2,472 research outputs found

    A speculative execution approach to provide semantically aware contention management for concurrent systems

    Get PDF
    PhD ThesisMost modern platforms offer ample potention for parallel execution of concurrent programs yet concurrency control is required to exploit parallelism while maintaining program correctness. Pessimistic con- currency control featuring blocking synchronization and mutual ex- clusion, has given way to transactional memory, which allows the composition of concurrent code in a manner more intuitive for the application programmer. An important component in any transactional memory technique however is the policy for resolving conflicts on shared data, commonly referred to as the contention management policy. In this thesis, a Universal Construction is described which provides contention management for software transactional memory. The technique differs from existing approaches given that multiple execution paths are explored speculatively and in parallel. In the resolution of conflicts by state space exploration, we demonstrate that both concur- rent conflicts and semantic conflicts can be solved, promoting multi- threaded program progression. We de ne a model of computation called Many Systems, which defines the execution of concurrent threads as a state space management problem. An implementation is then presented based on concepts from the model, and we extend the implementation to incorporate nested transactions. Results are provided which compare the performance of our approach with an established contention management policy, under varying degrees of concurrent and semantic conflicts. Finally, we provide performance results from a number of search strategies, when nested transactions are introduced

    A semantically aware transactional concurrency control for GPGPU computing

    Get PDF
    PhD ThesisThe increased parallel nature of the GPU a ords an opportunity for the exploration of multi-thread computing. With the availability of GPU has recently expanded into the area of general purpose program- ming, a concurrency control is required to exploit parallelism as well as maintaining the correctness of program. Transactional memory, which is a generalised solution for concurrent con ict, meanwhile allow application programmers to develop concurrent code in a more intu- itive manner, is superior to pessimistic concurrency control for general use. The most important component in any transactional memory technique is the policy to solve con icts on shared data, namely the contention management policy. The work presented in this thesis aims to develop a software trans- actional memory model which can solve both concurrent con ict and semantic con ict at the same time for the GPU. The technique di ers from existing CPU approaches on account of the di erent essential ex- ecution paths and hardware basis, plus much more parallel resources are available on the GPU. We demonstrate that both concurrent con- icts and semantic con icts can be resolved in a particular contention management policy for the GPU, with a di erent application of locks and priorities from the CPU. The basic problem and a software transactional memory solution idea is proposed rst. An implementation is then presented based on the execution mode of this model. After that, we extend this system to re- solve semantic con ict at the same time. Results are provided nally, which compare the performance of our solution with an established GPU software transactional memory and a famous CPU transactional memory, at varying levels of concurrent and semantic con icts

    Mechanisms for Unbounded, Conflict-Robust Hardware Transactional Memory

    Get PDF
    Conventional lock implementations serialize access to critical sections guarded by the same lock, presenting programmers with a difficult tradeoff between granularity of synchronization and amount of parallelism realized. Recently, researchers have been investigating an emerging synchronization mechanism called transactional memory as an alternative to such conventional lock-based synchronization. Memory transactions have the semantics of executing in isolation from one another while in reality executing speculatively in parallel, aborting when necessary to maintain the appearance of isolation. This combination of coarse-grained isolation and optimistic parallelism has the potential to ease the tradeoff presented by lock-based programming. This dissertation studies the hardware implementation of transactional memory, making three main contributions. First, we propose the permissions-only cache, a mechanism that efficiently increases the size of transactions that can be handled in the local cache hierarchy to optimize performance. Second, we propose OneTM, an unbounded hardware transactional memory system that serializes transactions that escape the local cache hierarchy. Finally, we propose RetCon, a novel mechanism for detecting conflicts that reduces conflicts by allowing transactions to commit with different values than those with which they executed as long as dataflow and control-flow constraints are maintained

