
A Speculative Execution Approach to Provide

Semantically Aware Contention Management

for Concurrent Systems

By Craig Sharp

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

School of Computing Science

Newcastle University

October 2013

mailto:craig.sharp@ncl.ac.uk
http://www.cs.ncl.ac.uk
http://www.ncl.ac.uk

Abstract

Most modern platforms offer ample potention for parallel execution

of concurrent programs yet concurrency control is required to exploit

parallelism while maintaining program correctness. Pessimistic con-

currency control featuring blocking synchronization and mutual ex-

clusion, has given way to transactional memory, which allows the

composition of concurrent code in a manner more intuitive for the

application programmer. An important component in any transac-

tional memory technique however is the policy for resolving conflicts

on shared data, commonly referred to as the contention management

policy.

In this thesis, a Universal Construction is described which provides

contention management for software transactional memory. The tech-

nique differs from existing approaches given that multiple execution

paths are explored speculatively and in parallel. In the resolution of

conflicts by state space exploration, we demonstrate that both concur-

rent conflicts and semantic conflicts can be solved, promoting multi-

threaded program progression.

We define a model of computation called Many Systems, which de-

fines the execution of concurrent threads as a state space management

problem. An implementation is then presented based on concepts

from the model, and we extend the implementation to incorporate

nested transactions. Results are provided which compare the perfor-

mance of our approach with an established contention management

policy, under varying degrees of concurrent and semantic conflicts. Fi-

nally, we provide performance results from a number of search strate-

gies, when nested transactions are introduced.

Acknowledgements

I would like to extend my immense gratitude to my supervisor, Doc-

tor Graham Morgan. His guidance and support has been invaluable

throughout my time at Newcastle. This thesis would not be pos-

sible without the encouragement and experience that Graham has

provided.

I would like to thank my colleagues and numerous teaching staff at

Newcastle, who have helped in various ways during my PhD studies.

Thanks in particular go to Yousef Abusnagh, whose friendship has

been particularly valuable. I am indebted to my family and friends,

both home and abroad. Special thanks in particular to my Mother

and Father, whose unconditional support has been a source of great

strength.

Most importantly of all, I would like to express my utmost thanks and

appreciation to my loving Wife, Wenyan and my Daughter, Rebecca.

Without both of you, none of this would have been possible.

Contents

1 Introduction 1

1.1 Parallel Computing . 1

1.1.1 Classifications of Parallelism 2

1.1.2 The Limitations of Parallelism 4

1.2 Multi-Threading . 5

1.2.1 Concurrency Control . 6

1.2.2 Mutual Exclusion . 7

1.2.3 Transactional Memory . 9

1.2.4 Contention Management 10

1.3 Thesis Contribution . 11

1.4 Publications . 12

1.5 Thesis Outline . 12

2 Background and Related Work 13

2.1 Foundations and Universality . 14

2.1.1 Concurrent Objects . 16

2.2 Pessimistic Approaches . 18

2.2.1 Locking . 18

2.2.2 Two-Phase Locking . 20

2.2.3 Time Stamps . 21

2.3 Speculative Approaches . 24

2.3.1 Thread-Level Speculation 24

2.3.2 Speculative Synchronization 25

2.3.3 Speculative Concurrency Control 26

2.4 Optimistic Approaches . 27

ii

CONTENTS

2.4.1 Transactions . 28

2.4.2 Hardware Transactional Memory 31

2.4.3 Software Transactional Memory 33

2.4.4 Coordinating Transactions 35

2.4.5 STM Contention Management 38

2.5 Related Work . 43

2.5.1 Serialising Contention Management 43

2.5.2 Shrink and Predictive Scheduling 45

2.5.3 TLSTM . 46

2.5.4 Universal Constructions 48

2.6 Summary and Thesis Contribution 51

2.6.1 Contribution . 52

3 The Many Systems Model 55

3.1 Overview . 55

3.2 Model Components . 59

3.2.1 Events . 59

3.2.2 Systems and Processes . 60

3.2.3 Expansion . 61

3.3 Solution Space . 62

3.4 Waiting . 63

3.5 Example . 65

3.6 A Universal Construction . 68

3.6.1 System Processes . 68

3.6.2 Universal Construction Processes 69

3.6.3 Proofs . 74

3.7 Properties . 77

3.7.1 Containment . 77

3.7.2 Isolation . 77

3.7.3 Liveness . 77

3.7.4 Scalability . 78

3.7.5 Composable Correctness Criteria 78

3.8 Summary . 79

iii

CONTENTS

4 Implementation 80

4.1 Basic Contention Management . 82

4.1.1 Overview . 82

4.1.2 Preliminaries . 84

4.1.3 Registration Phase . 87

4.1.4 Speculation Phase . 87

4.1.5 Commit Phase . 95

4.1.6 Validation . 100

4.2 Managing Nested Transactions . 101

4.2.1 Speculative Nesting . 101

4.2.2 Overview . 105

4.2.3 Data Structures . 106

4.2.4 Child Session Management 110

4.3 Nested Search Strategies . 115

4.3.1 Back-Tracking Search . 116

4.3.2 Pseudo Threads . 116

4.4 Summary . 120

5 Results and Analysis 122

5.1 Environment . 122

5.2 Benchmarked Results . 123

5.2.1 Transaction Throughput 124

5.2.2 Average Transaction Execution Time (ATET) 125

5.3 Nested Transaction Results . 127

5.3.1 Nested Search Strategies 128

5.3.2 Nested Throughput . 129

5.3.3 Nested ATET . 131

5.3.4 Registered Versus Commit Rate 132

5.4 Summary . 135

6 Conclusion 137

6.1 Thesis Summary . 137

6.2 Main Contributions . 137

6.3 Future Work . 139

iv

CONTENTS

7 Appendix 142

7.1 Processes . 142

7.2 Special Events . 143

7.3 Functions . 143

References 146

v

List of Figures

1.1 A Race Condition . 8

2.1 A Non-Serializable Schedule . 21

2.2 Two Phase Locking . 22

2.3 Speculative Concurrency Control 27

2.4 Transaction Contention . 29

2.5 Cache Coherence . 32

2.6 Transaction Coordination . 36

2.7 Contention Managers . 41

2.8 A Universal Construction . 49

3.1 The Dining Philosophers . 57

3.2 Expansion and Compression . 73

4.1 Phases of Contention Management 83

4.2 Serialising Aborted Transactions 84

4.3 Child Sessions . 106

4.4 Nested Transaction Execution . 107

4.5 The Table Mask Structure . 109

5.1 Transaction Throughput . 126

5.2 Transaction Timing (in Ticks) . 127

5.3 Nesting Throughput Results . 130

5.4 Nested Average Transaction Execution Time 133

5.5 Registered Versus Committed . 134

vi

List of Tables

1.1 Flynn’s Taxonomy . 2

2.1 Concurrent Computability Table 15

5.1 Environmental Parameters . 123

vii

List of Algorithms

1 The CallTx Function . 85

2 Session Registration . 88

3 Atomic Object Ownership and Consistency 91

4 The Permutation Functions . 92

5 The Greedy Algorithm . 93

6 Session Synchronization . 95

7 The Contest Algorithm . 98

8 Updating the UC Log . 100

9 Nested Transactions . 103

10 The Table Mask Get Algorithm 110

11 The New Execute Algorithm . 111

12 The Nested-Execute Algorithm 112

13 Commencing Nested Execution 113

14 Ending Nested Execution . 114

15 The New Permutation Commit Algorithm 115

16 The Back-Tracking Algorithm . 117

17 The Pseudo Thread Functions . 118

viii

Chapter 1

Introduction

1.1 Parallel Computing

In the field of Computer Science and Software Engineering, Parallel Computing

covers numerous techniques and offers several advantages over Sequential Com-

puting, specifically:

Speed – Multiple processing elements can compute the solution to certain prob-

lems in less time than a single processor. Given a computer program de-

signed to solve a series and a number of processors, the parallel solving of

those tasks can provide gains in speed. As more processors are added to the

computation, we hope that the time required to reach a solution decreases;

Problem Solving – Some problems are highly parallel in nature but require

excessive time to compute in a sequential algorithm. In theory they can be

solved more easily if the computation is performed on a parallel system;

Fault Tolerance – Parallelism offers safety in numbers. Having multiple pro-

cessors working on the same problem can provide a measure of fault toler-

ance of the application. Methods of replication have been applied in hard

real-time systems using parallel computations.

Processing frequency scaling has meant that sequential programming has pro-

vided an easier alternative to the more difficult task of parallel programming. As

1

1. INTRODUCTION

processors frequency increased, so too increased the speed with which sequential

programs could be executed. Around the beginning of the 21st century, however,

limitations on frequency scaling have placed renewed emphasis on parallel com-

puting as the only way in which the maximum performance can be obtained from

multi-processor platforms. As of writing, computing platforms with increasing

numbers of processor cores are appearing on the market and nearly all modern

processors incorporate parallel execution at multiple stages of their design.

The fundamental difficulties of Parallel Programming have yet to be addressed

in a comprehensive manner and it is common to find that many applications make

inefficient use of the parallel resources at their disposal. Computer programs

that are constructed to exploit parallelism must address numerous challenges

particular to parallel programming. In general, the parallel programmer must

first identify tasks that can be executed in parallel and those tasks must be

distributed among available processing resources. Finally, once the computation

is completed the tasks must be synchronized to present the user with the final

solution.

1.1.1 Classifications of Parallelism

It is useful to identify the patterns of parallelism that exist in computing. Flynn’s

Taxonomy presents a classification of parallel and sequential systems. Flynn de-

scribed any system in terms of four classifications: Single Data, Single Instruction

(SDSI); Single Data, Multiple Instruction (SDMI); Multiple Data, Single Instruc-

tion (MDSI) and Multiple Data, Multiple Instruction (MDMI). Table 1.1 shows

the relationship between instructions and data in the context of his parallel tax-

onomy.

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Table 1.1: Flynn’s Taxonomy

Different approaches to hardware and software design exemplify Flynn’s Tax-

onomy:

2

1. INTRODUCTION

Bit-Level Parallelism – Parallelism begins at the microprocessor level. Be-

ginning in the 1970s, microprocessor design incorporated increasing word

sizes, thus increasing the amount of data the processor could manipulate

per processor cycle. Beginning with 4-bit processors, word size gradually

doubled until, at the time of writing, 64-bit word sizes are common;

Instruction-Level Parallelism – Following on from the gains in Bit-Level Par-

allelism, Instruction Level Parallelism further enhances the parallel per-

formance of the processor. Modern microprocessors feature instruction

pipelines. At each stage of the pipeline the processor applies an action

to the executing program’s data (e.g. instruction decode, memory access,

execute). The introduction of multiple pipelines allowed instructions to be

executed in parallel by the processor (per processor clock-tick);

Data Parallelism – Programs usually feature areas of code wherein the data

can be computed in parallel; data parallelism is concerned with identifying

and executing these areas. Loop parallelism and matrix calculations are

two examples which typically feature heavy data parallelism when a series

of loop iterations can be performed in any order. (This model of parallelism

is sometimes classified as SIMD);

Task Parallelism – The rise of multi-threading to accomplish several tasks in

parallel. Modern multi-process operating systems for example, perform

multiple tasks in parallel (e.g. executing applications, performing services,

initiating network connections). Under Flynn’s terminology, Task Paral-

lelism can also be referred to as MIMD.

The Taxonomies of Parallelism have been combined and applied comprehen-

sively in the design of modern computing platforms. For example, modern hard-

ware architectures feature multi-core processors with regular registers of 64-bit

word size and floating point (SIMD) registers with a capacity of 128 bits. Op-

erating System tasks can be executed in parallel while modern compilers can

also influence processor operation to speculatively executed instructions out of

program order.

3

1. INTRODUCTION

1.1.2 The Limitations of Parallelism

The goal of Parallel Computing is to provide the user with an abstraction which

hides the complexities of parallelism, while making the most efficient use of the

parallel processing resources of the target platform. Ideally, increasing paral-

lelism should provide increasing gains in programmer productivity coupled with

increasing performance as long as more parallel resources are made available.

An optimal rate of speed-up of a sequential program would ideally halve the

time required for the computation whenever the number of processors assigned

to the task is doubled. In general this performance gain has not been possible to

achieve. Typically one finds that speed up is achieved at an almost linear rate

for small numbers of processors. As the number of processors increase, the rate

of speed-up diminishes until the addition of another processor provides no gain

in speed at best, and significant degradation in performance at worst.

Even if potential parallelism can be identified in a given program, and parallel

tasks of execution can be constructed, two issues must still be tackled:

• The granularity of the task, specifically the cost required to complete the

work, should be greater than the cost of distributing and retrieving the

results work.

• The degree of inter-processor coordination required to complete the work

should be sufficiently small so that excessive time is not wasted performing

thread communication (i.e. the locality of the task).

Amdahl’s Law During the 1960s, Gene Amdahl presented a basic equation to

analyse the potential parallel speed-up of an algorithm. By dividing any algorithm

into a parallel and a sequential component, Amdahl proposed that the time spent

computing the sequential component would place an upper limit on the speed-

up that could be attained in the parallel component. Equation (1.1) expresses

Amdahl’s law with the speed-up (S) that can be expected given the fraction of

time spent executing the sequential component (t).

S = 1/t (1.1)

4

1. INTRODUCTION

Gustafson’s Law Gustafson’s law addresses the implied limitations of Am-

dahl’s law. Specifically, Gustafson disputed the impact of the serial component

of execution. Gustafson argued that the serial component of a program is not

static and could be diminished by increases in power and resources. Gustafson’s

law is shown in equation (1.2). With P processors, the speed-up S which can be

attained is shown.

S(P) = P − t(P − 1) (1.2)

In conclusion, while Gustafson offers hope that producing scalable parallel

programming techniques is feasible, the dynamism, complexity and uniqueness of

computer programs presents an inherent difficulty that hinders the accomplish-

ment of this goal.

1.2 Multi-Threading

Multi-threading provides programmers with an execution model which allows the

creation of multiple independent processes (namely Threads), within a single op-

erating system process. At the time of writing, multi-threading in tandem with

shared memory, is arguably the most widely used model of concurrent program-

ming.

Before the advent of multi-processor platforms, multi-threading provided a

programming abstraction more aesthetically intuitive and natural (than a purely

sequential execution) with respect to some programming tasks. Once platforms

incorporated multiple processors, however, true parallelism could be exploited by

multi-threaded programs (with sufficient support from the Operating System).

Multi-threading thereafter provided the ability to exploit the parallelism of the

host platform to increase the speed and responsiveness of program execution.

Multi-threading, while seemingly intuitive as a model of execution, has enor-

mous implications for program design:

• Determinism is lost when multi-threading is introduced because threads can

access shared data in different orderings from one execution of a program

to the next. The loss of determinism has widespread implications for the

ability of programmers to predict the outcome of concurrent programs;

5

1. INTRODUCTION

• Non-deterministic execution via multi-threading can introduce inconsis-

tency in shared data, complicating the programmers debugging efforts.

When reasoning about program execution, sequential programming has the

benefit of determinism, such that multiple executions of the same sequential pro-

gram, with the same inputs, yield the same results. When errors arise in program

execution, the predictable nature of sequential programming has the benefit that

those errors can often be reproduced, isolated and (hopefully) corrected. Essen-

tially, this predictability is lost to a greater extent in concurrent programming and

Concurrency Control is required to reintroduce determinism where predictable

execution is necessary (while otherwise allowing the exploitation of parallelism).

1.2.1 Concurrency Control

Unlike sequential programming, in a multi-threaded program, execution is com-

posed of non-deterministic inter-leavings of sequential threads of execution. Con-

currency control essentially enforces determinism at critical sections of shared

memory access, removing the interleaving of thread execution. Unfortunately,

understanding the extent to which determinism should be enforced is a major

obstacle for most programmers. If concurrency control is applied too restric-

tively, then the parallelism afforded by the host platform cannot be exploited.

Unfortunately, increasing the number of threads in an application exacerbates

the difficulty of determining the correct level of determinism.

There are a number of approaches to implementing concurrency control, but

in the field of shared memory computing, the two most prominent are Pessimistic

and Optimistic concurrency control:

Pessimistic – Approaches to concurrency control where inconsistencies caused

by non-determinism are prevented, typically by blocking synchronization,

before they can take place;

Optimistic – Concurrency control which typically features speculative execu-

tion, where inconsistencies caused by non-determinism are detected and

undone after they have taken place.

6

1. INTRODUCTION

Blocking synchronisation via mutual exclusion has been a common approach

in implementing pessimistic methods of concurrency control. At the time of writ-

ing, transactional memory is a popular optimistic technique. In practice, how-

ever, there exist so many applications where concurrency control is needed, and

therefore no single approach works best in every situation. Whether optimistic or

pessimistic methods are used, however, the main goals of any concurrency control

mechanism include:

Correctness – The concurrency control technique should not infringe the log-

ical correctness of any program to which it is applied (i.e. based on the

equivalence of a multi-threaded execution with a sequential execution).

Efficiency – The concurrency control technique should not be an undue burden

on the execution platform. Resources are at the concurrency control mech-

anism’s disposal should be used to maintain efficiency (i.e. to minimise the

enforcement of deterministic execution).

Pessimistic concurrency control was arguably most prominent when comput-

ing resources were relatively scarce with respect to 21st century standards (in

terms of memory capacity, for instance). Under such conditions, pessimistic meth-

ods offered a justifiably conservative approach. In distributed database program-

ming, however, where resources tended to be greater, optimistic methods were

favoured. Transactions were first developed for distributed database software;

user requests were executed concurrently, undone and retried if a concurrency

error was detected. Given the high latency of networked requests, the costs of

executing transactions rather than mutual exclusion were not considered exces-

sive. As computing resources have expanded universally, optimistic methods now

feature in many areas where pessimistic methods were once used.

1.2.2 Mutual Exclusion

When programs involve multi-tasking, care must be taken to ensure tasks access-

ing the same shared data do not inadvertently introduce concurrency errors into

the program. Figure 1.1 illustrates the typical concurrency error known as a race

7

1. INTRODUCTION

condition, where both threads (T1 and T2), read the same memory location (x)

and increment the value held therein. Because the act of incrementing a memory

location consists of multiple machine instructions, threads T1 and T2 may find

that their instructions are arbitrarily interleaved to produce an outcome that is

not expected.

Figure 1.1: A Race Condition In the top scenario, threads T1 and T2 execute

their statements without interference, and the value of memory location x holds the

correct value 2. In the bottom scenario, however, their instruction are interleaved

and the final value is set to 1.

Most errors that are generated in concurrent programs are fundamentally ex-

amples of race conditions, yet identifying and correcting race conditions becomes

extremely difficult in large software applications with many interacting compo-

nents. Mutual exclusion has been a standard approach to dealing with race

conditions for many years, especially where memory access is restricted. The aim

of mutual exclusion is to limit access to only one concurrent task at a time in a

critical region. Mutually exclusive critical regions provide two principle benefits:

• Determinism is restored during the execution of the critical section as only

a single thread can access the shared data;

• By providing predictable modification of shared data, Mutual exclusion can

provide coordination between the actions of threads.

The restoration of determinism maintains consistency of shared data, while

coordination promotes efficiency with respect to the expedient execution of the

8

1. INTRODUCTION

program. Programming constructs such as mutexes (or semaphores) may be

enhanced to provide user-defined conditions which allow more sophisticated, and

complex coordination of thread execution. Care must be taken when using any

blocking synchronization technique, however. Three adverse effects can be caused

by improper use of a critical region, namely:

• The potential parallelism is restricted if the critical region is too long as

only a single thread can make progress.

• Deadlock can occur if two or more threads wait for each other to finish some

action.

• Resource starvation can occur if some threads continually monopolise a

critical section, blocking access for others.

• Livelock can result if threads find themselves perpetually responding to each

other’s actions, instead of progressing with their own execution.

Deadlock in particular is a catastrophic state for any program, given that no

further progress can be made. Deadlock can occur in even seemingly trivial pro-

grams. For example, thread 1 may gain exclusive access to a variable a while it

requires variable b. Concurrently there exists some thread which has already ac-

quired exclusive access to b but now requires access to a. In this situation, neither

thread can ever progress with their executions. Where blocking synchronisation

is used, care must be taken to avoid deadlock, or methods must be available to

detect and then abort the occurrence of a deadlock.

1.2.3 Transactional Memory

Concurrency control can be implemented optimistically in multi-threaded pro-

grams. If potential race conditions arise from the shared memory accesses of

threads, their effects are detected and discarded. Transactional memory is a pop-

ular example of such an approach, where threads contain their shared memory

accesses within the execution of transactions. The transactional model generally

requires that changes to shared data are made speculatively by the executing

9

1. INTRODUCTION

thread and if no concurrency conflict is detected, then the changes are made per-

manent (by committing the transaction). When conflicts are detected, then some

transaction must abort and restart.

To maintain consistency of shared data, transactions must be: (i) atomic,

such that either all the execution steps of the transaction occur or none at all;

(ii) consistent so that the logic of the application is not infringed and (iii) isolated

so that changes to shared data cannot be observed by any other thread until the

transaction is committed.

The main benefit of transactional memory in comparison to the use ofcritical

regions, is that deadlock can be eliminated from the program because the vari-

ous threads of execution have the property of obstruction freedom. Obstruction

freedom states that in the absence of activity by other threads, some thread can

always make progress. In addition, the execution of transactions can be com-

posed, and so transactional memory offers an approach that is general purpose

and scalable in terms of providing concurrency control for complex applications.

1.2.4 Contention Management

While transactional memory addresses many of the problems associated with

pessimistic approaches (e.g. deadlock due to blocking synchronization), thread

starvation may arise when the demand for shared memory access is high. In sys-

tems programming (the domain of transactional memory) multi-threaded access

for shared data tends to be more excessive than in distributed database applica-

tions. Contention management is therefore a crucial component of transactional

memory, particularly in the field of software transactional memory.

Contention management is typically described in terms of a contention man-

agement policy (CMP). A number of early CMP implementations used various

criteria to determine a back-off time, and a conflicting thread would typically

abort its transactions and sleep for the duration of the back-off time. More re-

cent policies attempt to reorganise the thread schedules to reduce the likelihood

of a future conflict from arising. The aim of most policies, however, is to en-

hance the throughput of transaction execution by minimising the likelihood of

inter-thread conflict.

10

1. INTRODUCTION

1.3 Thesis Contribution

The Thesis addresses scientific and engineering problems associated with con-

currency control in general purpose computational systems. Focus is placed on

deriving software solutions for practical deployment of concurrency control on

multi-core hardware architectures. The Thesis presents work suitable for current

commercial hardware and future hardware where core numbers are expected to

rise significantly.

The Thesis provides the following contributions:

• A fundamental rephrasing of the concurrency control problem from that

of primarily managing conflict that inhibits correctness to one of searching

for optimal execution patterns in parallel at run-time. We show, theoreti-

cally, that searching execution spaces can be achieved in a wait-free manner

while a general purpose technique can be implemented to provide real-time

concurrent execution in a scalable, lock-free manner.

• For the first time, a solution that tackles semantic issues within the appli-

cation to determine the validity of the concurrency control step. Ordering

of accesses can increase throughput and semantic correctness. For example,

if two accesses (pop and push) on a shared empty list are ordered pop first

then, semantically, there will be a failure to retrieve. However, if the push

were ordered before the pop then this would be correct semantically. A

search of possible future states of execution has a higher likelihood of dis-

covering this. As our search is independent of execution or data structure,

this element of the solution is general purpose in nature.

• An embodiment of our theories within a software engineered solution that

is benchmarked against standard experiments to demonstrate effectiveness.

For the sake of deriving a practical realisation of our approach we bound

our state exploration in a programmer-defined manner popularised within trans-

actional systems (begin/commit/abort). As such, contention management in

Software Transactional Memory (STM) coupled with rescheduling aborted trans-

actions, is the closest neighbour to our engineered solution. Therefore, it is with

these approaches that we compare our solution.

11

1. INTRODUCTION

1.4 Publications

The following official publications represent contributions that the author has

produced/participated in, during the creation of this thesis:

Hugh: A Semantically Aware Universal Construction for Transactional

Memory Systems Sharp C, Morgan G. 19th International Conference on Par-

allel and Distributed Computing (Euro-Par) 2013.

Volatility Management of High Frequency Trading Environments Brook

M, Sharp C, Blewitt W, Ushaw G, Morgan G. 15th IEEE Conference on Business

Informatics 2013.

Semantically Aware Contention Management for Distributed Applica-

tions Brook M, Sharp C, Morgan G. Distributed Applications and Interopable

Systems 2013 (Pages 1-14).

Liana: A Framework that Utilizes Causality to Schedule Contention

Management across Networked Systems. Abushnagh Y, Brook M, Sharp

C, Ushaw G, Morgan G. On the Move to Meaningful Internet Systems: OTM

2012 (Pages 871-878).

1.5 Thesis Outline

The Thesis is organised into 6 chapters. In Chapter 2, background technologies

and related work are provided to contextualise the contribution of the thesis.

Chapter 3 provides a description of the Many Systems model, and Chapter 4

describes an implementation of a Many Systems contention manager. Chapter

5 provides results from a number of experiments designed to evaluate the per-

formance of the contention manager, and Chapter 6 concludes the thesis and

discusses possibilities for future work.

12

Chapter 2

Background and Related Work

In this chapter a selection of developments in the area of concurrency control

is described, which relate to the contribution of the thesis. We introduce the

chapter with a description of synchronization primitives and the problem of con-

sensus, followed by an overview of the various progress conditions that are a fea-

ture of concurrent programming. These provide the ‘building blocks’ for all the

higher level lock-free/wait-free data structures that are ubiquitous with concur-

rent programming. The remaining background material of this chapter describes

a (broadly) chronological evolution from early approaches to more recent devel-

opments in concurrency control, which might be considered ‘state of the art’.

Three approaches in particular are covered, namely:

Pessimistic Approaches – Blocking synchronization is introduced, specifically

in the application of locking data to provide conservative progression of

concurrent programs.

Speculative Approaches – Parallel processing redundancy is exploited to speed

up program execution with speculative execution in both sequential and

concurrent programs.

Optimistic Approaches – Where speculation is applied in the execution of

transactions; threads make modifications to shared data optimistically and

abort their transactions if conflicts occur.

13

2. BACKGROUND AND RELATED WORK

The Related Work section focuses on strategies which provide Contention

Management in Software Transactional Memory. A number of recent techniques

are described to put the work of this thesis into context. Finally, in Section 2.6

we summarise the contribution of this thesis in the context of related work.

2.1 Foundations and Universality

Many synchronization primitives (or atomic instructions) have been devised and

some of these have found their way into the instruction sets of modern processors.

Atomic operations, providing linearizable load and store operations, are available

in many different specifications with respect to how many readers and writers

are supported. Read-Modify-Write (RMW) operations are available on many

platforms with operations such as fetch-and-add and test-and-set. And yet more

complex operations like compare-and-swap or load-linked/store-conditional are

included in the instruction set of most modern processor architectures.

Herlihy proved that an important aspect of these synchronization primitives

is that they are not equally useful when it comes to solving a range of synchro-

nization problems [1]. Instead, one may assess the power of a synchronization

primitive by the degree to which ‘higher level’ concurrent objects can be sup-

ported by a particular primitive. Crucial to the evaluation of synchronization

primitives is the problem of consensus. Consensus has far reaching consequences

for the design of any system where multiple participants are involved who need to

reach a shared agreement in finite time. The essence of any consensus protocol,

regardless of how many threads of execution are involved, is the fulfilment of the

following requirements:

Agreement – All participating threads must decide on the same result.

Integrity – Each participating thread decides at most one value, and whichever

value is decided must have been proposed by some participating thread.

Termination – All participating threads decide on some value.

Validity – The agreed result must have been proposed by a thread participating

in the consensus protocol.

14

2. BACKGROUND AND RELATED WORK

Herlihy provided a consensus hierarchy (shown in Table 2.1) to illustrate the

power of a particular synchronisation primitive with respect to solving consensus.

