
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

Fall 12-22-2010

Mechanisms for Unbounded, Conflict-Robust
Hardware Transactional Memory
Colin Blundell
University of Pennsylvania, blundell@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer and Systems Architecture Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/253
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Blundell, Colin, "Mechanisms for Unbounded, Conflict-Robust Hardware Transactional Memory" (2010). Publicly Accessible Penn
Dissertations. 253.
http://repository.upenn.edu/edissertations/253

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76364923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=repository.upenn.edu%2Fedissertations%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/253?utm_source=repository.upenn.edu%2Fedissertations%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/253
mailto:libraryrepository@pobox.upenn.edu

Mechanisms for Unbounded, Conflict-Robust Hardware Transactional
Memory

Abstract
Conventional lock implementations serialize access to critical sections guarded by the same lock, presenting
programmers with a difficult tradeoff between granularity of synchronization and amount of parallelism
realized. Recently, researchers have been investigating an emerging synchronization mechanism called
transactional memory as an alternative to such conventional lock-based synchronization. Memory
transactions have the semantics of executing in isolation from one another while in reality executing
speculatively in parallel, aborting when necessary to maintain the appearance of isolation. This combination of
coarse-grained isolation and optimistic parallelism has the potential to ease the tradeoff presented by lock-
based programming.

This dissertation studies the hardware implementation of transactional memory, making three main
contributions. First, we propose the permissions-only cache, a mechanism that efficiently increases the size of
transactions that can be handled in the local cache hierarchy to optimize performance. Second, we propose
OneTM, an unbounded hardware transactional memory system that serializes transactions that escape the
local cache hierarchy. Finally, we propose RetCon, a novel mechanism for detecting conflicts that reduces
conflicts by allowing transactions to commit with different values than those with which they executed as long
as dataflow and control-flow constraints are maintained.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Milo M. K. Martin

Keywords
transactional memory, computer architecture, parallel programming

Subject Categories
Computer and Systems Architecture

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/253

http://repository.upenn.edu/edissertations/253?utm_source=repository.upenn.edu%2Fedissertations%2F253&utm_medium=PDF&utm_campaign=PDFCoverPages

MECHANISMS FOR UNBOUNDED, CONFLICT-ROBUST

HARDWARE TRANSACTIONAL MEMORY

Colin Blundell

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2010

Milo M. K. Martin, Associate Professor of Computer and Information Science
Supervisor of Dissertation

Jianbo Shi, Associate Professor of Computer and Information Science
Graduate Group Chairperson

Dissertation Committee

Rajeev Alur, Professor of Computer and Information Science

André DeHon, Associate Professor of Electrical and System Engineering

Maurice Herlihy, Professor of Computer Science, Brown University

Amir Roth, Associate Professor of Computer and Information Science

Mechanisms for Unbounded, Conflict-Robust Hardware Transactional Memory

COPYRIGHT

2010

Colin Blundell

This dissertation is dedicated to my wife, Angelina.

Without you, this would not have been possible.

iii

Acknowledgements

This dissertation would not have been possible without the love and support of my family. My

deepest thanks go to my wife, Angelina. The opportunity to meet her has been the greatest reward

of my decision to go to graduate school. She is both the source of my success and the reason that

this success has meaning. I also thank Jacob for the joy that he has brought to my life and Merlin

for his constant good humor, support, and loyalty.

The support of my mother, father, and brother has been instrumental in me reaching this point.

They have shared in the joy of my successes and have helped me weather the setbacks. The foun-

dation of my later success was laid in my parents’ teaching when I was young. My brother David

has been there with me through the ups and downs of our entire lives; he is the best friend a brother

could ever hope for.

I am also deeply grateful to my extended family: the Boyarins, the Blundells, and the Stelmachs.

The Boyarins have encouraged a spirit of questioning that has served me well as a researcher.

My mathematical bent, on the other hand, can be traced to the influence of the Blundells. The

Stelmachs have welcomed me as a son. All of these family members have given me constant love

and support, and I thank them all. I wish to especially thank my cousin Jonah and my uncle Ian for

the extraordinary closeness that we have shared over the course of my life.

I have been fortunate to be advised by Milo Martin. The last five years have been an awesome

ride, during which I have benefited greatly from Milo’s degree of technical knowledge and ability

to share that knowledge. In addition, he has been the best advisor that I can imagine: generous with

his time and wisdom, supportive through good times and bad times, extremely fair, and most of all,

fun. He is not only an advisor to whom I am deeply indebted but a close friend.

In addition to Milo, I thank the other professors of UPenn’s Architecture and Compilers Group

(ACG), Amir Roth and E Lewis. Amir and E have greatly contributed to my success and to my

iv

enjoyment of graduate school. Learning about microarchitecture from Amir has been like drinking

from a firehose. E has been a second advisor to me. I also thank the members of my commit-

tee. Amir, André DeHon, Maurice Herlihy, and Rajeev Alur all provided valuable insight on my

dissertation research, for which I am grateful.

I am also grateful for the mentorship of many other professors and senior colleagues. I have

greatly benefited from the opportunity to collaborate with Tom Wenisch, who has taught me a great

deal about computer architecture as well as the value of hard work. I am grateful to Steve Zdancewic

for helping to broaden the scope of my research through the opportunity to collaborate on the Hard-

Bound project. I also thank Insup Lee and Sampath Kannan for their support and mentorship during

my early years in graduate school, Corina Pasareanu and Dimitra Giannakopoulou for their support

during an instructive internship at NASA-Ames, and Joseph Silverman, Kathi Fisler, and Shriram

Krishnamurthi for introducing me to research during my undergraduate years. I especially thank

Alan Bivens, Calin Cascaval, Maged Michael, Stefanie Chiras, and Trey Cain for helping make my

summer at IBM Research so productive and enjoyable that I decided to return after graduating.

I am also greatly indebted to many fellow students. Joe Devietti and Arun Raghavan have

been my closest collaborators in graduate school, deeply contributing to my work on unbounded

hardware transactional memory and conflict-robust transactional memory respectively. These col-

laborations have been the source of my greatest enjoyment in graduate school. I also thank the other

members of ACG whose support and knowledge I have benefited from: Anne Bracy, Drew Hilton,

Marc Corliss, Santosh Nagarakatte, Tingting Sha, and Vlad Petric.

I have been fortunate to have had wonderful friends throughout my time at Penn. Aaron Bo-

hannon and I have had an incredible amount of fun exploring Philadelphia and discussing computer

science, indie music, and everything in between over excellent gin and tonics. T.J. Green and his

wife Elisabeth have been wonderful friends to both Angelina and myself. Dimitris Vytiniotis and

Nate Foster have been close and supportive friends from my first days in graduate school. I have

also enjoyed spending time with Jeff Vaughan, Jenn Wortman Vaughan, Matt Jacobs, Micah Sherr,

Nick Taylor, Pavol Cerny, and Peng Li. Thank you all.

Throughout this time, I have also relied on and benefited from the support of friends made

before graduate school. Ben Finkel has influenced my life more deeply than anyone else outside

of my family; I cannot thank him enough. My friendships with Andrew McClain, Nick and Lela

Beem, Sarovar Banka, Stephan Marguet, and Thea Brennan-Krohn mean more to me than I can

v

express. Diana Gross has been a close and supportive friend through many ups and downs over the

last fifteen years.

I am grateful to the administrative and technical support staff of the CIS Department. Mike

Felker is the cornerstone without which the department would surely collapse; I deeply appreciate

his competence, friendliness, caring, and hard work over the past seven years. Rita Powell has been

a pleasure to interact with. My research would not have been possible without the support of Penn

Engineering’s Computing and Educational Technology Services (CETS). I particularly thank Dan

Widyono, who has been consistently terrific throughout my entire time at Penn. The professionalism

of the Moore Business Office has eased many tasks. I especially acknowledge Amy Deitz, Gail

Shannon, Mark West, and Towanda Marner.

My graduate work has been financially supported by an IBM Graduate Fellowship, National

Science Foundation Grant CCF-0644197, and donations from Intel Corporation.

vi

ABSTRACT

MECHANISMS FOR UNBOUNDED, CONFLICT-ROBUST HARDWARE TRANSACTIONAL

MEMORY

Colin Blundell

Supervisor: Milo M. K. Martin

Conventional lock implementations serialize access to critical sections guarded by the same lock,

presenting programmers with a difficult tradeoff between granularity of synchronization and amount

of parallelism realized. Recently, researchers have been investigating an emerging synchronization

mechanism called transactional memory as an alternative to such conventional lock-based synchro-

nization. Memory transactions have the semantics of executing in isolation from one another while

in reality executing speculatively in parallel, aborting when necessary to maintain the appearance of

isolation. This combination of coarse-grained isolation and optimistic parallelism has the potential

to ease the tradeoff presented by lock-based programming.

This dissertation studies the hardware implementation of transactional memory, making three

main contributions. First, we propose the permissions-only cache, a mechanism that efficiently

increases the size of transactions that can be handled in the local cache hierarchy to optimize per-

formance. Second, we propose OneTM, an unbounded hardware transactional memory system that

serializes transactions that escape the local cache hierarchy. Finally, we propose RetCon, a novel

mechanism for detecting conflicts that reduces conflicts by allowing transactions to commit with dif-

ferent values than those with which they executed as long as dataflow and control-flow constraints

are maintained.