    Practical Dynamic Transactional Data Structures

    Get PDF
    Multicore programming presents the challenge of synchronizing multiple threads. Traditionally, mutual exclusion locks are used to limit access to a shared resource to a single thread at a time. Whether this lock is applied to an entire data structure, or only a single element, the pitfalls of lock-based programming persist. Deadlock, livelock, starvation, and priority inversion are some of the hazards of lock-based programming that can be avoided by using non-blocking techniques. Non-blocking data structures allow scalable and thread-safe access to shared data by guaranteeing, at least, system-wide progress. In this work, we present the first wait-free hash map which allows a large number of threads to concurrently insert, get, and remove information. Wait-freedom means that all threads make progress in a finite amount of time --- an attribute that can be critical in real-time environments. We only use atomic operations that are provided by the hardware; therefore, our hash map can be utilized by a variety of data-intensive applications including those within the domains of embedded systems and supercomputers. The challenges of providing this guarantee make the design and implementation of wait-free objects difficult. As such, there are few wait-free data structures described in the literature; in particular, there are no wait-free hash maps. It often becomes necessary to sacrifice performance in order to achieve wait-freedom. However, our experimental evaluation shows that our hash map design is, on average, 7 times faster than a traditional blocking design. Our solution outperforms the best available alternative non-blocking designs in a large majority of cases, typically by a factor of 15 or higher. The main drawback of non-blocking data structures is that only one linearizable operation can be executed by each thread, at any one time. To overcome this limitation we present a framework for developing dynamic transactional data containers. Transactional containers are those that execute a sequence of operations atomically and in such a way that concurrent transactions appear to take effect in some sequential order. We take an existing algorithm that transforms non-blocking sets into static transactional versions (LFTT), and we modify it to support maps. We implement a non-blocking transactional hash map using this new approach. We continue to build on LFTT by implementing a lock-free vector using a methodology to allow LFTT to be compatible with non-linked data structures. A static transaction requires all operands and operations to be specified at compile-time, and no code may be executed between transactions. These limitations render static transactions impractical for most use cases. We modify LFTT to support dynamic transactions, and we enhance it with additional features. Dynamic transactions allow operands to be specified at runtime rather than compile-time, and threads can execute code between the data structure operations of a transaction. We build a framework for transforming non-blocking containers into dynamic transactional data structures, called Dynamic Transactional Transformation (DTT), and provide a library of novel transactional containers. Our library provides the wait-free progress guarantee and supports transactions among multiple data structures, whereas previous work on data structure transactions has been limited to operating on a single container. Our approach is 3 times faster than software transactional memory, and its performance matches its lock-free transactional counterpart

    DataHub: Collaborative Data Science & Dataset Version Management at Scale

    Get PDF
    Relational databases have limited support for data collaboration, where teams collaboratively curate and analyze large datasets. Inspired by software version control systems like git, we propose (a) a dataset version control system, giving users the ability to create, branch, merge, difference and search large, divergent collections of datasets, and (b) a platform, DataHub, that gives users the ability to perform collaborative data analysis building on this version control system. We outline the challenges in providing dataset version control at scale.Comment: 7 page

    Performance Optimization Strategies for Transactional Memory Applications

    Get PDF
    This thesis presents tools for Transactional Memory (TM) applications that cover multiple TM systems (Software, Hardware, and hybrid TM) and use information of all different layers of the TM software stack. Therefore, this thesis addresses a number of challenges to extract static information, information about the run time behavior, and expert-level knowledge to develop these new methods and strategies for the optimization of TM applications

    Enhancing the efficiency and practicality of software transactional memory on massively multithreaded systems

