oper-

ating conditions entirely within the scheduling and dispatching infrastructure when pos-

sible. A rate-based distributed real-time application, or a higher-level resource manager,

could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable

real-time performance through self-adaptation.

Reflective alternation among scheduling heuristics offers a way to tune real-time

performance internally, and we offer foundational support for this approach. In par-

ticular, run-time observable information such as that provided by our metrics-feedback

framework makes it possible todetectthat a given current scheduling heuristic is under-

performing the level of service another could provide. Furthermore we present empirical

results for our framework in a realistic avionics mission computing environment. This

forms the basis forguidedadaptation.

This dissertation makes five contributions in support of flexible and adaptive

scheduling and dispatching in middleware. First, we provide a middleware schedul-

ing framework that supports arbitrary and fine-grained composition of static/dynamic

scheduling heuristics, to assure critical timeliness constraints while improving non-

critical performance under a range of conditions. Second, we provide a flexible dis-

patching infrastructure framework composed of fine-grained primitives, and describe

how appropriate configurations can be generated automatically based on the output of

the scheduling framework. Third, we describe algorithms to reduce the overhead and

duration of adaptive rescheduling, based on sorting for rate selection and priority as-

signment. Fourth, we provide timely and efficient performance information through an

optimized metrics-feedback framework, to support higher-level reflection and adapta-

tion decisions. Fifth, we present the results of empirical studies to quantify and evaluate

the performance of alternative canonical scheduling heuristics, across a range of load

and load jitter conditions. These studies were conducted within an avionics mission

computing application framework running on realistic middleware and embedded hard-

ware. The results obtained from these studies (1) demonstrate the potential benefits of

reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest

performance factors of interest for future work on adaptivecontrol policies and mecha-

nisms using this framework.

copyright by

Christopher D. Gill

2002

To the honored memory of our recently departed loved ones: my grandparents

Lawrence Gill, Dorothy Godfrey, and Paul Godfrey, and my aunt, Martha Schaeffer –

the tapestries of our lives are immeasurably richer for having been interwoven with

yours.

Contents

List of Tables : xi

List of Figures : xii

Acknowledgments : xv

1 Introduction : 1

1.1 Motivation . 1

1.2 Design and Implementation Challenges 2

1.3 Applying CORBA to Predictable Real-Time Applications 5

1.4 Contributions . 8

1.4.1 Strategized Hybrid Scheduling Framework 8

1.4.2 Reconfigurable Dispatching Framework 9

1.4.3 Optimized Rate Selection Technique 10

1.4.4 Performance Monitoring and Feedback 10

1.4.5 Towards Adaptive Selection of Scheduling Heuristics 10

1.5 Chapter Organization . 11

2 Survey of Related Work : 13

2.1 Avionics Platform Research . 14

2.2 Adaptive Systems Research . 14

2.3 CORBA-related QoS Middleware Research 16

2.4 Non-CORBA QoS Middleware Research 20

2.5 Operating Systems Research . 21

2.6 Scheduling Research . 23

vii

3 Overview of the Kokyu Framework : 27

3.1 Overview of the Target Platform . 29

3.2 The Kokyu Framework . 30

3.3 Strategized Scheduling . 32

3.4 Flexible Dispatching Framework . 37

3.5 Middleware Scheduling and Dispatching Optimizations 38

3.5.1 Steady-State Optimizations 39

3.5.2 Adaptive Optimizations. 42

3.6 Improving RTARM and Scheduler Interaction 45

3.7 Metrics Framework . 47

4 Kokyu Scheduling Framework Implementation : : : : : : : : : : : : : : 48

4.1 Overcoming Static Scheduling Limitations with Dynamic Scheduling . 50

4.1.1 Purely Dynamic Scheduling Strategies. 51

4.1.2 Maximum Urgency First (MUF) 52

4.2 Design Goals of the Kokyu Scheduling Framework 56

4.2.1 Kokyu Scheduling Input Interface 57

4.2.2 Kokyu Scheduling Output Interface 59

4.3 Input Mappings Implemented in Kokyu 61

4.4 Output Mappings Implemented in Kokyu 65

4.5 Operation Dependency Graph . 67

4.6 Simulating Critical Instant Behavior 68

4.6.1 Simulation Design 69

4.6.2 Comparing Operation Latency in the Scheduling Strategies . . . 71

4.6.3 Comparing Operation Laxity in the Strategies. 72

4.6.4 Analysis of Simulation Results 73

4.6.5 Conclusions from Simulation Experiments 75

5 Kokyu Dispatching Framework Implementation : : : : : : : : : : : : : : 76

5.1 A More General Dispatching Infrastructure 76

5.2 Alternative Dispatching Models . 76

5.3 Selected Dispatching Model . 79

5.3.1 Run-time Dispatching Priority 82

5.4 Scheduling Overhead in TAO’s Real-Time Event Service 83

5.4.1 Comparing Run-Time Performance 83

viii

5.4.2 End-to-End Overhead .. 84

5.4.3 Overhead of Dispatching Primitives 86

5.4.4 Dispatching Infrastructure Extensions. 91

5.5 Configuration-Driven Dispatching Module Factory: 92

5.5.1 IDL Configuration Specification: 93

5.5.2 Message Queues: 95

5.5.3 Timers: . .. 95

5.5.4 Concurrency Mechanisms: 95

6 Adaptive Rate-Selection Implementation : : : : : : : : : : : : : : : : : : 98

6.1 Multi-Layer Adaptive Resource Management. 99

6.2 Performance of the Sensitivity Approach 101

6.3 Adaptive Optimizations 104

6.3.1 Recasting Admission Control as a Sorting Problem 105

6.3.2 Sorting Strategies 107

6.3.3 Iterative Admission Control 109

7 Metrics Feedback Framework Implementation : : : : : : : : : : : : : : : 111

7.1 Instrumentation and Monitoring . 112

7.2 Time Frame Manager . 116

7.3 Integration with Remote Logging and Visualization 118

8 Empirical Studies : 122

8.1 Experimental Platform . 122

8.1.1 Terminology 123

8.1.2 Experimental Application and Middleware 124

8.1.3 OS and Hardware Configuration 127

8.2 Experimental Design . 129

8.2.1 Controlled Variables . .. 130

8.2.2 Measured Variables 133

8.3 Observed Results . 134

8.3.1 Dispatching Load and Overhead 135

8.3.2 Operation Deadline Success, Failure and Cancellation 144

8.3.3 Missed HRT Deadlines .. 148

8.3.4 Dispatching Efficiency and Effectiveness 154

ix

8.3.5 Summary of Observed Results 162

8.4 Correlation of Performance to Observable Characteristics 164

8.4.1 Information Based on Deadlines 164

8.4.2 Information Based on Latency 166

8.5 Conclusions . 173

9 Conclusions and Future Research Problems : : : : : : : : : : : : : : : : 177

9.1 Additional Studies . 179

9.2 Improved Precision of Cancellation Decisions 180

9.3 Ordering, Transitions, and Multi-Dimensional QoS 181

9.3.1 Transition Management. 182

9.3.2 Competitive Constraint Resolution 184

9.3.3 Cooperative Constraint Specification 187

9.4 Towards Control Automata for Adaptation 191

Appendix A Real-Time Scheduling Terminology : : : : : : : : : : : : : : : : 194

References : 198

Vita : 214

x

List of Tables

1.1 Research Contributions . 9

4.1 MUF Priority Components 53

4.2 Characteristics of Simulated Operations 70

6.1 Ordered Sorting Criteria for FAIR and CB-FAIR 108

8.1 Loads For Each Operating Region . 131

xi

List of Figures

1.1 Example Avionics Mission Computing Application 3

3.1 Kokyu in an Avionics Context . 29

3.2 Kokyu Services used by TAO . 31

3.3 Kokyu Scheduling and Dispatching Infrastructure 32

3.4 Processing Steps in the Kokyu Service Architecture 33

3.5 System Mode Partitions 39

3.6 Steady-State Optimizations 41

3.7 Integrated Framework Architecture . 44

3.8 Adaptive Optimizations 46

4.1 Dynamic Scheduling Strategies . 51

4.2 Design Goals of the Kokyu Scheduling Framework 56

4.3 Kokyu Scheduling Framework IDL Input Interface 59

4.4 Kokyu Scheduling Framework IDL Output Interface 60

4.5 Input Mappings: (A) MUF (B) MLF 62

4.6 Input Mappings: (A) EDF (B) RMS 63

4.7 RMS+MLF Input Mapping 64

4.8 Output Mapping Implemented in Kokyu 66

4.9 Latency of Operations for each Strategy 71

4.10 Laxity of Operations for each Strategy 73

4.11 Fraction of Deadlines Missed for each Strategy 74

5.1 Dispatching Models Supported in the Kokyu Framework 78

5.2 Alternative Placement of Dispatching Modules 80

5.3 Example Queueing Mechanism in a Kokyu Dispatching Module 81

5.4 TAO’s Event Service Architecture . 85

xii

5.5 End-to-end Run-time Overhead of Dynamic Scheduling 86

5.6 Average�sec/Dequeue . 87

5.7 Average�sec/Enqueue 88

5.8 IDL for Dispatching Module Configuration Descriptors 94

6.1 RTARM and Scheduler: Initial Integration 99

6.2 Adaptation Method Call Counts. 102

6.3 Average�sec/Call . 103

6.4 FAIR and CB-FAIR Rate Selection Strategies 109

7.1 Metrics Framework . 112

7.2 Metrics Cache . 113

7.3 Metrics Frame Manager . 117

7.4 Metrics Visualizations . 121

8.1 Application and Middleware Layers 124

8.2 Hardware and Software Configuration 127

8.3 Operating Regions . 130

8.4 Framing of Operation Requests and Metrics Data Extraction Points . . . 134

8.5 Total Requests Enqueued 135

8.6 Total Enqueue Latency 136

8.7 Total Dequeue Latency . 137

8.8 Mean Enqueue Latency Per Operation 138

8.9 Mean Dequeue Latency Per Operation 138

8.10 Mean Enqueue Latency of Highest Priority Queue 140

8.11 Mean Dequeue Latency of Highest Priority Queue 140

8.12 Mean Enqueue Latency of Lowest Priority Queue 142

8.13 Mean Dequeue Latency of Lowest Priority Queue 143

8.14 MUF Operation Behavior With Cancellation 144

8.15 MUF Operation Behavior Without Cancellation 145

8.16 RMS+MLF Operation Behavior With Cancellation 146

8.17 RMS+MLF Operation Behavior Without Cancellation. 146

8.18 RMS Operation Behavior With Cancellation 147

8.19 RMS Operation Behavior Without Cancellation 147

8.20 Region 6: Missed HRT Deadlines in RMS With and Without Cancellation151

xiii

8.21 Region 7: Missed HRT Deadlines in RMS With and Without Cancellation151

8.22 Region 8: Missed HRT Deadlines in RMS With and Without Cancellation152

8.23 Region 9: missed HRT deadlines in MUF and RMS+MLF With Can-

cellation . 153

8.24 Region 7 SRT Deadlines Made: Efficiency 157

8.25 Region 7 SRT Deadlines Made: Effectiveness. 157

8.26 Region 8 SRT Deadlines Made: Efficiency 158

8.27 Region 8 SRT Deadlines Made: Effectiveness. 159

8.28 Region 10 SRT Deadlines Made: Efficiency 160

8.29 Region 10 SRT Deadlines Made: Effectiveness 160

8.30 Effectiveness of the Dominant Strategies 161

8.31 Most Effective Heuristic in each ASFD Operating Region 163

8.32 MAD of Effectiveness Function over Window Size 20. 165

8.33 Measured Operation Latencies: HRT 167

8.34 Measured Operation Latencies: SRT 167

8.35 Operation Latencies in MUF: HRT 168

8.36 Operation Latencies in MUF: SRT 168

8.37 Operation Latencies in RMS+MLF: HRT 169

8.38 Operation Latencies in RMS+MLF: SRT 169

8.39 Mean Operation Latency Over 20 Samples: HRT 170

8.40 Mean Operation Latency Over 20 Samples: SRT 171

8.41 Mean Operation Latency Over 20 Samples in MUF: HRT 171

8.42 Mean Operation Latency Over 20 Samples in MUF: SRT 172

8.43 Mean Operation Latency Over 20 Samples in RMS+MLF: HRT 172

8.44 Mean Operation Latency Over 20 Samples in RMS+MLF: SRT 173

9.1 Adaptative Transition: RMS and MUF 182

9.2 Distributed Transition Cut 185

9.3 Cooperative Embedding of Constraints in Heuristics 188

9.4 Adaptation Automaton over RMS, MUF, and RMS+MLF 192

A.1 Relationships in the Urgency Tuple . 195

xiv

Acknowledgments

The past four years in the Center for Distributed Object Computing in the Department
of Computer Science at Washington University has been an unprecedented period of
growth for me, both professionally and personally. I owe an inestimable debt to a num-
ber of people, and gratefully wish to acknowledge their gifts of time, support, encour-
agement, ideas, attention, and patient tutelage. If I have omitted anyone, it is entirely
unintentional, and solely a function of the number of people to whom I am indebted.

I wish first to thank my three mentors, who have each supported and helped
shape the arc of my studies, teaching, and research. Dr. Douglas C. Schmidt made it
all possible by giving me the opportunity to join the DOC group. He has been a tireless
advisor and a vigorous advocate and collaborator throughout, even while founding a
new branch of the DOC group at the University of California, Irvine, serving as DARPA
ITO Deputy Director, and writing three books. Dr. David L. Levine introduced me to the
challenging and fascinating world of real-time systems. Through example, instruction,
and encouragement, he fostered my exploration of and interest in that world. Dr. Ron K.
Cytron has been my advisor through the challenging completion and delivery phases of
my dissertation, and chaired my final defense committee. Through his generous support,
sage and persistent guidance, and good challenging questions, he has also played a major
role in my metamorphosis from student and staff researcher to contributing member of
the faculty.

I wish to thank the faculty and staff of the Department of Computer Science at
Washington University for creating and nurturing a highly productive and supportive
environment for both research and education. I have benefitted greatly through the rich
opportunities for study, research collaboration, and teaching afforded me during my
graduate program. I am additionally grateful for the opportunity to join this faculty, and
I look forward to making a strong contribution in kind to the department, the school,
and the larger community.

I am grateful for the time and effort spent reviewing, commenting on, and making
suggestions for improvement to this dissertation by my final defense committee: Dr.
Ron K. Cytron, Dr. Douglas C. Schmidt, Mr. David C. Sharp, Dr. Mark Franklin, Dr.

xv

Roger Chamberlain, Dr. Jason Fritts, Dr. Bill Smart, and Mr. Fred Kuhns. I am also
grateful to Dr. Douglas Niehaus who served as an external reader, offering numerous
suggestions that helped greatly in refining this dissertation.

I am endebted to the past and present members of the DOC group, whose col-
laboration and friendship has made it a joy to work and study here. The attitudes of
shared effort, knowledge and credit, and of hard workandplay contribute to the code of
excellence known as “The Way of DOC” (www.cs.wustl.edu/~schmidt/ACEwrappers/etc/DOC-

way.html) that cannot help but change the lives of all who pass through the DOC group’s
now many doors.

I truly appreciate the sustained support, collaboration, and encouragement I have
enjoyed from The Boeing Company. The members of the Bold Stroke organization
within Boeing Phantom Works in St. Louis, MO, have provided challenging problems,
collegial inclusion in their broader discussions, abundant funding, and vigorous inter-
action within a series of programs that have resulted in several successful demos, many
publications, a significant body of software, and the maturation of the ideas contained
in this dissertation. Special thanks to Dr. David Corman, Mr. Steve Dorris, Mr. Bryan
Doerr, Mr. Pat Goertzen, Ms. Jeanna Gossett, Mr. Greg Holtmeyer, Mr. Brian Mendel,
Mr. Brian Pawlak, Mr. Nathan Scandella, Mr. David Sharp, Dr. Doug Stuart, Mr. Jim
Urness, Mr. Tom Venturella, Mr. Don Winter, Mr. Russ Wolter, and Ms. Amy Wright,
with whom I’ve had the privilege of working directly.

I owe a similar debt of gratitude to colleagues at several other companies, with
whose collaboration this work has evolved. Dr. Rick Schantz and Dr. Joseph Loyall
of BBN Technologies have generously shared insights, effort, and support as we have
explored new areas of adaptive resource management in distributed systems. I have
learned much in the process of building, integrating, measuring, and refining our com-
bined research infrastructure, and hope that these collaborations will continue for many
years to come. Dr. Ebrahim Moshiri, Mr. Malcolm Spence, and Mr. Kevin Stanley of
Object Computing, Inc. have enthusiastically and energetically supported and encour-
aged my own growth and development, that of the DOC group, and that of the larger
open-source middleware community. Dr. Rakesh Jha, Mr. Nigel Birch, and Mr. John
Shackleton at Honeywell collaborated on the initial integration and subsequent evolution
of the scheduler and RTARM in the ASTD and WSOA research programs.

I also wish to acknowledge support for several segments of this work by the Air
Force Research Labs, Wright Patterson AFB, and by DARPA ITO. I am especially grate-
ful to Mr. Kenneth Littlejohn, AFRL program manager, and Dr. Gary Koob, DARPA
ITO program manager, for their interest in this work, and their guidance over a series of
research projects.

xvi

Although I have been less visible in the dojo than I would have liked these past
four years, I have also learned more deeply to appreciate and draw upon the training
I have received from my Sensei, Mr. Mark Rubbert, his teacher, Koichi Kashiwaya
Sensei, and the many other instructors and students of the St. Louis Ki Society, the
Midland Ki Federation, and the Ki no Kenkyukai founded by Master Koichi Tohei.
George Simcox Sensei, whose recent death is a reminder how precious the time we
have together truly is, described Ki training as “attitudes leading to actions.” It is those
attitudes and the practice of living at peace within them that have allowed me over the
past four years, in the words of Tohei Sensei, to “find spare time even when busy.”

Finally, and most of all, I wish to express my unending gratitude to my family.
My wife, Barb, and son, Paul, are the lights of my life and my greatest sources of
happiness. My parents, David and Helen Gill, and my sister, Sarah Gill, have over the
years provided boundless love and support, and that nurture has enabled what successes
I’ve attained. I am doubly blessed by the loving family into which I married: my parents-
by-marriage Bill and Lilian Eck and my siblings-by-marriage, Cathy and Kurt Bartley,
Lori and Pat Maher, Bill and Margaret Eck, and Mary Jo and Steve Thaxton.

Christopher D. Gill

Washington University in Saint Louis
May 2002

xvii

1

Chapter 1

Introduction

1.1 Motivation

Supporting the quality of service (QoS) demands of next-generation real-time applica-

tions requires object-oriented (OO) middleware that is flexible, efficient, predictable,

and convenient to program. Applications with both critical and non-critical real-time

requirements, such as process control and avionics mission computing systems [67],

impose severe constraints on the design and implementation of real-time OO middle-

ware. For example, avionics mission computing applications typically manage sensors

and displays, navigate the aircraft’s course, and mediate interactions with other aircraft

and ground-based stations. Middleware for such applications must support predictable

real-time QoS requirements for both critical and non-critical tasks.

Although many of the properties of these applications, such as the allowed rates

of execution, execution times, and criticality levels can be specifieda priori, it is difficult

in practice to achieve at once:

1. a complete static specification of all modes of operation,

2. flexibility to evolve and re-use the system across product lifecycles and families,

and

3. efficiency in the use of resources at run-time.

Although historically many successful systems have been built and optimized using

static scheduling, these approaches have proven labor intensive, very costly to main-

tain and extend, and difficult to adapt to modern business requirements for reduced

production and certification cycle times.

2

We distinguish thefunctionalbehavior of the system (e.g., the interfaces to and

semantics of computation and data), from theextra-functionalbehavior (e.g., timeli-

ness and predictability). In this dissertation we focus on optimizing the extra-functional

performanceof the system by maintaining static timeliness assurances while increasing

overall utilization of processing resources.

In particular, to address the number and diversity of:

1. operating environments and conditions,

2. the need to encapsulate certification requirements for key portions of these sys-

tems, and

3. the requirement for flexible integration of new functional and extra-functional re-

quirements,

we have generalized the above static approach. We specify key properties of the system

a priori where possible, but leave others for run-time specification and then focus our

attention on the behaviors of:

1. run-time specification policies and mechanisms,

2. infrastructure configured to enforce the specifications, and

3. the application itself, running on the configured infrastructure.

The remainder of this chapter is structured as follows: Section 1.2 examines the

design and implementation challenges for a representative real-time application; Sec-

tion 1.3 describes the middleware context in which this work has been conducted; Sec-

tion 1.4 outlines the principal contributions of this research; Finally, section 1.5 de-

scribes the overall structure of this dissertation.

1.2 Design and Implementation Challenges

Figure 1.1 illustrates the architecture of a representative real-time application – an OO

avionics mission computing platform [41] – developed and deployed using OO mid-

dleware components and services based on Common Object Request Broker Architec-

ture (CORBA) [90]. Sensors external to the mission computer generate key data about

the status of the aircraft and its environment, such as navigation heading, geographic

position, and nearby terrain features. These data are then replicated across multiple

3

OBJECTOBJECT REQUESTREQUEST BROKERBROKER

2:2:PUSH PUSH ((EVENTSEVENTS))

AirAir
FrameFrame

SensorSensor
proxyproxy

HUDHUD

NavNav

SensorSensor
proxyproxy

SensorSensor
proxyproxy

3:3:PUSH PUSH ((EVENTSEVENTS))

1:1: SENSORS SENSORS

GENERATEGENERATE

DATADATA

EVENTEVENT

CHANNELCHANNEL

Figure 1.1: Example Avionics Mission Computing Application

mission computing processors using CORBA-compliant Object Request Broker (ORB)

middleware. Notification of data availability and subsequent processing of the data are

mediated by an event-push architecture in which

1. sensor proxies push events to an event channel, which

2. in turn pushes the events out to event consumers that have registered interest in

those events.

Data processing is performed by application components implemented as event con-

sumers. In response to received events, each event consumer may perform one or more

of the following operations:

1. process data

2. produce or refine data

3. send events to other consumers

Notably, each of these operations is designed to complete the processing of each event

within a well-bounded interval, so that worst-case assurances can be made about the

time of completion of processing, both for each operation and in aggregate.

CORBA-compliant ORBs allow clients to invoke operations on a target object

without concern for where the object resides, in what language the object’s implemen-

tation is written, the OS/hardware platform, or the types of communication protocols,

4

networks, and buses used to interconnect distributed objects [132]. However, achieving

these benefits for real-time applications requires the resolution of the following design

and implementation challenges:

Scheduling assurance prior to run-time: In real-time applications the consequences

of missing a critical deadline can be catastrophic. For example, failure to process an

input from the pilot by a specified deadline can be disastrous in an avionics application,

especially in mission critical situations. Therefore, it is essential to validateprior to

run-timethat all critical processing deadlines will be met.

Historically, validating stringent timing requirements has implied the use of static,

off-line scheduling. For instance, the ARINC Avionics Application Software Standard

Interface (APEX) for Integrated Modular Avionics (IMA) relies on two-level schedul-

ing [7, 2]. One level consists ofpartitions, which are executed cyclically and scheduled

statically, off-line. The second level consists of applicationprocesseswithin each par-

tition, which are scheduled via a more flexible approach using priority-based preemp-

tion [7].

Severe resource limitations: Many real-time applications must minimize processing

due to strict resource constraints, such as cost, weight, and power consumption restric-

tions. However, to providea priori assurances for the critical operations, we must ensure

worst-case processing requirements can be met.

Therefore, resource allocation and scheduling must always accommodate the

worst case, even if non-worst case scenarios are common. For example, an applica-

tion that relies on real-time image processing [104] must:

1. determine the worst-case processing time, and

2. ensure that sufficient resources are available for that case,

although the usual processing time could be much less than in the worst case.

Distributed processing: Clients running on one processor must be able to invoke

operations on servants on other processors. Likewise, the allocation of operations to

processors should be flexible. For instance, it should be transparent to the application

design and implementation whether an operation resides on the same processor as the

client that invokes it.

5

Testability: Real-time software is complex, critical, and long-lived. Therefore, main-

tenance is often problematic and expensive [87]. A large percentage of software main-

tenance involves testing. Current scheduling approaches are validated by extensive and

tedious testing, and complete coverage may be difficult to ensure [128]. Therefore, ana-

lytical assurance is essential to help reduce validation and verification costs by focusing

the requisite testing on the most strategic system components.

Adaptability across product families: Some real-time systems are custom-built for

specific product families. Development and testing costs can be reduced if large, com-

mon components can be factored out. In addition, validation and certification of com-

ponents can be shared across product families, amortizing development time and effort.

1.3 Applying CORBA to Predictable Real-Time Appli-

cations

To address the design and implementation challenges for the example application de-

scribed in Section 1.2 and shown in Figure 1.1, standards-based commodity-off-the-

shelf (COTS) middleware (i.e., CORBA), was selected as the basis for a common open

systems infrastructure across application product lines [24]. Early experience using

CORBA on telecommunication [116] and medical imaging projects [104] illustrated

that it is well-suited for conventional request/response applications with “best-effort”

QoS requirements. Moreover, CORBA addresses issues of distributed processing and

adaptation across product families by promoting the separation of interfaces from im-

plementations and supporting component reuse [132].

However, conventional CORBA ORBs were not yet suited for demanding dis-

tributed rate-based real-time applications because they do not provide features or opti-

mizations to schedule operations that require predictable real-time QoS [91]. To meet

these requirements, the Center for Distributed Object Computing, under the direction

of Dr. Douglas C. Schmidt, used and extended the ADAPTIVE Communication Envi-

ronment (ACE) framework to develop a real-time CORBA ORB called The ACE ORB

(TAO) [117]. TAO is an open source implementation of standard CORBA whose ORB

and services support efficient and predictable real-time, distributed object computing.

6

The original work on TAO explored many dimensions of high-performance and

real-time ORB design and performance, including event processing [41], request demul-

tiplexing [105], I/O subsystem integration [59], concurrency and connection architec-

tures [118], and IDL compiler stub/skeleton optimizations [35]. Taken together, these

advances constitute a foundation for predictable distributed real-time behavior, upon

which higher-level capabilities can be built.

Newer standards such as the Real-Time CORBA 1.0 (RTCORBA) specifica-

tion [91], and the CORBA Messaging specification [89] upon which it depends, describe

many of the necessary services, features, and interfaces for higher-level distributed real-

time capabilities, such as end-to-end priority preservation and reliable asynchronous

method invocation in CORBA middleware. Although these specifications play an im-

portant role in the evolution of standards-based COTS middleware, significant additional

research [106, 4, 97] has been necessary to identify and address fundamental design and

implementation issues not covered in sufficient detail by these standards.

Similarly, the Dynamic Scheduling Real-Time CORBA 2.0 (DSRTCORBA) Joint

Final Submission [94] defines a framework for additional capabilities, such asdynamic

end-to-end management of priorities, but leaves unspecified key areas such as (1) the ap-

propriate heuristics for assigning priorities dynamically, (2) strategies to coordinate both

static and dynamic priority management end-to-end, and (3) how the individual behav-

ior of and interactions between mechanisms for static and dynamic priority management

may impact end-to-end real-time behavior. The approach presented in this dissertation

addresses questions left unanswered by the DSRTCORBA standard, and thus extends

the state of the art in standards-based COTS middleware for distributed real-time sys-

tems, particularly those with requirements for adaptive and reflective management of

QoS under changing operating conditions.

To maintain QoS assurances and to simplify testing for such demanding real-

world real-time applications, we have extended prior work on TAO by providing a

strategized scheduling and dispatching frameworkwe have namedKokyu1, for TAO.

In particular, Kokyu focuses on applications with the following characteristics:

1Kokyuis a Japanese word meaning literallybreath, but with implications of coordination and timing.

7

� Stable epochs– the behavior of the system over time can be described as a se-

quence ofepochs, or periods during which system behavior is generally stable,

with no significant variation in which operations are active, their rates, or costs of

execution.

� Variation between epochs– the system behavior can change significantly from

one epoch to another, and the number of significantly distinct behavioral states

can be arbitrarily large.

� Bounded executions– operations are generally expected to stay within the limits

of their specified execution times, and the total load on the system is expected

to stay within feasible bounds. However, in our approach we also consider and

address the effects of various levels of total system load and of randomized jitter

in execution times, both

1. within the advertised limits, and

2. in excess those limits.

� Known rates– dispatch requests arrive and are executed within a specified period

associated with an operation. For each operation, there is a set of one or more

possiblerates, though during eachepochof execution the rate of execution for

each operation is fixed.

� Known operations– all operations are known to the scheduler before run-time,

or are reflected entirely within the execution times of other specified operations.

In addition to having different fixed rates (and possibly costs) of execution in

different epochs, various subsets of the total set of operations may be enabled and

disabled in each epoch.

Within these constraints, the Kokyu framework allows applications to (1) specify

custom strategies for static and/or dynamic scheduling heuristics, (2) flexibly and au-

tomatically configure dispatching infrastructure to enforce the invariants of the chosen

strategy, (3) upon a major shift in behavior, perform adaptive rescheduling of opera-

tions within closely bounded time-frames, and (4) adapt to minor variations in behavior

by reflective alternation among multiple scheduling strategies. These capabilities allow

applications simultaneously to (1) minimize risk to critical operations and (2) optimize

performance of non-critical ones under a range of operating conditions. This framework

8

thus increases adaptability across application families and operating systems, while pre-

serving the scheduling assurances and testability offered by previous work on statically

scheduled CORBA operations. Furthermore, it offers a foundation for assurances of

overallperformance, as well as for critical deadline success.

1.4 Contributions

This section describes the research contributions of this dissertation in detail. Sec-

tion 1.4.1 describes how the Kokyu scheduling framework extends and generalizes the

previous-generation static TAO scheduling approach, to support arbitrary scheduling

heuristics and improve CPU utilization while preserving criticality isolation. Section

1.4.2 describes how the reconfigurable Kokyu dispatching framework allows a cus-

tomized fit between scheduling heuristics and application characteristics. Section 1.4.3

describes Kokyu scheduling framework extensions to support adaptive selection of op-

eration rates at run-time. Section 1.4.4 describes a shared-memory-capable C++ frame-

work for real-time performance data capture and feedback in constrained time and space.

Finally, Section 1.4.5 describes how our framework, combined with our empirical mea-

surements described in Chapter 8, supports optimized co-scheduling of applications

and resource managers through run-time adaptive and reflective selection of scheduling

heuristics. Table 1.1 summarizes the major research contributions of this dissertation.

1.4.1 Strategized Hybrid Scheduling Framework

The Kokyu framework began in an effort to extend and generalize the existing TAO

static scheduling service [117]. The TAO static scheduling service allowed applications

to specify key operation characteristics, such as period and worst-case execution time

(WCET), and applied Rate Monotonic Scheduling (RMS) [70] to assign static priorities

and Rate Monotonic Analysis (RMA) [70, 65, 56] to assess feasibility. The static sched-

uler produced a table of operations and priorities, which was then compiled and linked

with a table-driven run-time scheduler. At run-time, adispatching modulelooked up the

assigned static priority for an operation to place each dispatch request for the operation

into a first-in-first-out (FIFO) queue serviced by a thread at the appropriate operating

system priority [41].

9

Table 1.1: Research Contributions

Technical Challenge Research Approach Research Impact
Increase CPU utilization over Support arbitrary strategies Increased utilization,
static approaches, but that hybridize static/dynamic critical operations
keep criticality isolation scheduling/dispatching still meet deadlines

in overload
No one scheduling/dispatching Dispatching composed Supports tailored fit
strategy is optimal across all from primitive elements of scheduling/dispatching
epochs of system behavior
Closer bound on latency of Integrated rate/priority Change fromO(n2) to
adaptive re-scheduling selection mechanisms O(n lgn) or evenO(n)

bound on adaptation time
Adaptation feedback in Shared memory capable data Low latency and small
constrained time and space cache withinline footprint for metrics

instrumentation methods feedback and recording
Optimized co-scheduling of Identify and empirically Support for run-time
resource managers and measure run-time observable reflective and adaptive
application components characteristics to complementpolicy selection

a priori analysis

To support commonly used dynamic scheduling heuristics, such as Earliest Dead-

line First (EDF) [70] and Minimum Laxity First (MLF) [126, 71], as well as hybrid

approaches such as RMS+EDF [70] and the Maximum Urgency First (MUF) [126] and

RMS+MLF [15] strategies we examine in Chapter 8, we first generalize the priority and

queue assignment approach, as Chapter 4 describes in detail. Second, we define a new

configuration descriptor for dispatching queue, timer, and thread details based on the

particular scheduling heuristic and operation characteristics specified.

1.4.2 Reconfigurable Dispatching Framework

To support flexible configuration of dispatching mechanisms in support of arbitrary

scheduling policies, we have extended the design and implementation of the RMS dis-

patching module found in the original TAO Real-Time Event Channel (RTEC) [41].

First, we provide additional types of priority queues, to manage the ordering of dis-

patches according to policies such as EDF or MLF. Second, we show how flexible data

structures can be used to support sharing and recycling of dispatching primitives such

10

as threads, timers, and queues. Third, we show how factories can be used for auto-

matic configuration and reconfiguration of the dispatching infrastructure, using the con-

figuration descriptors described in Section 1.4.1. Chapter 5 describes the design and

implementation details of this dispatching framework in detail.

1.4.3 Optimized Rate Selection Technique

To improve the observed real-time performance of the Kokyu framework’s interaction

with higher-level resource managers, we extend the basic operation scheduling tech-

nique to support both rate selection and priority assignment in more closely bounded

time. In particular, we reduce the observedO(n2) behavior toO(n lgn) and sometimes

O(n) in special cases by re-casting both rate selection and priority assignment as sorting

problems. We support alternative rate selection strategies, and describe two representa-

tive algorithms, described in more detail in Chapter 6.

1.4.4 Performance Monitoring and Feedback

To support monitoring and control by higher-level resource managers, we provide a met-

rics infrastructure for instrumenting application and infrastructure components to gather,

store, and propagate fine-grained real-time performance data within stringent time and

space constraints. Chapter 7 documents (1) a shared-memory-capable data cache with

inline instrumentation probes, (2) a common time frame manager across threads and

rates of execution, (3) interceptors for measuring, and possibly cancelling operation

dispatches at run-time, (4) monitoring interfaces for use both by higher-level resource

managers and in the reflective alternation of heuristics described in Section 1.4.5, and

(5) integration with external data logging and visualization services.

1.4.5 Towards Adaptive Selection of Scheduling Heuristics

The most important contribution of this dissertation, which builds on the other four

major contributions, is to demonstrate the benefits of alternation among several real-

time scheduling heuristics at run-time, and suggest techniques for control of alternation

using run-time reflection on the measured real-time behavior. Because

1. higher-level resource managers (such as, for example, the Real-Time Adaptive

Resource Manager (RTARM) [44] described in Section 6.1) compete for the same

11

resources (i.e., memory, CPU cycles, network bandwidth) as the applications they

intend to manage, and

2. these same resource managers may themselves have bothcritical andnon-critical

operations,e.g., staying in synch with the state of the system versus optionally

performing adaptation,

we believe the problem of co-scheduling resource managers and applications in dis-

tributed rate-based real-time systems is both important and relevant to the work pre-

sented in this dissertation.

In particular, Chapter 8 presents empirical studies of three canonical heuristics,

RMS, MUF, and RMS+MLF, each with and without operation cancellation, for a realis-

tic avionics mission computing application running in a realistic middleware, operating

system, and hardware setting. Chapter 9 describes open problems raised by this re-

search, including the consideration in Section 9.4 of whether control laws for adaptation

among heuristics, based on the empirical results presented in Chapter 8, can be

1. implemented effectively and efficiently using information available at run-time,

and either

2. identified where possible for categories of applications, or

3. learned for a particular application.

1.5 Chapter Organization

The remainder of this dissertation is organized as follows. Chapter 2 surveys related

work in the areas of real-time scheduling heuristics and frameworks, and real-time QoS

management in operating systems and middleware. Chapter 3 provides an overview of

the Kokyu framework, and describes the role it plays in supporting research extensions

to an example avionics application. Chapter 4 describes the implementation details of

the scheduling portion of the Kokyu framework, and describes architectural principles

applied to improve the flexibility and power of the framework. Chapter 5 describes

details of the flexible Kokyu dispatching infrastructure, including innovations for effi-

cient support of adaptive reconfiguration at run-time. Chapter 6 presents results of early

integration of the Kokyu scheduler with a RTARM [44] and describes the subsequent

12

refactoring and extension of the Kokyu scheduler to reduce the worst case time com-

plexity bound for adaptive rescheduling. Chapter 7 describes the implementation of a

performance measurement framework designed for low-latency and reduced-footprint

collection and propagation of real-time performance data, intended for use in several

ways:

1. for empirical analysis and visualization,

2. for run-time reflective evaluation of operating conditions,

3. for possible use in alternation among scheduling heuristics, and

4. for closed-loop run-time feedback to multiple higher-level QoS managers (such

as, for example, the RTARM [44] and Quality Objects (QuO) [143]).

Chapter 8 presents empirical studies to evaluate the real-time performance of a realistic

application with each of six distinct scheduling heuristics, and describes observed prop-

erties of the run-time behavior that appear useful to guide adaptation decisions using the

Kokyu framework. Chapter 9 presents conclusions about the findings, potential impact,

and indicated future directions of this work. Finally, Appendix A presents a synopsis

and illustrations of key real-time scheduling terminology used in this dissertation.

13

Chapter 2

Survey of Related Work

Distributed real-time and embedded computing is an emerging field of study. Re-

search efforts are focusing increasingly on end-to-end quality of service (QoS) proper-

ties such as timeliness, by integrating QoS management policies and mechanisms (e.g.,

real-time scheduling) into standards-based middleware like that in the Common Ob-

ject Request Broker Architecture (CORBA) specification. Pioneering efforts to provide

meta-capabilities such as configuration flexibility, reflection, and ultimately adaptation,

while still meeting strict QoS assurances are beginning to extend this field. This work

contributes to the emergence of that sub-field of distributed real-time and embedded

systems research.

In this chapter we discuss representative work that is related to our approach. To

motivate issues in the particular domain where we have conducted our empirical stud-

ies described in Chapter 8, Section 2.1 considers two alternative approaches to avion-

ics platform QoS management. Section 2.2 examines research on adaptive systems in

general, and draws connections to areas of future work described in Chapter 9. Sec-

tion 2.3 describes CORBA-related QoS middleware research, including previous work

in ADAPTIVE Communication Environment (ACE) and The ACE Object Request Bro-

ker (ORB) (TAO), upon which this research builds, and which this research extends.

Section 2.4 considers related non-CORBA QoS middleware research, and relates our

work to that research context. Section 2.5 describes related research on QoS in op-

erating systems, including support for real-time scheduling and dispatching. Finally,

Section 2.6 examines scheduling research, both to survey the classical scheduling litera-

ture upon which this work is built, and to note new approaches for managing variability

in task loads, durations, and even adaptive scheduling decisions.

14

2.1 Avionics Platform Research

Two main branches of research are endeavoring to make QoS managed systems infras-

tructure a prevalent, and particularly areusable, feature of avionics flight software sys-

tems. We first describe related work that seeks to standardize QoS management features

in avionics domain-specific platforms. We then describe related work based on open

systems and commodity-off-the-shelf (COTS) components.

Avionics Domain Platform Research: Standardized avionics platforms such as, for

example, the ARINC Avionics Application Software Standard Interface (APEX) for

Integrated Modular Avionics (IMA) [2] provide QoS assurances for systems in the

avionics domain. IMA supports componentization so that different software compo-

nents could be made by different vendors and still provide necessary assurances when

brought together.

McElhone [78] examines the question of how to support operations with soft real-

time constraints and possibly long running or variable length computations, in canonical

avionics platforms such as IMA. He surveys current work in the area, and describes

an overall vision for implementation through mapping those more complex kinds of

operations to simpler infrastructure abstractions. We consider our work to be in keeping

with this vision, though we focus on a more general open systems vision of middleware

support (described next), of which avionics systems represent one application domain.

Open Systems Avionics Research: Winter, Sharp, Doerr,et al. [140, 120, 121, 24],

address the challenge of retaining key QoS assurances in avionics systems, while achiev-

ing improvements in modularity, reuse, cycle times, and cost across families of flight

software applications. The Bold Stroke avionics domain infrastructure, hosted on COTS

standards-based hardware, operating systems, and middleware, has emerged and evolved

through that work. Our research on flexible and adaptive real-time scheduling and dis-

patching was conducted within the context of the Bold Stroke infrastructure, and has

contributed to its evolution.

2.2 Adaptive Systems Research

We examine three examples of research we characterize as belonging to the adaptive

systems area. Within this area, we consider:

15

� adaptive QoS control middleware, within which application components are hosted

� defense-enabled systems, in which adaptive QoS management infrastructure is

used to detect and survive intrusions

� an open controls platform, which is a coordination and adaptation middleware on

which control system software components are hosted

Adaptive QoS Control: Li and Nahrstedt [69, 68] apply control theory to adaptive

QoS management in distributed systems, and present a middleware framework for feed-

back control, using a task control model. Of particular interest is their examination

of adaptation agility, which is a measure of the adaptation mechanisms to respond

promptly to sudden and unexpected changes in the QoS environment. Where their ap-

proach is focused on applications with a streaming QoS model, we address the rate-

based distributed real-time systems domain. However, several key ideas from that work,

particularly the feedback architecture and configurability of adaptation agility (e.g., to

avoid hysteresis as we describe in Section 9.4) appear applicable to our work.

Defense-Enabled Systems: Webber, Cuckier, Pal, Loyall,et al., describe how QoS

aware middleware can be used to developdefense-enabledsystems, with increased re-

sistance to malicious attack even in the face of an untrustworthy environment [134, 101,

22, 100, 73]. To allow a system to participate in its own defense, they describe key

policies and mechanisms (e.g., for intrusion detection), using specialized infrastructure

at the operating system and middleware levels. As we describe in Section 9.3.3, we

believe the Kokyu framework could be extended readily to provide defense-enabling

capabilities for real-time distributed systems, similarly using its own existing QoS man-

agement infrastructure.

Open Control Platform: Wills, Kannan, Rufus,et al., at the Georgia Institute of

Technology, describe algorithms and an integrated infrastructure for adaptation, transi-

tion and control, with application to unmanned aerial vehicles [138, 137, 113, 50, 112].

We believe our approach is highly complementary to their approach. In particular, by

addressing the open problems of local and distributed transition management described

in Sections 9.3.1 and 9.3.2, we will be able to provide a key solution to a part of the

larger adaptation management problem they are addressing.

16

2.3 CORBA-related QoS Middleware Research

In this section, we survey related work in the area of CORBA-related QoS middleware.

We identify relevant standards, and describe a body of previous research in TAO, upon

which this work builds. We describe a number of related middleware research efforts,

particularly those with a focus on scheduling or other forms of adaptive QoS manage-

ment.

Standard Specifications: The approved Real-Time CORBA 1.0 [91] specification in-

cludes interfaces for an optional scheduling service that can be implemented readily

using Kokyu’s flexible scheduling and dispatching capabilities. We plan to release an

implementation of this service built using the Kokyu framework.

Emerging COTS middleware approaches such as Dynamic Scheduling Real-

Time CORBA 2.0 (DSRTCORBA) [92] and the non-CORBA Real-Time Specification

for JavaTM (RTSJ) [12] standard, generalize the possible range of scheduler implemen-

tations, rather than specifying a particular scheduling approach. Kokyu offers a natural

basis for reuse of policies and mechanisms in implementing schedulers and associated

dispatching infrastructures for either of these standards. In its current form, Kokyu is

already accessible to DSRTCORBA under the C++ language binding.

To address the problem of heterogeneous scheduling policies on different end-

systems raised by DSRTCORBA in particular, Corsaro definesJuno[19], a meta-level

model for reconciling properties of diverse scheduling heuristics. The research de-

scribed in this dissertation raises issues, including the adaptive transitions and multi-

endsystem adaptation cuts described in Chapter 9, where we believe the Juno model is

useful to transform properties and values of invocation dispatch requests.

TAO Real-Time ORB Research: Previous work on TAO has examined many dimen-

sions of ORB middleware design, including static [117] operation scheduling, event

processing [41], I/O subsystem [60] and pluggable protocol [96] integration, both syn-

chronous [118] and asynchronous [4] ORB Core architectures, IDL compiler features [3]

and optimizations [35], systematic benchmarking of multiple ORBs [33], patterns for

ORB extensibility [119] and ORB performance [106]. This earlier work provides the

foundation for our research on generalizing, hybridizing, and optimizing static [117]

and dynamic [32] scheduling in the flexible middleware framework described in this

research.

17

Finally, Pyarali [102] has provided crucial infrastructure for implementing the

Real-Time CORBA 1.0 [91] specification in TAO, has identified and articulated patterns

for distributed real-time systems software, and has demonstrated the ability to provide

end-to-end priority isolation in an open systems context. We view these results as pro-

viding crucial lower-level middleware services upon which our flexible and adaptive

approach may rely to maintain key QoS assurances end-to-end, particularly as we apply

our approach to increasingly open systems.

Mitre Real-time CORBA: Krupp,et al., [129] at the MITRE Corporation were among

the first to elucidate the requirements of real-time CORBA systems. A system consisting

of a COTS real-time OS, a COTS CORBA ORB, and a real-time OO database manage-

ment system is under development [131]. Similar to TAO’s original static scheduling

service [117], their initial static scheduling approach used RMS, though a strategy for

dynamic deadline monotonic scheduling support has been designed [17].

URI TDMI: Wolfe, et al., developed a real-time CORBA system at the US Navy

Research and Development Laboratories (NRaD) and the University of Rhode Island

(URI) [141]. The system supports expression and enforcement of dynamic end-to-end

timing constraints through timed distributed method invocations (TDMIs) [26]. ATDMI

corresponds to TAO’sRT Operation abstraction [117]. TheirRT Environment

structure contains QoS parameters similar to those in TAO’sRT Info abstraction. One

difference between the TAO and URI approaches is thatTDMIs express required tim-

ing constraints,e.g., deadlines relative to the current time, whereasRT Operation s

publish their resource,e.g., CPU time, requirements. The difference in approaches may

reflect the different time scales, seconds versus milliseconds, respectively, and schedul-

ing requirements, dynamic versus static, of the initial application targets. However, the

approaches should be equivalent with respect to system schedulability and analysis.

In addition, NRaD/URI supply a new CORBA Global Priority Service, analogous

to the Kokyu Scheduling Service, and augment the CORBA Concurrency and Event

Services. The initial implementation usesEDF within importance leveldynamic, on-

line scheduling, supported by global priorities. A global priority is associated with each

TDMI, and all processing associated with the TDMI inherits that priority. In contrast,

TAO’s initial Scheduling Service was static and off-line; it used importance as a “tie-

breaker” following the analysis of other requirements such as data dependencies. Both

18

NRaD/URI and Kokyu readily support changing the scheduling policy by encapsulating

it in their CORBA Global Priority and Scheduling Services, respectively.