Any particular synchronisation primitive corresponds to a maximum number of

threads for which that primitive can solve consensus, thus each primitive has a

consensus number. For example, fetch-and-add has a consensus number of 2 and

therefore can only solve consensus for up to 2 participating threads.

The limitations of consensus numbers are important for the design of Wait-

Free concurrent objects. The Wait Free property is described in Section 2.1.1.

Specifically, when using a synchronisation primitive such as fetch-and-add, it is

not possible to build a consistent wait-free object with more than 2 threads.

Consensus No. Object

1 atomic registers

2 test-and-set, swap, fetch-and-add, queue, stack

... ...

2n− 2 n register assignment

... ...

∞ memory-to-memory move, compare and swap,

load-linked/store conditional

Table 2.1: Concurrent Computability Table provides the universality hier-

archy of synchronization operations

Observe in Table 2.1 that some synchronization primitives have an infinite

consensus number, and can be used to solve consensus for any number of threads.

One such primitive is compare-and-swap, which requires three arguments: typ-

ically a memory location (m), a compare value (c) and a value to swap (s).

Compare-and-swap operates by comparing the contents of m with c; if they are

equal, the contents of m are replaced with s. If the swap is performed, then

the overwriting of the contents with s takes place in one “atomic” operation.

Overwriting m can be made on the safe assumption that the compare-and-swap

operation read the most up-to-date contents of m.

With good knowledge of the limitations of various synchronization primitives,

in terms of their consensus numbers, a concurrent programmer can avoid the

15

2. BACKGROUND AND RELATED WORK

wasted effort of solving what are essentially impossible consensus problems using

atomic operations of lower consensus numbers. The applicability of the limits of

consensus has far reaching consequences, given that almost any synchronization

technique can be implemented using these atomic primitives.

2.1.1 Concurrent Objects

One may describe concurrency control from the perspective of concurrent objects,

where a concurrent object refers to any data structure or entity (a register, a

container etc.), which provides some equivalent behaviour to a sequential object.

For example, if a concurrent object is a stack data structure, then equivalent

behaviour would require the ability to invoke push and pop operations on the

concurrent stack. We may reason about concurrent objects by their correctness

and progress properties:

Correctness – Threads should interact with the object in a manner which does

not introduce inconsistency of the object. One may identify correctness by

examination of the history of thread interaction with a concurrent object.

Progress – With respect to delays that are introduced, in order to maintain

correctness when threads interact with the object. In a blocking implemen-

tation, a single thread can delay other threads. In a non blocking imple-

mentation, a single thread cannot delay other threads.

Correctness and Memory Consistency In order to determine whether a

concurrent object exhibits correctness, it is first necessary to define a criteria for

evaluating the behaviour of a concurrent object ; behaviour that can be considered

from the effects of the methods executed upon it. We assume that multiple

threads may invoke these methods in parallel, and consider the execution of a

method as a ‘blackbox’, only paying attention to the method invocation, and the

response that is returned. Under this criteria, there are three levels of consistency:

Quiescent Consistency – Is the weakest consistency level and suited for sce-

narios where the greatest freedom is permitted in the interleaving of thread

execution. The only requirement is that method calls separated by a period

16

2. BACKGROUND AND RELATED WORK

of inactivity (i.e. quiescence) should respect their real time order, although

for method calls which overlap, we make no assumptions;

Sequential Consistency – Requires that an interleaved method execution by

multiple threads produce a state that is equivalent to a sequential schedule

containing only non-interleaved method execution.

Linearizability – requires that method calls on concurrent objects appear to

take place atomically. Linearizability judges actions on a concurrent object

from the program as a whole and as such allows composition.

Progress When reasoning about the progress property, we are interested in

the liveliness of the interactions with the object. Three degrees of liveness in

particular are available:

Obstruction Freedom – is the weakest liveliness condition and requires that

any thread, executed in isolation from obstructing threads, can complete

its operation within a bounded number of steps.

Lock Free – characterises a technique where no thread is blocked and waiting

indefinitely for the execution of another thread. Deadlock can not occur

in a lock-free concurrency control method (although Livelock remains a

possibility).

Wait Free – where each function called by a thread of execution, finishes in a

finite number of steps. Each execution step by a thread brings progress

to the system as a whole and livelock is not possible. Wait-free presents a

somewhat stronger guarantee than lock-free but is typically more difficult

to implement.

Interestingly, in many situations, lock-free solutions have been judged more

efficient than wait-free counterparts, because of the extra work involved in any

wait-free mechanism. Although the wait-free solution appears superior to the

lock-free solution, in real systems the wait-free approach is often abandoned in

favour of a lock-free one.

17

2. BACKGROUND AND RELATED WORK

2.2 Pessimistic Approaches

Pessimistic concurrency control techniques are numerous but they may all be cat-

egorized by the activity of blocking (i.e. one thread of execution may interrupt

the activity of other threads when contention for shared data access arises). The

term pessimistic is used because the approach assumes that the worst case will

occur with respect to concurrent interference of shared data. Hence the charac-

teristic of a pessimistic approach is to take whatever steps are necessary to avoid

such interference from arising.

2.2.1 Locking

Early concurrent programmers devised locking constructs to prevent race condi-

tions, and yet locking still remains a widely used technique to date. Essentially,

locking data requires that threads sacrifice access to shared data on occasion, so

that the locked data can be accessed or modified in a deterministic manner. A

trade-off ensues where the gain from maintaining correctness offsets the gains in

parallel speed, with threads requiring a longer average period of time to complete

their data accesses.

There are many approaches available with respect to lock implementations

but when a thread of execution cannot gain access to the lock, two fundamental

approaches exist:

Spinning – if the thread does not expect the lock to be held for a long duration

of time, then it can repeatedly poll the lock until it becomes available,

commonly referred to as spinlocks or busy waiting ;

Blocking – if the thread expects the lock to be held for a long period of time,

then the waiting thread can be suspended so that another thread can gain

access to the scheduler via an operating system context switch. As context

switching tends to be expensive, this only makes sense if the period of

waiting is expected to be long.

Most operating systems have access to operations which facilitate the imple-

mentation of locks (e.g. non-interruptible critical regions) and locking has been

18

2. BACKGROUND AND RELATED WORK

used extensively for many years in a range of application domains, particularly in

operating system programming. As a result, locks are frequently encountered in

‘legacy code’ and there exist numerous software implementations of locking con-

structs, widely available for programmer use. In addition, locking applications

are supported by extensive documentation.

When confronted with sophisticated multi-threaded programs, however, pro-

grammers who use locks encounter great difficulty given that locks cannot be

composed. For example, while it is possibility to apply mutual exclusion to pre-

vent the occurrence of race conditions on a single data structure, a thread cannot

guarantee that acquiring multiple locks will not introduce a deadlock. Devising

an algorithm that avoids deadlock tends to introduce a non-transferable bespoke

solution, suitable only for a particular piece of software. In addition, a great deal

of time is typically required to prove that complex locking applications do not

introduce deadlocks into the program.

In addition to the difficulty of implementing sophisticated locking protocols,

locking also raises the issue of efficiency. Given the pessimistic nature of block-

ing thread execution with locks, application progress is often hindered even in

situations where concurrent access to shared data would not have caused incon-

sistencies. Pessimistic approaches assume that errors will always arise if threads

are not inhibited, and hence locking can result in execution bottlenecks, especially

as the number of threads increases.

Read-Write Locks To reduce potential bottlenecks and increase the level of

concurrency possible when locking is used, different types of locks are available

which grant different levels of access rights to shared data. Most simply, locks

can be distinguished between read locks and write locks. Typically, a lock will

only allow exclusive access to a resource, but if there are a number of threads

which only wish to read from the resource, then it is inefficient to prohibit these

read only threads from accessing the resource in parallel (since read only threads

provide the guarantee that they will not modify the resource).

Read and write locks allow a thread to specify whether they intend to access

a resource for reading or writing. Whenever a thread wishes to write/modify the

resource, it must acquire a write lock which behaves like a typical lock, granting

19

2. BACKGROUND AND RELATED WORK

exclusive access to the writer. Whenever one or more threads wish to read the

resource, they may gain access to the critical region in parallel, thus improving

the level of concurrency available to the threads. As an example of the error prone

nature of locks, however, even this simple mechanism introduces the possibility

of catastrophic errors:

• Given that a writer can only lock a resource if there are no readers, there

is the possibility that the writer will ‘starve’ if reading of the resource is

prolific. In such situations, the writer cannot gain access to the resource

because there are too many readers creating a perpetual stream of requests

for the resource.

• Queuing writers for access to a shared resource, and prioritizing queued

writers can address the problem of writer starvation. However, such a so-

lution reduces the very parallelism that the read/write lock was supposed

to alleviate. This is because readers and writers now have to perform co-

ordinated queuing operations to respect the dynamic priorities assigned to

writers.

2.2.2 Two-Phase Locking

Locking alone can produce non-serializable schedules when multiple locks are used

by multiple threads during an execution schedule. With two threads, a serial-

izable schedule contains read/write instructions which can be reordered, so that

the reordered schedule is equivalent to a serial schedule (where one thread’s in-

structions completely preceded the other). However, if a thread reads or writes to

a data item which another thread has written to, those instructions are causally

linked and cannot be reordered without violating the semantics of the thread’s

read/write instructions. An example is provided in Figure 2.1 which shows an

interaction between two threads which produces an execution which is not seri-

alizable. Note that:

• Thread 1 could not have preceded Thread 2 because item B was written to

by Thread 2 and subsequently read by Thread 1.

20

2. BACKGROUND AND RELATED WORK

Figure 2.1: A Non-Serializable Schedule The read/write instructions of both

threads cannot be reordered to produce an equivalent schedule where either Thread

1 or 2 executed strictly in serial.

• Thread 2 could not have preceded Thread 1 because item A was written to

by Thread 1 and subsequently read by Thread 2.

It is not possible to reorder the instructions in a manner that either thread exe-

cuted strictly in serial. Consider the implications of this non-serializable schedule

if a constraint exists on data items A and B which states that they must always

hold equivalent values; in this instance the constraint would be violated even

though both threads had executed statements which respected the constraint.

Two-Phase locking can overcome this problem without resorting to locking

data items unnecessarily (and thus reducing the potential concurrency of the ap-

plication). Any thread or process utilizing a Two-Phase locking scheme performs

an acquisition phase and a release phase (see Figure 2.2). During the acquisition

phase, a thread attempts to acquire the locks it needs to guarantee exclusive

access to the shared objects it seeks to access/modify. Once such a thread has

acquired the necessary locks, it makes the desired modifications and releases the

previously acquired locks. Under a Two-Phase locking scheme the constraint on

data items A and B is not violated because Threads 1 and 2 must first lock both

data items before performing any changes.

2.2.3 Time Stamps

An alternative method to locking, particularly in some database applications, is to

enforce concurrency control using timestamps. Where concurrent access to shared

21

2. BACKGROUND AND RELATED WORK

Figure 2.2: Two Phase Locking The time/n-locks graph shows a single thread

or process gradually acquiring locks, executing on the shared lock-protected data

before gradually releasing the acquired locks.

objects exist, timestamps are essentially a value granted to each participating

thread, such that:

1. The timestamps generated should be unique to each participating thread;

2. The timestamps must allow orderings to be identified between multiple

concurrent actions.

For example, if one considers a database which holds multiple shared objects,

then the reads and writes of each thread can be identified with a timestamp

to dictate in what ordering those read and writes should occur to maintain a

sequential history of access on the shared objects. Because the asynchronous

nature of thread communication means that accesses can be received outside of

timestamp order, the timestamp allows such out-of-order accesses to be detected

and aborted.

Aborting a thread’s shared access requests when a timestamp violates the

sequential ordering can have a negative effect on performance when there are a

large number of requests that must be aborted. Improved performance can be

achieved, however, with the help of a buffer [2]. Rather than requiring the server

22

2. BACKGROUND AND RELATED WORK

to deal with requests ‘as they arrive’, they can instead join a buffer for a specified

duration. Then, by examination of the buffered requests (and depending to some

extent on the behaviour of the application), an ordering of access requests can

be selected which reduces the number of accesses that have to be aborted. The

difficulty in applying this technique effectively, however, is knowing a priori: (i)

the duration of time that requests should be buffered and (ii) how many requests

should be stored.

Various methods of generating timestamps have been implemented. For ex-

ample, timestamps can be generated from the system clock on the host platform

or monotonically increasing integer values (sometimes called a logical clock) can

be used. Other timestamps schemes apply combinations of system clocks and

logical clocks. For instance, timestamps can be used to maintain serializable exe-

cutions over distributed systems. In a distributed system, each site can be given

a unique ID, and a logical clock is appended to the site ID to form the timestamp.

With this method, timestamps remain unique to a particular thread running on

a particular site.

Compared to locking, timestamping is particularly well suited to the task of

maintaining causality over geographically distant hosts, due to the high latency

involved with inter-host communication. The following issues, however, are sig-

nificant when implementing concurrency control with timestamps:

Resolution – When clocks are used to generate timestamps, the granularity

of the timing mechanism used must be sufficiently precise to ensure that

time-stamps generated at very close intervals possess unique values.

Locking – Whether a real-time clock or logical clock is used, some concurrency

control mechanism is still required to ensure threads receive unique times-

tamps (atomically incrementing a counter for instance).

Bounds – Memory is finite, and hence any representation of a timestamp in

memory, has a maximum number of values that can be represented. When

the numeric value of a timestamp exceeds the capacity of the memory, care

must be taken to ensure errors do not result.

23

2. BACKGROUND AND RELATED WORK

2.3 Speculative Approaches

Near the end of the 20th Century, as PC architectures begin to feature increasing

parallel processing capabilities, demand also increased for techniques which could

exploit the newly available parallel redundancy. Advancements in processor de-

sign also witnessed the addition of new logical units to modern processors, which

could buffer operations for increased execution speed. In this section we present

an overview of approaches using speculation about future execution and exploit

parallel processing redundancy offered by the hardware to improve the execution

time of multi-threaded programs.

2.3.1 Thread-Level Speculation

Developments in automating parallelization have enhanced the role of the com-

piler in utilising the parallel processing capabilities of the host platform. A com-

mon application of such speculative techniques involves the parallelization of loop

constructs in sequential programs. Rather than having a thread execute each it-

eration of a loop sequentially, iterations can be assigned to multiple threads and

executed in parallel. These compiler-generated threads alleviate the application

programmer from the burdens of thread management while permitting the com-

piler to tailor the degree of thread creation to the resource availability of the host

platform. OpenMP [3], and more recently Threading Building Blocks [4], are two

examples were such techniques are implemented.

Primary obstacles inherent to such approaches are the complexity of program

control flow and the unpredictability of memory access within critical regions.

These two factors mean that it is very difficult for any compiler to statically

determine whether the threads it wishes to create will act independently, or will

interfere with each other’s updates (thus introducing race conditions). Thread-

Level Speculation (TLS) is an area of research that attempts to mitigate this

problem. Generally, TLS incorporates the following features:

• Speculative threads are created on-the-fly by the compiler/run-time system

with the aim of speeding up sections of program code (e.g. for loops);

24

2. BACKGROUND AND RELATED WORK

• Inconsistencies between the read and writes of speculative threads are de-

tected at run-time and resolved by the TLS technique. Thread execution is

managed so that inconsistent execution is discarded and error free execution

is maintained;

• Regardless of how thread execution is carried out by the TLS technique,

the user observes execution which reflects the code as programmed.

A popular method of detecting inconsistencies requires that the TLS approach

utilise the cache protocols of the host platform. Hence many TLS solutions re-

quire modifications to be made at the hardware level, specifically with regard

to the manipulation of data held in the Cache Hierarchy. Steffan et al [5], for

example, proposed modifications to the Write-Back Invalidation-Based Cache Co-

herence Protocol of the host platform. Once implemented at the hardware level,

the application programmer remains unburdened by inconsistencies arising from

speculative thread execution. Unfortunately, integrating TLS at the hardware

level is more costly and less flexible than a purely software solution.

2.3.2 Speculative Synchronization

Speculative Syncronization [6] was developed by Martinez and Torrellas to pro-

vide Thread-Level Speculation (TLS) to explicitly parallel applications. The

constructs enhanced with speculative adaptation consisted of memory barriers,

locks and flags. These comprised the typical synchronization primitives used

consistently with pessimistic concurrency control.

Before Speculative Synchronization, TLS allowed speculative threads to be

created from sequential sections of code, which would be executed in parallel

with ‘safe code’ (speculative threads could venture into unsafe regions of code

rather than be held up by pessimistic locking constructs, blocking progress).

In theory, redundancy in the form of parallel processing resources and memory

provided by the host platform could be utilized more effectively to speed up

program execution. Speculative Synchronization proposed a similar approach

with explicitly parallel sections of code. For instance, where TLS could be applied

25

2. BACKGROUND AND RELATED WORK

to perform parallelization of a for loop, Speculative Synchronization could work

with program threads and processes.

The contribution of Martinez and Torrellas comprised of proposed hardware

and software additions to support speculative execution, namely:

• A Speculative Synchronization Unit (SSU) that in theory would be added

to the cache hierarchy of each processor. The SSU would contain space

for a cache line holding the data of a variable under speculation while the

processor could execute instructions speculatively. If necessary, execution

could be rolled-back to the state held in the SSU.

• A set of library primitives which allow speculative execution to be applied

to synchronization constructs. These consisted of primitives provided to

acquire/release locks and signal an access conflict or a cache overflow.

2.3.3 Speculative Concurrency Control

Speculative Concurrency Control (SCC) was developed by Bestavros [7] and later

extended by Haubert et al [8], as a class of Concurrency Control Algorithms

designed for application in the area of real-time database management. The novel

contribution of SCC was the design of a technique where redundant computations

would be executed to cover possible alternative schedules of concurrent activity

when a conflict was detected that may invalidate the consistency of the host

database.

Rather than increasing concurrent throughput of transactions, SCC focused

on the issue of transactions not being able to meet real-time deadlines due to

the need to rollback once interference with shared data had been detected. With

the SCC technique, consistency conflicts could be detected as soon as they occur

(as with a typical pessimistic approach) but before the conflicting transaction

has validated. This consistency conflict would then generate a shadow thread

re-executing the conflicting transaction.

Figure 2.3 illustrates the idea behind the SCC approach. Transaction T1 and

T2 are executing. A conflict is generated when T2 reads data item A after T1

has written to it. Once the conflict is detected, another thread is created which

26

2. BACKGROUND AND RELATED WORK

Figure 2.3: Speculative Concurrency Control A conflict on Data Item A

is detected between T1 and T2. This causes a new Speculative Thread T2’ to be

created which re-executes T2. If T2 has to abort because of T1’s access of Data

Item A, then hopefully, T2’ will still have time to commit before T2’s deadline.

re-executes the transaction T2 (labeled T2’). If T2 validates before T1, and thus

commits successfully then the shadow thread T2’ is destroyed; if on the other

hand T1 validates and commits first then T2’ continues executing. Observe that

in Figure 2.3, T2’ can now validate and commit its transaction before its deadline.

Bestavros provides the framework of an algorithm where the degree of shadow

thread creation can be varied; the algorithms presented in their literature com-

prise:

• A Basic SCC Algorithm which generates potentially many shadow threads

and requires the most available redundancy;

• A Two-Shadow SCC Algorithm which generates at most 2 shadow threads

where available redundancy is scarce.

2.4 Optimistic Approaches

Issues with pessimistic concurrency control arise in the following areas:

• Locking tends to reduce the performance of multi-threaded applications

because blocking threads during synchronisation inhibits their progress. In

27

2. BACKGROUND AND RELATED WORK

addition, blocking requires the operating system save the state of one thread

and load another (i.e. context switch).

• Blocking operations may introduce a deadlock (especially if several locks

are combined incorrectly), where no thread can make further progress with

catastrophic consequences for the application;

• Locking as a general solution is not composable (as mentioned in Sec-

tion 2.2.1), such that two or more sections of code which implements lock-

based critical sections, cannot easily be combined and still guarantee that

errors will not be introduced to the system. Consequently, locking solutions

on a system-wide scale tend to be ad-hoc and constructed by the system

programmer, thus making them more difficult to understand, replicate and

debug.

An alternative to the pessimistic approach is to provide a mechanism which

allows threads to make changes to shared data first, and then to detect any pos-

sible inconsistencies afterwards that arise following concurrent interference. If no

such interference has taken place, an ‘optimistic’ approach allows the modifying

thread to carry on with its execution. Should interference occur, this can be de-

tected and changes are undone. The aborting thread may then attempt to repeat

its modifications. Because blocking is avoided, the possibility of a deadlock can

be eliminated.

2.4.1 Transactions

Concurrency control on general purpose multi-processor platforms can be im-

plemented in a manner which follows the same principles applied in database

applications. In database systems, many concurrent clients submit modifications

to the state of the database in the form of transactions. Transactions contain the

changes a client wishes to make to the state of the database. On each attempt

to modify the state of the database, either all changes in the transaction are

applied successfully, or no changes are made. A database manager resolves con-

flicts between the transaction requests received, and the clients are alleviated of

the complexity of concurrent programming. To illustrate the process, Figure 2.4

28

2. BACKGROUND AND RELATED WORK

shows a potential time-line with three threads executing updates to the state of

a shared database using transactions.

The key to understanding how database systems can manage concurrency

(while maintaining predictable and reproducible state progression) lies in the

application of the ACID properties:

Atomicity – an action by a transaction must either take effect in its entirety or

not take affect at all;

Consistency – the behaviour of transactions should be consistent with the con-

straints of the data being modified;

Isolation – transactions modify data in isolation from other transactions, hence

no transaction should witness the effects of another transaction until the

latter has completed successfully;

Durability – the effects of transactions, once committed must be durable and

persist.

Primarily, the ACID properties are useful in that they provide a framework

which makes it easier to reason about the state of a Database system by constrain-

ing design within the confines of intuitive behaviour. If all transaction managers

observe the ACID properties, this can provide generality to transactional systems

which is lacking in ad-hoc pessimistic approaches.

Figure 2.4: Transaction Contention Thread 1 commits its transaction without

interference. Thread 3 on the other hand experiences interference with Thread 2

and must abort its transaction, before retrying and finally committing.

29

2. BACKGROUND AND RELATED WORK

The properties of atomicity and isolation are especially useful for application

developers because they allow multiple operations on shared data to be contained

within a single atomic block. As such, operations on shared data can be com-

posed, greatly reducing the difficulty for constructing complex software which

requires interacting concurrent access to shared memory.

Inspired by the success of concurrent consistency in distributed databases, par-

allel programming communities have entertained transactions as an increasingly

popular means to implement concurrency control on general purpose platforms.

While database systems are concerned with applying changes to disk, however,

general purpose platforms have concentrated on the state of (volatile) memory.

At the time of writing, research into transactional memory is extensive, yet most

techniques fall into three areas of application:

Software Transactional Memory (STM) – generally provides implementa-

tions of non-durable transactions (the ACI properties) for threads accessing

shared data. The added flexibility that software provides makes STMs a

good vehicle for experimentation on aspects of transactional memory de-

sign.

Hardware Transactional Memory (HTM) – typically concerned with mod-

ifications to cache protocols and architectural design which provide the func-

tionality of transactional memory semantics. HTM design typically excels

over STM design when execution speed is an issue. An additional benefit

of the HTM approach is that the mechanics of transactional memory are

completely oblivious to the user.

Distributed Transactional Memory (DTM) – concerned with providing trans-

actional memory services across geographically distinct hosts using message

passing protocols (as opposed to Shared Memory). Recent work by Gramoli

et al [9] has shown that a DTM approach can also be suitable for a ‘many

core platform’ where the need to ensure starvation freedom is essential.

In practice, these three areas tend to overlap considerably, especially with

respect to HTM and STM (often referred to as Hybrid Transactional Memory).

30

2. BACKGROUND AND RELATED WORK

Unlike locking, transactional memory can provide solutions to the problems of

deadlock and concurrent composition. However, transactional memory must ad-

dress their own issues, namely:

High Contention – One of the main drawbacks of transactional memory comes

from the wasted work that is produced when aborted transactions must roll-

back and retry their execution. In a transactional memory system, many

tentative changes may be attempted, especially if contention for shared

resources is high and conflicts are frequent.

Starvation – Care must be taken to ensure that one or more transactions do not

find themselves perpetually rolling-back. For instance, if there exists a long

transaction and many short-lived transactions, the long transaction may

find that it can never commit because on each attempt, a short transaction

modifies the shared state and invalidates the long transaction.

Addressing the problems of high contention and starvation requires a Con-

tention Management Policy (CMP). Various CMPs are discussed in Section 2.4.5.

2.4.2 Hardware Transactional Memory

Interest in transactional memory is not restricted to software applications. Hard-

ware Transactional Memory (HTM) is another area where the transaction mecha-

nism can be implemented. Augmentation and modification of hardware architec-

tures provides the focus for supporting transactions in HTM. In order to support

transactions in hardware (i) a thread must be able to execute instructions in

isolation, (ii) there must be a mechanism to detect conflicts in the consistency of

the data (iii) and there must be a way for the thread to undo changes or commit

results. Several mechanisms featured in hardware can provide these requirements

specifically in the areas of Memory Consistency Models, Cache Coherence Proto-

cols and Speculative Execution techniques.

The techniques used by HTM existed before the emergence of HTM as a

concurrency control technique, having been previously employed to manage the

consistency of data held within processor and memory caches. For example,

31

2. BACKGROUND AND RELATED WORK

Cache Coherence Protocols detect erroneous data that has occurred due to the

presence of multiple versions of data held in separate caches. Speculative Execu-

tion supports modern processors by allowing them to execution instructions out

of program order and roll-back execution to a previous state when inconsistencies

arise. Finally, Memory Consistency Models enable the processor to detect and

avert consistency errors which may be introduced by executing instructions out

of program order.

Figure 2.5: Cache Coherence data item x currently holds three values as multi-

ple versions of the same data location exist in both caches and within main memory.

Cache Coherence must ensure that a single value is seen by all threads.

Figure 2.5 illustrates a scenario where a data item (labelled x) is present

in three locations, namely: in two cache structures and in main memory. The

Cache Coherence Protocol ensures that data items can be located and updated

such that every thread in the system sees the same sequence of modifications to

those data items. For example, the history of modifications to data item x from

the perspective of all threads can either be 0xff , 0x33, 0x30 or 0xff , 0x30,

0x33, but not both. Current Cache Coherence Protocol technology can achieve

consistency either by broadcasting consistency information via a snooping type

protocol, or by maintaining a directory of which data is currently in a consistent

state.

By utilizing the Cache Coherence Protocol a transactional memory system

can emulate the concept of an atomic action within the confines of the cache.

32

2. BACKGROUND AND RELATED WORK

The cache allows a particular thread to effectively execute a number of program

instructions in isolation from other threads. With the support of a Memory

Consistency Model, the Cache Coherence Protocol can be adapted so that when

thread executes ‘atomic instructions’, conflicts can be detected. The Specula-

tive Execution component of the processor then allows a thread to roll-back its

execution to its previously ‘consistent’ state.

2.4.3 Software Transactional Memory

Software Transactional Memory (STM) covers a collection of techniques imple-

mented in software with the aim of providing non-durable transactions (atomic-

ity, consistency and isolation) to manage concurrency control at the application

level. Given the flexibility of software over hardware, and the relative ease with

which experimentation can be conducted in software solutions, STMs are easier

to integrate with programming language support and provide a good method of

producing prototype solutions. The overheads associated with STM approaches

tends to be much greater than that of HTM, however, and much research has

been conducted with the goal of minimizing these overheads.

Numerous STM techniques exist at the time of writing, yet whichever STM is

implemented, each technique can often be categorised with respect to the treat-

ment of shared data. Approaches to shared data can be considered under the

following three categories: (i) the granularity of shared data; (ii) the overhead of

updating shared data and (iii) the synchronization mechanism used to regulate

access to shared data.