vii

Contents

1 Introduction 1

1.1 The Problem of Synchronization in Shared-Memory Parallel Programs 2

1.2 Transactional Memory: Promise and Challenges 3

1.3 The Permissions-Only Cache and ONETM . 5

1.4 RETCON . 6

1.5 Contributions of this Dissertation . 6

1.6 Dissertation Structure . 7

1.7 Differences from Previously Published Versions of this Work 9

2 Overview of Transactional Memory 10

2.1 Synchronization in Shared-Memory Parallel Programs 11

2.1.1 Synchronization via Locks . 12

2.1.2 Synchronization via Transactional Memory 14

2.2 Transactional Memory Semantics . 17

2.2.1 Basic Semantics . 17

2.2.2 Advanced Semantic Issues . 18

2.3 Transactional Memory Implementation Tasks and Terminology 19

2.3.1 Conflict Detection . 19

2.3.2 Conflict Resolution . 21

2.3.3 Version Management . 22

2.4 Three High-Level Transactional Memory Algorithms 22

2.4.1 An Eager Conflict Detection/Eager Version Management Algorithm 23

2.4.2 An Eager Conflict Detection/Lazy Version Management Algorithm 24

viii

2.4.3 A Lazy Conflict Detection/Lazy Version Management Algorithm 24

2.4.4 Implementing These Algorithms . 26

2.5 Review of Multiprocessor Memory Systems . 27

2.5.1 Caches . 27

2.5.2 Cache Coherence . 28

2.6 Bounded Hardware Transactional Memory . 30

2.6.1 Conflict Detection via Cache Coherence 32

2.6.2 Conflict Resolution via Timestamping . 32

2.6.3 Options for Eager Version Management 32

2.6.4 Bounded HTM Algorithms . 34

2.6.5 Implementation Details . 37

2.6.6 Restrictions on Transaction Size and Duration 38

2.7 Semantic and Performance Challenges of Bounded HTM 38

2.8 Summary . 39

3 Characterization of Transactional Behavior 41

3.1 Workloads . 42

3.1.1 STAMP . 42

3.1.2 Python . 44

3.2 Experimental Infrastructure and Methodology . 45

3.3 Are Conflicts a Performance Problem? . 47

3.4 Analysis of Conflicts . 50

3.5 How Large Do Transactions Become? . 53

3.6 Summary . 58

4 Prior Approaches to Handling Overflows in Hardware 61

4.1 UTM, VTM, and PTM . 62

4.2 Bulk and LogTM-SE . 65

4.3 Discussion . 68

5 The Permissions-Only Cache: Reducing the Frequency of Overflows 70

5.1 Operation . 71

ix

5.2 Efficient Encoding . 76

5.3 Employing the L2 Cache to Store Permissions-Only Information 78

5.4 Related Work . 78

5.5 Discussion . 79

6 ONETM: Handling Overflows via Selective Serialization 80

6.1 ONETM-Serialized . 82

6.1.1 Structures . 82

6.1.2 Operation . 84

6.1.3 Runtime Involvement . 85

6.1.4 ONETM-Serialized Summary . 85

6.2 ONETM-Concurrent . 86

6.2.1 Metadata Operation . 88

6.2.2 Lazy Metadata Clearing . 91

6.2.3 Lazily Coherent Metadata . 92

6.2.4 Example Execution . 93

6.2.5 Operating System Involvement . 93

6.2.6 Comparison to Prior Work . 94

6.3 Semantic Considerations in ONETM . 95

6.4 Subsequent Work . 97

6.5 Summary . 98

7 Experimental Evaluation of ONETM and the Permissions-Only Cache 100

7.1 Experimental Methodology . 101

7.2 Evaluation of ONETM . 101

7.2.1 What is the Impact of Serializing the System on Overflow? 102

7.2.2 Does Serialization of Only Overflowed Transactions Increase Performance? 102

7.2.3 Summary . 104

7.3 Impact of Weak Atomicity on ONETM . 106

7.3.1 Does Weak Atomicity Help ONETM-Serialized Performance? 108

7.3.2 Does Weak Atomicity Help ONETM-Concurrent Performance? 109

x

7.3.3 Summary . 109

7.4 Impact of Lazy Clearing on ONETM-Concurrent Performance 109

7.4.1 Summary . 112

7.5 Impact of the Permissions-Only Cache on ONETM Performance 112

7.5.1 Impact of the Read-Only Permissions-Only Cache on ONETM-Serialized . 112

7.5.2 Impact of the Read-Only Permissions-Only Cache on ONETM-Concurrent 114

7.5.3 Sensitivity to Sector Cache Organization 114

7.5.4 Sensitivity to Permissions-Only Cache Size 114

7.5.5 The Remaining Performance Gap between ONETM and the Idealized HTM 122

7.5.6 Permissions-Only Cache Summary . 124

7.6 Discussion of Power Implications of Our Proposals 124

7.7 Summary . 126

8 RETCON: Eliminating Auxiliary Data Conflicts 128

8.1 RETCON Architecture and High-Level Operation 130

8.1.1 RETCON Operation . 131

8.1.2 Conflict Idioms that RETCON Can Repair 136

8.1.3 Conflict Idioms that RETCON Cannot Repair 136

8.2 Operational Details . 140

8.3 RETCON Implementation Optimizations . 142

8.4 Other Benefits of RETCON . 143

8.5 Related Work . 144

8.6 Summary . 146

9 Experimental Evaluation of RETCON 147

9.1 Methodology . 148

9.2 Performance Impact of RETCON . 149

9.3 What Contributes to RETCON Performance? . 149

9.4 Impact of Inexact Constraint Representation on RETCON 152

9.5 Sensitivity of RETCON to Parallelism of Commit-Time Reacquires 153

9.6 Sensitivity of RETCON to Structure Size . 153

xi

9.7 Sensitivity of RETCON to Predictor Configuration 156

9.8 Discussion of the Power Implications of RETCON 160

9.9 Summary and Remaining Challenges . 160

10 Conclusions 163

10.1 Dissertation Summary . 163

10.2 Future Work . 164

10.3 Reflections on Transactional Memory . 165

Bibliography 167

xii

List of Figures

2.1 A program requiring synchronization for correct behavior 11

2.2 Synchronization via locking . 12

2.3 Two ways to synchronize a hashtable with locks . 13

2.4 Moving an element from one hashtable to another using locking 15

2.5 Synchronizing a hashtable using transactions . 15

2.6 Moving an element from one hashtable to another using transactions 16

2.7 Algorithm for an eager/eager transactional memory system 23

2.8 Algorithm for an eager/lazy transactional memory system 25

2.9 Algorithm for a lazy/lazy transactional memory system 26

2.10 Coherence algorithm . 29

2.11 Bounded HTM algorithm using cleaning for version management 35

2.12 Bounded HTM algorithm using a log for version management 36

2.13 Flash-clear and conditional flash-clear circuitry . 37

3.1 Scalability of workloads under idealized HTM . 47

3.2 Percentage of total execution time that is spent in committed and aborted transactions . 48

3.3 Runtime breakdown of workloads under idealized HTM 49

3.4 Sequential runtimes of optimized workloads relative to the unoptimized versions . . . 51

3.5 Scalability of unoptimized and optimized versions of workloads under idealized HTM 52

3.6 Percentage of time spent in transactions for unoptimized/optimized workloads 52

3.7 Breakdown of transaction lengths by percent of transactions 54

3.8 Breakdown of transaction lengths by percent of transactional cycles 55

3.9 Breakdown of transaction sizes by percent of transactional cycles 56

xiii

3.10 Breakdown of transaction read set sizes by percent of transactional cycles 57

3.11 Breakdown of transaction write set sizes by percent of transactional cycles 58

3.12 Breakdown of transaction sizes by percent of total cycles 59

5.1 Incorporation of the permissions-only cache into the system 72

5.2 Adding a read-only permissions-only cache to bounded HTM 74

5.3 Adding a read-write permissions-only cache to bounded HTM 75

5.4 A naively-organized 4KB direct-mapped permissions-only cache 76

5.5 4KB direct-mapped permissions-only cache in a 256-sector organization 77

6.1 An example execution on three systems for handling overflowed transactions 81

6.2 Description of transaction status words . 82

6.3 ONETM-Serialized algorithm . 83

6.4 ONETM-Concurrent algorithm with active clearing 87

6.5 Addition of lazy clearing to ONETM-Concurrent algorithm 90

6.6 Lazy coherence and clearing of metadata in ONETM-Concurrent 94

6.7 Overflow handling algorithm of Hofmann et al. [50] 97

7.1 Scalability of workloads under ONETM-Serialized 103

7.2 Time breakdown of ONETM-Serialized . 103

7.3 Overflowed transaction time in ONETM . 104

7.4 Scalability of workloads under ONETM-Concurrent 105

7.5 Time breakdown of ONETM-Concurrent . 105

7.6 Stall time due to serialization of overflowed transactions in ONETM-Concurrent 106

7.7 Impact of weak atomicity on ONETM-Serialized . 107

7.8 Time breakdown of ONETM-Serialized with strong and weak atomicity 107

7.9 Stall time due to serialization of overflowed transactions 108

7.10 Impact of weak atomicity on ONETM-Concurrent . 110

7.11 Breakdown of stall time due to overflowed conflicts in ONETM-Concurrent 110

7.12 Impact of OTID length on ONETM-Concurrent . 111

7.13 Impact of read-only permissions-only cache on ONETM-Serialized performance . . . 113

7.14 Impact of read-only permissions-only cache on ONETM-Serialized execution time . . 113

xiv

7.15 Impact of read-only permissions-only cache on ONETM-Concurrent performance . . . 115

7.16 Impact of read-only permissions-only cache on ONETM-Concurrent execution time . . 115

7.17 Impact of permissions-only cache sector cache organization on ONETM-Serialized . . 116

7.18 Impact of permissions-only cache sector cache organization on ONETM-Concurrent . 116

7.19 Impact of permissions-only caches of various sizes on ONETM-Serialized performance 117

7.20 Impact of permissions-only caches of varying sizes on ONETM-Serialized runtime . . 118

7.21 Impact of permissions-only caches of varying sizes on ONETM-Concurrent performance120

7.22 Impact of permissions-only caches of varying sizes on ONETM-Concurrent runtime . 121

7.23 Remaining performance gap between ONETM-Serialized and the idealized HTM . . . 123

7.24 Remaining performance gap between ONETM-Concurrent and the idealized HTM . . 125

7.25 Percent of time that the permissions-only cache is non-empty 126

8.1 Comparison of RETCON to other approaches . 129

8.2 RETCON structures . 132

8.3 RETCON memory operation flowchart . 132

8.4 RETCON pre-commit repair algorithm . 134

8.5 Example of RETCON operation . 135

8.6 A conflict idiom that RETCON can repair . 137

8.7 Example of RETCON tracking through memory . 137

8.8 A conflict idiom that RETCON can repair . 138

8.9 Generating a constraint from multiple branches . 138

8.10 A conflict idiom that RETCON cannot repair . 139

8.11 A conflict idiom that RETCON cannot repair . 139

8.12 A conflict idiom that RETCON cannot repair . 140

8.13 The inconsistent data problem . 142

8.14 How RETCON can capture laziness . 143

8.15 How RETCON can eliminate false sharing conflicts 144

9.1 Scalability of RETCON over sequential execution . 150

9.2 Breakdown of RETCON execution time . 150

9.3 Performance of variants of RETCON . 151

9.4 Impact of inexact constraint representation on RETCON performance 152

xv

9.5 Impact of serial reacquire at commit on RETCON performance 154

9.6 Impact of serial reacquire RETCON time in transaction commit 154

9.7 Impact of RETCON structure sizes on performance 155

9.8 Impact of varying size of RETCON predictor . 157

9.9 Impact of varying counter size of RETCON predictor 158

9.10 Impact of varying training ratio of RETCON predictor 159

9.11 Percentage of time that RETCON structures are non-empty 161

xvi

List of Tables

3.1 Workloads used in this dissertation . 42

3.2 Simulated machine configuration . 45

9.1 Simulated RETCON configuration . 148

9.2 Limit study of RETCON structure utilization . 155

9.3 RETCON structure utilization . 156

xvii

Chapter 1

Introduction

With shared-memory multiprocessing becoming the norm in contexts ranging from webservers to

mobile devices, the task of developing high-performance parallel programs is being faced by more

programmers than ever before. One key challenge in developing such programs is the need to

synchronize accesses to shared memory made by different threads. Implementing synchronization

that is both (1) correct and (2) not a performance bottleneck has historically been a challenging task.

The focus of this dissertation is ameliorating the challenge of high-performance synchronization in

shared-memory parallel programs.

Today’s dominant synchronization mechanism is locks. Programmers associate locks with

pieces of data and use locks to serialize access to their associated data. Locks present a well-known

correctness/performance tradeoff: for ease of reasoning, it is desirable to associate locks with data

at a coarse granularity, but to avoid serialization, it is typically necessary to associate locks with

data at a fine granularity.

Partly in response to the challenges of programming with locks, Herlihy and Moss [47] pro-

posed an alternative synchronization mechanism, transactional memory. Memory transactions are

segments of code that have the semantics of executing serially with respect to each other. In real-

ity, however, the system executes them speculatively in parallel, detecting cases where transactions

access the same data in a conflicting way and rolling back to preserve the appearance of serial ex-

ecution. This combination of an interface of serialization with an implementation of speculative

parallelism has potential to ease the correctness/performance tension of locks.

1

Current multiprocessors can be extended to support transactional memory in hardware with

high concurrency and low overheads as long as transactions are small (e.g., fit in the L1 cache) and

exhibit little-to-no data contention [21]. Unfortunately, ensuring that transactions have these prop-

erties is likely to be nearly as challenging as achieving high performance using locks for non-expert

developers. To help increase the utility of transactional memory as a general-purpose synchroniza-

tion primitive, this dissertation has two goals. First, we seek to support unbounded transactions in

hardware with high performance and low complexity. Second, we seek to increase the performance

robustness of hardware transactional memory (HTM) to data conflicts, which we find to be the pri-

mary limitation to high performance. In particular, we seek to eliminate the performance impact

of a commonly-occurring pattern of conflicts on auxiliary data, i.e. conflicts on data that is periph-

eral to a transaction’s main computation. These conflicts can significantly degrade performance by

inducing serialization into otherwise-parallel operations.

In the next section we outline the challenge of synchronization in shared-memory parallel pro-

grams, including the difficulties of programming with locks. Section 1.2 describes the promise of

transactional memory and the challenges that this dissertation addresses. Section 1.3 presents our

proposals for supporting unbounded transactions in hardware via the permissions-only cache and

ONETM. Section 1.4 describes RETCON, our mechanism that increases the robustness of transac-

tional memory to conflicts on auxiliary data. Finally, we detail the main contributions of the dis-

sertation (Section 1.5), present the dissertation’s structure (Section 1.6), and outline the differences

between this dissertation and previously published versions of this work [9, 11, 12, 13] (Section

1.7).

1.1 The Problem of Synchronization in Shared-Memory Parallel

Programs

A shared-memory parallel program is one in which multiple threads of execution operate concur-

rently in a single shared address space such as that provided by a shared-memory multiprocessor

with the goal of accelerating performance over a sequential implementation. By default, the op-

erations of threads are allowed to be interleaved at the granularity of individual memory accesses.

However, program semantics often require that a given set of memory accesses by one thread be

performed serially with respect to other threads (for example, if a thread in a banking application

2

that moves money from one account to another, a different thread should not be able to observe the

intermediate state where the money is in neither bank account). Enforcing such serialization is the

role of a synchronization primitive.

For programs that access shared data in a regular fashion (e.g., a scientific workload where

execution is divided into phases of private computation and phases of merging results), it is often

sufficient to be able to ensure that all threads have reached a certain point in the program before

any thread proceeds past that point. Barriers are a mechanism that enforce this property, having the

semantics that all threads must reach the barrier before any thread can proceed past the barrier.

For programs such as the banking application described above that access shared data in an

irregular fashion, however, barriers alone are insufficient. The current dominant synchronization

primitive for handling such irregular synchronization is locks. By convention, a lock is associated

with a piece of data. To synchronize accesses on this data, a thread acquires the lock associated

with that data before accessing the data and releases the lock only when it is finished accessing the

data. In this fashion, the thread can ensure that no other thread can access the data during this time.

Locks present several programming and performance challenges. First and foremost, locks

present a difficult performance/correctness tradeoff: to avoid serialization it is desirable to associate

data with locks at a fine granularity, but such fine-grained locking complicates reasoning about the

program and increases the likelihood of bugs. Locks also make it difficult to separate interface

from implementation, as to synchronize a given object the programmer must often be aware of the

internal locking used in the object’s implementation. Finally, programs using locks can deadlock if

two threads acquire locks in an inconsistent order. We provide more background on shared-memory

synchronization and the challenges of locks in Section 2.1.

1.2 Transactional Memory: Promise and Challenges

Transactional memory [47, 57] (TM) has been proposed as an alternate synchronization primitive to

locks. Memory transactions are segments of code that have the semantics of executing serially with

respect to each other. In reality, the system speculatively executes transactions in parallel, rolling

back when two transactions conflict to preserve transactional semantics.

Transactional memory has potential to ease the challenges of lock-based programming. By

combining an interface of isolation with an implementation of parallelism, transactions can ease the

3

performance/correctness tension of locks. Placing code within a transaction also ensures that that

code will execute in isolation regardless of how the objects being accessed are internally synchro-

nized. Because transactions can roll back, the problem of lock ordering deadlock is eliminated.

The initial transactional memory design [47] implements transactional memory in hardware

via extensions to existing on-chip structures, utilizing a multiprocessor’s cache coherence protocol

to detect conflicts between transactions and its on-chip memory hierarchy to buffer speculative

state. This hardware transactional memory (HTM) design has low performance overheads and is

highly concurrent in the absence of data conflicts. However, the intial HTM proposal was restricted

to transactions that are bounded in size (do not overflow the on-chip structures) and bounded in

time (do not execute for longer than a scheduling quantum). For many common programming

idioms (e.g., using transactions to synchronize tree traversals in a library data structure), bounded

transactions are insufficient. Extending hardware transactional memory to provide support for

unbounded transactions is the first goal of this dissertation.

Supporting transactions of unbounded size is not the only challenge facing transactional mem-

ory, however. Our study of naively-written transactional workloads reveals that once size is elimi-

nated as a constraint, conflicts form the dominant remaining performance bottleneck. In particular,

we find a common pattern of conflicts on auxiliary data. Auxiliary data is simply data that is pe-

ripheral to a transaction’s main computation, such as reference counts of shared objects, occupancy

fields of hashtables, or simple performance counters. Conflicts on such data can cause significant

performance loss. These conflicts are especially damaging because they induce serialization of

operations that are conceptually non-conflicting, e.g., simultaneous reads of a reference-counted

shared object. Increasing the robustness of hardware transactional memory to auxiliary data

conflicts is the second goal of this dissertation.