BBN QuO: TheQuality Objects(QuO) distributed object middleware is developed at

BBN Technologies [143]. QuO is based on CORBA and provides the following support

for agile applications running in wide-area networks: (1)run-time performance tun-

ing and configurationthrough the specification ofQoS regions, behavior alternatives,

and reconfiguration strategies that allows the QuO run-time to adaptively trigger recon-

figuration as system conditions change (represented by transitions between operating

regions), (2)feedbackacross software and distribution boundaries based on a control

loop in which client applications and server objects request levels of service and are

notified of changes in service, and (3)code mobilitythat enables QuO to migrate ob-

ject functionality into local address spaces in order to tune performance and to further

support highly optimized adaptive reconfiguration.

The QuO model employs severalQoS definition languages(QDLs) that describe

the QoS characteristics of various objects, such as expected usage patterns, structural

details of objects, and resource availability. QuO’s QDLs are based on the separation

of concerns advocated by Aspect-Oriented Programming (AoP) [52]. The QuO middle-

ware adds significant value to adaptive real-time ORBs such as TAO. We are currently

collaborating with the BBN QuO team to integrate the TAO, Kokyu, and QuO middle-

ware infrastructures within the WSOA program.

UCSB Realize: The Realize project at UCSB [49] supports soft real-time resource

management of CORBA distributed systems. Realize aims to reduce the difficulty of

developing real-time systems and to permit distributed real-time programs to be pro-

grammed, tested, and debugged as easily as single sequential programs. Realize inte-

grates distributed real-time scheduling with fault-tolerance, fault-tolerance with totally-

ordered multicasting, and totally-ordered multicasting with distributed real-time schedul-

ing, within the context of OO programming and existing standard operating systems.

The Realize resource management model can be hosted on top of TAO [49].

Kalogeraki,et al., at UCSB have developed an approach based on object migra-

tion and replication, to improve performance of soft real-time distributed systems [48,

47, 46, 49]. This approach constitutes a higher level of adaptive control for soft real-

time QoS management, and is complementary to our approach. In particular, a system

developer might use the UCSB infrastructure to provide effective distribution of soft

19

real-time load across endsystems using the Kokyu framework to integrate scheduling

and dispatching of both critical and non-critical load.

UIUC Epiq: The Epiq project [27] defines a real-time CORBA mechanism that pro-

vides QoS guarantees and run-time scheduling flexibility. Epiq explicitly extends TAO’s

original off-line scheduling model to provide on-line scheduling. In addition, Epiq al-

lows clients to be added and removed dynamically via an admission test at run-time.

UCI TMO: The Time-triggered Message-triggered Objects (TMO) project [53] at the

University of California, Irvine, supports the integrated design of distributed OO sys-

tems and real-time simulators of their operating environments. The TMO model pro-

vides structured timing semantics for distributed real-time object-oriented applications

by extending conventional invocation semantics for object methods (i.e., CORBA op-

erations), to include (1) invocation of time-triggered operations based on system times

and (2) invocation and time bounded execution of conventional message-triggered op-

erations.

These additional features require the following capabilities [54]: (1) timely in-

vocation and execution of time-triggered operations, (2) timely transmission of remote

invocation requests from the client to the server, (3) timely handling of remote invoca-

tion requests on the server, and (4) timely execution of message-triggered operations.

The TMO project supports these capabilities through two new CORBA services, called

the TMO Execution Support (TMOES) and Cooperating Network Configuration Man-

agement (CNCM) services. The TMOES service allows applications to specify timing

requirements, and enforces these requirements for TMO operations on each ORB end-

system. The CNCM service establishes communication channels that can deliver remote

invocation requests within the necessary timing constraints.

TAO differs from TMO in that it provides a complete CORBA ORB, as well as

CORBA ORB services and real-time extensions. Kokyu generalizes the timer-based in-

vocation capabilities provided through TAO’s Real-Time Event Service [41, 98]. Where

the TMO model creates new ORB services to provide its time-based invocation capabili-

ties [54], TAO provides a subset of these capabilities by extending the standard CORBA

COS Event Service. We believe TMO, Kokyu, and TAO are complementary technolo-

gies because (1) TMO and Kokyu extend and generalize TAO’s existing time-based

invocation capabilities and (2) TAO provides a configurable and dependable connection

infrastructure needed by the TMO CNCM service.

20

CORBA (m,k)-Firm Scheduling: Montez,et al., present an approach based on hy-

bridizing polymorphic invocation and (m,k)-firm scheduling assurances [82] in CORBA.

Their approach offers an interesting balance of flexibility in missing some deadlines,

with firm bounds on the number of such misses over a set of dispatches. This approach

could prove beneficial for scheduling adaptive resource managers such as the Real-Time

Adaptive Resource Manager [44] or QuO [143], and we plan to investigate this approach

for implementation in our Kokyu framework.

2.4 Non-CORBA QoS Middleware Research

In addition to the CORBA-related QoS middleware research described in Section 2.3,

we also survey QoS middleware research conducted outside CORBA. These alternatives

serve to round out the current state of real-time QoS research in middleware, completing

the context within which this dissertation makes its contributions.

Utah CRM: Regehr and Lepreau [111] propose the CPU Resource Manager, a mid-

dleware service for managing processor allocation using scheduling abstractions pro-

vided by COTS operating systems. They examine conversions between different kinds

of QoS reservations and propose a unifying low-level middleware abstraction layer to

shield developers from accidental complexities produced by variations in scheduling

abstractions at the operating system level. Our approach focuses onencapsulationof

scheduling and dispatching policies, and providing flexible infrastructure to allow ar-

bitrary composition of heuristics. Rather than enclosing a known set of common ab-

stractions, our aim is to provide flexible support for diverse and possibly unanticipated

combinations of scheduling requirements, mechanisms, and policies in middleware.

Real-Time Adaptive Resource Manager (RTARM): The RTARM was developed

jointly by the Honeywell Technology Center, Texas A&M University, and the Georgia

Institute of Technology adaptive resource manager [44]. It focuses on monitoring and

adaptive management of run-time QoS. We have integrated our work with the RTARM

in two collaborative research programs directed by Boeing. The first of these programs

(ASTD) produced the empirical results that motivated the scheduling optimizations de-

scribed in Chapter 6, which were in turn implemented in the second program (WSOA),

and experiments to quantify the impact of those optimizations in a realistic system are

currently underway.

21

DeSiDeRaTa: The DeSiDeRaTa project [136] was developed at the University of

Texas, Arlington and Ohio University. DeSiDeRaTa focuses on a real-time path ab-

straction along which QoS properties are configured and enforced.

ARMADA: The ARMADA project [79, 1] defines a set of communication and mid-

dleware services that support fault-tolerant and end-to-end guarantees for real-time dis-

tributed applications. ARMADA provides real-time communication services based on

the X-kernel and the Open Group’s MK micro-kernel. This infrastructure provides a

foundation for constructing higher-level real-time middleware services.

CMU Publisher / Subscriber: Rajkumar,et al., [108] at CMU developed a real-

time Publisher / Subscriber implementation model that is similar to TAO’s Real-time

Event Service [41],e.g., it uses real-time threads to prevent priority inversion within

its communication framework. The CMU model does not utilize any QoS specifications

from publishers (event suppliers) or subscribers (event consumers), however. Therefore,

scheduling is based on the assignment of request priorities, which is not addressed by the

CMU model. In contrast, the Kokyu framework extends a previous-generation model

of application-specified QoS descriptors for suppliers and consumers [117] to include

characteristics such as operation criticality.

Real-Time Producer / Consumer: Jeffay,et al., [45] introduced an earlier model of

real-time computations that is also similar to the CMU Publisher / Subscriber work, and

the TAO Event Channel, except that producers and consumers are defined in program-

ming language constructs, and relationships between them are represented explicitly in

a process graph. Jeffay’s work extended the well-known producer / consumer model of

inter-process communication to real-time systems.

2.5 Operating Systems Research

Operating systems research in QoS management is an essential counterpoint to this dis-

sertation. Where middleware is concerned with end-to-end coordination of QoS prop-

erties, and in vertical integration of application requirements and underlying operating

system resources, operating systems play a similar intermediary role, between the mid-

dleware (or application if there is no middleware), and the underlying hardware. We

focus on three distinct approaches to real-time QoS extension of the Linux operating

system, and one approach to scheduling in Scout, a path-based operating system.

22

KURT Linux: Srinivasan, Niehaus,et al., have implemented real-time capabilities in

the form of Linux kernel patches to provide the KU Real-Time (KURT) Linux operating

system [122]. KURT offers fine-grained temporal resolution (UTIME), while providing

a full-featured Linux environment. KURT also provides a planned scheduling facility,

though arbitrary scheduling modules may be plugged into KURT.

In addition to KURT, the KU real-time researchers have developed a data streams

kernel interface (DSKI) [88] that provides some similar capabilities to the metrics infras-

tructure described in Chapter 7. In particular, the DSKI offers flexible data collection

points triggered by traversal by a thread in the running system. We believe the Kokyu

data collection and streaming framework complements the DSKI, offering specific sup-

port for distributed data collection and propagation across multiple endsystems.

Resource Kernel: Oikawa and Rajkumar [95] have developed a portable resource

kernel to provide timing guarantees for applications with time-multiplexed resources.

This work has led to an implementation in Linux, called Linux/RK (which formed the

basis for a commercial version called TimeSys Linux), with similar objectives to that of

KURT Linux.

Scout OS: Scout [83, 84] is a communications-oriented path-based operating system.

The dominant abstraction in Scout is apath[85], along which functional and QoS man-

agement capabilities are composed. The Best-Effort Real-Time (BERT) Scheduler [10]

implemented for Scout establishes two classes of service, one with timeliness require-

ments and one with progress and fairness requirements. While our approach focuses on

critical and non-critical classes of real-time service, we identify and enforce timeliness

requirements for the non-critical class of service as well, to the extent possible.

UCI RED-Linux Scheduling Framework: Wang,et al. [133], at the University of

California, Irvine, have proposed a general scheduling framework to unify three distinct

kinds of scheduling approaches:priority-based, time-based, andshare-based. They

decompose scheduling behavior into policy (allocator) and mechanism (dispatching)

components, which are similar to the Kokyu scheduling service framework. They have

implemented the dispatching portion of this framework in their real-time extensions to

the Linux kernel, called RED-Linux.

While the RED-Linux approach to scheduling relies on special-purpose exten-

sions to the OS kernel, our Kokyu framework relies only on commonly available OS

features, such as preemptive thread priorities. Therefore, our dispatching mechanisms

23

can augment standards-based CORBA middleware and it can perform effectively on a

wide range of commonly available real-time and general-purpose OS platforms.

In addition, the Kokyu framework differs from the RED-Linux scheduling frame-

work in its emphasis on policy implementation. Whereas the RED-Linux implementa-

tion focuses on the details of how policies can be enforced by the OS kernel, Kokyu em-

phasizes encapsulation of these details to decouple each application from any particular

scheduling policy. Wang,et al., point out that theallocator portion of their framework

be implemented as a middleware service, which suggests that the Kokyu and RED-Linux

scheduling approaches are complementary.

2.6 Scheduling Research

We conclude by examining the past and current scheduling literature, with special em-

phasis on how the classical scheduling approaches relate to newer research, and in

particular to this dissertation. We survey classical open-loop approaches, approaches

geared toward adaptivetoleranceof variations in operating conditions, and finally a

crucial approach toward adaptivecontrolof real-time QoS.

Classical Scheduling: Liu and Layland pioneered the Rate Monotonic Scheduling

(RMS), Earliest Deadline First (EDF), and RMS+EDF [70] real-time scheduling algo-

rithms . Additional scheduling algorithms of classical interest include Minimum Laxity

First (MLF) [126, 71], which adds consideration of execution times to EDF. Chung,

et al., define RMS+MLF [15], which similarly adds consideration of of execution times

to RMS+EDF. Stewart and Khosla define Maximum Urgency First (MUF) [126], which

is in its simplest form defined as MLF+MLF. Notably, Stewart and Khosla show that

MUF can emulate any of RMS, EDF, or MLF by appropriate configuration of a more

general set of operation characteristics. Our approachencapsulatesthese mappings from

operation characteristics to urgency as described in Section 4.3, and extends that map-

ping to configurations of primitive dispatching primitives as described in Section 4.4.

In this way, we extend the emulation idea from MUF to provide flexible andmodular

scheduling and dispatching support for each of these classical scheduling algorithms.

OSU Share-based Scheduling: Tyan,et al. [130], at Ohio State University, have de-

veloped a general framework for share-based scheduling. They demonstrate their frame-

work’s ability to implement a number of well-known fair queueing algorithms, as well as

24

its ability to implement new kinds of share-based scheduling algorithms. Our research

differs in that it uses priority based scheduling approaches, to address applications with

hard real-time requirements. In our future research, we plan to investigate share-based

scheduling and in particular its interaction with priority-based scheduling for various

classes of real-time applications. Han and Tyan also provide a polynomial-time schedu-

lability test [39] that appears useful for application and extension for (1) rate-based

adaptation, and (2) migration among hybrid static/dynamic scheduling heuristics.

Flexible Computations: In addition to defining the RMS+MLF scheduling strategy,

Chung,et al., define a model for flexibleimprecisecomputations [15] in which some

initial segment of a computation may be critical and require strict assurances, while

additional segments of the computation may be scheduled or not without harm to the

application. The model that underlies our target platform described in Chapters 1 and 3,

and again in Section 8.1, differs somewhat from the model of Chung,et al. [15]. In

their model each operation may have a mandatory part followed by an optional part. A

similar effect can be achieved in our approach by making an optional operation’s task

depend on a mandatory one’s task. For example, a chain ofroute legcomputations as

described in Section 8.1 could be implemented in this way.

(m,k)-Firm Scheduling: Hamdaoui and Ramanathan define the (m,k)-firm schedul-

ing algorithm [37], in which m out of any k consecutive dispatches of an operation

are assured of completion prior to deadline. This work forms the basis of the CORBA

approach suggested by Montez,et al. [82], which we describe in Section 2.3.

Statistical RMS: Atlas and Bestravos define the Statistical Rate Monotonic Schedul-

ing (SRMS) algorithm [5] and describe an implementation of that algorithm in KURT

Linux [6]. SRMS offers an alternative to (m,k)-firm scheduling where operations cannot

be feasibly scheduled for all their deadlines. We have recently developed a set of proto-

type extensions to the middleware scheduling and dispatching infrastructure described

in Chapters 4 and 5, to implement SRMS scheduling for decision aiding tasks [30].

Multi-Level Scheduling: Multi-level scheduling integrates different approaches at

different levelsof scheduling. One example is two-level hierarchical scheduling, which

allows real-time applications to coexist with non-real-time applications in an open OS

environment [23]. Another is standardized in the ARINC Avionics Application Soft-

ware Standard Interface (APEX) for Integrated Modular Avionics (IMA) [2]. One level

25

consists ofpartitions, which are executed cyclically and scheduled statically and off-

line. Within each partition, applicationprocessesare scheduled using potentially more

flexible approaches.

Spring Kernel: The Spring kernel [81] was designed and developed at the University

of Massachusetts, Amherst. Spring uses admission control to schedule newly arrived

tasks. A new task will be admitted only if the set of tasks consisting of the newly arrived

task, and all tasks that have already been admitted, can be scheduled. This incremental

admission control strategy typifies many dynamic scheduling schemes.

Ramamritham,et al., describe and evaluate algorithms for planned schedule gen-

eration, based on heuristic functions [110]. Each of these approaches incrementally con-

structs a schedule by selecting one task at a time to the schedule, based on the heuristic

with which the algorithm is parameterized. Interestingly, they show that the heuristics

perform well, finding a feasible schedule with high probability in many cases. This ap-

proach complements the Spring scheduling approach, as it supports on-line admission

control and efficient incremental and dynamic generation of planned schedules.

Feedback Control Scheduling: One of the most important areas of related work is

the pioneering research on feedback control real-time scheduling (FCS), conducted by

Stankovic, Lu,et al., at the University of Virginia. They apply control theory to real-

time scheduling [76, 77, 123, 74, 75, 124] for soft real-time systems, to reduce the

number of missed deadlines at run-time.

The primary difference between the FCS work and ours is that they focus on con-

trolling a single performance metric, the deadline performance of soft real-time tasks.

Our research is aimed primarily at distributed rate-based systems where at least two

classes of operations are present, and deadlines for the highest class must be assured

before soft real-time performance is optimized. For example, they specify amiss ra-

tio function[74], which is comparable to oursrt fraction function described in Sec-

tion 8.3.3, though they measure the fraction of srt deadlines missed, rather than made.

However, we then predicate this raw measure of soft real-time performance with whether

anycritical deadlines have been missed in each sample, to obtain a performance metric

that considers multiple criticality levels.

Another difference is that while Stankovic, Lu,et al., focus on control adaptation

within a scheduling strategy, our approach considers adaptation at a level justabovethe

scheduling strategy. In particular, we focus on dispatching, scheduling, and performance

26

feedback mechanisms to support integrated adaptive QoS management at many levels of

middleware [25, 72, 29]. We consider the feedback control scheduling research an im-

portant area of study, and we plan to investigate how the techniques from control theory

demonstrated at the level of adaptation within a schedule could be applied to adaptation

(1) between scheduling strategies, (2) across discrete rates within a scheduling strategy,

and (3) end-to-end across distribution boundaries in distributed real-time systems.

27

Chapter 3

Overview of the Kokyu Framework

Next-generation mission-critical distributed real-time and embedded (DRE) systems,

such as integrated avionics mission computing systems [67], teams of emergency res-

cue robots [142], and distributed real-time automobile management systems [40], must

adapt swiftly to changing environmental conditions. Greater coordination allows el-

ements at all levels to identify and respond effectively to transient opportunities and

hazards. Achieving significant levels of coordination requires DRE systems with the

ability to:

1. Accommodate unplanned tasks and evolving task characteristics in a distributed

environment with rapidly changing information and resource availability condi-

tions;

2. Trade performance of individual elements for system-level real-time performance

objectives, and optimize real-time performance across heterogeneous criteria, such

as reducing the rates of critical operations to allow more non-critical operations to

be scheduled, lowering the priority of non-critical operations to ensure feasibility

of critical operations, or using alternate scheduling heuristics to improve real-time

performance;

3. Perform adaptive resource reallocations within firmly bounded time-scales.

Historically, many DRE systems of these kinds have been developed largely

from scratch, using handcrafted optimizations on each endsystem and network node to

achieve the coordination and performance goals outlined above. Unfortunately, expec-

tations of increasing scale and decreasing development cycles make it hard to sustain

28

this development model in a cost-effective manner over long DRE system lifecycles.

Solutions built instead using standards-based COTS middleware promises greater reuse

of software architectures, patterns, frameworks, analysis techniques, and testing and

certification results across entire families of systems.

Next-generation DRE systems also require explicit interfaces and mechanisms

for key capabilities, such as fine-grain adaptive rescheduling, that are not available in

today’s COTS middleware solutions, such as Real-Time CORBA 1.0 [91]. Emerging

COTS middleware approaches, such as Dynamic Scheduling Real-Time CORBA [92]

and the RTSJ [12], add some elements for implementing these capabilities (e.g., en-

hanced distributable threading models and real-time behavioral descriptors).

However, additional (andunified) higher-level approaches and services are still

required to realize the full real-time performance benefits achievable with closer inte-

gration of scheduling mechanisms in middleware. Middleware is uniquely suited to

address both (1) application-specific constraints such as whether or not operation rates

are known in advance, and (2) optimized integration of common mechanisms to support

flexible trade-offs within a common reusable infrastructure. Neither lower layers such

as operating systems and network protocol stacks, nor higher layers such as domain-

specific libraries or applications themselves, are appropriate contexts in which to com-

bine these issues. Rather, middleware serves to mediate the higher and lower level

concerns and can achieve improvements in both flexibility and performance through its

appropriate interactions upward and downward in the overall system architecture.

To achieve both (1) reuse and flexibility across families of systems and (2) opti-

mized real-time performance in DRE systems, this dissertation describes the following

enhancements to current real-time middleware scheduling approaches:

� Hybridizing static and dynamic scheduling techniques to optimize run-time per-

formance and relieve requirements fora priori knowledge of exact resource allo-

cations and the order of transitions between allocations;

� Support for variable period tasks, to exploit degrees of freedom in performance of

individual elements to achieve system-wide real-time properties;

� Flexible policies and integrated mechanisms for selecting periods and determining

execution eligibility, to apply this approach effectively across arbitrary operation

characteristics, while achieving rapid local adaptation to run-time variations in

system requirements and resource availability.

29

The primary contributions of this research are implemented inKokyu, which is an

open-source middleware framework that supports adaptive distributed quality of service

(QoS) management in real-time embedded middleware. The Kokyu project also serves

as a foundation for ongoing efforts to identify and document design patterns [102] for

integrated real-time QoS management in distributed real-time and embedded mission-

critical systems.

3.1 Overview of the Target Platform

This section describes key features of the platform upon which our work is based.

Figure 3.1 illustrates the architecture of the distributed OO avionics mission comput-

OOBBJJEECCTT RREEQQUUEESSTT BBRROOKKEERR

AAiirr
FFrraammee

SSeennssoorr
pprrooxxyy

NNaavv

SSeennssoorr
pprrooxxyy

SSeennssoorr
pprrooxxyy

11::RREEGGIISSTTEERR

OOPPEERRAATTIIOONN

CCHHAARRAACCTTEERRIISSTTIICCSS

KKOOKKYYUU
SSCCHHEEDDUULLEERR

KKOOKKYYUU
DDIISSPPAATTCCHH
MMOODDUULLEE

33:: RREEGGIISSTTEERR TTOO GGEETT

PPEERRIIOODDIICC TTIIMMEEOOUUTTSS,,
SSEENNDD EEVVEENNTTSS

22::RREEGGIISSTTEERR

FFOORR EEVVEENNTTSS

44:: RREEGGIISSTTEERR

DDEEPPEENNDDEENNCCIIEESS
RRTT--AARRMM

55:: ((RREE)) AASSSSIIGGNN

RRAATTEE,, PPRRIIOO

66:: ((RREE))--
CCOONNFFIIGGUURREE

77:: PPEERRIIOODDIICC

PPUUSSHH

88:: FFIILLTTEERR,,
CCOORRRREELLAATTEE

99:: PPRRIIOO

DDIISSPPAATTCCHH

EEVVEENNTT
CCHHAANNNNEELL

KKOOKKYYUU
SSEERRVVIICCEESS

Figure 3.1: Kokyu in an Avionics Context

ing platform [41] used for the research we present in this dissertation. This platform

was developed and deployed using OO middleware components and services based on

30

CORBA [90]. Key characteristics of the target platform that shape our middleware-

based optimization approach are described below. These characteristics are shared by

many other DRE systems, as well.

Operations and Tasks: Depending on the extent to which a specific application com-

poses multiple operations within a single schedulable task, the number of schedulable

tasks is on the order of 50-100. Some operations, such as computing the first leg of a

navigation route, aremandatoryand must finish before their deadlines. Other opera-

tions, such as computing subsequent legs of the route, areoptional.

Variable Periods: Each task has a (possibly unary) harmonic set of discrete rates at

which it can run, and the union of all these sets of rates is also harmonic. In our current

research, rate reallocations are controlled by a Real-Time Adaptive Resource Manager

(RTARM) [44]. RTARM is a middleware service developed by Honeywell that adapts

the rates of tasks according to changing environmental conditions [25].

In our initial research [67, 25], we specified that a task would have the same

execution time across all rates. Our current research [72], however, has revealed uses for

variable execution times across available rates. Most notably, we use variable execution

times to provide finer granularity decomposition for execution of optional operations.

Dependencies: The tasks may have precedence dependencies, resulting in a directed

acyclic graph (DAG) over all operations that is established during or before application

initialization. For example, an operation with a mandatory part and an optional part can

be modeled in our approach with separate tasks, a mandatory one for the mandatory part

and an optional one for the optional part, with a dependency of the optional operation’s

task on the mandatory one’s task.

Tasks may be enabled or disabled at run-time by the application or a middleware

resource manager, such as the RTARM. The application or a middleware resource man-

ager may also enable and disable dependencies independently, subject to the constraint

that an edge in the dependency DAG is treated as enabled at any given timeif and only

if it is enabled and connects two enabled tasks.

3.2 The Kokyu Framework

Kokyu is a portable middleware scheduling framework designed to provide flexible

scheduling and dispatching services within the context of higher-level middleware, such

31

as The ACE ORB [13] (TAO). As shown in white in Figure 3.2, Kokyu currently pro-

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

CCLLIIEENNTT SSTTUUBB

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

OOBBJJEECCTT AADDAAPPTTEERR

EEVVEENNTT CCHHAANNNNEELL

CCLLIIEENNTT AAPPPPLLIICCAATTIIOONN

SSEERRVVEERRCCLLIIEENNTT

EEVVEENNTT CCHHAANNNNEELL

SS
CC
HH
EE
DD
UU
LL
EE
RR

Figure 3.2: Kokyu Services used by TAO

vides real-time scheduling and dispatching services for TAO’s real-time CORBA Event

Service [41], which mediates supplier-consumer relationships between application op-

erations. Figure 3.2 also illustrates further potential applications of Kokyu services to

TAO, including early (i.e., low-layer) scheduling control of request upcalls on server-

side ORB endsystems.

Kokyu consists primarily of two cooperating infrastructure segments, illustrated

in Figure 3.3:

1. A pluggable scheduling infrastructure with efficient support for adaptive execu-

tion of diverse static, dynamic, and hybrid static/dynamic scheduling heuristics;

and

2. A flexible dispatching infrastructure that allows composition of primitive operat-

ing system and middleware mechanisms to enforce arbitrary scheduling heuristics.

Thescheduleris responsible forspecifyinghow operation dispatch requests are ordered,

by assigning priority levels and rates to tasks, and producing a configuration specifi-

cation for the dispatching mechanism. Thedispatcheris responsible forenforcingthe

ordering of operation dispatches using different threads, requests queues, and timers

32

Scheduler

sub-graph

rate
tuples

WCET propagation

selected
rates

rate propagation

propagated
rates

tuple
visitor

operation
visitors

Rate and
priority policy

DispatcherDispatching
configuration

RMS

LLF laxity

static

static

timers

Figure 3.3: Kokyu Scheduling and Dispatching Infrastructure

configured according to the scheduler’s specification. The combined framework pro-

vides an implicit projection of scheduling heuristics into appropriate dispatching infras-

tructure configurations, so that the scheduling and dispatching infrastructure segments

can be optimized both separately and in combination.

3.3 Strategized Scheduling

The Kokyu scheduling framework is designed to support a variety of scheduling heuris-

tics discussed earlier, including RMS, EDF, MLF, and MUF. In addition, this frame-

work provides a common environment to compare systematically both existing and

new scheduling strategies. This flexibility is achieved in the Kokyu framework via the

Strategypattern [28], which allows parts of the sequence of steps in an algorithm to

be replaced, thus providing interchangeable variations within a consistent algorithmic

framework. The Kokyu scheduling framework uses the Strategy pattern to encapsu-

late a family of scheduling algorithms within a fixed CORBA IDL interface, thereby

enabling different strategies to be configuredindependentlyfrom applications that use

them.

33

 ssttrruucctt RRTT__IInnffoo
 {{
 wwcc__eexxeecc__ttiimmee__;;
 ppeerr iioodd__;;
 ccrr iittiiccaalliittyy__;;
 iimmppoorr ttaannccee__;;
 ddeeppeennddeenncciieess__;;
 }};;

SSCCHHEEDDUULLIINNGG

 SSTTRRAATTEEGGYY

 RRTT__IINNFFOO

RREEPPOOSSII TTOORRYY

 OOFFFF--LL II NNEE

SSTTRRAATTEEGGIIZZEEDD

 SSCCHHEEDDUULLEERR

OOFFFF--LLIINNEE

OONN--LLIINNEE

 RRTT__IINNFFOO

RREEPPOOSSII TTOORRYY

 RRUUNN--TTIIMMEE

SSCCHHEEDDUULLEERR

 11.. SSPPEECCIIFFYY RRTT__OOPPEERRAATTIIOONN

 CCHHAARRAACCTTEERRIISSTTIICCSS AANNDD

 DDEEPPEENNDDEENNCCIIEESS

 55.. AASSSSEESSSS SSCCHHEEDDUULLAABBIILL IITTYY

 33.. AASSSSII GGNN SSTTAATTIICC PPRRIIOORRIITTYY AANNDD SSTTAATTIICC SSUUBBPPRRIIOORRIITTYY

 44.. MMAAPP SSTTAATTIICC PPRRIIOORRIITTYY,, DDYYNNAAMMII CC SSUUBBPPRRII OORRII TTYY,, AANNDD

 SSTTAATTIICC SSUUBBPPRRIIOORRIITTYY II NNTTOO DDIISSPPAATTCCHHIINNGG PPRRIIOORRIITTYY

 AANNDD DDIISSPPAATTCCHHIINNGG SSUUBBPPRRIIOORRIITTYY

 66.. AASSSSIIGGNN DDIISSPPAATTCCHHIINNGG QQUUEEUUEE CCOONNFFIIGGUURRAATTIIOONN

 22.. PPOOPPUULLAATTEE

 RRTT__IINNFFOO

 RREEPPOOSSIITTOORRYY

 77.. SSUUPPPPLLYY DDIISSPPAATTCCHHIINNGG QQUUEEUUEE

 CCOONNFFIIGGUURRAATTIIOONN TTOO TTHHEE OORRBB

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

OOBBJJEECCTT AADDAAPPTTEERR

 99.. SSUUPPPPLLYY SSTTAATTIICC PPOORRTTIIOONNSS OOFF

 DDIISSPPAATTCCHHIINNGG PPRRIIOORRIITTYY AANNDD

 DDIISSPPAATTCCHHIINNGG SSUUBBPPRRIIOORRIITTYY

 TTOO TTHHEE OORRBB

((SSCCHHEEDDUULLEERR''SS
 OOUUTTPPUUTT

 IINNTTEERRFFAACCEE))

((SSCCHHEEDDUULLEERR''SS
 IINNPPUUTT

 IINNTTEERRFFAACCEE))

 88.. CCOONNFFIIGGUURREE QQUUEEUUEESS BBAASSEEDD

 OONN DDIISSPPAATTCCHHIINNGG QQUUEEUUEE

 CCOONNFFIIGGUURRAATTIIOONN

 1100.. DDYYNNAAMMIICC QQUUEEUUEESS AASSSSIIGGNN

 DDYYNNAAMMIICC PPOORRTTIIOONNSS OOFF

 DDIISSPPAATTCCHHIINNGG SSUUBBPPRRIIOORRIITTYY

 ((AANNDD PPOOSSSSIIBBLLYY

 DDIISSPPAATTCCHHIINNGG PPRRIIOORRIITTYY)) OORRBB EENNDDSSYYSSTTEEMM

Figure 3.4: Processing Steps in the Kokyu Service Architecture

The service architecture and behavior of the Kokyu scheduling framework is il-

lustrated in Figure 3.4. This architecture has evolved from earlier work on a CORBA

scheduling service [117] that supported purely static RMS for avionics mission comput-

ing applications [41, 67, 61]. Based on this work, as well as our experience prototyping

dynamic scheduling strategies, we have identified the following set of common steps

shown in Figure 3.4 that are necessary to configure and process requests for a broad

range of scheduling strategies:

Step 1: A CORBA application specifies QoS information and passes it to the Kokyu

reconfigurable scheduler, which is implemented as a CORBA object (i.e., it implements

an IDL interface). The use of CORBA IDL allows applications to specify sets of values

(i.e., RT Info s) that concisely capture the characteristics of each of its schedulable

operations (i.e., RT Operation s), along with any data dependencies between these

operations.

Step 2: At configuration time, which can occur either off-line or on-line, the applica-

tion passes this QoS information into the Kokyu reconfigurable scheduler. The recon-

figurable scheduler stores the QoS information in its repository ofRT Info descrip-

tors. The reconfigurable scheduler then constructs operation dependency graphs based

on RT Info s registered with it by the application. The scheduler identifies threads of

execution by examining the terminal nodes of these dependency graphs.

34

The scheduler can then infer information induced by the dependency graph, such

as the effective periods of execution of dependent operations. Nodes that have incoming

edges but no outgoing edges in the dependency graph are calledconsumers. Consumers

are dispatched after the nodes on which they depend. Nodes that have outgoing edges

but no incoming edges are calledsuppliers. Suppliers correspond to distinct threads of

execution in the system. Nodes with incomingandoutgoing edges can fulfill both roles.

Step 3: Next, the Kokyu scheduling framework assigns static priorities and subprior-

ities to operations. These values are assigned according to the specific strategy used

to configure the Kokyu scheduling framework. For example, when the TAO Kokyu

scheduling framework is configured with the MUF strategy, static priority is assigned

according to operation criticality. Likewise, static subpriority is assigned according to

operation importance and dependencies. By assigning and caching static information at

configuration time, the Kokyu scheduling framework can minimize overhead and non-

determinism at run-time.

Step 4: Based on the specific strategy used to configure it, the Kokyu scheduling

framework divides the dispatching priority and dispatching subpriority components into

statically and dynamically assigned portions. The static priority and static subpriority

values are used to assign the static portions of the dispatching priority and dispatching

subpriority of the operations. These dispatching priorities and subpriorities reside in

TAO’s RT Info repository. Performing this step at configuration time helps minimize

run-time overhead and non-determinism.

Step 5: In this step, the Kokyu scheduling framework assesses schedulability. A set of

operations is consideredschedulableif all critical operations will meet their deadlines.

Schedulability is assessed according to whether all operations within and above the min-

imum critical static priority level will be able to meet their deadlines, based on the worst

case simultaneous arrival of all operations,i.e., thecritical instant [70]. Operations are

augmented with a dynamic subpriority based on the critical instant, and their resulting

dispatching priority and dispatching subpriority are used to assess worst case feasibility

of the critical operations. Thisstaticanalysis can provide a worst-case schedulability

assessment for static, dynamic, and hybrid strategies alike.

Step 6: Based on the assigned dispatching priorities, and in accordance with the spe-

cific strategy used to configure the Kokyu scheduling framework, the number and types

35

of dispatching queues needed to dispatch the generated schedule are assigned. For ex-

ample, when the Kokyu scheduling framework is configured with the MLF strategy,

there is a single queue, which uses laxity-based ordering. As in Step 3, this static infor-

mation is cached in theRT Info repository until it is needed at run-time to configure

the Kokyu dispatching infrastructure.

Step 7: When TAO’s ORB endsystems and applications are initialized at run-time, the

configuration information in theRT Info repository is used by the Kokyu scheduling

framework’s run-time scheduler component, which is collocated within an ORB end-

system. The ORB uses this reconfigurable scheduler to retrieve (1) the thread priority

at which each queue dispatches operations and (2) the type of dispatching prioritiza-

tion used by each queue. By encapsulating the thread priority and dispatching type

information behind its output interface, the Kokyu framework decouples thepoliciesfor

dispatching behavior from themechanismsused to enforce those policies.

Step 8: In this step, a factory configures adispatching module(i.e., in the I/O sub-

system, ORB Core, and/or Event Service), as described in Chapter 5. The dispatching

module factory uses the configuration information provided by the Kokyu scheduling

framework to create the correct number and types of queues and associate them with

threads at the correct priorities that service the queues.

Step 9: When an operation request arrives from a client at run-time, the appropri-

ate dispatching module must identify the dispatching queue to which the request be-

longs and initialize the request’s dispatching subpriority. The reconfigurable scheduler

component of the Kokyu scheduling framework (1) retrieves the static portions of the

dispatching priority and dispatching subpriority from theRT Info repository and (2)

supplies them to the dispatching module. By caching static information that was com-

puted at configuration time, TAO’s strategized Kokyu scheduling framework minimizes

run-time overhead and non-determinism for each operation invocation.

Step 10: If the dispatching queue where the operation request is placed was config-

ured as adynamic queuein step 8, the dynamic portions of the request’s dispatching

subpriority (and possibly its dispatching priority) are assigned. The queue first does this

when it enqueues the request and then updates these dynamic portions only as necessary

when other operations are enqueued or dequeued. By efficiently managing updates to

dynamic information, TAO’s dynamic queues minimize the amount of overhead they

introduce.

36

Steps 3-6 represent the strategized portion of the scheduling framework, which

varies with each distinct scheduling strategy. Steps 1-2 and 7-10 represent the fixed

portion of the framework, which remains the same for all scheduling strategies. In

the original scheduling framework upon which this research builds, steps 1-6 typically

occurred off-line during a schedule configuration process, while steps 7-10 typically

occurred on-line.

With the extensions and optimizations to the scheduling and dispatching infras-

tructure described in Chapters 4, 5, and 6, steps 1-6 can be performed on-line as well.

Our earliest work on Kokyu’s scheduling infrastructure [32]

1. introduced strategized support for hybrid static and dynamic scheduling heuris-

tics,

2. decoupled scheduling heuristics from application characteristics and dispatching

mechanisms,

3. provided middleware mechanisms for dynamic scheduling, and

4. did preliminary evaluation of infrastructure alternatives in the context of well-

known scheduling heuristics.

As illustrated on the left side of Figure 3.3, Kokyu’s scheduling infrastructure

has since evolved into a light-weight common interface and a set of richer pluggable

strategies that encapsulate details of both scheduling data structures and heuristics. Each

scheduling strategy contains algorithms and data structures used to (1) select rates of

operations and (2) assign operations to the dispatching priority lanes described below.

For example, if an application only had information about the periodicity of tasks

and did not know in advance what periods it would need to handle, it could plug in a

strategy that used comparison sorting to order tasks for priority assignment according to

rate monotonic scheduling [70] (RMS). However, an application that knew all possible

values for both periodicity and criticality could use a form of radix sorting to order

operations for priority assignment according to RMS+LLF [15]. Supporting strategies

with different data structures for different degrees of information about the operations

to be scheduled allows use-case-specific optimizations to the timeliness of adaptive re-

scheduling. Section 3.5.2 considers these issues in detail.

37

3.4 Flexible Dispatching Framework

The right side of Figure 3.3 shows the essential features of Kokyu’s flexible task dis-

patching infrastructure. Key features of the dispatching infrastructure that are essential

to performing our optimizations are as follows:

Timers: Each top-level operation in the dependency graph has an associated rate of

invocation, which is implemented by associating each top-level operation with a timer

at that rate.

Dispatching queues: Each task is assigned by our strategized Kokyu scheduling frame-

work [32] to a specific dispatching queue, each of which has an associated queue num-

ber, a queueing discipline, and a unique operating-system-specific priority for its single

associated dispatching thread.

Dispatching threads: Operating-system thread priorities decrease as the queue num-

ber increases, so that the0th queue is served by the highest priority thread. Each dis-

patching thread removes the task from the head of its queue and runs its entry point

function to completion before retrieving the next task to dispatch. As described in Sec-

tion 3.5.1, adapters can be applied to operations to intercept and possibly short-circuit

the entry-point upcall. In general, however, the outermost operation entry point must

complete on each dispatch.

Queueing disciplines: Dispatching thread priorities determine which queue is active

at any given time: the highest priority queue with a task to dispatch is always active,

preempting tasks in lower priority queues. In addition, each queue may have a dis-

tinct discipline for determining which of its enqueued tasks has the highest eligibility,

and must ensure the highest is at the head of the queue at the point when one is to be

dequeued. We consider three disciplines:

� Static– Tasks are ordered by a static subpriority value – results in FIFO ordering if

all static subpriorities are made the same; static queues at different priority levels

can be used to implement an RMS scheduling strategy.

� Deadline– Tasks are ordered by time to deadline; a single deadline queue can be

used to implement the earliest deadline first [70] (EDF) scheduling strategy.

38

� Laxity– Tasks are ordered by slack time, orlaxity – the time to deadline minus the

execution time; a single laxity queue can be used to implement the minimum lax-

ity first [126] (MLF) scheduling strategy; laxity queues at different priority levels

can be used to implement the maximum urgency first [126] (MUF) scheduling

strategy.

Any discipline for which a maximal eligibility may be selected can be employed

to manage a given dispatching queue in this approach. Scheduling strategies can be con-

structed from one or more queues of each discipline alone, or combinations of queues

with different disciplines can be used, as in [15].

3.5 Middleware Scheduling and Dispatching Optimiza-

tions

Careful optimization of middleware is needed to meet the goals of mission-critical DRE

systems described in Chapter 1. In this section we present several key optimizations

that we have applied to realistic avionics mission computing applications in the target

platform environment described in Section 3.1.

We adopt the definition ofsystem modesused by Cross and Schmidt [20] as fol-

lows. Amodeis a Boolean function on the states of a system’s constituent configuration

items. For example in the context of an avionics mission computing application, “the

aircraft is landing” is a mode, and “aft sensors are at their highest rates” is a mode. The

value of a mode can change abruptly. For example, the failure of a component can affect

modes. In DRE systems the time allotted to respond to mode changes may be very short.

In fact, this requirement is one of the key technical differences between mission-critical

DRE applications and mainstream commercial business applications.

For this dissertation, we define amode partitionas an equivalence partition over

the set of possible states of the system. Our middleware scheduling optimizations focus

on two high-level mode partitions–steady-stateandadaptive–of the target avionics mis-

sion computing platform. As illustrated in Figure 3.5, the steady-state mode partition

contains all steady behavioral states, with a particular rate and priority assigned to each

operation while in that state. Finally, we define anoperating regionbased on the notion

of a QoS regionin QuO [143], as a set of states in the steady-state partition that can be

reached from one another without crossing into the adaptive partition.

39

TT 11 TT 22

SS 11
SS 22 SS 33

SS 44

TTRRAANNSSIITTIIOONNSS

SSTTEEAADDYY SSTTAATTEESS

OOPPEERRAATTIINNGG
RREEGGIIOONNSS

AADDAAPPTTIIVVEE PPAARRTTIITTIIOONN

SSTTEEAADDYY SSTTAATTEE
PPAARRTTIITTIIOONN

Figure 3.5: System Mode Partitions

The adaptive mode partition consists of the sequence of transitions between

steady behavioral states, in which a new round of rate selection and priority assign-

ment must be performed. Section 3.5.1 describes optimizations to the steady-state mode

partition, and Section 3.5.2 describes optimizations to the adaptive mode partition. In

our current research, the RTARM described in Sections 2.4 and 3.1 is invoked from

the steady-state mode partition, but may transition the system into the adaptive mode

partition during its execution.

3.5.1 Steady-State Optimizations

Existing research [15, 9] on adaptive scheduling of mandatory and optional operations

has largely focused on properties that can be specifieda priori, such as the compu-

tational complexity of the scheduling algorithm, the error function for optional tasks

during overload, and the value to the application of completing various stages of task

execution. While these approaches are valuable for establishing the essential theory of

building adaptive DRE systems, we believe an empirical approach is also useful to guide

design decisions and reveal opportunities for application-specific and domain-specific

optimizations in middleware.

For example, hybridization of the rate monotonic scheduling (RMS), earliest

deadline first (EDF), and minimum laxity first (MLF) scheduling techniques has been

40

proposed to isolate mandatory tasks from optional tasks, and optimize the execution be-

havior of those tasks [15]. The approach in this earlier work is to assign all mandatory

tasks to higher priority levels using RMS, and assign all optional tasks to one or more

lower priority levels using EDF, MLF, or other scheduling techniques. Other proposals

suggest a similar priority partitioning of mandatory and optional tasks, but choose other

combinations of scheduling techniques, such as scheduling each priority partition using

MLF [126].

Clearly, a variety of scheduling approaches and hybrid combinations thereof are

possible–and often desirable–for scheduling various types of DRE applications. How-

ever, choosing the approach that is best suited to a particular application or application

domain requires attention not only to the characteristics and requirements of the appli-

cation, but also of the platforms and middleware on which it is hosted. Here, we focus

primarily on the empirically measured low-level characteristics of the dispatching in-

frastructure on which the scheduling policies will be enforced in our flexible scheduling

framework. As shown in Section 5.4.3, the overhead associated with task dispatch-

ing differs for each of the three queueing disciplines described in Section 3.4. Static

queueing incurs the lowest enqueue and dequeue overheads, followed by the deadline

discipline, and the laxity discipline has the highest.

These results suggest scheduling optimizations for our target application plat-

form, based on reducing the dispatching overhead of an intermediate criticality class

and the level of confidence in the advertised execution times of operations. Since the

RTARM described in Sections 2.4 and 3.1 must manage adaptive transitions whenever a

change in application state requires a reallocation of rates, it must operate at a higher pri-

ority than the optional operations. However, if its operations cannot be feasibly sched-

uled with the mandatory operations, at least some of them must be assigned to an in-

termediate priority partition between the optional and mandatory operations. To meet

the three system objectives described at the beginning to this chapter, we describe four

types of performance optimizations for this scenario, illustrated in Figure 3.6:

A. Dynamic scheduling: If we cannot feasibly schedule all of the RTARM operations

with the mandatory operations, or the combination produces a barely feasible schedule

and we lack confidence in the precision of the advertised execution times, we might trade

some measure of overhead for stricter partitioning between the mandatory and RTARM

operations, and schedule the RTARM operations in an intermediate priority queue using

a deadline- or laxity-based discipline. This optimization allows the target system some

41

MMLLFF

MMAANNDDAATTOORRYY RRTT--AARRMM OOPPTTIIOONNAALL

MMLLFF

RRMMSS

AA.. DDYYNNAAMMIICC SSCCHHEEDDUULLIINNGG

MMLLFF

MMLLFF

RRMMSS

BB.. DDYYNNAAMMIICC CCAANNCCEELLLLAATTIIOONN

MMLLFF

RRMMSS

CC.. MMEERRGGEEDD SSCCHHEEDDUULLIINNGG

MMLLFF

RRMMSS

DD.. DDIIVVIIDDEEDD SSCCHHEEDDUULLIINNGG

Figure 3.6: Steady-State Optimizations

flexibility to meet our goal to accommodate unplanned tasks and unexpected variations

in operation characteristics (i.e., some jitter in the execution times), especially of the

RTARM or optional operations.

B. Dynamic cancellation: If we cannot feasibly schedule all of the operations within

a priority partition, we must consider whether to allow futile dispatches of operations,

even though we know they will miss their deadlines. Reducing the number of futile

dispatches and wasted CPU time may improve the performance of other operations and

increase either the number of made deadlines, the amount of work completed before

deadlines, or both. This optimization can help meet our goal to trade performance of

individual elements for overall performance objectives,e.g., maximizing the availability

of the CPU for operations thatcanmeet their deadlines.

Cancellation adds overhead, however, so it should not be applied to mandatory

partitions that are known to be feasible, especially when the benefits of optimizations,

such as static dispatching, are desired. Moreover, a balance between optimism and pes-

simism must be achieved for cancellation to be effective. As described in Chapter 8,

our initial measurements of this technique using a rather pessimistic cancellation strat-

egy actuallyreducedthe number of optional operations that made their deadlines. The

figure shows more operations making their deadlines without cancellation, compared to

the fewer operations making their deadlines with pessimistic cancellation. With a more

accurate cancellation threshold, however, we believe the technique will give the target

42

system more exact control over individual operation dispatches, thereby allowing more

deadlines to be met overall.

C. Merged scheduling: If we can feasibly and confidently schedule the RTARM op-

erations and mandatory operations together using RMS, then merging the RTARM op-

erations upward into the mandatory partition serves to reduce (1) the number of threads

needed to dispatch operations and (2) the expected queueing overhead for RTARM op-

erations. This optimization can help with our goal of improving real-time performance

(i.e., reducing overhead) across heterogeneous criteria (i.e., criticality and rate).