If we consider the first, the granularity of shared data, STMs can be further

divided into two approaches:

(Atomic) Object Based STMs – (such as the DSTM2 benchmark suite for

instance [10]), represent shared data as objects from which concurrent data

structures can be composed. Object Based implementations have the bene-

fit that they can be integrated with Object Orientated languages relatively

easily;

33

2. BACKGROUND AND RELATED WORK

Word Based STMs – (such as TinySTM [11]) access and modify shared data

at the granularity of memory-words, and as such are considered somewhat

‘lower-level’ than their object based counterparts (TinySTM for instance,

provides functions for reading and writing memory words within transac-

tional blocks of code).

STM implementations vary with regard to the overheads required for shared

data access, with two modes of operation available:

Deferred Update – Threads which operate in STM implementations using the

deferred update model, modify copies of shared objects during transaction

execution. Copies are stored in caches private to a particular thread, and

often separated into read sets and write sets. When the thread reaches the

end of its transaction, it must replace the objects it has modified with the

contents of its read/write sets.

Direct Update – STM software which uses a direct-update model can reduce

the overhead of creating per-thread copies of atomic objects by restricting

ownership of an object to a single thread during its transaction (although

a single copy of shared objects are still required even in a direct-update

scheme). As a thread executes its transaction, it attempts to acquire own-

ership of each shared object it wishes to modify; if another thread owns an

object already then a contention management policy is consulted and either

the owning thread or the acquiring thread must abort.

We may also examine STM implementations with respect to the particular

synchronization technique employed when accessing shared data. With some im-

portant exceptions (i.e. [12, 13]), most STM implementations can be categorised

by the following designs:

Obstruction Free – in an obstruction free STM design, threads are able to

make ‘progress’ with their transactions (whether they commit or abort),

if isolation from the activity of other threads is maintained. The obstruc-

tion free library of DSTM2 for instance [10], grants ownership of shared

objects by the successful execution of the Compare-And-Swap synchroniza-

tion primitive.

34

2. BACKGROUND AND RELATED WORK

Lock Based – in a lock-based STM design short critical sections guarded by

conventional locks are used to allow ownership of shared objects. To avoid

the possibility of a deadlock, threads also use time-outs limiting the max-

imum number of attempts to acquire a lock before aborting their transac-

tions.

Each approach to shared data access has its own implications and benefits.

With respect to direct versus deferred updates, while the latter requires more

memory for the read/write sets, deferred update is easier to implement than a

direct update approach. For example, ‘cache bouncing’ is a phenomenon where

excessive overhead is caused by moving the contents of cache lines around a

multi-core cache hierarchy. A direct update scheme is more suspectible to cache

bouncing, and so most direct update schemes support visible and invisible reads.

A prominent feature of all STMs is the Contention Management Policy (CMP).

When there are a low number of threads, and transaction execution is sparse,

access conflicts between transactions are rare and the thread execution is not im-

paired by the need to abort and retry transactions. Conversely, when the level of

contention increases and conflicts are frequent, a CMP is indispensable to ensure

that all threads can commit their transactions as expediently as possible.

2.4.4 Coordinating Transactions

Transactional memory semantics alone do not consider the effects of ordering

transaction execution. Rather, much existing research has focused on the pro-

duction of transactional schedules which are serializable. When transactions were

originally implemented in distributed database applications, transaction ordering

was less of a concern because transactions tend to be independent operations.

In transactional memory, however, transactions tend to be tightly coupled and

coordination becomes more prominent an issue. (For instance, producer and con-

sumer transactions may be modifying a shared buffer; a producer transaction

must precede a consumer transaction if the buffer is empty.)

In this section two mechanisms are covered, which provide the application pro-

grammer with the ability to coordinate transactions, namely: conditional primi-

tives and transactional nesting.

35

2. BACKGROUND AND RELATED WORK

Figure 2.6: Transaction Coordination Thread P-2 aborts its transaction ex-

plicitly in this scenario because the shared buffer has reached capacity after Thread

P-1’s transaction. Once Thread C-1 removes an item from the buffer, Thread P-2

can retry and commit.

Conditional Primitives A number of primitives have been developed to pro-

vide the programmer who values transaction coordination with greater flexibility.

These include the ability to explicitly abort a transaction and the retry and orElse

statements first described by Harris et al [14]:

1. Programming Languages which support exception handling allow a trans-

action to be terminated prematurely and explicitly by the programmer. A

transaction may throw an exception from within itself, to be caught back in

the application. Some implementations of transactional memory also pro-

vide the keyword abort so that a transaction can be aborted and rolled-back

explicitly.

2. Harris et al [14] first introduced the retry statement into transactional se-

mantics. If a transaction reaches a retry statement, the transaction is al-

lowed to abort for whatever arbitrary reason the programmer specifies, and

another attempt is then made to execute the transaction.

3. The orElse statement (also courtesy of Harris et al [14]) provides conditional

coordination between two transactions. Using orElse, an expression like

(T1 orElse T2) means that if transaction T1 commits then T2 will not be

executed, but if T1 aborts then T2 is executed. Now if T2 commits, the

36

2. BACKGROUND AND RELATED WORK

orElse statement is completed, but if T2 also aborts, the orElse statement

is re-executed.

With coordination primitives, sophisticated orderings of transaction execution

can be expressed at the cost of requiring application programmers to explicitly

program transaction coordination themselves. Because these decisions tend to

be specific to each particular application, this may be a necessity. However,

sophisticated coordination between parallel components will cause difficulty for

application programmers, raising the risk of introducing consistency errors. (For

example, use of the retry or orElse may result in a live-lock).

Nested Transactions Transactions that execute wholly within the execution

of another (parent) transaction are called nested transactions. By accommodating

nested transactions, transactional memory can provide the following benefits:

Composition – Analogous to the use of functions in most programming lan-

guages, allowing one transaction to be executed from inside another trans-

action is desirable because it allows transactions to be composed, just as an

atomic block allows concurrent statements to be composed.

Coordination – Nested transactions provide a degree of transaction coordina-

tion which is absent from the general purpose transactional semantics of

commit or abort.

Efficiency – Under some approaches to nested transactions, rolling-back the ef-

fects of a nested transaction does not automatically abort its parent trans-

action. This is beneficial if the nested transaction can retry and commit

because the parent transaction does not have to undo its changes and exe-

cute repeatedly.

Although conceptually intuitive, in practice the management of nested trans-

actions requires a substantial degree of complexity to implement, and a number

of approaches which accommodate nested transactions have thus far been devel-

oped:

37

2. BACKGROUND AND RELATED WORK

Flattened Transactions – Flattened transactions are the easiest to implement;

the nested transactions are simply incorporated into the parent transaction

and the result is executed as a single transaction. However, they offer only

‘syntactic sugar’ to the user, and the parent transaction aborts along with

any child transactions.

Closed Transactions – If a child transaction aborts then this does not cause

its parent transaction to abort. If a child transaction commits then its

changes are immediately observable to the parent transaction, but not to

any other transaction. The behaviour of closed transactions and flattened

transactions is indistinguishable when the transactions commit.

Open Transactions – When an open transaction commits, its changes are im-

mediately observable to any other transaction in the system. This is true

regardless of the state of the parent transaction and whether the parent

transaction commits or aborts. Thus open transactions allow nested sec-

tions of transactional code to execute unrelated tasks (such as memory

management), which the application programmer does not want to be un-

done.

A number of techniques have been developed recently to allow greater par-

allelism when executing nested transactions. For example, both HParSTM [15]

and [16], describe schemes to allow the parallel execution of nested transactions.

It should be noted that while not all applications will necessarily benefit from

or require the use of nested transactions, those that do tend to feature in the

domain of transactional memory (as opposed to database transactions). Where

processes or threads are executing transactions in memory, there tends to be a

greater need for coordination around accesses of shared data. Object orientated

programming is no exception to this pattern, as shared data tends to be grouped

logically into shared objects.

2.4.5 STM Contention Management

A prominent source of inefficiency in transactional memory comes from the cost

of transactions having to abort and rollback their actions because of concurrent

38

2. BACKGROUND AND RELATED WORK

interference. As more transactions execute, or transactions execute for longer

periods of time, the contention for shared resources increases, causing a greater

frequency of aborted transactions and reducing the overall progress of the appli-

cation.

To mitigate the degree of wasted time caused by roll-backs, much research

has been developed by the concurrency community, principally in STM, to pro-

vide contention management and reduce the occurrences of aborted transactions.

Approaches to contention management at the time of writing can be categorised

into the following three groups:

Exception-Based – The programmer dictates how an aborting transaction should

be treated. Exception handling provides the mechanism for such approaches

in programming languages that support the ‘throwing’ and ‘catching’ of ex-

ceptions.

Wait-Based – Contention management typically resolves conflicts between two

transactions by causing one transaction to back-off and wait for a period of

time before retrying. The criteria for deciding the outcome of the conflict

may vary depending on the contention management policy used.

Serializing – Contention management typically resolves conflicts between con-

flicting transactions by rescheduling the execution of the aborted transac-

tion (usually to execute after the ‘winning’ transaction). Unlike wait-based

approaches, serializing contention management often requires control over

the allocation of transactions to threads so that conflicting transactions

can be scheduled to execute by a single thread (thus avoiding the conflict

through serial execution).

With the exception-based approach, the main burden still falls on the appli-

cation programmer to handle aborts and therefore this requires more work from

the programmer. The benefit for the programmer comes from the increased flex-

ibility. When one considers real time deadlines for instance, a programmer may

require application specific actions to take place when a transaction has aborted

and failed to achieve a specific deadline (or perhaps the transaction must be

abandoned completely).

39

2. BACKGROUND AND RELATED WORK

Wait-based contention management, incorporates some of the earliest ap-

proaches to contention management in STMs. Numerous policies exist which

resolve contention by emphasizing various properties of conflicting transactions.

At the time of writing, the most prominent are:

Polite – When any two transactions conflict, the CMP decides which should

abort and the aborting transaction waits for an increasing back-off time

before re-executing. Theoretically, waiting should allow time for the failed

transaction to avoid a conflict on its next attempt.

Karma – The number of shared objects accessed by a transaction is maintained

and the CMP uses this number to assign a priority to conflicting transac-

tions. Should two transactions conflict, the CMP aborts the transaction

with the lower priority. The goal of the CMP is to abort those transactions

which will incur the least cost of rolling back. The difference between the

competing priority values is used to compute the number of times an abort-

ing transaction will retry before aborting the transaction with the higher

priority.

Polka – This CMP is a combination of the Polite and Karma policies. The

Polka CMP uses an exponential back-off with aborted transactions.

Timestamp – The CMP will abort transactions based on the time when they

began executing. Should two transactions conflict, the newest transaction

is aborted.

Heber et al [17] identify a flaw in time-based contention management. Specif-

ically, if two transactions conflict and the aborting transaction re-executes too

soon, it will again have to abort because the conflict will arise again before the

winning transaction completes. Even if the conflict is avoided when the aborting

transaction re-executes, it is possible that the aborting transaction had to wait

an excessive amount of time before it could finally commit. Heber argues that

serializing contention management avoids this drawback, endemic in time-based

approaches. This is because the aborting transaction can resume execution im-

mediately after the conflicting transaction terminates (presumabley resulting in

40

2. BACKGROUND AND RELATED WORK

better performance). In Figure 2.7 three scenarios are depicted which illustrate

the limitations of the time-based policies, and how these can be resolved via a

serializing approach.

Figure 2.7: Contention Managers Three scenarios are shown to demonstrate

a flaw with time-based contention management (1 and 2) and how this can be

addressed using a serializing approach (3). In scenario 1, two threads (T1 and T2)

have conflicted and a time-based CM causes T2 to abort and retry, however the

time period is too short and so T2 aborts again because T1 is still executing. In

scenario 2 the same conflict has occurred but this time the CM makes T2 wait too

long before re-executing. In scenario 3, a serializing approach is used which moves

the transaction of T2 to a queue belonging to T1. Now once T1 has completed its

transaction, it executes the transaction of T2. Meanwhile, T2 is now free to execute

other transactions.

Serializing contention management is a relatively new technique, but numer-

ous approaches exist at the time of writing. A common theme with serializing con-

tention managers is to resolve a conflict between two transactions by rescheduling

the aborted transaction such that it executes shortly after the successful transac-

41

2. BACKGROUND AND RELATED WORK

tion. For instance, CAR-STM [18] serializes transaction execution by supplying

each thread with a transaction queue. When a transaction aborts, the contention

manager reschedules the aborted transaction by moving it to the queue of the

successful transaction. Steal on Abort [19] implements a similar idea complete

with transaction queues, but adds extra functionality by allowing threads to steal

the aborted transactions of other threads to balance their workloads.

Yoo and Lee introduced a contention manager called ATS [20] which demon-

strated improvements in performance with workloads exhibiting little parallelism.

ATS allowed the CM to adapt to varying levels of contention amongst threads

executing transactions. Their approach required each thread to monitor the level

of contention (called the contention intensity), and if this breached a certain

threshold, transactions are serialized into a single queue such that they can com-

mit serially and subsequently reduce the level of contention.

Heber et al [17] followed up on the work of adaptive serializing contention

management by analyzing how different workload characteristics are hindered or

enhanced by serializing transactions, and provided algorithms which could allow

the degree of serialization to be modified dynamically (algorithms were more

sophisticated than the approach provided by Yoo and Lee).

One issue which serialisation raises is the cost of relocating transactions to be

executed by another processor. To outperform a wait-based technique, one must

assume that a smaller overhead is required to move a transaction to execute on

another processor than the overheads of the time-based approaches. It would be

interesting to see if this assumption would hold on a many core platform.

In summary, early approaches to STM design allowed for greater flexibility

by leaving the resolution of conflicting transactions in the hands of the user. The

difficulty of resolving concurrent conflicts prompted innovations in time-based

contention management. The design of contention management policies allowed

various techniques to be implemented and compared. Finally, the inherent in-

efficiency of time-based techniques led to developments in serializing contention

management. Serialising contention management policies control and manipulate

the allocation of both transactions to threads and threads to processors.

42

2. BACKGROUND AND RELATED WORK

2.5 Related Work

In this section several implementations are described which address contention

management in STM design. To evaluate these approaches in the context of this

thesis, the following criteria is used:

Environment – What requirements are made of the executing platform and

can the technique exploit the parallel processing resources of the host?

Conflicts – What kind of conflicts does the technique address and is there some

facility to explore the coordination of transactions? For example, how does

the technique handle nested transactions?

Adaptation – Does the technique provide some facility to adapt its behaviour

in response to changes in workload?

In this thesis, we are interested in how present techniques perform in an

increasingly parallel environment. Environment and adaptability are significant

with respect to how the technique may be affected by future developments in

parallel architectures. We are also interested in addressing a wider range of

conflicts, that the application developer might consider important for program

progression. Hence the flexibility of the approach when dealing with various types

of conflicts is considered.

2.5.1 Serialising Contention Management

Some approaches to contention management involve rescheduling transactions to

avoid repeated conflicts. Such techniques can be described as serializing con-

tention managers. Ansari et al [19] produced one such approach, called Steal on

Abort, where each thread maintains several work queues containing transaction

requests from the application. When a conflict between executing transactions

occurs, the thread of the committing transaction ‘steals’ the aborted transaction

from its current work queue and places it in its own. By rescheduling the aborting

transaction to the queue of the successful transaction, the likelihood of a repeat

conflict is reduced given that the aborting transaction will re-execute after the

43

2. BACKGROUND AND RELATED WORK

successful transaction (essentially, the two transactions have been compulsorily

serialized).

Environment – Steal on Abort requires concurrent data structures (e.g. work

queues) to hold transactions. Threads must be divided into application

threads (which issue transactions) and transactional threads (which execute

transactions). Each transactional thread is then allocated a work queue

such that only thread i can execute a transaction on queue i. The Steal

on Abort technique requires that transactional threads supply the results

of each transaction asynchronously, to the issuing application thread.

Conflicts – As with many contention managers, Steal on Abort addresses con-

currency conflicts. Ansari et al assert that a benefit of their system is that

no application specific knowledge is required. As such, transaction coordi-

nation and nested transactions are not covered. Steal on Abort also pro-

vides a number of ‘stealing strategies’. For example, Steal-Tail attempts to

separate conflicting transactions which have executed close together, while

Steal-Head aims to reduce the occurrence of cache misses.

Adaptation – Steal on Abort implements ‘Work Stealing’; when transactional

threads run out of transactions, they may steal transactions from the work

queue of another transactional thread. This allows the contention manager

to adapt by balancing the workloads. In addition, the number of transac-

tional threads can be increased under high workloads to produce a better

distribution of work.

A potential issue with Steal on Abort is that transaction coordination and

nesting are not addressed. For example, if a transaction cannot commit because

of a coordination (e.g. semantic) conflict then reordering the transaction does not

guarantee that the semantic condition has been addressed when the transaction

re-executes (even if the transaction commits, if the semantic condition remains

unfulfilled then the transaction will likely need to re-execute in future). With

long/nested transactions, this issue could greatly hinder the progression of the

program, as the aborted transaction may have to be rescheduled numerous times.

44

2. BACKGROUND AND RELATED WORK

How Steal on Abort would fair on a highly parallel system is interesting be-

cause of the synchrony required in distributing work among the transactional

threads. For example, substantially increasing the number of transactional threads

may itself cause much contention (which requires synchronization) given that the

degree of work-stealing will increase. One would also expect that where there is

a lot of work stealing occurring, the benefits of serialization would be reduced;

transactions will be moved to queues where they will execute concurrently once

again and a conflict may be repeated.

2.5.2 Shrink and Predictive Scheduling

Techniques such as Steal On Abort, which reorder and serialize conflicting trans-

actions, attempt to resolve conflicts once they have arisen. An alternative is to try

and prevent conflicts ever occurring by rescheduling transactions that are likely

to conflict before they execute. Dragojevic et al provide one such approach called

Shrink [21]. The technique used by Shrink involves prediction and serialization,

specifically:

• Shrink generates prospective read and write sets for each transaction before

it executes. The likelihood of a conflict is estimated by comparing the

contents of the prospective read/write sets with the data being modified

by any currently executing transactions. Bloom Filters [22] are used to

determine the likelihood of a conflict quickly.

• If a conflict is deemed likely to occur then threads try to acquire a global

lock. Once acquired, the lock is held by a thread until its own transaction

commits or aborts. Using a global lock in effect allows a transaction to

execute in serial isolation.

Dragojevic contends that serialization of transactions should only occur when

the contention among shared access is sufficiently high to justify the overhead

of rescheduling transactions. The measure of contention is referred to as the

serialization affinity and this is used to decide whether Shrink ’s serialization

mechanism (i.e. the global lock) should be engaged.

45

2. BACKGROUND AND RELATED WORK

Environment – As noted, the approach used by Shrink for serialization com-

prises a global lock rather than requiring one thread move its transaction

to the work queue of another thread.

Conflicts – Shrink addresses concurrent conflicts and proposes a scheme that

records previous memory accesses, to help predict future memory accesses

with the support of a probabilistic construct called a Bloom Filter.

Adaptation – A key contribution of Shrink is the computation of a serialisation

affinity, which allows the contention management policy to decide at run-

time whether serialisation should be applied.

The Shrink mechanism as described seems to suggest that the accuracy of

predictions depends to some extent on the number of items in the read/write sets.

The predictive power of Shrink should be optimum in the case of short/repetitive

transactions. Long and nested transactions are likely to introduce unpredictable

data accesses, given that different nested transactions may execute depending

on different states encountered by parent transactions. As a result, Shrink may

perform poorly with such transactions.

2.5.3 TLSTM

TLSTM is an adaptation to the SwissTM software transactional memory man-

ager [23], provided by Barreto et al [24]. The aim of TLSTM is to combine apsects

of both Thread Level Speculation (TLS) and Transactional Memory (TM). TL-

STM divides thread execution into speculative tasks of execution (which may

run in parallel). As with existing TLS techniques, speculative tasks are provided

automatically by the compiler. Tasks may, however, incorporate both sequential

code and concurrent transactional code; specifically, statements executed within

atomic blocks.

It is anticipated that this task based model of speculation will provide better

performance on architectures featuring an abundance of parallel processing re-

sources. Barreto et al provide benchmarked results which demonstrate increased

transactional throughput, achieving up to 48% speed up on SwissTM alone.

46

2. BACKGROUND AND RELATED WORK

Environment – SwissTM is a word-based, lock-based TM. Extending SwissTM

with TLS retains these features. Rather than submitting transactions to

be executed by a thread-pool, transactions are executed directly through

programmer macros. However, it is assumed that the compiler can decom-

pose the execution of the thread into tasks. Tasks are then executed in

parallel among available processing resources (although the mechanism for

distributing tasks is beyond the scope of the paper).

Conflicts – The programming model proposed in TLSTM must provide opacity

of user transactions (i.e. correctness). This includes resolving both con-

currency conflicts (inter-thread conflicts) and speculative conflicts (intra-

thread conflicts). Intra-thread conflicts consist of Write-After-Read (WAR)

or Write-After-Write (WAW) conflicts, arising from the execution of task

out of program order. Hence, accesses made by tasks belonging to the

same thread must behave as if they were executed sequentially. For sim-

plicity, transactions are assumed to be flat, although the authors suggest

that nested transactions can be incorporated in the model.

Adaptability – The degree to which thread execution may be decomposed into

parallel tasks (speculative depth) can be configured by the application. The

authors cite a number of approaches for deciding the value of the speculative

depth, specific to TLS approaches, including [25] and [26].

One assumes that the criteria for deciding the granularity to which threads as

decomposed should be informed by both the parallel processing resources avail-

able and the size of the transactions that will be split among tasks. Decomposing

a task on a single processor architecture would seem to be bad for performance.

Very short, read-only transactions would also seem unlikely candidates for decom-

position given that the overhead of decomposition and synchronisation (in order

to commit each task), would almost certainly outweigh the gains in throughput.

The TLSTM approach is exciting from the perspective of highly parallel archi-

tectures and programming scenarios featuring long, complex transactions. The

TLSTM model raises the exciting possibility of executing tasks speculatively

ahead of time as dictated by parallel processing availability rather than strict

47

2. BACKGROUND AND RELATED WORK

program order. In this respect, TLSTM may be particularly beneficial when one

considers transaction coordination in order to reduce the possibility of semantic

conflicts. For example, if the TLSTM system could anticipate semantic conflicts

then the process of dissecting threads into tasks could be exploited to find a task

execution which reduces the possibility of coordination/semantic conflicts.

2.5.4 Universal Constructions

An important contribution with respect to building wait-free algorithms was pro-

vided by Herlihy [1] who described a hierarchy of consensus numbers relating to

various concurrency primitives (atomic registers, fetch-and-increment, compare-

and-swap, etc.). Herlihy then defined the concept of a Universal Construction [27],

which is fundamentally a procedure to transform any deterministic sequential

object into a wait-free linearizable object. Such an object can be accessed and

updated concurrently by any number of threads.

Figure 2.8 illustrates the general idea behind the creation of a wait-free lin-

earizable object via a Universal Construction. The approach is similar in concept

to a wait-free mechanism, which allows multiple threads to append items to a

shared list. In this case the shared list is simply a series of instructions or in-

vocations of methods on some data structure. When executed in an identical

sequence, the Construction ensures that the data structure will hold the same

state from the perspective of every thread in the system.

To ensure that every accessing thread has a consistent view of the object,

an n-thread consensus protocol is used. The protocol ensures that each thread

perceives the same order of method invocations that have been added to the

shared list. To ensure that the Universal Construction is wait-free (i.e. to ensure

that each accessing thread can append to the list in a finite number of steps),

threads help each other to resolve failed attempts to add their invocations to the

list.

Recently, there have been a number of approaches which seek to extend the

Universal Construction to the execution of transactions. For instance, Wamhoff

and Fetzer described a Universal Construction that could deal with non-terminating

transactions by restricting transaction execution times [28]. Around the same

48

2. BACKGROUND AND RELATED WORK

Figure 2.8: A Universal Construction Thread X and Y attempt to append

their respective method invocations to the end of a shared log which is shown in the

form of a linked list of nodes containing states. The log maintains a progression

of invocations, starting with the initial state of the object, effectively providing

instructions on how to ‘build’ the most current state of the object.

time, Chuong et al described a Universal Construction [29] for creating shared

objects that is ‘transaction friendly’, such that failed attempts to modify the

shared object can be undone like a transaction.

At the time of writing, one of the most recent publications in this area is

provided by Crain et al [30]. Crain argues that STM systems do not sufficiently

free the programmer from the management of synchronisation related issues and

that transactions should appear to execute exactly once from the application layer

point of view (there should be no observed abort or commit). The aim of Crain’s

Universal Construction is to ensure that every transaction eventually commits

without the application being aware of aborted transactions.

Crain describes a concurrent environment comprised of m processors where

each processor is responsible for a subset of processes, such that:

• The aim of a processor is to ensure the progress of each process for which

it bears responsibility.

• When a processor encounters a transaction that aborts, it seeks help from

another processor to commit that transaction.

The approach considers only atomic registers, which are referred to as shared

objects. A subset of these objects are called transactional objects (t-objects)

which are modifiable within the execution of a transaction. Crain et al hold

49

2. BACKGROUND AND RELATED WORK

the state of the t-objects in a list, in a structure similar to the list of invoca-

tions described in Herlihy’s original Universal Construction. Each element in the

list identifies a committed transaction and the state of all accessed t-objects are

recorded, prior to and after the successful transaction execution.

Transactions possess timestamps, which are issued by a logical clock. The

logical clock is incremented via fetch-and-increment operations. An array is used

to log the progress of each processor (so that multiple processes can help one

another to retry aborted transactions). In addition, transactions may be shared

between processors and speculatively executed, although the sharing mechanism

is intended to allow progress of individual processes by reducing the possibility

of concurrent conflicts.

Environment – Crain’s approach assumes that there is a fixed number of pro-

cessors and that each processor assumes responsibility for executing a sub-

set of transactions. Similarly with Steal on Abort [19], Crain assumes that

processors can help one another by appropriating the transactions of an-

other processor when a transaction is aborted (therefore, control of thread

scheduling is expected).

Conflicts – Crain’s Universal Construction does not address conflicts in detail,

transaction coordination or nested transactions. Crain assumes that trans-

actions abort because of concurrency conflicts between shared data and all

transactions are expected to terminate successfully at some point in time.

Eliminating the observation of abort/retry is entirely premised on this, and

it is assumed that rescheduling and re-executing any transaction will allow

it to commit.

Adaptation – Much like Steal on Abort, Crain’s approach relies on a pool of

transactional threads, to which transactions are allocated. Transactional

threads can execute the transactions of other transactional threads on the

occurrence of a transaction aborting. This provides the Universal Construc-

tion some measure of adaptation in the presence of concurrent conflicts.

50

2. BACKGROUND AND RELATED WORK

2.6 Summary and Thesis Contribution

In this chapter a number of approaches were explored for the provision of concur-

rency control. A description of synchronization primitives and their the relevance

when solving the problem of consensus was introduced. Pessimistic approaches

were then discussed, principally in the application to locking. A brief evolution of

techniques were mentioned, which use speculative operations and exploit redun-

dancy in the processing capacity of the host platform. Speculation was followed

by optimistic methods, focusing particularly on transactions. Both Hardware and

Software Transactional Memory (STM) were discussed, with greater emphasis on

STM. Transaction coordination (e.g. primitives and nesting) and contention man-

agement policies were described in the context of STM. Finally, in the Related

Work section, a number of recent approaches to contention management for STM

were described.

In summary, lessons and key points consisted of:

• The benefit of locking is that it can be simple and intuitive for trivial prob-

lems, and locking features heavily in a great deal of legacy code (typically

in the area of operating systems), where high performance is considered a

priority.

• Unfortunately, solutions which use locking cannot easily be composed with-

out the risk of introducing errors into the application, especially with respect

to the possibility of introducing a deadlock or livelock. Furthermore, even

where composition is achieved, the solution tends to be somewhat bespoke

in nature and cannot be applied generally.

• As computing resources have increased in terms of both memory and par-

allel processing power, optimistic techniques have become more attractive

as a means of solving the complexities inherent in locking. In particular,

transactional memory offers application programmers an intuitive interface

which allows the composition of concurrent code in a generalised way and

without the risk of introducing deadlocks.