In the next two sections we outline our proposals for supporting unbounded transactions in hard-

ware and increasing the robustness of transactional memory to auxiliary data conflicts. In Chapter

2 we provide a more thorough overview of transactional memory, including the potential of trans-

actional memory (Section 2.1), transactional memory semantics (Section 2.2), high-level imple-

mentation approaches (Section 2.3 and Section 2.4), and bounded hardware transactional memory

(Section 2.6).

4

1.3 The Permissions-Only Cache and ONETM

The primary challenge in designing unbounded hardware transactional memory is that because

transactional workloads largely do not yet exist, it is unknown how large transactions will become.

If overflows of the bounded HTM are rare, it would potentially be sufficient to provide a simple, low-

performance mechanism for handling them. However, if overflows are frequent, such a mechanism

would cause overall performance degradation. Unfortunately, supporting unbounded transactions

with the same properties of high concurrency and low overheads provided by the bounded HTM is

a challenging task (Chapter 4).

Instead, we propose a decoupled approach to the problem of supporting unbounded transactions

in hardware. Our first objective is to ensure that overflows of the bounded HTM are rare. To do

so, we introduce the permissions-only cache, a mechanism that efficiently extends the range of the

bounded HTM from kilobytes to megabytes (Chapter 5). Our second objective is to handle over-

flows simply. To do so, we introduce ONETM, a mechanism that supports overflowed transactions

via selective serialization (Chapter 6). In ONETM only one overflowed transaction is allowed to

execute at a time on a per-application basis, eliminating prior proposals’ need to detect conflicts

between an unbounded number of unbounded transactions.

The permissions-only cache seeks to reduce the rate at which transactions overflow the bounded

hardware transactional memory. To do so, it exploits the observation that to detect conflicts for a

given block, the bounded HTM does not need to have the data for the block but rather only needs

coherence permissions to the block and the knowledge of whether the block has been read and/or

written by the transaction. The permissions-only cache thus maintains only coherence permissions

for transactionally-accessed blocks. This size reduction allows it to achieve a 256:1 compression

ratio; e.g., a 4-KB permissions-only cache can track up to a megabyte of transactionally-accessed

data.

With the knowledge that the permissions-only cache will likely make overflows rare we propose

ONETM, a hardware-based approach for handling overflows by bounding concurrency among over-

flowed transactions. We explore two implementations. ONETM-Serialized stalls all other threads

in an application when one transactions overflows. ONETM-Concurrent, by contrast, provides

more concurrency than ONETM-Serialized by allowing bounded transactions and non-transactional

code to execute concurrently with a single overflowed transaction. Both ONETM-Serialized and

5

ONETM-Concurrent avoid the complex structures required by prior proposals to track an unbounded

amount of state per memory block.

1.4 RETCON

As described above, we find that once transaction size is eliminated as a constraint, conflicts form

the primary limitation to performance on the workloads that we study. Moreover, we find a common

pattern of conflicts on auxiliary data, i.e., data that is peripheral to a transaction’s main computation

such as reference counts or hashtable occupancy fields. In the final part of this dissertation we aim

to provide hardware support for minimizing the performance impact of auxiliary data conflicts.

To eliminate the performance impact of conflicts on auxiliary data, we exploit the facts that (1)

transactions’ control-flow and dataflow is generally insensitive to the exact values of auxiliary data

and (2) the computation performed on auxiliary data is usually simple. We propose RETCON1, a

hardware mechanism that tracks the relationship between input and output values symbolically and

uses this symbolic information to transparently repair the output state of a transaction at commit

(Chapter 8). Conditionals form constraints on the acceptable range of values that an input can

take when reacquired at commit. At commit time, all inputs that have been lost are reacquired,

constraints are checked, and outputs are recomputed.

We tailor RETCON to fit the needs of the auxiliary data present in the workloads that we eval-

uate. RETCON tracks an input symbolically through a sequence of loads, simple arithmetic op-

erations, branches, and stores, with more complex computation creating a constraint that the in-

put value be the same at commit. To track symbolic information, RETCON adds a buffer to hold

the initial values of symbolically-tracked blocks, a buffer to hold constraints, and a buffer to hold

symbolically-tracked stores.

1.5 Contributions of this Dissertation

In our view, the most important contributions of this dissertation are as follows:
1Retcon, short for retroactive continuity, refers to soap operas’ and comic books’ practice of revising past events as

necessary to match current reality.

6

• Proposes a mechanism that extends the range of bounded hardware transactional mem-

ory. The permissions-only cache exploits the fact that the information necessary for per-

forming conflict detection can be encoded in the coherence permissions of transactionally-

accessed cache blocks; the data is not necessary. By maintaining only coherence permissions

for transactionally-accessed blocks, the permissions-only cache efficiently extends the range

of bounded hardware transactional memory from kilobytes to megabytes.

• Proposes a mechanism for supporting unbounded transactions in hardware with the

goal of low design complexity. ONETM bounds concurrency among unbounded transac-

tions as a means of simplifying the implementation of the uncommon case and reducing the

overhead that unbounded transactions impose on the rest of the system. By bounding con-

currency among unbounded transactions, ONETM eliminates prior proposals’ requirements

of performing conflict detection between an unbounded number of unbounded transactions.

This implementation works synergistically with the permissions-only cache to create a system

in which the overall performance impact of serialization on overflow is low.

• Develops an approach to the problem of conflicts on auxiliary data that allows trans-

actions to resolve such conflicts without rollbacks. We propose a repair-based approach

to eliminating the performance impact of conflicts on auxiliary data. RETCON symbolically

tracks the relationship between inputs to a transaction and outputs produced by that trans-

action, using this symbolic information to recover from conflicts without rollback before

committing a transaction.

• Quantitatively evaluates the above proposals. We evaluate our proposed mechanisms using

full-system simulation. This evaluation indicates that on a set of workloads (1) the combi-

nation of the permissions-only cache and ONETM provides the performance of an idealized,

fully-concurrent unbounded hardware transactional memory, and (2) RETCON significantly

increases the performance of workloads exhibiting conflicts on auxiliary data.

1.6 Dissertation Structure

We organize this dissertation into three parts: first, background on transactional memory and the

challenges that we seek to address; second, our proposals for supporting unbounded transactions in

7

hardware; and third, our proposal for increasing the robustness of transactional memory to auxiliary

data conflicts. We describe the structure of each part of the dissertation below.

• Background and related work (Chapters 2, 3, and 4). We first give an overview of trans-

actional memory in Chapter 2. We describe our experimental infrastructure and characterize

the transactional behavior of the workloads that we use in Chapter 3, illustrating the impact

of auxiliary data conflicts on these workloads and examining the sizes of the transactions

occurring in the workloads. We present an overview of previous proposals for unbounded

hardware transactional memory in Chapter 4, concluding this chapter with a discussion of

the challenges inherent in supporting an unbounded number of concurrently-executing un-

bounded transactions.

• Supporting unbounded transactions in hardware (Chapters 5, 6, and 7). We propose

the permissions-only cache as a mechanism for reducing overflows of bounded hardware

transactional memory in Chapter 5. Chapter 6 presents ONETM, our proposal for unbounded

hardware transactional memory that limits the number of unbounded transactions that can be

executing at a time to one. We experimentally evaluate our proposals for unbounded HTM

in Chapter 7, finding that the combination of the permissions-only cache and ONETM can

provide the performance of an idealized, fully-concurrent unbounded hardware transactional

memory on our workloads.

• Mitigating the performance impact of auxiliary data conflicts (Chapters 8 and 9). Chap-

ter 8 describes RETCON, our proposal to mitigate the performance impact of conflicts on

auxiliary data. Chapter 9 experimentally evaluates the performance impact of RETCON on

our workloads.

Finally, we conclude the dissertation by summarizing our proposals and presenting opinions on

future opportunities and challenges in transactional memory in Chapter 10.

8

1.7 Differences from Previously Published Versions of this Work

This dissertation builds on material previously published by Blundell et al. [9, 13]. In addition,

Figure 2.13 on page 37 and the text describing the implementation of the flash-clear and flash-

invalidate operations in Section 2.6 are taken from Blundell et al. [12].

The presentation of the permissions-only cache and ONETM extends earlier work [9] by dis-

cussing the option of cleaning as a version management mechanism in addition to a log, discussing

both a read-only permissions-only cache and a read-write permissions-only cache, discussing the

impact of weak atomicity on the design of ONETM, and presenting pseudocode-based algorithms

of our proposals. In addition, the quantitative evaluation of these proposals in this dissertation is

significantly more thorough than in that earlier work, including evaluating a broader set of work-

loads, evaluating the impact of weak atomicity on ONETM performance, evaluating the impact of

lazy clearing on ONETM-Concurrent performance, evaluating the impact of a read-only as well as

a read-write permissions-only cache, evaluating the impact of the sector cache organization of the

permissions-only cache, and evaluating a permissions-only cache of various sizes.

The presentation of RETCON extends earlier work [13] by presenting code examples of conflicts

that RETCON can and cannot repair, evaluating the impact of imprecise constraint representation on

RETCON performance, presenting evaluation data for RETCON configured to reacquire blocks seri-

ally at transaction commit, presenting evaluation data for RETCON configured with several different

structure sizes, and analyzing the sensitivity of RETCON to predictor configuration.

9

Chapter 2

Overview of Transactional Memory

This chapter gives an overview of the basic interface and implementation space of transactional

memory and presents the bounded hardware transactional memory that this dissertation employs as

a foundation. The intent of this chapter is to give a framework, background, and terminology for

the rest of this dissertation, not provide a complete tutorial on transactional memory. As dozens of

papers on transactional memory have been published in the last several years, we refer the reader to

the book by Larus and Rajwar [57] for a general introduction to transactional memory.

We first outline our problem context of synchronization in shared-memory parallel programs.

We then detail the transactional memory interface in Section 2.2. In Section 2.3, we outline the

basic implementation tasks required to execute memory transactions speculatively in parallel. We

present three high-level algorithms for transactional memory systems and describe the challenges in

implementing these algorithms entirely in software with low overheads (Section 2.4). The remain-

der of the chapter provides an overview of bounded hardware transactional memory. We first review

multiprocessor memory systems in Section 2.5 before describing how to layer support for execut-

ing bounded transactions speculatively in parallel on top of such a memory system in Section 2.6.

Finally, we present performance and semantic challenges of this bounded hardware transactional

memory in Section 2.7 and close the chapter with a brief summary.

10

int balance = 42;

proc1(){ proc2(){
r1 = balance; r2 = balance;
r1 += 12; r2 -= 10;
balance = r1; balance = r2;

} }

P = proc1() || proc2()

Figure 2.1: A program that requires synchronization for correct behavior. balance is a
shared variable, and r1 and r2 are registers. In order to ensure that the updates of both proc1
and proc2 are reflected in the final value of balance, the programmer must ensure that proc1
executes entirely before proc2 or vice versa. In the above example proc1 and proc2 may
both perform their reads of balance before either performs its update, resulting in the final value
reflecting only one of the updates (the one that occurs second).

2.1 Synchronization in Shared-Memory Parallel Programs

This dissertation considers shared-memory parallel programs, i.e., programs in which (a) multiple

threads of execution are created and (b) these threads communicate with each other via reads and

writes in a single shared memory space. As shared-memory multiprocessors (described in Section

2.5) are appearing in a broader range of computers than ever before, the task of creating shared-

memory parallel programs to run on these multiprocessors is likewise becoming more common.

By default, the system interleaves different threads’ memory accesses at the granularity of indi-

vidual reads and writes (as described in Section 2.5). In some cases, however, a thread must make

a series of accesses to memory in isolation from other processors in order to guarantee correctness.

Figure 2.1 on page 11 illustrates a program in which certain interleavings of memory accesses will

result in incorrect behavior and must therefore be disallowed. Enabling isolation at a granularity

coarser than a single memory access is the role of a synchronization primitive.

Below we first describe the current dominant synchronization primitive of locks. After outlining

several challenges with using locks, we then present transactional memory and outline its potential

to ease these challenges.

11

int balance = 42;
Lock lock;

proc1(){ proc2(){
acquire(lock); acquire(lock);
r1 = balance; r2 = balance;
r1 += 12; r2 -= 10;
release(lock); release(lock);

} }

P = proc1() || proc2()

Figure 2.2: Synchronization via locking. In order to ensure that the updates of both proc1 and
proc2 are reflected in the final value of balance, the programmer uses a lock. Each thread
acquires the lock before doing its computation, releasing the lock only when its computation is
complete. As the semantics of the lock dictate that only thread can acquire it at a time, the compu-
tations performed by the two threads are executed sequentially.

2.1.1 Synchronization via Locks

A lock is an object that only one thread can hold at a time. A lock is typically associated with a

piece (or several pieces) of data. By following the convention that a thread always acquires the lock

associated with given data before manipulating that data and releases the lock only when finished

manipulating the data, the programmer can ensure that different threads’ accesses to that data are

serialized at the desired granularity. The code between a lock acquire and its matching lock release

is called a critical section. Figure 2.2 on page 12 shows how the programmer can prevent the

undesired interleavings of Figure 2.1 on page 11 by employing a lock.

Developing parallel programs that are both correct and high-performance using locks is a chal-

lenging task. The primary reasons are that (1) locks synchronize conservatively and (2) locks are

associated with data. We outline the reasons that these properties make using locks challenging

below.

The granularity problem. First, the fact that locks synchronize conservatively introduces a diffi-

cult performance/correctness tension. Associating locks with data at a coarse granularity (coarse-

grained locking) eases reasoning about program correctness by reducing the number of possible

interleavings between threads. It also, however, can induce unnecessary serialization: all critical

sections guarded by the same coarse-grained lock are forced to execute sequentially. Conversely,

12

Hashtable::insert(k,v){ Hashtable::insert(k,v){
acquire(lock); Elem e = Elem(k,v);
Elem e = Elem(k,v); index = hash(k);
index = hash(k); bucket = buckets[index];
bucket = buckets[index]; acquire(bucket->lock);
bucket->insert(e); bucket->insert(e);
release(lock); release(bucket->lock);

} }

(a) (b)

Figure 2.3: Two ways to synchronize a hashtable with locks. In (a), a single lock guards the
entire hashtable. This option enables easy correctness reasoning and facilitates the synchronization
of operations on the table as a whole (e.g., resize). However, it results in all inserts being serialized.
In (b), a lock guards each bucket. This option enables inserts to different buckets to proceed in
parallel. However, it makes correctness reasoning more difficult and makes operations on the table
difficult to synchronize.

associating locks with data at a fine granularity (fine-grained locking) can increase performance at

the cost of making programs more bug-prone, difficult to reason about, and difficult to maintain.