D. Divided scheduling: If we can partition the RTARM operations themselves into

mandatory and optional segments (e.g., to consider different ranges of available rates)

and the RTARM mandatory segment is feasible with the other mandatory operations,

then we can merge it upward into the RMS partition, reducing overhead for at least

the mandatory part of RTARM. Specifically, if we can feasibly schedule the part of the

RTARM responsible for assessing the current status of the system, we avoid having to

schedule additional operations later to re-establish consistency between the RTARM and

the current system state. Note that we might still keep the optional RTARM tasks at a

higher priority level than the other optional tasks, to prevent interference and increase

quality of adaptive transition solutions.

By ensuring that the critical status assessment portion of the RTARM is feasi-

bly scheduled, and thus avoiding consistency recovery costs, this optimization can help

meet our goal of performing adaptive resource reallocations within firmly bounded time-

scales. This optimization can also help meet our goal to improve real-time performance

across heterogeneous criteria,i.e., criticality and rate or laxity, by maximizing the num-

ber of operations assigned to more efficient dispatching queues.

3.5.2 Adaptive Optimizations

This research offers a middleware-based solution in which lower-level QoS management

services are leveraged where possible, or are provided in middleware when necessary.

This solution also complements and provides services to higher-level COTS and custom

middleware QoS management techniques from the broader research community [143,

44, 117].

43

End-to-End Admission Control: Mission-critical distributed real-time and embed-

ded system requirements pose new challenges for resource allocation. For adaptive rate

reconfiguration, remote dependencies require an end-to-end admission control protocol

to ensure that (1) appropriate adaptation is performed on each endsystem to maintain

the end-to-end timing constraints and (2) sufficient resources are feasibly reserved on

each endsystem. Thus, it is essential to identify and develop policies and mechanisms

for end-to-end real-time admission control that address these challenges.

For example, consider a sensor processing application with sampling operations

and processing operations on different endsystems [25]. Depending on the environment

and application state, sensor sampling operations may run at any one of a set of rates.

Whenever the sampling portion of the application is ready to adapt by changing the rate

at which it samples the sensor input, the following two activities must occur:

Reserving local resources: Any increase in the rate of execution of an operation must

be validated for scheduling feasibility on its local endsystem. For example, if an opera-

tion doubles its rate of execution, it will use twice as much CPU time.

Adaptation handshaking: Remote dependencies may also complicate adaptation in

distributed systems. For example, sampling at a higher rate than can be processed may

be of no benefit. If so, the admission control protocol may need to negotiate the same

rate for both sampling and processing operations, and ensure the operations can be

scheduled feasibly at that rate on their respective endsystems.

Integrated Middleware Framework Historically, embedded real-time applications

have often coupled QoS management and application logic, and provided timing assur-

ances by relying on static architectures, such as cyclic executives. Unfortunately, these

solutions can be brittle when requirements change, particularly when changes occur

at run-time. Moreover, such coupling can expose application developers to accidental

complexities, and thus increase the risk of insidious errors.

Encapsulating QoS management mechanisms within the Kokyu framework and

allowing flexible configuration of policies shields application developers from error-

prone QoS management details, and provides flexibility in meeting diverse end-to-

end QoS requirements. Canonical QoS management mechanisms encapsulated by our

framework include (1) QoS service configuration, (2) admission control, (3) QoS ex-

ception propagation, (4) QoS exception handling, (5) pacing, (6) shaping, and (7) clas-

sification.

44

Integrating mechanisms within the Kokyu framework offers improved adaptive

real-time performance. For example, consider two mechanisms: (1)classifyingoper-

ations for dispatch priority assignment, and (2) rate selection for adaptiveadmission

control. If the possible rates of all operations are known at admission control time, pri-

ority assignment can be performed at the same time as rate selection, as illustrated in

Figure 3.7:

SORTED

ADMISSION

CONTROL

ARRAY

 SORTED

 PRIORITY

ASSIGNMENT

 ARRAY

RT_I NFOS

DE-NORMAILZED

 TUPLES

ADMISSION

CONTROL

SORT

PRIORITY

ASSIGNMENT

SORT

PRIORITY

ASSIGNMENT

STRATEGY

ADMISSION

CONTROL

STRATEGY

SORTING

ALGORITHM

STRATEGY

Figure 3.7: Integrated Framework Architecture

We integrate classification and rate selection in Kokyu as follows:

Operation Characteristics: We store information about operation characteristics (e.g.,

period, criticality, and worst-case, average, and best-case execution times), in aRT_Info

descriptor. The application, or a higher level management layer, stores the values for the

characteristics of each operation in itsRT_Info descriptor.

Denormalized Tuples: In adaptive systems, multiple possible values may be specified

for some operation characteristics. The Kokyu framework must select a value for each

such characteristic. Priority assignment may need to be performed as well because

priority assignment may depend on value selection (e.g., RMS [70] depends on selected

rates).

To reduce the computational complexity of admission control, it is useful to per-

form both selection of values for operation characteristics and priority assignment in

the same pass. This can be done by (1) de-normalizing theRT_Infos and the sets of

45

possible values into a sequence of tuples, (2) sorting the tuples according to both the

priority assignment and admission control policies, and (3) performing value selection

and priority assignment on the sorted sequence.

Composing Strategies: By using astablesorting technique, or by composing admis-

sion control and priority assignment comparisons, the constraints of both policies can

be met, assuming they are not contradictory. Moreover, it may be possible to apply in-

creasingly efficient sorting algorithms depending on the information known about the

operations at admission control time. For example, if all the rates are known in advance,

it may be possible to apply anO(n) algorithm,e.g., radix sort. Otherwise, anO(nlogn)

comparison sort,e.g., heap sort, is needed.

3.6 Improving RTARM and Scheduler Interaction

In our prior adaptive scheduling research [25], a previous-generation RTARM [44] in-

teracted with a previous-generation instance of our scheduler via itssensitivity interface.

This interface allowed the RTARM to

1. Propose a specific assignment of rates to operations

2. Obtain a boolean feasibility assessment for that assignment and

3. Obtain a number representing the sensitivity of that feasibility result to increases

or decreases in the rates assigned to the operations.

The RTARM performed these steps whenever a transition between steady states was

needed. Two scheduling thresholds were defined for each scheduling strategy: one

for mandatory operations that corresponded to the achievable utilization bound under

that scheduling strategy, and one for mandatory and optional operations together that

corresponded to a higher (slightly overscheduled) total scheduling bound. A particular

assignment of rates to the set of operations was considered feasible if all mandatory

operations could be assured to be schedulable feasibly, as in [15].

To perform its assignment algorithm, the RTARM iteratively extended a set of

rate-to-operation bindings, adding new bindings and updating existing ones based on

responses from the scheduler to feasibility and sensitivity queries. The individual per-

formances of the RTARM and the scheduler sensitivity implementation were reasonable,

as shown in Figures 6.2 and 6.3 in Section 6.2. Both

46

1. the number of calls to the sensitivity interface, and

2. the amount of time spent assessing feasibility and sensitivity within each opera-

tion,

were roughly proportional to the number of operations in the schedule.

The combined behavior of the RTARM and scheduler was not as good as we

might hope, however, since the product of the number of calls and the time per call

produces an overall performance curve that is quadratic in the number of operations.

Therefore, we apply the following refinements to optimize the combined behavior, il-

lustrated in Figure 3.8, and described in greater detail in Chapter 6:

MMAANNDDAATTOORRYY OOPPTTIIOONNAALL

AA.. DDEENNOORRMMAALLIIZZEEDD

DDEESSCCRRIIPPTTOORRSS BB.. RRAATTEE//PPRRIIOORRIITTYY SSOORRTTIINNGG

CC.. AASSSSIIGGNNMMEENNTT PPOOLLIICCIIEESS DD.. RRAATTEE SSEELLEECCTTIIOONN

OOPP,, {{55,, 1100}}

NNAAMM EE
OOPP,, 55

OOPP,, 1100

RRAATTEESS
TTUUPPLLEESS

CCBB--FFAAIIRR FFAAIIRR

OORRDDEERREEDD

TTUUPPLLEESS

TTUUPPLLEESS

RRAADDIIXX

CCOOMMPPAARRIISSOONN

AADDMMIITTTTEEDD

 TTUUPPLLEESS

TTHHRREESSHHOOLLDD

Figure 3.8: Adaptive Optimizations

A. De-normalized operation descriptors: We de-normalize the available rate set and

fixed characteristics for each operation into a sequence of flat tuples of characteristics

(containinge.g., the operation handle, a particular rate, the execution time at that rate).

B. Rate and priority sorting: We recast rate and priority assignment as a sorting

problem over operation characteristics, with at worst anO(nlog(n)) bound on worst-

case performance, and anO(n) bound on worst-case performance in certain special

instances of the more general problem.

47

C. Assignment policies: We encapsulate specific sort ordering strategies as policies

for rate assignment, much as we have done previously for scheduling policies [32].

D. Rate Selection: Once the tuples are sorted, we perform a singleO(n) traversal of

the tuples to select the rate of each operation and determine expected utilization values

based on the rates selected and the advertised execution times.

3.7 Metrics Framework

Finally, Kokyu provides an integrated metrics framework, which Chapter 7 describes in

detail. We have optimized this framework for use in shared memory, so that platforms

such as the VME-connected embedded boards described in Section 8.1.3 can collect

and exchange metrics data for performance evaluation and adaptive feedback, within

bounded space and time. The metrics infrastructure provides the following:

� A shared-memory-capable metrics cache, that uses explicit type casting and based

smart-pointers to support run-time sizing and placement within shared memory

segments mapped at arbitrary process offsets, as Section 7.1 describes.

� Inline instrumentation and monitoring classes, including a shared-memory-capable

timeprobe class and an upcall adapter that can be used for adaptive feedback, can-

cellation, or both, as described in Section 7.1.

� Integration with Higher Level Resource Managers such as QuO and RTARM, also

described in Section 7.1.

� A time frame manager, described in Section 7.2, that keeps accurate track of the

current frame start and end, and also a frame counter at each rate to support adap-

tive transition management of the kind described in Section 9.3.2.

� Integration with Remote Logging and Visualization Services, as described in Sec-

tion 7.3.

48

Chapter 4

Kokyu Scheduling Framework

Implementation

Many hard real-time systems, such as those for avionics mission computing and man-

ufacturing process controllers, have traditionally been scheduled statically using Rate

Monotonic Scheduling (RMS) [56]. Static scheduling provides schedulability assurance

prior to run-time and can be implemented with low run-time overhead [117]. However,

static scheduling has the following disadvantages:

Inefficient handling of non-periodic processing: Static scheduling treats aperiodic

processing as if it was periodic (i.e., occurring at its maximum possible rate). Resources

are allocated to aperiodic operations either directly or through a sporadic server1 to

reduce latency. In typical operation, however, aperiodic processing may not occur at its

maximum possible rate. One example is interrupts, which potentially may occur very

frequently, but often do not.

Unfortunately, with purely static scheduling, resources must be allocated pes-

simistically and scheduled under the assumption that interrupts occur at the maximum

rate. When they do not, utilization is effectively reduced because unused resources can-

not be reallocated.

Utilization phasing penalty for non-harmonic periods: In statically scheduled sys-

tems, achievable utilization can be reduced if the periods of all operations arenotrelated

harmonically. Operations are related harmonically if their periods are integral multiples

1A sporadic server [66] reserves a portion of the schedule to allocate to aperiodic events when they
arrive.

49

of one another. When periods are not harmonic, the phasing of the operations produces

unscheduled gaps of time. This reduces the maximum schedulable percentage of the

CPU (i.e., theschedulable bound), to below unity. Theutilization phasing penaltyis the

difference between the value of the schedulable bound and 100%.

Liu and Layland established a least upper utilization bound ofn(21=n � 1) [70]

for a set of operations to be statically schedulable, wheren is the number of distinct non-

harmonic operation periods in the system. Recent research has shown that this bound

may be overly pessimistic in some cases [39]. However, the fact remains that with static

priority assignmentsomeunschedulable gaps may be created by non-harmonic periods.

Inflexible handling of invocation-to-invocation variation in resource requirements:

Because priorities cannot be changed easily2 at run-time, allocations must be based on

worst-case assumptions. Thus, if an operation usually requires 5 msec of CPU time, but

under certain conditions requires 8 msec, static scheduling analysis must assume that 8

msec will be required for every invocation. Again, utilization is effectively penalized

because the resource will be idle for 3 msec in the usual case.

Impact of situational factors on resource requirements: Recent advances in static

priority analysis [80, 38] have shown that the schedulable bound for statically prioritized

operations can be improved dramatically in some cases. These techniques rely, however,

on advance knowledge of (1) arrival patterns of operation dispatch requests and (2)

sequences of operation execution times. In many distributed real-time applications, such

as those for avionics mission computing and image processing, variation in load on the

system is largely due tosituationalfactors. Thus, such detailed information may not be

available accurately prior to run-time.

In general, static scheduling limits the ability of real-time systems to adapt to

changing conditions and changing configurations. In addition, static scheduling pro-

vides resource access guarantees at the cost of lower resource utilization. To overcome

the limitations of static scheduling, therefore, we have investigated the use of dynamic

strategies to schedule CORBA operations for applications with real-time QoS require-

ments.
2Priorities can be changed viamode changes[117], but that is too coarse to capture invocation-to-

invocation variations in the resource requirements of complex applications.

50

4.1 Overcoming Static Scheduling Limitations with Dy-

namic Scheduling

Other scheduling algorithms provide some relief from the limitations of RMS. For in-

stance, Earliest Deadline First (EDF) scheduling assigns higher priorities to operations

with closer deadlines. EDF is commonly used for dynamic scheduling because it per-

mits run-time modification of rates and priorities. In contrast, static techniques like

RMS require fixed rates and priorities.

Dynamic scheduling offers a way to address the drawbacks of static scheduling

described above. In particular, dynamic scheduling strategies offer optimal utilization

capabilities [70] and handle invocation-to-invocation variations in execution times effi-

ciently. If these drawbacks can be alleviated without incurring excessive overhead or

non-determinism, dynamic scheduling can be beneficial for real-time applications with

deterministic QoS requirements.

Demanding real-time applications, such as avionics mission computing, cannot

tolerate unnecessary overhead and non-determinism at run-time. Therefore, we restrict

our attention in this dissertation to scheduling approaches that do not perform frequent

schedulability analysis at run-time. In particular, we do not consider strategies that re-

quire run-time admission control for dynamic scheduling of each operation. Rather, we

only consider scheduling strategies where it is possible to select the set of operations

critical to the applicationstatically. Among such strategies, we are most interested in

those whosedynamicrun-time behavior allows greater resource utilization. Unfortu-

nately, many dynamic scheduling strategies do not offer thea priori guarantees of static

scheduling. For instance, purely dynamically scheduled systems (i.e., those without

any form of admission control for dynamically generated operations) can behave non-

deterministically under heavy loads. Thus, operations that are critical to an application

may miss their deadlines because they were (1) delayed by non-critical operations or (2)

delayed by an excessive number of critical operations.

Hybrid static and dynamic approaches may be used to combine the benefits of

both. The remainder of this section reviews several strategies for dynamic and hy-

brid static/dynamic scheduling, using the terminology defined in Appendix A. These

scheduling strategies include purely dynamic techniques, such as EDF and Minimum

Laxity First (MLF), as well as the hybrid Maximum Urgency First (MUF) strategy.

51

4.1.1 Purely Dynamic Scheduling Strategies

This section briefly reviews two of the well known purely dynamic scheduling strate-

gies, EDF [70, 56], and MLF [126]. These strategies are illustrated in Figure 4.1 and

discussed below. Figure 4.1 also shows the hybrid static/dynamic MUF [126] schedul-

MMUUFF

OOPPEERRAATTIIOONN AA::
HHIIGGHH CCRRIITTIICCAALLIITTYY

4400 UUSSEECC TTOO DDEEAADDLLIINNEE

2255 UUSSEECC EEXXEECCUUTTIIOONN

MMLLFF

EEDDFF

TTIIMMEE AAXXIISS

OOPPEERRAATTIIOONN BB::
LLOOWW CCRRIITTIICCAALLIITTYY

3355 UUSSEECC TTOO DDEEAADDLLIINNEE

2255 UUSSEECC EEXXEECCUUTTIIOONN

OOPPEERRAATTIIOONN CC::
LLOOWW CCRRIITTIICCAALLIITTYY

3300 UUSSEECC TTOO DDEEAADDLLIINNEE

1100 UUSSEECC EEXXEECCUUTTIIOONN

Figure 4.1: Dynamic Scheduling Strategies

ing strategy discussed in Section 4.1.2.

Earliest Deadline First (EDF): EDF [70, 56] is a dynamic scheduling strategy that

orders dispatches3 of operations based on time-to-deadline, as shown in Figure 4.1. Op-

eration executions with closer deadlines are dispatched before those with more distant

deadlines. The EDF scheduling strategy is invoked whenever a dispatch of an operation

is requested. Depending on the mapping of priority components into thread priorities,

the new dispatch may or may not preempt the currently executing operation, as discussed

in Section 5.2.

A key limitation of EDF is that an operation with the earliest deadline is dis-

patched, whether or not there is sufficient time remaining to complete its execution prior

to the deadline. Therefore, the fact that an operation cannot meet its deadline will not

be detected untilafter the deadline has passed. Moreover, that operation will continue

to consume CPU time that could otherwise be allocated to other operations that could

still meet their deadlines.

Minimum Laxity First (MLF): MLF [126] refines the EDF strategy by taking into

account operation execution time. It dispatches an operation whoselaxity is least, as

shown in Figure 4.1. Laxity is defined as the time-to-deadline minus the remaining

execution time.
3A dispatchis a particular execution of anoperation.

52

Using MLF, it is possible to detect that an operation will not meet its deadline

prior to the deadline itself. If this occurs, a scheduler can reevaluate the operation before

allocating the CPU, as discussed for the MUF scheduling strategy in Section 4.1.2.

Evaluation of EDF and MLF:

� Advantages: From a scheduling perspective, the main advantage of EDF

and MLF is that they overcome the utilization limitations of RMS when rates are non-

harmonic. In particular, the utilization phasing penalty described at the beginning of

this chapter cannot occur with EDF and MLF, because they assign priorities based on

run-time characteristics. In addition, EDF and MLF handle harmonic and non-harmonic

periods comparably. Moreover, they respond flexibly to invocation-to-invocation varia-

tions in resource requirements, allowing CPU time unused by one operation to be real-

located to other operations. Thus, they can produce schedules that are optimal in terms

of CPU utilization [70]. Finally, both EDF and MLF can dispatch operations within a

single static priority level [70, 126], which is useful for non-preemptive single-threaded

environments.

� Disadvantages: From a performance perspective, a disadvantage of purely

dynamic scheduling approaches like MLF and EDF is that their scheduling strategies

require higher overhead to evaluate at run-time. In addition, these purely dynamic

scheduling strategies offer no control overwhichoperations will miss their deadlines if

the schedulable bound is exceeded. As operations are added to the schedule to achieve

higher utilization, the margin of safety forall operations decreases. As the system be-

comes overloaded, therefore, the risk of missing a deadline may increase for every op-

eration.

4.1.2 Maximum Urgency First (MUF)

The MUF [126] scheduling strategy supports the deterministic rigor of the static RMS

scheduling approachandthe flexibility of dynamic scheduling approaches like EDF and

MLF. MUF is the default scheduler for the Chimera real-time operating system [127].

We support a variant of MUF in the Kokyu scheduling framework, which is presented

in more detail in Section 4.2. MUF can assign both staticanddynamic priority compo-

nents. In contrast, RMS assigns all priority components statically based on fixed rates

53

and EDF/MLF assign all priority components dynamically based on deadlines/laxities.

The hybrid priority assignment in MUF overcomes the drawbacks of the individual

scheduling strategies by combining techniques from each, as shown in Table 4.1 and

described below:

Table 4.1: MUF Priority Components

Component Precedence Assignment Type Basis
Criticality Highest Static Binary Application

Defined
Dynamic Intermediate Dynamic Float 1=laxity
Subpriority
Static Lowest Static Application-
Subpriority Defined

Criticality: In MUF, operations with highercriticality are assigned to higher static

priority levels. Assigning static priorities according to criticality prevents operations

critical to the application from being preempted by non-critical operations. In general,

MUF allows any number of criticality values. For the empirically studied avionics mis-

sion computing application described in Chapter 8, however, we restrict our attention to

the case with two values:critical or non-critical. This restriction appears to be reason-

able for many real-time applications with deterministic QoS requirements, although

1. the Kokyu scheduling and dispatching framework readily supports multiple criti-

cality levels, and

2. crafting policies and mechanisms with more than two criticality levels may be

motivated by particular use cases.

By separating resource demands of critical and non-critical operations, MUF provides

greater control over which operations miss deadlines during overload conditions.

To assign criticalities, Stewart and Khosla [126] suggest initially ordering oper-

ations by rate. Ordering operations by rate reduces the risk that non-critical operations

will miss their deadlines. Next, all tasks whose executions fall entirely within 100%

CPU utilization are designated ascritical and all other tasksnon-critical. [126] also

describes a variant of MUF criticality assignment that relaxes ordering by rate to allow

any ordering of operations. By relaxing this requirement, applications can select which

54

operations are critical and which are not. Ordering operations by application-defined

criticality reflects a subtle and fundamental shift in the notion of priority assignment.

In particular, RMS, EDF, and MLF exhibit rigid mappings fromempirical operation

characteristics to asinglepriority value.

Moreover, EDF and MLF offer little or no control over which operations will

miss their deadlines under overload conditions. In contrast, MUF affords applications

the ability to distinguish operations arbitrarily, giving themexplicit control overwhich

operations will miss their deadlines under conditions of overload. Therefore, it can pro-

tect a criticalsubsetof the entire set of operations. This fundamental shift in the notion

of priority assignment leads to the generalization of scheduling techniques discussed in

Section 4.2.

Dynamic Subpriority: Dynamic subpriority is used to differentiate two operations

that have the same criticality. In MUF,dynamic subpriorityhas lower precedence than

criticality. Therefore, dynamic subpriority is the primary basis for scheduling operations

within a single static priority level at run-time.

An operation’s dynamic subpriority is evaluated whenever it is enqueued in or

dequeued from a dynamically ordered dispatching queue. At the instant of evaluation,

dynamic subpriority in MUF is a function of the laxity of an operation.

An example of such a simple dynamic subpriority function is the inverse of the

operation’s laxity.4 Operations with the smallest positive laxities have the highest dy-

namic subpriorities, followed by operations with higher positive laxities, followed by

operations with the most negative laxities, followed by operations with negative lax-

ities closer to zero. Assigning dynamic subpriority in this way provides a consistent

ordering of operations as they move through thependingand late dispatching queues,

as described below.

By assigning dynamic subpriorities according to laxity, MUF offers higher uti-

lization of the CPU than the statically scheduled strategies. MUF also allows deadline

failures to be detectedbeforethey actually occur, except when an operation that would

otherwise meet its deadline is preempted by a higher criticality operation. Moreover,

MUF can apply various types of error handling policies when deadlines are missed [126].

4To avoid division-by-zero errors, any operation whose laxity is in the range�� can be assigned
(negative) dynamic subpriority�1=� where� is the smallest positive floating point number that is distin-
guishable from zero. Thus, when the laxity of an operation reaches�, it is considered to have missed its
deadline.

55

For example, if an operation has negative laxity prior to being dispatched, it can be di-

verted from the dispatching queue. This allows operations that can still meet their dead-

lines to be dispatched instead. This can be achieved by ordering operations by dynamic

subpriority, and refreshing this order whenever an operation enqueue or dequeue request

is made. This effectively partitions the queue into two sections, with pending dispatches

ahead of late dispatches.

� Pending dispatches: Operations that can meet their deadlines are dispatched

preferentially until there are no more operations that can meet their deadlines. At this

point, operations that missed or will miss their deadlines are dispatched. This strategy

has the beneficial effect that operations able to meet their deadlines will not be delayed

by operations unable to meet their deadlines.

� Late dispatches: Operations that missed their deadlines are dispatched in the

order of their now negative dynamic subpriorities. This order is the same as that pro-

duced by their original positive dynamic subpriorities. Operations that reached negative

laxity first are dispatched ahead of operations that reached negative laxity later.

When this strategy is used in thelate dispatch queue, it preserves the order that

operations had in thependingdispatch queue. In addition, it reduces overhead in the

dispatching mechanism. MUF’s ability to detect failures early and to specify policies

for error handling provides applications with greater control over theconsequencesof

scheduling failures, even when they occur for non-critical operations.

Static Subpriority: In MUF, static subpriorityis a static, application-specific, op-

tional value. It is used to order the dispatches of operations that have the same criticality

and the same dynamic subpriority. Thus, static subpriority has lower precedence than

either criticality or dynamic subpriority. Assigning a unique static subpriority allows a

total dispatch ordering of operations at run-time. For a given arrival pattern of operation

requests, the total ordering ensures that the dispatch order will always be identical. This

assurance improves system predictability, reliability, and testability.

The variant of MUF provided by the Kokyu scheduling framework enforces

a total dispatch ordering by providing animportance field in the TAORT Info

CORBA operation QoS descriptor [117], which is described in Appendix A. Kokyu

usesimportance , as well as a topological ordering of operations, to assign a unique

static subpriority for each operation within a given criticality level. Incidentally, the

original definition of MUF in [126] uses the termsdynamic priorityanduser priority,

56

whereas we use the termsdynamic subpriorityandstatic subpriorityfor Kokyu, respec-

tively. We selected different terminology to indicate the subordination to static priority.

These terms are interchangeable when referring to the MUF strategy, however.

4.2 Design Goals of the Kokyu Scheduling Framework

To alleviate the limitations with existing scheduling strategies described at the beginning

of this chapter, our real-time scheduling research focuses on developing a CORBA-

based framework that enables applications to

1. maximize total utilization,

2. preserve scheduling guarantees for critical operations, and

3. adapt flexibly to different application and platform characteristics.

These goals are illustrated in Figure 4.2 and summarized below:

HHIIGGHH UUTTIILL IIZZAATTIIOONN IISSOOLLAATTEE MMIISSSSEEDD DDEEAADDLLIINNEESS

vs vs

CCRRIITTIICCAALL

NNOONN--
CCRRIITTIICCAALL

DDEEAADDLL IINNEETTIIMMEE AAXXIISS

AADDAAPPTTAATTIIOONN TTOO AAPPPPLL IICCAATTIIOONN CCHHAARRAACCTTEERRIISSTTIICCSS

AA BB

CC DD EE

AA BB

CC DD EE
FFIIRRSSTT AAPPPPLL IICCAATTIIOONN SSEECCOONNDD AAPPPPLL IICCAATTIIOONN

Figure 4.2: Design Goals of the Kokyu Scheduling Framework

Goal 1 – Higher utilization: The leftmost pair of timelines in Figure 4.2 demonstrates

our first research goal:higher utilization. This timeline shows a case where a critical

operation execution did not, in fact, use its worst-case execution time. With dynamic

scheduling, an additional non-critical operation could be dispatched, thereby achieving

higher resource utilization and more importantly increasing the overall useful output of

the system.

Goal 2 – Preserving scheduling guarantees: The next pair of timelines in Figure 4.2

demonstrates our second research goal:preserving scheduling guarantees for critical

operations. In the lower timeline, priority is based only on traditional scheduling pa-

rameters, such as rate and laxity. In the upper timeline, criticality is also included. Both

57

timelines depict schedule overrun. When criticality is considered, only non-critical op-

erations miss their deadlines.

Goal 3 – Adaptive scheduling: The sets of operation blocks on the right in Figure 4.2

demonstrate our third research goal:providing applications with the flexibility to adapt

to varying application requirements and platform features. In this example, two ap-

plications (or, two distinct modes of a single application) use the same five operations.

However, the first considers operations A and E critical, whereas the second considers

operations B and D critical. By allowing applications (or modes) to select which opera-

tions are critical, it is possible to provide scheduling behavior that is appropriate to each

application’s individual requirements.

These three goals motivate the design of the Kokyu scheduling framework. For

the real-time systems [41, 117, 60, 118, 61] to which TAO has been applied, it has been

possible to identify a core set of operations whose execution before deadlines iscritical

to the integrity of the system. Therefore, the Kokyu scheduling framework is designed

to ensure that critical CORBA operations will meet their deadlines, even when the total

utilization exceeds the schedulable bound.

If it is possible to ensure missed deadlines will be isolated to non-critical opera-

tions, then adding non-critical operations to the schedule to increase total CPU utiliza-

tion will not increase the risk of missing critical deadlines. The risk will only increase

for those operations whose execution prior to deadline isnot critical to the integrity of

the system. In this way, the risk to the whole system is minimized when it is loaded for

higher utilization.

4.2.1 Kokyu Scheduling Input Interface

Real-time applications must specify their QoS information to their selected scheduling

strategy. The scheduling strategy then uses this application-specific QoS information to

ensure that the QoS received by the application conforms to this information. The key

design issues for QoS specification, and how TAO’s strategized scheduling framework

addresses them, are as follows:

Decoupling QoS specification and strategy details: Although the application must

specify its QoS information to the instantiated scheduling strategy, it is essential that

it not tightly couple the application to any specific scheduling strategy. This flexibly

58

allows the scheduling strategy to be varied independently of the application-specific

QoS information. Thus, changing the scheduling strategy need not require changes to

the application.

TAO’s scheduling strategy framework is designed to minimize unnecessary con-

straints on the values that application developers specify to the input interface described

in Section 4.2.1. For instance, one (non-recommended) way to implement the RMS,

EDF, and MLF strategies in TAO’s scheduling service framework would be to imple-

ment them as variants of the MUF strategy. This can be done by manipulating the val-

ues of the operation characteristics [126]. However, this approach would tightly couple

applications to the MUF scheduling strategy and the strategy being emulated.

There is a significant drawback to tightly coupling the behavior of a scheduling

service to the characteristics of application operations. In particular, if the value of one

operation characteristic used by an application changes, developers must remember to

manually modify other operation characteristics specified to the scheduling service in

order to preserve the same mapping. In general, TAO’s scheduling service framework

shields application developers from such unnecessary details.

Defining a fixed input interface: TAO’s scheduling service framework decouples

QoS specification from any specific scheduling strategy by providing afixedCommon

Object Request Broker Architecture (CORBA) Interface Definition Language (IDL)in-

put interface. All scheduling strategy details are hidden behind this interface. To achieve

this encapsulation, TAO’s scheduling service framework allows applications to specify

the entire set of possible operation characteristics using this fixed input interface.

As illustrated in steps 1 and 2 of Figure 3.4, applications use TAO’s scheduling

service input interface to convey QoS information. The scheduling strategy then uses

this information to prioritize operations. TAO’s scheduling service input interface con-

sists of theCORBA IDL interface operations shown in Figure 4.3 and described below:

create(): This operation takes a string with the operation name as an input parameter.

It creates a newRT Info descriptor for that operation name and returns a handle for

that descriptor to the caller. If anRT Info descriptor for that operation name already

exists,create raises theDUPLICATE NAME exception.

add dependency(): This operation takes twoRT Info descriptor handles as input

parameters. It places a dependency on the second handle’s operation in the first handle’s

RT Info descriptor. This dependency informs the scheduler that a flow of control

59
iinntteerr ffaaccee SScchheedduulleerr
{{
 ////

 //// CCrreeaattee aa nneeww RRTT__IInnffoo ddeessccrr iippttoorr ffoorr eennttrryy__ppooiinntt
 hhaannddllee__tt ccrreeaattee ((iinn ssttrr iinngg eennttrryy__ppooiinntt))
 rr aaiisseess ((DDUUPPLLIICCAATTEE__NNAAMMEE));;

 //// AAdddd ddeeppeennddeennccyy ttoo hhaannddllee''ss RRTT__IInnffoo ddeessccrr iippttoorr
 vvooiidd aadddd__ddeeppeennddeennccyy ((iinn hhaannddllee__tt hhaannddllee,,
 iinn hhaannddllee__tt ddeeppeennddeennccyy))
 rraaiisseess ((UUNNKKNNOOWWNN__TTAASSKK));;

 //// SSeett vvaalluueess ooff ooppeerraattiioonn cchhaarraacctteerr iissttiiccss
 //// iinn hhaannddllee''ss RRTT__IInnffoo ddeessccrr iippttoorr
 vvooiidd sseett ((iinn hhaannddllee__tt hhaannddllee,,
 iinn CCrr iittiiccaalliittyy ccrr iittiiccaalliittyy,,
 iinn TTiimmee wwoorrssttccaassee__eexxeecc__ttiimmee,,
 iinn PPeerr iioodd__ppeerr iioodd,,
 iinn IImmppoorr ttaannccee iimmppoorr ttaannccee))
 rraaiisseess ((UUNNKKNNOOWWNN__TTAASSKK));;

 ////
}}

Figure 4.3: Kokyu Scheduling Framework IDL Input Interface

passes from the second operation to the first. If either of the handles refers to an invalid

RT Info descriptor,add dependency raises theUNKNOWN TASK exception.

set(): This operation takes anRT Info descriptor handle and values for several oper-

ation characteristics as input parameters. Theset operation assigns the the passed input

values to the corresponding operation characteristics in theRT Info descriptor. If the

passed handle refers to an invalidRT Info descriptor,set raises theUNKNOWN TASK

exception.

4.2.2 Kokyu Scheduling Output Interface

An ORB must obtain QoS enforcement information generated by the scheduling strat-

egy. This information is then used by an ORB to enforce the QoS specified by the

scheduling strategy. The key design issues for QoS enforcement, and how the Kokyu

scheduling framework addresses them, are as follows:

Decoupling QoS enforcement and strategy details: While an ORB must obtain QoS

enforcement information generated by the instantiated scheduling strategy, it must not

60

tightly couple the ORB to any specific scheduling strategy. This allows the schedul-

ing strategy to be varied independently from the ORB, so that changing the scheduling

strategy does not require any changes to the ORB.

Defining a fixed output interface: the Kokyu scheduling framework decouples QoS

enforcement from any specific scheduling strategy by providing afixedCORBA IDL

output interface, behind which the scheduling strategy details are hidden. As illustrated

in steps 7 through 10 of Figure 3.4, the ORB uses the Kokyu scheduling output interface

to obtain QoS enforcement information and configure its dispatching modules accord-

ingly. The output interface for Kokyu’s scheduling framework consists of the CORBA

IDL interface operations shown in Figure 4.4 and described below:

iinntteerr ffaaccee SScchheedduulleerr
{{
 ////

 //// GGeett ccoonnffiigguurraattiioonn iinnffoorrmmaattiioonn ffoorr tthhee qquueeuuee tthhaatt wwiillll ddiissppaattcchh aallll
 //// RRTT__OOppeerraattiioonnss tthhaatt aarree aassssiiggnneedd ddiissppaattcchhiinngg pprr iioorr iittyy dd__pprr iioorr iittyy
 vvooiidd ddiissppaattcchh__ccoonnffiigguurraattiioonn ((iinn DDiissppaattcchhiinngg__PPrr iioorr iittyy dd__pprr iioorr iittyy,,
 oouutt OOSS__PPrr iioorr iittyy ooss__pprr iioorr iittyy,,
 oouutt DDiissppaattcchhiinngg__TTyyppee dd__ttyyppee))
 rr aaiisseess ((UUNNKKNNOOWWNN__DDIISSPPAATTCCHH__PPRRIIOORRIITTYY,,
 NNOOTT__SSCCHHEEDDUULLEEDD));;

 //// GGeett ssttaattiicc ddiissppaattcchhiinngg ssuubbpprr iioorr iittyy aanndd ddiissppaattcchhiinngg
 //// pprr iioorr iittyy aassssiiggnneedd ttoo tthhee hhaannddllee''ss RRTT__OOppeerraattiioonn
 vvooiidd pprr iioorr iittyy ((iinn hhaannddllee__tt hhaannddllee,,
 oouutt DDiissppaattcchhiinngg__SSuubbpprr iioorr iittyy dd__ssuubbpprr iioorr iittyy,,
 oouutt DDiissppaattcchhiinngg__PPrr iioorr iittyy dd__pprr iioorr iittyy))
 rraaiisseess ((UUNNKKNNOOWWNN__TTAASSKK,,
 NNOOTT__SSCCHHEEDDUULLEEDD));;

 ////
}}

Figure 4.4: Kokyu Scheduling Framework IDL Output Interface

dispatch configuration(): This operation provides configuration information for the

queues in the dispatching modules used by the ORB endsystem (step 7 of Figure 3.4). It

takes a dispatching priority value as an input parameter. It returns the OS thread priority

and dispatching type corresponding to that dispatching priority level. At run-time, the

Kokyu scheduler retrieves these values from its efficientRT Info repository, where

they were stored in step 6 of Figure 3.4. Thedispatch configuration operation

61

will raise theUNKNOWN DISPATCH PRIORITY exception if it is passed a dispatching

priority parameter that is not in the schedule. Likewise, if a schedule has not been

generated, thedispatch configuration operation raises theNOT SCHEDULED

exception.

priority(): This operation provides dispatching priority and dispatching subpriority

information for an operation request (step 9 of Figure 3.4). It takes anRT Info de-

scriptor handle as an input parameter and returns the assigned dispatching subpriority

and dispatching priority as output parameters. The Kokyu reconfigurable scheduler re-

trieves the dispatching priority and dispatching subpriority values stored in theRT Info

repository in step 4 of Figure 3.4). If the passed handle does not refer to a validRT Info

descriptor,priority raises theUNKNOWN TASK exception. If a schedule has not

been generated,priority raises theNOT SCHEDULED exception.

4.3 Input Mappings Implemented in Kokyu

Each scheduling strategy must provide a platform-independent assignment of priority

values to each operation. This allows an ORB to leverage commonality among schedul-

ing strategies, while preserving appropriate variations among them. The key design

issues for platform-independent priority assignment, and how the Kokyu scheduling

framework resolves them, are as follows:

Decoupling priority from OS-specific mechanisms: It is important that the priorities

and subpriorities assigned by the scheduling strategies remain independent of specific

priority enforcement capabilities of the underlying OS platform, at least at some level.

This allows the same scheduling strategy to be implemented, with only minor modifica-

tions, on platforms with diverse priority enforcement capabilities.

Defining a platform-independent input mapping: Kokyu decouples priority from

the specific priority enforcement capabilities of the underlying OS platform by provid-

ing a separate, platform-independent, level of priority assignment. Kokyu’s scheduling

framework leverages the commonality among these mappings to make its implementa-

tion more uniform. The variations between these mappings provide hooks for adaptation

to the requirements of specific applications. Furthermore, the Kokyu scheduling frame-

work simplifies development and experimentation withnewscheduling strategies within

TAO’s standards-compliant real-time CORBA middleware framework.

62

Input mappings for MUF, MLF, EDF, and RMS have been implemented in the

Kokyu scheduling framework, as described below. In each mapping, static subpriority

is assigned first using importance and second using a topological ordering based on de-

pendencies. The canonical definitions of MLF, EDF, and RMS do not include a minimal

static ordering. Adding it to Kokyu’s strategy implementations for these strategies has

no adverse effect, however. This is because MLF, EDF, and RMS require thatall oper-

ations are guaranteed to meet their deadlines for the schedule to be feasible, underany

ordering of operations with otherwise identical priorities. Moreover, static ordering has

the benefit of ensuring determinism for each possible assignment of urgency values.

Defining a platform-independent mapping for MUF: Kokyu provides a platform-

independent mapping from operation characteristics onto urgency for MUF as shown in

Figure 4.5(A). Static priority is assigned according to criticality in this mapping. There

SSTTAATTIICC

PPRRIIOORRIITTYY

SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

CCRRIITTIICCAALLIITTYY DDEEPPEENNDDEENNCCIIEESS IIMMPPOORRTTAANNCCEE

EEXXEECCUUTTIIOONN TTIIMMEE PPEERRIIOODD

SSTTAATTIICC

PPRRIIOORRIITTYY

SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

CCRRIITTIICCAALLIITTYY DDEEPPEENNDDEENNCCIIEESS IIMMPPOORRTTAANNCCEE

EEXXEECCUUTTIIOONN TTIIMMEE PPEERRIIOODD

CCOONNSSTTAANNTT

Figure 4.5: Input Mappings: (A) MUF (B) MLF

are only two static priorities since we use only two criticality levels in Kokyu’s MUF

implementation. The critical set in this version of MUF is the set of operations that were

assigned thehighcriticality value.

When MUF is implemented with only two criticality levels, the minimum critical

priority is the static priority corresponding to the high criticality value. In the more

general version of MUF [126], where multiple criticality levels are possible, the critical

set may span multiple criticality levels.

63

Dynamic subpriority is assigned in the MUF input mapping according tolaxity.

Laxity is a function of the operation’s period, execution time, arrival time, and the time

of evaluation.

Defining a platform-independent mapping for MLF: Kokyu provides a platform-

independent mapping from operation characteristics onto urgency for MLF as shown in

Figure 4.5(B). The mapping for MLF assigns a constant (zero) value to the static priority

of each operation. This results in a single static priority. The minimum critical priority

is this lone static priority. The MLF strategy assigns the dynamic subpriority of each

operation according to its laxity.

SSTTAATTIICC

PPRRIIOORRIITTYY
SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

CCRRIITTIICCAALLIITTYY DDEEPPEENNDDEENNCCIIEESS IIMMPPOORRTTAANNCCEE

EEXXEECCUUTTIIOONN TTIIMMEE PPEERRIIOODD

CCOONNSSTTAANNTT

SSTTAATTIICC

PPRRIIOORRIITTYY
SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

CCRRIITTIICCAALLIITTYY DDEEPPEENNDDEENNCCIIEESS IIMMPPOORRTTAANNCCEE

EEXXEECCUUTTIIOONN TTIIMMEE PPEERRIIOODD

CCOONNSSTTAANNTT

Figure 4.6: Input Mappings: (A) EDF (B) RMS

Defining a platform-independent mapping for EDF: Kokyu provides a platform-

independent mapping from operation characteristics onto urgency for EDF as shown in

Figure 4.6(A). Like the MLF mapping, the EDF mapping also assigns a zero value to

the static priority of each operation. Moreover, the EDF strategy assigns the dynamic

subpriority of each operation according to itstime-to-deadline, which is a function of its

period, its arrival time, and the time of evaluation.

Defining a platform-independent mapping for RMS: Kokyu provides a platform-

independent mapping from operation characteristics onto urgency for RMS as shown in

Figure 4.6(B). The RMS mapping assigns the static priority of each operation according

to itsperiod, with higher static priority for each shorter period. The period for aperiodic

64

execution must be assumed to be the worst case. In RMS, all operations are critical, so

the minimum critical priority is the minimum static priority in the system. The RMS

strategy assigns a constant (zero) value to the dynamic subpriority of each operation.

Defining a platform-independent mapping for RMS+MLF: In addition to strate-

gies for MUF, RMS, EDF, and MLF, the RMS+MLF [15] strategy has been imple-

mented in the Kokyu scheduling framework. The input mapping for the RMS+MLF

strategy is shown in Figure 4.7. In this strategy, the user-supplied criticality of each

SSTTAATTIICC

PPRRIIOORRIITTYY

SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY
DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

HHIIGGHH CCRRIITTIICCAALLIITTYY IIMMPPOORRTTAANNCCEE

DDEEPPEENNDDEENNCCIIEESS

EEXXEECCUUTTIIOONN TTIIMMEE PPEERRIIOODD

CCOONNSSTTAANNTT

SSTTAATTIICC

PPRRIIOORRIITTYY
SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

LLOOWW CCRRIITTIICCAALLIITTYY IIMMPPOORRTTAANNCCEE

DDEEPPEENNDDEENNCCIIEESS

EEXXEECCUUTTIIOONN TTIIMMEE PPEERRIIOODD

CCOONNSSTTAANNTT

Figure 4.7: RMS+MLF Input Mapping

operation is used to distinguish between operations that are in the critical set and those

that are not. The complete input mapping for the RMS+MLF is partitioned according to

these sets:

65

� RMS+MLF critical set: The critical set is mapped according to the mapping

used in the RMS strategy. Decreasing static priority is assigned according increasing pe-

riod for operations in the critical set. Dynamic subpriority is not used for operations in

the critical set, and is assigned 0. Static subpriority is assigned as in all the other strate-

gies, according to importance and then according to dependency ordering, to operations

in the critical set.

� RMS+MLF non-critical set: The non-critical set is mapped according to

the mapping used in the MLF strategy. An additional static priority, lower than all static

priorities assigned to operations in the critical set, is assigned to all operations in the

non-critical set. Dynamic priority is is assigned to operations in the non-critical set,

according to laxity. Static subpriority is assigned to operations in the non-critical set as

it was for operations in the critical set.

4.4 Output Mappings Implemented in Kokyu

Each scheduling strategy assigns platform-independent urgency values to operations,

which must then be used to dispatch operations using each endsystem’s OS-specific

dispatching model. The key design issues for platform-specific dispatching, and how

the Kokyu scheduling framework resolves them, are as follows:

Enforcing priority through platform-specific dispatching: The input mappings de-

scribed in Section 4.3 specify priorities and subpriorities for operations. However, there

is no mechanism to enforce these priorities, independent of the platform-specific dis-

patching models. Therefore, each scheduling strategy must provide a mapping from

platform-independent urgency values into platform-dependent dispatching priorities and

subpriorities.

Defining platform-specific values for Kokyu’s dispatching modules: As described

in Chapter 5, operations are distributed to priority dispatching queues in the ORB ac-

cording to their assigned dispatching priority. Operations are ordered within priority

dispatching queues according to their designated dispatching subpriority. The schedul-

ing strategy’s output mapping assigns dispatching priority and dispatching subpriority

to operations as a function of the urgency values specified by the scheduling strategy’s

input mapping. In each of Kokyu’s scheduling strategies, an output mapping transforms

the platform-independent priority and subpriority values into dispatching priority and

66

subpriority requirements that can be enforced by the specific dispatching models in real

systems. Figure 4.8 illustrates the output mapping used by the scheduling strategies

implemented in Kokyu. Each part of the mapping is described below.

SSTTAATTIICC

PPRRIIOORRIITTYY

SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

DDIISSPPAATTCCHHIINNGG

PPRRIIOORRIITTYY

DDIISSPPAATTCCHHIINNGG

SSUUBBPPRRIIOORRIITTYY
Figure 4.8: Output Mapping Implemented in Kokyu

� Dispatching priority: In this mapping, static priority maps directly to dis-

patching priority. This mapping corresponds to the priority band dispatching model

described in Section 4.4. Each unique static priority assigned by the input mapping re-

sults in a distinct thread priority in Kokyu’s dispatching modules, which are described in

Chapter 5. Thus, an operation with higher static priority will always preempt one with

lower static priority.

� Dispatching subpriority: Dynamic subpriority and static subpriority map to

dispatching subpriority. The Kokyu scheduling framework performs this mapping effi-

ciently at run-time by transforming both dynamic and static subpriorities into a binary

representation.

Because the range of dynamic subpriority values and the number of static sub-

priorities are known prior to run-time, a fixed number of bits can be reserved for each.

Dynamic subpriority is stored in them highest order bits, wherem = dlg(ds)e, andds

is the number of possible dynamic subpriorities. Static subpriority is stored in the next

n lower order bits, wheren = dlg(ss)e, andss is the number of static subpriorities.