51

2. BACKGROUND AND RELATED WORK

• Unfortunately, transactional memory does not perform well when contention

for shared resources is high and coordination of access is particularly im-

portant (the number of aborted transactions increases and application pro-

gression suffers). Consequentially, there has been much focus on techniques

which can provide effective contention management policies to mitigate the

degradation that occurs as a result of high contention.

Addressing the implications of interference and rollback, numerous contention

management policies (CMP) have been proposed, which at the time of writing,

tend to fall into three categories:

1. Exception handling, where the programmer is responsible for handling con-

tention management explicitly.

2. Wait-based CMPs, where aborted transactions are delayed or alter priority,

to allow other transactions to complete.

3. Serialising CMPs, which reschedule the execution of transactions to min-

imise the possibility of interference.

Generally speaking, the development of wait-based CMPs incurs a loss of flex-

ibility for the application developer present in the exception handling approach.

The benefit is that he/she is no longer burdened with the need to explicitly handle

aborted transactions. Serialising CMPs attempt to improve on the performance

of wait-based CMPs. The work in serialising CMPs has renewed interest in Uni-

versal Constructions, with several approaches recently published, which provide

the construction of a set consisting of transaction executing threads.

2.6.1 Contribution

If we consider the role of contention management as simply to provide the greatest

degree of throughput by reducing the number of read/write (concurrent) conflicts

then we do not have to concern ourselves with the coordination of transaction

execution. Both the wait-based and serialising contention managers seem to

begin from this assumption. This does not guarantee the best progression of

52

2. BACKGROUND AND RELATED WORK

the program as a whole, however. For example, multiple threads which access

a shared data structure often need to coordinate their accesses to ensure the

data structure is not empty, or filled to capacity before they conduct insertion or

deletion operations on that structure. If accesses to the data structure are made

within the execution of transactions, then the repeated execution of transactions

(because the state of the data structure is such that the thread cannot progress)

will incur needless future conflicts.

Although a contention manager may increase the throughput of transactions

which successfully commit, one may lose sight of the fundamental reason for

writing multi-threaded applications to begin with; namely, to provide a means

to execute programs more expediently. If it is the case that in systems program-

ming (where STM is implemented), the coordination of multi-threaded execution

is paramount for the progression of the program as a whole, then semantic is-

sues should be an integral feature of a concurrency control solution. With this

consideration in mind, we shall provide the following contributions:

1. Speculative techniques have shown that parallel processing redundancy can

be exploited by the execution of speculative threads; speculation has the

potential to discover more efficient paths of execution within multi-threaded

programs. We begin with this principle and tackle the progression of multi-

threaded programs with a speculative exploration of state space. Therefore,

the first contribution of this thesis is a model of computation, called Many

Systems, where a state space of concurrent execution is generated and man-

aged within finite resources.

2. Transactional memory is an attractive approach to concurrency control,

given its ability to compose concurrent execution and the highly speculative

nature of transaction execution. Therefore we provide an implementation

of a Universal Construction to provide contention management for STM,

based on the concepts of the Many Systems model. Unlike the approaches

cited in the Related Work Section, the Universal Construction shall be

implemented such that both concurrent conflicts and semantic conflicts can

be resolved to promote the progression of multi-threaded programs.

53

2. BACKGROUND AND RELATED WORK

3. Given that transaction coordination and exploration is our emphasis, un-

like the techniques in the Related Work, we extend the implementation

to allow for the execution of nested transactions. Nested transaction exe-

cution is conducted in a manner which is novel, yet scalable with respect

to the platform resources and thus beneficial to the progression of nested

transactions.

4. Finally, we provide performance results which demonstrate the applicabil-

ity of our approach in comparison with an existing contention management

policy using established benchmarks. We show that: (i) without the pres-

ence of semantic conflicts, our approach performs as well as an existing

policy; (ii) when semantic conflicts are introduced, our approach outper-

forms the existing policy (in terms of transaction throughput) and (iii) in

the presence of semantic conflicts, techniques designed to reduce conflicts

(data structures such as hash tables) are of little benefit.

To support the main contributions we endeavour to fulfil the following objec-

tives:

Versatility – In describing the Many Systems model, we identify properties and

suggest benefits which are not restricted to transactional memory, but may

extend to concurrency control in general.

Efficiency – We use wait-free and lock-free algorithms wherever possible, while

taking account of issues which are detrimental to performance on today’s

architectures (cache-bouncing, context switching, etc.).

General Purpose – For the scope of this thesis, we implement our prototype

in software only and make no scheduling demands, bespoke to particular

operating systems. Hence we provide an implementation that is general

purpose and an interface consistent with existing transactional memory

libraries (unlike Steal on Abort or Crain’s Universal Construction for exam-

ple, our implementation does not require a thread pool where transactions

are allocated to threads to be executed asynchronously with application

threads).

54

Chapter 3

The Many Systems Model

In this chapter we present the principles of a model we call Many Systems (Many

Systems is a reference to the Many Worlds Implementation of Quantum Physics

by Everett et al [31] which has served as an inspiration for the model). To

encourage clarity, the model is presented in an abstract process language called

Communicating Sequential Processes [32] (hereafter CSP). To help those not

acquainted with CSP syntax, the model uses a minimum of CSP features. In

addition, an appendix is provided, explaining selected constructs and terminology

in greater detail.

We begin the model by defining the main components, which are used to gen-

erate a state space of concurrent activity. The Dining Philosophers problem [33]

is used as a running example throughout the chapter to show how the model

may be applied to an established concurrency control problem. We then reason

about the state space, and a new Universal Construction is proposed, based on

Many Systems principles. Finally, the chapter closes with several properties of

the Many Systems model.

3.1 Overview

In the Dining Philosophers problem there are forks interspersed equally amongst

a number of seated philosophers. The number of philosophers is equal to the

number of forks, and each philosopher is required to hold two forks in order to

eat. Sometimes a philosopher may think for a while before attempting to eat,

55

3. THE MANY SYSTEMS MODEL

but as there are not enough forks for all philosophers to eat simultaneously, a

philosopher must occasionally wait for a fork to become available. With respect

to concurrency control, this simple scenario describes the fundamentals of several

important problems, which may occur in a multi-threaded program with limited

shared resources, specifically:

• If philosophers proceed without due care, deadlock will ensue if all philoso-

phers acquire a single fork at the same time.

• In addition, the scenario may lead to ‘starvation’ if some philosophers con-

tinuously utilize forks while other philosophers persistently cannot acquire

forks.

• Starvation may lead to a livelock if philosophers continuously utilize forks

at equal time intervals, thus preventing some philosophers from ever making

progress (i.e. dining).

Concurrency control is required to ensure that those events which philosophers

observe (e.g. picking up and putting down forks) are scheduled according to a

ordering which allows all philosophers to eat. In essence, reads and writes that

represent access to shared state must be ordered appropriately. In the Dining

Philosophers example, reads assess the availability of a fork and writes change a

fork’s availability. If P is used to denote a dining philosopher then the ordering

of their reads and writes (to reflect an ability to eat) would be:

READP,FORK1 (available);WRITEP,FORK1 (pick up);

READP,FORK2 (available);WRITEP,FORK2 (pick up);

WRITEP,FORK1 (put down);WRITEP,FORK2 (put down);

With multiple philosophers, (and hence multiple read/write operations), the pri-

ority of concurrency control is to interleave such orderings as to maximise the

progress for each philosopher while averting the possibility of deadlock, livelock

and starvation.

Using the Dining Philosophers example we present a sketch of the ‘Many

Systems’ approach in a scenario involving only two philosophers. This does not

56

3. THE MANY SYSTEMS MODEL

Figure 3.1: The Dining Philosophers Tree of Execution

give a full description or complete understanding, but it does allow the idea

behind the Many Systems model to be grasped in the first instance. We label

our two philosophers P1 and P2. Their instructions remain unchanged, namely:

pick up fork to the left, pick up fork to the right, eat, put down fork to the left,

put down fork to the right, think, repeat.

The scenario begins as both P1 and P2 attempt to pick up their first forks (F1

and F2 respectively). P1 picks up F1 followed by F2 while P2 attempts to pick

up F2. At this point three additional philosophers (P2A, P2B, P2C) are created to

reflect the three different causally consistent realities that can now take place

1. P2A gains F2. In this reality, P2 picked up F2 before P1 picked up F1;

57

3. THE MANY SYSTEMS MODEL

2. P2B gains F2. In this reality, P2 picked up F2 before P1 picked up F2;

3. P2C does not gain F2. In this reality, P2 tried to pick up F2 after P1 picked

up F1 and F2.

P2C now dies as its fork (F2) was not available and so P2C could not make

progress. This brings to an end the reality of P2C and the resources maintaining

the reality of P2C are ‘released’ (however, P2C can pass in the knowledge that

somewhere a doppelganger lives on).

Carrying on with the scenario, P1 now places F1 on the table, which due to

causality, cannot happen before P1 has picked up F1 and F2. A new future is

created (let’s simply label it 4) where P1A places F1 on table. This is the only

possible future at this point because:

• P1 can’t place F1 down in the future of P2A because P1 has yet to pick up

F1;

• P1 can’t place F1 down in the future of P2B because P1 has yet to pick up

F2;

• P1 can’t put F1 down in the future of P2C because that reality ceased to

exist.

The creation of reality 4 allows P2 to revisit its attempt to pick up F2. P2 will

not be successful, however, until the creation of a new reality after P1 eventually

places F2 back on the table. It is important to understand that realities will

terminate if advancement cannot be made within them (without philosophers

waiting for forks). As a consequence, deadlock cannot occur at any stage in the

scenario.

At first thought one may assume that efficiency, in terms of space, would

render this a pointless avenue of research. However, considering the example

described one may start to speculate about the possible benefits:

Reduced contention – A reality is essentially write once read many (as a new

write creates a future reality or state). A similar model of execution has

long been understood to promote concurrency and reduce contention in

multi-version distributed databases [34].

58

3. THE MANY SYSTEMS MODEL

Composability and Correctness Merge – As long as at least one partial or-

dering exists that produce results that satisfy the correctness criteria it

doesn’t matter how many failed results there are. In addition, more than

one criteria of ‘correct execution’ can be identified in the state space. For

instance, in addition to paths of execution free of concurrent conflicts (race

conditions, deadlocks, etc) paths will also exist which are free of logi-

cal/semantic conflicts. For example, there will be paths where the ordering

of execution is such that all processes can complete their execution in the

least number of steps.

In summary, speculation is an already established approach in concurrency

control, and a degree of speculative execution is seen as both necessity and ben-

eficial. In the Many Systems model, we speculatively replicate not only memory

(as in the case of transactions), but also thread execution.

3.2 Model Components

3.2.1 Events

Events form the foundation of the Many Systems model and represent actions

by processes. Events fall into two categories, specifically hidden and observable.

Hidden events represent those actions a process may carry out which are unim-

portant from the perspective of other processes (e.g. reading, changing local

variables, etc.). An observable event, on the other hand, represents a change in

shared state that is significant to more than one process (e.g. writing to a shared

variable, committing a transaction, etc.).

Definition 3.2.1 The set of observable events of a process Px is the set of events

produced by the intersection of the alphabet of Px with the union of the alphabets

of all processes excluding Px:

Let Ox = αPx ∩
⋃

i∈P\{x}

αPi

59

3. THE MANY SYSTEMS MODEL

3.2.2 Systems and Processes

Processes in the Many Systems model are referred to as System Processes.

Definition 3.2.2 A System Process (Px) is defined as a deterministic process

with an initial state s, followed by a finite number of hidden events H, culminating

in an observable event O. An observable event will lead to either another System

Process, the Stop process or the Skip process:

HnOiNi = Px,s → (|i>0Oi)→ (Px,s+1 | Stop | Skip)

Stop and Skip (as defined in [32]) represent abnormal and normal termi-

nation of a process respectively. The actions of a dining philosopher can be

represented by System Processes:

Philoi \ {i .sits down, eat , i .puts down fork .i , i .puts down fork .(i ⊕ 1)}

Philoi,s = (i .picks up fork .i → Philoi ,s+1)

Philoi,s+1 = (i .picks up fork .(i ⊕ 1)→ Philoi ,s+2)

Philoi,s+2 = (i .gets up → Skip)

Philoi = (Philoi,s; Philoi,s+1; Philoi,s+2)

The hiding operator (\) lists the hidden events, in this case all events except

those that pick up a fork and those that signal the philosopher ‘getting up’. The

subscript i identifies the owning System Process, and the subscript s identifies

the System Processes’ state. System Processes separated by a semi-colon de-

note sequentially executing processes (i.e. the execution of Philoi,s precedes the

execution of Philoi,s+1).

Definition 3.2.3 A System (represented by τ) is a state of a multi-process exe-

cution from which zero or more new states may arise. New states are defined as

ordered sets of observable events. The notation τ(i) shall refer to the ith observ-

able event possible from τ .

60

3. THE MANY SYSTEMS MODEL

3.2.3 Expansion

We assume the existence of a Root System (τ0) from which initial computation

occurs.

Definition 3.2.4 The Root System (e.g. τ0) represents an initial state of a multi-

process execution. τ0 may expand by giving rise to size(τ0) child systems, repre-

senting size(τ0) possible future states of τ0.

The size() operation returns the number of observable events possible from a

given System. To model the creation of child Systems from parent Systems, we

define a transition function trn.

Definition 3.2.5 A new child System may be created by calling the trn operation,

which requires an existing System τ , and an observable event that is a member of

τ (τ(i)):

trn(τ, τ(i)) = (τ ‖ i : (τ \ τ(i) ‖ τ(i+ 1)))

The trn operation creates a copy of the initial System τ (i : τ). The copy is

labelled with a prefix (i) to distinguish between events of the initial System and

the copy. Calling the trn operation is equivalent to first creating a clone of τ , and

then applying the ith observable event in τ (τ(i)) to the clone (i : τ). Note that

the initial System remains unchanged after the application of the trn operation.

Definition 3.2.6 Multiple child Systems are possible from a Single system by

applying trn for each element of τ . An expansion of τ ensues where n = size(τ0):

trn(τ, τ(0)) = (τ ‖ 0 : τ)

trn(τ, τ(0)); trn(τ, τ(1)) = (τ ‖ 0 : τ ‖ 1 : τ)

trn(τ, τ(0)); trn(τ, τ(1)); trn(τ, τ(n)) = (τ ‖ 0 : τ ‖ 1 : τ ‖ n : τ)

Many Systems is recursive as the trn function may be further applied to each

child System. We term the collection of Systems and their child Systems a Su-

persystem, denoted as Θ.

61

3. THE MANY SYSTEMS MODEL

Definition 3.2.7 Θ is in the form of an n-ary directed tree structure with each

node representing a System and each arc representing the transition of an observ-

able event.

Theorem 3.2.1 Θ maintains causality.

Proof 3.2.1 As Θ is an n-ary directed tree (Definition 3.2.7) and it may only

contain future states created from past states (Definition 3.2.4) then a child Sys-

tem is caused by a parent System. As each child System is created by no more

than one System Process proceeding sequentially (Definition 3.2.6) then causality

is guaranteed.

3.3 Solution Space

The primary purpose of the model is to construct a parallel execution that attains

a correct observable state if one exists. The following Lemma therefore concern

the occurrence of correct and erroneous paths of execution in Θ.

Lemma 3.3.1 The observation of a semantically correct state (in the context of

the application execution) in Θ is reachable via a path of prior states.

Proof 3.3.1 We may state that given a τn that is free from error, and there

exists at least one child system of τn also free from error, there must be some

error-free progression from parent to child. Assuming that a system exists in Θ

that is correct with respect to an observable state then we may extrapolate that

there exists a corresponding path in Θ that is error-free that may reach such a

state.

Lemma 3.3.2 The observation of a semantically erroneous state in Θ is reach-

able via a path of prior states.

Proof 3.3.2 In the same manner we reasoned about correctness, we can state

that given a τn that is not free from error then at least one child system of τn

will not be free from error. Assuming that a system exists in Θ that is in error

with respect to an observable state then we can extrapolate that there exists a

corresponding path in Θ that contains errors that may reach such a state.

62

3. THE MANY SYSTEMS MODEL

Correctness and failure may only be realized via observation of Θ. A state

of say τn, may be considered erroneous or error-free only after an observation of

failure or correctness in subsequent child systems of τn. Consequently, the Many

System model does not require the program to determine if any given System is

erroneous or error-free before or during its creation. However, with the possibility

of searching all partial orderings of execution, a solution will be forthcoming.

3.4 Waiting

In our unconstrained model, many systems exist in parallel at every observable

state of execution. Therefore, there is no requirement for System Processes in

distinct systems to ‘wait’ for each other. The definition of Wait-Free synchro-

nization is not sufficient for describing waiting properties in our approach so we

define the notion of No-Wait synchronization:

Definition 3.4.1 No-Wait synchronization describes a parallel execution within

which a logical representation of a System Process can always carry out its shared

access requests in the same number of steps as an equivalent sequential implemen-

tation.

Considering our definition of No-Wait we can state the following:

Lemma 3.4.1 No-Wait synchronization guarantees a System Process can always

determine their next action in one execution step.

Proof 3.4.1 Consider a System, labelled τcurr, containing a System Process Pw.

Suppose Pw periodically queries τcurr for the occurrence of an observable event

e and let us label those queries q{1, 2...n} to denote n queries. If q1 does not

detect e in τcurr, then it follows that no qi in q{2...n} will detect e in τcurr because

the occurrence of e would create a future System, say τe, wherein e would be

observed. We can rule out queries q{1, 2...n} causing e, given that querying is

not an observable event.

Note that τe (wherein e may be observed) must contain Pw at a state before q1

was executed given that querying is not observable and only observable events are

carried forward into future Systems. When Pw executes q1 in τe it will detect e

63

3. THE MANY SYSTEMS MODEL

and so q{2...n} are superfluous. Hence no System Process need query more than

once the occurrence of an observable event.

No-Wait has implications for how deadlock is handled:

Lemma 3.4.2 Deadlock is eradicated by No-Wait synchronization.

Proof 3.4.2 By definition of Lemma 3.4.1, any System Process can determine

its next action in one execution step (given that a System which does not permit

an observable event to occur at time t, will never permit that event). Hence, no

System Process Px should wait for another System Process Py to release a shared

resource (as signalled by an observable event). By Definition 3.2.2, if Px cannot

participate in an observable event with Py then it must terminate via the Stop or

Skip processes. If ever Px and Py have acquired mutually required resources, then

both System Processes will terminate rather than wait on one another to release

those resources.

In the Dining Philosophers scenario, for example, deadlock is encountered if any

philosopher waits indefinitely for a fork to transit to the state where it can be

used. In the Many Systems model, however, no philosopher should ever wait

for a fork to become available. If a philosopher finds a fork unavailable it must

terminate (with the assumption that there must be some alternative philosopher,

somewhere in Θ, that has found the fork ready and can acquire it). Execution

paths in Θ where all philosophers would have waited indefinitely for one another

to release forks instead manifest as Systems where no observable event can be

generated. In such ‘dead-end’ Systems, no child Systems can be created and so

no further resources are required. Alternate paths of execution in Θ may proceed

unhindered by such Systems.

Considering Lemma 3.4.1 and 3.4.2 together we may deduce:

Corollary 3.4.1 Many Systems concurrency control provides No-Wait seman-

tics and is deadlock free.

64

3. THE MANY SYSTEMS MODEL

3.5 Example

We now demonstrate our model via an example based on the Dining Philosophers

problem (described in Section 2.5.2 of Hoare’s CSP book [32]). Our example

requires the reader understand the original CSP example given by Hoare to un-

derstand how our model deviates. For brevity, our example only considers two

dining philosophers and two forks.

We begin by creating System Processes to model the philosophers and their

forks; however, the implications of No-Wait synchronization means that the model

of philosopher behaviour must be altered:

let Philoi = (Philoi,s; Philoi,s+1) where

Philoi,s = (i .picks up fork .i → Philoi ,s+1

| i .missing fork .i → Skip)

Philoi,s+1 = (i .picks up fork(i ⊕ 1)→ Philoi ,s

| i .missing fork(i ⊕ 1)→ Skip)

An extra event has been added to the specification of the Philo system

process (missing fork). If a System Process cannot obtain a fork, without waiting,

it may now execute the missing fork event and transit to the Skip process (thus

terminating its future execution). This effectively requires blocking behaviour

(such as waiting for a fork) be replaced with non-blocking behaviour. Note that

in the original Dining Philosophers scenario, erroneous execution would ensue

if a philosopher terminated abruptly when no fork was available as the original

scenario relies on philosophers waiting until a fork is ready. Conversely, in the

Many Systems scenario, such abrupt termination shall avert erroneous execution.

As it is not important from the perspective of other System Processes, the missing

fork event is hidden:

Philox\{i .missing fork .i , etc}

Philoi = (i .picks up fork .i → (i .picks up fork(i ⊕ 1)→ Philoi | Skip)

| Skip)

65

3. THE MANY SYSTEMS MODEL

System Processes are now required to model the behaviour of forks:

ForkUnusedi = (i .picks up fork .i → ForkUsedi

| (i 	 1).picks up fork .i → ForkUsedi)

ForkUsedi = (i .puts down fork .i → ForkUnusedi)

| (i 	 1).puts down fork .i → ForkUnusedi)

With both philosophers and forks defined, we now need to describe how these

components are combined to create Systems. We use the same terminology as

Hoare and identify a System τ as a College of philosophers for this purpose.

A College is equivalent to our notion of a System (τ). A College with two

System Processes (dining philosophers) is as follows:

P0 = (Philo0 ‖ ForkUnused0)

= (0 .picks up fork .0 → (Philo0 ‖ ForkUsed0))

P1 = (Philo1 ‖ ForkUnused1)

= (1 .picks up fork .1 → (Philo1 ‖ ForkUsed1))

College0 = (P0 ‖ P1)

The Root System is identified as College0 with the subscript 0. We can

now produce two potential successor states from the initial state. Specifically, by

applying the trn function to College0 we may generate two child Systems from

College0:

(available events : 0 .picks up fork .0 , 1 .picks up fork .1)

trn0(College0, P0,0) = (College0 ‖ 1 : College)

trn1(College0, P1,0) = (College0 ‖ 2 : College)

where :

1 : College = (Philo0 ‖ ForkUsed0 ‖ Philo1 ‖ ForkUnused1)

2 : College = (Philo0 ‖ ForkUnused0 ‖ Philo1 ‖ ForkUsed1)

66

3. THE MANY SYSTEMS MODEL

(1 : College) represents the state of College0 after philosopher 0 has

picked up his first fork and (2 : College) represents the state of College0

after philosopher 1 has picked up his first fork. Applying trn to (1 : College)

produces the following:

(available events : 0 .picks up fork .1 , 1 .picks up fork .1)

trn0(1 : College, P0,1) = (1 : College ‖ 3 : College)

trn0(1 : College, P1,0) = (1 : College ‖ 4 : College)

where :

3 : College = (Philo0 ‖ ForkUsed0 ‖ Philo1 ‖ ForkUsed1)

4 : College = (Philo0 ‖ ForkUsed0 ‖ Philo1, ‖ ForkUsed1)

(4 : College) is effectively in a state of deadlock given that any new System

created via the trn function will results in a Philo process ending due to the

next fork being unavailable. However, given the existence of (2 : College) and

(3 : College), progress may still be made.

The number of Systems that are generated in this trivial example are (1 +

2(2) + 2), representing: the Root System (1); two sequential orderings (2(2)) and

two pre-deadlocked Systems (2). As each philosopher is composed from 2 System

Processes (Philoi,s and Philoi,s+1), the value 2(2) represents two executions of

the philosopher processes. The worst case rate of expansion may be expressed by

the multinomial coefficient equation:

(
n∑

i=1

qi)!/(q1!q2!.....qn!)

where (
∑n

i=1 qi) corresponds to the sum of System Processes of all processes

and each qi corresponds to the number of System Processes produced from the

i-th process. A non-terminating recursive definition of this example increases

to an infinite number of states. In the following section, however, we provide

a practical application of the Many Systems model where finite resources are

considered. Specifically, we show how: (i) Θ can be constructed and managed

67

3. THE MANY SYSTEMS MODEL

with limited resources; and (ii) the results of execution can be provided to a

concurrent application in a lock-free manner.

3.6 A Universal Construction

We now demonstrate how a Supersystem can be managed as a Universal Con-

struction (hereafter UC) of system processes. A UC is typically described as a

class that can transform a sequential object into either a Wait-Free or Lock-Free

linearizable object, allowing concurrent access by any number of threads [27]. Al-

though the objects under consideration may range from simple containers (such

as stacks or queues) to a collection of transactions on shared data [28, 29, 30],

the purpose of the UC is to provide each participating thread with the same view

of the object.

We begin our description of a Many Systems UC by defining the System

Processes which essentially conduct application logic. Processes which create

and maintain Θ are described next, followed by a set of proofs which show that

UC execution is Lock-Free.

3.6.1 System Processes

System processes will be modelled as transactions. System processes may gener-

ate two observable events: the txdone and txabort events capture the behaviour

of transactions for the purpose of our model (see Equation 3.1).

Txni =(txdone→ Skip | txabort→ Skip) (3.1)

With System Processes comprised of transactions, expansion of the Super-

system produces permutations of transaction execution. As we limit the states

observable within Θ to the execution of transactions by multiple processes, the

initial state (τ0) represents a point in program execution from which each process

may start a new transaction.

68

3. THE MANY SYSTEMS MODEL

3.6.2 Universal Construction Processes

The relationship between the Universal Construction (UC) and the Concurrent

Environment (env) is defined in Equation 3.2:

env = uc : (MSystem0 ‖WkrPool) � (|||p≤m p : P) (3.2)

where WkrPool = (‖w≤n w : Wkr)

The Concurrent Environment is comprised of the UC (labelled uc) and ap-

plication processes (p : P). The application processes rely on the UC to provide

Concurrency Control via the execution of transactions. We want the UC to act as

the shared communication medium for application processes, therefore we specify

this relationship with the CSP subordination operator (�). When two or more

processes are interleaved (|||p≤m p : P), then they may only communicate via a

subordinate process (the UC in this case).

The UC itself is comprised of a Managed Root System (MSystem0) contain-

ing the initial state of the Concurrent Environment, and a pool of n concurrent

worker processes (‖w≤n w : Wkr), which are collectively referred to as a Wkr-

Pool. Workers are responsible for updating the state of the UC. By grouping

workers into a worker pool, the degree to which processing resources can be con-

trolled by specifying the size of the worker pool. Let us now define the Managed

System and the Worker processes in turn.

Managed Systems The Root System for the Universal Construction is defined

in Equation 3.3. The Root System is an aggregate of a system (τ) and a manager

process (Mgr) which we refer to as a Managed System (MSystem):

MSystem0 = ((cns := 0; val := 0; τ) ‖Mgr)

where Mgr = (start→ Tmrt,t; Update; Mgr) (3.3)

The System τ represents the initial state of the UC and maintains two vari-

ables (cns and val):

69

3. THE MANY SYSTEMS MODEL

• (cns) records the number of child Systems created from this System and is

initially zero;

• (val) records the ‘value’ of the System and is considered application specific.

The significance of val to the operation of the UC is that it will be used to

determine which System will be chosen over others (when deciding on the

next state of the UC).

The manager process (Mgr) coordinates the activities of the worker processes,

and updates the Root System to reflect changes in state generated by the workers.

The manager first signals the worker processes to begin working (start), and then

the manager commences a timer process (Tmr) to ensure that worker processes

terminate expansion after a set amount of execution time. Once the timer expires

(by signalling the timeout event), the manager performs the Update process

defined in Equation 3.4.

Update = (Max0,n(τ,m); assign(τ,m); sched(τ); Skip) (3.4)

The Max process (see Appendix, Equation 7.2), evaluates the value (val) of

each child system of τ and records the identity of the ‘winning system’ in m.

Then the assign function replaces the state of τ with the new state in m and

the manager reschedules the events of τ by invoking the sched function. The

sched function reorders the events of τ to prevent the possibility that an event

in τ is never explored by a worker process (i.e. to prevent the starvation of any

transaction when the number of workers is less than the number of transactions

that can be executed from τ). Both the assign and sched functions are described

in the Appendix (see Table 7.4).