Moreover, performing locking at too fine a granularity can also reduce performance by inducing

overheads related to the lock acquires and releases themselves.

Figure 2.3 on page 13 provides an illustration of this granularity problem. The programmer

desires to create a function that inserts an element into a hashtable in a thread-safe manner. The

most natural way to implement this functionality is to associate a lock with the hashtable that is

acquired before any operations are performed on the hashtable (part (a) of Figure 2.3 on page 13).

Unfortunately, this synchronization policy serializes all inserts to the hashtable, even if they are

inserts of distinct buckets.

An alternative way to accomplish this synchronization is to associate a lock with each bucket

(part (b) of Figure 2.3 on page 13). This synchronization policy enables inserts into distinct buckets

to proceed in parallel. Unfortunately, it also complicates the tasks of reasoning about the correct-

ness of the program and maintaining the program. Furthermore, it makes operations on the entire

hashtable (such as resizing the hashtable) difficult to synchronize.

Lack of encapsulation. A second problem with locks is lack of encapsulation, which arises due

to the association of locks with data. If the programmer wishes to create a critical section protect-

13

ing access to multiple pieces of data guarded by different locks, she must be able to acquire the

locks that guard each piece of data. Achieving this property requires exposing an object’s internal

synchronization to the outside world.

Figure 2.4 on page 15 provides an illustration of this problem. The programmer wishes to

create a function that atomically moves an element from one hashtable to another. To imple-

ment this functionality, the programmer must be able to ensure that no other thread can access

either hashtable for the duration of the computation. Providing a thread-safe implementation of

Hashtable::insert is insufficient for this purpose. Instead, the programmer must be able to

lock both hashtables simultaneously. To support this behavior, the hashtables must expose their

internal locks, a textbook violation of separation between interface and implementation.

Deadlock. Finally, another problem with locks is the possibility of deadlock due to the need to

acquire locks in a specific order. Consider again Figure 2.4 on page 15. The programmer has

naively acquired the lock of h1 first, followed by the lock of h2. Consider the case where one

thread calls the function with pointers to two hashtables while another thread simultaneously calls

the function with pointers to the same two hashtables in reverse order. In this case, deadlock can

ensue as the first thread acquires the lock of the first hashtable, the second thread concurrently

acquires the lock of the second hashtable, and each then waits (forever) for the other to release its

lock. To solve this problem, the programmer has to impose an ordering on lock acquires (e.g., sort

lock acquire by ascending address). This order then has to be followed globally throughout the

program.

2.1.2 Synchronization via Transactional Memory

Herlihy and Moss [47] introduced a novel synchronization primitive called transactional memory

(TM). Memory transactions are segments of code with the semantics of executing atomically and in

isolation from one another, while in reality the system executes them speculatively in parallel and

rolls back when two transactions simultaneously execute the same piece of data. In the next section,

we will give a thorough overview of the semantics of transactional memory. Here, we outline how

TM has potential to ease the challenges of lock-based programming.

Figure 2.5 on page 15 shows an implementation of Hashtable::insert synchronized via

transactions. Because transactions have the semantics of executing in isolation from each other,

14

move elem(int key, Hashtable h1, Hashtable h2){
acquire(h1->lock);
acquire(h2->lock);
value = h1->lookup(key);
h1->remove(key);
h2->insert(key, value);
release(h1->lock);
release(h2->lock);

}

Figure 2.4: Moving an element from one hashtable to another using locking. The programmer
intends the removal from h1 and insertion into h2 to occur atomically with respect to other threads.
It is thus not sufficient that Hashtable::insert be internally synchronized; the programmer
must be able to ensure that other threads cannot access h1 or h2 for the duration of the computation.
If Hashtable uses a single lock internally, this synchronization may be accomplished by exposing
that lock (as above). This breaks encapsulation. In addition, the naive code example above can
suffer from deadlock. To avoid this possibility, an ordering on lock acquire would have to be
imposed. Finally, note that it is not immediately obvious how to implement this functionality if the
hashtable uses per-bucket locks (as in part (b) of Figure 2.3 on page 13).

Hashtable::insert(k,v){
transaction{

Elem e = Elem(k,v);
index = hash(k);
bucket = buckets[index];
bucket->insert(e);

}
}

Figure 2.5: Synchronizing a hashtable using transactions. By wrapping the hashtable insert in
a transaction, the programmer can reason about inserts made by different threads as if they were
occurring sequentially. However, the system actually executes these inserts in parallel as long as
the inserts are being made into distinct buckets. Synchronization via transactions thus achieves the
ease of reasoning of coarse-grained locking (part (a) of Figure 2.3 on page 13) together with the
high performance of fine-grained locking (part (b) of Figure 2.3 on page 13).

15

move elem(int key, Hashtable h1, Hashtable h2){
transaction{

value = h1->lookup(key);
h1->remove(key);
h2->insert(key, value);

}
}

Figure 2.6: Moving an element from one hashtable to another using transactions. As in Figure
2.4 on page 15, the programmer intends the removal from h1 and insertion into h2 to occur atomi-
cally with respect to other threads. By making the computation into a transaction, the programmer
can guarantee this property irrespective of how (or even whether) Hashtable is internally syn-
chronized. Moreover, there is no possibility of deadlock. Finally, concurrent calls to move elem
by different threads can execute in parallel as long as the elements being moved are distinct, whereas
Figure 2.4 on page 15 requires the hashtables being manipulated by the different threads to be dis-
tinct in order to avoid serialization.

the programmer can reason about this code as if inserts from different threads are being performed

sequentially — similar to the coarse-grained locking presented in part (a) of Figure 2.3 on page

13. However, because the system speculatively executes transactions in parallel, these inserts will

actually proceed concurrently as long as they are being performed into distinct buckets — similar to

the fine-grained locking presented in part (b) of Figure 2.3 on page 13 (note that if two simultaneous

inserts access the same bucket, a conflict will be detected and one insert rolled back). Transactions

thus have the potential to achieve the ease of reasoning of coarse-grained locks together with the

performance of fine-grained locks.

Figure 2.6 on page 16 shows how a programmer can implement the move elem function from

Figure 2.4 on page 15 using transactions. Because the transaction wrapping the computation is

guaranteed to occur in isolation, the programmer can achieve the desired semantics regardless of

how (or even whether) the hashtables are internally synchronized. Locks’ potential for deadlock

by acquiring the locks of distinct pieces of data in inconsistent orders is also removed — if two

transactions conflict, one is simply rolled back.

The remainder of this chapter provides an overview of the semantics and implementation of

transactional memory.

16

2.2 Transactional Memory Semantics

In this section we first outline a basic transactional semantics that is common to nearly every trans-

actional memory proposal and will be assumed throughout this dissertation. We then detail several

advanced semantic issues that will be relevant in later parts of this dissertation.

2.2.1 Basic Semantics

A memory transaction (or more simply a transaction) is a segment of code that is guaranteed to

execute atomically and in isolation from all other threads. This semantics (and name choice) is

inspired by database transactions’ guarantee of atomicity, consistency, isolation, and durability (the

ACID properties) [37]. Transactional memory, however, does not guarantee the more heavyweight

properties of durability (resilience against system failure) or consistency (validity against a user-

specified schema). Below, we discuss the properties of atomicity and isolation in more detail as

well as describe the basic transactional nesting model.

Atomicity. Atomicity means that either none or all of a transaction’s updates occur. For example, in

Figure 2.6 on page 16, if the removal of the element from h1 occurs, then the insert of the element

into h2 is guaranteed to also occur.

Isolation. Isolation means that no transaction observes the intermediate state of another transaction.

A transaction’s updates are not visible to other transactions until it commits, at which time all

updates instantaneously become visible. For example, in Figure 2.6 on page 16, the removal of the

element from h1 and insertion into h2 are not made visible to other threads until the commit of

the transaction, at which time they are simultaneously made visible. To be legal, an execution of

a parallel composition of transactions must be serializable: the outcome of the execution must be

equivalent to one in which the transactions are executed sequentially.

Nesting model. Transactions may be nested inside other transactions. The nesting model that we

assume throughout this dissertation is one of subsumption: nested transactions release isolation only

when the outermost containing transaction commits. More advanced models are possible [75, 78,

80], but not discussed further in this dissertation1.
1Extending our proposals to support such more advanced nesting models is open research.

17

The property of serializability means that the programmer can reason about transactions from

different threads as if they were always executed in some sequential order. Importantly, however,

serializability does not imply that transactions must actually be executed sequentially. In the fol-

lowing sections, we will discuss how transactions may be executed speculatively in parallel while

preserving these properties. First, however, we discuss more advanced semantic issues of transac-

tional memory.

2.2.2 Advanced Semantic Issues

Here, we discuss more advanced semantic issues that are not addressed by the basic semantics

presented above. These issues include the interaction of transactions and non-transactional code,

whether an abort operation is part of the transactional interface, support for non-abortable actions,

and starvation avoidance.

Interaction between transactions and non-transactional code. Transactions must be isolated

with respect to each other, but their relationship to non-transactional code is not uniformly defined.

Strong atomicity is defined as a semantics in which transactions are isolated from non-transactional

accesses, while weak atomicity is defined as a semantics in which transactions are not guaranteed

to be isolated from non-transactional accesses [10].

By default, this dissertation assumes strong atomicity as part of the transactional semantics.

However, we will also discuss situations in which supporting only weak atomicity can increase

performance and/or reduce complexity in our proposals.

Explicit abort. As we will describe below, transactional memory systems commonly execute trans-

actions speculatively in parallel, rolling back in cases where serializability would be violated. This

speculative execution may optionally be exposed to the programmer by providing an explicit abort

operation as part of the transactional interface. Adding support for such an operation implies that

the system must always be able to roll back a transaction. Our basic semantics does not include

an explicit abort operation, and our proposals do not by default support it; where relevant, we will

discuss the extensions to our proposals that would be necessary to support it.

Supporting non-abortable actions. Some effects can not easily be rolled back (e.g., IO such

as a network send). How to incorporate non-abortable actions into a transactional model is not

immediately obvious. This issue is especially challenging if the transactional memory interface

18

includes an explicit abort operation. This dissertation proposes a mechanism for support for non-

abortable actions within transactions in Section 6.3.

Starvation avoidance. A final issue not discussed above is whether the system provides a guar-

antee against transaction starvation, i.e., whether the possibility that a given transaction will be

continually aborted by others is disallowed. Not all transactional memory systems provide such a

guarantee. However, we assume starvation avoidance as part of our transactional memory semantics

as we consider it important for programmability. We discuss a basic mechanism for providing this

guarantee in Section 2.3.

2.3 Transactional Memory Implementation Tasks and Terminology

As mentioned above, the goal of a transactional memory system is to execute transactions in paral-

lel while preserving transactions’ semantic properties. The basic framework for accomplishing this

goal is to execute transactions speculatively in parallel, detect conflicts that would violate serializ-

ability, and resolve these conflicts by stalling or rolling back transactions to preserve serializability.

As a result, transactional memory systems have three main tasks: conflict detection, conflict reso-

lution, and version management (i.e., supporting the ability to roll back to a pre-speculative state).

Below we discuss ideas and terminology associated with accomplishing these tasks. In the next

section we will present several high-level transactional memory algorithms that systems can seek to

implement.

2.3.1 Conflict Detection

Because transactions are executing in parallel, they may access the same data simultaneously. If at

least one of the accesses is a write, a potential violation of isolation exists: a transaction’s update is

potentially being observed by other threads before it commits. The role of conflict detection is to

detect such potential violations (referred to as conflicts).

The basic way to detect conflicts is to monitor the addresses read and written by transactions,

detecting cases where transactions simultaneously access the same address. We refer to this method

of performing conflict detection as address-based conflict detection. The set of addresses that a

transaction reads is called its read set, and the set of addresses that a transaction writes is called its

write set. The task of address-based conflict detection, therefore, is to detect cases where one trans-

19

action’s write set intersects with the read or write set of a simultaneously-executing transaction. A

system may maintain the addresses in read and write sets at a precise byte granularity or at a coarser

granularity (e.g., hardware transactional memory systems generally perform conflict detection at a

memory block granularity, as discussed in Section 2.6).

Address-based conflict detection comes in two basic forms: eager and lazy [77]. In eager

conflict detection, the system checks each memory access made by a transaction for conflicts with

all other concurrently-executing transactions. In lazy conflict detection, by contrast, the system

performs conflict detection for a given transaction at the time that that transaction seeks to commit.

In either case, once a conflict is detected, the system must resolve the conflict in a way that preserves

serializability. We discuss a variety of ways in which this task can be accomplished in the next

subsection.

Prior work has noted that eager and lazy conflict detection have different performance charac-

teristics [15]. By detecting conflicts as soon as possible, eager conflict detection can reduce wasted

work. Conversely, lazy conflict detection may avoid the need to resolve some conflicts altogther.

Consider an execution where one transaction reads address A and a second transaction writes A,

with the reader seeking to commit first. Eager conflict detection would detect the conflict and have

to resolve it. Under lazy conflict detection, by contrast, both the reader and the writer can commit.

We will examine the performance impact of these differences in Section 3.3.

To achieve the best performance characteristics of both eager and lazy conflict detection, recent

work has proposed mixed eager/lazy policies [98, 112]. As discussed in Section 8.4, RETCON will

also realize the benefits of a mixed eager/lazy conflict detection policy (in addition to other benefits).

We finally note that a different mechanism of detecting conflicts is to check whether any val-

ues read by a transaction have been changed by another transaction [82, 109]. We refer to this

mechanism for conflict detection as value-based conflict detection. For much of this dissertation we

will strictly be concerned with address-based conflict detection. However, in Section 3.3 we will

examine the benefits of incorporating value-based conflict detection. As discussed in Section 8.4,

RETCON realizes these benefits as well.