Kokyu’s preemption subpriority mapping scheme preserves the ordering of op-

eration dispatches according to their assignedurgencyvalues. Operations with the same

static priority are ordered first by dynamic subpriority and second by static subpriority.

67

4.5 Operation Dependency Graph

The TAO Scheduling Service was enhanced with a reconfigurable scheduler implemen-

tation. Previously, all schedule computation was performed off-line, and the static re-

sults used to configure a static run-time scheduler. Adaptive scheduling capabilities

were supported only at the level of dispatching queues, which could be configured to

use either dynamic or static queue ordering. The reconfigurable scheduler implemen-

tation allows the same scheduler to be used for schedule computation and dispatching

priority assignment, all at run-time. In this section we describe several enhancements to

the previous generation static scheduler.

Graph Algorithms: While the previous generation scheduler implemented a num-

ber of the same algorithms, it was structured for recursive traversal of the dependency

graph. As noted in Section 3.3, the reconfigurable scheduler constructs operation de-

pendency graphs based onRT Info s registered with it by the application. Nodes that

have outgoing edges but no incoming edges in the dependency graph are calledcon-

sumers. Consumers are dispatched after the nodes on which they depend. Nodes that

have incoming edges but no outgoing edges are calledsuppliers. Suppliers correspond

to distinct threads of execution in the system. Nodes with incomingandoutgoing edges

can fulfill both roles. The reconfigurable scheduler identifies threads of execution by

examining the terminal nodes of these dependency graphs. The reconfigurable sched-

uler can then infer information induced by the dependency graph, such as the effective

periods of execution of dependent operations.

Modular Functionality: The requirements for diverse additional algorithms drove

the Kokyu framework design toward a model of iterative traversal by visitors over the

graph. Furthermore, explicit representation of graph algorithm preconditions and post-

conditions as separate methods in the visitors allowed efficient re-use of methods across

an inheritance hierarchy. Functions for priority assignment, operation sorting, and other

algorithm steps are performed via one or more traversals across the operation descrip-

tors in the graph. Functions can be composed, so that a single pass can accomplish

several logical algorithmic steps in a single visit to an operation descriptor. This allows

the scheduler implementation to be extended in a modular way, while preserving its

performance characteristics.

68

Efficient Data Structures: While the previous To achieve reasonable run-time perfor-

mance, the reconfigurable scheduler uses highly efficient data structures, notably Hash

Maps and Red-Black Trees. A Hash Map performs O(1) storage and lookup of oper-

ations given a unique key, which in this case is theRT_Info descriptor handle. A

Red-Black Tree is used to hold names of operations, though names are rarely used once

an operation is registered and its handle returned. As future work, this could be opti-

mized for the special case where all names are known in advance, and a perfect hashing

generator [114] could be used with a Hash Map to provide O(1) lookup of operations by

name as well as by handle.

Scheduling as Strategized Sorting: If we have prior knowledge of all possible val-

ues of key operation characteristics used by a particular scheduling heuristic,e.g., rate

and criticality, then we can provide optimizations of the scheduling infrastructure. In

particular, we note the ability to assign priorities through different forms of sorting, and

apply the most efficient sorting algorithm possible for each case. As future work, C++

generic programming mechanisms [8] such as templates and traits, used as in the C++

Standard Template Library [125], could be applied to the Kokyu scheduling framework

to automaticallyassociate the most efficient algorithm with a particular set of operation

characteristics.

Radix vs. Comparison Sorting: When values of operation characteristicsareknown

in advance, O(n) radix sorting can be achieved by creating a hashing function, inserting

the operations into a Hash Map parameterized with the hash function, and then simply

iterating across the buckets in the Hash Map to obtain the ordering. For example, the

rates of invocation for operations in the experimental application discussed in Chapter 8

were 40 Hz, 20 Hz, 10 Hz, 5 Hz, and 1 Hz. A simple C++ hash function,y = (x=5 > 0)

? log2(x=5) + 1 : 0; would convert those rates into hash table indices 4, 3, 2, 1, and

0 respectively, providing a hash implementation of RMS priority ordering. A similar

function could be constructed for RMS+MLF, and the hash function for MUF is simply

the criticality value.

4.6 Simulating Critical Instant Behavior

As described in Section 4.2, two of our research goals are (1) to increase effective CPU

utilization while (2) preserving scheduling guarantees for critical operations. We first

69

use simulation to examine the extent to which these goals can be met under conditions

of overload. This section presents the results of a simulation that visualizes the behavior

of canonical scheduling strategies under overload conditions. Our focus is on thecrit-

ical instant, which occurs in a preemptive schedule when all operation requests arrive

simultaneously [70].

In real-time systems, the distribution of when operation requests arrive is impor-

tant. For example, a given set of operations may be feasibly schedulable if requests for

the operations are distributed evenly across a given time frame, but cannot all be sched-

uled if all requests arrive simultaneously.5 In order to ensure that a set of operations is

schedulable under any pattern of requests, a scheduling strategy must be able to manage

the critical instant. Simulating our strategized scheduling service framework’s behavior

after the critical instant illustrates how it performs for a given set of periodic operations

under a worst-case request dispatching scenario. The remainder of this section:

1. describes the simulation design,

2. compares simulation results for the elements of different scheduling strategies in

terms of latency, laxity, and missed deadlines, and

3. presents conclusions supported by the simulation results.

These simulation results indicate the feasibility of achieving our research goals and mo-

tivate our empirical studies described in Chapter 8.

4.6.1 Simulation Design

We instrumented an early version of the Kokyu scheduling framework to generate time-

lines for the dispatching and preemption order of the operations after the critical instant.

To characterize this behavior, operation dispatches were simulated over a one second

time frame, from the critical instant. Each simulation was run until the last operation

finished executing.

For each scheduling strategy, the simulator took the priority output of the sched-

uler and used it to construct a complete preemption timeline. The simulator assumed

all operations were elegible to run at the critical instant, and then used the period field

5This is called acritical instant, which is the worst case request pattern [70].

70

of each operation to determine when subsequent requests for each operation would be

eligible.

To present a fair comparison of canonical scheduling strategies (i.e., MUF [126],

MLF [126, 71], EDF [70], and RMS [70]) and provide insight into other strategies com-

posed of them (e.g., RMS+MLF [15]), our simulation employs apreemptive-by-urgency

dispatching model, as discussed in Section 5.2. This model always executes the highest

eligibility operation that is ready to execute at a given time, preempting any lower eli-

gibility operation already running when a higher eligibility operation arrives. Strategies

like EDF and MLF, which rely entirely on dynamic prioritization of operations, would

otherwise exhibit a disproportional number of priority inversions. Moreover, the canon-

ical definition of EDF [70] specifies that it is dispatched in a fully preemptive manner.

In our simulations, we used a set of operations spanning a range of criticality

and period values. The combined utilization of these operations exceeded the maximum

schedulable bound, which is the maximum percentage of the CPU that can be utilized,

while the combined utilization by critical operations was below the maximum bound.

Table 4.2 summarizes the characteristics of each operation in the simulation.

Table 4.2: Characteristics of Simulated Operations

worst-case
period execution

operation Hz time, msec Criticality Importance

“low 1” 1 18 LOW HIGH
“low 5” 5 18 LOW HIGH
“low 10” 10 18 LOW HIGH
“low 20” 20 18 LOW HIGH
“high 1” 1 18 HIGH LOW
“high 5” 5 18 HIGH LOW
“high 10” 10 18 HIGH LOW
“high 20” 20 18 HIGH LOW

Each scheduling strategy emphasizes different static and dynamic operation char-

acteristics. Our simulations were designed to examine the effects of simple variations in

operation characteristics on the scheduling behavior of the various strategies. We have

varied only those parameters necessary to demonstrate meaningful differences between

the strategies, while holding the others constant. In particular, we do not vary the worst-

case execution times of the operations because the variations in period already produce

71

variations in laxity and time-to-deadline. To avoid unnecessary complexity in experi-

mental parameters, all operations possessed the same execution time: 18 milliseconds.

The latency and laxity of each operation dispatch were calculated from the sim-

ulation timelines. Operations with negative laxity at the time they were dispatched were

marked as having missed their deadlines. Operations with shorter periods had more dis-

patches over the frame. To compare operations that execute at different rates, values for

average latency and the fraction of deadlines missed were calculated for each operation.

Under these conditions, the results for the RMS+MLF strategy were identical to

those for the MUF strategy. Therefore, the figures omit the latency, laxity, and missed

deadlines plots for the RMS+MLF strategy. The simulation results and conclusions we

draw for the MUF strategy apply equally to the RMS+MLF strategy, albeit RMS+MLF

and MUF perform differently with variation in the execution times of operations, as we

examine in detail in the empirical studies in Chapter 8.

4.6.2 Comparing Operation Latency in the Scheduling Strategies

high_20
high_10

high_5
high_1

low_20
low_10

low_5
low_1

MUF

MLF

EDF

RMS

0

200000

400000

600000

800000

1000000

1200000

1400000

la
te

n
cy

 (
u

se
c)

operation

strategy

Figure 4.9: Latency of Operations for each Strategy

72

Figure 4.9 depicts the average latency values for the operations using each of the

scheduling strategies in the simulation. Only the MUF strategy minimized the latency

of critical operations, as shown in the left half of the figure. In addition, MUF detected

which operations will fail to meet their deadlines. This resulted in an overall decrease

in both latency and laxity of operations that could meet their deadlines in overloaded

conditions.

In contrast, the other scheduling strategies did not fare as well. RMS minimized

the latency of operations with shorter periods, while increasing the latency of operations

with longer periods. EDF behaved similarly since time-to-deadline is a function of an

operation’s period. MLF also minimized the latency of operations with shorter periods,

but detected which operations would fail to meet their deadlines, thereby showing better

overall latency than RMS or EDF.

Upward spikes in the latency graph in Figure 4.9 show which operations incurred

high average latency under each strategy. Where MLF, EDF, and RMS showed latency

spikes for both critical and non-critical operations, MUF (and RMS+MLF) showed a

latency spike only in the non-critical set. Maximum average laxity was lowest for

MUF, (RMS+MLF,) and MLF, which considered both the worst-case execution time

and time-to-deadline. Maximum average laxity was higher for EDF, which only consid-

ered time-to-deadline. It was higher still for RMS, which did not consider any dynamic

characteristics.

4.6.3 Comparing Operation Laxity in the Strategies

The laxity of an operation is defined as its time-to-deadline minus its remaining exe-

cution time. Figure 4.10 shows the average laxity values for the operations for each

scheduling strategy. As with Figure 4.9, only the MUF strategy protected the set of

critical operations. The other strategies had negative average laxities for the critical

operations with rates less than 20 Hz.

Operations that have negative laxity when they complete execution have missed

their deadlines. Conversely, operations that have non-negative laxity when they com-

plete their execution have met their deadlines. Another way to visualize the operation

behavior with respect to laxity is to plot the fraction of all dispatches of an operation

that miss their respective deadline. Figure 4.11 depicts this graph for the simulated

operations and strategies.

73

high_20
high_10

high_5
high_1

low_20
low_10

low_5
low_1

MUF

MLF

EDF

RMS

-800000

-600000

-400000

-200000

0

200000

400000

600000

800000

1000000

la
xi

ty
 (

u
se

c)

operation

strategy

Figure 4.10: Laxity of Operations for each Strategy

The MUF (and RMS+MLF) strategy prevented the critical operations from miss-

ing their deadlines. It did so at a cost of missed deadlines in the non-critical set. How-

ever, MUF minimized the overall percentage of missed deadlines better than the other

strategies.

The other strategies missed deadlines for the critical operations with rates less

than 20 Hz. The MUF and MLF strategies detected scheduling failures prior to deadline.

They preempted operations with negative laxity in favor of operations with positive

laxity, and thus allowed more operations to meet their deadlines.

4.6.4 Analysis of Simulation Results

Our simulation results illustrate that the characteristics considered by each schedul-

ing strategy significantly affects operation latency, laxity, and percentage of deadlines

missed. These results, grouped by the operation characteristic, are summarized below:

Criticality: Under conditions of overload, only the MUF strategy reduced latency

and preserved the deadline guarantees for operations in the critical set. The MUF and

74

high_20
high_10

high_5
high_1

low_20
low_10

low_5
low_1

MUF

MLF

EDF

RMS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fr

ac
ti

o
n

 o
f

d
ea

d
lin

es
 m

is
se

d

operation

strategy

Figure 4.11: Fraction of Deadlines Missed for each Strategy

RMS+MLF strategies consider operation criticality in assigning priority, so operations

in the critical set make their deadlines in preference to non-critical operations in MUF

and RMS+MLF. The EDF, MLF, and RMS strategies do not consider criticality when

assigning priority. Neither do they preserve deadline guarantees for operations in the

critical set under conditions of overload.

Execution time: The MUF and MLF strategies, which consider time-to-deadline and

worst-case execution time, reduced the impact of scheduling failures on other operations

by detecting failure prior to deadline. In addition, they showed lower average latency

per-operation than the other scheduling strategies.

Period: All strategies consider operation period. When all other factors are equal,

each strategy shows differences in missed deadlines for operations with different peri-

ods. Among the non-critical operations in the MUF strategy simulation, the low criti-

cality, 20 Hz period operation has lower initial laxity, because it has a closer deadline.

However, is also more likely to miss its deadline as a result of preemption by critical op-

erations. The MUF, MLF, and EDF strategies, which consider time-to-deadline, show

75

lower maximum and overall latency than the RMS strategy, which does not consider any

dynamic operation characteristics.

Importance: Operations with higher criticality values were given lower importance

values. Thus, for strategies that do not consider criticality, operations with higher im-

portance values had fewer missed deadlines, all other factors being equal.

4.6.5 Conclusions from Simulation Experiments

The following conclusions can be drawn from comparing the results for the scheduling

strategies used in the simulation:

Characteristics considered: Varying which operation characteristics a scheduling

strategy considers has a significant impact on scheduling behavior. For example, only

MUF considers operation criticality, and thus only MUF can selectively protect critical

operations from missed deadlines.

Combinations of characteristics: Considering certaincombinationsof operation char-

acteristics, may have an additional impact. For instance, MUF and MLF consider exe-

cution time in combination with period, which gives them the ability to detect deadline

failures early and reallocate resources.

Breadth of characteristics: Strategies that consider more of the available information

about static and dynamic operation characteristics generally exhibit an advantage over

strategies that use less information. For example, MUF considers criticality, execution

time, and period, and shows

1. lower latency,

2. fewer missed deadlines, and

3. no missed deadlines for critical operations.

This is in contrast to RMS, MLF, and EDF, each of which consider fewer op-

eration characteristics and fails to meet at least one of these criteria, particularly in

conditions of overload.

76

Chapter 5

Kokyu Dispatching Framework

Implementation

5.1 A More General Dispatching Infrastructure

The ability to manage quality of service (QoS) dynamically in distributed real-time sys-

tems requires several enhancements to current systems including

1. flexible “modeless” execution,

2. support for variable period tasks,

3. dynamic adjustment to varying loads over longer time scales, and

4. rapid local adaptation to variable system resource availability.

To realize these benefits, systems must provide greater flexibility to support reconfigu-

ration and adaptation, both in the application framework and in the underlying middle-

ware.

5.2 Alternative Dispatching Models

The scheduling strategies implemented in the Kokyu framework strike a balance be-

tween preemption granularity and run-time overhead. This design is appropriate for the

hard real-time avionics applications we have developed. However, it is important to

consider the consequences of the specific output mapping described in Section 4.4 to

77

evaluate the uses and implications of alternative output mappings. Key design issues,

and how the Kokyu strategized scheduling framework addresses them, are as follows:

Adapting to alternative OS dispatching models: The Kokyu scheduling architecture

is designed to adapt to the needs of a range of applications, not just hard real-time

avionics systems. Different types of applications and platforms may require different

resolutions of key design forces.

For example, an application may run on an OS platform thatdoes notsupport

preemptive multi-threading. Likewise, other platforms do not support thread preemption

and multiple thread priority levels. In such cases, the Kokyu scheduling framework

assigns all operations the same constant dispatching priority and maps the entire urgency

tuple directly into the dispatching subpriority [126]. This mapping correctly assigns

dispatching priorities and dispatching subpriorities for a non-preemptive dispatching

model. On a platform without preemptive multi-threading, the application could thus

dispatch all operations in a single thread of execution, from a single priority queue.

Another application might run on a platform thatdoessupport preemptive multi-

threading and a large number of distinct thread priorities. Where thread preemption and

a very large number of thread priorities are supported, one alternative is a dispatching

model that is preemptive byurgency. This design may incur higher run-time overhead,

but can allow finer preemption granularity. The application in this second example might

accept the additional time and space overhead needed to preemptively dispatch opera-

tions by urgency, in exchange for reducing the amount of priority inversion incurred by

the dispatching module.

Depending on (1) whether the OS supports thread preemption, (2) the number

of distinct thread priorities supported, and (3) the preemption granularity desired by the

application, several dispatching models can be supported by the output interface of the

Kokyu scheduling framework. Below, we examine three canonical variations supported

by the Kokyu framework, which are illustrated in Figure 5.1 and described below:

� Preemptive-by-urgency: The output mapping currently implemented in the

Kokyu Framework only supports preemptionbetweenstatic priority levels. Thus, a

newly arrived operation will not be dispatched until the operation executing currently at

its same preemption priority level has run to completion, even if the new operation has

greater urgency. By assigning dispatching priority according to urgency, all schedul-

ing strategies can be made fully preemptive, modulo OS dispatch latency overhead [51].

78

PPRREEEEMMPPTTIIVVEE--BBYY--UURRGGEENNCCYY

PPRREEEEMMPPTTIIVVEE--BBYY--PPRRIIOORRIITTYY--BBAANNDD

NNOONN--PPRREEEEMMPPTTIIVVEE

Figure 5.1: Dispatching Models Supported in the Kokyu Framework

This model incurs greater complexity in the dispatching module implementation, includ-

ing locking during enqueue and dequeue operations, which in turn increases run-time

overhead.

This dispatching model maintains the invariant that the highest urgency operation

that is able to execute is executing at any given instant, modulo the OS dispatch latency

overhead [51]. This model can be implemented only on platforms that (1) support fully

preemptive multitasking and (2) provide at least as many distinct real-time thread prior-

ities as the number of distinct operation urgencies possible in the application.

The preemptive-by-urgency dispatching model can achieve very fine-grained con-

trol over priority inversions incurred by the dispatching modules. This design potentially

reduces the time bound of an inversion to the thread context switch overhead, plus any

switching overhead introduced by the dispatching mechanism itself. Preemptive-by-

urgency achieves its precision at the cost of increased time and space overhead, however.

Although this overhead can be reduced for applications whose operations are known in

advance, using techniques like perfect hashing [114], overhead from additional context

switches will still be incurred.

� Preemptive-by-priority-band: This model divides the range of all possible

urgencies into fixed priority bands. It is similar to the non-preemptive dispatching model

used by message queues in the UNIX System V STREAMS I/O subsystem [107, 60].

This dispatching model maintains a slightly weaker invariant than the preemptive-by-

urgency model: at any given instant, an operation from the highest fixed-priority band

that has operations able to execute is executing.

This dispatching model requires thread preemption and at least a small number of

distinct thread priority levels. These features are now present in many operating systems.

79

The preemptive-by-priority-band model is a reasonable choice when it is desirable or

necessary to restrain the number of distinct preemption levels. For example, a dynamic

scheduling strategy can produce a large number of distinct urgency values. These values

must be constrained on operating systems, such as Windows NT [109], that support

only a small range of distinct thread priorities. Operations in the queue are ordered

by a subpriority function based on urgency. The strategies implemented in the Kokyu

scheduling framework use a form of this model, described in more detail in Section 5.3.

� Non-preemptive: This model uses a single priority queue and arriving re-

quests do not preempt a running request. It maintains a still weaker invariant: the op-

eration executing at any instant had the greatest urgency at the time of last dispatch.

As before, operations are ordered according to their urgency within the single dispatch-

ing queue. Unlike the previous models, this model can be used on platforms that lack

preemptive multi-threading.

5.3 Selected Dispatching Model

Applications can benefit from strategized scheduling at a variety of points along an end-

to-end request-response path. Kokyu’s dispatching modules can be integrated at a num-

ber of different points within an ORB endsystem architecture. This section (1) motivates

the key design issues, (2) shows how the dispatching modules fit within TAO’s ORB

endsystem architecture, (3) describes the internal queueing mechanism of the Kokyu

dispatching modules, and (4) discusses the issue of run-time control over dispatching

priority within these dispatching modules.

Supporting Adaptation Locally and End-to-End: As noted in Section 5.1, one of

our key research challenges is to implement dispatching modules that support adaptation

to varying loads, to maintain end-to-end QoS assurances and overall performance. By

designing dispatching modules that can enforce dispatching priority and dispatching

subpriority of operations at arbitrary points in the TAO ORB endsystem architecture,

we have increased TAO’s ability to adapt to varying QoS enforcement capabilities of the

endsystem OS platforms along an end-to-end request-response path.

Supporting alternative dispatching module configurations: The output interface of

the Kokyu scheduling service is designed to work with dispatching modules in one or

more layers in the TAO ORB endsystem architecture. For example, TAO’s real-time

80

extensions to the CORBA Event Service [41] use the scheduler output interface, as does

its I/O subsystem [60]. Figure 5.2(A) illustrates a configuration where a dispatching

module resides in TAO’s real-time Event Service [41]. In Figure 5.2(A), the client ap-

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

CCLLIIEENNTT SSTTUUBB

AA.. EEVVEENNTT CCHHAANNNNEELL DDIISSPPAATTCCHHIINNGG

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

OOBBJJEECCTT AADDAAPPTTEERR

EEVVEENNTT CCHHAANNNNEELL

CCLLIIEENNTT AAPPPPLLIICCAATTIIOONN

SSEERRVVEERRCCLLIIEENNTT

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

CCLLIIEENNTT SSTTUUBB

CCLLIIEENNTT AAPPPPLLIICCAATTIIOONN

CCLLIIEENNTT

BB.. II //OO SSUUBBSSYYSSTTEEMM DDIISSPPAATTCCHHIINNGG

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

OOBBJJEECCTT AADDAAPPTTEERR

SSEERRVVEERR

EEVVEENNTT CCHHAANNNNEELL

11

22

44

11

22

33

SS
CC
HH
EE
DD
UU
LL
EE
RR

SS
CC
HH
EE
DD
UU
LL
EE
RR

33 66

55

44

55

77

66

Figure 5.2: Alternative Placement of Dispatching Modules

plication(1) pushes an event to TAO’s Event Service. The Event Service’s dispatching

module(2) enqueues events and(3) dispatches them according to dispatching priority

and then dispatching subpriority. Each dispatched event results in(4) a flow of control

down through the ORB layers on the client and(5) back up through the ORB layers on

the server, where(6) the operation is dispatched.

Figure 5.2(B) illustrates an alternative configuration where a dispatching module

would reside in TAO’s I/O subsystem [60]. The client application(1) makes direct

operation calls to the ORB, which(2) passes requests down through the ORB layers on

the client and(3) back up to the I/O subsystem layer on the server. The I/O subsystem’s

dispatching module(4) enqueues operation requests and(5) dispatches them according

to their dispatching priority and dispatching subpriority, respectively. Each dispatched

operation request results in(6) a flow of control up through the higher ORB layers on

the server, where(7) the operation is dispatched.

Figure 5.2 illustrate two alternatives for configuring a dispatching module within

a TAO ORB endsystem. However, Kokyu supports other configurations, as well. For ex-

ample, a TAO ORB endsystem can be configured with dispatching modules inboththe

I/O subsystem and the Event Service. This configuration, which might be implemented

in conjunction with TAO’s Real-Time CORBA features [102], helps avoid priority inver-

sions and allows early dynamic queue management on server ORB endsystems viaearly

demultiplexing[60] of events to prioritized threads in the I/O subsystem. Likewise, it

81

helps avoid priority inversions on client ORB endsystems via prioritized dispatching of

events in a collocated client-side Event Service.

Internal architecture of a Kokyu dispatching module: Figure 5.3 illustrates the

general queueing mechanism used by the dispatching modules in the Kokyu dispatching

framework. In addition, this figure shows how the output information provided by the

DDIISSPPAATTCCHHIINNGG PPRRIIOORRIITTYY
((sseelleeccttss wwhhiicchh qquueeuuee))

DDIISSPPAATTCCHHIINNGG SSUUBBPPRRIIOORRIITTYY
((sseelleeccttss oorrddeerr iinn tthhee qquueeuuee))

DDIISSPPAATTCCHHIINNGG

QQUUEEUUEE

OO
PP

EE
RR

AA
TT

IIOO
NN

SS

DDIISSPPAATTCCHHIINNGG TTYYPPEE ((hhooww qquueeuuee mmaannaaggeess
 ddiissppaattcchhiinngg pprr iioorr iittyy aanndd ddiissppaattcchhiinngg ssuubbpprr iioorr iittyy))
DDSSSS

SSUUPPPPLLIIEEDD BBYY

CCOONNFFIIGGUURREEDD

QQUUEEUUEE IINN TTHHEE

DDIISSPPAATTCCHHIINNGG

MM OODDUULL EE

SSUUPPPPLLIIEEDD BBYY

SSCCHHEEDDUULL IINNGG

SSEERRVVIICCEE

Figure 5.3: Example Queueing Mechanism in a Kokyu Dispatching Module

Kokyu scheduling framework is used to configure and operate a dispatching module.

During system initialization, each dispatching module obtains the thread priority

and dispatching type for each of its queues from the scheduling service’s output inter-

face. Next, each queue is assigned a unique dispatching priority number, a unique thread

priority, and an enumerated dispatching type. Finally, each dispatching module has an

ordered queue of pending dispatches per dispatching priority.

To preserve QoS guarantees, operations are inserted into the appropriate dis-

patching queue according to their assigned dispatching priority. Operations within a

dispatching queue are ordered by their assigned dispatching subpriority. To minimize

priority inversions, operations are dispatched from the queue with the highest thread pri-

ority, preempting any operation executing in a lower priority thread [41]. To minimize

preemption overhead, there is no preemption within a given priority queue.

The following three values are defined for the dispatching type:

� STATIC DISPATCHING: This type specifies a queue that only considers the

static portion of an operation’s dispatching subpriority.

� DEADLINE DISPATCHING: This type specifies a queue that considers the dy-

namic and static portions of an operation’s dispatching subpriority, and updates the dy-

namic portion according to the time remaining until the operation’s deadline.

82

� LAXITY DISPATCHING: This type specifies a queue that considers the dy-

namic and static portions of an operation’s dispatching subpriority, and updates the dy-

namic portion according to the operation’s laxity.

The deadline-based and laxity-based queues update operation dispatching subpriorities

whenever an operation is enqueued or dequeued.

5.3.1 Run-time Dispatching Priority

Run-time control over dispatching priority can be used to achieve the preemptive-by-

urgency dispatching model discussed in Section 5.2. However, this model incurs greater

complexity in the dispatching module implementation, which increases run-time over-

head. Therefore, once an operation is enqueued in Kokyu’s dispatching modules, none

of the queues specified by the above dispatching types exerts control over an operation’s

dispatching priority at run-time. This greatly simplifies the dispatching module imple-

mentation since queues need not maintain references to one another or perform locking

to move messages between queues.

As noted in Section 5.2, all the strategies implemented in the Kokyu frame-

work map static priority directly into dispatching priority. Compared with strategies

that modify an operation’s dispatching priority dynamically, this mapping simplifies the

dispatching module implementation since queues need not maintain references to one

another or perform locking to move messages between queues. In addition, Kokyu’s

strategy implementations minimize run-time overhead since none of the queues speci-

fied by its dispatching types update any dynamic portion of an operation’s dispatching

priority. These characteristics meet the requirements of real-time avionics systems to

which TAO has been applied [67, 41, 117, 118].

It is possible, however, for an application to define strategies thatdo modify an

operation’s dispatching priority dynamically. A potential implementation of this is to

add a new constant to the enumerated dispatching types. In addition, an appropriate

queue must be implemented and used to configure the dispatching module according to

the new dispatching type. Supporting this extension is simplified by the flexible design

of the Kokyu framework.

83

5.4 Scheduling Overhead in TAO’s Real-Time Event Ser-

vice

The conditions under which we ran the simulations in Section 4.6 were somewhat ide-

alized. In particular, factors such as run-time overhead for dynamic scheduling mecha-

nisms and OS dispatch latency [51] significantly affect the scheduling behavior of these

strategies in actual systems. Therefore, the empirical benchmarks described in Chap-

ter 8 are needed to validate the simulation results. To ensure that the Kokyu framework

is efficient and predictable, we first performed initial measurements of:

1. the minimal latency added by dynamic scheduling in TAO’s Event Channel, and

2. the basic dispatching overhead for the three types of queues used in the Kokyu

framework.

The first measurements, described in Section 5.4.2, determined the run-time cost of

dynamic dispatching for end-to-end performance. The second measurements, described

in Section 5.4.3, assessed the potential increase in dispatching overhead as varying loads

were placed on the dispatching queues described in Section 5.3. These tests demonstrate

that Kokyu’s dispatching modules can enforce dynamic end-to-end QoS requirements

within acceptable levels of overhead.

5.4.1 Comparing Run-Time Performance

Several metrics are suitable for comparing the run-time performance of various schedul-

ing strategies. Latency, latency jitter, laxity, missed deadlines, and CPU utilization can

all be used to compare different scheduling strategies for a given set of operation char-

acteristics. These metrics are defined as follows.

Latency: Latency is the amount of time an operation is delayed. It can be calculated

by subtracting the CPU time used by the operation from the time between when it was

requested and when it finished executing.

Jitter: Jitter is the amount of variation in the latency of an operation from invocation-

to-invocation, relative to its average latency over time. Jitter for an invocation can be

calculated by subtracting the latency for that invocation from the average latency. The

absolute values of these measurements can be averaged to give the average latency jitter

for an operation or a group of operations.

84

Laxity: An operation’s laxity is the amount of slack time remaining after it completes

its execution. Laxity can be calculated by subtracting an operation’s completion time

from its deadline.

Missed deadlines: Negative laxity indicates a missed deadline. The number of missed

deadlines can be determined by computing the laxity of each operation invocation and

counting the number of invocations that complete execution with negative laxity.

CPU utilization: CPU utilization is defined as the percentage of total CPU time that

is used to execute an operation or a group of operations. CPU utilization for ORB

endsystems can be subdivided into time used by operations, time used by the ORB and

OS, and unused time.

The remainder of this section (1) describes an experiment to measure the mini-

mum achievable end-to-end overhead for both static and dynamic scheduling strategies

using TAO’s Event Service over the TAO ORB, (2) describes an experiment to measure

the overhead for static and dynamic dispatching queues as the load on these queues in-

creases, and (3) draws conclusions about dynamic scheduling from the results of these

experiments.

5.4.2 End-to-End Overhead

Levine conducted an initial experiment to quantify the actual overhead of the dynamic

queues in our dispatching infrastructure, when applying the Kokyu scheduling frame-

work to the TAO Event Service [42], shown in Figure 5.4. This experiment consisted

of a single high-priority supplier/consumer pair, and a varied number of low-priority

event supplier/consumer pairs, ranging from 1 to 1,000 pairs. By varying the number of

low-priority suppliers and consumers, this experiment measured

1. the effect of increasing low-priority load on high-priority performance, and

2. the minimum relative overhead associated with dynamic operation dispatching.

He measured latency, which is the amount of time an operation is delayed, using

time stamps. The run-time overheads for the static and dynamic scheduling strategies

can be compared based on this measured latency. He measured the latency in event

delivery between the high-priority supplier and consumer. This latency included

85

Subscription
& Filtering

Event
Correlation

Dispatching
Module

EVENT
CHANNEL

Consumer

Consumer
Consumer

Supplier Supplier
Supplier

push (event)

push (event)

Consumer
Proxies

Supplier
Proxies

Priority
Timers

Event
Flow

Figure 5.4: TAO’s Event Service Architecture

� the time required for the TAO table-driven run-time scheduler to satisfy the Event

Service dispatch module scheduling request, plus

� the time the request spent enqueued in the dispatch module.

The test was run for two different scheduling strategies on a Sun Ultra 30 uni-processor

300 MHz UltraSPARC CPU with 256 MB of memory, running SunOS 5.5.1 and using

the real-time (RT) scheduling class [59].

An earlier version of the Kokyu scheduler was configured with an off-line RMS

strategy and a run-time scheduler withO(1) table lookup was used to provide the gen-

erated schedule at run-time. The dynamic strategy used MUF and therefore required

an additional run-time laxity calculation. The high-priority supplier and consumer were

paced so that each high-priority operation was dequeued before the next was enqueued.

This design removed any queueing effect from the high-priority queue, so its minimum

relative overhead could be measured accurately.

The results of this experiment are shown in Figure 5.5. This figure illustrates

86

0

20

40

60

80

100

120

1 101 201 301 401 501 601 701 801 901

low priority consumers

av
er

ag
e

en
d

-t
o

-e
n

d
 la

te
n

cy
 p

er
 m

es
sa

g
e

(u
se

c)

MUF

RMS

Figure 5.5: End-to-end Run-time Overhead of Dynamic Scheduling

that there was no significant change in high-priority performance with increasing low-

priority load. Likewise, there appears to be only a small (< 10 percent) overhead end-to-

end for dynamic dispatching with no queueing effect. In addition, the absolute overhead

was between 80 and 100�secs.

5.4.3 Overhead of Dispatching Primitives

The experiment described in Section 5.4.2 established the minimum relative end-to-end

overhead for dynamic scheduling using the Kokyu dispatching primitives. Our second

experiment gauged the potential impact of an increasing number of enqueued messages

on this overhead. To measure this queueing effect accurately, we eliminated as many

sources of constant overhead as possible. For instance, the queues were tested in iso-

lation from TAO’s Event Service and only the overhead of the enqueue and dequeue

operations was measured.

The test was run on Windows NT 4.0 (SP3), in the real-time scheduling class

on a dual-CPU Intel 333 MHz Micron Powerdigm with 256 MB of memory. The test

used time stamps to measure the latency added by enqueue and dequeue operations for

87

an increasing number of messages in the queue. A separate iteration of the test was run

for each of an increasing number of enqueued messages. Messages were enqueued in

random order. The same order was used for all queues in a given test iteration.

The test was run with three different kinds of dispatching queues. We tested

static, deadline-based, and laxity-based queues. The static queue, which was used by the

RMS and Rate Monotonic Scheduling (RMS)+Minimum Laxity First (MLF) scheduling

strategies, used aO(1) table lookup at run-time. The deadline-based queue, which was

used by the EDF scheduling strategy, required an additional deadline calculation at run-

time. The laxity-based queue, which was used by the MUF, MLF, and RMS+MLF

scheduling strategies, required an additional laxity calculation at run-time.

The dequeue overhead for the laxity-based queue was highest, followed by the

deadline-based queue, and then the static queue. As shown in Figure 5.6, there was

0

2

4

6

8

10

12

14

16

18

20 80 14
0

20
0

26
0

32
0

38
0

44
0

50
0

56
0

62
0

68
0

74
0

80
0

86
0

92
0

98
0

messages dequeued

av
er

ag
e

la
te

n
cy

 p
er

 m
es

sa
g

e
(u

se
c)

 random laxity avg
 random deadline avg
 random static avg

Figure 5.6: Average�sec/Dequeue

an initial increase in overhead for dequeue operations in the laxity and deadline-based

queues as the number of enqueued messages increases. However, the overhead per-

dequeue operation rapidly saturated at�14�secs per operation for these queues. Thus,

as the number of enqueued operations increased, the overhead for dequeue operations

88

for the laxity- and deadline-based queues remained within a constant factor of seven

times the overhead of the static queue.

The overhead for randomly ordered enqueue operations was highest for the laxity-

based queue, followed by the overhead for deadline-based queue, and last for the static

queue. As shown in Figure 5.7, the overhead per-enqueue operation increased linearly

0

50

100

150

200

250

300

350

20 80 14
0

20
0

26
0

32
0

38
0

44
0

50
0

56
0

62
0

68
0

74
0

80
0

86
0

92
0

98
0

messages enqueued

av
er

ag
e

la
te

n
cy

 p
er

 m
es

sa
g

e
(u

se
c)

 random laxity avg
 random deadline avg
 random static avg

Figure 5.7: Average�sec/Enqueue

with the number of enqueued operations for all three kinds of queues. The overhead for

enqueue operations for the laxity- and deadline-based queues remained within a constant

factor of roughly six of the static queue overhead as the number of enqueued operations

increased.

The tests described here and in Section 5.4.2 were run independently and in dif-

ferent experimental settings. Taken together, their results confirm empirically that dy-

namic scheduling strategies can be used effectively in real-time systems. Further, these

results identify potential targets for optimization in cases where application require-

ments, such as heavy queue loading, may degrade performance.

Moderately-loaded systems: We now consider the implications of these results for

systems with either moderate or heavy queueing, and discusses alternative dispatching

89

implementations and the conditions under which each may be preferable. Figure 5.5

shows that the minimal end-to-end latency for the laxity-based MUF scheduling strategy

was only slightly higher than for the static RMS scheduling strategy. For systems where

the maximum number of messages that can be enqueued at one time remains very small,

the additional end-to-end overhead for dynamically scheduled dispatching should be

relatively low.

If the number of messages that can be enqueued at one time increases, however,

the effects of dynamic queue management become more prevalent, assuming a ran-

domized enqueueing order. This dynamic queue management overhead is distributed

between the enqueue and dequeue operations, so the measured overhead for both must

be considered.

As shown in Figure 5.6, the overhead for dequeue operations does not appear

significant for systems with fewer than 50 messages enqueued at one time. As the num-

ber of enqueued messages reached 100 messages, however, the overhead per-dequeue

operation jumped to�12 �secs. Even with a large number of enqueued messages,

this overhead remained around 14�secs per dequeue operation, roughly a factor of six

times the overhead per-dequeue operation in the static queue. Thus, the overhead from

dequeue operations in the laxity- and deadline-based queues remains reasonable, even

as the number of enqueued operations increases significantly.

As shown in Figure 5.7, the overhead for laxity-based and deadline-based en-

queue operations does not appear to be significant if fewer than 20 messages are en-

queued at one time. As the number of enqueued messages reached 50, the overhead

per-enqueue operation for the dynamic queues jumped to�20 �secs. Although the

laxity-based and deadline-based enqueue overhead remained within a constant factor of

six times the static enqueue overhead when more than 50 messages were enqueued, the

significance of this constant factor increased with the number of enqueued messages.

Heavily-loaded systems: Depending on the characteristics of the specific application,

the overhead for laxity- or deadline-based dispatching may reach unacceptable levels as

the number of enqueued messages increases. Figure 5.7 shows that as the number of en-

queued messages reached 1,000, the average overheadper enqueue operationexceeded

300�secs for messages enqueued in randomized order. Thus, the total CPU time needed

to enqueue these 1,000 messages was above 0.3 seconds.

90

For systems with such a large queueing effect, the overhead from dequeue op-

erations will be minimal compared to the overhead for enqueue operations in the dis-

patching queues. Section 5.4.4 discusses two alternative dispatching priority queue im-

plementations and describes when each are optimal for different numbers of enqueued

messages and different application characteristics.

The following conclusions can be drawn from the empirical results of our initial

experiments:

Minimal end-to-end overhead: The minimal end-to-end overhead for the dynamic

scheduling strategies is comparable to that for the static scheduling strategies, with only

a small increase due to dynamic priority computations. This indicates that dynamic

end-to-end QoS requirements can be enforced within acceptable levels of overhead,

assuming other sources of system overhead are minimized.

Range of acceptable performance: The range of acceptable performance is sustained

for dynamic scheduling strategies, up to a load of�150 messages enqueued at one time.

The Kokyu scheduling and dispatching infrastructure can adapt flexibly to alternative

queueing implementations, so that for heavier loads, heap-based queues may be prefer-

able.

The empirical results presented here validate the simulation results presented in

Section 4.6, and provide preliminary evidence for the efficacy of our dynamic scheduling

approach. We expand this evidence with the empirical studies described in Chapter 8.

The overhead of enforcing dynamic end-to-end QoS requirements remains within

acceptable limits for systems with light to moderate queue loading. Further, the empir-

ical results suggest alternative queueing implementations to give optimal performance

under increasing loads. Thus, dynamic scheduling using the Kokyu framework can be

achieved both efficiently and predictably.

Qualitative comparisons of the steady state optimizations we propose for inte-

grating predictable execution of the Real-Time Adaptive Resource Manager (RTARM)

with mandatory and optional tasks were discussed in Section 3.5.1. We support these

indications of the benefits of our approach with results from our previous work [32]. For

example, figures 5.7 and 5.6 show respectively the average time spent on each enqueue

and dequeue operation as a function of the number of messages enqueued in random

arrival order, for each of the queueing disciplines in our framework [32].

91

These figures show that where possible (e.g., for mandatory operations with har-

monically related rates) scheduling a partition using static dispatching, such as is avail-

able in RMS, can lower overhead of operation dispatches. Depending on the granularity

of periods and task execution times, this overhead reduction may bring significant ben-

efits. On the other hand, for partitions where required schedulability is sub-optimal

with RMS (i.e., for mandatory operations with highly unrelated rates), using a dynamic

queueing discipline such as deadline or laxity will incur greater overhead, but can help

optimize other criteria such as the schedulable utilization bound.

5.4.4 Dispatching Infrastructure Extensions

The dispatching queues described in Section 5.3 are implemented as linked lists. This

minimizes the dequeue overhead for the static, deadline-based, and laxity-based dis-

patching queues, even as the number of enqueued messages becomes large. For the

statically dispatched queues, the dispatching overhead remains reasonable as well, even

as the number of enqueued messages approaches 1,000. However, for the laxity- and

deadline-based queues, the enqueue overhead grows significantly as the number of en-

queued messages increases.

One alternative to a linked list message queue implementation is to use aheap.

A heap is a partially-ordered, almost-complete binary tree that ensures the average- and

worst-case time complexity for enqueueing or dequeueing isO(lgn). The trade-off is

that in the linked list priority queue implementation, enqueue operations areO (n) and

dequeue operations areO (1). Conversely, in the heap-based priority queue implemen-

tation, both enqueue and dequeue operations areO (logn).

Switching from a linked list implementation to a heap implementation can reduce

the cost of enqueue operations while raising the cost of dequeue operations. Therefore,

the selection of a dispatch queue implementation depends on application characteristics.

For example, even with a large number of messages enqueued, a laxity-based queue may

showO (1) enqueue overhead if all messages have nearly identical execution times and

times to deadline. Such idealized characteristics occur infrequently, however. There-

fore, in systems where there is a larger queueing effect, heap-based implementations for

laxity- and deadline-based queues may be preferable.

92

5.5 Configuration-Driven Dispatching Module Factory:

We conclude this chapter by describing how the dispatching infrastructure can be config-

ured automatically using the scheduler output described in Section 3.4. We are currently

modifying an existing version of the The ADAPTIVE Communication Environment

(ACE) Object Request Broker (ORB) (TAO) Real-Time Event Channel (RTEC) dis-

patching infrastructure within the Bold Stroke avionics middleware to be configurable

with such a factory. Four major segments of the Kokyu dispatching framework can be

configured using information automatically generated by the Kokyu scheduling frame-

work.

Dispatching Module: Priority lanes in the dispatching module itself can be collected

either using a Native C++ array as in the existing TAO RTEC implementation [41], or in

a more flexible data structure such as a hash map. The former approach is slightly more

efficient in storage footprint and per-access time overhead, so for environments where

in particular footprint is of extreme concern, this may be the preferable implementation.

We have retained this approach in converting the existing TAO RTEC dispatching in-

frastructure within the Bold Stroke avionics infrastructure. The latter approach provides

greater flexibility for adaptive reconfiguration without undue overhead for memory re-

allocation, and is our preferred approach for a new dispatching module implementation

we plan to add to an enhanced and optimized version of the TAO event channel [99].

Message Queues: Two kinds of message queues are currently supported, one that pro-

vides static ordering of messages according to a fixed subpriority field, and one that al-

lows arbitrary ordering of messages according to a pluggable strategy. The static queues

are used to implement first-in-first-out (FIFO) or subpriority-ordered queues in RMS.

Strategies for laxity and deadline ordering are currently provided for the strategized

queue class, and are used to implement MLF and Earliest Deadline First (EDF) queues

respectively.

Timers: Several kinds of timers are provided in ACE and the Kokyu dispatching in-

frastructure can be configured to use any of these. Choice of timer type(s) can be made

for each application according to the number and pattern of timer intervals and the per-

formance requirements of the application, particularly for predictability and overhead

of timer dispatches and registration.

93

Concurrency Mechanisms: ACE also provides several concurrency mechanisms that

can be used to manage priority isolation for timers, queues, or both. We consider three

mechanisms here: tasks, reactors, and proactors.

The rest of this section considers the last three segments of the dispatching infras-

tructure in detail. Section 5.5.1 describes the Common Object Request Broker Archi-

tecture (CORBA) Interface Definition Language (IDL) configuration specification pro-

duced by the Kokyu scheduling framework. Section 5.5.2 describes the message queues

provided by ACE. Section 5.5.3 describes the kinds of timers that can be configured.

Finally, Section 5.5.4 discusses the task, reactor, and proactor concurrency mechanisms.

5.5.1 IDL Configuration Specification:

The dispatch_configuration() method of the Kokyu scheduling framework

output interface provides a sequence of dispatch configuration descriptors, as described

in Section 4.2.2. Figure 5.8 shows the CORBA IDL definitions provided by the Rtec-

Scheduler.idl file, as part of theRtecScheduler module interface for the Kokyu schedul-

ing framework: As shown in Figure 5.8, thePreemption_Priority_t andOS_Priority

types are used respectively to identify

1. the platform-independent priority level that also serves an index to that particular

priority lane, and

2. the platform-dependent operating system thread priority used at that level to en-

force priority isolation from other levels.

These types are used to configure the priorities of the various kinds of concurrency

mechanisms described in Section 5.5.4.

The Period_t type is for time values in units 100 nanoseconds, corresponding

to the period or interval of invocation of an operation, and used to set the expiration

of periodic timers in the Kokyu dispatching framework as described in Section 5.5.3.

Depending on the strategy with which the Kokyu scheduling infrastructure is configured,

a particular priority level may have more than one associated period for its assigned

operations. ThePeriod_Set type declares a seqence of the periods associated with a

particular priority lane.