Worker Processes (Wkr) carry out the task of executing transactions and

generating new systems (see Equation 3.5). Each worker has access to a history

stack (hist) to keep a record of systems the worker has created. Workers perform

expansion (DoExp) and compression (DoCmp) of the Supersystem. Impor-

tantly, the worker processes are restricted to the degree of time granted by the

Tmr process of the Manager:

70

3. THE MANY SYSTEMS MODEL

Wkr = (hist : Stack)�(start→ Iter; Wkr)

where Iter = (expand→ DoExp; Iter)

| timeout→ DoCmp; Wkr) (3.5)

Expansion The expansion process (DoExp) is defined in Equation 3.6 and

is performed by each Worker. The expansion process is comprised of the DF-

Search and Aqr processes.

DoExp = (DFSearch(Root) ‖ Aqr)

Aqr = (searched.head(A)→

if (x := ncas(A.cns,A.cns+ 1) < obs(A)) then

hist.push({A, x})→

trn(A,A(x))→

valuate(child(A, x))→ Skip

else fail→ Skip) (3.6)

• The DFSearch process performs depth-first search of the Supersystem

tree (see Appendix, equation 7.3). The ‘root’ system (from where any

search begins) is either τ if hist is empty, or child(X, i) if the head of hist

equals {X, i}. The search halts when the worker can acquire a system in

the Supersystem tree or when all Systems have been explored.

• The Aqr process defines how workers may uniquely ‘acquire’ observable

events within Systems. The creation of new (child) systems by worker pro-

cesses is then performed with the trn function. Each system may produce

0 or more child systems depending on the number of observable events

(obs(A)) that are possible from a given system. Workers compete for each

child system by using the ncas function, to gain unique ownership of an

observable event. If a worker processes acquires an event, then the trn

function (see Definition 3.2.5) is executed to create a new child system

71

3. THE MANY SYSTEMS MODEL

(trn(A,A(x))) and the child system is assigned a value using the valuate

function (see Table 7.4 in the Appendix for definitions of the obs, ncas and

valuate functions).

Once a worker process has acquired and expanded a system, it performs the

depth-first search procedure again. Subsequent searches commence from the last

child system the worker created (i.e. hist.head(X)) so that any new systems

created by a worker are restricted to a single path of the Supersystem tree. New

systems are created until no further child systems are possible or the timeout

event has occurred.

Compression Once a worker process has finished expanding, it performs a tree

compression algorithm (DoCmp) to remove systems from the Supersystem until

there remains only the root node and its child nodes (see Equation 3.7).

DoCmp = (if !(hist.empty) do

Cprs(hist.head, 0)→ hist.pop→ DoCmp)

else Skip)

Cprs({Root, i},m) = (if !(leafnode(child(Root, i))) then

Max0,n(child(Root, i),m)→

contract(Root, i,m)→ Skip

else Skip) (3.7)

Each worker performs the compression process for each system in its history

stack (hist). Each member of the history stack identifies a child system which

the worker created during expansion, and so once all workers have performed

compression for each member of their history stacks, the only systems which

remain will be the root node and its immediate child nodes.

The Cprs process accepts a root node Root and the i-th child of Root. If

the i-th child is not already a leaf-node, then the grand-child of Root with the

maximum value is located using the Max process. The new i-th child of Root is

then set to m by invoking the contract function.

72

3. THE MANY SYSTEMS MODEL

Once compression has been completed for every worker process, the manager

process can complete its Max process and, by extension, its Update process. A

new round of expansion can then commence by the manager processes updating

the state of τ and signalling the start event. Figure 3.2 shows the processes of

expanding and contracting the Supersystem.

Figure 3.2: Expansion and Compression Images 1 and 2 show expansion

of the Supersystem by Worker Processes. Images 3 and 4 show the compression

of the Supersystem until it has a depth of 1. Hypothetical values for each system

(the nodes) are shown. Shaded nodes with dashed arcs denote branches of the

Supersystem that have been removed during the compression process.

73

3. THE MANY SYSTEMS MODEL

3.6.3 Proofs

Before describing the proofs, we must first define some properties of the systems

in the Supersystem (i.e. the nodes of the tree) which will aid in the process of

proving the lock-free property of the Universal Construction. We state that, at

any time, ∀ System S ∈ Θ, either:

1. leaf(S) = true where childset(S) = ∅ (i.e. S has no child Systems);

2. parent(S) = true where ∀ System X ∈ childset(S) • leaf(X);

3. gparent(S) = true where ∀ SystemX ∈ childset(S) • leaf(X)∨parent(X);

4. ancestor(S) = true where neither leaf(X), parent(X) nor gparent(X)

hold ∀ System X ∈ childset(S).

To prove that the Universal Construction is lock-free, we need first to prove

that the Max process is lock-free because this is the only process where the

progression of one process is dependent on another. Specifically, we must show

that the Max process will always complete within a finite number of operations,

and to demonstrate this we present five Lemmas which show that the Supersystem

tree will always reduce to a form consisting only of leaf-nodes and parent-nodes

(i.e. leaf(S) or parent(S)). The Lemma 3.6.6 shows that the Max process will

always complete within a finite number of operations, and finally we prove that

the Universal Construction is lock-free.

Lemma 3.6.1 ∀ Wkr w ∈ WkrPool, if the history stack of w contains m

elements and m > 1, then element m must be a descendant system of element

m− 1.

Proof 3.6.1 The first element {X, i} pushed onto any history stack is such that

X equals the root system and any further elements pushed onto the history stack

are determined by first calling the DFSearch process. By definition of the DF-

Search process, the search always begins with the head of the history stack,

therefore any system Y that is acquired, must be a descendant of the head of the

history stack.

74

3. THE MANY SYSTEMS MODEL

Lemma 3.6.2 If ∀ System S ∈ T • leaf(S) then every call to Max(T) will

complete in a single invocation (where T ∈ Θ).

Proof 3.6.2 In this case T contains a single system and as Max iterates for

every child node, by definition of the Max process, Max(T) will complete in a

single invocation.

Lemma 3.6.3 If ∀ System S ∈ T • parent(S) then Max(T) will complete in

at most n iterations (where n = size(childset(T)) and T ∈ Θ).

Proof 3.6.3 As Max iterates for every child node, by definition of the Max

process, for n child nodes Max(T) will complete in n iterations.

Lemma 3.6.4 For any system X, if gparent(X) is true, then after a finite number

of operations, parent(X) must become true.

Proof 3.6.4 If gparent(X) is true, then by definition of gparent, ∀ Y ∈ childset(X),

either parent(Y) or leaf(Y) is true. Furthermore, there must be at least 1 worker

process whose history stack contains {Y, i} as the head element. When these

workers call DoCmp, it will terminate in a single invocation because by defini-

tion of DoCmp, calling Cprs({Y, i},m) terminates in a single invocation when

parent(Y) or leaf(Y) is true. By definition of DoCmp, the history stack of

these workers will be popped, and by Lemma 3.6.1, there must be one or more

workers whose new head of the history stack is {X, i}.
When Cprs({X, i},m) is called, by definition of Cprs, Max is called with a

parent(Y) which will terminate in at most n steps (by Lemma 3.6.3) and the con-

tract function will be invoked on system X. After a finite number of contract(X)

invocations, parent(X) must be true.

Lemma 3.6.5 For any system X, if ancestor(X) is true then after a finite number

of operations, gparent(X) must become true.

Proof 3.6.5 We refer to A as the set of all systems in Θ where ancestor(S) is

true. There must be a subset of A, let’s say A′, where each member X ∈ A′ is

the direct parent of a System S, such that gparent(S) is true. By Lemma 3.6.4

we have shown that for all S where gparent(S) is true, after a finite number

75

3. THE MANY SYSTEMS MODEL

of operations, parent(S) must become true. Therefore, after a finite number of

operations, each member of A′ must become the parent of a parent system, or in

other words, gparent(X) must become true. Furthermore, each ancestor system

which is a parent of X, now belongs to the set A′. After a finite number of

operations, A′ must contain the root system at which point every ancestor system

will become a grand-parent system.

Lemma 3.6.6 The Max process is lock-free.

Proof 3.6.6 Lemma 3.6.6 shows that any ancestor system must become a grand-

parent system after a finite number of operations and Lemma 3.6.4 shows that

grand-parent systems must become parent systems after a finite number of oper-

ations. As every System in Θ must satisfy either parent(S) or leaf(S) after a

finite number of operations, by Lemma 3.6.3 and Lemma 3.6.2, the Max process

must terminate in a finite number of operations.

Lemma 3.6.7 The Universal Construction is lock-free.

Proof 3.6.7 To show that the Universal Construction is lock-free we need to

prove that the Wkr and Mgr processes are lock-free. The Wkr process consists

of the DoExp and DoCmp processes. For the DoExp process to be lock-free

we need to show that the DFSearch and Aqr processes are lock-free. Firstly,

assuming the number of application processes is at most n and the number of

worker processes is m, the number of possible child states from any system is

at most min(n,m), (with n decreasing with the creation of every child system).

Hence the DFSearch must terminate after a finite number of operations. At

each system during the search, the Aqr process is called by the worker using the

ncas function to acquire an observable event. The ncas function must terminate

after at most min(n,m) calls, i.e the number of possible child states from any

system. Finally, to show that the DoCmp process is lock-free requires first proving

that the Cmprs process is lock-free. By definition of the Cmprs process, Cmprs

is lock-free given Lemma 3.6.6, which proves that the Max process is lock-free.

The Mgr process consists of the Tmr and Update processes. By definition,

the Tmr process will always terminate after t iterations. Assuming that the

assign and sched functions are lock free, it is trivial to show that Update process

is lock-free by Lemma 3.6.6, which proves that the only remaining process used by

the Update process (namely Max), is lock-free.

76

3. THE MANY SYSTEMS MODEL

3.7 Properties

We now consider the appropriateness of Many Systems Concurrency Control via

a number of properties that may be inferred from the Model as presented.

3.7.1 Containment

Containment describes the ability to deterministically restrain computation com-

plexity during execution. This is a property that traditionally is present in all

correct programs and is lost only in erroneous programs (e.g., memory leaks).

In the Many Systems model, the size of the execution environment (the size of

expansion) is unknown beforehand and can only be predicted for the worst case.

Therefore the Universal Construction of Section 3.6 allows expansion to be con-

trolled and contained deterministically. Specifically, the Universal Construction

can regulate expansion by controlling the size of the worker pool and the value of

the timer used by the Mgr process. Ultimately, at each stage of expansion, the

number of child Systems is limited by the minimum of the number of worker pro-

cesses m and the number of possible events from a system state n (i.e. min(m,n)).

3.7.2 Isolation

Isolation describes an interaction with shared state that is equivalent to an in-

teraction without interference. This is the most important property concurrency

control seeks to satisfy. The Many Systems model has this property because Θ

is a directed tree. It is impossible for Systems on different paths of Θ to interact

(see Definition 3.2.7) while System Processes within a single System may only

produce observable events to shared state in new Systems.

3.7.3 Liveness

Liveness is a property that fundamentally describes the usefulness of a concurrent

system. More specifically, liveness in a system x indicates that one or more

processes in x will eventually progress x as requested by a programmer. The no-

wait and deadlock free properties of our model (Corollary 3.4.1) always guarantee

77

3. THE MANY SYSTEMS MODEL

theoretical liveness in that all processors will eventually execute all their steps in

a causality preserving manner (Theorem 3.2.1). Due to the nature of the model

(rather than any synchronization construct utilized by the programmer), non-

deadlocked executions can progress in Θ (Lemma 3.4.1), even in the presence of

the logical representations of failed execution paths existing concurrently in Θ

(Corollary 3.4.1).

The Lock-Free property of the Universal Construction of Section 3.6 signifies

that the state updates generated by the expansion of the Supersystem can be pro-

vided to application processes in a bounded number of executions (Lemma 3.6.7).

In addition to the general liveness property of the Many Systems Model, concur-

rently consistent results can be provided to application processes in a timely

manner.

3.7.4 Scalability

Scalability in concurrency control can be described as the ability to maintain per-

formance when contention rises on a shared state. In the Universal Construction

of Section 3.6, an increase in resources (i.e. worker processes) allows an increase

in the exploration of Θ in parallel which, probabilistically, will reduce the time to

find a correct system. Conversely, there is sparse opportunity to vary scalability

to improve performance (by increasing parallel resources) in existing concurrency

control techniques.

3.7.5 Composable Correctness Criteria

Linearisability is the starting point for defining correctness criteria used in many

transactional memory approaches. Changing the correctness criteria on a per-

thread basis during run-time is impractical in existing solutions. In fact, this

makes little sense as determinism is removed from the computation. However, by

regarding the solution space as disjoint isolated executions that maintain causality

(Theorem 3.2.1), a correctness criteria may be satisfied in some execution within

Θ as opposed to a constraint that must be imposed.

An interesting property of the execution in Θ, is that the generated state

space may satisfy multiple correctness criteria for the same program execution.

78

3. THE MANY SYSTEMS MODEL

For example, paths of execution may exist which simultaneously exhibit sequen-

tial consistency in addition to an ordering of process execution which satisfies

priority or timing constraints. Furthermore, the potential for generating multiple

future executions, satisfying multiple correctness criteria, allows consideration of

a wide range of properties a programmer may define as correctness. For example,

when one considers the ordering of concurrent execution, one may identify exe-

cution in Θ which improves the overall progression of the concurrent program,

where processes rely on the activity of other processes in order to complete their

execution. Examples of such activity are common (e.g., a shared buffer may re-

quire consumers to follow the execution of producers, or a shared bank account

may require withdrawal operations to follow deposit operations).

3.8 Summary

In this chapter we have described a model of computation where concurrent

processes participate in the construction of a causally consistent tree structure,

which we called a Supersystem. We began by describing the components of the

Supersystem such as Observable Events, System Processes and Systems. We

then provided proofs about the correctness of execution within the Supersystem

and introduced No-Wait Synchronization—a progress condition specific to the

Many Systems Model, which allows processes to decide their next execution in a

single step. An example is presented using the Dining Philosophers problem to

clarify the approach for the reader, followed by a Universal Construction, which

allows expansion and compression of the Supersystem by the activities of worker

processes. Finally, we prove that the Universal Construction is lock-free and close

with a number of properties that are a feature of the Model.

79

Chapter 4

Implementation

In Chapter 3, we described the Many Systems model, where concurrency control

is approached from the perspective of state-space management (composed from

the execution of multiple processes). In this chapter we put the theories of the

Many Systems model into practice and present an implementation of a Universal

Construction which provides contention management for Software Transactional

Memory (STM). We only explore the state space of transactions that have aborted

explicitly and we refer to such conflicts as semantic conflicts. The benefit of this

design choice is that we can allow a separate Contention Management Policy

(CMP) to deal with concurrent (read/write) conflicts until semantic conflicts are

encountered.

Our CMP must also handle concurrent interference during the resolution of

semantic conflicts, and this is achieved by causing each single thread to execute

transactions sequentially. With respect to the model, this means that a single

thread explores a unique path in the Supersystem (Θ). The expansion of Θ is

expressed by the parallel exploration (by multiple threads) of multiple transaction

permutations. The aim of parallel exploration is to discover permutations of

transaction execution which promote the logical progression of the concurrent

application by resolution of semantic conflicts.

Semantic Conflicts From the programmer’s perspective, conflicts fall into two

categories: concurrent conflicts and semantic conflicts. A concurrent conflict

occurs when the reads and writes of a transaction encounter an inconsistent state

80

4. IMPLEMENTATION

of shared memory and contention management policies combat these types of

conflicts. A transaction may execute without interference, however, and still need

to re-execute because semantically the application cannot progress (for example,

a transaction may need to consume an item from a shared buffer but finds it

empty, or a bank account may have insufficient funds to permit a withdrawal).

Typically, a semantic conflict can be dealt with in the application by (i) letting

the transaction commit and re-execute in the future, or (ii) by using primitives

(retry, orElse etc) as provided by Harris et al [14], which essentially allow ad-hoc

coordination of transaction execution. The issue with the former approach is

that needless future conflicts may arise when transactions re-execute. Moreover,

the use of primitives places a burden on the application developer that must be

addressed with an ad-hoc solution (thus re-introducing a fundamental problem of

coordination with pessimistic concurrency control, which Transactional Memory

originally sought to address).

Within the scope of this thesis we consider a semantic conflict as simply the

intentional abortion of a transaction by its own thread, which can be avoided by

an appropriate coordination of transaction execution.

For example, the coordination of transaction execution may require the com-

mitment of a depositor transaction before an account possesses enough funds

to allow the commitment of a withdrawal transaction. We do not require that

the application programmer coordinate such transactions. Instead, that task is

delegated to the contention manager.

Shared Data Model As described in Section 2.4.3, STM implementations can

be categorized by a number of factors related to how shared data is represented,

stored and regulated. Before describing the implementation, we first define the

method of shared data access in our approach, specifically:

Object Based – Our implementation is based on the DSTM2 framework pro-

vided by Herlihy et al [10], which represents shared data in the form of

Atomic Objects. With this model of shared data, threads achieve con-

currency by making modifications to shared data-structures composed of

Atomic Objects. All Atomic Objects contain methods for shared reading

and writing.

81

4. IMPLEMENTATION

Eager Update – During the execution of transactions, threads use the eager-

update model of access (with visible reads). Every Atomic Object contains a

field which identifies the current owner of the object, and whenever threads

attempt to modify an atomic-object, they must first attempt to install

themselves as the owner of the object.

Obstruction Free – Threads gain ownership of atomic objects with success-

ful calls to the compare-and-swap operation (as opposed to a lock-based

approach, which uses a short critical section).

4.1 Basic Contention Management

4.1.1 Overview

The concept of the Universal Construction (hereafter UC) was first proposed by

Herlihy [27] and essentially allows any sequential data structure to be transformed

into a linearizable representation that can be accessed and updated by multiple

threads. There are three phases of UC operation: (i) threads prepare and an-

nounce a proposed input to add to the UC, (ii) each announcing thread performs

consensus to decide which input will be added, and (iii) a log of inputs is updated

by the winning thread to reflect its input. We begin with an overview of how we

use the UC technique and then provide greater detail in the remainder of this

section.

We use the UC technique to provide conflict resolution in the presence of

semantic conflicts and therefore our policy will be used by those threads whose

transactions have aborted due to a semantic conflict (an explicit abort). Our UC

accepts as input a permutation of one or more sequentially executed transactions,

and consensus decides which permutation will be added to the log.

When some threada encounters a semantic conflict, it inserts its aborted trans-

action into a global Transaction Table (see Figure 4.1, phase 1). The thread then

enters a Speculative Phase, where it re-executes aborted transactions within the

Transaction Table. We provide threada with a private cache to hold copies of

82

4. IMPLEMENTATION

modified atomic objects, but no transaction is committed. Transactions are exe-

cuted sequentially to prevent concurrent interference, but transactions may still

abort due to semantic conflicts (Figure 4.1, phase 2).

During the Speculative Phase of threada, other threads whose transactions

have been aborted, may execute their own speculative transactions in parallel

with threada. Once the Speculative Phase ends, each participating thread then

enters a Commit Phase to decide which single thread’s cache of modified atomic

objects will be committed using a consensus algorithm. Threads whose transac-

tions are committed return to normal execution, while those that remain aborted

commence another Registration Phase (Figure 4.1, phase 3).

Figure 4.2 contrasts our approach with a serializing CMP (like [19] for ex-

ample). Two hypothetical scenarios are shown, both containing a depositor and

withdrawer transaction accessing shared objects. In scenario 1, the CMP reorders

transactions to avoid concurrent conflicts. Although the withdrawer transaction

can commit, it may need to re-execute in future (if deposits must precede with-

drawals, for example). In scenario 2, our approach is illustrated where a semantic

abort occurs, and each thread re-executes a different permutation of the aborted

transactions.

Figure 4.1: Phases of Contention Management In phase 1, threads add their

transactions to the Transaction Table. In phase 2, a thread executes permutations of

transactions within the window of the Transaction Table. In phase 3, transactions

decide which permutation will be committed, and the result is added to the log of

the Universal Construction and the Transaction Table window is advanced.

83

4. IMPLEMENTATION

Figure 4.2: Serialising Aborted Transactions In scenario 1 a read/write con-

flict has occurred between two transactions called withdraw (w/draw) and deposit.

The depositor is aborted and rescheduled to execute after the withdrawer has com-

mitted. In scenario 2, Thread 1 aborts the depositor but then also aborts because of

a semantic conflict caused by attempting to execute a withdrawal before a deposit.

The conflict is resolved by the execution of an ordering which allows both to commit

(deposit then withdraw).

4.1.2 Preliminaries

Whenever a thread has its transaction aborted due to a semantic conflict, it

invokes the CallTx function (see Algorithm 1) with the aborted transaction

as its argument. The thread then enters a while loop until its transaction has

been committed and validated. Within the while loop all the activity of our UC

takes place, comprising: Registration, Speculation and Commit phases. Before

describing each of these activities, we must first define the components of our

UC :

• A session represents a period of execution within our UC and the end of

sessionn marks the beginning of sessionn+1, therefore no two sessions take

place concurrently. The active session refers to the session in which threads

are currently executing.

84

4. IMPLEMENTATION

• A Permutation is a structure that contains an array of integers and some

book-keeping information comprised of integer variables: commits, depth,

state and offset. Each thread has its own Permutation to guide it through

its Speculative Phase.

• The UC contains a Log of past activity as an array of Permutation struc-

tures. The Log has an integer variable sessionNumber, initially zero and

incremented after each session expires (hence sessionNumber is equal to

the ordinal value of the active session).

• The Transaction Table holds an array of tuples where a tuple contains a

thread’s transaction and a Boolean label occupied. We refer to each index

of the array as a slot. The Transaction Table has a fixed number of slots

Algorithm 1 The CallTx Function

1: function CallTx(txaction)

2: while true do

3: if Register(txaction) then

4: initialise timer

5: while time remaining do

6: call speculation function

7: decrement time remaining

8: end while

9: call synchronisation function

10: while ¬(session expired) do

11: await session results

12: end while

13: if transaction validated then

14: reset cache and return

15: end if

16: end if

17: reset cache and handle back-off

18: end while

19: end function

85

4. IMPLEMENTATION

and a Transaction Table with n slots means that a maximum of n threads

can join the active session.

• A new Ticket is granted to each thread that successfully registers with our

UC and is valid for the duration of a single session. Each Ticket contains a

Permutation, an integer called slot, an integer called session, a reference to a

cache for the thread’s Atomic Object updates, a reference to the Transaction

Table and a reference to the Log.

Data Structures While a session is an abstract representation of a time-frame,

the Permutation, Log, Transaction Table and Ticket are real data structures that

support the operation of the UC. A Ticket is private to a particular thread so we

denote this in pseudo-code as LocalTICKET . Both the cache and Permutation,

being members of the Ticket structure, are denoted ticketCACHE and ticketPERM ,

respectively. Both Log and the Transaction Table, as members of the UC, are

denoted: UCLOG and UCTXTABLE, respectively. As these can also be referenced

via a thread’s ticket, however, we will use the syntax ticketLOG and ticketTXTABLE

in the pseudo code. Although this double naming my seem superfluous, we shall

see in the next section when discussing nested transactions, that this will simplify

the pseudo code.

Auxiliary Operations We make use of certain auxiliary operations in the

pseudo code, namely Cas Get Set and Swap. The Cas operation represents

compare-and-swap which accepts a destination value, an expected value, and a

new value respectively; if the destination is equal to the expected value, then

the destination is overwritten with the new value and the Cas operation returns

true.

Both the Get and Set operations accept a data structure containing an array

(e.g. the Transaction Table, the Log etc) and an integer specifying an index into

the array; Get simply retrieves the value at the specified index, and Set accepts

a new value which is used to overwrite the value at the specified index. Finally, the

Swap operation accepts a data structure containing an array and two arguments

specifying which two members of the array to swap.

86

4. IMPLEMENTATION

4.1.3 Registration Phase

The thread attempts to join the active session by calling the Register function

(Algorithm 3) with its aborted transaction invocation. The registration algorithm

attempts to locate a vacant slot in the Transaction Table using the synchroniza-

tion primitive compare-and-swap because multiple threads may be attempting to

register concurrently (line 8). If the Transaction Table has reached maximum

capacity then the function returns false and the thread backs off (lines 5-6). Oth-

erwise the thread places its transaction into the Transaction Table and sets the

occupied flag to true (lines 9-10).

The thread’s local Ticket is now updated to contain the acquired slot number

into the Transaction Table (line 12), and the value of the active session (line 13).

In addition, the thread gains a Permutation which it will use during its Speculative

Phase (line 14). The Permutation’s integer sequence corresponds to slots in the

Transaction Table and the length of the integer sequence is equal to the length

of the Transaction Table. The first index of the sequence is equal to the threads

acquired index in the Transaction Table and the subsequent values of the sequence

are comprised of the remaining indices in the Transaction Table. For example, if

some thread registers and takes the 2nd entry into the Transaction Table then a

valid permutation for that thread would be {2, 1, 0, 3} (see Figure 4.1(1)).

Finally, the Ticket ’s cache is prepared (line 15), references to the Log and

Transaction Table are set (lines 16-17) and the thread’s transaction is set to the

speculator (line 18). The thread may now proceed to the Speculative Phase.

4.1.4 Speculation Phase

Once a thread has registered its aborted transaction, it commences its Speculative

Phase (for brevity, we shall hereafter refer to these threads as speculators). The

speculator executes transactions held in the Transaction Table with the aim of

executing as many transactions to successful completion as possible. While the

speculator is executing, new speculators may register (thus causing newly aborted

transactions to appear in the Transaction Table) and begin their own speculative

execution. During the Speculative Phase, three conditions related to the execution

of speculators must be met, specifically:

87

4. IMPLEMENTATION

Consistency – Exclusivity of atomic objects must be provided to ensure that

any speculator’s execution of transactions is sequentially consistent and can

be committed after the Speculative Phase.

Efficiency – Each speculator’s execution should explore a unique permutation

of transaction execution to reduce the possibility of duplicate speculative

exploration.

Termination – All speculators must terminate their Speculative Phase and com-

mence their Commit Phase.

Maintaining Consistency Speculators do not modify Atomic Objects directly

during their Speculative Phase because multiple speculators may need to modify

Algorithm 2 Session Registration

1: function register(txaction)

2: txtable← UCTXTABLE; slot← 0

3: repeat

4: slot← txtableNEXT

5: if slot = txtableMAX then

6: return abort transaction

7: end if

8: until cas(txtableNEXT , slot, slot+ 1)

9: set(txtable, slot)TXACTION ← txaction

10: set(txtable, slot)OCCUPIED ← true

11: ticket← LocalTICKET

12: ticketSLOT ← slot

13: ticketSESSION ← (UCLOG)CURRENT

14: ticketPERM ← create permutation

15: ticketCACHE ← create empty cache

16: ticketLOG ← UCLOG

17: ticketTXTABLE ← UCTXTABLE

18: LocalTX ← UCTX

19: end function

88

4. IMPLEMENTATION

the same Atomic Objects. Instead, speculators use a private cache to keep copies

of any Atomic Objects they use during speculative execution. Essentially, spec-

ulators follow the deferred mode update model, during their Speculative Phase.

To the best of our knowledge, this approach is the first to combine both di-

rect mode and deferred mode execution in the role of contention management

(although SwissTM [23] applies a similar approach where write conflicts are de-

tected when they occur and read conflicts are detected at commit time). It is

envisaged that by using deferred mode, the possibility of cache bouncing can be

significantly reduced (ideally, speculators will execute on different processor cores,

so that speculation is performed in parallel to the greatest degree possible).

When Speculator’s modify private copies of atomic objects, they must ensure

that no active (non-aborted) thread modifies the original object. If the original

object is altered then the speculator’s execution cannot commit due to the pos-

sibility of inconsistent data. Speculators must therefore share exclusive access

to any atomic object they ‘speculatively update’. To enforce exclusive access,

the Serialize function (see Algorithm 3, lines 21-34) is invoked by a Speculator

whenever an atomic object is read or written. As speculators cache their updates,

exclusivity is not required between speculators.