20

2.3.2 Conflict Resolution

Once a conflict has been detected, the system needs to resolve the conflict in order to ensure that

serializability is preserved. The most basic way to resolve a conflict is to roll back one of the

transactions involved in the conflict (implemented as described below). This transaction can either

be the transaction making the conflicting access or the transaction with whom the access conflicts.

These basic policies, however, do not guarantee starvation avoidance.

A more sophisticated way to resolve conflicts is to use the age of the transactions involved [56,

89]. In age-based conflict resolution, each transaction is assigned a timestamp when it first begins.

A transaction retains its timestamp until it commits (i.e., if it aborts and restarts, it retains the same

timestamp). When a conflict occurs, these timestamps are used to resolve it as follows. If the

requestee is older than the requester, the requester is stalled until the requestee releases isolation on

the conflicting address (i.e., commits or aborts). Otherwise, the requestee aborts. In other words,

a transaction wins conflicts with younger transactions and loses conflicts with older transactions.

This policy provides a starvation avoidance guarantee: once a transaction becomes the oldest in the

system, it is guaranteed not to be aborted by any other transaction [89].

Other conflict resolution policies have been explored in the literature. For example, Moore

et al. [77] propose a policy in which the requestee stalls the requester unless it (the requestee) is

already being stalled. We refer the reader to Larus and Rajwar [57] for other proposals. As prior

work [15, 98] has shown that age-based conflict resolution generally has robust performance, we

employ this policy throughout this dissertation.

We finally note that a different mechanism for resolving conflicts that is often employed by

systems using lazy conflict detection is to employ a commit token. In systems employing a com-

mit token, each transaction arbitrates for permission to commit by seeking to acquire the commit

token. Once a transaction acquires the commit token, the system performs conflict detection for

the transaction by checking whether any of the addresses in the transaction’s write set have been

read by other, as-yet uncommitted transactions. If so, the conflict is resolved by rolling back the

uncommitted transaction — as the other transaction has in effect already committed, there are no

other options. To avoid starvation in such a system, a transaction that is continually aborted may

obtain the commit token early and hold it until it commits [41].

21

2.3.3 Version Management

Version management is the task of enabling a transaction to roll back its state. This task involves

undoing any updates that the transaction has made to restore all updated blocks to their pretransac-

tional state.

Like conflict detection, version management can be eager or lazy [77]. In eager version manage-

ment, transactional writes are performed in-place. Before a transaction writes a location for the first

time, it logs the pretransactional value of the location. At transaction commit, written memory loca-

tions already contain their correct values. To roll back, the transaction restores this pretransactional

value.

In lazy version management, transactions perform writes into a private buffer. Transactional

reads must check this buffer for forwarding before reading from memory. To commit, the transac-

tion performs all its writes from the buffer into memory. Rollback can be accomplished simply by

throwing away the buffer.

Again similar to conflict detection, eager and lazy version management have performance trade-

offs [77]. In eager version management, commits can be fast but rollback involves restoring prespec-

ulative state. Conversely, lazy version management enables fast aborts at the expense of commits.

Additionally, lazy version management introduces an indirection into transactional reads that is not

present in eager version management.

2.4 Three High-Level Transactional Memory Algorithms

In this section we outline three high-level transactional memory algorithms: an algorithm employ-

ing eager conflict detection and eager version management, an eager conflict detection/lazy version

management algorithm, and a lazy conflict detection/lazy version management algorithm. These

algorithms are not the only possible transactional memory algorithms. However, many of the trans-

actional memory systems that we will describe later in this dissertation implement one of these

three basic algorithms. Our own proposals will largely seek to implement the eager conflict detec-

tion/eager version management algorithm, for reasons that we detail in Section 2.6.

22

Eager Conflict Detection/Eager Version Management Transactional Memory Algorithm

begin

in_transaction = true
timestamp = current time
read_set = {}
write_set = {}
old_values = {}

read(A)

foreach remote transaction T
if A in T.write_set

resolve_conflict(T)
if in_transaction

read_set[A] = true
return Mem[A]

write(A,v)

foreach remote transaction T
if (A in T.write_set) or

(A in T.read_set)
resolve_conflict(T)

if in_transaction
if A not in write_set

old_values[A] = Mem[A]
write_set[A] = true

Mem[A] = v

resolve conflict(T)

if (T.timestamp < timestamp)
stall until T ends

else
T.abort()

abort

foreach (A,v) in old_values
Mem[A] = v

in_transaction = false

commit

in_transaction = false

Figure 2.7: Algorithm for a transactional memory system employing eager conflict detection
and eager version management. The algorithm checks for conflicts on each memory access,
utilizes age-based conflict resolution, and performs transactional writes in-place.

2.4.1 An Eager Conflict Detection/Eager Version Management Algorithm

Figure 2.7 on page 23 gives the pseudocode for a transactional memory algorithm implementing

eager conflict detection and eager version management as well as age-based conflict resolution.

Each transaction maintains its read set and write set, and additionally maintains a log of pretrans-

actional values of written blocks (old values). At transaction begin the transaction is assigned a

timestamp for conflict resolution (if the transaction had previously been aborted, it would retain its

previously-assigned timestamp). The read and write sets as well as the log of old values are set to

be empty.

On transactional reads and writes, the algorithm checks the read and/or write sets of all other

concurrently-executing transactions for conflicts. Assuming that no conflict is detected, the relevant

address is added to the read or write set as appropriate. In the case of a write, the algorithm also

23

checks whether this is the first transactional write to the given location; if so, the pretransactional

value of the location is added to the log of pretransactional values. The algorithm thus maintains

the invariant that any address in the write set also has an entry in old values.

If the algorithm instead detects a conflict, it initiates conflict resolution. Depending on the

relative ages of the transactions involved in the conflict, the conflict will be resolved either by

stalling the requester until the requestee releases isolation or by aborting the requestee.

To abort, a transaction restores the pretransactional value of each transactionally-written block.

To commit, the transaction simply releases isolation by clearing its read and write sets.

2.4.2 An Eager Conflict Detection/Lazy Version Management Algorithm

Figure 2.8 on page 25 gives the pseudocode for an eager conflict detection/lazy version manage-

ment transactional memory algorithm that employs age-based conflict resolution. This algorithm is

similar to the eager conflict detection/eager version management algorithm described above. The

difference is that instead of maintaining pretransactional values in a private buffer, this algorithm

maintains current values in a private buffer (curr values).

The change from eager version management to lazy version management affects several parts

of the algorithm. First, a transactional write performs its write into the private buffer rather than

into memory. As a consequence of this fact, transactional reads must check the buffer in order to

obtain the correct value for locations that have been previously written by the transaction. Finally,

the actions that the transaction takes on commit and abort are the inverse of the above algorithm. To

commit, the transaction performs its writes from its private buffer into memory (stalling any other

conflicting transactions during this process to maintain isolation). No special action has to be taken

to restore pretransactional state on abort, as transactions do not modify memory until they commit.

2.4.3 A Lazy Conflict Detection/Lazy Version Management Algorithm

Figure 2.8 on page 25 gives the pseudocode for a lazy conflict detection/lazy version management

transactional memory algorithm. The algorithm employs a commit token for conflict resolution

as described in Section 2.3. This algorithm uses the buffer of current values (curr values) in

the same way as the above-described eager conflict detection/lazy version management algorithm.

24

Eager Conflict Detection/Lazy Version Management Transactional Memory Algorithm

begin

in_transaction = true
committing = false
timestamp = current time
read_set = {}
write_set = {}
curr_values = {}

read(A)

foreach remote transaction T
if A in T.write_set

resolve_conflict(T)
if in_transaction

read_set[A] = true
if A in curr_values

return curr_values[A]
return Mem[A]

write(A,v)

foreach remote transaction T
if (A in T.write_set) or

(A in T.read_set)
resolve_conflict(T)

if in_transaction
write_set[A] = true
curr_values[A] = v

else
Mem[A] = v

resolve conflict(T)

if (T.timestamp < timestamp) or
(T.committing)
stall until T ends

else
T.abort

abort

in_transaction = false

commit

committing = true
foreach (A,v) in curr_values

Mem[A] = v
in_transaction = false

Figure 2.8: Algorithm for a transactional memory system employing eager conflict detection
and lazy version management. The algorithm checks for conflicts on each memory access, utilizes
age-based conflict resolution, and performs transactional writes into a private buffer that is copied
to memory at commit.

However, the choice of lazy rather than eager conflict detection and the utilization of the commit

token result in significant differences.

Rather than detecting conflicts at each memory access, this algorithm performs conflict detec-

tion at commit. Note that in the pseudocode for reads and writes there is no longer any conflict

detection. At commit, the transaction first arbitrates to receive a commit token, of which there is

only one in the system2. Once a transaction has obtained the commit token, it performs its updates
2Prior work has proposed optimized implementations of the commit token, e.g., implementations in which it is

distributed [18, 20].

25

Lazy Conflict Detection/Lazy Version Management Transactional Memory Algorithm

begin

in_transaction = false
read_set = {}
write_set = {}
curr_values = {}

read(A)

if in_transaction
read_set[A] = true
if A in curr_values

return curr_values[A]
return Mem[A]

write(A,v)

if in_transaction
write_set[A] = true
curr_values[A] = v

else
Mem[A] = v

abort

in_transaction = false

commit

obtain commit token
foreach address A in write_set

Mem[A] = curr_values[A]
foreach remote transaction T
if (A in T.read_set)
T.abort()

release commit token
in_transaction = false

Figure 2.9: Algorithm for a transactional memory system employing lazy conflict detection
and lazy version management. The algorithm performs transactional writes into a private buffer
that is copied to memory at commit, at which time it checks for conflicts. It uses a commit token
for conflict resolution.

into memory. During this process, it also checks for conflicts with all other concurrently-executing

transactions, aborting any conflicting transactions that it finds.

2.4.4 Implementing These Algorithms

Implementing the above-described algorithms with high performance is challenging. In the case of

eager conflict detection, the primary performance challenge is that conflict detection must be low-

overhead since it is performed on every transactional memory access. In the case of lazy conflict

detection, the primary performance challenge is engineering the system so that commit does not

become a bottleneck.

One active body of research is devising software transactional memory (STM) implementations

– i.e., implementations of transactional memory that run on stock hardware (e.g., [42, 43, 46, 68,

94, 97]). The predominant challenge faced by these implementations is that performing conflict

detection in software can have high overheads [17].

26

The original transactional memory proposal observed that it is possible to support transactional

memory in hardware with minor extensions to existing multiprocessors [47]. This design is highly

concurrent and has low overheads, but bounds the size and duration of transactions. We present an

overview of bounded hardware transactional memory in Section 2.6 after reviewing current multi-

processor memory systems in the next section. Extending this design to support transactions that

are unbounded in size and duration is one of the major goals of this dissertation.

2.5 Review of Multiprocessor Memory Systems

The hardware context of this dissertation is shared-memory multiprocessors. A shared-memory

multiprocessor is a computer with multiple processors and a single physical memory that is shared

among the processors. This section reviews the memory systems of such multiprocessors, with an

emphasis on the components that are relevant for implementing hardware transactional memory.

In a typical shared-memory multiprocessor, memory is divided into blocks of some fixed size.

To exploit spatial locality, this fixed size is normally larger than a single word – e.g., 64 bytes. The

memory is distributed throughout the system. A node thus consists of a processor together with a

slice of the physical memory as well as cache memory (described below). The node responsible for

a given block is called the home node of the block. The nodes in a multiprocessor are connected

via an interconnection network or interconnect along which they can send each other messages. To

perform a memory access to a given block, a processor sends the request along the interconnect

to the home node of the block, which responds with data and/or updates the value of the block

as necessary. The unit that implements the necessary logic for a slice of physical memory (e.g.,

responding to processors’ requests) is called the memory controller.

To improve system performance, each processor typically additionally has one or more levels

of private cache. A cache contains copies of recently-accessed memory blocks, allowing faster

access to these blocks if the processor requests them again in the future. Below, we present a basic

overview of caches followed by a discussion of cache coherence.

2.5.1 Caches

A cache is a structure that contains storage for a finite number of memory blocks. The cache is

indexed by memory address. As the cache is smaller than memory, multiple memory blocks map to

27

the same entry in the cache, potentially causing ambiguity about which block is residing at a given

entry. To resolve this problem, entries are tagged with the higher-order bits of the residing block’s

address. These bits are said to be the tag of the entry.

To reduce the performance impact of different memory blocks mapping to the same cache index,

a cache may allow more than one block to reside at a given index. The number of blocks that reside

at a given index is said to be the associativity of the cache. The entries residing at a given index

are collectively called a set. When a given memory address is looked up for residency in the cache,

each entry of the appropriate set must be checked for a match.

When a processor receives a data block from memory, it places the data into its cache. Sub-

sequent requests to the same block can then be satisfied from this local cache rather than memory.

As a processor’s cache is typically much faster to access than memory (a handful of cycles as op-

posed to dozens or hundreds of cycles), caches have a large positive performance impact. Similar

to memory, each cache has a corresponding cache controller that implements the necessary logic to

manage the cache.

Caches can be write-through or writeback. In a write-through cache, writes are propogated

immediately to the next lower level of the memory hierarchy (which may be the physical memory

itself or a lower level of cache). In a writeback cache, processors can both read from and write to

data in the cache. If a block in the cache has been written since it was last read from memory, the

block is said to be dirty in the cache.

As caches are finite-sized, the cache controller may find that there is no free entry when it looks

to insert a given block into the cache. In this case, the cache controller must evict a block from the

cache, writing back the block being evicted to memory if it is dirty.