TheDispatching_Type_t enumerated type identifies the kind of strategy to be

used by a dispatching queue, as described in Section 5.5.2. Values of this type are

94

 tt yyppeeddeeff ll oonngg PPrr eeeemmpptt ii oonn__PPrr ii oorr ii tt yy__tt ;;
 tt yyppeeddeeff ll oonngg OOSS__PPrr ii oorr ii tt yy;;
 tt yyppeeddeeff ll oonngg PPeerr ii oodd__tt ;;
 tt yyppeeddeeff sseeqquueennccee<<PPeerr ii oodd__tt >> PPeerr ii oodd__SSeett ;;

 eennuumm DDii ssppaatt cchhii nngg__TTyyppee__tt
 {{
 SSTTAATTII CC__DDII SSPPAATTCCHHII NNGG,,
 DDEEAADDLLII NNEE__DDII SSPPAATTCCHHII NNGG,,
 LLAAXXII TTYY__DDII SSPPAATTCCHHII NNGG
 }} ;;

 sstt rr uucctt CCoonnff ii gg__II nnff oo
 {{
 PPrr eeeemmpptt ii oonn__PPrr ii oorr ii tt yy__tt pprr eeeemmpptt ii oonn__pprr ii oorr ii tt yy;;
 OOSS__PPrr ii oorr ii tt yy tt hhrr eeaadd__pprr ii oorr ii tt yy;;
 DDii ssppaatt cchhii nngg__TTyyppee__tt ddii ssppaatt cchhii nngg__tt yyppee;;
 PPeerr ii oodd__SSeett tt ii mmeerr __ppeerr ii ooddss;;
 }} ;;

 tt yyppeeddeeff sseeqquueennccee<<CCoonnff ii gg__II nnff oo>> CCoonnff ii gg__II nnff oo__SSeett ;;

Figure 5.8: IDL for Dispatching Module Configuration Descriptors

currently limited toSTATIC_DISPATCHING for FIFO and static subpriority queues, and

DEADLINE_DISPATCHINGand LAXITY_DISPATCHING for deadline-ordered and laxity-

ordered queues, respectively.

The Config_Info structure aggregates these types into a single descriptor for

each priority lane:

� preemption_priority – platform-independent priority level, lane index

� thread_priority – OS priority of the thread(s) at that level

� dispatching_type – kind of dispatching queue

� timer_periods – timer periods associated with the priority level

Finally, the dispatching configuration descriptors can be collected as a sequence, of the

typeConfig_Info_Set .

95

5.5.2 Message Queues:

ACE provides several forms of message queues, with which the Kokyu dispatching

framework can bbe configured to produce different kinds of request ordering. Class

ACE_Message_Queue_Base provides common enumerations and other types uesd by

derived classes. ClassACE_Message_Queue extends classACE_Message_Queue_Base

and provides basic FIFO and static subpriority-ordered queueing. We added derived

classACE_Dynamic_Message_Queue to ACE, to extend base classACE_Message_Queue

with strategized dynamic ordering of messages. Any type that is derived from base class

ACE_Dynamic_Message_Strategy can be used to configure message ordering in class

ACE_Dynamic_Message_Queue . ClassACE_Deadline_Message_Strategy is derived

from classACE_Dynamic_Message_Strategy and implements deadline-ordered queue-

ing. ClassACE_Laxity_Message_Strategy provides laxity-ordered queueing and is

also derived from classACE_Dynamic_Message_Strategy .

5.5.3 Timers:

ACE provides several kinds of containers for timer management. For each container,

an iterator is defined, so that not only may the closest timer expiration be determined,

but the entire sequence of registered timer expirations may be inspected. For efficient

dispatching the former capability is used, though the ability to look ahead in the timer

schedule appears useful for the kinds of adaptive reconfiguration at QoS transitions de-

scribed in Section 9.3.

ClassACE_Timer_Queue_T provides features for a basic timer container. Classes

derived from classACE_Timer_Queue_T provide variations on the kind of container, par-

ticularly with respect to how the timers are stored. Examples provided by ACE include:

ACE_Timer_List_T , ACE_Timer_Heap_T , ACE_Timer_Wheel_T , and for constant time

accessACE_Timer_Hash_T . In addition, ACE provides two kinds of adapters for timer

queues: classACE_Async_Timer_Queue_Adapter extends classACE_Event_Handler ,

and classACE_Thread_Timer_Queue_Adapter extends classACE_Task_Base .

5.5.4 Concurrency Mechanisms:

Finally, we consider three ways to provide prioritized concurrency management to timers

and queues in the Kokyu dispatching framework.Tasksassociate message queues and

96

threads according to the Active Object pattern [64].Reactorsprovide synchronous event

demultiplexing according to the Reactor pattern [115, 119].Proactorsprovide asyn-

chronous event demultiplexing according to the Proactor pattern [103, 119]. We now

examine the ACE classes that provide each of these mechanisms.

Tasks: ClassACE_Task provides a complete implementation of an active queue ab-

straction, in which a consumer thread is associated with a message queue. Other threads

post messages to the queue, and the consumer thread removes the message from the

queue and processes it. By associating an event push upcallfunction object(also known

as afunctor) with a message, the RTEC [41] applies this abstraction to operation dis-

patching. As in the previous-generation static scheduling approach, we allow the prior-

ity of the task thread to be set to the assigned OS prioriry. We extend that capability by

providing additional queue types and strategies with which to configure the task.

Reactors: ClassACE_Reactor provides an interface that can be implemented by any

type derived from classACE_Reactor_Impl , according to the Bridge pattern [28]. Im-

plementation classes provided by ACE include:

� ACE_Select_Reactor – uses the UNIXselect () system call semantics

� ACE_WFMO_Reactor– uses theWaitForMultipleObjects () system call seman-

tics

Additional kinds of reactors are derived from those classes, and could be used to config-

ure similar dispatching infrastructure in other settings:ACE_XtReactor (X Toolkit),

ACE_TP_Reactor (thread pools),ACE_QtReactor (Qt Library), ACE_FlReactor (FL

Toolkit), andACE_Msg_WFMO_Reactor.

Several models are possible for configuring reactors in the Kokyu dispatching

framework. For example, a single reactor could be used, or a reactor per priority level,

each with its own thread of execution. In addition to the priority of the thread in which

the reactor is run, reactors my use the semantics of theACE_Event_Handler priority

member to distinguish prioritization of dispatches. For example, priorities associated

with handlers are inspected by classACE_Priority_Reactor during its dispatch upcall.

Proactors: In addition to the synchronous event demultiplexing approaches currently

used in the dispatching infrastructure,asynchronousevent demultiplexing capabilities

are becoming increasingly available in modern operating systems. ACE provides a set of

97

Proactorabstractions that encapsulate these capabilities. ClassACE_Proactor provides

an interface implemented by any type derived from classACE_Proactor_Impl , which

is in turn derived from classACE_Event_Handler .

ClassACE_WIN32_Proactor is derived from classACE_Proactor_Impl and is

implemented using the semantics of the system calls for win32 I/O completion ports.

ClassACE_POSIX_Proactor is derived from classACE_Proactor_Impl and is imple-

mented using the semantics of theaio_ system calls. Base classACE_POSIX_Proactor

is extended byACE_POSIX_AIOCB_Proactor using Asynchronous I/O Control Blocks

to notify or obtain status ofaio_ system calls. ClassACE_POSIX_SIG_Proactor is also

derived from classACE_POSIX_Proactor and is implemented using signals.

Finally, several helper classes are provided to integrate timer classes into the

Proactor model. ClassACE_WIN32_Asynch_Timer defines the type posted to the com-

pletion port when a timer expires on Win32 platforms and is derived from the base class

ACE_WIN32_Asynch_Result . Derived classACE_POSIX_Asynch_Timer extends class

ACE_POSIX_Asynch_Result , and defines the type posted to the completion port when

a timer expires on UNIX platforms. ACE provides functors used that are used by class

ACE_Proactor_Handle_Timeout_Upcall to allow parameterized management of timer

expiration, cancellation, and removal.

We have not experimented with using Proactors instead of Reactors in the Kokyu

dispatching infrastructure, though timer and priority configuration issue appear similar.

As future work we plan to extend the Kokyu dispatching infrastructure to use Proactors

for asynchronous event demultiplexing.

98

Chapter 6

Adaptive Rate-Selection

Implementation

Section 3.5 discussed the idea of adaptation as a sequence of transitions between stable

operating regions, as illustrated in Figure 3.5. Within each operating region the sys-

tem parameters remain unchanged from the perspective of the application, other than

minor variations in performance. In each transition between operating regions, some

kind of adaptive transformation of the system is needed to maintain necessary invariants

both during and after the transition. Two major forms of adaptation are examined in

this dissertation: self-adaptation, and adaptive reconfiguration under the guidance of a

higher-level resource manager. Chapter 8 establishes an empirical foundation for self-

adaptation, and Chapter 9 suggests preliminary models and open problems in that area.

In this chapter we focus on integrating the Kokyu scheduling framework more closely

with a higher-level adaptive resource manager, particularly with respect to the issues

described in Section 3.5.2.

This chapter is structured as follows. Section 6.1 describes our original approach

to multi-layer adaptive resource management that connected an adaptive resource man-

ager to the Kokyu scheduling framework through a controls-like sensitivity interface.

Section 6.2 describes preliminary studies of performance of that sensitivity approach,

and motivates the need to improve that performance. Finally, Section 6.3 describes op-

timizations to the Kokyu scheduling framework to remove the sensitivity interface and

thus reduce the algorithmic overhead of adaptive transitions mediated by a higher-level

resource manager.

99

6.1 Multi-Layer Adaptive Resource Management

Figure 6.1 shows an overall architecture for a middleware resource management in-

frastructure developed [25] under the Adaptive Software Test Demonstration (ASTD)

program, a contract research and development (CRAD) project hosted by the Boeing

Phantom Works Open Systems Architecture organization. This work was administered

by the Embedded Systems Branch of the Information Directorate, Air Force Research

Labs (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio, under the Weapon Sys-

tem Software Technology Support (WSSTS) contract, number F33615-97-D-1155. In

Figure 6.1: RTARM and Scheduler: Initial Integration

this architecture, an early version of the Kokyu framework was integrated with a Real-

Time Adaptive Resource Manager (RTARM) [44] through a query interface designed

to providesensitivityinformation, thus enabling a form of closed-loop control over the

quality of service (QoS) experienced by the application. The senstivity interface in-

cluded theoperation_set_utilization_value call, which returned the uti-

lization level for a particular assignment of rates to operations by the RTARM, and the

operation_sensitivity call, which returned a value indicating the sensitivity of

the current utilization level to changes in the proposed rates.

100

The scheduler sensitivity interface provided access to algorithms needed by the

RTARM to assess operation utilization and schedule sensitivity. Utilization is the por-

tion of the total CPU time that is consumed by each operation. The RTARM can assess

current utilization levels based on existing operation settings, or pose scenarios for uti-

lization feasibility assessment by the scheduler. Sensitivity is a measure of how far an

operation’s rate can vary within thefeasibilityconstraints imposed by the CPU resource

and the demands of other operations. Because utilization by critical operations must not

exceed the feasible bound, the scheduler uses the hard upper limit determined by the

particular scheduling strategy. However, non-critical operations can be overscheduled

in the worst case, to achieve improved utilization overall. For this reason, the scheduler

allows the RTARM to specify a secondary, soft utilization bound that is greater than the

theoretical limit, within which it will assess sensitivity for non-critical operations.

In contrast to dynamic scheduling, which adapts to jitter on a narrow time scale,

adaptive resource management (ARM) adapts to longer-term variations in load and ex-

ecution times. Figure 6.1 shows thein-banddispatching path in solid arrows:

1. from the dispatcher to the scheduler to obtain the upcall’s priority,

2. from the dispatcher to the upcall monitor adapter to push the event,

3. from the upcall monitor adapter to the operation (unless the operation upcall is

cancelled) to invoke the operation, and then

4. from the upcall monitor adapter to an upcall monitor to update stored dispatch

deadline statistics.

Every event dispatch follows this path. The dashed arrows in Figure 6.1 show anout-of-

bandresource adaptation path:

1. from the RTARM to the upcall monitor to obtain statistics,

2. from the RTARM to the scheduler to query schedule sensitivity, and

3. to the scheduler to update operation characteristcs and recompute priority assign-

ments.

In the architecture shown in Figure 6.1, the RTARM provided two types of adaptation:

� contraction and expansion of feasible QoS regions defined in terms of the set of

enabled operations and their selected rates, and

101

� adjusting the operating point within a QoS region based on run-time feedback of

actual QoS.

For example, in a system of rate-adaptive periodic operations, QoS contraction decreases

maximum operation rates, whereas feedback adaptation varies operation rates within the

currently active min-max range.

The RTARM and scheduler collaborated to perform a kind of admission control

for operations and operation rates. Operations were categorized as being either hard

real-time (HRT) or soft real-time (SRT), with the HRT operations at a higher criticality

level than the SRT operations. A schedule (a particular assignment of rates and priorities

to a set of operations) was considered feasible if the maximum utilization by all the

HRT operations in the schedule fit within the CPU bound. A schedule was considered

optimal if it was feasible and all operations in the schedule fit within the total bound.

The RTARM was designed to use various algorithms for deciding which operations

would be scheduled, and at which rates. To perform its admission control algorithm,

the RTARM iteratively extended a set of< operation; rate > bindings, adding new

bindings and updating existing ones based on responses from the scheduler to feasibility

and sensitivity queries.

6.2 Performance of the Sensitivity Approach

Qualitative comparisons of the adaptive transition optimizations for integrating pre-

dictable RTARM execution with critical and non-critical operations were discussed in

Section 3.5.2. We support these indications of the benefits of our approach with re-

sults measuring the behavior of the previous generation RTARM and scheduler during

adaptive transitions over a small number of operations. We conducted a simple experi-

ment to measure overhead factors for the original sensitivity-based adaptive reschedul-

ing approach described in Section 3.6. This experiment was conducted on a single CPU

(300MHz Pentium) machine, running the Windows NT Workstation 4.0 operating sys-

tem. Since the experiment was designed to assess the order of complexity and constant

overhead factors of adaptive rescheduling using the original sensitivity-based approach,

and not the precise values of the overhead curves in the target platform environment,

we measured these results directly in the Windows NT desktop environment used for

development and functional testing of target platform applications.

102

In this experiment, we emulated theoperating regionsdescribed in Section 3.5

and illustrated in Figure 3.5, as a sequence ofmission states. A mission state consisted

of a definition of the operations that were enabled in that state and the range of available

rates for each enabled operation. When a mission state transition changed which oper-

ations should run, and a what available rates, the RTARM would perform an admission

control algorithm to determine which operations could be feasibly (and hopefully opti-

mally) scheduled, assigning each operation one of its available rates. Figures 6.2 and 6.3

Sensitivity Ops Count

0

2

4

6

8

10

12

14

16

[5
+5]

->
[3

+3
]

[4
+4]

->
[3

+3
]

[3
+5]

->
[3

+3
]

[5
+3]

->
[3

+3
]

[5
+5]

->
[5

+3
]

[4
+4]

->
[5

+3
]

[3
+5]

->
[5

+3
]

[3
+3]

->
[5

+3
]

[5
+5]

->
[3

+5
]

[4
+4]

->
[3

+5
]

[5
+3]

->
[3

+5
]

[3
+3]

->
[3

+5
]

[5
+5]

->
[4

+4
]

[3
+5]

->
[4

+4
]

[5
+3]

->
[4

+4
]

[3
+3]

->
[4

+4
]

[4
+4]

->
[5

+5
]

[3
+5]

->
[5

+5
]

[5
+3]

->
[5

+5
]

[3
+3]

->
[5

+5
]

state transitions

n
u

m
b

er
 o

f
ca

lls

operation_set_utilization_value operation_sensitivity

Figure 6.2: Adaptation Method Call Counts

show respectively the number and average duration of calls to our scheduler by the

earlier-generation RTARM during an adaptive transition. In each figure, we plot data for

the operation_set_utilization_value andoperation_sensitivity

calls.

Each horizontal axis label describes an adaptive transition. The first bracketed

numbers in each label show the number of critical and then non-critical operations in the

mission state before the adaptive transition, and the second bracketed numbers show the

number of critical and then non-critical operations in the following mission state. Both

the average time and number of sensitivity interface calls give plots that are linear in the

103

Sensitivity Ops Time

0

20

40

60

80

100

120

140

160

180

[5
+5

]->
[3

+3]

[4
+4

]->
[3

+3]

[3
+5

]->
[3

+3]

[5
+3

]->
[3

+3]

[5
+5

]->
[5

+3]

[4
+4

]->
[5

+3]

[3
+5

]->
[5

+3]

[3
+3

]->
[5

+3]

[5
+5

]->
[3

+5]

[4
+4

]->
[3

+5]

[5
+3

]->
[3

+5]

[3
+3

]->
[3

+5]

[5
+5

]->
[4

+4]

[3
+5

]->
[4

+4]

[5
+3

]->
[4

+4]

[3
+3

]->
[4

+4]

[4
+4

]->
[5

+5]

[3
+5

]->
[5

+5]

[5
+3

]->
[5

+5]

[3
+3

]->
[5

+5]

state transitions

av
g

 t
im

e
(u

se
c)

operation_set_utilization_value operation_sensitivity

Figure 6.3: Average�sec/Call

total number of operations in thedestinationstate during an adaptive transition, for an

expected resulting adaptive transition time that is aquadraticfunction of the number of

operations in the destination state.

These results motivate the comparison sort and radix sort optimizations to adap-

tive rescheduling described in Section 6.3. In particular, we expect that constants in the

order complexity equations (i.e., C0; :::; C6) to be of similar magnitude, according to the

following reasoning. First, the constant overheads in the original sensitivity based case

were proportional to two function calls (feasibility and sensitivity) per operation and

an inspection of each operation per function call. In the comparison sorting case, there

is only one function call (sort), but at worstnlog(n) comparisons of two operations,

wheren is the number of operations. Finally, in the radix sorting case, there is again

one function call (sort), and a single light-weight hash computation per operation.

104

6.3 Adaptive Optimizations

The structure of our solution by sorting is one of

1. de-normalizing the RTInfo and available rate information about each information

into a set of flat structures,

2. decorating these structures with derived information that facilitates sorting and

utilization bounds checking,

3. encapsulating sorting algorithms to enforce different admission control policies

using the Strategy design pattern ,

4. performing one or twoO(nlog(n)) sorts, depending on the relative stability of the

rate and priority assignment sorts, and finally

5. performing a singleO(n) traversal to check utilization bounds and select the final

operation rates.

Having motivated theneedfor optimization to the RTARM and scheduler interaction in

Section 6.2, we now expand on the list of adaptive optimizations noted in Section 3.6,

and illustrated in Figure 3.8. Each optimization serves to reduce the latency and jitter,

and improve the accuracy, of adaptive transitions.

A. De-normalized operation descriptors: We de-normalize the available rate set and

fixed characteristics for each operation into a sequence of flat tuples of characteristics

(containinge.g., the operation handle, a particular rate, the execution time at that rate).

We then derive information that facilitates sorting for and utilization bounds check-

ing. For example, we specify the index of a tuple within an operation’s ordered set of

rates, and the utilization difference for an operation between each pair of its consecu-

tively indexed tuples. This optimization can help meet our goal to trade performance

of individual elements (i.e., rate of execution) for overall performance objectives (i.e.,

maximizing the number of feasible operations).

B. Rate and priority sorting: We recast rate and priority assignment as a sorting

problem over operation characteristics, with at worst anO(nlog(n)) bound on worst-

case performance, and anO(n) bound on worst-case performance in certain special

instances of the more general problem. Since our scheduling approach applies to arbi-

trary collections of operation characteristics, for some combinations of operations and

105

scheduling strategies anO(nlog(n)) comparison sort may be needed. For our target

avionics application, however, all operations are known in advance and the value spaces

of the characteristics of interest (e.g., whether an operation is critical, its available peri-

ods) are small, so the more efficientO(n) radix sorts are applicable in many cases.

C. Assignment policies: We encapsulate specific sort ordering strategies as policies

for rate assignment, much as we have done previously for scheduling policies [32].

We present two canonical strategies for rate selection, based on two different views of

fairness:Fair Assignment by Indexed Rate(FAIR), andCriticality-Biased FAIR(CB-

FAIR), described in detail in Section 6.3.2.

Other policies and other criteria besides the FAIR and CB-FAIR strategies are

possible, and seem likely to be beneficial. In particular, strategies that consider the

dependencies between operations seem promising for the inter-component rate depen-

dencies of complex avionics mission computing applications [41]. As with our approach

to scheduling [32], our approach to rate selection strives to combine flexibility and ef-

ficiency, to support optimized performance for a range of distributed real-time and em-

bedded applications.

D. Rate Selection: Once the tuples are sorted, we perform a singleO(n) traversal of

the tuples to select the rate of each operation and determine expected utilization values

based on the rates selected and the advertised execution times. As we iterate through the

sorted tuples, we maintain variables for (1) the total utilization by critical operations,

and (2) the total utilization by all operations, based on the tuples selected so far. A tuple

is selected if and only if the additional utilization, compared to the utilization for the

previously admitted tuple for that operation, will still fit within the utilization threshold

associated with that tuple. The highest rate of any tuple selected for an operation be-

comes the assigned rate for that operation. As described above, critical and non-critical

operations may have different associated utilization thresholds. Due to a particular sort-

ing order and the relative utilization differences between tuples, with this approach it

is possible for a tuple to be skipped for an operation, but for a later tuple for another

operation to be admitted.

6.3.1 Recasting Admission Control as a Sorting Problem

These optimizations can help meet our goal to perform adaptive resource reallocations

within firmly bounded time-scales. For example, consider a realistic application with

106

64 schedulable operations, each of which has (1) one of a fixed small set of criticality

values, and (2) an associated set of available invocation periods chosen from a fixed

similarly small set of period values. If we applied the previous-generation sensitivity-

based approach, we would expect adaptive rescheduling to occur in time bounded by:

C0 + C1n+ C2n
2 = C0 + 64C1 + 4096C2 (6.1)

If we instead applied a comparison sorting strategy for combined rate and priority as-

signment, we would expect a tighter bound on adaptive rescheduling:

C3 + C4(nlog2(n)) = C3 + 384C4 (6.2)

Finally, if we instead applied a radix sorting strategy for combined rate and priority

assignment, we would expect a still tighter bound on adaptive rescheduling:

C5 + C6n = C5 + 64C6 (6.3)

The constant overheads for the sensitivity, comparison sorting, and radix sorting ap-

proaches are expected to be similar, as follows.

Discrete rates: First, operation rates are discrete, due to the frame-based nature of

the OFP. This means that the operation characteristics described in the fields of an op-

eration’s RTInfo, combined with the operation’s list of possible rates in a particular

mission state, can be de-normalized initially into a set of discrete< handle; period >

tuples.

Small number of rates: Second, the number of possible discrete rates per operation

is very small, being at most 5: 40Hz, 20Hz, 10Hz, 5Hz, and 1Hz. This means that

the de-normalization of operation characteristics can be achieved with only a constant

worst-case increase in the amount of space required per operation.

Ordered rates: Third, the rates themselves have an inherent numerical ordering. This

means that each tuple for an operation in a mission state can be tagged with an index,

with the lowest rate having the lowest index (0), the next higher available rate having

the next higher index (1), and so on. This helps to define and enforce arbitrary partial

orderings on tuples based on the available rates, which are essential to policies like FAIR

and CB-FAIR.

107

Fixed execution times: Fourth, the advertised worst-case execution times of the oper-

ations are constant, at least per rate. This means that each tuple can be further decorated

with a�utilization value reflecting the increase in utilization from that consumed by

all other pairs with that same handle but with a lower rate (longer period). This helps

transform the activity of checking utilization limits and selecting final rates for opera-

tions into a linear traversal of the sorted tuple set.

Derived characteristics: Fifth and last, the operation characteristics described in the

RT Info, together with the available rate information, are sufficient to compute addi-

tional derived information for each tuple, such as the mean rate of all available rates for

an operation, that can be used to implement specific admission control policies as sort-

ing strategies. Each tuple can also be tagged with any additional characteristics from the

operation’s RTInfo that matter to any of the admission control algorithms, such as the

criticality of the operation. To implement the FAIR and CB-FAIR policies, the resulting

tuple must hold at least the following five fields:

< handle; criticality; index;mean rate;�utilization >

Therefore, we anticipate that experiments currently in progress to measure these

factors precisely in all three cases, using a realistic application with around 64 schedula-

ble operations on the target platform, will show adaptive rescheduling overhead reduc-

tions on the order of:

� 90%, i.e., a ten-fold reduction – going from the sensitivity approach to the com-

parison sorting approach.

� 98%, i.e., a fifty-fold reduction – going from the sensitivity approach to the radix

sorting approach.

6.3.2 Sorting Strategies

It is thus possible to sort the de-normalized tuples to implement efficiently a particular

rate admission control policy. The Strategy design pattern helps structure the design for

flexible substitution of admission control policies. This in turn allows both employment

of different sorting algorithms such as comparison or radix sorts, and implementation

of different admission control policies such as FAIR or CB-FAIR to be encapsulated

together and plugged into a more general framework, thus increasing overall software

reuse.

108

The key insight is that FAIR and CB-FAIR differ only in the way they arrange the

top-level branches in their decision trees. This property holds whether they are modeled

as partial ordering functions for comparison sorts, or hash functions for radix sorts.

Therefore, we can define a suitable strategy class in each case. Table 6.1 summarizes

the criteria in the decision trees and their order of evaluation (from top to bottom) for

the FAIR and CB-FAIR strategies. The remainder of this section examines the decision

Table 6.1: Ordered Sorting Criteria for FAIR and CB-FAIR

FAIR CB-FAIR

rate-index criticality
criticality rate-index
mean rate mean rate
handle handle

trees in greater detail for each of these policies.

FAIR Strategy: The Fair Assignment by Indexed Rate(FAIR) strategy is illustrated

on the left side of Figure 6.4. It emphasizes fairness across all operations, ordering the

collection of tuples:

1. by ascending rate index, then

2. by descending criticality, then

3. by mean rate, and finally

4. by descriptor handle.

This strategy selects the lowest rate for each operation, first for critical operations and

then non-critical operations, then the next rate for each critical operation and the each

non-critical operation, and so forth. The mean rate and descriptor fields are used to

break ties in both rate index and criticality. In essence, the FAIR strategy introduces a

kind of rate allocation fairness across all operations.

CB-FAIR Strategy: TheCriticality-Biased FAIR(CB-FAIR) strategy, illustrated on

the right side of Figure 6.4, emphasizes criticality partitioning first, and orders tuples:

1. by descending criticality, then

109

SSOORRTTEEDD

AADDMMIISSSSIIOONN

CCOONNTTRROOLL

AARRRRAAYYSS

DDEE--NNOORRMMAALLIIZZEEDD

 TTUUPPLLEESS

HHRRTT
LL IIMMIITT

SSRRTT
LL IIMMIITT

FFAAIIRR CCBB--FFAAIIRR

Figure 6.4: FAIR and CB-FAIR Rate Selection Strategies

2. by ascending rate index index, then

3. by mean rate, and finally

4. by descriptor handle.

The CB-FAIR strategy selects the lowest rate for each critical operations, then the next

rate for each critical operation, until all critical operations are at their highest rates and

then repeats the process for the non-critical operations. As in the FAIR strategy, the

mean rate and descriptor fields are used to break ties in both rate index and criticality.

6.3.3 Iterative Admission Control

Once the tuples are sorted, it is then possible to iterate once through the sorted tuples,

maintaining a variable with the total utilization by all tuples admitted so far . A tuple is

admitted if and only if the addition of its�utilization will still fit within the utilization

threshold associated with that tuple. Note that it is possible, due to the sorting order and

110

the relative sizes of�utilization values, for a HRT tuple to be skipped, but a later HRT

tuple with a smaller�utilization value to be admitted (and similarly for SRT tuples).

As each tuple is admitted, the period of its corresponding RTInfo is set to that

tuple’s period. This results in each operation having the highest rate of any of its ad-

mitted tuples, because the tuples of a particular operation are always sorted by period

index, with tuples for that operation having shorter periods falling after tuples (for that

operation) having longer periods. For some SRT operations, it is possible that no tuples

could be admitted to a feasible schedule. In this case, the operation itself should be

omitted from the final schedule. This can be achieved by initially marking all operations

inactive, and when a tuple is admitted marking its operation active. The set of active

operations (with their final rates and other characteristics) and the total HRT and SRT

utilization values are the final outputs of the admission control algorithm.

One final note is that scheduler functions such as priority assignment are needed

to turn an admitted set of operations with their rates into a schedule that can be dis-

patched. For some combinations of admission control and scheduling strategies for the

architecture, it may be possible to perform a priority ordering of tuples as part of the

same sorting pass that orders the tuple set for admission. That is, the priority assign-

ment sort isstable[18] with respect to the rate sort. For such combinations of policies

and sorting algorithms, it would then be possible also to perform priority assignment to

tuples (and transitively to operations) as part of the same pass that admits tuples.

However, this is not always possible in general. In particular, the order in which

criteria are considered by the admission control ordering and priority ordering may dif-

fer, and the criteria considered may overlap. For example, CB-FAIR would place a 10

Hz HRT tuple before a 20 Hz SRT tuple, while Rate Monotonic Scheduling (RMS)

would reverse their order. This means that in some cases a second separate sorting of

tuples and/or operations must be performed for priority assignment. However, this does

not increase the order of the complexity bound for the scheduling framework overall:

the bound is preserved within a constant factor for admission control and priority as-

signment performed either in the same pass or separate passes.

111

Chapter 7

Metrics Feedback Framework

Implementation

To measure, assess, and visualize real-time performance of rate-based distributed real-

time systems, a coherent infrastructure for data collection, storage, transfer, and visual-

ization is needed. Figure 7.1 illustrates such a framework, which has been applied and

subsequently evolved under each of three research programs: Adaptive Software Test

Demonstration (ASTD), Adaptive Software Flight Demonstration (ASFD), and Weapon

Systems Open Architecture (WSOA), all managed by The Boeing Company under con-

tract to the Air Force Research Labs (AFRL).

The three major areas of this framework are:

1. instrumentation and monitoring of real-time latencies and operation deadline statis-

tics as described in Section 7.1,

2. consistent time frame management as described in Section 7.2, and

3. remote logging and visualization infrastructure as described in Section 7.3.

We note important similarities between segments of the Kokyu metrics frame-

work and previously published work by Dr. Douglas Niehaus and his research group

at the University of Kansas. In particular, the frame manager described in Section 7.2

serves a similar role to the UTIME temporal resolution work in KURT Linux [122]

and the Proteus project in that the question of time consistency is a central theme. Our

approach differs in its explicit representation oftime frames, a worthy first-class abstrac-

tion for rate-based systems, which are the predominant target of our research.

112EMBEDDED BOARDS REMOTE WORKSTATION

SH
A

R
E

D
 M

E
M

O
R

Y

METRICS
CACHE

REMOTE
LOGGER

METRICS
MONITOR

RTARM

DOVE
Browser
(Java)

STORAGE

QuO

OPERATIONS

PR
O

B
E

S
DISPATCHER

PROBES

FRAME
MANAGER

Figure 7.1: Metrics Framework

Furthermore, the data streams kernel interface (DSKI) [88] offers flexible and

efficient real-time performance data collection and monitoring, in a way similar to the

approach described in Section 7.1. Our approach is similarly customized to the specific

target environment we have studied, and in partular provides a set of dynamically con-

figurable C++ classes that can be used within shared memory, such as that provided by

the VME backplane described in Section 8.1.3 and illustrated in Figure 8.2. As future

work we plan to examine these respective infrastructures carefully, and eliminate any

areas of unnecessary overlap from the Kokyu metrics framework, focusing instead on

integration with the University of Kansas work so that the Kokyu metrics framework

addresses issues in other dimensions, and is an entirely complementary technology.

7.1 Instrumentation and Monitoring

Four main areas of instrumentation and monitoring are needed to provide a complete

measurement capability for experiments on the scale of those decribed in Chapter 8.

1. instrumentation of the dispatching module to profile queueing latency as discussed

in Section 8.3.1,

113

2. instrumentation of the upcall monitor adapter to profile operation execution la-

tency as discussed in Section 8.4.2,

3. the common collection point for data in both these areas within a shared-memory

capable metrics data cache, and

4. coordination of the upcall monitor adapter with the upcall monitor to profile op-

eration deadline success as discussed in Section 8.3.2.

SH
A

R
E

D
 M

E
M

O
R

Y

METRICS
MONITOR

METRICS
CACHE

D
IS

P
A

T
C

H
E

R

BEGIN
SUSPEND
RESUME

END

EMBEDDED BOARD

UPCALL
ADAPTER

OPERATION

B S R E

BEGIN

B S R E

B E

20Hz EnQ

20Hz DQ

Proc Tile

END

Figure 7.2: Metrics Cache

Figure 7.2 illustrates the first three of these areas. We consider each area sepa-

rately, as follows.

Queueing latency: The overhead for dequeing (and enqueing) operations in both the

static and dynamic queues was measured using light-weight time probes. Because the

dynamic queues may perform re-ordering before trying to wait on a “not empty” con-

dition variable, and then dequeue the operation after acquiring the appropriate lock, it

was necessary to suspend and resume the metric, so that only the CPU time actually

consumed by the dynamic queue was measured. This was achieved by extending the

114

time probe class provided by ACE to log suspend and resume time probe events, and to

assess total overhead accordingly.

Execution latency: Just before it passes the thread of control into the operation by

pushing an event to its enclosing component, the upcall monitor adapter takes abe-

gin time stamp When the thread of control returns from the component, the adapter

immediately takes anendtime stamp. The sequence of time stamps is stored in the met-

rics cache, and a later iteration through those time stamps simply subtracts each begin

stamp from its corresponding end stamp to obtain the specific execution time. These

time stamps are taken using the high resolution timer tied to one of the following, in

decreasing degree of resolution:

� a specilized hardware timer,

� a timer feature of a general purpose hardware element such as the Pentium high-

resolution clock tick counter, or

� a general purpose operating system call such as::gethrtime () .

For the systems we have studied, microsecond resolution is mostly sufficient, so unless

we require a finer-granularity we use theACE_Time_Value class provided by ACE

to offer

� efficient built-in operators for convenient and flexible time calculations,

� built-in conversions to and from other time types, and

� use by and with a high-resolution timer class,

all while preserving microsecond resolution.

A cancellation capability was also implemented in the upcall monitor adapter

during the ASTD program. For each operation upcall, the upcall monitor adapter can

also look at the begin stamp prior to pushing the upcall event to the component, and de-

termine based on the deadline, that time stamp, and the operation’s worst case execution

time whether or not the operation is at risk. If an operation is determined to be at risk

and cancellation is acceptable at its criticality level, the adapter can cancel its dispatch

upcall in favor of operations that are more likely to meet their deadlines. For ASTD, we

added the constraints that the entire cancellation feature can be enabled or disabled, and

that only non-critical operations can be cancelled.

115

Metrics cache: In the ASFD program experiments described in Chapter 8, we signif-

icantly evolved the metrics data collection and storage capabilities of the Kokyu metrics

framework. We removed virtual functions and other features that conflicted with our

goal of caching data in shared memory to reduce latency and improve access during

narrow windows of execution so that we could:

1. perform metrics data collection and distribution in as small a memory footprint

and in as narrow a time window as possible,

2. avoid overflows in either time or space, and by doing so,

3. minimize the impact of data collection and distribution on the rest of the applica-

tion.

We were not able to complete all refactoring of the metrics cache during the ASFD

program, so two additional evolutions were performed during the WSOA program:

1. replacing native C++ pointers withACE_Based_Pointer s, which are smart

pointers that remember the offsetat which they were allocatedin shared memory,

and re-thunk their target address based on theirthis pointer at each dereference,

and

2. adding template support for parameterized allocators, which can then be used to

ensure integrity of dynamically allocated data structures in shared memory.

Upcall monitor and adapter: In addition to integrating the scheduler and Real-Time

Adaptive Resource Manager (RTARM) as described in Section 6.1, a second major de-

velopment effort under the ASTD scheduling framework was to provide feedback on

operation progress to the RTARM. A special component adapter, called anupcall mon-

itor adapter, was applied to each event consumer containing an operation we wished to

monitor. The upcall monitor adapter served as a proxy for the event consumer, both to

the dispatching module and to anupcall monitorthat records statistics about the real-

time success, failure, and cancellation of dispatch upcalls to operations.

The application registered each of its components’ upcall monitor adapter as

an event consumer with the Event Channel, in place of the component. The Event

Channel then pushes all events destined for the component to its adapter instead. When

the adapter receives an event upcall, it may make a decision to cancel the upcall but

otherwise pushes to the component.

116

When the thread of control returns from the component operation upcall, the

adapter compares the completion time to the event’s deadline. If the deadline expired

before the completion time, the operation had missed its deadline. Otherwise, the dead-

line was made. The adapter passed the success or failure of the deadline to the upcall

monitor via a low-overhead inline reporting method. The RTARM periodically polled

the upcall monitor to determine the progress of various operations, and to adjust its

adaptive behavior accordingly.

7.2 Time Frame Manager

Two phenomena observed during the development phase leading up to the experiments

described in Chapter?? motivated the development of a common manager for time

frames and deadlines. First, we noticed the special case that the end of frame timeout

event described in Section 8.1.3 had been wrapped with an upcall monitor adapter and

was dispatched at the end of one frame, but executed in the beginning of the next frame.

Therefore, under the convention of an event’s deadline being the end of the frame in

which it was dispatched, we were seeing a consistently reported deadline miss for that

hard real-time (HRT) event. As the observed behavior

1. was in fact correct for that event, and

2. was more similar to internal event handling than application-level event handling,

we simply removed the upcall monitor adapter for that event consumer, and only con-

sideredapplicationoperation deadlines in our experimental protocol. However, we also

interpret this case as representative of a particular class of applications where operations

may be dispatched with arbitrary phasing of frames, and which motivated development

of a separate manager to maintain frame and deadline information.

The second phenomenon we observed that also motivated development of a dis-

tinct frame manager, was due to the use of Event Filter Discriminator (EFD) [41] per-

formance optimizations to support filtering and correlation among events at the same

priority level, which therefore could bypass the dispatching module itself. Because

each event was stamped with its deadline by the dispatching module, when an EFD

event reached its upcall monitor adapter, it had an uninitialized value in its deadline

field needed for deadline reporting and cancellation calculations. In the experiments

117

described in Chapter 8, we worked around the problem by having the upcall moni-

tor adapter compute the deadline if it was not already assigned. Clearly, proliferation

of deadline calculations throughout the system could lead ultimately to unacceptable

maintanance costs and brittle systems infrastructure. Therefore, this case also motivates

the development of a single, separate metrics frame manager class.

Figure 7.3 illustrates the frame manager class we have developed for the Kokyu

metrics framework. Various points in the system architecture,i.e., the application, the

FRAME MANAGER

EMBEDDED BOARD

DISPATCHER

START END IDRATE

0 50 020HZ

0 100 010HZ

0 200 05HZ

50 100 120HZ

0 100 010HZ

0 200 05HZ

100 150 220HZ

100 200 110HZ

0 200 05HZ

150 200 320HZ

100 200 110HZ

0 200 05HZ

200 250 420HZ

200 300 210HZ

200 400 15HZ

250 300 520HZ

200 300 210HZ

200 400 15HZ

300 350 620HZ

300 400 310HZ

200 400 15HZ

350 400 720HZ

300 400 310HZ

200 400 15HZ

400 450 820HZ

400 500 410HZ

400 600 25HZ

ADAPTER RTARM QuO

45
0 500

600

600

T
IC

K

Figure 7.3: Metrics Frame Manager

scheduler, the dispatcher, and the upcall monitor adapter, are able to:

1. obtain access to the frame manager through a singleton wrapper class,

2. register rates with the frame manager,

3. query a uniqueue frame id for a given rate,

4. query the start or end time of the current frame at a given rate, and

5. ask the frame manager to update its frames with respect to the current time or a

time given to the frame manager.

118

The ability to wrap a single instance of the frame manager class as a singleton allows

a common and consistent representation of time frames to be shared across dispatching

threads, system layers, and epochs of execution. Supporting registration of arbitrary

rates makes the frame manager more portable across kinds of real-time applications. The

start and end times, maintained on-demand for each rate, provide precise information

about deadlines and release times, without undue overhead. Finally, the use for frame

ids supports both local and distributed transition protocols of the kinds described in

Chapter 9.

7.3 Integration with Remote Logging and Visualization

Many sensor-driven systems, such as those for avionics mission computing and for man-

ufacturing process control, have stringent timing requirements for processing sensor

data. Furthermore, many of these systems must manage multiple sources of sensor data

simultaneously. The results in Chapter 8 demonstrate that sensor-driven systems can

be implemented efficiently and predictably using a real-time CORBA Event Service.

This approach allows designers of real-time systems to leverage the benefits of flexi-

ble and open distributed computing architectures, such as those defined in the CORBA

specification, while still meeting real-time requirements for efficiency, scalability, and

predictability. To build and manage these types of systems, application developers and

test engineers must be able to monitor and visualize the systems’ real-time behavior.

Rate monotonic analysis and other scheduling strategies have been developed

to help ensure that real-time systems achieve this goal. However, scheduling strate-

gies alone offer little guidance during the debugging and testing phases. Traditional

debugging techniques do not help either because they can change the behavior of the

system. Therefore, a Distributed Object Visualization Environment (DOVE) framework

can offer an alternative, less obtrusive, way to observe how a real-time system works at

run-time. Thus, it can be a powerful tool in the real-time system development cycle.

This section describes how we have extended a distributed object visualization

environment (DOVE) framework to monitor the timing behavior of a real-time applica-

tion that generates and processes two separate streams of simulated sensor data events.

The principal contributions of that effort are:

1. applying the DOVE framework to a realistic sensor-driven application,

119

2. extending the DOVE framework to support new application requirements, and

3. demonstrating and visualizing quality of service (QoS) control for multiple event

streams within a real-time CORBA Event Service.

Software for visualizing real-time system behavior must address the following

significant challenges that are not faced when visualizing the behavior of non-real-time

systems. First, the visualization framework must not interfere with the correct timing

behavior of the real-time system. Second, the framework must be flexible to address

diverse system behaviors, particularly when sources of non-determinism appear. Finally,

the framework must support both independent and correlated visualizations of distinct

event streams. The reaminder of this section examines each of these key design forces.

Unobtrusive Visualization: As noted above, visualizing the behavior of a real-time

sensor-driven system is a valuable engineering tool, particularly in the validation phase

of the system lifecycle. However, information about real-time system behavior must

be collected and displayed without interfering with the overall timing behavior of the

system. For example, in an avionics mission-computing systems , monitoring and dis-

playing behavioral information must not cause critical operations to miss their deadlines.

Furthermore, excessive impact of the visualization on non-critical operations should be

avoided, as well. The visualization mechanisms used to instrument the sensor-driven

system must be efficient and relatively deterministic.

To reduce the load on the operational system, the DOVE browser and the visu-

alization components usually run on a separate endsystem from the real-time portions

of the system being monitored. To facilitate development and deployment of visual-

ization components in such diverse client environments as monitoring workstations or

web browsers, the DOVE browser and visualization components are written in JavaTM.

Thus, the DOVE framework must decouple the timing behavior of the browser and

visualization components from the timing behavior of the application, so that the appli-

cation’s real-time behavior is not adversely affected by the behavior of the Java Virtual

MachineTM.

Visualizing Non-deterministic Behavior: Dynamically scheduled sensor-driven sys-

tems can produce non-deterministic behavior for certain operations when they are over-

loaded. For some dynamically scheduled sensor-driven systems, a low level of overload

is an acceptable operating characteristic to maximize utilization of system resources.

120

Therefore, visualization software should be able to detect and provide a reasonable visu-

alization of the load on the system, as well as the effects of overload on system behavior.

Visualizing Distinct Streams: Multi-sensor systems may produce distinct streams of

sensor data. The real-time behavior of these systems often depends on the interactions

between multiple streams. For example, two data streams may be processed at different

priorities, e.g., processing for the higher priority stream may preempt processing for

the lower priority stream. Likewise, there may be dependencies between the streams.

Therefore, the visualization framework must consider data streams both individually

and in the aggregate.

A significant part of the development effort for the ASFD program within which

the experiments described in Chapter 8 were conducted, was the production of a flexible

visualization capability for debugging and analysis. We used a DOVE [55, 31] architec-

ture in which the primary components were

1. upcall monitor adapters that wrapped application components,

2. the metrics data cache that stored collected data,

3. a remote metrics logger that forwarded data to

4. an event channel that acted as the visiualizationagent[55], and

5. a visualization browser and components written in JavaTM .

A sample display from the visualization framework is shown in Figure 7.4. This figure

shows the effects of the handling of HRT (top) and soft real-time (SRT) (bottom) real-

time deadlines by the Maximum Urgency First (MUF) [126] strategy during the flight

simulator demonstration following the experiments described in Chapter 8. The panel on

the upper left shows the regular pattern of critical deadlines that were successfully met,

as expected. The top middle and top right panels show zero missed or cancelled critical

deadlines, also as expected. The spikes in the bottom left window show a more variable

pattern in the number of non-critical deadlines made, and the bottom middle and bottom

right panels show respectively peaks of non-critical deadlines missed or cancelled. We

note that this visualization approach allows system developers and testers to implement

portable arbitrary combinations of instrumentation and visualization, which may in turn

supplement platform-specific tools such as WindViewTM .

121

Figure 7.4: Metrics Visualizations

122

Chapter 8

Empirical Studies

This chapter describes empirical studies that justify an adaptive approach to scheduling.

First, we quantify the framework’s run-time dispatching behavior under each of several

scheduling heuristics, in a realistic application under a range of load and load jitter con-

ditions. We then identify key characteristics of those behaviors as they may be applied

to the problem of reflective selection among several scheduling strategies at run-time.

This chapter is organized as follows: Section 8.1 describes the experimental plat-

form used for these studies, including the application, middleware infrastructure, operat-

ing system, and hardware configurations. Section 8.2 describes the experimental design

itself, including the hypotheses to be tested, the variables that were controlled, and the

variables that were observed in these studies. Section 8.3 presents empirical results

obtained on the described experimental platform. Section 8.4 examines the correlation

between several kinds of information that can be observed or derived at run-time, and the

performance of the scheduling heuristics in these studies. Finally, Section 8.5 presents

conclusions that can be drawn from these studies, as well as open questions they raise.

8.1 Experimental Platform

The experimental platform, and the studies conducted on it, were supported under the

Adaptive Software Flight Demonstration (ASFD) program, a contract research and de-

velopment (CRAD) project hosted by the Boeing Phantom Works Open Systems Ar-

chitecture organization. This work was administered by the Embedded Systems Branch

of the Information Directorate, Air Force Research Labs (AFRL), Wright-Patterson Air

123

Force Base, Dayton, Ohio, under Delivery Order 003 of the Weapon System Software

Technology Support (WSSTS) contract, number F33615-97-D-1155.

The remainder of this section describes the constituent layers of the experimental

platform. Section 8.1.1 defines several key terms and symbols. Section 8.1.2 describes

the research avionics mission computing application used for these studies, and the mid-

dleware infrastructure that hosted the application. Section 8.1.3 describes the underlying

operating system and hardware support.

8.1.1 Terminology

For clarity, we define the following terms prior to discussing the experimental platform

itself:

operation: a single short-lived computation run each time an event is pushed to its

component.

cancellation: interdiction of the event push to an operation so that it will not be in-

voked – we denote scheduling heuristics using cancellation by ac
 annotation.

load chain: a sequence of operations, where each operation itself (except the last one)

pushes an event to invoke the next operation in the chain – subsequent events have

precedence dependencies on prior events in the chain, and cancelling an operation in the

chain amounts to shedding the rest of the chain from that operation onward.

route leg: a segment of a navigation route computed in one operation invocation –

computing route legs was naturally implemented as a load chain in the experimental ap-

plication, with each route segment successfully completed requesting the next segment,

up to the length of the chain. In particular, a realistic application might declare the com-

putation of the first one or two legs to be critical operations, that must be completed and

cannot be cancelled, while subsequent route legs would likely be declared non-critical.