Active transactions use the direct update mode of shared data access which

means that an active transaction must install itself as the owner of any object it

wishes to modify. In addition to an owner field, each atomic object also possesses

an integer field denoting its version (version) and a reference to a global clock

(clock). A global transaction called (spec) is also provided to denote that an

object is currently owned by a speculator. These extra fields enable the possi-

bility of speculator exclusivity. Algorithm 3 shows the pseudo code for gaining

ownership of Atomic Objects, in particular:

• The first time an atomic object is accessed by a speculator, it checks whether

the object is owned by another speculator (Algorithm 3, line 21). If true, the

thread caches a copy of the object and continues its transaction (subsequent

accesses modify the copy).

• If the object is not owned by another speculator, the speculator attempts to

set (version = clock+1) using compare-and-swap (line 24). If the CAS call

89

4. IMPLEMENTATION

fails, then another speculator must have already set the version. Whichever

speculator successfully sets the value of version will gain the ownership of

the object (line 29).

Before any active thread (executing a non-aborted transaction) tries to install

itself as the owner of any atomic object, it first checks whether version ≤ clock

(Algorithm 3, line 9). If this evaluates to false then the thread knows it must

abort because the object is currently being modified by a speculator. Note that

by setting the value of version before assigning ownership, a speculator eliminates

the possibility that another thread can repeatedly prevent the speculator from

changing the owner of an atomic object. Once the aborted transactions have been

committed, clock is atomically incremented so that (version ≤ clock) is true, and

any thread may once again own the object.

Maintaining Efficiency Each speculator uses the Permutation Functions (see

Algorithm 4) to access to the Transaction Table and modify its Permutation.

By providing each speculator with a Permutation structure (each with an array

containing a unique sequence of integers), we ensure each speculator explores a

unique permutation of transaction execution, as each integer corresponds to a

unique slot in the Transaction Table.

The TxReady function (lines 1-11) tells the speculator if the next transaction

to execute is ready and the NextTx function (lines 12-16) retrieves it from the

Transaction Table. The PermCommit (lines 17-21) and PermAbort (lines 22-

30) functions modify the speculator’s Permutation on event of the transaction

committing and aborting respectively. Each Permutation has a depth variable

which is used to identify the next slot into the Transaction Table (see lines 2

and 13). The depth is increased whenever PermCommit is called (line 19). The

permutation’s commits variable keeps track of how many transactions the thread

has committed, increasing on every call of PermCommit (line 18).

When a transaction is aborted and the PermAbort function is called, the

Permutation’s integer array is modified by a Swap operation (line 28) to ensure

that the next time TxReady and NextTx are called, a new slot is accessed,

and a new transaction is attempted. Each call of PermAbort uses the depth

90

4. IMPLEMENTATION

Algorithm 3 Atomic Object Ownership and Consistency

1: function OpenWrite(AObj)

2: me← LocalTX

3: if me = UCTX then

4: Serialize(AObj)

5: cache atomic object if not already cached and return

6: end if

7: while meSTATE = ACTIV E do

8: other ← AObjOWNER

9: while otherSTATE = ACTIV E do

10: if AObjV ERSION > UCclock then

11: Abort(me)

12: end if

13: CMResolve(me, other)

14: end while

15: if Cas(AObj, other,me) then

16: return

17: end if

18: end while

19: abort

20: end function

21: function Serialize(AObj)

22: while AObjOWNER 6= UCTX do

23: if AObjV ERSION <= UCCLOCK then

24: current← AObjV ERSION

25: if ¬Cas(AObjV ERSION , current, clock + 1) then

26: continue

27: end if

28: end if

29: other ← AObjOWNER

30: if Cas(AObjOWNER, other, UCTX) then

31: return

32: end if

33: end while

34: end function

91

4. IMPLEMENTATION

Algorithm 4 The Permutation Functions

1: function txReady(perm)

2: slot← get(perm, permDEPTH)

3: ticket← LocalTICKET

4: if slot ≥ (ticketTXTABLE)MAX then

5: return false

6: end if

7: if (get(ticketTXTABLE, slot))OCCUPIED then

8: return true

9: end if

10: return false

11: end function

12: function nextTx(perm)

13: slot← get(perm, permDEPTH)

14: ticket← LocalTICKET

15: return (get(ticketTXTABLE, slot))TXACTION

16: end function

17: function permCommit(perm)

18: permCOMMITS ← permCOMMITS + 1

19: permDEPTH ← permDEPTH + 1

20: permOFFSET ← 1

21: end function

22: function permAbort(perm)

23: slot← permDEPTH + permOFFSET

24: if slot ≥ permMAX then

25: permSTATE ← expended

26: return

27: end if

28: swap(perm, permDEPTH , slot)

29: permOFFSET ← permOFFSET + 1

30: end function

92

4. IMPLEMENTATION

variable plus the offset variable, to find the next value to swap (line 23). The

offset is then incremented (line 29). When there are no more transactions left to

access, the value of depth plus offset exceeds the length of the Permutation array,

and the Permutation’s state is changed to expended (lines 24-26).

Algorithm 5 The Greedy Algorithm

1: function GreedyExpand

2: perm← (LocalTICKET)PERM

3: if ¬txReady(perm) then

4: return

5: end if

6: txaction← nextTx(perm)

7: CheckPoint((LocalTICKET)CACHE)

8: if call(txaction) = abort then

9: RollBack((LocalTICKET)CACHE)

10: permAbort(perm)

11: set time remaining to 0 and return

12: end if

13: permCommit(perm)

14: save the current best permutation

15: end function

Greedy Speculation A Greedy Speculation Algorithm (Algorithm 5) is pro-

vided to show how speculators use the Permutation Functions to execute transac-

tions during their Speculative Phase. The Greedy Algorithm ends the speculator’s

Speculative Phase as soon as an aborting transaction is encountered by setting

the remaining speculation time to zero (line 11).

Observe that the Greedy Algorithm uses two functions called CheckPoint

and RollBack. The CheckPoint function creates a checkpoint of the specu-

lator’s cache (line 7), and the RollBack function restores the contents of the

cache to the previous checkpoint (line 9). A simple (albeit inefficient) way to

implement these functions requires the use of a stack (per speculator). Each

CheckPoint invocation pushes a copy of the speculator’s current cache on the

93

4. IMPLEMENTATION

stack, and each RollBack invocation pops the head of the stack. A speculator

can always access the current cache by accessing the head of the stack.

Terminating Speculation To ensure the Speculative Phase is bounded with

respect to execution time, each speculator initializes a timer (a signed integer)

at the beginning of its Speculative Phase which holds the maximum number of

times the Greedy Algorithm will be invoked (see Algorithm 2, lines 4-8). The

speculator then decrements timer on each iteration of the Greedy Algorithm.

When timer reaches zero, the thread moves to its Commit Phase. The possible

conditions under which the value of timer reach zero are:

• the first time a transaction aborts;

• all transactions have been executed successfully (hence the state of the

speculator’s Permutation is expended);

• the number of times the speculator has invoked the Greedy Algorithm is

equal to the initial value of the specuator’s timer.

The precise initial value used for the timer variable is equal to the capacity

of the Transaction Table. Thus every speculator will advance to its Commit

Phase in at most n calls to the Greedy Algorithm (where n is equal to the

capacity of the Transaction Table). Experimentation with the value of timer is

possible of course. For example, the value of the timer may be increased should

one desire a longer Speculative Phase (during testing, extending the duration of

the Speculative Phase had no noticable improvement with respect to transactional

throughput however).

A suggested additional condition for the termination of the Speculative Phase is

when the speculator is context switched by the Operating System given that the

speculator will likely be unable to execute for a significant duration of time. In

programming languages such as C # and Java for example, this can be detected

if the speculator catches a thread interrupted exception or equivalent.

94

4. IMPLEMENTATION

4.1.5 Commit Phase

Once a (speculating) thread has entered its Commit Phase, if one or more trans-

actions where successfully executed then the thread’s cache will contain one or

more modified atomic objects. The thread must now determine whether those

Algorithm 6 Session Synchronization

1: function synchronize(tree)

2: ticket← LocalTICKET

3: last← close(ticketSLOT , ticketTXTABLE)

4: challenge← make a commit challenge node

5: challengeLAST ← last

6: repeat

7: other ← get next parent node from tree

8: if ¬contest(challenge, other) then

9: return

10: end if

11: reset the other commit challenge node

12: until other is the root node

13: postSession(ticketLOG, challenge)

14: open(ticketTXTABLE)

15: end function

16: function close(slot, table)

17: if cas(tableNEXT , slot+ 1, tableMAX) then

18: return true

19: end if

20: return false

21: end function

22: function open(table)

23: set each occupied flag in the table to false

24: cas(tableNEXT , tableMAX , 0)

25: end function

95

4. IMPLEMENTATION

changes can be committed or whether they should be discarded. By reaching

consensus with the other threads of the active session, the thread can determine

whose cache will be committed. (As each thread’s cache contains a potential

future state of shared data, if more than one cache is committed then consistency

of shared data will be infringed.)

To achieve consensus we use an approach based upon a Combining-Tree

method described in Herlihy [35] which aims to provide higher throughput when

multiple threads must reach agreement. The idea behind the Combining-Tree

approach is to coordinate thread communication using a Binary-Tree. Begin-

ning at the leaf-nodes, threads interact in pairs at each node of the Binary-Tree

performing some combining operation. One thread then continues to the parent

node while the second waits for the remaining threads to complete the algorithm.

Once the root node has been evaluated, a single thread remains in a non-waiting

state and the waiting threads discover the result of the combining operation.

Herlihy’s Combining-Tree works with a fixed number of threads. For our

purposes we require an algorithm that can accommodate a varying number of

threads, given that we do not know how many threads have registered and will

need to synchronize. The Synchronize function defines the process of reaching

consensus (see Algorithm 7). Specifically, the Synchronize function comprises

of three steps:

1. An initial step ‘closes’ the active session, to limit the number of threads

that can take part in the synchronization algorithm.

2. An iterative evaluation is then performed at each node of the Binary Tree

where on each iteration, a thread determines if it must wait or proceed

towards the root node.

3. A final step (executed by a single thread) terminates the active session and

notifies all waiting threads that they may commence their validation.

The Synchronize Algorithm also requires access to a Binary Tree structure,

with the following properties:

96

4. IMPLEMENTATION

• The Binary Tree contains n − 1 nodes where n is equal to the number of

slots within the Transaction Table;

• Each node of the tree is called a ‘commit-challenge’ node and contains: a

reference to a thread’s Ticket, a boolean called last, a integer called state

(the value of which is either reset ; writing or done) and an enumerated

position (either left, right or root). The last and position variables are used

to dynamically determine the number of threads participating in consensus.

Once the winning cache is found, whichever thread commits the cache is im-

material (for instance, if threadA commits the cache of threadB then threadB

has effectively still committed). Commit-challenge nodes therefore contain a ref-

erence to a thread’s Ticket. Given that a thread’s Ticket holds a reference to a

thread’s cache, the thread that locates the winning Ticket can proceed to commit

the contents of the cache held therein.

Having defined the preliminaries, we may now describe the three steps required

for synchronisation.

Step One Each synchronizing thread (hereafter we shall refer to these threads

as synchronizers) begins by attempting to prevent any new threads from regis-

tering with the UC. Each synchronizer calls the Close function (Algorithm 7,

line 3) which attempts to set the current variable of the Transaction Table to its

maximum capacity (line 17). By using compare-and-swap, only one synchronizer

will successfully close the table and this shall be the the last synchronizer to have

registered. The return value of the Close function is used by each synchronizer

when they each construct a commit challenge (recall that each commit challenge

node contains a flag called last).

Step Two Each synchronizer begins at a leaf node of the binary-tree and as-

cends until either: (i) the synchronizer determines it must wait or (ii) the root is

reached. At each node, synchronizers call the Contest function (see Algorithm

8), which compares a synchronizer’s current commit-challenge node with its par-

ent node and returns false if the synchronizer must wait. At most one other

97

4. IMPLEMENTATION

synchronizer will also contest the parent node, and so the Contest function

must resolve which synchronizer is first to access the parent node.

It is possible that in the special case of the last synchronizer to register, only

a single synchronizer will visit certain nodes of the tree, and so each synchronizer

begins the Contest function by determining if an additional synchronizer will

visit the parent node (lines 2-5). If the contesting synchronizer was the last to

register and its current node’s position relative to the parent is to the left, then

the synchronizer knows that no additional synchronizer will visit the parent node

Algorithm 7 The Contest Algorithm

1: function Contest(mine, other)

2: if mineLAST ∧ (minePOS = left) then

3: minePOS ← otherPOS

4: return true

5: end if

6: if CAS(otherFLAG, reset, writing) then

7: otherTICKET ← mineTICKET

8: otherLAST ← (otherLAST ∨mineLAST)

9: CAS(otherFLAG, writing, done)

10: return false

11: else

12: while ¬CAS(otherFLAG, done, reset) do

13: end while

14: end if

15: mPerm← (mineTICKET)PERM

16: oPerm← (otherTICKET)PERM

17: if oPermCOMMITS > mPermCOMMITS then

18: mineTICKET ← otherTICKET

19: end if

20: mineLAST ← (otherLAST ∨mineLAST)

21: minePOS ← otherPOS

22: return true

23: end function

98

4. IMPLEMENTATION

and so it continues immediately to the next parent node.

We now turn to the case where a node is visited by two synchronizers; let us

call them synA and synB. Each synX begins by attempting to lock the node by

changing the node’s state flag (line 6). If synA successfully locks a node for writing

that means it must be the first synchronizer to visit this node; so synA posts its

challenge data into the node, unlocks the node, and the Contest function returns

false (lines 7-10); synA now waits for the synchronization algorithm to complete.

If synA cannot successfully lock the node, that means another synchronizer, synB,

must have already visited this node or is in the process of posting its details. In

such a case, synA waits until the node is unlocked (lines 12-13), and then compares

its commit-challenge with the challenge that has already been posted. If synA has

a better challenge, it resets the node and carries onto the parent node with its own

challenge (lines 20-22); otherwise it carries onto the parent node with the posted

challenge of synB (lines 17-19). Note that the algorithm ensures that the node

containing a reference to the cache containing the most committed transactions

always ascends towards the root node.

Step Three Whichever synchronizer contests the root node and returns true

locates the winning cache of each participant in the Consensus algorithm. The

reference to the winning synchronizer’s Ticket is held at the root node. The

remaining synchronizer invokes the PostSession function (see Algorithm 8), to

commit the contents of the winning cache and post the winning Permutation (held

in the winning Ticket) into the Log. Updating the Log acts as a signal to the

waiting synchronizers that the active session has expired.

The remaining synchronizer can commit the cache by calling the Commit

function on every Atomic Object within the cache. In order to end the ac-

tive session, the committing synchronizer takes the winning Permutation from

the Ticket of the winning challenge, and copies it onto the end of Log. The

synchronizer then increments the sessionNumber variable of Log using an atomic

incrementing function, thus ending the active session. When the waiting synchro-

nizers see that their own session number is no longer the same as the Log session

number, they know their session has expired.

99

4. IMPLEMENTATION

Finally the committing synchronizer calls the Open function (Algorithm 7,

lines 22-25) to open the Transaction Table by setting each occupied entry to

false, and then atomically setting the Transaction Table’s current variable to

zero, thus allowing new threads to once again register with the UC and execute

a new session.

Algorithm 8 Updating the UC Log

1: function PostSession(log, challenge)

2: cache← (challengeTICKET)CACHE

3: for i← 0, cacheMAX do

4: AObj ← Get(cache, i)

5: Commit(AObj)

6: end for

7: Set(log, logNEXT)← (challengeTICKET)PERM

8: next← logNEXT

9: Cas(logNEXT , next, next+ 1)

10: end function

4.1.6 Validation

Each participant of a session must validate whether its transaction was commit-

ted. Threads perform validation once the Log has been updated (via the Post-

Session function) and the thread’s session has expired. A validating thread first

retrieves the session and slot variables held in its Ticket ; these will be used to

locate the results of the thread’s session. The validating thread then accesses the

Log at the index equal to its session variable and retrieves the Permutation data

held therein. The Permutation contains a list of slot numbers from those threads

whose transactions were successfully committed. In order to validate, the thread

reads the commits variable of the Permutation structure to discover how many

slots where successful. The thread then searches for its own slot number within

the Permutation, until the number of search iterations exceeds the value of com-

mits.

If the validating thread finds its slot number in the winning Permutation then

its transaction has been executed and committed and it may proceed with its own

100

4. IMPLEMENTATION

future execution. If the validating thread’s slot number is not present, the thread

knows its transaction did not take place. The thread must now attempt to retry

its transaction by clearing its local cache and attempting to register with a new

session.

Depending on the length of the winning Permutation of transaction execution,

zero or more transactions can be committed during a single session. Atomicity

is still respected, however, because each transaction is executed in its entirety

during the Speculative Phase.

4.2 Managing Nested Transactions

This section presents additional functionality, which allows exploration of nested

transactions during the process of contention management. From the perspec-

tive of the application developer, nested transactions facilitate the task of writing

complex transactions (just as conventional function syntax facilitates the task of

writing complex programs). In particular to this thesis, the benefit of accommo-

dating nested transactions is that a richer set of transaction permutations can be

explored during the process of contention management. It is anticipated that a

more thorough exploration of transaction permutation will further enhance the

ability of our approach to resolve semantic conflicts.

4.2.1 Speculative Nesting

Moss and Hosking [36] provided a reference model for nested transactions, which

describes three variations on nested transactions, namely: Flattened, Open and

Closed nesting. Conventional Transaction Managers may support one or more of

these models (see Section 2.4.4 for an overview). The speculative and exploratory

nature of transactions execution within our implementation gives rise to their in-

terleavings which are not covered by the existing nested models, even though such

interleavings may be valid according to the criterion of linearisability. Therefore

in this section we define a new nesting model called Speculative Nesting. This is

followed by an example, where Speculative Nesting provides benefits over existing

models.

101

4. IMPLEMENTATION

The rules of Speculative Nesting are as follows:

1. Unlike Flattened, Open or Closed nesting, any transaction (including a

nested one) can observe the changes made by any ancestor transaction at

the point when the nested transaction was called.

2. As with Open Nesting, Speculative Nesting allows the changes of a nested

transaction to become visible to any other transactions, once it has com-

mitted.

3. Like a flattened transaction, if a nested transaction aborts, then the parent

transaction will also abort;

4. Any transaction which has observed changes made by an aborting trans-

action will also abort. Hence, if the nested transaction (and therefore the

parent transaction) aborts then any other transaction which observed the

changes made by the aborting transaction will also abort.

Rules 1 and 2 of the Speculative Nesting model incur a ‘temporary weakening’

of the Isolation property, because any speculator can observe changes to shared

data before the parent transaction has effectively committed. Rules 3 and 4,

however, ensure that the weakening of Isolation does not lead to erroneous exe-

cutions. When transactions are validated, the ACID properties are maintained

because only permutations containing ‘atomic blocks’ of successful transactions

are committed.

Example Let us consider a scenario where Speculative Nesting would be advan-

tageous. We shall consider potential permutations of transaction execution that

could result from the transactions of Algorithm 9. To simplify matters, let us first

assume that the Producer and ProdNest transactions execute separately, and

that the following sequence of transactions were executed:

Producer; Consumer; ProdNest (4.1)

Observe that this represents a valid linearizable schedule given that (i) a

sequential execution could produce the same schedule, and (ii) the semantics of

102

4. IMPLEMENTATION

the shared list are maintained. However, neither of Flattened, Open or Closed

nesting models would allow the ProdNest transaction to commit if executed as

a nested transaction. This is because the Producer adds an item to a shared list

(line 5), which in turn ensures that the conditional statement of the ProdNest

transaction evaluates as false (line 10). Given that the statements of Producer

and ProdNest will execute atomically within a transaction, no change to the

list can be made between these statements by another thread.

A seemingly simple solution to committing ProdNest would be to execute

Algorithm 9 Nested Transactions

1: transaction Producer(item)

2: if listCOUNT ≥ 1 then

3: abort transaction

4: end if

5: add(list, item)

6: CallTx(ProdNest)

7: transaction successful

8: end transaction

9: transaction ProdNest

10: if listCOUNT ≥ 1 then

11: abort transaction

12: end if

13: transaction successful

14: end transaction

15: transaction Consumer

16: if listCOUNT = 0 then

17: abort transaction

18: end if

19: remove(list)

20: transaction successful

21: end transaction

103

4. IMPLEMENTATION

ProdNest as a separate transaction. Consider how detrimental this would be

to performance, however, because ProdNest can only commit if it executes

after the Consumer transaction (hence, a very specific schedule of transaction

execution is required to allow collaborative semantic success).

The Speculative Nesting approach provides greater flexibility. It is more likely

that a Consumer will execute between the Producer and ProdNest trans-

actions, as this would constitute a valid permutation which can be explored with

Speculative Nesting. As long as both the Producer and Consumer threads

register in the same session, this permutation may be found. One may begin

to speculate about possible situations where such expressiveness may be utilised.

For instance, the relation of the ProdNest transaction to the Producer trans-

action is one where the nested transaction is used to provide a signal to the parent

(indicating when a Consumer has executed). The benefit of Speculative Nesting,

therefore, is that such complex coordination can be explored during the process

of contention management, removing thus the burden from the application pro-

grammer.

Speculative Nesting Limitations Speculative Nesting presents a problem

with respect to the property of serializability, where transactions may observe

inconsistent states which may in turn generate exceptions. For example, suppose

the permutation of transaction(4.1) is executed, and suppose the Producer

transaction checks the validity of a shared memory pointer within its transaction.

Now assume that the Consumer transaction subsequently nullifies that shared

memory pointer. If the ProdNest transaction assumed atomicity since the

beginning of the Producer transaction, it might dereference that shared pointer

without first checking the reference. Essentially, as with the Open Nesting model,

the ProdNest can no longer assume that the code of the Producer transaction

has been executed before the ProdNest transaction began.

As discussed by Yang et al [37], the weakening of atomicity (and the dangers

associated with this practise) is also a characterisation of Open Nesting. Yang de-

scribes the addition of several procedures that must be supplied to a transactional

memory system to ensure safe execution. Although not explored within this the-

104

4. IMPLEMENTATION

sis, a necessary avenue for future work is the development of similar mechanisms

to ensure safety with Speculative Nesting.

4.2.2 Overview

We begin with an overview, describing the extra functionality required to ac-

commodate nested transactions. We use an example comprising of the Pro-

ducer and ProdNest transactions shown in Algorithm 9. Firstly, observe

that ProdNest is a nested transaction within the Producer transaction (line

6). When the Execute function is invoked the thread performs registration

(just as it does with the basic implementation described in Section 4.1). During

the thread’s Speculative Phase, it executes the Producer transaction. Once

CallTx is invoked with the ProdNest transaction, control is delegated to the

Nesting Manager (hereafter abbreviated to NM) so that the nested transaction

can be executed.

The functions of the NM regulate the resources necessary to accommodate

nesting exploration. Threads wishing to explore nested transaction execution

must first acquire a resource from the NM. If there are no resources available, the

ProdNest transaction is executed as a flattened transaction during its parent

session (i.e. the nesting is ignored and both transactions are treated as a single

transaction). If a resource is granted by the NM, a child session begins, and

the Producer thread begins a nested Speculative Phase, Commit Phase and

Validation Phase. Figure 4.3 shows how child sessions begin and end within

the confines of a parent session, while Figure 4.4 illustrates the three phases of

execution with the addition of a child session.

In the thread’s child session, its Speculative Phase explores permutations of

transaction execution consisting of the ProdNest transaction and any other

transactions that have been added to the Transaction Table. Synchronization

and Validation within a child session allow the thread to identify the optimum

permutation of the child session. Control then returns to the parent session,

and the resources of the child session are returned to the NM. The shared state

modifications made during nested transaction execution, however, are retained

in a thread’s cache when it returns from a child session. If the thread commits

105

4. IMPLEMENTATION

the contents of its cache then the changes will include modifications made in any

nested transactions the thread executed.

Figure 4.3: Child Sessions Nested Transactions prompt the creation of child

sessions when the Execute function is called within a transaction and a resource

is subsequently acquired. Permutations of transactions are explored with the nested

transactions, and further child sessions may be created if resource availability per-

mits. Once a child session has ended, the result is returned to the parent session.

4.2.3 Data Structures

Before we describe the process of creating and terminating child sessions, let us

first define several data structures which enable transactional nesting:

• Table Masks provide proxies for the Transaction Table and the Log struc-

tures, whenever a thread executes within the context of a child session.

• The NM possesses a finite collection of resources. A single resource is de-

fined as a Table Mask and Binary Tree pair (Binary Trees are used to

perform Consensus as explained in Section 4.1.5).

106

4. IMPLEMENTATION

Figure 4.4: Nested Transaction Execution Phase 1 shows the Transaction

Table containing three transactions. In Phase 2 Threads perform speculative execu-

tion and in Phase 3, threads reach consensus to determine the optimum execution.

A child session is shown, prompted by the execution of the TX PROD transac-

tion, wherein permutations of the PROD-NEST and TX-CONS transactions are

explored before the results are synchronized and returned to the parent session. In

this hypothetical session, the permutation of committed transactions is shown in

black arrows and consists of TX PROD; TX-CONS; PROD-NEST.

• A resource stack is required to regulate access to the resources. The re-

source stack is simply a concurrent stack which holds integers. Concurrent

stacks allow thread-safe access operations and feature in several program-

ming language libraries (hence we do not describe the implementation of

the concurrent stack here).

• A Ticket stack is now provided to each thread, rather than a single Ticket.

Hence CheckPoint and RollBack functions are required. Check-

Point creates a copy of the head of the stack and replaces the head with

the copy. Rollback pops the head of the stack to restore the previous

107

4. IMPLEMENTATION

Ticket.

Resources and Resource Ownership Resources are stored in (i) an array of

Table Masks, and (ii) an array of Binary Trees. The size of both arrays is uniform

and assumed to be set a priori, depending on the anticipated requirements. The

resource stack allows threads to concurrently ‘pop’ an integer when a resource is

required, and ‘push’ an integer when the resource is no longer needed. The value

of the ‘popped’ integer identifies the index into the Table Mask and Binary Tree

arrays.

We say that a thread which successfully ‘pops’ an integer i is the owner of

resourcei for the duration of its child session. When the same thread pushes

the integer i back onto the resource stack, it relinquishes ownership of resourcei

(thus making resourcei available to other threads). In order to execute a child

session, a thread must first acquire ownership of a unique resource, given that

child sessions incur demands for memory (without some constraining mechanism,

memory could be exhausted by the occurrence of excessive nested transaction

calls).

Table Masks A single Transaction Table is not sufficient to allow permutations

of nested transactions to be explored, because the Transaction Table may only

hold a single transaction per thread. Therefore, the Table Mask structure is

provided to enable nested transaction execution. The addition of the Table Mask

structure fulfills two requirements:

• The Table Mask exposes the same interface as the Transaction Table and

Log structures, essentially acting as a proxy for both these structures during

nested transaction execution.

• The Table Mask stores nested transaction invocations, essentially ‘masking’

a specific entry in the Transaction Table to reflect the context of the child

session.

This relationship between the Transaction Table and Table Masks is illus-

trated in Figure 4.5: Observe that from the perspective of threads X and Y , the

108

4. IMPLEMENTATION

Producer transaction invocation in the Transaction Table has been ‘masked’

by the ProdNest transaction invocation in the Table Mask.

In Section 4.1.4, we described how speculators invoke the Permutation Func-

tions during their Speculative Phase to retrieve transactions from the Transaction

Table. When executing a child session, speculators first attempts to retrieve a

transactions from the Table Mask. Transactions are retrieved via the Get func-

tion (see Algorithm 10). If the requested transaction is a ‘masked’ transaction

(ProdNest for instance) then the transaction is retrieved from the Table Mask

(line 3). Otherwise, the Table Mask retrieves the request from its parent table

(line 5). To support this functionality, each Table Mask contain a reference to

a parent table, which may either be another Table Mask or the Transaction Ta-

ble. When new child sessions are created from within existing child sessions (i.e.

when a nested transaction is called from within another nested transaction), a

chain of Get invocations may be made, ascending the table hierarchy until the

Transaction Table is reached.