2.5.2 Cache Coherence

In a multiprocessor, a block may reside in multiple processors’ caches at the same time. This can

cause problems if one of the processors writes the block: the current value of the block will appear

to be different depending on the processor reading this value. Preventing this problem from arising

is the role of the cache coherence protocol. The coherence protocol is a distributed algorithm that

allows a multiprocessor’s caches to safely manipulate data. In this section, we present a high-

level overview of cache coherence protocols. Our intent is that the overview be sufficient to enable

28

Cache Coherence Algorithm

load(A)

if Cache[A].state == I:
obtain_permissions(A,read)

return Cache[A].data

store(A,v)

if Cache[A].state != M:
obtain_permissions(A,write)

Cache[A].data = v

obtain permissions(A,perm)

if perm == read:
foreach remote cache C:

send downgrade request to C
wait for acknowledgements
Cache[A].state = S

else:
foreach remote cache C:

send invalidate request to C
wait for acknowledgements
Cache[A].state = M

handle downgrade request(A)

if Cache[A].state == M:
Cache[A].state = S

send acknowledgement

handle invalidate request(A)

Cache[A].state = I
send acknowledgement

Figure 2.10: Coherence algorithm. High-level operation of an invalidation-based cache coherence
protocol in which processors can have write permissions (“M state”), read permissions (“S state”),
or no permissions (“I state”) to a given block. The protocol enforces the invariant that at most one
processor can have write permissions to a block at a given time. This figure focuses on showing
how the transfer of permissions occurs; transfer of data is not shown.

understanding of the role of a coherence protocol in supporting hardware transactional memory. We

refer the reader to Chapters 5-8 of Culler and Singh [29] as well as Martin’s dissertation [69] for a

more thorough introduction.

This dissertation considers invalidation-based coherence protocols. Invalidation-based coher-

ence protocols enforce the invariant that for a given memory block, at any time either one processor

can write the block or any number of processors can read the block. Enforcing this invariant (the

so-called “coherence invariant”) ensures that at any given time the current value is unambiguous

(subject to the multiprocessor’s memory consistency model [3]).

As part of enforcing the coherence invariant, the coherence protocol introduces coherence per-

missions. For a given block, a processor can either have permission to both read and write the block,

permission to read (but not write) the block, or no permissions to the block at all. These permissions

are encoded in the coherence state of the block, maintained in a cache entry along with the data and

29

tags. There are three basic coherence states, corresponding to the three types of permissions: the

Modified or M state corresponds to read/write permissions, the Shared or S state corresponds to

read-only permissions, and the Invalid or I state corresponds to no permissions. Maintaining the

coherence invariant thus equates to ensuring that (1) when a processor enters the M state, all other

processors are in the I state, and (2) when a processor enters the S state, there is no other processor

in the M state.

When a processor wants to write a block, it first invalidates all readers of the block (transitions

them to I state). When a processor wants to read a block, it first downgrades any writer of the

block (transitions them to S state). To invalidate or downgrade a remote processor, the requesting

processor sends a coherence request. The remote processor processes this request and then sends an

acknowledgement back to the requesting processor. A processor being invalidated or downgraded

from the M state includes the data in its response. Figure 2.10 on page 29 gives the high-level oper-

ation of a basic three-state protocol, focusing on showing how the transfer of coherence permissions

occurs (the data transfer is not shown).

Many variants of this basic protocol exist. For example, directory protocols have the prop-

erty that coherence requests are sent only to sharers of a block, potentially reducing bandwidth

requirements and increasing system scalability. Protocols may include additional coherence states

to optimize performance. For example, adding an Exclusive state indicating that the processor has

write permissions for the block but the block has not yet been written can enhance performance by

reducing so-called “upgrade misses” (i.e., cases where a processor has a block in S state and wants

to write the block). All invalidation-based protocols, however, maintain the same basic property

that a reader of a given block is guaranteed to see any write request for that block and a writer of a

given block is guaranteed to see any request for that block.

2.6 Bounded Hardware Transactional Memory

In this section we present a system that can support the speculative parallel execution of transactions

in hardware. This system is inspired by the original hardware transactional memory proposal [47].

In particular, the key observation made in that work is that as long as a processor has coherence per-

missions to a transactionally-accessed block, that processor is guaranteed to observe all conflicting

requests for the block. This fact can be exploited to build a hardware implementation of the eager

30

conflict detection/eager version management algorithm presented in Section 2.4. This implemen-

tation utilizes existing structures and has low overheads, but can support only transactions that are

bounded in size and time.

The bounded HTM adds the ability to take a register checkpoint, a counter (called the trans-

actional nesting depth or TND counter), and two bits per L1 cache line3 (called the read bit and

written bit) to a conventional multiprocessor. To initiate a transaction, the processor checkpoints

the register state. Transactional loads and stores set the read bit and written bit respectively; the

cache checks the state of these bits to determine conflicts on incoming coherence requests from

other processors. Version management may be supported either by logging pretransactional values

in a log in virtual memory or by buffering these values in lower levels of the memory hierarchy; we

discuss both options below. To commit a transaction, the processor atomically clears the read and

written bits in a few-cycle operation called a flash-clear operation (discussed in detail below). The

specifics of abort depend on the version management mechanism used.

Below we discuss the components of the bounded HTM in more detail. We first discuss conflict

detection via cache coherence, how age-based conflict resolution can be implemented in hardware,

and options for version management. In Section 2.6.4 we present two complete bounded HTM

algorithms. Finally, we discuss the reasons that this implementation places restrictions on the size

and duration of transactions.

We note that hardware similar to that discussed in this section has been proposed in several

contexts beyond transactional memory. Among other uses, researchers have proposed using such

hardware for the speculative parallel execution of lock-based critical sections [73, 88, 89] (i.e.,

speculative lock elision or SLE), the speculative parallel execution of sequential programs [25, 33,

54, 87, 101, 104] (i.e., thread-level speculation or TLS), speculative implementations of memory

consistency [12], speculative compiler optimizations [79], acceleration of software transactional

memory [24, 30, 55, 63, 95, 99, 100], and speculative resource reclamation [72]. Some of our

proposals could be applicable in these other contexts, a point to which we return in Chapter 10.
3For a 64KB cache with 64-byte blocks, this addition requires 2k bits (256 bytes), representing 0.4% overhead.

31

2.6.1 Conflict Detection via Cache Coherence

As mentioned above, the bounded HTM exploits the property of cache coherence that a cache with

read permissions for a given block is guaranteed to see all write requests for the block (because it

must be downgraded for the requester to obtain write permissions), and a cache with write permis-

sions for that block is guaranteed to see any request for the block (because it must be downgraded

for the requester to obtain read permissions and invalidated for the requester to obtain write permis-

sions). When a processor makes a transactional read and obtains read permissions for the block, it

sets the entry’s read bit in the cache. Similarly, a transactional write results in write permissions

being obtained and the entry’s written bit being set.

To perform conflict detection, the cache checks the read and written bits of a given entry on

incoming coherence requests from other processors. An external write request to a transactionally-

read block (a block whose entry has its read bit set) is a conflict, while any external request to

a transactionally-written block (a block whose entry has its written bit set) signals a conflict. As

described above, an entry with the read bit set is guaranteed to have at least read permissions for

the block and thus observe all external write requests; an entry with the written bit set is guaranteed

to have write permissions for the block and thus observe all external read requests. Thus, once a

processor sets the read or written bit for a given cache block, it is guaranteed to detect all conflicts

on that block as long as the block remains in the cache.

2.6.2 Conflict Resolution via Timestamping

Timestamps can be implemented by a loosely synchronous timer. Conflicts between a transaction

and a non-transactional request (i.e., a request without a timestamp) may be resolved either by

aborting the transaction or stalling the request. Alternatively, non-transactional requests may also be

assigned timestamps. To handle wraparound, the system can prevent any new transaction (i.e., one

that would be assigned a timestamp after the wraparound) from starting until all existing transactions

have committed.

2.6.3 Options for Eager Version Management

In this subsection, we discuss version management options assuming writeback caches. The pri-

mary challenge of version management is that a transaction may write a block that is already non-

32

transactionally dirty in the cache. Version management must support recovery to the pretrans-

actional value of the block to enable rollback. Below we discuss two options for providing this

support. In the first option, pretransactional values are cleaned to lower levels of the memory hi-

erarchy. In the second option, these values are buffered in a log in virtual memory. As each of

these options allows a transaction to write directly into the L1 cache, they are instantiations of eager

version management.

Cleaning. In this option, when a transaction wishes to perform a write to a block with the dirty

bit set in the cache but without the written bit set, the current value of the block is first written

back (“cleaned”) to the next lower level of the memory hierarchy. On transaction abort, the entries

for transactionally-written blocks are invalidated from the L1 cache (via a single-cycle operation

called conditional flash-invalidate that we describe in Section 2.6.5). The pretransactional values

of these blocks will then be refetched on demand from the lower levels of the memory hierarchy.

On a commit, transactionally-written values are committed atomically when the written bits for the

corresponding entries are cleared in the L1 cache. After a commit, a stale value for a transactionally-

written block resides lower in the memory hierarchy; however, all memory requests (whether local

or remote) must access the processor’s L1 cache, which contains the current value. The stale value

will simply eventually be overwritten when the processor either writes back the current value or

transfers it to another processor.

Due to the simplicity of this mechanism, we assume it as the default mechanism of version

management for our proposals. However, one limitation of this mechanism is that it restricts the

amount of data that can be transactionally written to the size of the L1 cache: a transactionally-

written block cannot be evicted from the L1 cache because it would have to be written back to

memory, where it would overwrite the pretransactional value of the block. We next present an

alternative mechanism for version management that has no such size restriction.

Log. Moore et al. [77] proposed version management via thread-private logs that reside in virtual

memory. Before performing a speculative write, LogTM first writes the address and old value of the

block being written into the current thread’s log. When a transaction commits, the log is discarded

by restoring the log pointer to the beginning of the log buffer. When a transaction aborts, the system

iterates over the log entries in hardware or software, restoring each block. To avoid logging the

33

same memory block multiple times, log updates are elided when the written bit associated with the

block is already set, indicating that it has previously been logged.

This mechanism has tradeoffs with the cleaning mechanism described above. As the log resides

in virtual memory, this mechanism has the advantage that it can buffer an unbounded amount of

data. However, if the log is walked in software, then the organization of the log must be part of a

multiprocessor’s architectural interface. Conversely, if the log is walked in hardware, the logic for

doing so must be added to the multiprocessor.

2.6.4 Bounded HTM Algorithms

This section presents algorithms for bounded HTM systems employing cleaning and a log for ver-

sion management. For simplicity of presentation, the algorithms elide the manipulation of the

transactional nesting depth (TND) counter.

Figure 2.11 on page 35 presents an algorithm for a bounded HTM system using cleaning for

version management. As described above, this algorithm sets read and written bits on transactional

accesses and augments the logic for handling external coherence requests to detect conflicts based

on these bits. When a transaction writes a block for the first time, the old value of the block is

first cleaned to the next lower level of memory. On abort, all transactionally-written blocks are

invalidated from the cache. Finally, the clear and invalidation operations performed as part of

transaction commit and abort occur atomically in a small handful of cycles due to the support for

flash-clear and conditional flash-invalidate. We discuss this support below as well as support for

register checkpointing.

Figure 2.12 on page 36 presents a corresponding algoritm for a bounded HTM using a log that

is maintained in virtual memory for version management. On the first transactional write to a block,

the address and old value of the block are written into the log. On abort, the log is walked by either

software or hardware to restore these old values. At both abort and commit the log is thrown away

by resetting the log pointer to the base address of the log. In all other respects this algorithm is

identical to the one presented above.

34

Bounded HTM Algorithm Using Cleaning for Version Management

begin

in_transaction = true
timestamp = clock

load(A)

if Cache[A].state == I:
obtain_permissions(A,read)

if in_transaction:
Cache[A].read_bit = true

return Cache[A].data

store(A,v)

if Cache[A].state != M:
obtain_permissions(A,write)

if (in_transaction) and
(not Cache[A].written_bit):
write back A
Cache[A].written_bit = true

Cache[A].data = v

abort

flash-invalidate writes
flash-clear written bits
flash-clear read bits
in_transaction = false

commit

flash-clear written bits
flash-clear read bits
in_transaction = false

handle downgrade request(A,ts)

if Cache[A].written_bit:
resolve_conflict(A,ts)

if Cache[A].state == M:
Cache[A].state = S

send acknowledgement

handle invalidate request(A,ts)

if Cache[A].read_bit or
Cache[A].written_bit:
resolve_conflict(A,ts)

Cache[A].state = I
send acknowledgement

resolve conflict(A,ts)

if ts < timestamp:
abort()

else
defer until commit/abort

evict(A)

if (Cache[A].read_bit) or
(Cache[A].written_bit)
abort()

if Cache[A].dirty:
write back A

Cache[A].valid = false

Figure 2.11: Bounded HTM algorithm using cleaning for version management The algorithm
builds on basic cache coherence (presented in Figure 2.10 on page 29). To enable conflict de-
tection, it adds a read bit and a written bit to each entry in the cache. Processors set these bits
on transactional accesses and check them to determine conflicts when handling incoming coher-
ence requests. Version management is implemented by cleaning the pretransactional value of a
block to the next lower level of memory before the first transactional write of the block. The
obtain permissions function is unchanged from Figure 2.10 on page 29.

35

Bounded HTM Algorithm Using a Log for Version Management

begin

in_transaction = true
timestamp = clock

load(A)

if Cache[A].state == I:
obtain_permissions(A,read)

if in_transaction:
Cache[A].read_bit = true

return Cache[A].data

store(A,v)

if Cache[A].state != M:
obtain_permissions(A,write)

if (in_transaction) and
(not Cache[A].written_bit):
store (A, Cache[A]) into log
increment log pointer
Cache[A].written_bit = true

Cache[A].data = v

abort

for (A,v) in log:
Cache[A] = v

flash-clear written bits
flash-clear read bits
reset log pointer
in_transaction = false

commit

flash-clear written bits
flash-clear read bits
reset log pointer
in_transaction = false

handle downgrade request(A,ts)

if Cache[A].written_bit:
resolve_conflict(A,ts)

if Cache[A].state == M:
Cache[A].state = S

send acknowledgement

handle invalidate request(A,ts)

if Cache[A].read_bit or
Cache[A].written_bit:
resolve_conflict(A,ts)

Cache[A].state = I
send acknowledgement

resolve conflict(A,ts)

if ts < timestamp:
abort()

else
defer until commit/abort

evict(A)

if (Cache[A].read_bit) or
(Cache[A].written_bit)
abort()

if Cache[A].dirty:
write back A

Cache[A].valid = false

Figure 2.12: Bounded HTM algorithm using a log for version management The only difference
between this algorithm and Figure 2.11 on page 35 is the use of a log rather than cleaning for
version management. This log is maintained starting at a fixed location in virtual memory. When
the transaction writes a block for the first time, hardware stores the address and old value of the
block into the log. On abort, the log is walked (either in hardware or software) to restore the old
values of all transactionally-written blocks. On both abort and commit the log is thrown away by
resetting the log pointer to the base address of the log.