Bold Stroke: an avionics mission-computing domain-specific infrastructure built by

Boeing on Common Object Request Broker Architecture (CORBA)-compliant Object

Request Broker (ORB) middleware –i.e., ADAPTIVE Communication Environment

(ACE) and The ACE ORB (TAO) – on which the experimental application was hosted.

124

replication service: a middleware service provided by the Boeing Bold Stroke infras-

tructure for replicating data across mission-computing processors. Operation deadlines

in the experimental application correspond to the points in time when their respective

output values must be delivered and flushed to the replication service.

remote terminals: connected sensors and actuators in the aircraft. In the experimental

platform, emulation software for these was connected to the mission computer by a

MIL-STD-1553 hardware bus, to simulate the inputs of actual sensors. In addition,

following these experiments, the experimental application, middleware, and hardware

was demonstrated in an AV-8B flight simulator at Boeing, which included an AV-8B

cockpit and hardware remote terminals.

8.1.2 Experimental Application and Middleware

BBOOLLDD SSTTRROOKKEE IINNFFRRAASSTTRRUUCCTTUURREE

TTAAOO OORRBB CCOORREE

OOFFPP
CCOOMMPPOONNEENNTT

EEVVEENNTT CCHHAANNNNEELL

VVXXWWOORRKKSS RRTTOOSS

SS
CC
HH
EE
DD
UU
LL
EE
RR

OOFFPP
CCOOMMPPOONNEENNTT

OOFFPP
CCOOMMPPOONNEENNTT

Figure 8.1: Application and Middleware Layers

We now consider the software architecture of the experimental application and

supporting middleware infrastructure. As Figure 8.1 illustrates, the experimental appli-

cation was hosted on middleware consisting of:

� the Bold Stroke avionics domain infrastructure [140, 120, 121, 24]

� TAO [13]

125

� the TAO Real-Time Event Channel (RTEC) [41]

� a strategized scheduler [32]

Application components, within which all avionics mission computing opera-

tions are performed, were hosted on the Bold Stroke infrastructure. Bold Stroke uses

TAO’s RTEC on the TAO ORB core to communicate both between components on the

same endsystem requiring event-mediated interactions, and between components dis-

tributed across different endsystems. The scheduler maintains information required for

priority-preserving dispatching, which in the experimental system was performed in dis-

patching queues within the TAO RTEC. The entire software architecture was hosted on

the VxWorks [139] Real-Time Operating System (RTOS) on embedded hardware as

described in Section 8.1.3.

The application with which these experiments were conducted is a research op-

erational flight program (OFP) for avionics mission computing in an AV-8B aircraft.

The baseline version evolved under the Open Systems Avionics Technology (OSAT)

and OSAT-II [61] programs from

1. an AV-8B OFP written in assembly language, to

2. a single-board C/C++ OFP, and subsequently to

3. a distributed OFP using the Boeing AV-8 Open Systems Core Avionics Require-

ments (OSCAR) [16] airframe and the Boeing Bold Stroke middleware infrastruc-

ture [140, 120, 121, 24].

All of the major OFP components are implemented as periodically invoked oper-

ations, executed by event consumers. These operations were divided into two criticality

equivalence classes: hard real-time (HRT) for critical operations, and soft real-time

(SRT) for non-critical operations. Critical operations in the HRT class are those whose

failure to meet any given deadline has potentially significant consequences for the cor-

rectness of the application, while deadline success for the non-critical SRT operations

is desirable but not strictly mandatory. There were five pre-defined rates of execution

in the system: 40 Hz, 20 Hz, 10 Hz, 5 Hz, and 1 Hz. Each operation runs at one of

these rates. In these experiments we do not study adaptation among alternative oper-

ation rates, as described in Chapter 6, but rather compare scheduling heuristics over a

given fixed assignment of rates. For the ASFD experimental platform, new SRT 20 Hz

126

functions were added to the OFP, including routes and steering components, as well as

a digital map display.

To study the potential benefits and consequences of

1. supporting alternative scheduling strategies and

2. more importantly, working toward the ability to perform beneficial adaptation

among them at run-time,

we ran identical trials of the experiment using each of the following three canonical

scheduling heuristics: Rate Monotonic Scheduling (RMS) [70], Maximum Urgency

First (MUF) [126], and RMS+Minimum Laxity First (MLF) [15]. RMS is a purely

static strategy that assigns priorities in rate order and manages requests at each priority

level in first-in-first-out (FIFO) order. MUF is a hybrid static/dynamic strategy that as-

signs static priorities by operation criticality, and schedules within each static priority by

minimum laxity. RMS+MLF is a further refinement of MUF, which schedules critical

operations according to rate and non-critical operations at lower priority according to

laxity.

We selected these strategies as most applicable to the chosen experimental appli-

cation’s requirements to support both HRT and SRT operations under the range of load

and load jitter conditions studied. For applications with other characteristics, perform-

ing similar experiments with other scheduling strategies, instead of or in addition to the

strategies we studied, might be indicated.

For each trial, the scheduler was configured with the appropriate strategy as de-

scribed in Chapter 4, and the dispatcher was configured statically for that strategy as

described in Chapter 5. In addition, separate trials for each strategy were run both with

and without the operation cancellation capability described in Chapter 7. The metrics

infrastructure described in Chapter 7 was also used to

1. capture time stamps,

2. record deadline success, failure, and cancellation counts during system execution,

3. deliver those data during open frames described in Section 8.2.1 to an external

logger,

4. write collected data to disk from the logger, and

127

5. provide visualization events from the logger to a Distributed Object Visualization

Environment (DOVE) [55, 31] browser.

8.1.3 OS and Hardware Configuration

MMoottoorroollaaDDyy44--117777DDyy44--778833 DDyy44--117777

VVMMEE
BBaacckkppllaannee

EEtthheerrnneett

BBOOLLDD SSTTRROOKKEE
IINNFFRRAASSTTRRUUCCTTUURREE

OOFFPP
CCOOMMPPOONNEENNTT

EEVVEENNTT CCHHAANNNNEELL

SS
CC
HH
EE
DD
UU
LL
EE
RR

OOFFPP
CCOOMMPPOONNEENNTT

OOFFPP
CCOOMMPPOONNEENNTT

BBOOLLDD SSTTRROOKKEE
IINNFFRRAASSTTRRUUCCTTUURREE

OOFFPP
CCOOMMPPOONNEENNTT

UUnniixx
WWoorrkkssttaattiioonn

NNTT DDeesskkttoopp

MMaapp DDiissppllaayy PPrroocceessssiinngg OOFFPP PPrroocceessssiinnggEEVVEENNTT CCHHAANNNNEELL

EEVVEENNTT CCHHAANNNNEELL

VVXXWWOORRKKSS RRTTOOSS

TTAAOO OORRBB CCOORREE

VVXXWWOORRKKSS RRTTOOSS VVXXWWOORRKKSS RRTTOOSS

11555533
BBuuss

Figure 8.2: Hardware and Software Configuration

As Figure 8.2 illustrates, the ASFD demonstration hardware consisted of a com-

mercial VME-64 chassis with four commercial processor cards, a desktop computer

running Windows NT 4.0, and a portable Unix workstation. The desktop computer was

used to gather metrics data and present visualizations of processor utilization and dead-

line successes, failures, and cancellations. The Unix workstation was used to load the

executable programs onto the boards in the VME chassis, and as a file server for the

digital map display.

Two processor cards, a Dy4-783 and a Dy4-177, performed the map display func-

tion. The Dy4-783 card had a memory-mapped display processor. The Dy4-177 card

128

hosted an application component that ran the map display algorithms and communicated

with the OFP application components using the TAO ORB core.

The OFP application was distributed across the remaining two processor cards.

The first card was a 200 MHz, PowerPC 604, Motorola card, which ran the experimental

application and middleware described in Section 8.1.2 on the VxWorks [139] RTOS.

The Motorola card was responsible for much of the OFP’s logical operation, including

computing route legs for navigation. This card also contained tasks used to simulate

dynamic variability in the OFP, as described in Section 8.2.1, and was scheduled in

each experimental trial using one of the scheduling heuristics described in this chapter.

The Motorola card used as many as eight individual threads to carry out the exe-

cution of the OFP. There were up to five threads in the TAO RTEC, used to service the

appropriate dispatching queues configured for the scheduling strategy in each particular

trial. For MUF, two threads in descending priority order were used for the HRT and

SRT operation dispatches, respectively. For RMS, four threads in descending priority

order were used for the 20 Hz, 10 Hz, 5 Hz, and 1 Hz dispatches, respectively. For

RMS+MLF, five threads in descending priority order were used for the 20 Hz HRT, 10

Hz HRT, 5 Hz HRT, and 1 Hz HRT, and SRT dispatches, respectively.

The other three threads were a 20 Hz ORB thread, a 40 Hz reactor thread and

the main thread. The main thread was used for remote metrics reporting. The threads’

priorities were set with the 40 Hz reactor thread at highest priority, the 20 Hz ORB

thread and highest priority dispatching thread having the same (next highest) priority,

and then subsequent dispatching threads at descending priorities, and finally the main

metrics thread at the lowest priority.

The second card was a 100 MHz, PowerPC 603, Dy4-177 card. This card con-

tained a MIL-STD-1553 MUX bus interface card and the Ethernet interface for the VME

chassis. All external communication,e.g., over the 1553 bus to avionics remote termi-

nals, or over the VME backplane to diagnostic and debug systems, went through this

card. This card also controlled timing for frame sequencing and display updates, upon

which operation rates on the Motorola card depended.

At each 20 Hz frame, a one-way call was used to send an event from the Dy4-

177 OFP card, indicating arrival of a new set of 20 Hz input data via the 1553 bus, from

sensors throughout the aircraft. The 20 Hz ORB thread on the Motorola card received

this event and was responsible for starting execution of operations in that frame. The

129

data was unpacked into a local database and local data ready events were pushed to the

event channel dispatching threads.

A 40 Hz reactor thread on the Motorola card was used to detect each end of frame

timeout. When the timer expired, data produced by the operations on the Motorola card

for that frame was flushed to the replication service and an event indicating availability

of that data was sent back to the 100 MHz PowerPC Dy4-177 card. In addition to the

middleware-level threads described above, the VxWorks networking task was set to the

highest priority of all, so that when network communication was possible it would occur

immediately,i.e., when the data was flushed to the replication service, and the data ready

event was sent to the Dy4-177 card.

Therefore, the end-of-frame deadline represented a hard deadline for completion

of all operations whose output is critical to the correct operation of the system. Any

operation whose output is not critical could miss this deadline without compromising

the system, but its newest output simply would not be available at the end of that frame.

Depending on the kind of non-critical output missing, a previous value could be used, or

processing that depended on the output could be deferred until the output became avail-

able. A key implication of this style of processing is that critical processing must never

depend on the output of processing whose completion before that deadline is assured.

8.2 Experimental Design

We now describe the experimental design itself, including the hypotheses tested, the

variables that were controlled, and the variables that were measured in these studies.

Two hypotheses were explored in these trials:

1. that efficiency and effectiveness of any given scheduling heuristic are functions of

run-time factors,i.e., load and load jitter, and

2. that reflection on measurable information at run-time can yield derived informa-

tion of potential use to guiding adaptation between scheduling heuristics.

The remainder of this section is structured as follows: Section 8.2.1 describes the vari-

ables that were controlled in these experiments, notably

� the number of operation dispatches requested

� the jitter in the offered load

130

� whether or not cancellation was enabled for SRT operations

Section 8.2.2 describes the variables that were measured, and how those measurements

were integrated into the experimental design to avoid interference with control of the

experiment itself.

8.2.1 Controlled Variables

00

33

22

11

1111

1100

99

88

77

66

55

44

NNOONN--CCRRIITTIICCAALL LLOOAADD

MM
EE

AA
NN

 JJ
IITT

TT
EE

RR

Figure 8.3: Operating Regions

To examine effects of varying load and load jitter in a realistic avionics mission

computing environment, we added operations to a sequence of twelve epochs of opera-

tion, each representing what we term a distinctoperating region[72], numbered 0–11,

as shown in Figure 8.3.

In addition to the fixed OFP operations, which were present and active in each

operating region, we introduced chains of additional 20 Hz SRT route leg updates to

each operating region, with the length of the chain of requests varying to move from

lowest to highestfundamentalnon-critical load from region 1 to region 11, while keep-

ing the fundamental critical load constant across operating regions. To examine the

effects of

1. varying levels of load jitter across similar fundamental loads, and

2. similar levels of jitter across varying non-critical loads,

an additional HRT event consumer was added to the second card at each of the following

rates: 10 Hz, 5 Hz, and 1 Hz HRT. The additional operations acted in these experiments

131

as surrogates for the kinds of workload variation that would normally be associated

with a distributed production OFP. The CPU utilization by these additional HRT event

consumers was randomized across a given range in each operating region, with the range

of variation cycling every four regions through the following:

1. 0 msec (lowest mean and lowest variance)

2. 0–5 msec (medium-low mean, medium variance)

3. 5–10 msec (highest mean, medium variance)

4. 0–10 msec (medium-high mean, highest variance)

We kept the same fundamental load in region 0 and region 1 to create a case where we

could examine the effects of varying jitter, with load held constant. We note that with

the cycling of jitter ranges every four operating regions, there were at least two cases for

each jitter range where load varied but the jitter range was the same.

Execution time variability within each range was implemented using a pseudo-

random sequence initialized using the same seed for each heuristic. Also, the system

was set to move to the next operating region every 150 seconds in each trial. Thus,

the same profile of load and load jitter was applied for each heuristic, allowing direct

comparisons of trials for different heuristics. Table 8.1 shows how the HRT execution

Table 8.1: Loads For Each Operating Region

Region Variable HRT Execution SRT Load Chain Length

0 0 msec 1 route leg
1 0 to 5 msec 1 route leg
2 5 to 10 msec 2 route legs
3 0 to 10 msec 3 route legs
4 0 msec 4 route legs
5 0 to 5 msec 5 route legs
6 5 to 10 msec 6 route legs
7 0 to 10 msec 7 route legs
8 0 msec 8 route legs
9 0 to 5 msec 9 route legs

10 5 to 10 msec 10 route legs
11 0 to 10 msec 11 route legs

variability and additional SRT loads were combined in each operating region. Regions

132

0, 4 and 8 have fixed HRT event consumer loads, with no additional variability. Regions

1, 5, and 9 have variability of between 0 msec and 5 msec for each of the 10 Hz, 5 Hz,

and 1 Hz rates, for a total variability of between 0 and 80 msec of each 1 Hz frame (i.e.,

between 0 and 8 percent variability). Regions 2, 6, and 10 have variability of between 5

msec and 10 msec for each of the 10 Hz, 5 Hz, and 1 Hz rates, for a total variability of

between 80 and 160 msec of each 1 Hz frame (i.e., between 8 and 16 percent variability).

Finally, regions 3, 7, and 11 have variability of between 0 msec and 10 msec for each

of the 10 Hz, 5 Hz, and 1 Hz rates, for a total variability of between 0 and 160 msec of

each 1 Hz frame (i.e., between 0 and 16 percent variability). Thus, total variability was

lowest in regions 0, 4, and 8, higher in regions 1, 5, and 9, higher still in regions 3, 7,

and 11, and highest in regions 2, 6, and 10. Furthermore, therangeof variability was

lowest in regions 0, 4, and 8, was comparable in regions 1, 3, 5, 7, 9, and 11, and was

highest in regions 2, 6, and 10.

As Section 8.1.2 described, each of the scheduling heuristics examined in these

trials was studied both with and without SRT operation cancellation enabled. If cancel-

lation was enabled, an operation’supcall monitor adapterwould simply omit an upcall

to the operation if its advertised worst-case execution time (WCET) exceeded the time

remaining before its deadline at the point of upcall, as described in Chapter 7.

The route leg update operation was registered as both an event consumer and

event supplier. When the route leg update event consumer routine is called, it updates

one route leg and then if there are remaining steps in its computation chain (according

to the chain length for the current region, as described in table 8.1), pushes a SRT event

to be consumed if needed. Therefore, if a SRT event to the route leg update consumer is

cancelled, additional SRT events are not pushed to the event channel even if the mode

indicates that there should be additional updates.

Since the end point of a route leg is a necessary input to the next route leg (i.e., its

starting point), if a route leg missed its deadline, its end point would be produced after

the data are flushed to the replication service and any subsequent route legs computed

in that chain would likely have erroneous inputs and outputs. Shedding the route leg

load chain at the first missed deadline thus removes operations that would otherwise

consume CPU time without adding utility. Therefore, the above cancellation policy

enables an increase in efficiency in operation dispatching, without a loss of utility for

the larger class of chained operations of which route leg updates are one example.

133

8.2.2 Measured Variables

To measure the effects of varying load and load jitter described in Section 8.2.1, we

instrumented the application and middleware using an earlier version of the metrics

infrastructure described in Chapter 7. We collected three kinds of information:

� latency of dispatching enqueue and dequeue actions

� counts of missed, made, and cancelled operation deadlines

� latency of the operation executions themselves

A key challenge in collecting and using this information is to do so without vi-

olating either the space- or time-requirements of the application. In particular, data

collection and extraction must be done so that

1. relevant data are collected and not lost,

2. data extraction is sufficient to avoid data collection overflowing available data

storage space, and

3. neither collection nor extraction of data interferes with the real-time constraints

of the system itself.

To achieve this, we have first optimized the data probes and cache for both efficiency and

flexibility, as described in Chapter 7. Second, we have leveraged the existing phasing of

application operations to provide regular windows of reduced contention for the CPU,

in which to extract collected data. Figure 8.4 shows the resulting framing of opera-

tions in the executing OFP. In general this framing is engineered for improved real-time

behavior, as it might be in a production OFP:

� frame periods are harmonic

� initiation of requests is staggered to reduce contention (i.e., avoiding the canonical

critical instant for as many operations as possible).

134

KK EEYY:: 1100HHZZ

DDAATTAA

55HHZZ

11HHZZ

OONNEE SSEECCOONNDD

Figure 8.4: Framing of Operation Requests and Metrics Data Extraction Points

8.3 Observed Results

The collected data reveal five key areas of information for adaptive and reflective schedul-

ing in middleware:

1. the dispatching load and the latency of the dispatching infrastructure itself

2. the total number of operation deadlines missed, made, and cancelled for each

of the six heuristics examined (i.e., RMS, MUF, and RMS+MLF each with and

without cancellation of SRT operations)

3. canonical examples of missed HRT deadlines across several heuristics

4. differences in efficiency and effectiveness of the heuristics, particularly with and

without cancellation

5. observable characteristics that are correlated with the effectiveness of particular

scheduling heuristics in specific operating regions

This section discusses each of these kinds of information. Section 8.3.1 examines the

measured dispatching load and latency, and presents an analysis of deduced overhead.

Section 8.3.2 presents measured operation deadline success, failure and cancellation

data, and compares the behavior of the different strategies. Section 8.3.3 makes a closer

examination of the canonical cases where HRT deadlines were missed. Section 8.3.4

135

compares dispatching efficiency and effectiveness, particularly for strategies where can-

cellation had an effect, and compares effectiveness of all strategies across all operating

regions. Finally, Section 8.3.5 summarizes these results.

8.3.1 Dispatching Load and Overhead

3000

3200

3400

3600

3800

4000

4200

4400

4600

0 1 2 3 4 5 6 7 8 9 10 11

operating region

en
q

u
eu

ed
 r

eq
u

es
ts

RMS, RMS©, MUF

RMS+MLF

RMS+MLF ©

MUF ©

Figure 8.5: Total Requests Enqueued

Figure 8.5 shows effective load on the system with each scheduling heuristic (i.e.,

the total number of requests enqueued), in each of the operating regions. Scheduling

heuristics using operation cancellation are indicated by ac
 annotation. MUF with

cancellation and RMS+MLF with cancellation enqueued fewer dispatch requests overall

due to the effects of cancellation on the chains of operations described in Section 8.2.1:

when one operation of a chain is cancelled, subsequent requests for that operation are

not made. The other heuristics, RMS MUF and RMS+MLF all without cancellation, and

RMS with cancellation, enqueued a total number of dispatch requests that rose linearly

from around 3100 in regions 0 and 1 to above 4500 in region 11.

136

Figures 8.6 and 8.7 show respectively the total latency of enqueuing and de-

queuing requests in each operating region. The MUF and RMS+MLF strategies with

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

to
ta

l e
n

q
u

eu
e

la
te

n
cy

 (
u

se
c)

MUF © enqueue

MUF enqueue

RMS © enqueue

RMS+MLF enqueue

RMS enqueue

RMS+MLF © enqueue

Figure 8.6: Total Enqueue Latency

cancellation limited the number of SRT operations attempted, and thus did not show

increasing total latency as the lengths of the route leg chains grew. The other strategies

did not perform any cancellation, and showed a gradual increase in total latency with

the number of requests enqueued and dequeued.

Figures 8.8 and 8.9 show respectively the mean enqueue and dequeue latencies

for each strategy in each of the operating regions. As in Figures 8.6 and 8.7, enqueue

calls showed higher latency than dequeue calls. The MUF and MUF with cancellation

strategies had the highest mean enqueue and dequeue latencies, with lower latencies for

RMS MUF and RMS+MLF all without cancellation, and RMS with cancellation.

The most important feature of these plots is that the mean enqueue and dequeue

latencies did not rise significantly with increasing load or variations in jitter, so that

including preemption and jitter delays, the combined average queueing latency in each

strategy:

137

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

to
ta

l d
eq

u
eu

e
la

te
n

cy
 (

u
se

c)

MUF dequeue

MUF © dequeue

RMS+MLF dequeue

RMS+MLF © dequeue

RMS © dequeue

RMS dequeue

Figure 8.7: Total Dequeue Latency

1. took around 12�sec per dispatch request for RMS and RMS+MLF, took around

32�sec per dispatch request for MUF, and

2. for each strategy remained comparable across operating regions.

Although the queue latency values shown in Figures 8.8 and 8.9 include preemption, we

can argue that the preemption effect is essentially constant over a sufficient number of

data samples, based on the phasing of dispatch requests illustrated in Figure 8.4 above.

Therefore, it is reasonable to claim that each latency value is, within a scalar constant

that may be different for each strategy and region, reflective of the actual overhead of

the enqueue and dequeue method calls. Because the pseudo-random execution jitter in-

troduced in each region is evenly distributed, the effects of this jitter on enqueue and

dequeue latency can also be assumed to be constant over a large enough sampling in-

terval. Here, we assume the interval spent in each region is sufficiently large, which is

supported by the discussion ofoperationlatency in Section 8.4.2.

Figures 5.7 and 5.6 in Section 5.4.3 illustrated several key effects of dynamic

queue management and queue length on the overhead incurred when enqueuing or de-

queuing requests:

138

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 e

n
q

u
eu

e
la

te
n

cy
 (

u
se

c)

MUF © enqueue

MUF enqueue

RMS © enqueue

RMS+MLF © enqueue

RMS+MLF enqueue

RMS enqueue

Figure 8.8: Mean Enqueue Latency Per Operation

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 d

eq
u

eu
e

la
te

n
cy

 (
u

se
c)

MUF dequeue
MUF © dequeue
RMS+MLF dequeue
RMS+MLF © dequeue
RMS dequeue
RMS © dequeue

Figure 8.9: Mean Dequeue Latency Per Operation

139

� enqueue actions were more expensive than dequeue actions in both statically and

dynamically managed queues

� queues managed dynamically according to deadline laxity showed greater over-

head than statically managed queues for both enqueue and dequeue actions

� the dequeue overhead curve for both static and dynamic queues saturated rapidly

and grew very slowly afterward

� enqueue overhead for both static and dynamic queues increased with the number

of enqueued operations (i.e., the queue length)

� the difference in enqueue overhead between the static and dynamic queues in-

creased with the queue length as well

To identify where on the overhead curves shown in Figures 5.7 and 5.6 the experimental

application was operating, we need a more accurate assessment of the actual overhead

imposed on each dispatch request by the queues. Therefore, we would naturally like to

factor out the effects of preemption and jitter and obtain the actual overhead imposed by

each queue itself.

Because the highest priority dispatching queue in each heuristic is not subject to

preemption from operations in other queues, we can limit the effect of preemption to

two possible sources: the higher priority VxWorks network task and 40 Hz reactor task

described in Section 8.1.3. Furthermore, interruption by the 40 Hz reactor task would be

indicated by a missed critical deadline for a dispatch being enqueued or dequeued in the

highest priority dispatching queue. While spurious preemption by the VxWorks network

task is possible, in general the system is very closed and network traffic is limited to the

extent possible – only the VME bus connected to the Motorola card where scheduling

occurred could have impacted these measurements.

Figures 8.10 and 8.11 show respectively the enqueue and dequeue latency for

the highest priority queue of MUF, RMS, and RMS+MLF in each operating region.

We note that in operating regions 0, 4, and 8 there was no added jitter, so the latency

measures in those regions accurately reflect the enqueue and dequeue overheads of each

highest priority queue. Furthermore, no significant additional latency was observed in

the other operating regions, so all data points in Figures 8.10 and 8.11 can be said to

reflect accurately the actual overhead incurred in the highest priority queue for each

heuristic.

140

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11

Operating Region

m
ea

n
 e

n
q

u
eu

e
la

te
n

cy
 (

u
se

c)

MUF

RMS

RMS+MLF

Figure 8.10: Mean Enqueue Latency of Highest Priority Queue

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11

Operating Region

m
ea

n
 d

eq
u

eu
e

la
te

n
cy

 (
u

se
c)

MUF

RMS

RMS+MLF

Figure 8.11: Mean Dequeue Latency of Highest Priority Queue

141

The enqueue methods for statically and dynamically managed queues perform

similar functions, that differ only by a scalar value under any particular queue length

and insertion position. The static queue uses a fixed subpriority field of each enqueued

request to place requests in fixed subpriority order. In the case where static subpriorities

all have the same value this simply produces a FIFO ordering of requests.

The dynamic queue on the other hand uses both a deadline field and a WCET

field to order operations by laxity, and the case of FIFO ordering although possible by

setting all deadline and WCET fields to the same value is trivially improved upon by

instead using a static queue. Because the dequeue methods of dynamically managed

queues address the problem of requests aging past their latest feasible dispatch times

while still enqueued, enqueue methods need only ensure that each new request is added

at a correct laxity-monotonic position. Thus, simply subtracting the request’s WCET

from its deadline produces a correct ordering, without requiring an additional system

call to obtain the current time.

Since the highest priority queue in MUF is managed dynamically according to

laxity, and the highest priority queue in each of RMS and RMS+MLF is managed stati-

cally, we can compare static and dynamic enqueue costs by subtracting the RMS+MLF

or RMS latency from the MUF latency. The average additional overhead of subtracting

and comparing time fields versus doing simple integer comparisons is thus approxi-

mately 10�sec in each operating region.

While the dequeue method for a statically managed queue simply removes the

dispatch request at the head of the queue, a dymanically managed queue must first check

that the request is still valid. When requests at the head of the queue have aged past the

point where they can be successfully dispatched, a dynamically managed queue must

move through those requests to find the first operation that has not aged out. In region

zero, no operations were cancelled or missed their deadlines, so it is safe to say none

aged out in the queues. Therefore, the measured dequeuing overhead represents the

best-case performance for both the static and dynamic queues.

Furthermore, no additional dequeue latency was observed in the other operating

regions, so all data points in Figure 8.11 represent best case behavior for the particular

strategy’s highest priority queue. Again comparing MUF to RMS and RMS+MLF, we

identify an increase in best-case average overhead of 8�sec for dynamically managed

queues, compared to statically managed queues.

142

Notably, although the number of operation requests managed differed between

the RMS highest priority queue and the RMS highest priority queue, they showed no

significant difference in overhead. RMS managed both HRT and SRT 20 Hz requests in

its highest priority queue, while the highest priority queue in RMS+MLF only managed

HRT 20 Hz requests. We attribute this effect to a moderate number of enqueued requests

at any given time, which is further supported by the fact that highest priority enqueue and

dequeue latencies did not rise measurably with increasing load in subsequent operating

regions.

We also study the effects of preemption directly in the experimental application

by comparing the lowest priority queue in each of the MUF and RMS+MLF strategies.

In both MUF and RMS+MLF, all SRT requests are managed by a single lowest-priority

queue managed by laxity.

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11

Operating Region

m
ea

n
 e

n
q

u
eu

e
la

te
n

cy
 (

u
se

c)

MUF

RMS+MLF

Figure 8.12: Mean Enqueue Latency of Lowest Priority Queue

Figures 8.12 and 8.13 show respectively the enqueue and dequeue latency for

the lowest priority queue of MUF and RMS+MLF in each operating region. These

plots show an amortization effect as preemption delays are averaged over an increasing

143

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11

Operating Region

m
ea

n
 d

eq
u

eu
e

la
te

n
cy

 (
u

se
c)

MUF

RMS+MLF

Figure 8.13: Mean Dequeue Latency of Lowest Priority Queue

number of requests in subsequent operating regions. We note that enqueue latency was

not significantly affected by preemption, and attribute this effect to the fact that in the

experimental application most events for a given frame are enqueued at once at the

beginning of the frame, and only the events pushed to subsequent operations in load

chains are likely to be preempted by executing operations.

Dequeue latencies on the other hand showed a marked increase in average la-

tency over the fundamental queue overhead for laxity queues: 2–11�sec for RMS+MLF

and 12–37�sec for MUF. Finally, we note the large difference in latency between for

RMS+MLF and MUF with the same kind of queue managing the same number of SRT

requests. We attribute this difference to lower overhead incurred in RMS+MLF than

in MUF, although it might also be due in part to a possibly more favorableavailabil-

ity function [70] for the lowest priority SRT requests, with HRT requests managed in

RMS+MLF using RMS rather than in MUF using MLF. Additional experiments record-

ing exact preemption ordering of request dispatches and enqueue and dequeue actions

in all queues are thus indicated, though we defer those to future work.

144

8.3.2 Operation Deadline Success, Failure and Cancellation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT made

SRT cancelled

SRT missed

HRT missed

Figure 8.14: MUF Operation Behavior With Cancellation

Figures 8.14 and 8.15 show the total number of HRT and SRT operation dead-

lines made, missed, and cancelled for the MUF strategy. Figure 8.14 shows MUFwith

cancellation, and Figure 8.15 shows MUFwithoutcancellation. It is instructive first to

compare the slope of the top curve in each of these graphs, indicating the increase in the

total number of dispatch requests in subsequent operating regions. In Figure 8.15 the

slope of the total requests curve is similar to that shown in Figure 8.5, though the curve

is slightly lower as some dispatch requests are for internal dependency correlations in

the event channel, and not for application operations. Without cancellation, the total

operation load in MUF was thus proportional to the number of enqueued requests.

In Figure 8.14, the slope of the total requests curve was much less than in Fig-

ure 8.15, indicating a lower and more slowly increasing total operation load. The total

operation load in MUF with cancellation was well bounded, which we attribute to the

effects of cancellation on route leg update chains. Cancellation in MUF was very suc-

cessful in reducing the number of operation deadlines missed though it also resulted in

a lower number of operation deadlines made. Both with and without cancellation, MUF

145

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT missed

SRT made

HRT missed

Figure 8.15: MUF Operation Behavior Without Cancellation

met more deadlines under lower levels of jitter,i.e., in operating regions 0, 4, 8, than

under higher levels of jitter,i.e., in operating regions 1–3, 5–7, and 9–11, respectively.

Figures 8.16 and 8.17 show the total number of HRT and SRT operation dead-

lines made, missed, and cancelled for the RMS+MLF strategy. Figure 8.16 shows

RMS+MLF with cancellation, and Figure 8.17 shows RMS+MLFwithoutcancellation.

The total operation loads in RMS+MLF were similar to those in MUF, both with and

without cancellation respectively. Cancellation in RMS+MLF was similarly successful

in reducing the number of operation deadlines missed though again with a lower num-

ber of operation deadlines made. As with MUF, RMS+MLF met more deadlines under

lower levels of jitter,i.e., in operating regions 0, 4, 8, than under higher levels of jitter,

i.e., in operating regions 1–3, 5–7, and 9–11, respectively.

Figures 8.18 and 8.19 show the total number of HRT and SRT operation dead-

lines made, missed, and cancelled for the RMS strategy. Figure 8.18 shows RMSwith

cancellation, and Figure 8.19 shows RMSwithoutcancellation. Both RMS with cancel-

lation and RMS without cancellation show a total operation load similar to that of MUF

without cancellation and RMS+MLF without cancellation. Both RMS with cancellation

146

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT made

SRT cancelled

SRT missed

HRT missed

Figure 8.16: RMS+MLF Operation Behavior With Cancellation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT missed

SRT made

HRT missed

Figure 8.17: RMS+MLF Operation Behavior Without Cancellation

147

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT made

HRT missed

SRT missed, cancelled

Figure 8.18: RMS Operation Behavior With Cancellation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT made

HRT missed

SRT missed

Figure 8.19: RMS Operation Behavior Without Cancellation

148

and RMS without cancellation show a significant number of missed HRT deadlines in

the later, more heavily loaded operating regions, and RMS with cancellation both

1. missed more HRT deadlines overall, and

2. first missed deadlines in an earlier operating region with lower total load,

than RMS without cancellation. We interpret these observations as indicating the impact

of cancellation overhead on overall feasibility.

Interestingly, with RMS in this application, adding cancellation had no apparent

benefit at all, and in fact showed a greater number of missed HRT deadlines and a lower

number of made HRT deadlines, in regions 6 though 11. We attribute this effect to the

priority assignment in RMS, under which 20 Hz SRT requests for operations in the route

leg chains were dispatched at the highest priority.

Thecritical instant [70] simulation results presented in Section 4.6 are instruc-

tive, particularly Figures 4.9 and 4.11 which show that 20Hz SRT operations under

the RMS priority assignment may be expected to receive preferential quality of service

(QoS), with lower latency and few or no missed deadlines compared to other operations.

Accordingly, even with the increasing length of the 20 Hz SRT rout leg chains in succes-

sive operating regions, RMS with cancellation did not in fact cancel even a single SRT

request. Only HRT requests were detected as being in danger of missing their deadlines,

but since the cancellation policy did not allow HRT operations to be cancelled, no load

shedding was performed. Thus, the only effect of using cancellation in RMS was to add

overhead, resulting in the first missed HRT deadlines occurring in an earlier, less loaded

region, and more missed HRT deadlines overall.

8.3.3 Missed HRT Deadlines

A closer examination of the missed HRT deadlines in RMS with and without cancella-

tion is instructive. We look first at the transition from feasible to infeasible load condi-

tions, which occurs first for RMS without cancellation, and then for RMS with cancel-

lation, when moving through operating regions 6, 7, and 8. Second we examine the case

of a single missed HRT deadline in both the RMS+MLF strategy with cancellation, and

the MUF strategy without cancellation.

Each data sample contains a sequence of statistics taken for a number of opera-

tions, and a sequence of samples is taken in a particular operating region. We denote:

149

� theith operating region byRi

� the number of samples in operating regionRi by jRij

� thejth sample in operating regionRi by S(j;i)

� the number of operation statistics in sampleS(j;i) by jS(j;i)j

� thekth operation statistic in sampleS(j;i) byO(k;j;i)

To examine the deadline success of each operation in the experimental applica-

tion, we note that for a given statistic in a given sample, four factors are important:

the criticality of the operation, the number of deadlines made, the number of deadlines

missed, and the number of dispatches that were cancelled. We thus represent an opera-

tion statistic as a 4-tuple:

O(k;j;i) = hcritical(k;j;i); made(k;j;i); missed(k;j;i); cancelled(k;j;i)i (8.1)

wherecritical(k;j;i) is a boolean value that is true if and only if the operation is HRT.

The values ofmade(k;j;i), missed(k;j;i), andcancelled(k;j;i) are from the natural num-

bers1 and represent the number of deadlines made, missed, and cancelled respectively

in operation statisticO(k;j;i).

We use Iverson’s bracketed predicate valuation operator [43, 36] to sum over

only the operation statistics of interest,i.e., [:critical(k;j;i)] is 0 for a HRT operation

statistic and1 for a SRT operation statistic. We first define helper functionssrt made,

srt missed, srt cancelled, andsrt fraction over a sampleS(j;i):

srt made(S(j;i)) =

jS(j;i)jX
k=1

made(k;j;i)[:critical(k;j;i)] (8.2)

srt missed(S(j;i)) =

jS(j;i)jX
k=1

missed(k;j;i)[:critical(k;j;i)] (8.3)

srt cancelled(S(j;i)) =

jS(j;i)jX
k=1

cancelled(k;j;i)[:critical(k;j;i)] (8.4)

1The natural numbers are the non-negative integers: fields for these values were implemented in the
metrics framework data cache described in Chapter 7 using unsigned long integers.

150

srt fraction(S(j;i)) =
srt made(S(j;i))

srt made(S(j;i))+

srt missed(S(j;i))+

srt cancelled(S(j;i))

(8.5)

We then define a weightedefficiencyfunctionf over a sample, that is zero if any HRT

deadline is missed in the data sample and otherwise is the fraction of SRT deadlines

made in that sample:

f(S(j;i)) =

8>>>>>><
>>>>>>:

0 : if 9O(k;j;i) 2 S(j;i)

���������

critical(k;j;i)^

((missed(k;j;i) 6= 0)

_(cancelled(k;j;i) 6= 0))

srt fraction(S(j;i)) : otherwise

(8.6)

Figure 8.20 illustrates the behavior of the functionf shown in Equation 8.6,

over each sampleS(j;6) for RMS with and without cancellation in operating region 6,

which is loaded very close to the feasible limit for all operations to make their deadlines.

RMS without cancellation performed perfectly in region 6, making all SRT and HRT

deadlines. RMS both with and without cancellation performed similarly well in regions

0-5. However, the overhead of adding cancellation to RMS in region 6 pushes the system

into overload, and deadlines are missed. Furthermore, HRT deadlines are missed in

a significant number of the samples, so that RMS with cancellation is not a suitable

strategy under these load conditions.

Figure 8.21 shows the behavior of the efficiency functionf shown in Equa-

tion 8.6, over each sampleS(j;7) for RMS with and without cancellation in operating

region 7, which is loaded to just beyond the feasible limit for all operations. RMS with

cancellation missed HRT deadlines in all but three data samples, while RMS without

cancellation only missed HRT deadlines in five data samples, and met all SRT and HRT

deadlines in the other samples. Even without the overhead of cancellation, however, the

inability of RMS to protect HRT deadlines under conditions of slight overload means

that neither RMS strategy is suitable under those conditions.

Figure 8.22 shows the behavior of the functionf shown in Equation 8.6, over

each sampleS(j;8) for RMS with and without cancellation in operating region 8, which

is further loaded beyond the feasible limit. In region 8, RMS with cancellation misses

151

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

sample

S
R

T
 f

ra
ct

io
n

 [
H

R
T

 f
ra

ct
io

n
 =

 1
]

RMS RMS©

Figure 8.20: Region 6: Missed HRT Deadlines in RMS With and Without Cancellation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

sample

S
R

T
 f

ra
ct

io
n

 [
H

R
T

 f
ra

ct
io

n
 =

 1
]

RMS RMS©

Figure 8.21: Region 7: Missed HRT Deadlines in RMS With and Without Cancellation

152

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

sample

S
R

T
 f

ra
ct

io
n

 [
H

R
T

 f
ra

ct
io

n
 =

 1
]

RMS RMS©

Figure 8.22: Region 8: Missed HRT Deadlines in RMS With and Without Cancellation

HRT deadlines in every sample. RMS without cancellation performs in region 8 simi-

larly to the way RMS with cancellation performed in region 6, missing HRT deadlines in

a significant number of the samples. Finally, in regions 9-11, RMS both with and with-

out cancellation missed HRT deadlines in every data sample, and thus are not suitable

strategies under those load conditions.

In addition to the missed HRT deadlines for RMS with and without cancellation,

one HRT deadline was missed in region 9 in each of the MUF without cancellation and

RMS+MLF with cancellation strategies. Interestingly, this is the only case of a missed

HRT deadline outside RMS, and it occurred in the same region at the same sampling

point for both strategies. We now examine the possible causes of this phenomenon.

Figure 8.23 shows the same functionf shown in Equation 8.6 and plotted in Fig-

ures 8.20, 8.21, and 8.22, but over each sampleS(j;9) for MUF without cancellation and

RMS+MLF with cancellation in region 9. As Section 8.2.1 describes, the same pseudo-

random sequence was used for the load jitter function, and the same basic load function

was used across strategies. It is therefore notable that the same operation missed one

deadline in the same data sample of the same region in two different strategies. The

HRT operation that missed its deadline in both cases was the 10 Hz HRT additional

153

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

sample

S
R

T
 f

ra
ct

io
n

 [
H

R
T

 f
ra

ct
io

n
 =

 1
]

RMS+MLF©

MUF

Figure 8.23: Region 9: missed HRT deadlines in MUF and RMS+MLF With Cancella-
tion

operation used to induce randomized jitter to various operating regions, as described in

Section 8.2.1.

The range of jitter in this operation for region 9, shown in Table 8.1, is 0 to 5

msec, or 0 to 5 percent of a 100 msec 10 Hz frame. There was no significant difference in

latency for that one operation among the strategies in that region, either in the minimum,

maximum, or mean, or at the sample point at which the deadline was missed. However,

MUF without cancellation and RMS+MLF with cancellation had slightly higher accrued

HRT latency overall at sample 140, where the deadline was missed. Furthermore, even if

preemption by the 40 Hz reactor thread occurred, the deadline had already been missed

and the cause must be attributed to other factors.

Therefore, it appears likely the missed deadline resulted from an overall vul-

nerability of the RMS+MLF strategy with cancellation and the MUF strategy without

cancellation at that point, rather than from a particular anomaly. In particular, if delays

from preemption by spurious VxWorks network task interrupts contributed to this effect,

it appears likely that they did so in aggregation of several small intervals of preemption,

rather than in a single longer interval.

154

8.3.4 Dispatching Efficiency and Effectiveness

A key distinction in assessing the relative performance of the scheduling strategies in

these studies is between thenumberand thepercentageof deadlines made. In partic-

ular, strategies that successfully employed cancellation reduced the number of requests

overall, but some percentage of those cancelled would have missed their respective dead-

lines had they been dispatched. We begin by comparing the efficiency and effectiveness

of MUF and RMS+MLF both with and without cancellation in three representative op-

erating regions.

As Figures 8.20, 8.21, and 8.22 show, RMS both with and without cancellation

performed in anall-or-nothingmanner in these experiments, either missing at least one

HRT deadline or making all deadlines in each data sample. Therefore, the effectiveness

and efficiency of these strategies are indistinguishable, and we thus confine our attention

to MUF with and without cancellation and RMS+MLF with and without cancellation.

We conclude by comparing the effectiveness of the strategies that performed best in at

least on operating region (i.e., MUF, RMS, and RMS+MLF all without cancellation)

across operating regions.

To examine both theefficiencyand theeffectivenessof each strategy, we first

define a weightedeffectivenessfunctiong over a sample, that is zero if any HRT deadline

is missed in the data sample and otherwise is the number of SRT deadlines made in that

sample:

g(S(j;i)) =

8>>>>>><
>>>>>>:

0 : if 9O(k;j;i) 2 S(j;i)

���������

critical(k;j;i)^

((missed(k;j;i) 6= 0)

_(cancelled(k;j;i) 6= 0))

srt made(S(j;i)) : otherwise

(8.7)

We note that the effectiveness functiong is very similar to the efficiency functionf

shown in Equation 8.6, except that it sums using thesrt made helper function instead

of thesrt fraction helper function.

The plots shown in Figures 8.23, 8.20, 8.21, and 8.22 are useful for describing the

fine-grained behavior of the heuristics, but are also very noisy, with the efficiency func-

tion f alternating frequently between two or more values. To assess overall efficiency

and effectiveness of heuristics, we therefore seek a measure that

1. is more stable (is less noisy),

155

2. can capture the aggregate behavior of the heuristics, and

3. is still sufficiently fine-grained to reveal different behaviors in different parts of

an operating region.

Without loss of generality, we can extend the definition of a sample to include the result

of concatenation of samples under an operator
L

, and extend the definitions of the

efficiency functionf shown in Equation 8.6 and the effectiveness functiong shown in

Equation 8.7, to apply to concatenations of samples as well as single samples.

We first adopt the following renaming convention when concatenating samples

across operating region boundaries:

� sampleS(jRij;i) is by definition the last sample in operating regionRi

� sampleS(1;i+1) is the first in operating regionRi+1

� we can without loss of generality rename any sampleS(j;i) in operating regionRi

as though it were part of operating regionRi+1, as long as we do not use the same

values for indexj as another sample already inRi+1

� in particular we can rename as follows:

S(jRij;i)) S(0;i+1)

S(jRij�c;i)) S(�c;i+1)

:9j
���(S(j;i) 2 Ri) � (theempty sequence)

� furthermore, renaming a sample can be extended trivially to renaming each of its

constituent operation statistics:

8k (O(k;jRij;i)) O(k;0;i+1))

8k (O(k;jRij�c;i)) O(k;�c;i+1))

:9k;j
���(O(k;j;i) 2 Sj;i) 2 Ri)) �

Finally, we define the result of aconcatenation window functionc, parameterized

with an ending sampleS(j;i) and a window sizew over a sequence of samples, to be the

sequence of operation statistics produced by concatenation (denoted by operator
L

) of

the operation statistics in the samples in the resulting window, as follows:

156

c(w;S(j;i)) =
0M

x=w�1

S(j�x;i)

= O(1;j�w+1;i); :::;O(jS(j�w+1;i)j;j�w+1;i);

:::;

O(1;j;i); :::;O(jS(j;i)j;j;i) (8.8)

For the comparisons in the remainder of this chapter, we selected a window size

of 20 as most effective to simultaneously

1. minimize irrelevant noise in the efficiency and effectiveness functions, and

2. reveal meaningful variations in the performance of the heuristics both within and

between operating regions.

We denote the partially bound concatenation window function of size 20 byc20, and

compose the efficiency functionf shown in Equation 8.6 or effectiveness functiong

shown in Equation 8.7 withc20 to obtainf � c20 or g � c20, respectively.

The combinations of effectiveness and efficiency we observed can be shown ef-

fectively by examining three canonical operating regions, region 7 region 8, and region

10. As Figure 8.3 illustrates, region 7 had moderate jitter, region 8 had very low jitter,

and region 10 had very high jitter. Figures 8.24 and 8.25 show respectively the efficiency

and effectiveness functionsf andg composed with the concatenation function of win-

dow size of 20c20, for the MUF and RMS+MLF scheduling strategies, both with and

without cancellation, in operating region 7. Figure 8.24 shows the composed efficiency

functionf � c20, and Figure 8.25 shows the composed effectiveness functiong � c20.

In region 7, RMS+MLF with cancellation was the most efficient among those not

missing HRT deadlines, making a little over 50% of the SRT deadlines of all SRT re-

quests made. MUF with cancellation made slightly less than 50% of the SRT deadlines,

MUF without cancellation varied between 25% and 45% of SRT operation deadlines

made, and RMS+MLF without cancellation was fairly steady at a little under 30% of

SRT deadlines made.