Figure 4.5: The Table Mask Structure

109

4. IMPLEMENTATION

4.2.4 Child Session Management

The execution of a child session begins whenever a thread detects that it has

called a nested transaction (i.e the argument to the CallTx function is a nested

transaction invocation). Each child session is then comprised of the following

activities:

1. The thread invokes the ExecuteNested function, which contains the logic

necessary to execute a child session. The ExecuteNested function first

attempts to acquire a resource.

2. If a resource is acquired, the RegisterNested function is invoked to pre-

pare the necessary data structures for the execution of a child session.

3. Once registered, the thread executes a nested Speculative Phase and Com-

mit Phase (in the same manner as described in Section 4.1.4). The Vali-

dateNested function is then called, which terminates the child session.

A modification to the CallTx function is required to identify whether the

argument supplied to CallTx is a nested or non-nested transaction (see Al-

gorithm 11). All threads possess a private variable to hold their current state.

When a thread is first initialised, the variable is assigned the value ready. After

a thread has called the CallTx function, the variable is set to registered (see

line 7), and once validation has been performed, the variable is reset to the value

ready (line 18). If the CallTx function is invoked while the state variable holds

the value registered then the thread knows that the argument to CallTx is a

nested transaction and the ExecuteNested function is invoked (lines 2 and 3).

Algorithm 10 The Table Mask Get Algorithm

1: function Get(mask, slot)

2: if slot = maskSLOT then

3: return maskTXACTION

4: end if

5: return Get(maskPARENT , slot)

6: end function

110

4. IMPLEMENTATION

Whenever a thread invokes the ExecuteNested function (see Algorithm 12),

it first attempts to acquire a resource (line 2). If there are no resources available

then the thread simply executes the transaction as a flattened transaction (line

15). Alternatively, if the thread acquires a resource then it gains exclusive access

to the Table Mask and Binary Tree referenced by that resource. The Table Mask

is used during the thread’s Speculative Phase to retrieve transaction invocations.

The Binary Tree is used during the thread’s Commit Phase (lines 8-9).

Algorithm 11 The New Execute Algorithm

1: function CallTx(txaction)

2: if LocalSTATE = registered then

3: return executeNested(txaction)

4: end if

5: while true do

6: if Register(txaction) then

7: LocalSTATE ← registered

8: initialise timer

9: while time remaining do

10: call expansion function

11: decrement time remaining

12: end while

13: synchronize(TMbintree)

14: while ¬(session expired) do

15: await session results

16: end while

17: if transaction validated then

18: LocalSTATE ← done

19: reset cache and return

20: end if

21: end if

22: reset cache and handle abort

23: end while

24: end function

111

4. IMPLEMENTATION

Nested Registration The RegisterNested function allows a thread to be-

gin its nested Speculative Phase once a resource has been acquired (see Algo-

rithm 13). Firstly, the thread retrieves the Table Mask structure from its acquired

resource (line 2), and the Table Mask ’s parent entry is set to the thread’s cur-

rent table (line 3). Next, the thread creates a checkpoint of its Ticket structure

(line 4) by invoking the CheckPoint function. This allows the thread to make

changes to its Ticket within the child session, which can be undone if the child

session cannot commit. The thread then resets its slot and session variables

before setting up its table references to point to the Table Mask (lines 7-10).

The remaining statements of the RegisterNested function (lines 11-13)

are required to support the addition of Pseudo Threads, which are explained in

Section 4.3.2.

Algorithm 12 The Nested-Execute Algorithm

1: function ExecuteNested(txaction)

2: if resource← pop(NMCSTACK) then

3: RegisterNested(resource, txaction)

4: while time remaining do

5: call expansion function

6: decrement time remaining

7: end while

8: bintree← get(NMTREES, resource)

9: synchronize(bintree)

10: while ¬(session expired) do

11: await session results

12: end while

13: return ValidateNested(resource)

14: else

15: return call(txaction)

16: end if

17: end function

112

4. IMPLEMENTATION

Child Session Validation Once a thread has executed a nested Speculative

Phase and Commit Phase, it invokes the ValidateNested function (Algo-

rithm 14). The ValidateNested function begins with the thread invoking the

RollBack function to store the head of its Ticket stack in a thread-private vari-

able called Head (line 2). Next, the thread relinquishes its resource by pushing

it back onto the concurrent stack of the NM. The resource may now be used by

any other threads wishing to conduct nested transactions (line 3).

The thread must now determine whether the speculative changes it made to

any atomic objects during its child session will be kept or discarded. Retaining

those changes depends on whether the thread’s child transaction was able to

commit during the execution of the child session. This can be determined from

the Permutation saved in the Head variable, specifically:

• If the child transaction was not committed then the thread immediately

returns from the ValidateNested function with the value abort (line 10).

• Otherwise, the thread’s cache of atomic object modifications is updated

with the modifications made during the child session. The state of the NM

Algorithm 13 Commencing Nested Execution

1: function RegisterNested(resource, txaction)

2: mask ← get(NMMASKS, resource)

3: maskPARENT ← (LocalTICKET)TXTABLE

4: CheckPoint(LocalTICKET)

5: ticket← LocalTICKET

6: depth← (ticketPERM)DEPTH

7: maskSLOT ← Get(ticketPERM , depth)

8: ticketSLOT ← ticketSESSION ← 0

9: ticketTXTABLE ← ticketLOG ← mask

10: maskTXACTION ← txaction

11: maskCACHE ← Copy(ticketCACHE)

12: maskPERM ← Copy(ticketPERM)

13: Cas(maskNEXT , 0, 1)

14: end function

113

4. IMPLEMENTATION

is set to validated, and the value commit is returned from the ValidateN-

ested function (lines 6-8).

The return value of the ValidateNested function will, in turn, determine

the status of the parent transaction (and may cause the parent to abort). If a

nested transaction aborts then aborting the parent transaction ensures that the

atomicity property is maintained.

Algorithm 14 Ending Nested Execution

1: function ValidateNested(resource)

2: LocalHEAD ← RollBack(LocalTICKET)

3: push(NMCSTACK , resource)

4: new cache← ((LocalHEAD)TICKET)CACHE

5: if child transaction committed then

6: (LocalTICKET)CACHE ← new cache

7: LocalNMSTATE ← validated

8: return commit

9: end if

10: return abort

11: end function

Once the nested transaction has executed, thread execution returns to the

speculative algorithm (i.e. the Greedy Algorithm) in the parent session context.

If the remainder of the parent transaction is not aborted then the PermCommit

function will be called. The PermCommit function must now be able to handle

cases when a nested transaction has successfully committed, so that the thread’s

Permutation is updated correctly (see Algorithm 15, lines 1-9). Specifically, the

PermCommit function reads the state of the NM, and if this is validated then

the CommitNested function is invoked (recall that the ValidateNested func-

tion sets the status of the NM to validated if a nested transaction successfully

commits). If this extra functionality was not present then a thread may sub-

sequently execute transactions in its parent session, which have already been

executed during a previous child session.

The CommitNested function is shown in Algorithm 15 (lines 10-17). In

the CommitNested function, the thread updates its own Permutation structure

114

4. IMPLEMENTATION

with the Permutation saved in the Head variable. This comprises overwriting the

thread’s current Permutation with the Permutation from the previously executed

child session (line 14). In addition, the commit count is adjusted to include the

number of transactions committed during the execution of the child session (line

12). The final required action is to reset the state of the NM to ready, so that

further calls of PermCommit do not erroneously call CommitNested without

first executing a new child session (line 16).

Algorithm 15 The New Permutation Commit Algorithm

1: function permCommit(perm)

2: if LocalNMSTATE = validated then

3: CommitNested(perm)

4: else

5: permCOMMITS ← permCOMMITS + 1

6: permDEPTH ← permDEPTH + 1

7: permOFFSET ← 1

8: end if

9: end function

10: function CommitNested(perm)

11: newperm← (LocalHEAD)PERM

12: newpermCOMMITS ← newpermCOMMITS + permCOMMITS

13: newpermOFFSET ← 1

14: perm← newperm

15: (LocalTICKET)CACHE ← (LocalHEAD)CACHE

16: LocalNMSTATE ← ready

17: end function

4.3 Nested Search Strategies

In this section we describe two search strategies to enhance the exploratory po-

tential during nested transaction execution. In addition to the Greedy Algorithm

115

4. IMPLEMENTATION

described in Section 4.1.4, we also provide a Back-Tracking search algorithm and

Pseudo-Threads.

4.3.1 Back-Tracking Search

The Back-Tracking algorithm (Algorithm 16) can ‘roll-back’ an aborted trans-

action and continue exploring other permutations of transaction execution. The

goal of the Back-Tracking algorithm is to provide a more sophisticated search

strategy than the Greedy algorithm at the expense of extra time and memory.

The Back-Tracking algorithm requires the use of a stack to retain the results of

past permutations, so that returning to previous states of exploration is possible.

As such, extra memory is required for the stack.

When the Back-Tracking algorithm commits a transaction, it saves the thread’s

permutation on the stack before calling PermCommit (lines 20-21). When a

transaction aborts and the thread’s permutation is expended, the Back-Tracking

algorithm pops the head of the stack and sets this to the thread’s Permuta-

tion (lines 11-18). The thread can then explore a new path of execution. It

is anticipated that the Back-Tracking algorithm will be more effective than the

Greedy algorithm whenever the occurrence of semantic conflicts is particularly

frequent.

4.3.2 Pseudo Threads

When a speculator executes within the context of a child session, Pseudo Threads

may be provided to aid the speculator in exploring transaction permutations for

the duration of that child session.

Pseudo Thread functionality is comprised of two functions shown in Algo-

rithm 17, namely: PsThreadFtn and RegisterPsThread. Each Pseudo

Thread monitors a resource by repeatedly executing the PsThreadFtn (line

1). Within the PsThreadFtn, Pseudo Threads attempt to register with a Ta-

ble Mask by calling the RegisterSThread function (line 3). If successful, the

Pseudo Threads perform their own Speculative Phase and Commit Phase in the

same manner as a speculator (lines 4-9). Pseudo Threads perform no validation,

given that once a child session has ended, the Pseudo Thread takes no further

116

4. IMPLEMENTATION

action with respect to any transactions executed within the child session. If the

Pseudo Thread cannot successfully register with its Table Mask then it yields the

processor (line 11) before reiterating its execution loop.

Pseudo Thread Registration The RegisterPsThread function details the

process of registering a Pseudo Thread (lines 15-31). Furthermore, the Regis-

terNested function (shown in Algorithm 13) contains a number of statements

which support functionality of Pseudo-Threads. Firstly, any speculator which

Algorithm 16 The Back-Tracking Algorithm

1: function BTExpand(stack)

2: perm← (LocalTICKET)PERM

3: if ¬txReady(perm) then

4: return

5: end if

6: txaction← nextTx(perm)

7: CheckPoint((LocalTICKET)CACHE)

8: if call(txaction) = abort then

9: RollBack((LocalTICKET)CACHE)

10: permAbort(perm)

11: while permSTATE = expended do

12: if stack empty then

13: set time remaining to 0 and return

14: end if

15: RollBack((LocalTICKET)CACHE)

16: pop stack; perm← stackHEAD

17: permAbort(perm)

18: end while

19: else

20: push perm on stack; perm← stackHEAD

21: permCommit(perm)

22: save the current best permutation

23: end if

24: end function

117

4. IMPLEMENTATION

Algorithm 17 The Pseudo Thread Functions

1: function PsThreadFtn(mask, bintree)

2: while true do

3: if RegisterPsThread(mask) then

4: initialise timer

5: while time remaining do

6: call expansion function

7: decrement time remaining

8: end while

9: Synchronize(bintree)

10: else

11: Yield

12: end if

13: end while

14: end function

15: function RegisterPsThread(mask)

16: if maskNEXT = 0 then

17: return false

18: end if

19: repeat

20: slot← maskNEXT

21: if slot+ (maskPERM)DEPTH ≥ maskMAX then

22: return false

23: end if

24: until cas(maskNEXT , slot, slot+ 1)

25: ticket← LocalTICKET

26: ticketSLOT ← slot need convert

27: ticketCACHE ← Copy(maskCACHE)

28: ticketPERM ← Copy(maskPERM)

29: Swap(ticketPERM , depth, slot+ depth)

30: return true

31: end function

118

4. IMPLEMENTATION

acquires a particular Table Mask copies its Permutation and cache into memory

which is accessible by any Pseudo Thread accessing the Table Mask (see Algo-

rithm 13, lines 11-12). In addition, each Table Mask contains a variable, called

Next, which is incremented atomically whenever a speculator acquires the Table

Mask (line 13).

The Pseudo Thread begins its registration attempt by reading the Next vari-

able of the Table Mask (line 16):

• If Next equals zero then the Pseudo Thread returns the value ‘false’ to

indicate that it cannot register because no speculator is currently using the

Table Mask (line 17).

• If the Next variable exceeds 1, the Pseudo Thread attempts to acquire a

slot in the Table Mask using the Cas operation.

Slot acquisition is similar to algorithm which speculators use during their

Registration Phase (lines 19-23). In the case of Pseudo Threads, however, each

Pseudo Thread first accesses the Permutation structure that has been copied

to the Table Mask during a speculators registration. Then the Pseudo Thread

adds the Depth variable of the Permutation structure to the slot value when

evaluating whether the maximum value Max has been reached (line 21). This

addition is necessary because, when a speculator begins a child session, it is

possible that in the speculator’s session history, it has already explored a number

of transaction executions. Thus adding the Depth value to the value of slot

prevents the execution of transactions that have already been explored in the

parent session.

If a Pseudo Thread successfully acquires a slot number in the Table Mask then

the Pseudo Thread prepares its own Ticket structure. This includes setting the

cache (line 27) and Permutation (line 28) of the Pseudo Thread ’s Ticket to copies

of the cache and Permutation structures held at the Table Mask. These actions

ensure that every registering Pseudo Thread begin their Speculative Phase from

the same state as the speculator. A final Swap operation ensures that the Pseudo

Thread begins its Speculative Phase by executing the transaction that resides in

the table entry equal to the slot number obtained (line 29).

119

4. IMPLEMENTATION

4.4 Summary

In this chapter we have described an implementation of a Universal Construction

which provides contention management for Software Transactional Memory by

resolving conflicting transactions of multiple threads of execution. We began

by defining our notion of semantic conflicts and described the shared data model

used by our implementation to set the context of our approach. We then presented

the chapter in three sections. In Section 4.1 we described a basic implementation,

and in Section 4.2 we extended the basic implementation to incorporate nested

transactions. In Section 4.3 we described some nested searching strategies.

Basic Implementation Registration, speculation and commit phases were de-

scribed and supported by pseudo code. In this basic implementation section we

covered:

• State space management, with the implementation of a Transaction Table to

limit the number of threads that can update the Universal Construction

during a single session.

• Modifications to an Atomic Object implementation which allows our con-

tention management policy to operate in parallel with other transaction

executing threads without violating Sequential Consistency.

• Permutation functions and a Greedy search algorithm were implemented

to promote efficient exploration. The permutation functions enable each

thread to execute a unique permutation of transactions.

• We combined the direct and deferred updates modes of execution, with the

suggestion that a deferred model was particularly well suited to speculative

execution of transactions by multiple threads.

• We provided consensus of speculative execution using a Combining Tree for

higher throughput in the presence of many threads. This essentially allowed

threads to reach agreement on the next state of the Universal Construction.

120

4. IMPLEMENTATION

Nested Transactions In Section 4.2 the following topics were covered:

• Speculative Nesting was described, which allows the exploration of nested

transaction execution, not possible with conventional models of nesting.

• We implemented resource management to provide parallel nesting (via child

sessions) when resources are available. When resources are expended how-

ever, our Contention Manager resorts to a flat nesting to converse memory.

• Child sessions were described which allow the parallel speculative execution

of nested transactions.

Finally, strategies for nested transaction exploration were introduced in Sec-

tion 4.3. A Back-tracking search algorithm was presented and functionality was

described to support the addition of Pseudo-Threads.

121

Chapter 5

Results and Analysis

In this Chapter the results of performance tests on the implementation of our

Contention Manager are presented and discussed. For succinctness, we shall call

our implementation Hugh1, both in the text and on the graphs where appropriate.

After describing the testing environment, the results are presented in two sections:

The first section provides results showing the performance of Hugh in comparison

with an existing Contention Management Policy, while the second section presents

and assesses the performance of our approach with nested transactions. The aim

of the first section is to demonstrate our approach in comparison to an existing

technique with increasing levels of semantic conflicts. The aim of the second

section is to evaluate the effectiveness of a selection of strategies designed to

increase the exploratory power of nested transactions in our system.

5.1 Environment

Hugh was implemented on a platform with the hardware and software specifica-

tions detailed in Table 5.1. The platform was a Dell ‘AlienWare’ Desktop PC

featuring a capacity for generating eight Hardware Threads. We were interested

in assessing our work where concurrent execution and parallelism was a feature of

the environment, hence the availability of parallel processing resources afforded

1Hugh Everett was the Quantum Physicist who invented the Many Worlds Theory, which

inspired the Many Systems Model.

122

5. RESULTS AND ANALYSIS

by the platform made a good choice. The Transactional Memory software was ex-

ecuted in Visual Studio 2010 with a C Sharp implementation of the Java DSTM2

benchmark suite [10] (using the obstruction free factory with visible reads) to

compare Hugh with a conventional approach to Object Based Software Transac-

tional Memory.

Table 5.1: Environmental Parameters

Parameter Value

Processor Spec. Intel(R) Core(TM) i7-2600 CPU

No. of Cores 8 × 3.40GHz

Cache Size 8 MB Intel(R) Smart Cache

Memory Size 16.0 GB

Operating System Windows 7 (64 bit)

Language C Sharp (.NET Framework 4)

IDE Microsoft Visual Studio 2010 Premium

5.2 Benchmarked Results

In this section we present results from a set of micro-benchmarks. Each ex-

periment is carried out using an increasing number of threads (from 2 to 12)

and executed 10 times with the average results provided. The Polka Contention

Management Policy [38] has been cited as providing the best performance of wait-

based Contention Managers, and so this was used to provide a comparison with

our implementation (using the default parameters with respect to back-off time).

Two benchmarks were used to test the performance of our implementation,

namely: a linked list and a hash table. In both benchmarks, threads are divided

into ‘producers’ and ‘consumers’ in equal number. Producers and consumers take

a random string value and attempt to insert this into the data structure in the case

of the producer, or remove it in the case of the consumer. The highest frequency

of read/write conflicts is expected in the linked list benchmark compared to the

hash table which distributes items in an array of linked lists based on hashes

generated from each item.

123

5. RESULTS AND ANALYSIS

Performance results under increasing levels of semantic conflicts are simulated,

specifically:

1. When there are no semantic conflicts (labelled S-L0), then threads only

abort transactions if there is a read/write conflict.

2. With S-L1 semantic conflicts, consumer threads explicitly abort their trans-

action if they attempt to remove a string value which is not already present

in the data-structure.

3. With S-L2 semantic conflicts, producers also abort their transactions if they

attempt to add a string value to a data-structure which is already present.

The presence of semantic conflicts is designed to simulate the need for threads

to coordinate their activities, in order to progress their execution. It is expected

that without semantic conflicts, the performance figures with the Polka CMP and

Hugh while be roughly equal (given that Hugh falls back on the Polka technique to

address concurrent conflicts). If the results differ then this will reveal the overhead

required to implement our approach in scenarios without semantic conflicts.

As semantic conflicts increase, the performance of Hugh should degrade less

markedly in contrast to the Polka CMP, due to the exploratory element provided

by our approach.

5.2.1 Transaction Throughput

Figure 5.1 illustrates the results for transaction throughput. The Y-axis denotes

the number of transactions committed per millisecond and X-axis shows the num-

ber of threads present. In Graphs A and B, with no semantic conflicts (S-L0)

we can see that the performance of both the Polka manager and Hugh is roughly

equal with both the linked list and the hash table benchmarks. As expected,

there is a small increase in throughput for the Polka manager (roughly at most

10-20 extra transactions/millisecond). Both Polka and Hugh witness increased

throughput when the hash table is used in comparison to the linked list.

Once semantic conflicts are introduced, Hugh performs markedly better than

Polka under both benchmarks. With S-L1 semantic conflicts, Hugh shows a

124

5. RESULTS AND ANALYSIS

minimum improvement in throughput over Polka by a factor of approximately

4.3 and 4.5 for the list (Graph C) and hash table (Graph D) respectively. With

S-L2 semantic conflicts, Hugh shows a minimum improvement by a factor of

approximately 40 and 18, for the list (Graph E) and hash tables (Graph F)

respectively.

Observe that with the Polka manager, as semantic conflicts are introduced,

the type of data structure has less of an impact on mitigating the presence of

aborts (as witnessed by a smaller throughput). It seems reasonable to assume,

that strategies for mitigating read/write conflicts in transactional memory which

rely on more ‘concurrent’ data-structures, are of little benefit if one takes into

account the kinds of semantic conflicts generated in these experiments.

5.2.2 Average Transaction Execution Time (ATET)

In Figure 5.2 the average transaction execution time (ATET) is shown. In each

graph, the Y-axis measures the ATET but note that the scale used is logarithmic

for greater clarity, and the maximum value is 105 ticks for all graphs. Each graph

provides the results for a particular contention manager with a particular bench-

mark, and each bar shows the performance under a different semantic conflict

level. The time is measured in elapsed ticks (the fastest unit of time that can

be measured on the platform) and denotes the average time spent executing a

transaction by all threads.

One would expect that greater throughput generally corresponds to less aver-

age time spent executing a transaction (this is not guaranteed, however, as unlike

execution time, throughput is also includes time spent outside of transaction ex-

ecution). Given that Hugh resolves both concurrent and semantic conflicts, there

should be less time required to execute a transaction when semantic conflicts are

introduced, whereas with the Polka manager, transaction time should increase

if repeated conflicts cause threads to back off (which involves calling the sleep

function).

The performance of the Polka manager is shown in graphs A and C. One may

observe that the ATET increases substantially as the level of semantic conflicts

is increased. Conversely, the performance of Hugh (graphs B and D) does not

125

5. RESULTS AND ANALYSIS

Figure 5.1: Transaction Throughput

exhibit the same degree of increase in ATET as the number of semantic conflicts

is increased. This seems to suggest that the overhead of executing our policy

does not increase substantially as semantic conflicts increase, unlike the Polka

manager (in the case of non-nested transactions at least).

126

5. RESULTS AND ANALYSIS

Figure 5.2: Transaction Timing (in Ticks)

5.3 Nested Transaction Results

In this section we evaluate the performance of our system using nested transac-

tions. As with the Benchmark Results of Section 5.2, each experiment is carried

out using an increasing number of threads (from 2 to 12) and executed 10 times

with the average results provided. In these scenarios, we do not compare our

results to Polka CMP for two reasons: the DSTM2 framework does not support

nested transaction execution and substantial changes had to be made in order to

support nesting using Hugh. In addition, we wish to examine semantic conflict

resolution that can only be achieved via our speculative-nesting approach and so

we are primarily interested in evaluating a number of search strategies used in

our approach.

Only the results for the linked list benchmark are presented for the evaluation

of nested transactions. This is because, as noted in Section 5.2, the use of con-

current data structure has little effect on the performance when semantic conflict

is a major feature of the tests. Three levels of increasing semantic conflict are

127

5. RESULTS AND ANALYSIS

evaluated in the tests that follow, specifically:

1. With no semantic conflicts (labelled S-L0), threads only abort transactions

on the occurrence of a read/write conflict;

2. With S-L1 semantic conflicts, consumer threads explicitly abort their trans-

action if they attempt to remove an item which is not already present in

the list.

3. With S-L2 semantic conflicts, producers abort their parent transaction if

they attempt to add an item to the list when it is non-empty. In addition,

the producer aborts its nested transaction if an item has not been removed

from the list by a consumer.

The semantic conflicts simulate concurrent accesses on a shared buffer by

multiple threads. When S-L2 semantic conflicts are used, the producer uses its

nested transaction as a signal to determine when its item has been consumed

from the buffer.

5.3.1 Nested Search Strategies

In addition to varying the levels of semantic conflict, the nested transaction results

compare the performance of four search strategies, namely:

Greedy Speculation – With the Greedy Speculation Algorithm (as described

in Section 4.1.4 of this thesis), threads proceed to their Commit Phase as

soon as a transaction aborts (this is also the strategy used in the results of

Section 5.2).

Back-Tracking Speculation – With the Back-Tracking algorithm (as described

in Section 4.3.1 of this thesis), threads rollback aborted transactions and

explore new permutations as long as they have time remaining.

Pseudo-Threads – Psuedo-Threads (from Section 4.3.2) are used in child ses-

sions to aid exploration. In this scenario Pseudo-Threads and Application

Threads both execute the Greedy Algorithm and four Pseudo-Threads are

128

5. RESULTS AND ANALYSIS

provided in each test. Note that the choice of four Pseudo-Threads was de-

termined after experimentation with various numbers of Pseudo-Threads,

and four was found to produce the best results. Reducing the number of

Pseudo-Threads produces performance closer to the Greedy Speculation

Algorithm, while increasing produces no clear improvement until too many

Pseudo-Threads cause performance degradation. The effectiveness of the

Pseudo-Thread approach depends on the degree of parallel processing avail-

able on the host platform.

Back-Tracking plus Pseudo-Threads – In this scenario Pseudo-Threads ex-

ecute the Greedy Algorithm while Application Threads execute the Back-

Tracking algorithm.

The additional search strategies require varying levels of overhead. With its

use of a stack, the Back-Tracking algorithm is more costly in terms of memory

than the Greedy algorithm. The use of Pseudo-Threads requires extra memory

and extra processing time to accommodate each additional pseudo-thread. It is

expected, however, that as the degree of semantic conflicts is increased, the extra

exploratory potential of the Back-Tracking and the Pseudo-Thread approach will

provide better performance than the Greedy Algorithm.

5.3.2 Nested Throughput

Figure 5.3 illustrates the results for nested transaction throughput. As with

the results from the previous section, the Y-axis denotes the number of transac-

tions committed per millisecond and X-axis shows the number of threads present.

Graph A shows the results for S-L0 semantic conflicts and we can see that the

as the number of threads increases, the pseudo-thread strategy produces the best

performance, while the difference in throughput for Greedy and Back-Tracking is

negligible.

In Graph B, S-L1 semantic conflicts are introduced and the general through-

put of transactions decreases by a factor of approximately 70-80%. Although

the pseudo-thread approach still provides the best throughput the difference is

129

5. RESULTS AND ANALYSIS

Figure 5.3: Nesting Throughput Results

marginal. At this level of semantic conflicts, the Greedy algorithm still does as

well as the Back-Tracking approach.

In Graph C with S-L2 semantic conflicts, the Greedy Algorithm can no longer

130

5. RESULTS AND ANALYSIS

provide the exploratory power necessary to commit any transactions. This obsta-

cle is expected, because the scenario requires that a consumer transaction executes

between a producer’s parent transaction and its nested transaction in order for

both the producer and consumer to eventually commit. This is a permutation

which cannot be discovered using the Greedy algorithm (or any other conven-

tional approach for that matter). Observe that the Back-Tracking and Pseudo-

Thread approaches find the necessary permutation and manage to commit their

transactions. The pseudo-thread approach produces the best throughput until

the number of threads reaches eight, and then the Back-Tracking approach does

best (although marginally), possibly due to the fact that the platform can run a

maximum of eight hardware threads in parallel.

5.3.3 Nested ATET

In Figure 5.4 the average transaction execution time (ATET) is shown. As in the

previous section, in each graph the Y-axis measures the ATET and the X-axis

shows the number of threads used. The performance under a different semantic

conflict level is shown, and the time is measured in elapsed ticks (the fastest unit

of time that can be measured on the platform). As noted in the previous ATET

results, a higher throughput for any particular search strategy should generally

correspond to a smaller ATET, but other factors may affect the throughput, such

as the overhead of managing the Universal Construction.