36

bit bit bit bit

clear conditional_clear

word line word line

Speculatively written bit Valid bit
bit bitword line

Speculatively read bit

Figure 2.13: Six-transistor SRAM cells (in gray) augmented with circuitry (in black) for
flash-clear (left-most and middle cells) and conditional flash-clear (right-most cell). When
the clear signal is asserted, both the read and written bits are pulled down to zero. When the
conditional clear is asserted, the valid bit is pulled down to zero (invalid) if the specula-
tively written bit is one.

2.6.5 Implementation Details

Here we discuss the implementation details of register checkpointing and the flash-clear and flash-

invalidate operations.

Register checkpointing. Several different approaches to checkpointing the register state exist,

with the processor core microarchitecture playing a large role in determining which mechanism is

the most appropriate. Some out-of-order processors implement register map table checkpointing

for recovery from in-window speculation (e.g., the MIPS R10000 [116] and the Alpha 21264 [53]);

such processors can extend this support to beyond-the-window speculation by not freeing physi-

cal registers that are referenced in the checkpointed map table until speculation commit [4]. For

processors employing in-order pipelines, the register file itself can be checkpointed [32].

Transactional access bits added to the data cache tags. As described above, the bounded

HTM assumes that the read and written bits support two single-cycle or few-cycle flash-clear op-

erations: first, a flash clear of all transactionally-read and transactionally-written bits, and sec-

ond, a flash conditional-invalidation operation that clears the valid bit of any block that has the

transactionally-written bit set. Figure 2.13 on page 37 illustrates standard 6T SRAM cells aug-

mented to support these operations.

37

2.6.6 Restrictions on Transaction Size and Duration

The implementation described above supports transactions with both low overheads and high con-

currency in the absence of data conflicts. However, it also limits both the volume of data that may

be accessed within a transaction and the duration of a transaction.

The size of a transaction is limited for multiple reasons. First, the conflict detection mechanism

fundamentally relies on transactionally-accessed blocks remaining in the cache. The reason is that

if the cache evicts the block, it both gives up coherence permissions to the block and loses the state

of the read and written bits for the block (they are now part of the state of the block currently in the

entry formerly occupied by the evicted block). By losing coherence permissions, the cache is no

longer guaranteed to observe conflicting requests for the block; by losing the read and written bits,

it would have no way to determine what a conflict is even if it did receive these requests. Second,

the eviction of a transactionally-written block would force a writeback of that block. If cleaning is

used as the version management mechanism, writeback would overwrite the pre-speculative value

residing lower in the memory hierarchy.

The bounded HTM also limits the duration of a transaction, as the in-cache read and write bits

as well as transactionally-written state implicitly belong to the currently executing transaction. This

implementation has no mechanism for transferring read and write bits or transactionally-written

blocks from the cache to architected state, and so it must abort transactions on a context switch.

2.7 Semantic and Performance Challenges of Bounded HTM

The bounded hardware transactional memory supports speculative execution of transactions with

low overheads and minor extensions to current multiprocessors. However, it also presents semantic

and performance challenges, as we describe in this section.

The most basic challenge of bounded HTM is that it supports only transactions that are bounded

in size and time, as detailed in Section 2.6.6. This semantic restriction forces programmers to

either (1) be able to guarantee that their transactions fit within the time and space bounds of the

HTM or (2) incorporate an alternative, “backup” means of synchronization (e.g., locks) in addition

to transactions. The first alternative is simply not possible in many real-world situations (e.g.,

using a transaction to protect a tree traversal in a library data structure). The second alternative

undermines transactional memory’s promise of making high-performance synchronization easier to

38

achieve. Thus, for hardware transactional memory to be useful as a general-purpose synchronization

primitive, it must be able to support transactions that are unbounded in size and time.

A related problem is that if overflows occur frequently, it will be necessary to handle them with

high performance or else they will become a performance bottleneck. That is, the problem of over-

flows is potentially a performance problem as well as a semantic problem. Ideally, an unbounded

HTM would be able to support unbounded transactions while maintaining the bounded HTM’s

properties of high concurrency, low overheads, and design simplicity. As we detail in Chapter 4,

achieving all of these properties simultaneously is challenging.

Finally, like any transactional memory system, the bounded HTM achieves parallelism only in

the absence of data conflicts. In addition to the true conflicts that can occur in any transactional

memory system, the bounded HTM can potentially experience false sharing conflicts (conflicts

due to two transactions accessing different words on the same cache block) due to its detection of

conflicts at a cache-block granularity. If conflicts are frequent (whether due to true sharing or false

sharing), performance degradation will occur due to stalls and/or aborts.

2.8 Summary

In this chapter, we presented a basic overview of transactional memory to provide context for the

remainder of this dissertation. We first presented our basic problem context of synchronization in

shared-memory parallel programs, outlined the challenges of synchronization via locks, and dis-

cussed the potential of transactional memory to ease the task of high-performance synchronization

(Section 2.1). In Section 2.2 we described transactional semantics, including the basic transactional

interface of isolation and atomicity as well as advanced semantic issues such as the strong/weak

atomicity and support for explicit abort. We then presented the basic implementation tasks involved

in executing transactions speculatively in parallel while maintaining isolation and discussed the ter-

minology associated with those tasks (Section 2.3). We presented three high-level transactional

memory algorithms in Section 2.4. After reviewing multiprocessor memory systems in Section 2.5

we described how to layer support for executing bounded transactions speculatively in parallel on

top of these systems in Section 2.6. Finally, we discussed semantic and performance challenges of

this bounded hardware transactional memory in Section 2.7.

39

In the next chapter we introduce the workloads that we use to drive and evaluate the proposals

of our dissertation. We study the extent to which conflicts limit performance, the nature of these

conflicts, and the sizes of the transactions in these workloads.

40

Chapter 3

Characterization of Transactional

Behavior

In this chapter we introduce the transactional workloads that we use as benchmarks to drive and

evaluate our proposals. We examine three questions: (1) to what extent conflicts hinder performance

in these workloads, (2) the nature of these conflicts, and (3) how large the transactions in these

workloads become. The answer to the last question will help to determine the nature of our proposal

for a hardware transactional memory that efficiently supports unbounded transactions (Chapter 5

and Chapter 6), whereas the answers to the first two questions will help focus our efforts on making

hardware transactional memory robust to auxiliary data conflicts (Chapter 8).

In the next section, we describe the workloads that we use. In Section 3.2 we describe the infras-

tructure and methodology that we use for quantitative evaluation in this chapter and throughout the

rest of this dissertation. We examine the performance of an idealized unbounded hardware trans-

actional memory system on these workloads in Section 3.3, finding that performance is generally

limited by conflicts. We analyze the extent to which straightforward software restructurings can

reduce these conflicts and examine the nature of the conflicts that remain after these restructurings

in Section 3.4. We then study the question of how large the transactions in these workloads become

in Section 3.5. We close the chapter in Section 3.6 with a discussion of the implications of our

findings.

41

Workload Description and Input Parameters
genome From STAMP, gene sequencing, g1024 s48 n65536
genome-sz Variant with resizable hashtable
intruder From STAMP, network packet intrusion detection, a10 l4 n2038 s1
intruder opt Variant with fixed-size hashtable and thread-private queues
intruder opt-sz Variant with resizable hashtable and thread-private queues
kmeans From STAMP, partition-based clustering, m15 n15 t0.05 irandom-n2048-

d16-c16.txt
labyrinth From STAMP, shortest-distance path routing, irandom-x32-y32-z3-

n96.txt
ssca2 From STAMP, graph kernels, s13 i1.0 u1.0 l3 p3
vacation From STAMP, travel reservation system, n4 q60 u90 r16384 t4096
vacation opt Variant with fixed-size hashtable
vacation opt-sz Variant with resizable hashtable
yada From STAMP, Delaunay mesh refinement, a20 i633.2
python Python interpreter, bm threading.py -n32768 (from Google’s Unladen-

Swallow [2] suite)
python opt Variant of python with interpreter optimizations

Table 3.1: Workloads used in this dissertation.

3.1 Workloads

As transactional memory is an emerging synchronization primitive, no standard set of transactional

benchmarks yet exists. We draw the bulk of the workloads that we use from the STAMP [76]

benchmark suite, which has emerged as a de facto standard. We additionally run a transactionalized

variant of the reference Python interpreter [113]. We describe these workloads in more detail below.

Table 3.1 on page 42 summarizes the workloads (we discuss the opt variants in Section 3.4). We

analyze the performance characteristics of these workloads in detail in Section 3.3, Section 3.4,

and Section 3.5. We note, however, that the performance characteristics of these workloads may or

may not be representative of future workloads. This fact will particularly influence our proposal for

unbounded hardware transactional memory (Chapter 5 and Chapter 6).

3.1.1 STAMP

The STAMP benchmark suite [76] is a set of transactional memory benchmarks that for the most

part use coarse-grained transactions, with the intent of simulating the practices of naive program-

mers. The transactions in STAMP are often large and/or highly-conflicting.

STAMP includes a hashtable that defaults to be non-resizable. For all workloads that use this

hashtable we also run a second variant in which the hashtable is configured via STAMP’s compile-

42

time flags to automatically resize as needed. The resizable hashtable maintains an internal occu-

pancy field that is incremented on every insert; as part of such an insert, it checks the value of this

field to determine if it is necessary to resize the hashtable in order to maintain expected constant-

time access. It is thus significantly more vulnerable to conflicts than the non-resizable hashtable,

which does not maintain this occupancy field. The STAMP workload variants using the resizable

hashtable reflect the performance of using standard library implementations of hashtables in Java

and C++, which are generally resizable by default. These variants have “-sz” appended to their

names.

We run all workloads in the suite except bayes, from which we could not extract useful con-

clusions due to high runtime variability. We give a brief overview of each of these workloads below;

for more details, we refer the reader to Minh et al. [76].

genome. genome implements a genome reconstruction algorithm. There are several static trans-

actions within the program. A transaction is employed to make a series of inserts into a shared

hashtable; a transaction is employed to find a free entry in a shared array and occupy that entry; a

transaction is used to protect an insert into a shared hashtable; and finally, a transaction is used to

access a shared list. genome spends a large percentage of time in transactions, which themselves

grow fairly large. The performance of genome is sensitive to whether the hashtable is resizable or

not.

intruder. intruder implements an intrusion detection algorithm. Transactions protect accesses

to shared lists. Additionally, the program uses a map implemented as a red-black tree that internally

uses transactions. The transactions in intruder are generally small and highly-conflicting.

kmeans. kmeans implements K-means clustering. A transaction is used to protect accesses to

a shared array. Additional transactions protect read-modify-write operations. The transactions in

kmeans are small and rarely conflict.

labyrinth. labyrinth routes shortest paths between pairs of startpoints and endpoints in a two-

dimensional grid (i.e., wire routing). To route a pair of points, a thread copies the grid into a

local copy, routes a path through the local copy, and attempts to claim this path in the global grid.

A transaction is used to protect this entire operation. However, the transaction releases conflict

detection on the shared grid via an early release operation [46] after copying it, as the algorithm

itself detects conflicts on a semantic level (when trying to claim a path, threads check whether nodes

43

in the path have been claimed by other threads in the interim). To achieve the same behavior without

early release (a mechanism that our systems do not provide), we modified the code to perform the

grid copy before entering the transaction. Transactions are additionally used to protect accesses to

a shared queue and inserts into a shared list. These transactions are generally small.

ssca2. ssca2 is a set of graph kernels. Transactions are used to protect inserts of nodes into the

shared graph. ssca2 spends little time in transactions.

vacation. vacation implements a travel reservation system. The program maintains several

in-memory database structures (e.g., a database storing information for hotel reservations). These

structures are implemented as red-black trees that use transactions internally for synchronization.

Transactions are also used to make updates to multiple databases in isolation (similar to Figure 2.6

on page 16). The transactions in vacation grow fairly large and have a fair amount of conflicts.

yada. yada implements an algorithm for Delaunay mesh refinement. The mesh is a graph structure

with edges represented as adjacency lists. Threads repeatedly add elements to the mesh, remove

elements from the mesh, and modify the edges in the mesh. Transactions protect threads’ accesses

and modifications to the mesh. These transactions are large and highly-conflicting.

3.1.2 Python

We created a transactionalized version of the standard Python interpreter implementation [113],

python. Although the interpreter supports threading, this threading is explicitly designed for

responsive graphical user interfaces and I/O events—not for supporting parallel execution on mul-

ticores [113]. In fact, threads synchronize using a global interpreter lock (GIL). Although threads

may perform selected system calls without holding the GIL, threads may interpret bytecodes only

while holding the GIL. Thus, in the absence of speculation, bytecode interpretation is completely

serialized by the GIL. We transactionalized the interpreter by replacing acquires and releases of the

GIL with transactions. The resulting workload has frequent conflicts on shared data structures such

as freelists and reference counts. We discuss the extent to which we were able to eliminate these

conflicts via straightforward software restructuring in Section 3.4.

44

Parameter Value
Processor 32 in-order x86 cores, 1 IPC
L1 cache 64 KB, 4-way set associative, 64B blocks, 1-cycle hit latency
L2 cache Private, 1MB, 4-way SA, 64B blocks, 10-cycle hit latency
Memory 100-cycle DRAM lookup latency
Coherence Directory-based protocol, 20-cycle hop latency

Table 3.2: Simulated machine configuration.

3.2 Experimental Infrastructure and Methodology

In this section we outline the infrastructure that we use to perform all of the quantitative analysis in

this dissertation. We also outline the transactional memory configuration that we evaluate to analyze

transaction sizes and performance bottlenecks in the workloads that we use.