Looking at effectiveness, the relative ordering of RMS+MLF with cancellation

and MUF with cancellation seen for efficiency was preserved, as was the relative or-

dering of MUF without cancellation and RMS+MLF without cancellation. However,

the strategies with cancellation though more efficient, were less effective in the total

number of SRT deadlines made than were the strategies without cancellation. Although

157

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

sample

S
R

T
 f

ra
ct

io
n

 [
H

R
T

 f
ra

ct
io

n
=1

]

RMS+MLF©

MUF©

MUF

RMS+MLF

Figure 8.24: Region 7 SRT Deadlines Made: Efficiency

0

20

40

60

80

100

120

140

160

180

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

sample

S
R

T
 d

ea
d

lin
es

 m
ad

e
[H

R
T

 m
is

se
d

 =
 0

]

MUF

RMS+MLF

RMS+MLF©

MUF©

Figure 8.25: Region 7 SRT Deadlines Made: Effectiveness

158

the effectiveness improvement of MUF without cancellation over RMS+MLF without

cancellation was moderate overall, we note that in the experimental application, any im-

provement in made deadlines can translate to a tangible improvement in the system,e.g.,

by refreshing an additional computed route leg more frequently on the pilot’s display.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

sample

S
R

T
 f

ra
ct

io
n

 [
H

R
T

 f
ra

ct
io

n
=1

]

RMS+MLF

RMS+MLF©

MUF©

MUF

Figure 8.26: Region 8 SRT Deadlines Made: Efficiency

Figures 8.26 and 8.27 illustrate respectively the levels of efficiency and effec-

tiveness of the scheduling strategies in an operating with very low jitter, region 8. Fig-

ure 8.26 shows the composed efficiency functionf � c20, and Figure 8.27 shows the

effectiveness functiong � c20. In region 8, RMS+MLF without cancellation was slightly

more efficient than RMS+MLF with cancellation, which was more efficient than MUF

with cancellation, which was in turn more efficient than MUF without cancellation.

This suggests that in very low levels of jitter the ability of cancellation to reduce

futile dispatches is at least balanced and possibly exceeded by the additional overhead of

doing cancellation, and that the overhead associated with the additional dynamic queue

management in MUF is similarly undesirable with low jitter. With the highest effi-

ciency, low overhead, and no possibility of incorrect cancellation, RMS+MLF without

cancellation was also most effective in region 8, achieving between 10 and 20 more SRT

159

0

20

40

60

80

100

120

140

160

180

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

sample

S
R

T
 d

ea
d

lin
es

 m
ad

e
[H

R
T

 d
ea

d
lin

es
 m

is
se

d
 =

 0
]

RMS+MLF

MUF

RMS+MLF©

MUF©

Figure 8.27: Region 8 SRT Deadlines Made: Effectiveness

deadlines over the window than any other strategy. MUF without cancellation was next,

followed by RMS+MLF with cancellation, and finally RMS+MLF with cancellation.

Figures 8.28 and 8.29 illustrate respectively the levels of efficiency and effec-

tiveness of the scheduling strategies in an operating with very high jitter, region 10.

Figure 8.28 shows the composed efficiency functionf � c20, and Figure 8.29 shows the

composed effectiveness functiong � c20.

At the left of each region 10 diagram there is a residual effect from the window

size of 20 and the single missed deadline in region 9, for MUF without cancellation, and

RMS+MLF with cancellation. Beyond that, RMS+MLF with cancellation was the most

efficient, followed by MUF with cancellation, then RMS+MLF without cancellation,

and finally MUF without cancellation. Similar to the case in region 7 with moderate

jitter, the strategies with cancellation in region 10 are more efficient but are also less

effective than the strategies without cancellation. RMS+MLF without cancellation is

the most effective, followed by MUF without cancellation, then RMS+MLF with can-

cellation, and finally MUF with cancellation.

160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

sample

S
R

T
 f

ra
ct

io
n

 [
H

R
T

 f
ra

ct
io

n
=1

]

RMS+MLF©

MUF©

RMS+MLF

MUF

Figure 8.28: Region 10 SRT Deadlines Made: Efficiency

0

20

40

60

80

100

120

140

160

180

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

sample

S
R

T
 d

ea
d

lin
es

 m
ad

e
[H

R
T

 m
is

se
d

 =
 0

]

RMS+MLF

MUF

RMS+MLF©

MUF©

Figure 8.29: Region 10 SRT Deadlines Made: Effectiveness

161

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 11

operating region

S
R

T
 d

ea
d

lin
es

 m
ad

e
[H

R
T

 m
is

se
d

 =
 0

]

RMS

RMS+MLF

MUF

Figure 8.30: Effectiveness of the Dominant Strategies

Finally, we identify RMS, MUF, and RMS+MLF asdominantstrategies, each

having been the most effective strategy in at least one operating region. We then compare

the effectiveness of each of the dominant strategies across operating regions. Figure 8.30

shows the composed effectiveness functiong � c20 in each operating region for each of

the three strategies without cancellation, each of which was consistently more effective

than its counterpart with cancellation. RMS without cancellation performed optimally

among those surveyed under the load conditions seen in regions 0-6, but was not suitable

due to missed HRT deadlines in regions 7-11. RMS with cancellation was as effective

as RMS without cancellation in regions 0-5, but was unsuitable due to missed HRT

deadlines in regions 6-11.

Interestingly, RMS+MLF without cancellation dispatched almost as many SRT

deadlines in its most effective region, region 9, as RMS without cancellation did in its

most effective region, region 6. Therefore, RMS+MLF without cancellation appears to

a highly effective alternative to RMS under conditions of overload but where execution

jitter is low. We also note that in even-numbered operating regions RMS+MLF without

cancellation outperformed MUF without cancellation, and in odd-numbered operating

162

regions the reverse is true. We correlate this finding with the induced execution jitter

described in Table 8.1, and note that in the even numbered operating regions the range

of randomized additional execution jitter was either zero or 5-10 msec, while in the odd

numbered operating regions it was either 0-5 msec or 0-10 msec. We consider correla-

tion of several forms of runtime-observable information to this effect in Section 8.4, as

such correlation may be of use in adaptively migrating among scheduling heuristics to

optimize real-time behavior across varying load and load jitter conditions.

8.3.5 Summary of Observed Results

Section 8.3.1 examined the measured dispatching load and latency, and presents an anal-

ysis of deduced overhead. We observed the suppression effect of chain cancellation (de-

scribed in Section 8.2.1) in MUF and RMS+MLF on each of the following: total load,

total enqueue latency, and total dequeue latency. Cancellation did not have a notice-

able effect on mean enqueue or dequeue latencies, except in MUF where it raised mean

enqueue latency slightly.

We were able to isolate the overheads of static and dynamic queue manage-

ment from jitter and preemption effects by studying the highest priority queue laten-

cies of the MUF and RMS+MLF strategies. Using this approach, we are thus able

to calibrate precisely the overhead of static and dynamic scheduling in the experimen-

tal application itself, rather than relying on the more general results discussed in Sec-

tion dispimpl:selected:primitives. If a zero-jitter state can be found naturally in (or engi-

neered into) an application, a similar precise evaluation can be made of the dispatching

primitives employed for that application.

Section 8.3.2 presented measured operation deadline success, failure and can-

cellation data, and compared the behavior of the different strategies. Notably, while

RMS+MLF with cancellation and MUF with cancellation shed SRT load by selectively

cancelling SRT operations, RMS with cancellation failed to cancel even a single SRT

operation. Using the simulation results presented in Section 4.6, we interpret this effect

as a specific ineffectiveness of cancellation in RMS to shed high-rate SRT operations,

in conditions of overload.

Section 8.3.3 made a closer examination of the canonical cases where HRT dead-

lines were missed. We defined an efficiency functionf shown in Equation 8.6 that we

used to examine the percentage of SRT operation deadlines made while still meeting all

163

HRT deadlines. In particular, operating regions 6 and 7 delimit the transition between

a feasible and an infeasible schedule for RMS. In operating region 6, RMS without

cancellation was still feasible, though the overhead of checking for cancellation pushed

RMS with cancellation into overload, missing at least one HRT deadline in a signif-

icant number of samples. In operating region 7, RMS with cancellation missed HRT

deadlines in all but a few of the samples and RMS without cancellation was just over

the feasible utilization limit, missing at least one HRT deadline in each of five samples.

Finally, we note the all-or-nothing efficiency of RMS both with and without cancella-

tion. As each was assigned either a maximal (1) or minimal (0) score by efficiency

functionf , we forego examination of theeffectivenessof RMS, except in comparison to

the effectiveness of MUF and RMS+MLF.

Section 8.3.4 compared dispatching efficiency and effectiveness, particularly for

strategies where cancellation had an effect, and compared effectiveness of all strategies

across all operating regions. We defined an effectiveness functiong shown in Equa-

tion 8.7. We then composedg with a concatenation window functionc shown in Equa-

tion 8.8. We selected a concatenation window size of 20 as most effective in removing

noise while retaining necessary precision. In states with moderate to high jitter, can-

cellation improved efficiency in MUF and RMS+MLF but decreased effectiveness. In

states with no jitter, cancellation did not improve efficiency significantly.

Finally, we identified the most effective strategy for each operating region and

compared the set of dominant strategies across operating regions. Figure 8.31 shows the

00

33

22

11

1111

1100

99

88

77

66

55

44

NNOONN--CCRRIITTIICCAALL LLOOAADD

MM
EE

AA
NN

 JJ
IITT

TT
EE

RR

RRMMSS

RRMMSS++
MMLLFF

MMUUFF

TTOOTTAALL LLOOAADD FFEEAASSIIBBLLEE

OOVVEERR LLOOAADDEEDD

Figure 8.31: Most Effective Heuristic in each ASFD Operating Region

most effective heuristic in each of the operating regions. In Figure 8.30 we recolor each

164

of the operating regions originally portrayed in Figure 8.3 to indicate the scheduling

heuristic that performed best under the composed functionf � c20 shown in Figure 8.30.

8.4 Correlation of Performance to Observable Charac-

teristics

Because which scheduling heuristic is the most effective among those studied differs

according to load and load jitter conditions, an important question is whether it would

be possible to predict with reasonable accuracy that a heuristic will perform better than

another using observable characteristics of the system. That is, although under the con-

trolled conditions of these experiments weknowthe added load and load jitter, in general

we would need to rely on the ability tomeasurethose factors with reasonable fidelity in

a running system, to predict which heuristic is most effective during an epoch of system

operation. As a step in that direction, we consider the question of whether sources of

information can be found that

1. can be directly observed or derived at run-time, and

2. correlate well with the actual performance of the heuristics.

This section is structured as follows: Section 8.4.1 examines the relationship between

performance and information based on missed and made deadlines; Section 8.4.2 exam-

ines the relationship between performance and information based on measured operation

latency.

8.4.1 Information Based on Deadlines

As a first approach simply monitoring an effectiveness function, such asg�c20 shown in

Figure 8.30, represents a possible source of run-time observable information that could

correlate directly with performance of each heuristic at run-time, across a broader set of

operating regions. For example, with sufficient test coverage of all possible operating

regions in advance, this approach could be useful to at least partially constrain the run-

time adaptation problem, by providing useful static information. First, this approach

could serve to narrow the set of candidate heuristics for adaptation, by removing strate-

gies that never outperformed the others. This could be done,e.g., in parallel trials with

165

identical pseudo-random sequences, as was done for the experiments described in this

chapter. Second, this approach might be used to determine key static parameters for

adaptive control,e.g., the feasible limit on the number of deadlines met without missing

HRT deadline, using theactualsystem.

Unfortunately, this technique is unsatisfying for direct use in run-time adaptive

control, as it unfortunately would need to be performed in several processors at once. If

the narrowed set of candidate heuristics were small relative to the number of processors

with homogeneousload and load jitter characteristics, adaptation using,e.g., effective-

ness functiong � c20 could be done at a cost of one CPU per heuristic. In this case

a voting scheme could be used to determine which heuristic the controlled processors

should be running at any given time.

However, this approach is inefficient and only applicable to a limited class of sys-

tems. Furthermore, it may be cumbersome to engineer,e.g., identical loads would need

to be offered to each of the CPUs with appropriate real-time characteristics. Therefore,

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 a

b
so

lu
te

 d
ev

ia
ti

o
n

 (
w

in
d

o
w

=2
0)

MUF

RMS+MLF

RMS

Figure 8.32: MAD of Effectiveness Function over Window Size 20

we would instead prefer an approach that could apply across heuristics and varying

166

levels of load and load jitter. We thus seek other run-time observable properties that

correlate with the operating region, but do not depend on which specific heuristic is

currently in use. Figure 8.32 illustrates one such alternative, which derives information

from the composed effectiveness functiong � c20 plotted over all operating regions in

Figure 8.30. Here, we consider the Mean Absolute Deviation (MAD) over a window of

20 samples ofg � c20. In general this MAD function tracks the load and load jitter con-

ditions fairly well for MUF without cancellation and RMS+MLF without cancellation,

with a more level MAD in even numbered operating regions, and a more variable MAD

in odd numbered operating regions.

However, the MAD function is sensitive to the load level as well as the load jitter,

so that rather than being able to use the value of the MAD function directly, derived

values such as the variability of the MAD function must be computed in this approach.

Furthermore, computing the variance in a measure such as the MAD function as in

Section 8.4.1 is potentially computationally expensive, and we would naturally prefer

an approach such as the latency measure described in Section 8.4.2 that offers lower

overhead.

8.4.2 Information Based on Latency

As an alternative to deriving information from an effectiveness function as considered

in Section 8.4.1, we might instead consider other run-time observable factors, such as

operation dispatch latency. As latency is a fundamental factor in determining whether

or not an operation misses its deadline, observing the aggregate latencies of a number

of operations can be expected to offer reasonable correlation with the aggregate number

of operations that miss or make their deadlines.

Figures 8.33 and 8.34 show the measured latencies of operation dispatches in

each strategy in each operating region. Figure 8.33 shows the latencies of HRT opera-

tions, and Figure 8.34 shows the latencies of SRT operations.

Figures 8.35 and 8.36 show the measured latencies of operation dispatches in

each strategy in each operating region for MUF. Figure 8.35 shows the latencies of HRT

operations, and Figure 8.36 shows the latencies of SRT operations.

Figures 8.37 and 8.38 show the measured latencies of operation dispatches in

each strategy in each operating region for RMS+MLF. Figure 8.37 shows the latencies

of HRT operations, and Figure 8.38 shows the latencies of SRT operations.

167

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

la
te

n
cy

 p
er

 s
am

p
le

 (
u

se
c)

MUF

RMS

RMS+MLF

Figure 8.33: Measured Operation Latencies: HRT

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

la
te

n
cy

 p
er

 s
am

p
le

 (
u

se
c)

MUF

RMS

RMS+MLF

Figure 8.34: Measured Operation Latencies: SRT

168

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

la
te

n
cy

 p
er

 s
am

p
le

 (
u

se
c)

Figure 8.35: Operation Latencies in MUF: HRT

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

la
te

n
cy

 p
er

 s
am

p
le

 (
u

se
c)

Figure 8.36: Operation Latencies in MUF: SRT

169

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

la
te

n
cy

 p
er

 s
am

p
le

 (
u

se
c)

Figure 8.37: Operation Latencies in RMS+MLF: HRT

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

la
te

n
cy

 p
er

 s
am

p
le

 (
u

se
c)

Figure 8.38: Operation Latencies in RMS+MLF: SRT

170

Although the latency of each operation includes preemption by other operations,

the regular periodic nature of the application, combined with the harmonic framing of

periods, results in a constant preemption delay over a small number of samples2. There-

fore, we can for this OFP application consider operation latency a reliable indicator of

load and load jitter. Because the experiments assumed an application where only SRT

load was added (though load jitter was added to both HRT and SRT operations), and

priority was used effectively to isolate HRT load from SRT load, the HRT operation

latency was insensitive to the increased SRT load in each successive operating region,

as shown in Figure 8.33. SRT operation latency on the other hand did show sensitivity

to both load and load jitter, as shown in Figure 8.34.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 la

te
n

cy
 (

u
se

c)

MUF

RMS

RMS+MLF

Figure 8.39: Mean Operation Latency Over 20 Samples: HRT

While operation latencies are highly correlated with the load and load jitter con-

ditions of each operating region, it is only in aggregate that they are correlated with the

operating regions, and thus with the performance of the heuristics themselves. There-

fore, the final step towards a suitable run-time observable measure for potential use in

2In general, a similar argument applies to bounded blocking delays, though OFP operations are de-
signed not to perform any blocking calls

171

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 la

te
n

cy
 (

u
se

c)

MUF

RMS

RMS+MLF

Figure 8.40: Mean Operation Latency Over 20 Samples: SRT

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10 11

Figure 8.41: Mean Operation Latency Over 20 Samples in MUF: HRT

172

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

Figure 8.42: Mean Operation Latency Over 20 Samples in MUF: SRT

RMS+MLF

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10 11

Figure 8.43: Mean Operation Latency Over 20 Samples in RMS+MLF: HRT

173

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 la

te
n

cy
 (

u
se

c)

Figure 8.44: Mean Operation Latency Over 20 Samples in RMS+MLF: SRT

adaptive migration among scheduling strategies is to combine multiple individual la-

tency measurements into a single value. Figures 8.39 and 8.40 show the mean operation

dispatch latencies over a window of 20 samples. Figure 8.39 shows the plot for HRT

operations, and Figure 8.40 shows the plot for SRT operations.

We note several features of these plots. First, the HRT mean latency is highly

correlated with whether MUF without cancellation or RMS+MLF without cancellation

performed better. In even numbered operating regions, the mean latency is below 8000

usec (8 msec) or above 1600 usec (16 msec), and in the odd numbered operating regions

it lies between those values. This property holds across all scheduling strategies and op-

erating region considered. Second, because of sensitivity to load, and the effects of SRT

operation cancellation, this property does not hold for the mean SRT plot. Therefore,

the mean HRT plot is selected as the preferred run-time observable measure.

8.5 Conclusions

This chapter has focused on the empirical study of several scheduling heuristics for

mission computer OFPs. As mission computing software is being asked to execute

174

in more flexible ways, in increasingly varying environments, characterizing the actual

performance of the Kokyu middleware infrastructure in a realistic setting under a variety

of load and load jitter conditions is of fundamental importance.

Furthermore, new increasingly non-deterministic kinds of processing are being

targeted for transition to these systems [72]. The ability of the Kokyu framework to man-

age variations in execution load and load jitter through alternative scheduling heuristics

increases the applicability of these techniques to OFP mission computing systems with

next-generation software components. Increased openness of systems is thus enabled

by the Kokyu framework.

Finally, by demonstrating the existence of run-time observable characteristics

that correlate with performance of the scheduling heuristics, this work opens a larger

possibility: performing truly adaptive scheduling using alternative heuristics at run-time,

to accommodate variations in the systems operating environment and current mission

objectives. There are several open questions to address, as Chapter 9 describes, before

this kind of run-time adaptation will be applicable to avionics mission computing OFPs.

However, these problems appear tractable, and planned future work will lead to a more

complete solution.

We conclude this chapter with several key observations and recommendations.

These observations and recommendations apply both to the particular experimental

avionics mission computing application studied, and to a larger family of rate-based

distributed real-time applications.

Overhead: Dynamic queue management is used to a lesser extent by the RMS+MLF

variants, and to a greater extent by the MUF variants. The overhead of increased dy-

namic queue management shown in Figures 8.10 and 8.11 was noticeable, but was

within a reasonable scalar (approximately 1.5) of the more static queue management

overhead. Furthermore, this overhead was in large part justified by increases in effec-

tiveness or efficiency or both. Queueing loads appeared to remain relatively stable for

each scheduling strategy, as may be expected for such a harmonic periodic application.

Therefore, developers of rate-based real-time distributed applications should consider

dynamic scheduling in middleware to be a reasonable and useful technique.

Overload: Hybrid static/dynamic scheduling strategies such as MUF and RMS+MLF

appear to be effective in managing dynamic SRT load, and isolating the HRT that

load. Furthermore, they did so under different levels and ranges of randomized jitter

175

in the execution times of certain HRT and SRT operations at different rates. Therefore,

criticality-aware hybrid static/dynamic scheduling in middleware should be considered

for systems that

1. have both critical and non-critical operations, and

2. may incur total load in excess of the feasible bound.

Cancellation: Operation cancellation was shown, under conditions of moderate to

high execution jitter, to improve efficiency of the MUF and RMS+MLF strategies. Al-

though the pessimistic form of cancellation we applied reduced the effectiveness of these

strategies under those same conditions, several possible refinements to the cancellation

algorithm show promise toimproveeffectiveness as we describe in Section 9.2. Of

particular interest in the cancellation studies was:

1. the failure of RMS with cancellation to shed any SRT load, and

2. the efficiency improvement only in the presence of jitter for MUF and RMS+MLF.

We attribute the former effect to a particular limitation of RMS to shed high-rate SRT

operations. We interpret the second effect to be a product of the stable and harmonic

pattern of the schedule in operating regions with no additional jitter.

With a stable and harmonic schedule, and given preemption of lower priority op-

erations by higher priority ones, the operations that cannot make their deadlines will be

at the end of a particular phase of the schedule, and therefore will not impede operations

that could have made their deadlines had those been cancelled. We note that jitter in

execution times, much like noise on an electrical signal, both

1. changes the instantaneous (and possibly aggregate) utilization value, and

2. adds (likely non-harmonic) rates to the system [57].

We also note that with non-harmonic rates, the phasing of operations will vary which

operations are vulnerable, leading to a similar need for active cancellation. Therefore,

we recommend applying cancellation only in cases where:

1. the system is overloaded, so cancellation is beneficial,

2. jitter is present, or the set of rates is non-harmonic, and

3. the scheduling strategy in use can provide opportunities to cancel non-critical load

by showing preference to critical operations.

176

Dominant Strategy: RMS without cancellation performed optimally when the ex-

ecution load was below its feasible threshold. Above that limit RMS+MLF without

cancellation performed best under conditions of high or low execution load jitter, and

MUF without cancellation performed best under conditions of intermediate load jitter.

Under the conditions studied, HRT operation latency was identified as an effective mea-

sure of execution jitter, and thus of the optimal strategy beyond the feasible RMS limit.

Therefore we recommend using the following strategies in the following cases:

� RMS when the system is not overloaded,

� RMS+MLF or MUF when the system is overloaded, with the choice of which

strategy to use depending on run-time observable characteristics that correlate

with which strategy will perform best under those conditions.

While our preliminary results indicate a correlation between jitter levels (which we can

best calculate using operation latencies) and the performance of RMS+MLF vs. MUF,

we have only shown this for a single application. To generalize these results we believe

it crucial to address the open questions in Section 9.4.

177

Chapter 9

Conclusions and Future Research

Problems

This dissertation has focused on the problem of how to provide flexible and adaptive

quality of service (QoS) management in middleware for realistic, rate-based real-time

distributed systems. Taken together, the flexible scheduling and dispatching infrastruc-

ture described in Chapters 4 and 5 respectively, the flexible and efficient rate selection

technique described in Chapter 6, and the performance monitoring and feedback infras-

tructure described in Chapter 7 constitute a robust and effective middleware environment

for real-time QoS management.

The experiments and empirical results presented in Chapter 8 demonstrate the

benefits and efficacy of applying the Kokyu middleware framework to both

1. avionics mission computing systems, and

2. a broader class of distributed rate-based real-time systems.

From a thorough examination of a particular avionics mission computing application,

we distill the results of Section 8.3 to a concrete set of guidelines in Section 8.5, for

general use by developers of rate-based distributed real-time systems. These guidelines

and the results from which they are distilled form a core contribution we plan to expand

to become a larger body of theory and practice on adaptive and reflective real-time

QoS management and control for mission-critical distributed real-time and embedded

systems.

The Kokyu framework has been to a significant and increasing degree closely

integrated into the Bold Stroke research infrastructure, with potential for transition to

178

production avionics systems. Because the Kokyu framework supports, extends and most

importantlygeneralizesthe policies, mechanisms, interfaces, and programming abstrac-

tions of the previous-generation scheduling and dispatching software [117], integration

with the Bold Stroke infrastructure has been straightforward.

Ultimately, the impact of this research will depend on the extent to which ap-

plication requirements and corresponding resource constraints motivate its use. As dis-

tributed and real-time embedded applications

1. become more prevalent,

2. are asked to perform a greater variety of computation and communication tasks,

3. must still provide strict timeliness assurances,

4. rely on increasingly heterogeneous, distributed, and constrained resources, and

5. are subject to a variety of QoS requirements,

it is likely there will bemoredemand for flexible, reflective, and adaptive QoS manage-

ment techniques, infrastructure, and analysis, rather than less.

However, to realize the full potential of this research, the open questions it raises

must be addressed. First, Section 9.1 considers the wider applicability of the results

obtained here, and suggests additional experiments and analysis to identify other con-

tributors to the performance of scheduling strategies. Section 9.2 considers the question

of whether the cancellation technique studied can be improved to be both effective and

beneficial, and presents an approach to improving its accuracy and effectiveness using

application-specific information and finer-grained profiles of operations’ actual char-

acteristics. Section 9.3 describes a set of related problems involving the ordering and

re-ordering of operation dispatch requests in the face of

� adaptive transitions between strategies,

� multiple competing QoS policies, such as for real-time and fault-tolerance, and

� cooperative embedding of constraints, such as for intrusion detection and toler-

ance.

179

Finally, Section 9.4 considers the problem of adaptive rescheduling without modifying

operation characteristics, outlines an approach to the sub-problem of performing adap-

tive control over scheduling strategies for improved QoS, and describes first steps in that

direction.

9.1 Additional Studies

Additional studies are indicated to examine further the generality of the results described

in Chapter 8, across a broader range of rate-based distributed real-time systems. In

addition to performing similar experiments to those described in Chapter 8 both across

a broader range of avionics mission computing applications, and applications outside

that domain, we plan new kinds of experiments to address the following open issues:

Non-harmonic rates: whether applications with inherently non-harmonic rates ex-

hibit similar correlation to performance of heuristics as seen with execution jitter. In

particular, careful empirical study and comparison of the effects of jitter versus the ef-

fects of non-harmonic rates would serve to both verify and quantify the model of jitter

as high-frequency additional load as suggested in Section 8.5.

Upper limits on jitter and load partitioning: i.e., the range over which various

strategies remain robust. The empirical studies in Chapter 8 demonstrate that the Rate

Monotonic Scheduling (RMS)+Minimum Laxity First (MLF) and Maximum Urgency

First (MUF) strategies can tolerate total load in excess of the feasible bound, while

still meeting critical deadlines and achieving reasonable effectiveness in meeting non-

critical deadlines. Furthermore, two distinct boundaries in the relative performance of

RMS+MLF and MUF were observed, one between low and moderate jitter, and one

between moderate and high jitter, over the range of jitter studied. Further studies are

indicated to determine whether these boundaries are in fact disjoint or are both seg-

ments of a single larger phase transition boundary (possibly in additional dimensions),

and also whether other such boundaries in jitter and load can be identified for these and

other scheduling strategies. A final question of interest is the performance of strategies

as the ratio of critical utilization to non-critical utilization is varied: in particular, at

what point does adaptation become futile, and at what point is the feasibility of critical

operations jeopardized even for strategies that attempt to isolate critical and non-critical

processing.

180

Distributed dynamic scheduling: i.e., whether coordinated multi-node dynamic and

adaptive scheduling can demonstrate clear benefits end-to-end as well as locally. Of

particular interest is whether variation in load at one location could be managed so its

impact on other interdependent nodes could be reduced, and the operating conditions

under which local versus global adaptation is indicated. Further empirical measurements

are also needed to determine the impact of factors such as network latency on the end-

to-end performance of dynamically scheduled distributed systems.

Available platform features: i.e., what impact the availability or absence of various

platform-specific features, such as preemptive multi-threading, would have on dispatch-

ing models and run-time scheduling behavior. This question is of particular interest for

highly constrained embedded environments where memory footprint, power consump-

tion, and timeliness considerations may dictate minimization and co-design of applica-

tion, middleware, operating system, and even hardware features.

Application requirements: i.e., what impact application specific requirements, such

as policies for handling missed deadlines,e.g.,

1. retry versus cancellation,

2. early versus late cancellation, or

3. optimistic versus pessimistic cancellation,

might have on the effectiveness of strategies and overall application performance. Spec-

ifying and representing application requirements in a way visible to the scheduling and

dispatching infrastructure appears beneficial to the levels of QoS that can be provided,

as Section 9.2 examines in greater detail. In addition toverticalpropagation of require-

ments, the effects of various end-to-end constraints such as bandwidth reservations or

induced invocation rates are also of interest, particularly for multi-endsystem behaviors.

9.2 Improved Precision of Cancellation Decisions

With a more exact cancellation policy we might reduce the number of spurious can-

cellations and thus under particular conditions achieve an improvement ineffectiveness

as well as efficiency. Additional experiments are needed to assess the actual cost of

cancellation in terms ofusefulwork.

181

For example if missing a deadline for one of a chain of operations means the

remaining operations are useless, then cancellation at that point may have a more ben-

eficial effect ontotal utility than the are revealed by the simple assessment of deadlines

made and missed, performed in the experiments described in Chapter 8. In general, ex-

periments with a variety of application-specified utility functions are needed to assess

cancellation mechanisms that are sensitive to application utility and can be tuned for

appropriate levels of aggressiveness. These experiments will reveal the most effective

ways to

1. preserve the resource for higher-value processing, while

2. minimizing overhead and unnecessary cancellation.

Clearly, a tension also exists between the overhead of more end-to-end and layer-

to-layer sharing of information, and the impact that information can have on the effec-

tiveness and efficiency of policies and mechanisms for key middleware QoS manage-

ment services such as cancellation. As future work we will define and evaluate empiri-

cally models for managing the trade-offs and varying capabilities forbinding informa-

tion statically where possible, orevaluatinginformation dynamically where necessary,

in real-world systems.

9.3 Ordering, Transitions, and Multi-Dimensional QoS

A family of interesting problems relates to questions of the ordering of dispatching

requests at run-time. These problems fall into three main categories: transition man-

agement, competitive constraint resolution, and cooperative constraint specification. In

this section, we examine each of these categories in turn. Section 9.3.1 examines the

problem of managing scheduling and dispatching invariants across transition bound-

aries. Section 9.3.2 considers the case where simultaneous requirements are in conflict

or compete for a more basic property such as the ordering of dispatch requests, and must

be resolved reasonably. Section 9.3.3 discusses the case where constraints may be ap-

plied cooperatively, to achieve a greater level of service in combination than separately.

182

9.3.1 Transition Management

An important question raised by this research is how dispatch requests can be managed

effectively across adaptive transitions, whether in response to unanticipated events such

as fault recovery requests, or to active adaptation to improve performance, as suggested

in Section 9.4. The key problem is how to preserve invariants

1. in the pre-transition state,

2. in the post-transition state, and

3. across a consistent cut between states.

For example, consider the priority assignments under thepreemptive-by-priority-

banddispatching model described in Sections 5.2 and 5.3: in RMS priorities are as-

signed according to rate, and in MUF according to criticality. In addition, consider the

queue ordering policy under the same dispatching model: in RMS dispatches within a

priority level are ordered according to static subpriority, and in MUF according to laxity.

Upon crossing from a feasible operating region to an overloaded operating with moder-

ate jitter, such as between operating regions 6 and 7 in Figure 8.31 in Section 8.3.5, an

adaptive transition from RMS to MUF might be performed.

HRT
20 HZ

HRT
10 HZ

HRT
5 HZ

HRT
1 HZ

SRT
20 HZ

SRT
10 HZ

SRT
5 HZ

SRT
1 HZ

HRT
20 HZ

HRT
10 HZ

HRT
5 HZ

HRT
1 HZ

SRT
20 HZ

SRT
10 HZ

SRT
5 HZ

SRT
1 HZ

RMS

MUF

Figure 9.1: Adaptative Transition: RMS and MUF

Figure 9.1 illustrates the problem of reordering dispatch requests in a transition

from RMS to MUF or vice versa. We show a pathological case where at each rate

in RMS a soft real-time (SRT) dispatch request is enqueued ahead of a hard real-time

183

(HRT) dispatch request. We also note that the transitions between RMS and MUF are

more challenging than those between RMS and RMS+MLF or between RMS+MLF and

MUF, as follows:

� In transitions between RMS+MLF and MUF, a partial ordering of request priority

is maintained across the transition:8x2HRT;y2SRT x > y

� In transitions between RMS and RMS+MLF, only SRT operations need to change

priority levels, fanning out from one laxity queue to multiple static queues, or vice

versa.

� In transitions between RMS and MUF, both SRT and HRT operations need to

change priority levels, and no partial order of priorities is maintained across the

transition

This particular case poses several interesting problems, some theoretical, and

some pragmatic. The main problems of theoretical interest are how to:

1. enforce the keyinvariants (i.e., timeliness of HRT operations) of the previous

operating region context before the transition,

2. enforce the key invariants of the next operating region context after the transition,

3. preserve key invariants that span the transition between the operating regions, as

the context shifts from the previous operating region to the next one, and

4. to the extent possible maximize attainment ofgoalssuch as timeliness of SRT op-

erations both in the previous and next operating regions, and across the transition.

We plan to investigate the question of how to manage partial orders to preserve invari-

ants while also maximizing goals such as effectiveness in meeting SRT deadlines. For

example, in an operating region where HRT feasibility can be assured, but not SRT, we

would choose,e.g., MUF over RMS and schedule HRT and SRT operations in separate

orderedcriticality partitions. If we then entered an operating region where both SRT

and HRT operations are feasibly schedulable under RMS we might apply a different

partial ordering, according torate. Clearly, a transition involves switching between the

criticality and rate partial orderings, but managing the intermediate context during the

transition must be shown to still preserve the key invariants across the transition.

Pragmatic considerations include how to:

184

1. define and implement the necessary data structures and algorithms,

2. provide necessary parameters to system services (e.g., setting thread priorities),

3. provide efficient additions to the infrastructure described in Chapters 4, 5, 6, and 7,

and

4. define appropriate resource management policies

to extend the Kokyu scheduling and dispatching infrastructure so that it can:

1. maintain enforcement of changing partial orders of dispatch requests,

2. rapidly reassign partial orders to requests,

3. preserve invariants while reassigning partial orders, and

4. do all of this correctly while minimizing overhead and complexity.

9.3.2 Competitive Constraint Resolution

When two or more constraints are in conflict or compete for a more basic property such

as the ordering of dispatch requests, we must determine some reasonable resolution.

Such conflicts may arise either

� transiently –e.g., when changing from one partial order to another as described in

Section 9.3.1, or

� persistently –e.g., when the ordering for fault-tolerance or transactional semantics

is in conflict with the ordering for timeliness properties.

In the latter case, we plan to investigate whether it is possible to weaken slightly the in-

variants of one or more of the competing requirements, so that a solution can be obtained

that still provides necessary properties. For both cases we will seek to identify common

representations of the problem across different requirements. Rufus,et al., describe an

adaptive transition technique for local controllers in autonomous aerial vehicles [112]

based on fuzzy neural models [113].

To provide assurances in multiple QoS dimensions such as timeliness and mes-

sage ordering, however, we would prefer a representation that may be analyzed sym-

bolically. In particular, planned schedules offer a substrate capable of expressing both

185

timeliness and ordering, so manipulating invariants over planned schedules appears a

preferable alternative to non-symbolic approaches. We believe, however, that our ap-

proach could be combined readily with fuzzy and neural approaches in the contexts to

which they are being applied, notably an open control platform for unmanned aerial

vehicles [138, 137, 50].

More generally, we plan to approach these problems by

1. determining the extent to which they can be reduced to well-known problems such

as,e.g., distributed snapshots [14, 86],

2. applying specific information (e.g., that rates of execution are harmonically framed)

to the common representation to further reduce the particular problem, and

3. applying an invariant-based analysis similar to that in Section 9.3.1 to the remain-

ing problem.

CC

AA

BB

DD

X

TTIIMMEE

DDIISSTTRRIIBBUUTTIIOONN

AAFFTTEERR
BBEEFFOORREE

TTRRAANNSSIITTIIOONN CCUUTT

Figure 9.2: Distributed Transition Cut

Figure 9.2 illustrates the problem of maintaining consistent end-to-end timeliness prop-

erties across a distributedcut due to adaptation at multiple endsystems. Not only must

each endsystem perform its own consistent transition locally as described in Section 9.3.1,

it must also ensure that:

186

� properties of dispatches from an endsystem thathas notmade the transition are

maintained upon receipt by an endsystem thathas notmade the transition

� properties of dispatches from an endsystem thathasmade the transition are main-

tained upon receipt by an endsystem thathasmade the transition

� properties of dispatches from an endsystem thathas notmade the transition are

transformed[19] upon receipt by an endsystem thathasmade the transition

� properties of dispatches from an endsystem thathasmade the transitioncannot be

appliedto another endsystem until it too has also made the transition

For example, endsystems A and B have made a transition in Figure 9.2, but endsystems

C and D have not. C and D can exchange dispatch requests, which are processed un-

der the invariants established before the transition. Similarly, A and B can exchange

dispatch requests, but these are processed under the invariants established following the

transition. C and D can send dispatch requests to A and B, in which case they pass

through the distributed cut, and are transformed upon arrival as appropriate to the tran-

sition context. C and D cannot, however, handle dispatch requests from A or B until

they have completed their own transitions, as requests cannot travel from the future to

the past of a consistent cut. To ensure consistency in standard asynchronous message

passing approaches we can either

1. advance the receiver immediately to the future of the cut [62, 86],i.e., forcing it

to make the transition upon receipt of the first dispatch from another endsystem

that has made the transition, or

2. delay a request from an endsystem in thefutureof the cut until the receiver is also

in the future of the cut [135, 86].

Unfortunately, with real-time constraints, delaying a request may amount to cancella-

tion, as it may not then be able to make its associated deadline. Furthermore, forcing

an endsystem across a transition boundary may not be immediately achievable without

some form of distributed coordination protocol,e.g., in the case of dependencies across

endsystems. Hybrid approaches appear promising,i.e., by delaying SRT requests and

forcing a transition only over HRT requests we might be able in practice to improve the

predictability and shorten the interval of convergence of the transition.

187

Finding solutions to these problems will allow adaptive scheduling in middle-

ware to be applied across endsystems, presumably under the control of a (likely also

distributed) higher level transactional commit protocol to coordinate transitions at each

endsystem. Furthermore, it offers a general approach to reconciling other potentially

competing but desirable properties such as timeliness and fault-tolerance.

9.3.3 Cooperative Constraint Specification

While some properties, such as timeliness and fault-tolerance, may introduce conflicting

requirements, another question is whether constraints might be added or integrated co-

operatively to achieve new system properties. Because real-time systems are sensitive

to variations in latency, denying service to a real-time system can be simply a matter

of delayinga request, rather than interdicting it entirely. However, many of the same

policies and mechanisms used to provide real-time QoS assurances can be used to make

a system more resilient in the face of an attack, thus ameliorating this vulnerability to

some extent.

Webber,et al., term systems with increased resistance to malicious attack even

in the face of an untrustworthy environment,defense-enabled[134, 101]. They further

distinguish betweenprotectionin which attempts are made to prevent an attacker from

gaining access to the system, anddefense, which includes protection but also seeks to

delay or divert an attack if protection fails. Cuckier,et al., state the goal of defense

enabled systems as increasing either theprobability or the lengthof survival of an at-

tack [22], even when the attacker gains access to parts of the trusted computing base

(TCB) [134].

The key insight in applying flexible and adaptive scheduling techniques to defense-

enabled systems is that QoS monitoring and control models and infrastructure form a

basis for defense [100, 73]. In real-time systems, there is a significant similarity to the

effects of faults, overload, and attack. Furthermore, adaptation of the kinds enabled by

the Kokyu framework may be employed to relieve these effects. All the approaches

suggested in this section seek to:

1. identify the extent to which QoS management policies and mechanisms constitute

vulnerabilities,

2. identify the capabilities those same policies and mechanisms provide to enable

defense,

188

3. minimize accessibility of sensitive information by untrusted observers, and

4. exploit internal degrees of freedom within the structure of externally visible con-

straints, to reduce vulnerability to information that is accessible outside the TCB.

For example, if two end-systems exchange dispatch requests with advertised timing

requirements, neither may in general assume the other uses a particular mechanism to

meet that externally visible policy. One endsystem might assign priorities to preserve

sufficient preemptive access to resources to ensure timely completion, while the other

might use a planned schedule to achieve the same assurance.

Applying a modeling discipline such as I/O Automata [86] to these considera-

tions appears a useful area of future work, to distinguish more formally betweeninternal

andexternalactions and whether particularexecutionsof a model meet both internal and

external constraints. Furthermore, support for security in a real-time environment may

require simultaneous resolution of constraints as in Section 9.3.2,e.g., for timeliness

and message ordering for group membership [22].

HRT
20 HZ

HRT
5 HZ

HRT
1 HZ

SRT
20 HZ

SRT
10 HZ

SRT
5 HZ

SRT
1 HZ

MMUUFF++++

GUARD GUARD

GUARD GUARDHRT
20 HZ

HRT
10 HZ

HRT
5 HZ

HRT
1 HZ

SRT
20 HZ

SRT
10 HZ

SRT
5 HZ

SRT
1 HZ

MMUUFF

SS--MMUUFF

HRT
10 HZ

Figure 9.3: Cooperative Embedding of Constraints in Heuristics

We categorize the kinds of defensive responses to which flexible and adaptive

scheduling may be employed as follows:

189

1. intrusion detection

2. adaptive resiliance to damage

3. resistance to monitoring and steering

Figure 9.3 shows an example of how a single scheduling heuristic, MUF might be trans-

formed for defensive purposes into a notional strategy called Secure-MUF (S-MUF).

We conclude this section by considering how each of the above categories of defensive

responses might be enabled by this kinds of transformation.

Intrusion Detection: An analogy to security firewalls [11, 21, 63] is useful when

considering intrusion detection. A number of security protection features are already

available to middleware based on standards and patterns, such as the Common Object

Request Broker Architecture (CORBA) Security Service [93], or the ability to plug in

alternative communication protocols [58] for secure connections between trusted end-

systems. However, defense-enabled systems must go beyond these protections, and

respond at every level to the possibility that some of these may be compromised.

Assuming an attacker can intercept a GIOP message [34] and perform a form of

stateful packet inspection (SPI) [21] on it, request priorities [91] or dynamic scheduling

information [94] may be completely visible outside the trusted endsystems. A first line

of defense is to detect an attacker that tries to exploit this information. The level of

sophistication of the attack is important: if a source can be identified, a filter could

be placed to block further attack from that source [11, 21]. However, a more patient

attacker might probe for vulnerabilities in less readily identifiable ways, and detecting

any change in the QoS context is beneficial to avoid a larger intrusion [21].

Decoys of several kinds are useful both for detection [21] and for wasting an at-

tacker’s effort [134]. For example,guardoperations that are never invoked by a trusted

endsystem can be run at various priority levels as shown in Figure 9.3, and their invoca-

tion would signal an attack. At higher priority levels, a guard could limit its execution to

simply setting a flag to avoid exacerbating a denial of service attack. At lowest priority

levels a guard could execute for an arbitrary duration to log more information and delay

the progress of the attacker.

Detection accuracy may improve with multiple forms of detection [73]. Another

form of detection would be to place guard operations with known execution durations

at vulnerable points in the schedule. For example in an operating region with very little

190

jitter, we could pad the end of a feasible schedule with another kind of guard operation

request so that if any of these missed its deadline or was cancelled we would suspect

the onset of a change in the QoS context, which could trigger adaptation whether the

change was due to a change of operating region, a fault, or even an attack.

Adaptive Resiliance to Damage: A particularly difficult defense is that against at-

tacks indistinguishable from QoS failures,e.g., changing a sensor rate to give bad

data [101] or cause overuse of resources. For example, an attacker gaining unrestricted

access to one endsystem might modify theRT Info data structures described in Chap-

ter 3 to use the scheduling and dispatching infrastructure on that endsystem to attack

another endsystem. It would be difficult for the target endsystem to detect whether,e.g.,

a suddenly greater rate of arrival of requests for an operation were due to an attack, a

fault, or simply a change in operating region.

Adaptation to restore system properties is beneficial whatever the source of change

in QoS context, though for defense-enabled systems adaptation must be combined with

additional features. Trusted endsystems would likely have agreed on the rates of re-

quests sent between them, so simply changing the rate of a request, or even adding jitter

to the time at which a request is sent might be detected. Voting schemes might be ap-

plied across trusted endsystems to increase the probability of detection if one or more

of the endsystems became faulty or was compromised. Unfortunately, agreement is not

possible in the general case for distributed asynchronous invocations in the face of arbi-

trary faults [86]. Randomized algorithms could be used to offer probabilistic assurances

of agreement, though at a cost of additional overhead and system complexity.

Resistance to Monitoring and Steering: Randomization is also useful to make it

more difficult for an attacker to monitor and predict or evensteeradaptation. For ex-

ample, in Figure 9.3, the 10 Hz and 5 Hz HRT operations are shown in reverse order in

the highest priority queue in S-MUF compared to MUF. In general, an endsystem may

randomly

1. permute orders of requests that are not otherwise constrained,

2. choose another heuristic that still meets all constraints during adaptation,

3. add or remove execution jitter within known ranges of tolerance.

Hysteresis control for adaptation is also important, as it increases the difficulty

of an attacker’s attempts to induce or control adaptation, making the target endsystem

191

“balky” to an attacker. Finally, we might wish to reduce both external monitoring and

steering risks by

1. marking trusted operation requests with digital signatures,e.g., based on an agreed

upon one-time-pad, then

2. virtualizing access to resources, and dispatching untrusted requests at random in

slots that do not compete for resources with operations that matter to the system.

9.4 Towards Control Automata for Adaptation

Sections 8.5 and 9.3 motivate the use of flexible and adaptive scheduling and dispatching

to address a variety of QoS considerations in distributed real-time systems. Applications

of these techniques include:

1. adaptive management of transitions between system operating regions as in Sec-

tion 9.3.1,

2. co-scheduling applications and resource managers as in Section 1.4.5,

3. resolving QoS requirements, such as for fault-tolerance and timeliness as in Sec-

tion 9.3.2, and

4. participating in defense against attacks as in Section 9.3.3.

To achieve these goals, however, a significant level of fidelity to the actual constraints

of the system must be achieved and demonstrated empirically. Fundamentally, what is

needed is forms of adaptivecontrol [124] of scheduling and dispatching.

Given the correlation between the performance of heuristics and measured mean

HRT operation latencies described in Section 8.4, simple laws might be constructed us-

ing HRT execution latencies and HRT and SRT operation deadline statistics to control

adaptive transitions among the scheduling strategies. Combining the measured feasible

SRT threshold value described in Section 8.4.1 with the mean HRT latency value de-

scribed in Section 8.4.2, we obtain a simple adaptation control law over the strategies

without cancellation, as follows:

� if we are below the feasible threshold (by definition not missing deadlines) we

should be using RMS; otherwise

192

� if the mean HRT latency over a window of size 20 is between 8 msec and 16 msec

we should be using MUF; otherwise

� we should be using RMS+MLF.