The performance with S-L0 semantic conflicts is shown in Graph A. The

average between the search strategies is fairly uniform until the number of threads

is increased to ten. With ten and twelve threads, all strategies except for the

Pseudo-thread approach show a marked increase in ATET. An explanation for

the increase may be due to the fact that the number of application threads now

exceed the maximum eight hardware threads, which the platform allows. The

result is that throughput is reduced because of an increase in context switching

between thread resources. This is not observed to such an extent for the Pseudo-

Thread approach which at first seems counter-intuitive given the extra number of

threads being used. However, the Pseudo-Threads demand far fewer processing

resources than the application threads, and most of their activity involves yielding

131

5. RESULTS AND ANALYSIS

the processor until there is work for a Pseudo-Thread to do. The benefit of the

Pseudo-Thread approach is that they help application threads to complete their

speculation phases more quickly than with the other techniques, but the ATET

of the Pseudo-Threads is not measured.

The performance with S-L1 semantic conflicts is shown in Graph B and we

can see that, on average, the ATET has increased by a factor of 70-80%. The

smallest ATET can be seen with the Pseudo-Thread and the Greedy approach. In

Graph C, S-L2 semantic conflicts are introduced, and the results are shown for the

Back-Tracking algorithm and the Pseudo-Threads. Note that the Greedy results

are not shown because no transaction could commit using the Greedy algorithm

with S-L2 semantic conflicts. The smallest ATET is shown by the Back-Tracking

algorithm followed very closely by the Pseudo-Threads, while using both Back-

Tracking and Pseudo-Threads was generally worse than using either approach

alone.

5.3.4 Registered Versus Commit Rate

The final set of graphs provide a ratio between the average number of transactions

registered and the average number of transactions to commit per session (for

succinctness, let us refer to this as R/C). For example, when a test is executed

with six threads, we would expect the average number of registered transactions

n to be in the range of 0 ≤ x ≤ 6. If the subsequent number of transactions that

commit is close to six then this suggests that the search strategy was effective in

finding a permutation of transactions where most could commit successfully.

From these results a number of interesting conclusions can be inferred, namely:

• The degree to which transactions register provides some measure of con-

tention, but in the case of a high number of threads, we can also infer the

level of parallelism being afforded by the platform.

• The degree to which transactions commit (such that R/C → 1) allows one

to estimate how effective the particular search strategy was in finding a

permutation of transactions where most could commit.

132

5. RESULTS AND ANALYSIS

Figure 5.4: Nested Average Transaction Execution Time

The results showing the actual ratios of registered transactions versus commit-

ted transactions (R/C) are provided in Figure 5.5. Looking firstly at Graph A,

observe that as the number of threads increases, the number of registered trans-

133

5. RESULTS AND ANALYSIS

Figure 5.5: Registered Versus Committed

actions also increases (the average never increases above eight, which we would

expect given that the maximum level of parallelism afforded by the platform is

eight threads). In Graph A, where only concurrent conflicts prevent a transac-

134

5. RESULTS AND ANALYSIS

tion from committing, the ratio between R/C is always 1 (every transaction that

registers is able to commit).

In Graph B, S-L1 semantic conflicts are introduced, and we can see that the

number of transactions registering is roughly the same as in Graph A. This time

however, in the case of the Greedy and the Pseudo-Thread strategies, the number

of transactions which commit is often less than the number registering. This sug-

gests that the Back-Tracking approach is more effective at finding permutations

which allow for a greater commit rate. In Graph C, we can see that the effec-

tiveness of the Pseudo-Thread approach has decreased further while the Back-

Tracking approach still provides a higher commit rate (the Greedy approach is

not shown because no transactions could commit under S-L2 semantic conflicts).

In summary, the Back-Tracking algorithm appears the most effective for find-

ing permutations of transactions which allow the highest number of commits.

However, according to the results provided in Figure 5.3, the Pseudo-Thread

approach produced the best throughput. This finding would suggest that locat-

ing the best permutation does not always justify the extra time required for the

search when throughput is the most important issue.

5.4 Summary

In this chapter a number of experiments were presented using an implementation

of the Many Systems approach. In each experiment, we examined the transaction

throughput and the average transaction execution time. To begin with, results

where compared with an existing Contention Management Policy, to provide a

measure of comparison between our approach and an existing technique. This

was followed by further tests involving nested transactions, designed to evaluate

the exploratory power of our approach. The goal of each test was to examine

performance in the face of both concurrent and semantic conflicts. To summarise,

the results presented in this chapter suggest:

• In comparison with an existing Contention Management Policy, Hugh shows

significant improvement in throughput when the presence of semantic con-

135

5. RESULTS AND ANALYSIS

flicts is increased. Without semantic conflicts, Hugh still provided compa-

rable with Polka performance under both benchmarks.

• While different data structures (linked lists, hash tables) can affect the per-

formance of a conventional system designed to resolve concurrent conflicts,

the choice of data-structure has less of an impact when semantic conflicts

are taken into account.

• When semantic conflict resolution is combined with nested transactions,

transaction throughput deceases, and more elaborate search strategies may

be required to allow transactions to commit. A Back-Tracking and Pseudo-

Thread approach are presented and evaluated, with the latter having slightly

better throughput.

As described in Section 5.1, the environment consisted of a platform with a

capacity for eight hardware threads to run in parallel. In further experiments, it

would be interesting to observe how the performance alters on platforms which

provide more parallelism, especially with respect to the Pseudo-Thread search

strategy, which suggests improvements can be obtained with greater parallel re-

sources.

In Section 5.3, results have revealed that throughput has changed only mod-

estly between the Pseudo-Thread and Back-Tracking algorithms. Although the

Back-Tracking algorithm is more effective at committing more transactions per

session (see Graph 5.5), interestingly, this doesn’t correspond to higher through-

put in the application (presumably because of the extra time used to search for

permutation that allows a small number of extra transactions to commit). As a

result of this observation, in future work it may be worthwhile to alter the commit

phase algorithms to prefer timely completion over locating the best permutation.

136

Chapter 6

Conclusion

In this final chapter we provide a summary of the material that has been presented

in this thesis, briefly discuss the implications of our work and suggest ideas for

future work.

6.1 Thesis Summary

This thesis began with the description of a Many Systems Model in an abstract

process language CSP. The model described an approach to Concurrency Control

based on state-space exploration. An implementation of our approach in the form

of a Universal Construction was described, to provide Contention Management

for Software Transactional Memory systems. The implementation is designed to

provide conflict resolution which incorporates both concurrent conflict resolution

and semantic conflict resolution (where transactions explicitly abort because of

some logical condition in the program). We then extended the implementation

to deal with nested transactions before providing results which demonstrated the

performance of our approach.

6.2 Main Contributions

The main contributions of this thesis can be described in three parts:

137

6. CONCLUSION

1. The Many Systems model of computation was described in Chapter 3, which

approached the execution of concurrent threads as a state-space exploration

and management problem. We described the concept of a Supersystem,

wherein concurrent conflicts can be resolved, and permutations of thread

execution explored. In the model we showed how No-Wait Synchronization

could be assumed, so that a deadlock is avoided and we described a lock-

free Universal Construction to demonstrate how the model could be placed

in a practical setting.

2. An implementation of a Universal Construction is provided in Chapter 4, to

provide Contention Management for Object-based Software Transactional

Memory. The Universal Construction adapted concepts from the Model and

resolved contention by generating permutations of conflicted transactions;

by doing so the Universal Construction allows the resolution of both con-

current conflicts and semantic conflicts. The implementation was described

purely in software and requires no control over the scheduling policy of the

underlying Operating System.

3. The Universal Construction was extended to incorporate nested transac-

tions, and we demonstrated how our approach can use them to extend the

exploratory element of searching the state-space using speculative nesting.

This allowed linearizable schedules to be discovered and committed, which

would otherwise be undetectable in an existing nested models (such as Flat,

Open or Closed nesting).

Results were provided which compared the performance of our approach with

an established Contention Management Policy (namely the Polka CMP), under

varying degrees of concurrent and semantic conflicts. We explore transactional

throughput using two benchmarks (lists and hash tables) and then provide perfor-

mance results of a number of search strategies when nested transactions are used.

Our approach showed comparable performance with the Polka CMP where no se-

mantic conflicts were present, and improved throughput when semantic conflicts

were introduced.

138

6. CONCLUSION

6.3 Future Work

We believe that the treatment of Contention Management, and Concurrency Con-

trol in general, as a state space exploration problem offers much in terms of future

work. Initially, there exists a great deal of scope for exploring the role of semantic

conflicts in more detail. In addition, various optimisations of the existing work

are possible, which should boost the throughput of concurrent activity. With

respect to short-term developments, we suggest three approaches: (i) reducing

nested overhead, (ii) probabilistic analysis of semantic conflicts, and (iii) strate-

gies for increasing throughput (specifically reducing wasted work). We conclude

this thesis with an overview of each approach.

Reducing Nested Overhead In Chapter 5, results were presented which

showed the transaction throughput when semantic conflicts were introduced with

nested transactions under several search strategies. An observation of the results

is that the overhead of creating and managing child sessions increased dramat-

ically when semantic conflicts increased (by around 70-80%), whichever search

strategy was employed.

A possibility for future work may be to explore ways of reducing child ses-

sion overhead, and initially, one could consider modifying the algorithms of the

Commit Phase. For example, the Commit Phase as described uses a Combin-

ing Tree approach which allows threads to determine the best permutation of

n threads. This method can be altered in order to find the best permutation

of transaction execution within a fixed number of executions. Essentially this

would require transforming the lock-free approach of the Combining Tree into a

Wait-free algorithm. Although the optimum execution may no longer be found

(i.e. the permutation containing the most number of committable transactions),

the results in Figure 5.5 suggest that improved throughput may result, especially

if semantic conflicts are particularly sparse.

Conflict Prevention The approach of the work in this thesis is to provide

contention management and conflict resolution. More generally, only when con-

current accesses conflict do the mechanisms described in the previous chapters

139

6. CONCLUSION

come into effect. An attractive alternative is to adapt our approach in order

to prevent conflicts from occurring in a manner similar to the approach of the

Shrink system [21] (a brief overview of Shrink is provided in Section 2.5 of this

thesis). Shrink demonstrated how probabilistic techniques, specifically Bloom

Filters, could help order transactions in a schedule to prevent conflicts occurring.

Similarly, the approach presented in this thesis could be adapted to provide sim-

ilar behaviour. In fact, given their deterministic nature, semantic conflicts may

be more suspectible to detection by a Bloom Filter than concurrent conflicts.

Adapting our approach to prevent conflicts would involve the following:

1. A probabilistic structure (a Bloom Filter for example) determines the like-

lihood of a conflict (either a concurrent conflict or a semantic conflict).

2. When a contention threshold is exceeded via the probabilities returned by

the Bloom Filter, threads register with the Transaction Table and begin

speculating as in the implementation.

Increasing Throughput A negative aspect of the approach is that committing

a single thread’s speculative execution is wasteful if there are many other threads

which have executed their own speculation phases. Although multiple transac-

tions can still commit in the approach described, it may be more productive for

throughput to: (1) introduce multiple Universal Constructions to allow conflicts

on disjoint groups of atomic objects to be resolved in parallel, and (2) use Thread

Level Speculation (TLS) to allow per thread permutations transaction execution

to execute in parallel.

An implementation featuring multiple Universal Constructions would require

three additions to functionality:

1. A process for deciding which Universal Construction each thread shall up-

date (perhaps, by grouping atomic objects according to the probability that

conflicts will occur between each other).

2. Logic to detect conflicts between threads updating different Universal Con-

structions.

140

6. CONCLUSION

3. A mechanism to allow the serialisation of Universal Construction when a

conflict is detected.

Introducing TLS should provide better performance with long, nested trans-

actions and could be implemented via the Pseudo Thread technique described

in Section 4.3.2. Specifically, per thread permutations of transaction execution

could be executed in parallel, and child sessions could commence when a thread

first registers its transaction invocation in the Transaction Table (in parallel with

the parent session of the same thread).

Conflict detection would be required to revert to sequential nested execution

when executing a single thread’s child session in parallel with its parent session

would generate a conflict. Given that during contention management transac-

tions are executed in sequence, only semantic conflicts and TLS conflicts are

relevant (e.g. Write after Write (WaW) and Write after Read (WaR)). This is

similar to the approach of TLSTM [24], but which must handle the complexity of

detecting both concurrent and TLS conflicts. On the other hand, our approach

would explore multiple, parallel TLS executions where each thread attempts to

execution its own permutation in parallel (aided by Pseudo Threads). As such, it

is hoped that exploring multiple TLS executions would increase the probability

of reducing both semantic and TLS conflicts.

141

Chapter 7

Appendix

This appendix is provided as a reference for the CSP terminology used in the

Model Chapter. At the time of writing this thesis, the full text ‘Communicating

Sequential Processes’ by Tony Hoare, can be accessed for free at:

http://www.usingcsp.com/cspbook.pdf.

7.1 Processes

Notation Meaning
αP denotes the alphabet of the process P where the alpha-

bet of P is the set of events that P can accept.
a→ P the event a then P
(a→ P | b→ Q) a choice between a then P or b then Q
P ‖ Q process P and Q executing in parallel such that P and

Q may communicate with each other.
P \ C process P with the events of C hidden from specifica-

tions.
P |||Q the interleaved execution of process P and Q such that

P and Q cannot communicate with each other.
l : P process P assigned the name l. Events generated by l

bear the prefix in the form l.event.
P �Q the process P is subordinate to the process Q such that

the alphabet of P is a subset of the alphabet of Q.
(‖i<n i : P) represented n concurrent processes P where the ith

process is prefixed with the label i. Shorthand for
(0 : P ‖ 1 : P ‖ n− 1 : P).

142

7. APPENDIX

(|||i<ni : P) represented n interleaved processes P where the ith
process is prefixed with the label i. Shorthand for
(0 : P|||1 : P|||n− 1 : P).

The following symbols refer to special processes defined in this thesis.

Notation Meaning
τx the symbol for a System with the name x where a System

is defined as a collection of system processes.
Θ the symbol for the Supersystem where a Supersystem is

defined as a collection of systems aranged as a directed
acyclic graph.

τ0 the symbol for the root System in Θ

7.2 Special Events

Notation Meaning
l.a represents the participation in the event a by a pro-

cess named l (for example i.sits down where i = l and
sits down = a).

b!e on channel b, output the value of e. For example
stack.out!m represents the output of a message called
m, on a channel called out by a process named stack.

b?x on channel b, input to x. For example, queue.in?m rep-
resents the input of a message called m, on a channel
called in belonging to a process named queue.

P <I b>I Q if b is true, then do P , else do Q
∗P repeat P .
b ∗ P while b is true, repeat P .
x := e represents the assignment of the value e to the variable

x.

7.3 Functions

The following functions are defined in the Model Chapter:

143

7. APPENDIX

Function Meaning
assign(X, Y) assigns the state of system X to be Y .
cas(m, e, u) refers to the atomic operation compare-and-swap, which

requires a variable to modify, (o), an expected value
for the variable to modify (e) and an update value (u)
which will overwrite m, iff m = e. The cas function
returns true if the modification was successful and false
otherwise.

checkpointx(τ) creates a copy of τ prefixed with the label x, so that the
state after a call to checkpointx(τ) is equal to (τ ‖ x : τ).

child(τx, i) refers to ith child system (or transition trnx(τx, i)) from
system τx.

contract(P, x, y) the contract function accepts a parent system and inte-
gers x and y. The function is shorthand for child(P, x) =
child(child(P, x), y).

leafnode(X) returns true if the number of child systems of system X
is zero (Xcns = 0).

ncas(m, e, u, n) refers to a function that calls the cas function at most
n times, returning false if cas returns false on the nth
attempt or true otherwise. On each iteration, ncas reads
the value of m.

obs(τ) specifies the ordered set of possible observable events in
τ which may be executed immediately.

parent(τx) refers to the parent system of τx or nil if τx is the root
system (i.e. if x = 0).

sched(X) reschedules the observable events of system X.
τ(i) specifies the ith event from the ordered set of possible

events in τ . Shorthand for calling obs(τ)(i).
trnx(τ, τ(i)) creates a copy of τ and then executes the event speci-

fied by τ(i). Equivalent to calling (checkpointx(τ); (x :
τ(i))).

valuate(X) assigns some application specific value to system X.

The following support processes are referenced in the Model and are defined

here:

Timer Process A simple timer process is defined in Equation 7.1:

144

7. APPENDIX

Tmrt,n = ((t > 0) ∗ (tick → Tmrt−1,n); timeout→ Skip) (7.1)

Max Process The Max process requires a parent system (P) and a value for

maximum (m) which will hold the ID of the child node with the highest ‘value’.

Max iterates through each child node of (P) from x = 0 to n. Max cannot

complete until all child nodes of P are leaf nodes.

Maxx,n(P,m) = (if leafnode(child(P, x)) then

m := max(m, child(P, x));

Maxx+1,n(P,m))

else Maxx,n(P,m))

Maxn,n(N,m) = (done→ Skip) (7.2)

Depth First Search Equation 7.3 provides the definition of a depth-first search

algorithm. A stack (labelled searched) is used to provide a path of previously

explored nodes. Location of the desired node is signalled by the success event.

At each level of the search tree, the fail event signals that the desired node has

not been found and the depth-first search algorithm begins searching the next

available child node.

DFSearch(Root) = (searched : Stack � (Search(Root)))

Search(R) = searched.push(R)→

(success→ found→ Skip

|fail→ Iter(0, size(R),R); Skip)

Iter(c, n,N) = (Search(child(N, c));

Skip<I found >I Iter(c+ 1, n,N))

Iter(n, n,N) = (searched.pop(X)→ Skip) (7.3)

145

References

[1] M.P. Herlihy. Impossibility and universality results for wait-free

synchronization. In Proceedings of the seventh annual ACM Symposium

on Principles of distributed computing, pages 276–290. ACM, 1988. 14, 48

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

control and recovery in database systems, 370. Addison-wesley New York,

1987. 22

[3] Leonardo Dagum and Ramesh Menon. OpenMP: an industry stan-

dard API for shared-memory programming. Computational Science

& Engineering, IEEE, 5(1):46–55, 1998. 24

[4] James Reinders. Intel threading building blocks: outfitting C++ for multi-

core processor parallelism. O’Reilly Media, Incorporated, 2007. 24

[5] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry. A scalable

approach to thread-level speculation. In ACM SIGARCH Computer

Architecture News, 28, pages 1–12. ACM, 2000. 25

[6] J.F. Mart́ınez and J. Torrellas. Speculative synchronization: ap-

plying thread-level speculation to explicitly parallel applications.

ACM SIGOPS Operating Systems Review, 36(5):18–29, 2002. 25

[7] A. Bestavros. Speculative Concurrency Control for Real-Time

Databases. Technical report, Boston University Computer Science Depart-

ment, 1993. 26

146

REFERENCES

[8] J. Haubert, B. Sadeg, and L. Amanton. Improving the SCC pro-

tocol for real-time transaction concurrency control. In Signal Pro-

cessing and Information Technology, 2003. ISSPIT 2003. Proceedings of the

3rd IEEE International Symposium on, pages 593–596. IEEE, 2003. 26

[9] V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: a software

transactional memory for many-cores. In Proceedings of the 7th ACM

european conference on Computer Systems, ser. EuroSys, 12, pages 351–364,

2012. 30

[10] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible

framework for implementing software transactional memory. In

ACM SIGPLAN Notices, 41, pages 253–262. ACM, 2006. 33, 34, 81, 123

[11] T Riegel, P Felber, and C Fetzer. TinySTM, 2010. 34

[12] Robert Ennals. Software transactional memory should not be

obstruction-free. Intel Research Cambridge Tech Report, 2006. 34

[13] Keir Fraser and Tim Harris. Concurrent programming without

locks. ACM Transactions on Computer Systems (TOCS), 25(2):5, 2007. 34

[14] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-

posable memory transactions. In Proceedings of the tenth ACM SIG-

PLAN symposium on Principles and practice of parallel programming, pages

48–60. ACM, 2005. 36, 81

[15] R. Kumar and K. Vidyasankar. Hparstm: A hierarchy-based stm

protocol for supporting nested parallelism. In the 6th ACM SIGPLAN

Workshop on Transactional Computing (TRANSACT11), 2011. 38

[16] N. Diegues and J. Cachopo. Exploring parallelism in transactional

workloads. Technical report, Technical Report RT/16/2012, INESC-ID

Lisboa, 2012. 38

[17] T. Heber, D. Hendler, and A. Suissa. On the impact of serializing

contention management on STM performance. Journal of Parallel

and Distributed Computing, 2012. 40, 42

147

REFERENCES

[18] S. Dolev, D. Hendler, and A. Suissa. CAR-STM: scheduling-

based collision avoidance and resolution for software transactional

memory. In Proceedings of the twenty-seventh ACM symposium on Princi-

ples of distributed computing, pages 125–134. ACM, 2008. 42

[19] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and

I. Watson. Steal-on-abort: Improving transactional memory per-

formance through dynamic transaction reordering. High Performance

Embedded Architectures and Compilers, pages 4–18, 2009. 42, 43, 50, 83

[20] R.M. Yoo and H.H.S. Lee. Adaptive transaction scheduling for

transactional memory systems. In Proceedings of the twentieth annual

symposium on Parallelism in algorithms and architectures, pages 169–178.

ACM, 2008. 42

[21] A. Dragojević, R. Guerraoui, A.V. Singh, and V. Singh. Prevent-

ing versus curing: avoiding conflicts in transactional memories. In

Proceedings of the 28th ACM symposium on Principles of distributed com-

puting, pages 7–16. ACM, 2009. 45, 140

[22] Burton H Bloom. Space/time trade-offs in hash coding with al-

lowable errors. Communications of the ACM, 13(7):422–426, 1970. 45

[23] Aleksandar Dragojević, Rachid Guerraoui, and Michal Ka-

palka. Stretching transactional memory. In ACM Sigplan Notices,

44, pages 155–165. ACM, 2009. 46, 89

[24] Joao Barreto, Aleksandar Dragojevic, Paulo Ferreira, Ri-

cardo Filipe, and Rachid Guerraoui. Unifying thread-level spec-

ulation and transactional memory. In Middleware 2012, pages 187–207.

Springer, 2012. 46, 141

[25] Hanjun Kim, Arun Raman, Feng Liu, Jae W Lee, and David I Au-

gust. Scalable speculative parallelization on commodity clusters. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium

on Microarchitecture, pages 3–14. IEEE Computer Society, 2010. 47

148

REFERENCES

[26] Michael K Chen and Kunle Olukotun. Exploiting method-level

parallelism in single-threaded Java programs. In Parallel Architectures

and Compilation Techniques, 1998. Proceedings. 1998 International Confer-

ence on, pages 176–184. IEEE, 1998. 47

[27] M. Herlihy. Wait-free synchronization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 13(1):124–149, 1991. 48, 68,

82

[28] J.T. Wamhoff and C. Fetzer. The universal transactional mem-

ory construction. Technical report, Tech Report, 12 pages, University of

Dresden (Germany), 2010. 48, 68

[29] P. Chuong, F. Ellen, and V. Ramachandran. A universal con-

struction for wait-free transaction friendly data structures. In Pro-

ceedings of the 22nd ACM symposium on Parallelism in algorithms and ar-

chitectures, pages 335–344. ACM, 2010. 49, 68

[30] T. Crain, D. Imbs, and M. Raynal. Towards a universal construc-

tion for transaction-based multiprocess programs. Distributed Com-

puting and Networking, pages 61–75, 2012. 49, 68

[31] Hugh Everett, Bryce Seligman DeWitt, Neill Graham, and

Bryce Seligman Dewitt. The many-worlds interpretation of quantum

mechanics. Princeton University Press, 1973. 55

[32] C.A.R. Hoare. Communicating sequential processes. Communica-

tions of the ACM, 21(8):666–677, 1978. 55, 60, 65

[33] Edsger W. Dijkstra. Hierarchical ordering of sequential processes.

Acta informatica, 1(2):115–138, 1971. 55

[34] Philip A Bernstein and Nathan Goodman. Multiversion concur-

rency controltheory and algorithms. ACM Transactions on Database

Systems (TODS), 8(4):465–483, 1983. 58

149

REFERENCES

[35] M. Herlihy and N. Shavit. The art of multiprocessor programming.

Morgan Kaufmann, 2008. 96

[36] E. Moss and T. Hosking. Nested transactional memory: Model

and preliminary architecture sketches, 2005. 101

[37] Yang Ni, Vijay S Menon, Ali-Reza Adl-Tabatabai, Antony L

Hosking, Richard L Hudson, J Eliot B Moss, Bratin Saha, and

Tatiana Shpeisman. Open nesting in software transactional mem-

ory. In Proceedings of the 12th ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 68–78. ACM, 2007. 104

[38] William N Scherer III and Michael L Scott. Advanced con-

tention management for dynamic software transactional memory.

In Proceedings of the twenty-fourth annual ACM symposium on Principles

of distributed computing, pages 240–248. ACM, 2005. 123

150

	1 Introduction
	1.1 Parallel Computing
	1.1.1 Classifications of Parallelism
	1.1.2 The Limitations of Parallelism

	1.2 Multi-Threading
	1.2.1 Concurrency Control
	1.2.2 Mutual Exclusion
	1.2.3 Transactional Memory
	1.2.4 Contention Management

	1.3 Thesis Contribution
	1.4 Publications
	1.5 Thesis Outline

	2 Background and Related Work
	2.1 Foundations and Universality
	2.1.1 Concurrent Objects

	2.2 Pessimistic Approaches
	2.2.1 Locking
	2.2.2 Two-Phase Locking
	2.2.3 Time Stamps

	2.3 Speculative Approaches
	2.3.1 Thread-Level Speculation
	2.3.2 Speculative Synchronization
	2.3.3 Speculative Concurrency Control

	2.4 Optimistic Approaches
	2.4.1 Transactions
	2.4.2 Hardware Transactional Memory
	2.4.3 Software Transactional Memory
	2.4.4 Coordinating Transactions
	2.4.5 STM Contention Management

	2.5 Related Work
	2.5.1 Serialising Contention Management
	2.5.2 Shrink and Predictive Scheduling
	2.5.3 TLSTM
	2.5.4 Universal Constructions

	2.6 Summary and Thesis Contribution
	2.6.1 Contribution

	3 The Many Systems Model
	3.1 Overview
	3.2 Model Components
	3.2.1 Events
	3.2.2 Systems and Processes
	3.2.3 Expansion

	3.3 Solution Space
	3.4 Waiting
	3.5 Example
	3.6 A Universal Construction
	3.6.1 System Processes
	3.6.2 Universal Construction Processes
	3.6.3 Proofs

	3.7 Properties
	3.7.1 Containment
	3.7.2 Isolation
	3.7.3 Liveness
	3.7.4 Scalability
	3.7.5 Composable Correctness Criteria

	3.8 Summary

	4 Implementation
	4.1 Basic Contention Management
	4.1.1 Overview
	4.1.2 Preliminaries
	4.1.3 Registration Phase
	4.1.4 Speculation Phase
	4.1.5 Commit Phase
	4.1.6 Validation

	4.2 Managing Nested Transactions
	4.2.1 Speculative Nesting
	4.2.2 Overview
	4.2.3 Data Structures
	4.2.4 Child Session Management

	4.3 Nested Search Strategies
	4.3.1 Back-Tracking Search
	4.3.2 Pseudo Threads

	4.4 Summary

	5 Results and Analysis
	5.1 Environment
	5.2 Benchmarked Results
	5.2.1 Transaction Throughput
	5.2.2 Average Transaction Execution Time (ATET)

	5.3 Nested Transaction Results
	5.3.1 Nested Search Strategies
	5.3.2 Nested Throughput
	5.3.3 Nested ATET
	5.3.4 Registered Versus Commit Rate

	5.4 Summary

	6 Conclusion
	6.1 Thesis Summary
	6.2 Main Contributions
	6.3 Future Work

	7 Appendix
	7.1 Processes
	7.2 Special Events
	7.3 Functions

	References