    Get PDF
    Chip Multithreading (CMT) processors promise to deliver higher performance by running more than one stream of instructions in parallel. To exploit CMT's capabilities, programmers have to parallelize their applications, which is not a trivial task. Transactional Memory (TM) is one of parallel programming models that aims at simplifying synchronization by raising the level of abstraction between semantic atomicity and the means by which that atomicity is achieved. TM is a promising programming model but there are still important challenges that must be addressed to make it more practical and efficient in mainstream parallel programming. The first challenge addressed in this dissertation is that of making the evaluation of TM proposals more solid with realistic TM benchmarks and being able to run the same benchmarks on different STM systems. We first introduce a benchmark suite, RMS-TM, a comprehensive benchmark suite to evaluate HTMs and STMs. RMS-TM consists of seven applications from the Recognition, Mining and Synthesis (RMS) domain that are representative of future workloads. RMS-TM features current TM research issues such as nesting and I/O inside transactions, while also providing various TM characteristics. Most STM systems are implemented as user-level libraries: the programmer is expected to manually instrument not only transaction boundaries, but also individual loads and stores within transactions. This library-based approach is increasingly tedious and error prone and also makes it difficult to make reliable performance comparisons. To enable an "apples-to-apples" performance comparison, we then develop a software layer that allows researchers to test the same applications with interchangeable STM back ends. The second challenge addressed is that of enhancing performance and scalability of TM applications running on aggressive multi-core/multi-threaded processors. Performance and scalability of current TM designs, in particular STM desings, do not always meet the programmer's expectation, especially at scale. To overcome this limitation, we propose a new STM design, STM2, based on an assisted execution model in which time-consuming TM operations are offloaded to auxiliary threads while application threads optimistically perform computation. Surprisingly, our results show that STM2 provides, on average, speedups between 1.8x and 5.2x over state-of-the-art STM systems. On the other hand, we notice that assisted-execution systems may show low processor utilization. To alleviate this problem and to increase the efficiency of STM2, we enriched STM2 with a runtime mechanism that automatically and adaptively detects application and auxiliary threads' computing demands and dynamically partition hardware resources between the pair through the hardware thread prioritization mechanism implemented in POWER machines. The third challenge is to define a notion of what it means for a TM program to be correctly synchronized. The current definition of transactional data race requires all transactions to be totally ordered "as if'' serialized by a global lock, which limits the scalability of TM designs. To remove this constraint, we first propose to relax the current definition of transactional data race to allow a higher level of concurrency. Based on this definition we propose the first practical race detection algorithm for C/C++ applications (TRADE) and implement the corresponding race detection tool. Then, we introduce a new definition of transactional data race that is more intuitive, transparent to the underlying TM implementation, can be used for a broad set of C/C++ TM programs. Based on this new definition, we proposed T-Rex, an efficient and scalable race detection tool for C/C++ TM applications. Using TRADE and T-Rex, we have discovered subtle transactional data races in widely-used STAMP applications which have not been reported in the past

    Finding and Tolerating Concurrency Bugs.

    Full text link
    Shared-memory multi-threaded programming is inherently more difficult than single-threaded programming. The main source of complexity is that, the threads of an application can interleave in so many different ways. To ensure correctness, a programmer has to test all possible thread interleavings, which, however, is impractical. Many rare thread interleavings remain untested in production systems, and they are the major cause for a majority of concurrency bugs. Given that untested interleavings are the major cause of a majority of the concurrency bugs, this dissertation explores two possible ways to tackle concurrency bugs in this dissertation. One is to expose untested interleavings during testing to find concurrency bugs. The other is to avoid untested interleavings during production runs to tolerate concurrency bugs. The key is an efficient and effective way to encode and remember tested interleavings. This dissertation first discusses two hypotheses about concurrency bugs: the small scope hypothesis and the value independent hypothesis. Based on these two hypotheses, this dissertation defines a set of interleaving patterns, called interleaving idioms, which are used to encode tested interleavings. The empirical analysis shows that the idiom based interleaving encoding scheme is able to represent most of the concurrency bugs that are used in the study. Then, this dissertation discusses an open source testing tool called Maple. It memoizes tested interleavings and actively seeks to expose untested interleavings. The results show that Maple is able to expose concurrency bugs and expose interleavings faster than other conventional testing techniques. Finally, this dissertation discusses two parallel runtime system designs which seek to avoid untested interleavings during production runs to tolerate concurrency bugs. Avoiding untested interleavings significantly improve correctness because most of the concurrency bugs are caused by untested interleavings. Also, the performance overhead for disallowing untested interleavings is low as commonly occuring interleavings should have been tested in a well-tested program.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99765/1/jieyu_1.pd
    • …
    corecore