MUF

RMS

RMS +
 MLF

((HHRRTT MMEEAANN << 88MMSSEECC)) ||||
 ((1166 MMSSEECC << HHRRTT MMEEAANN))

88MMSSEECC<<HHRRTT MMEEAANN<<1166 MMSSEECC

MMIISSSSEEDD DDEEAADDLLIINNEE

SSRRTT << TTHHRREESSHHOOLLDDSSRRTT << TTHHRREESSHHOOLLDD

((MMIISSSSEEDD

 DDEEAADDLLIINNEE)) ||||
 ((TTHHRREESSHHOOLLDD

 << SSRRTT))

Figure 9.4: Adaptation Automaton over RMS, MUF, and RMS+MLF

A comparably simple automaton can be constructed for this control law, as figure 9.4

illustrates. The dashed lines indicate transitions that are taken immediately, once their

associated condition is detected to be true. Solid lines indicate transitions that may

require their associated condition to be true for some minimum number of samples, to

avoid hysteresis. The transitions shown with dashed lines are designed to react quickly

to failures or impending failures,i.e., to avoid (or at least reduce the number of) HRT

deadline failures. The solid line transitions are designed to improve performance, and

allow the system to seek that improvement monotonically while avoiding the overhead

of transitions that do not produce a meaningful improvement in performance.

To demonstrate the utility of this approach, and to apply it to real-world applica-

tions, two remaining open questions must be answered:

� What control laws for adaptation between dominant strategies can be identified

and verified empirically for various classes of rate-based distributed applications?

193

� Where control laws cannot be identified more generally, is it possible to learn

laws for adaptive control for a particular application, and what learning techniques

would be most useful?

We conclude by considering experiments to assess the validity of and possibly expand

on the adaptive control automaton shown in Figure 9.4, and examining the question of

whether adaptive control laws could be learned for a particular (previously unspecified)

application.

Empirical Studies: We must first ask how predictive is the automaton shown in

Figure 9.4 over a broader category of applications. We are interested in how well it can

predict performance of scheduling heuristics over a range of different OFP applications.

We are then interested in its applicability to rate-based distributed real-time systems in

other application domains, using the experiments suggested in Section 9.1. As we learn

more from these studies, we anticipate an evolution of our models and infrastructure

for flexible and adaptive scheduling and dispatching, to support new kinds of adaptive

control.

Learning Adaptive Control Laws: Where possible, we would like to find control

laws that are general across families of applications. Where necessary, however, ma-

chine learning techniques might be applied to obtain the necessary control variables and

laws to meet adaptive QoS requirements for a particular application. Key questions in

this area include:

1. What kinds of learning are most applicable?

2. What models of adaptive control can be learned?

3. Could learning be used to mine basic attributes useful in formulating control laws,

or must a more complete basis be provideda priori?

4. Could learning be used to categorize these attributes and define more generally

applicable control laws?

5. What kinds of training data would be available and useful to increase speed of

learning and effectiveness of the resulting control laws?

194

Appendix A

Real-Time Scheduling Terminology

Precise terminology is necessary to describe and evaluate static, dynamic, and hybrid

scheduling strategies. In this appendix, we define a number of terms used throught this

dissertation.

RT Operation and RT Info: In TAO, anRT Operation is a scheduled CORBA

operation [117]. In this dissertation, we use the termoperationinterchangeably with

RT Operation . An RT Info structure is associated with each operation and contains

its QoS parameters. TheRT Info structure contains the following operation character-

istics described below:

� Criticality: Criticality is an application-supplied value that indicates the sig-

nificance of a CORBA operation’s completion prior to its deadline. Higher criticality

should be assigned to operations that incur greater cost to an application if they fail to

complete execution before their deadlines. Some scheduling strategies, such as MUF,

give greater priority to more critical operations than to less critical ones.

� Worst-case execution time: This is the longest time required to execute a

single dispatch of an operation. Worst case execution times may be determined through

techniques like simulation, instruction counting, or benchmarking on the target platform.

� Period: Period is the interval between dispatches of an operation.

� Importance: Importance is a lesser indication of a CORBA operation’s sig-

nificance. Like its criticality, an operation’s importance value is supplied by an applica-

tion. Importance is used as a “tie-breaker” to assign a unique static subpriority for each

operation.

195

� Dependencies: An operation maydependon data produced by another oper-

ation. An operation that depends on the data from another operation may execute only

after the other operation has completed.

Scheduling strategy: A scheduling strategy transforms the information from an oper-

ation’sRT Info by (1) assigning anurgencyto the operation based on its static priority,

dynamic subpriority, and static subpriority values, (2) mapping urgency into dispatching

priority and dispatching subpriority values for the operation, and (3) providing dispatch-

ing queue configuration information so that each operation can be dispatched according

to its assigned dispatching priority and dispatching subpriority. The key elements of this

transformation are defined as follows:

� Urgency: Urgency [126] is an ordered tuple consisting of (1) static priority,

(2) dynamic subpriority, and (3) static subpriority. Static priority is the highest ranking

priority component in the urgency tuple, followed by dynamic subpriority and then static

subpriority, respectively. Figure A.1 illustrates these relationships.

STATIC

PRIORITY

STATIC

SUBPRIORITY

DYNAMIC

SUBPRIORITY

HIGH

ORDER
LOW

ORDER

Figure A.1: Relationships in the Urgency Tuple

196

� Static priority: Static priority assignment establishes a fixed number of pri-

ority partitions into which all operations must fall. The number of static priority par-

titions is established off-line. An operation’s static priority value is often determined

off-line. However, the value assigned a particular dispatch of the operation could vary

at run-time, depending on which scheduling strategy is employed.

� Dynamic subpriority: Dynamic subpriority is a value generated and used

at run-time to order operationswithin a static priority level, according to the run-time

and static characteristics of each operation. For example, a subpriority based on the

operation with the “closest deadline” must be computed dynamically.

� Static subpriority: Static subpriority values are determined prior to run-

time. Static subpriority acts as a tie-breaker when both static priority and dynamic

subpriority are equal.

�Dispatching priority: An operation’s dispatching priority corresponds to the

real-time priority of the thread in which it will be dispatched. Operations with higher

dispatching priorities are executed in threads with higher real-time priorities.

� Dispatching subpriority: Dispatching subpriority is used to order opera-

tions within a dispatching priority level. Operations with higher dispatching subpriority

are executed ahead of operations with the same dispatching priority, but with lower dis-

patching subpriority.

� Queue configuration: A separate queue must be configured for each distinct

dispatching priority. The scheduling strategy assigns each queue a dispatching type,

e.g., static, deadline, or laxity1 ; a dispatching priority; and a thread priority.

Together, urgency and dispatching (sub)priority assignment specify requirements

that certain operations will meet their deadlines. To support end-to-end QoS require-

ments, operations with higher dispatching prioritiesshould notbe delayed by opera-

tions with lower dispatching priorities. Two research challenges must be resolved to

achieve this goal: (1) strategies must be identified to correctly specify end-to-end QoS

requirements for different operations and (2) dispatching modules must enforce these

end-to-end QoS specifications. The following two definitions are useful in addressing

these challenges:
1An operation’s laxity is the time until its deadline minus its remaining execution time.

197

�Critical set: The critical set consists of all operations whose completion prior

to deadline is crucial to the integrity of the system. If all operations in the critical set can

be assured of meeting their deadlines, a schedule that preserves the system’s integrity

can be constructed.

� Minimum critical priority: The minimum critical priority is the lowest dis-

patching priority level to which operations in the critical set are assigned. Depending on

the scheduling strategy, the critical set may span multipledispatching prioritylevels. To

ensure that the critical set is schedulable, all operations at the minimum critical priority

level must be schedulable.

In Kokyu, scheduling strategies rely primarily on priority- and subpriority-based

dispatching, which can be enforced efficiently either by mechanisms available in the

OS kernel (e.g., preemptive thread priorities) or can be implemented efficiently in mid-

dleware (e.g., dynamic subpriorities). Other scheduling strategies, such as Time-based

Scheduling [133] and FIFO-r [130], use additional characteristics to order the dispatches

of operations. These characteristics include:

� Resource share: Resource share is a measure of an operation’s appropri-

ate share of a resource (e.g., CPU time), and is used to ensure fairness among opera-

tions that are not otherwise prioritized. For example, a share-based scheduling strategy

might maintain information about each operation’s past execution time. This informa-

tion could be used to dispatch operations so that within every priority level each opera-

tion consumes CPU time proportional to its fair share.

� Timing constraints: Timing constraints capture explicit requirements for op-

eration dispatch and completion times. For example, a timing constraint might specify

that an operation must be dispatched withinT time units after another operation com-

pletes.

Dispatching module: A dispatching module is responsible for (1) constructing the

appropriate type of queue for each dispatching priority and (2) assigning each dispatch-

ing thread’s priority to the value provided by the scheduling strategy. A TAO ORB

endsystem can be configured with dispatching modules at several layers, including the

I/O subsystem [59], ORB Core [118], and/or the Event Service [41].

198

References

[1] T. Abdelzaher, S. Dawson, W.-C.Feng, F.Jahanian, S. Johnson, A. Mehra, T. Mit-

ton, A. Shaikh, K. Shin, Z. Wang, and H. Zou. ARMADA Middleware Suite. In

Proceedings of the Workshop on Middleware for Real-Time Systems and Services,

San Francisco, CA, December 1997. IEEE.

[2] ARINC Incorporated, Annapolis, Maryland, USA.Document No. 653: Avionics

Application Software Standard Inteface (Draft 15), January 1997.

[3] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, and Michael

Kircher. Applying C++, Patterns, and Components to Develop an IDL Compiler

for CORBA AMI Callbacks.C++ Report, 12(3), March 2000.

[4] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael Kircher,

and Jeff Parsons. The Design and Performance of a Scalable ORB Architecture

for CORBA Asynchronous Messaging. InProceedings of the Middleware 2000

Conference. ACM/IFIP, April 2000.

[5] Alia Atlas and Azer Bestavros. Statistical Rate Monotonic Scheduling. InThe

19th IEEE Real-Time Systems Symposium (RTSS ’98), Madrid Spain, December

1998.

[6] Alia Atlas and Azer Bestavros. Design and Implementation of Statistical Rate

Monotonic Scheduling in KURT Linux. InThe 20th IEEE Real-Time Systems

Symposium (RTSS ’99), Phoenix AZ, December 1999.

[7] Neil Audsley and Andy Wellings. Analysing APEX Applications. InProceedings

of the 16th Real-Time Systems Symposium, pages 39–44, December 1996.

[8] Matthew H. Austern.Generic Programming and the STL. Addison-Wesley, Read-

ing, Massachusetts, 1999.

199

[9] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Optimal Reward-Based

Scheduling for Periodic Real-Time Tasks.IEEE Transactions on Computers,

50(2):111–129, February 2001.

[10] A. Bavier, L. Peterson, and D. Mosberger. BERT: A Scheduler for Best Effort

and Realtime Tasks. Technical Report TR-602-99, Princeton University, 1999.

[11] Uyless Black.Internet Security Protocols. Prentice Hall, New Jersey, 2000.

[12] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull.The Real-Time

Specification for Java. Addison-Wesley, 2000.

[13] Center for Distributed Object Computing. TAO: A High-performance, Real-time

Object Request Broker (ORB). www.cs.wustl.edu/�schmidt/TAO.html, Wash-

ington University.

[14] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global

states of distributed systems.ACM Transactions on Computer Systems, 3(1):63–

75, February 1985.

[15] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin. Scheduling Periodic Jobs that Allow Im-

precise Results.IEEE Transactions on Computers, 39(9):1156–1174, September

1990.

[16] The Boeing Company. Open Systems Core Avionics Requirement (OSCAR).

http://www.acq.osd.mil/osjtf/pdf/oscar.pdf.

[17] G. Cooper, L. Cingiser DiPippo, L. Esibov, R. Ginis, R. Johnston, P. Kortman,

P. Krupp, J. Mauer, M. Squadrito, B. Thuraisingham, S. Wohlever, and V. Fay

Wolfe. Real-Time CORBA Development at MITRE, NRaD, Tri-Pacific and URI.

In Proceedings of the Workshop on Middleware for Real-Time Systems and Ser-

vices, San Francisco, CA, December 1997. IEEE.

[18] T. H. Corman, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms.

MIT, 1990.

200

[19] Angelo Corsaro, Douglas C. Schmidt, Ron K. Cytron, and Chris Gill. Formaliz-

ing Meta-Programming Techniques to Reconcile Heterogeneous Scheduling Dis-

ciplines in Open Distributed Real-Time Systems. InProceedings of the 3rd Inter-

national Symposium on Distributed Objects and Applications., pages 289–299,

Rome, Italy, September 2001. OMG.

[20] Joseph K. Cross and Douglas C. Schmidt. Meta-Programming Techniques for

Distributed Real-time and Embedded Systems. InProceedings of the7th Work-

shop on Object-oriented Real-time Dependable Systems, San Diego, CA, January

2002. IEEE.

[21] Jeff Crume.Inside Internet Security. Addison-Wesley, Harlow, England, 2000.

[22] Michel Cukier, James Lyons, Prashant Pandey, HariGovind V. Ramasamy,

William H. Sanders, Partha P. Pal, Franklin Webber, Richard E. Schantz, Joseph

Loyall, Ronald Watro, Michael Atighetchi, and Jeanna Gossett. Intrusion Toler-

ance Approaches in ITUA. InFast Abstract in Supplement of the 2001 Interna-

tional Conference on Dependable Systems and Networks, July 2001.

[23] Z. Deng and J. W.-S. Liu. Scheduling Real-Time Applications in an Open Envi-

ronment. InProceedings of the 18th IEEE Real-Time Systems Symposium. IEEE

Computer Society Press, December 1997.

[24] Bryan S. Doerr and David C. Sharp. Freeing Product Line Architectures from

Execution Dependencies. InProceedings of the 11th Annual Software Technology

Conference, April 1999.

[25] Bryan S. Doerr, Thomas Venturella, Rakesh Jha, Christopher D. Gill, and Dou-

glas C. Schmidt. Adaptive Scheduling for Real-time, Embedded Information

Systems. InProceedings of the 18th IEEE/AIAA Digital Avionics Systems Con-

ference (DASC), October 1999.

[26] Victor Fay-Wolfe, John K. Black, Bhavanai Thuraisingham, and Peter Krupp.

Real-time Method Invocations in Distributed Environments. Technical Report 95-

244, University of Rhode Island, Department of Computer Science and Statistics,

1995.

201

[27] W. Feng, U. Syyid, and J.W.-S. Liu. Providing for an Open, Real-Time CORBA.

In Proceedings of the Workshop on Middleware for Real-Time Systems and Ser-

vices, San Francisco, CA, December 1997. IEEE.

[28] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-

ing, Massachusetts, 1995.

[29] Christopher D. Gill, Ron Cytron, and Douglas C. Schmidt. Middleware Schedul-

ing Optimization Techniques for Distributed Real-Time and Embedded Systems.

In Proceedings of the7th Workshop on Object-oriented Real-time Dependable

Systems, San Diego, CA, January 2002. IEEE.

[30] Christopher D. Gill, Joseph W. Hoffert, David C. Sharp, and Patrick H. Goertzen.

An Evolution of QoS Context Propagation in Event-Mediated Avionics Software

Architectures. InProceedings of the 20th IEEE/AIAA Digital Avionics Systems

Conference (DASC), October 2001.

[31] Christopher D. Gill, David L. Levine, Carlos O’Ryan, and Douglas C. Schmidt.

Distributed Object Visualization for Sensor-Driven Systems. InProceedings of

the 18th IEEE/AIAA Digital Avionics Systems Conference (DASC), October 1999.

[32] Christopher D. Gill, David L. Levine, and Douglas C. Schmidt. The Design and

Performance of a Real-Time CORBA Scheduling Service.Real-Time Systems,

The International Journal of Time-Critical Computing Systems, special issue on

Real-Time Middleware, 20(2), March 2001.

[33] Aniruddha Gokhale and Douglas C. Schmidt. Measuring the Performance of

Communication Middleware on High-Speed Networks. InProceedings of SIG-

COMM ’96, pages 306–317, Stanford, CA, August 1996. ACM.

[34] Aniruddha Gokhale and Douglas C. Schmidt. Principles for Optimizing CORBA

Internet Inter-ORB Protocol Performance. InHawaiian International Conference

on System Sciences, January 1998.

[35] Aniruddha Gokhale and Douglas C. Schmidt. Optimizing a CORBA IIOP Pro-

tocol Engine for Minimal Footprint Multimedia Systems.Journal on Selected

202

Areas in Communications special issue on Service Enabling Platforms for Net-

worked Multimedia Systems, 17(9), September 1999.

[36] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.Concrete Mathe-

matics, A Foundation for Computer Science. Addison Wesley, Reading, Mas-

sachusetts, 1990.

[37] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for

streams with (m,k)-firm deadlines.IEEE Transactions on Computers, 44:1443–

1451, December 1995.

[38] Ching-Chih Jason Han. A Better Polynomial-Time Schedulability Test for Real-

Time Multiframe Tasks. InIEEE Real-Time Systems Symposium, Madrid, Spain,

December 1998. IEEE.

[39] Ching-Chih Jason Han and H. Ying Tyan. A Better Polynomial-Time Schedula-

bility Test for Real-Time Fixed-Priority Scheduling Algorithms. InIEEE Real-

Time Systems Symposium, San Francisco, CA, December 1997. IEEE.

[40] Hansson, Lawson, Bridal, Eriksson, Larsson, Lon, and Stromberg. BASEMENT:

An Architecture and Methodology for Distributed Automotive Real-Time Sys-

tems.IEEE Transactions on Computers, 46(9):1016–1027, SEPTEMBER 1997.

[41] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design and

Performance of a Real-time CORBA Event Service. InProceedings of OOPSLA

’97, pages 184–199, Atlanta, GA, October 1997. ACM.

[42] Timothy H. Harrison, Carlos O’Ryan, David L. Levine, and Douglas C. Schmidt.

The Design and Performance of a Real-time CORBA Event Service.submitted

to the Journal on Selected Areas in Communications special issue on Service

Enabling Platforms for Networked Multimedia Systems, 1998.

[43] Kenneth E. Iverson.A Programming Language. Wiley, 1962.

[44] J. Huang and R. Jha and W. Heimerdinger and M. Muhammad and S. Lauzac

and B. Kannikeswaran and K. Schwan and W. Zhao and R. Bettati. RT-ARM:

A Real-Time Adaptive Resource Management System for Distributed Mission-

Critical Applications. InWorkshop on Middleware for Distributed Real-Time

Systems, RTSS-97, San Francisco, California, 1997. IEEE.

203

[45] Kevin Jeffay. The Real-Time Producer/Consumer Paradigm: A paradigm for the

construction of efficient, predictable real-time systems. InProceedings of the

1993 ACM/SIGAPP Symposium on Applied Computing, 1993.

[46] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dynamic Scheduling for

Soft Real-Time Distributed Object Systems. InProceedings of the Third IEEE

International Symposium on Object-Oriented Real-time Distributed Computing

(ISORC), Newport Beach, CA, March 2000. IEEE/IFIP.

[47] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dynamic Scheduling of

Distributed Method Invocations. In21st IEEE Real-Time Systems Symposium,

Orlando, FL, November 2000. IEEE.

[48] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dynamic Migration Algo-

rithms for Distributed Object Systems. In21st IEEE International Conference on

Distributed Computing Systems (ICDCS), Phoenix AZ, April 2001. IEEE.

[49] V. Kalogeraki, P.M. Melliar-Smith, and L.E. Moser. Soft Real-Time Resource

Management in CORBA Distributed Systems. InProceedings of the Workshop on

Middleware for Real-Time Systems and Services, San Francisco, CA, December

1997. IEEE.

[50] S. Kannan, C. Restrepo, I. Yavrucuk, L. Wills, D. Schrage, and J.V.R. Prasad.

Control Algorithm and Flight Simulation Integration Using the Open Control

Platform for Unmanned Aerial Vehicles. InProceedings of the 18th IEEE/AIAA

Digital Avionics Systems Conference (DASC), October 2000.

[51] Khanna, S.,et al. Realtime Scheduling in SunOS 5.0. InProceedings of the

USENIX Winter Conference, pages 375–390. USENIX Association, 1992.

[52] Gregor Kiczales. Aspect-Oriented Programming. InProceedings of the 11th

European Conference on Object-Oriented Programming, June 1997.

[53] K. H. (Kane) Kim. Object Structures for Real-Time Systems and Simulators.

IEEE Computer, pages 62–70, August 1997.

[54] Kane Kim and Eltefaat Shokri. Two CORBA Services Enabling TMO Network

Programming. InFourth International Workshop on Object-Oriented, Real-Time

Dependable Systems. IEEE, January 1999.

204

[55] Michael Kircher and Douglas C. Schmidt. DOVE: A Distributed Object Visual-

ization Environment.C++ Report, 11(2), March 1999.

[56] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael Gonz´alez

Harbour. A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate

Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers, Nor-

well, Massachusetts, 1993.

[57] Fred Kuhns. Personal communication, November 2001.

[58] Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, and Jeff Parsons. The Design

and Performance of a Pluggable Protocols Framework for Object Request Broker

Middleware. InProceedings of the IFIP6th International Workshop on Protocols

For High-Speed Networks (PfHSN ’99), Salem, MA, August 1999. IFIP.

[59] Fred Kuhns, Douglas C. Schmidt, and David L. Levine. The Design and Perfor-

mance of a Real-time I/O Subsystem. InProceedings of the5th IEEE Real-Time

Technology and Applications Symposium, pages 154–163, Vancouver, British

Columbia, Canada, June 1999. IEEE.

[60] Fred Kuhns, Douglas C. Schmidt, Carlos O’Ryan, and David Levine. Supporting

High-performance I/O in QoS-enabled ORB Middleware.Cluster Computing:

the Journal on Networks, Software, and Applications, 3(3), 2000.

[61] Ralph Lachenmaier. Open Systems Architecture Puts Six Bombs on Tar-

get. http://www.cs.wustl.edu/˜schmidt/TAO-boeing.html ,

December 1998.

[62] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed Sys-

tem. Communications of the ACM, 26(7):558–565, 1978.

[63] Eric Larson and Brian Stephens.Web Servers, Security, and Maintenance. Pren-

tice Hall, New Jersey, 2000.

[64] R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Behavioral

Pattern for Concurrent Programming. InProceedings of the2nd Annual Con-

ference on the Pattern Languages of Programs, pages 1–7, Monticello, Illinois,

September 1995.

205

[65] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm:

Exact Characterization and Average Case Behavior. InProceedings of the 10th

IEEE Real-Time Systems Symposium, pages 166–171. IEEE Computer Society

Press, 1989.

[66] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced Aperiodic Scheduling in

Hard Real-Time Environments. InProceedings of the IEEE Real-Time Systems

Symposium. IEEE Computer Society Press, 1987.

[67] David L. Levine, Christopher D. Gill, and Douglas C. Schmidt. Dynamic

Scheduling Strategies for Avionics Mission Computing. InProceedings of the

17th IEEE/AIAA Digital Avionics Systems Conference (DASC), November 1998.

[68] Baochun Li and Klara Nahrstedt. A Control-based Middleware Framework

for QoS Adaptations. IEEE Journal on Selected Areas in Communications,

17(9):1632–1650, September 1999.

[69] Baochun Li and Klara Nahrstedt. Impact of Control Theory on QoS Adaptation in

Distributed Middleware Systems. InProceedings of the 2001 American Control

Conference, June 2001.

[70] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment.JACM, 20(1):46–61, January 1973.

[71] Jane W. S. Liu.Real-Time Systems. Prentice Hall, New Jersey, 2000.

[72] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro, C. Ro-

drigues, M. Atighetchi, and D. Karr. Comparing and Contrasting Adaptive Mid-

dleware Support in Wide-Area and Embedded Distributed Object Applications.

In Proceedings of the 21st International Conference on Distributed Computing

Systems (ICDCS-21), pages 625–634. IEEE, April 2001.

[73] Joseph P. Loyall, Partha P. Pal, Richard E. Schantz, and Franklin Webber. Build-

ing Adaptive and Agile Applications Using Intrusion Detection and Response. In

Proceedings of NDSS 2000, the Network and Distributed System Security Sym-

posium, February 2000.

[74] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M. Marley.

Performance Specifications and Metrics for Adaptive Real-Time Systems. InThe

206

21st IEEE Real-Time Systems Symposium (RTSS ’00), Orlando FL, December

2000.

[75] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design and Evaluation of a Feed-

back Control EDF Scheduling Algorithm. InThe 20th IEEE Real-Time Systems

Symposium (RTSS ’99), Phoenix AZ, December 1999.

[76] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback Control Real-Time

Scheduling: Framework, Modeling, and Algorithms.Journal of Real-Time Sys-

tems, Special Issue on Control-Theoretical Approaches to Real-Time Computing,

2002, to appear.

[77] Chenyang Lu.Feedback Control Real-Time Scheduling. PhD thesis, University

of Virginia, Charlottesville, VA, May 2001.

[78] Charlie McElhone. Soft Computations within Integrated Avionics Systems. In

Proceedings of the IEEE National Aerospace and Electronics Conference (NAE-

CON 2000), October 2000.

[79] Ashish Mehra, Atri Indiresan, and Kang G. Shin. Structuring Communication

Software for Quality-of-Service Guarantees.IEEE Transactions on Software En-

gineering, 23(10):616–634, October 1997.

[80] Aloysius K. Mok and Deji Chen. A Multiframe Model for Real-Time Tasks.

IEEE Transactions on Software Engineering, 23(1):635–645, October 1997.

[81] L. Molesky, K. Ramamritham, C. Shen, J. Stankovic, and G. Zlokapa. Imple-

menting a Predictable Real-Time Multiprocessor Kernel - The Spring Kernel,

extended abstract. InIEEE Workshop on Real-Time Operating Systems and Soft-

ware, May 1990.

[82] C. Montez, J. Fraga, R. Oliveira, and J.-M. Farines. An Adaptive Scheduling

Approach in Real-Time CORBA. InProceedings of the International Symposium

on Object-Oriented Real-time Distributed Computing (ISORC). IEEE/IFIP, 1999.

[83] A.B. Montz, D. Mosberger, S. W. O’Malley, L.L. Peterson, and T.A. Proebsting.

Scout: A Communications-Oriented Operating System. In5th Workshop on Hot

Topics in Operating System. IEEE Computer Society Press, May 1995.

207

[84] David Mosberger.Scout: A Path-Based Operating System. PhD thesis, University

of Arizona, 1997.

[85] David Mosberger and Larry L. Peterson. Making Paths Explicit in the Scout

Operating System. InProceedings of the1st Symposium on Operating Systems

Design and Implementation. USENIX Association, October 1996.

[86] Nancy Ann Lynch.Distributed Algorithms. Morgan Kaufmann Publishers, Inc.,

1996.

[87] John R. Newport.Avionics Systems Design. CRC Press, Boca Raton, Florida,

1994.

[88] Douglas Niehaus. Improving Support for Multimedia System Experimentation

and Deployment. In Nabil R. Adam and Bharat Bhargava, editors,Workshop on

Parallel and Distributed Real-Time Systems. Lecture Notes in Computer Science

1586, Parallel and Distributed Processing, Springer Verlag, 1999.

[89] Object Management Group.CORBA Messaging Specification, OMG Document

orbos/98-05-05 edition, May 1998.

[90] Object Management Group.The Common Object Request Broker: Architecture

and Specification, 2.2 edition, February 1998.

[91] Object Management Group.Real-time CORBA Joint Revised Submission, OMG

Document orbos/99-02-12 edition, March 1999.

[92] Object Management Group.Dynamic Scheduling Real-Time CORBA Joint Re-

vised Submission, OMG Document orbos/2000-08-12 edition, August 2000.

[93] Object Management Group.Security Service 1.8 Specification, OMG Document

security/00-11-03 edition, November 2000.

[94] Object Management Group.Dynamic Scheduling Real-Time CORBA 2.0 Joint

Final Submission, OMG Document orbos/2001-06-09 edition, April 2001.

[95] Shui Oikawa and Raj Rajkumar. Portable RK: A Portable Resource Kernel for

Guaranteed and Enforced Timing Behavior. InProceedings of the5th IEEE Real-

Time Technology and Applications Symposium, Vancouver, British Columbia,

June 1999. IEEE.

208

[96] Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman, and Jeff Par-

sons. The Design and Performance of a Pluggable Protocols Framework for Real-

time Distributed Object Computing Middleware. InProceedings of the Middle-

ware 2000 Conference. ACM/IFIP, April 2000.

[97] Carlos O’Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spivak, Jeff Parsons,

Irfan Pyarali, and David Levine. Evaluating Policies and Mechanisms for Sup-

porting Embedded, Real-Time Applications with CORBA 3.0. InProceedings

of the6th IEEE Real-Time Technology and Applications Symposium, Washington

DC, May 2000. IEEE.

[98] Carlos O’Ryan, Douglas C. Schmidt, David Levine, and Russell Noseworthy. Ap-

plying a Scalable CORBA Events Service to Large-scale Distributed Interactive

Simulations. InProceedings of the5th Workshop on Object-oriented Real-time

Dependable Systems, Montery, CA, November 1999. IEEE.

[99] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell Noseworthy. Patterns and

Performance of a CORBA Event Service for Large-scale Distributed Interactive

Simulations.International Journal of Computer Systems Science and Engineer-

ing, 2002.

[100] Partha P. Pal, Joseph P. Loyall, Richard E. Schantz, John A. Zinky, and Franklin

Webber. Open Implementation Toolkit for Building Survivable Applications. In

Proceedings of DISCEX 2000, the DARPA Information Survivability Conference

and Exposition, January 2000.

[101] Partha P. Pal, Franklin Webber, Richard E. Schantz, Michael Atighetchi, and

Joseph P. Loyall. Defense-Enabling Using Advanced Middleware - An Exam-

ple. InProceedings of Milcom 01, October 2001.

[102] Irfan Pyarali.Patterns for Providing Real-Time Guarantees in DOC Middleware.

PhD thesis, Washington University, St. Louis, MO 63130, December 2001. De-

fense December 18th, 2001.

[103] Irfan Pyarali, Tim Harrison, Douglas C. Schmidt, and Thomas D. Jordan. Proac-

tor – An Architectural Pattern for Demultiplexing and Dispatching Handlers for

Asynchronous Events. InThe4th Pattern Languages of Programming Conference

(Washington University technical report #WUCS-97-34), September 1997.

209

[104] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt. Design and Perfor-

mance of an Object-Oriented Framework for High-Performance Electronic Med-

ical Imaging.USENIX Computing Systems, 9(4), November/December 1996.

[105] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishal

Kachroo, and Aniruddha Gokhale. Applying Optimization Patterns to the Design

of Real-time ORBs. InProceedings of the5th Conference on Object-Oriented

Technologies and Systems, San Diego, CA, May 1999. USENIX.

[106] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishal

Kachroo, and Aniruddha Gokhale. Using Principle Patterns to Optimize Real-

time ORBs.IEEE Concurrency Magazine, 8(1), 2000.

[107] Steve Rago.UNIX System V Network Programming. Addison-Wesley, Reading,

Massachusetts, 1993.

[108] Ragunathan Rajkumar, Mike Gagliardi, and Lui Sha. The Real-Time Pub-

lisher/Subscriber Inter-Process Communication Model for Distributed Real-Time

Systems: Design and Implementation. InFirst IEEE Real-Time Technology and

Applications Symposium, May 1995.

[109] K. Ramamritham, C. Shen, O. Gonz´ales, S. Sen, and S. Shirgurkar. Using Win-

dows NT for Real-time Applications: Experimental Observations and Recom-

mendations. InProceedings of the Fourth IEEE Real-Time Technology and Ap-

plications Symposium, Denver, CO, June 1998. IEEE.

[110] Krithi Ramamritham, John A. Stankovic, and Perng-Fei Shiah. Efficient Schedul-

ing Algorithms for Real-Time Multiprocessor Systems.IEEE Transactions on

Parallel and Distributed Systems, 1(2):184–194, April 1990.

[111] John Regehr and Jay Lepreau. The Case for Using Middleware to Manage Di-

verse Soft Real-Time Schedulers. InProceedings of the International Workshop

on Multimedia Middleware (M3W ’01), Ottowa, Canada, October 2001.

[112] F. Rufus, S. Clements, S. Sander, B. Heck, L. Wills, and G. Vachtsevanos.

Software-Enabled Control Technologies for Autonomous Aerial Vehicles. InPro-

ceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference (DASC),

October 2000.

210

[113] F. Rufus, B. Heck, and G. Vachtsevanos. Software-Enabled Adaptive Mode Tran-

sition Control for Autonomous Manned Vehicles. InProceedings of the 19th

IEEE/AIAA Digital Avionics Systems Conference (DASC), October 2000.

[114] Douglas C. Schmidt. GPERF: A Perfect Hash Function Generator. InProceed-

ings of the2nd C++ Conference, pages 87–102, San Francisco, California, April

1990. USENIX.

[115] Douglas C. Schmidt. Reactor: An Object Behavioral Pattern for Concurrent

Event Demultiplexing and Event Handler Dispatching. In James O. Coplien and

Douglas C. Schmidt, editors,Pattern Languages of Program Design, pages 529–

545. Addison-Wesley, Reading, Massachusetts, 1995.

[116] Douglas C. Schmidt. A Family of Design Patterns for Application-level Gate-

ways.The Theory and Practice of Object Systems (Special Issue on Patterns and

Pattern Languages), 2(1), 1996.

[117] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design and

Performance of Real-Time Object Request Brokers.Computer Communications,

21(4):294–324, April 1998.

[118] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and Aniruddha

Gokhale. Software Architectures for Reducing Priority Inversion and Non-

determinism in Real-time Object Request Brokers.Journal of Real-time Systems,

special issue on Real-time Computing in the Age of the Web and the Internet,

21(2), 2001.

[119] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.

Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked

Objects, Volume 2. Wiley & Sons, New York, 2000.

[120] David C. Sharp. Reducing Avionics Software Cost Through Component Based

Product Line Development. InProceedings of the 10th Annual Software Technol-

ogy Conference, April 1998.

[121] David C. Sharp. Avionics Product Line Software Architecture Flow Policies.

In Proceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference

(DASC), October 1999.

211

[122] Balaji Srinivasan, Shyamalan Pather, Robert Hill, Furquan Ansari, and Douglas

Niehaus. A Firm Real-Time System Implementation Using Commercial Off-The-

Shelf Hardware and Free Software. InProceedings of the4th IEEE Real-Time

Technology and Applications Symposium, Denver, CO, June 1998. IEEE.

[123] J. A. Stankovic, T. He, T. F. Abdelzaher, M. Marley, G. Tao, S. H. Son, and

C. Lu. Feedback Control Scheduling in Distributed Systems. InThe 22nd IEEE

Real-Time Systems Symposium (RTSS ’01), London UK, December 2001.

[124] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The Case for Feedback Control

Real-Time Scheduling. In11th EuroMicro Conference on Real-Time Systems,

York UK, June 1999.

[125] Alex Stepanov and Meng Lee. The Standard Template Library. Technical Report

HPL-94-34, Hewlett-Packard Laboratories, April 1994.

[126] David B. Stewart and Pradeep K. Khosla. Real-Time Scheduling of Sensor-Based

Control Systems. In W. Halang and K. Ramamritham, editors,Real-Time Pro-

gramming. Pergamon Press, Tarrytown, NY, 1992.

[127] David B. Stewart, D. E. Schmitz, and Pradeep K. Khosla. Implementing Real-

Time Robotic Systems using CHIMERA II. InProceedings of 1990 IEEE Inter-

national Conference on Robotics and Automation, Cincinnatti, OH, 1992.

[128] D.A. Stuart, M. Brockmeyer, A.K. Mok, and F. Jahanian. Simulation-

Verification: Biting at the State Explosion Problem.IEEE Transactions on Soft-

ware Engineering, 27(7):599–617, 2001.

[129] Bhavani Thuraisingham, Peter Krupp, Alice Schafer, and Victor Wolfe. On Real-

Time Extensions to the Common Object Request Broker Architecture. InPro-

ceedings of the Object Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA) Workshop on Experiences with CORBA. ACM, October 1994.

[130] Hung-Ying Tyan and Jennifer C. Hou. A rate-based message scheduling

paradigm. InFourth International Workshop on Object-Oriented, Real-Time De-

pendable Systems. IEEE, January 1999.

212

[131] Statement of Work for the Extend Sentry Program, CPFF Project, ECSP Replace-

ment Phase II, February 1997. Submitted to OMG in response to RFI ORBOS/96-

09-02.

[132] Steve Vinoski. CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments.IEEE Communications Magazine, 14(2), February

1997.

[133] Yu-Chung Wang and Kwei-Jay Lin. Implementing A General Real-Time

Scheduling Framework in the RED-Linux Real-Time Kernel. InIEEE Real-Time

Systems Symposium, pages 246–255. IEEE, December 1999.

[134] Franklin Webber, Partha P. Pal, Richard E. Schantz, and Joseph P. Loyall.

Defense-Enabled Applications. InProceedings of the second DARPA Information

Survivability Conference and Exposition (DISCEX II), June 2000.

[135] Jennifer Lundelius Welch. Simulating Synchronous Processors.Information and

Computation, 74(2):159–171, 1987.

[136] L. R. Welch, B. A. Shirazi, B. Ravindran, and C. Bruggeman. DeSiDeRaTa:

QoS Management Technology for Dynamic, Scalable, Dependable Real-Time

Systems. InIFACs 15th Symposium on Distributed Computer Control Systems

(DCCS98). IFAC, 1998.

[137] L. Wills, S. Kannan, B. Heck, G. Vachtsevanos, C. Restrepo, S. Sander,

D. Schrage, and J.V.R. Prasad. An Open Software Infrastructure for Reconfig-

urable Control Systems. InProceedings of the 19th American Control Conference

(ACC-2000), June 2000.

[138] Linda Wills, Sam Sander, Suresh Kannan, Aaron Kahn, J.V.R. Prasad, and Daniel

Schrage. An Open Control Platform for Reconfigurable, Distributed, Hierarchical

Control Systems. InProceedings of the 19th IEEE/AIAA Digital Avionics Systems

Conference (DASC), October 2000.

[139] Wind River Systems. VxWorks 5.3. www.wrs.com/products/html/vxworks.html.

[140] Don C. Winter. Modular, Reusable Flight Software for Production Strike Air-

craft. InProceedings of the 15th IEEE/AIAA Digital Avionics Systems Conference

(DASC), pages 401–406, 1996.

213

[141] Victor Fay Wolfe, Lisa Cingiser DiPippo, Roman Ginis, Michael Squadrito,

Steven Wohlever, Igor Zykh, and Russel Johnston. Real-Time CORBA. InPro-

ceedings of the Third IEEE Real-Time Technology and Applications Symposium,

Montréal, Canada, June 1997.

[142] E. Riseman Z. Zhu, K. Rajasekar and A. Hanson. Panoramic Virtual Stereo Vision

of Cooperative Mobile Robots for Localizing 3D Moving Objects. InProceedings

of the IEEE Workshop on Omnidirectional Vision (OMNIVIS’00). IEEE, 2000.

[143] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support for

Quality of Service for CORBA Objects.Theory and Practice of Object Systems,

3(1):1–20, 1997.

214

Vita
Christopher D. Gill

Date of Birth January 12, 1965

Place of Birth Madison, Wisconsin, United States of America

Degrees B.A. cum laude, English and Biology, May 1987, Washington
University
M.S. Computer Science, May 1997, University of Missouri-
Rolla

Professional
Societies

ACM, IEEE, IEEE Computer Society, USENIX, OMG

Publications Gill, C. D., Levine, D. L., Schmidt, D. C., “The Design and
Performance of a Real-Time CORBA Scheduling Service”,
Real-Time Systems: the International Journal of Time-Critical
Computing Systems, special issue on Real-Time Middle-
ware, guest editor Wei Zhao, March 2001, Vol. 20 No. 2,
pp. 117-154.

Levine, D. L., Gill, C. D., Schmidt, D. C., “Object Lifetime
Manager - A Complementary Pattern for Controlling Ob-
ject Creation and Destruction”, Design Patterns in Commu-
nications Software, Linda Rising, ed., Cambridge University
Press, 2001, pp. 495-534.

Gill, C. D., Hoffert, J. W., Sharp, D. C., and Goertzen, P.
H. “An Evolution of QoS Context Propagation in Event-
Mediated Avionics Software Architectures”, Proceedings of
the 20th IEEE/AIAA Digital Avionics System Conference,
Daytona Beach, Florida, October 14-18, 2001.

215

Corsaro, A., Schmidt, D. C., Gill, C., Cytron, R., “Formal-
izing Meta-Programming Techniques to Reconcile Hetero-
geneous Scheduling Disciplines in Open Distributed Real-
Time Systems”, 3rd International Symposium on Distributed
Objects and Applications (DOA ’01), September 8-10, 2001,
Rome, Italy.

Loyall, J., Gossett, J., Gill, C., Schantz, R., Zinky, J., Pal, P.,
Shapiro, R., Rodrigues, C., Atighetchi, M., and Karr, D.,
“Comparing and Contrasting Adaptive Middleware Support
in Wide-Area and Embedded Distributed Object Applica-
tions”, Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), Phoenix, Ari-
zona, USA, April 16-19, 2001, pp. 625-634.

Gill, C. D., Levine, D. L., “Quality of Service Management
for Real-Time Embedded Information Systems”, Proceed-
ings of the 19th IEEE/AIAA Digital Avionics System Con-
ference, Philadelphia, Pennsylvania, 7-13 October 2000.

Judkins, T. V., Gill, C. D., “Synthesizer, A Pattern Language
for Designing Digital Modular Synthesis Software”, Pro-
ceedings of the 6th Pattern Languages of Programming Con-
ference, Allerton Park, Illinois, USA, 13 – 16 August 2000.

Doerr, B., Venturella, T., Jha, R., Gill, C., Schmidt, D., “Adap-
tive Scheduling for Real-time, Embedded Information Sys-
tems”, Proceedings of the 18th IEEE/AIAA Digital Avionics
Systems Conference, St. Louis, Missouri, October 24-29,
1999.

Gill, C. D., Levine, D. L., O’Ryan, C., Schmidt, D. C., “Dis-
tributed Object Visualization for Sensor-Driven Systems”,
18th IEEE/AIAA Digital Avionics System Conference, St.
Louis, Missouri, Oct 24-29 1999.

216

Levine, D. L., Gill, C. D., Schmidt, D. C., “Dynamic Schedul-
ing Strategies for Avionics Mission Computing”, Proceed-
ings of the 17th IEEE/AIAA Digital Avionics System Con-
ference, Seattle, Washington, 31 October - 6 November 1998.

May 2002

	Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002
	Recommended Citation
	Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

	tmp.1472055847.pdf.yBVbZ

	Abstract: Abstract: Distributed rate-based real-time systems, such as process control and avionics

mission computing systems, have traditionally been scheduled statically. Static scheduling

provides assurance of schedulability prior to run-time and can be implemented with

low run-time overhead. However, static scheduling is brittle in the face of unanticipated

overload, and treats invocation-to-invocation variations in resource requirements

inflexibly. As a consequence, processing resources are often under-utilized in the average

case, and the resulting systems are hard to adapt to meet new real-time processing

requirements.

Dynamic scheduling offers relief from the limitations of static scheduling. However,

dynamic scheduling often has a higher run-time cost because certain decisions are

enforced on-line. Furthermore, under conditions of overload tasks can be scheduled

dynamically that may never be dispatched, or that upon dispatch would miss their deadlines.

We review the implications of these factors on rate-based distributed systems, and

posits the necessity to combine static and dynamic approaches to exploit the strengths

and compensate for the weaknesses of either approach in isolation.

We present a general hybrid approach to real-time scheduling and dispatching

in middleware, that can employ both static and dynamic components. This approach

provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend

this assurance incrementally to operations in successively lower criticality equivalence

classes, (3) the ability to trade off bounds on feasible utilization and dispatching overhead

in cases where, for example, execution jitter is a factor or rates are not harmonically

related, and (4) overall flexibility to make more optimal use of scarce computing

resources and to enforce a wider range of application-specified execution requirements.

This approach also meets additional constraints of an increasingly important

class of rate-based systems, those with requirements for robust management of realtime

performance in the face of rapidly and widely changing operating conditions. To

support these requirements, we present a middleware framework that implements the

hybrid scheduling and dispatching approach described above, and also provides support

for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation

among several scheduling strategies to improve real-time performance in the face of

changing operating conditions.

Adaptive re-scheduling must be performed whenever operating conditions exceed

the ability of the scheduling and dispatching infrastructure to meet the critical

real-time requirements of the system under the currently specified rates and execution

times of operations. Adaptive re-scheduling relies on the ability to change the rates

of execution of at least some operations, and may occur under the control of a higherlevel

middleware resource manager. Different rates of execution may be specified under

different operating conditions, and the number of such possible combinations may be

arbitrarily large. Furthermore, adaptive re-scheduling must occur within an acceptably

predictable and narrow interval, while preserving schedulability assurances for critical

operations, and optimizing other properties such as resource utilization to the extent

possible. To address these constraints, we describe extensions to provide flexible and

efficient strategies for rate selection and priority re-assignment.

Unfortunately, adaptive re-scheduling may in turn require notification of ratesensitive

application components. It is therefore desirable to handle variations in operating

conditions entirely within the scheduling and dispatching infrastructure when possible.

A rate-based distributed real-time application, or a higher-level resource manager,

could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable

real-time performance through self-adaptation.

Reflective alternation among scheduling heuristics offers a way to tune real-time

performance internally, and we offer foundational support for this approach. In particular,

run-time observable information such as that provided by our metrics-feedback

framework makes it possible to detect that a given current scheduling heuristic is underperforming

the level of service another could provide. Furthermore we present empirical

results for our framework in a realistic avionics mission computing environment. This

forms the basis for guided adaptation.

This dissertation makes five contributions in support of flexible and adaptive

scheduling and dispatching in middleware. First, we provide a middleware scheduling

framework that supports arbitrary and fine-grained composition of static/dynamic

scheduling heuristics, to assure critical timeliness constraints while improving noncritical

performance under a range of conditions. Second, we provide a flexible dispatching

infrastructure framework composed of fine-grained primitives, and describe

how appropriate configurations can be generated automatically based on the output of

the scheduling framework. Third, we describe algorithms to reduce the overhead and

duration of adaptive rescheduling, based on sorting for rate selection and priority assignment.

Fourth, we provide timely and efficient performance information through an

optimized metrics-feedback framework, to support higher-level reflection and adaptation

decisions. Fifth, we present the results of empirical studies to quantify and evaluate

the performance of alternative canonical scheduling heuristics, across a range of load

and load jitter conditions. These studies were conducted within an avionics mission

computing application framework running on realistic middleware and embedded hardware.

The results obtained from these studies (1) demonstrate the potential benefits of

reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest

performance factors of interest for future work on adaptive control policies and mechanisms

using this framework.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 1, 2002
	Author: Authors: Christopher D. Gill
	Title: FLEXIBLE SCHEDULING IN MIDDLEWARE FOR DISTRIBUTED RATE-BASED REAL-TIME APPLICATIONS - Doctoral Dissertation, May 2002
	ReportNumber: 2002-21
	DepartmentName: Department of Computer Science & Engineering