Infrastructure. We perform our quantitative analysis using a full-system, execution-driven simu-

lator that we have developed internally. Our simulator simulates the x86-64 architecture. It uses

PTLSim [118] to crack x86 instructions into sequences of micro-ops, which it then executes. In ad-

dition, it utilizes Simics [66, 67], a functional simulator, to handle rarely-occurring complex instruc-

tions (e.g., memory-mapped IO). This simulator is thus an instance of timing-first simulation [74], in

which a detailed timing simulator handles nearly all of a given instruction set but utilizes a complete

functional simulator as a backend for certain rare instructions. The memory system implementation

is based on an early version of the GEMS [71] memory system simulator, but with heavy modi-

fications. In particular, we have extended the simulator to model all of the transactional memory

systems described in this dissertation. A version of this simulator was forked by Neelakantam et

al. and developed into the publicly-available FeS2 simulator [1]; there is significant divergence

between that codebase and that of the simulator that we employ.

Simulated machine. We configure our simulator to model a 32-processor multiprocessor. Table

3.2 on page 45 presents the details of our memory system configuration. Our simulated mem-

ory hierarchy models a directory-like MOESI protocol (Section 2.5.2). We augment this protocol

with a migratory sharing mechanism that optimizes the transfer of memory blocks exhibiting a

read-modify-write sharing pattern (e.g., locks) [27, 106]. Throughout this dissertation, we assume

single-cycle register checkpoint and restore operations. We model a one-instruction-per-cycle (IPC)

processor. The simulator is capable of booting an unmodified operating system. To perform the ex-

45

periments of this dissertation, we run the workloads that we evaluate in the Fedora Core 5 operating

system with version 2.6.15 of the Linux kernel running on the simulator.

Evaluation methodology. Our process of setting up the timing evaluations of a given application

is as follows. Each workload has an initial serial “setup” phase, followed by a parallel phase that

does the main work of the application, typically followed by a final serial “cleanup” phase. We

place a barrier at the start of the application’s parallel phase and another barrier at the end of the

application’s parallel phase. We perform an initial run of the application. In this initial run, we take

a checkpoint of the application state once all threads have reached the “begin parallel phase” barrier

(using Simics’ ability to save and restore checkpoints of system state). We then perform our timing

evaluations starting from this checkpoint. A timing run is complete once all threads have reached

the “end parallel phase” barrier. As these workloads generally do not employ internal barriers, time

spent in barriers in these runs is generally time spent in this “end parallel phase” barrier and thus an

indicator of load imbalance.

Our focus in these evaluations is on parallelism rather than concurrency. To avoid the effects

of context switching perturbing our application runs, we set up each run with the same number of

threads as cores and use a Linux system call to pin each thread to a unique core.

Transactional memory configuration evaluated in this chapter. In this chapter we simulate an

idealized hardware implementation of the eager conflict detection/eager version management trans-

actional memory algorithm presented in Figure 2.7 on page 23. This system can support transactions

of any size with full concurrency and no overheads. It uses logging (Section 2.6) to implement un-

bounded version management. Our purpose in evaluating this configuration is to perform a limit

study that enables us to answer the questions of (1) to what extent conflicts present a performance

bottleneck and (2) what are the sizes of transactions. In order to examine the impact of conflicts

independent of the specific overheads of a particular version management mechanism, we assign

zero cost to restoring a transaction’s log on abort in this idealized system. We present this conflict

analysis next.

46

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

H
T

M

serial

km
eans

H
T

M

serial

genom
e

H
T

M

serial

genom
e-sz

H
T

M

serial

vacation

H
T

M

serial

ssca2

H
T

M

serial

labyrinth

H
T

M

serial

intruder

H
T

M

serial

yada

H
T

M

lo
ck

s

python

Figure 3.1: Scalability of workloads under idealized HTM. Execution is on 32 cores, meaning
that a speedup of 30 is near-ideal. As a reference point for workloads that were created with lock-
based synchronization, the right bar of each group represents performance using locks. The right
bar of the STAMP workloads (“serial”) represents performance if transactions are executed serially.

3.3 Are Conflicts a Performance Problem?

This section focuses on determining the extent to which conflicts limit performance. We do so via

evaluation of the performance of the idealized unbounded HTM, in which transaction size does

not form a performance bottleneck. In essence, this configuration allows us to determine the best

result that could be hoped to achieve by extending the bounded HTM described in Section 2.6 to

support transactions of unbounded size in the same fashion. After finding that the performance of

this configuration is limited by conflicts on many workloads, we also evaluate idealized HTM’s em-

ploying lazy and value-based conflict detection to determine whether these conflicts are an artifact

of employing eager conflict detection.

Overall performance. Figure 3.1 on page 47 presents the scalability of this idealized unbounded

HTM over sequential execution on 32 cores. As a reference point we also present the performance

of these workloads if synchronization is implemented conservatively by executing critical sections

or transactions serially rather than speculatively in parallel. The right bar of each group in Figure

3.1 on page 47 represents such a configuration. For python, this bar shows the performance of

the lock-based version (“locks”). For the STAMP workloads, which were originally created using

transactions, this bar shows the performance of a system in which transactions are executed serially

(“serial”).

47

0

20

40

60

80

100

%
 o

f
ru

n
ti

m
e

aborted

committed

km
eans

genom
e

genom
e-sz

vacation

ssca2

labyrinth

intruder

yada
python

Figure 3.2: Percentage of total execution time that is spent in committed and aborted transac-
tions.

We first note that speculative parallelization is necessary to achieve performance. On all work-

loads but one (“labyrinth”, discussed in more detail below), the versions in which transactions are

executed serially achieve no performance over sequential execution. This result provides basic val-

idation of the use of these workloads for evaluating transactional memory design.

However, many of these workloads have only fair to poor scaling on the idealized HTM as

well. While two workloads achieve near-linear speedups (kmeans, genome), all others achieve

a speedup of only 13X or less on 32 cores. python has essentially no speedup over sequential

execution. In the remainder of this section, we determine the role of conflicts in this limited perfor-

mance. In the next section, we explore the nature of these conflicts in order to understand whether

there is a potential role for hardware to play in eliminating their performance impact.

Time lost to conflicts. Figure 3.2 on page 48 presents the percentage of total execution time that

processors spend in committed and aborted transactions. All but two workloads spend over 80% of

execution time in transactions, providing insight into why speculative parallelization is necessary to

obtain speedups. In fact, as kmeans and ssca2 demonstrate, such parallelization can be necessary

to achieve performance even for workloads that spend 15% or less of execution time in transactions.

labyrinth spends essentially no time in transactions, explaining why it is insensitive to whether

transactions are executed in parallel or serially.

This result also indicates that many workloads spend a large percentage of overall execution

time in conflicts. All but three workloads lose over 30% of execution time to conflicts. The amount

48

0.0

0.5

1.0

1.5
ru

n
ti

m
e

(n
o
rm

.
to

 e
ag

er
)

conflict

barrier

busy

eag
er

lazy
v
b

km
eans

eag
er

lazy
v
b

genom
e

eag
er

lazy
v
b

genom
e-sz

eag
er

lazy
v
b

vacation

eag
er

lazy
v
b

ssca2

eag
er

lazy
v
b

labyrinth

eag
er

lazy
v
b

intruder

eag
er

lazy
v
b

yada

eag
er

lazy
v
b

python

Figure 3.3: Runtime breakdown of workloads under idealized HTM. “eager” represents the ide-
alized HTM shown in Figure 3.1 on page 47. “lazy” represents a variant in which conflict resolution
is deferred until commit in the hopes of reducing stalling/rollbacks. “vb” (value-based) represents
a further variant that incorporates lazy conflict resolution as just described and additionally per-
forms conflict detection by checking equality of values read at a byte granularity (thus eliminating
conflicts due to false sharing). “conflict” represents time spent stalled by other transactions or in
transactions that ultimately abort. ”barrier” represents time stalled at internal barriers as well as
time spent waiting for other threads to finish at the end of execution. “busy” represents all other
execution time.

of time lost to conflicts generally inversely correlates with the overall performance of these work-

loads presented in Figure 3.1 on page 47. labyrinth and ssca2 are exceptions. Further exam-

ination revealed that the algorithm used in labyrinth induces load imbalance, whereas ssca2

suffers from poor locality due to threads’ concurrent graph updates and traversals.

As described in Section 3.2, this HTM configuration employs cache-block granularity eager

conflict detection. In Chapter 2, we noted that an eager conflict detection TM could suffer from con-

flicts that a lazy TM could avoid, and additionally noted that HTM could suffer from false conflicts

due to the fact that conflict detection is performed at cache block granularity. We next determine to

the extent to which these conflicts are artifacts of this HTM’s conflict detection mechanism.

Sensitivity of performance to conflict detection mechanism. To analyze the impact of lazy

and value-based conflict detection on performance, we evaluated two variants of the idealized un-

bounded HTM: a variant that defers conflict resolution until transaction commit (“lazy”) and a

further variant that performs conflict detection by checking for equality of values read at byte gran-

49

ularity (“vb”). The “lazy” variant allows conflicts to occur during execution by maintaining the

locally-modified versions of conflicting blocks in a private buffer. At commit, it requires all blocks

that have been lost due to conflicts and checks that the values of these blocks have not changed. The

“vb” configuration is similar, but it additionally maintains read bits at a byte granularity and checks

only that the values of bytes read have not changed. We present a breakdown of the execution of

these variants in Figure 3.3 on page 49. For reference we also present the default eager HTM that

had been evaluated above (represented by “eager” on this graph).

In most cases these variants have essentially unchanged performance characteristics, meaning

that the conflicts occurring in these workloads are true conflicts, i.e., they are cases where transac-

tions actually access the same piece of data in a conflicting way. One exception is vacation, in

which lazy conflict detection increases concurrency by allowing transactions reading the databases

to commit in the midst of transactions that write the databases. On python laziness causes de-

creased performance, illustrating the performance tradeoff described in Section 2.3.

In this section we thus determined that (1) conflicts are a performance bottleneck and (2) these

conflicts are true conflicts. In the next section we examine the nature of these conflicts in more

detail to determine whether simple software restructurings can eliminate them or whether there is a

role for additional hardware support.

3.4 Analysis of Conflicts

This section analyzes the nature of conflicts in these workloads, with the goal of determining

whether hardware support has a role to play in eliminating the performance impact of these con-

flicts. We (1) quantify the impact that straightforward software restructurings can have on reducing

these conflicts and (2) characterize the conflicts that remain after such restructurings.

Opportunities for software restructurings. We find several opportunities for straightforward soft-

ware restructurings. First, python contains global variables that are conceptually thread-private

but were not made so due to the assumption that only one thread would be operating on them at a

time. We trivially made these variables thread-private using the C “ thread” variable annotation

supported by GCC and other compilers. Second, intruder dequeues work from one highly con-

tended queue and enqueues work onto another highly contended queue; we split these queues to be

thread-private. Third, both intruder and vacation have aborts due to rebalancing operations

50

0.0

0.2

0.4

0.6

0.8

1.0
ru

n
ti

m
e
 (

n
o
rm

.
to

 u
n
m

o
d
if

ie
d
 v

e
rs

io
n
)

intruder_opt

intruder_opt-sz

vacation_opt

vacation_opt-sz

python_opt

Figure 3.4: Sequential runtimes of optimized workloads relative to the unoptimized versions.

of a red-black tree used to implement an unordered map interface. We replaced the tree imple-

mentation with STAMP’s hashtable implementation (as described in Section 3.1, this restructuring

results in two variants: one with the non-resizable hashtable, and one with the resizable hashtable).

The conflicts in yada are due to irregular traversals of a shared mesh; we have not found a way to

reduce these conflicts short of restructuring the algorithm, which is beyond the scope of straight-

forward software restructuring. Table 3.1 on page 42 summarizes the optimized workloads (the

workloads with a opt suffix).

Impact of restructurings on sequential runtime. These restructurings are designed to increase the

scalability of the workloads. However, it is important to determine whether they induce overheads

on sequential execution. Figure 3.4 on page 51 shows that these restructurings in fact do not induce

overhead in sequential performance. For vacation the restructurings actually increase sequential

performance by almost 3X, as the hashtable has faster lookups than the red-black tree.

Impact of restructurings on scalability. Figure 3.5 on page 52 presents the scalability of the

optimized workloads together with their unmodified variants. This graph shows first that these

simple changes have a dramatic effect on the behavior of vacation opt and intruder opt,

increasing scalability from 13x and 5x respectively to over 20x in both cases1. For the other variants,
1Note that this fact means that vacation opt has a scalability of 80X over the sequential run of the unoptimized

vacation.

51

0

10

20

30
sp

ee
d
u
p
 o

v
er

 s
eq

vacation

vacation_opt

vacation_opt-sz

intruder

intruder_opt

intruder_opt-sz

python

python_opt

Figure 3.5: Scalability of unoptimized and optimized versions of workloads under idealized
HTM.

0

20

40

60

80

100

%
 o

f
ru

n
ti

m
e

aborted

committed

vacation

vacation_opt

vacation_opt-sz

intruder

intruder_opt

intruder_opt-sz

python

python_opt

Figure 3.6: Percentage of execution time that is spent in transactions for unopti-
mized/optimized workloads.

52

however, the picture is less rosy: the software changes do not improve scalability, and Figure 3.6

on page 52 indicates that these workloads remain conflict-bound even after elimination of the most

obvious sources of conflicts.

Characterizing remaining conflicts. The python opt workload conflicts on reference counts

of shared objects; vacation opt-sz, intruder opt-sz, and genome-sz conflict on the

occupancy field that the resizable hashtable increments on every insert to determine when to resize;

and as mentioned above, yada conflicts on mesh operations. We note that except for yada, all of

the remaining conflicts occur on operations that are auxiliary to the main computation of the work-

load. Unfortunately, these conflicts are less amenable to straightforward software restructuring (for

example, distributing reference counts per-thread would likely result in high storage and perfor-

mance overheads). In Chapter 8, we propose a hardware mechanism to eliminate the performance

impact of auxiliary data conflicts transparently to the programmer.

Summary. In the previous two sections we have demonstrated that conflicts form the primary

bottleneck to performance assuming that hardware can support unbounded transactions with no

performance overheads. However, as discussed in Section 2.6, basic hardware transactional memory

can support only transactions that are bounded in size. The goal of the first part of this dissertation is

to extend this basic HTM to support unbounded transactions with low design complexity (Chapter

5 and Chapter 6). We first perform an analysis of transaction sizes in the next section to understand

the common-case behavior of these workloads.

3.5 How Large Do Transactions Become?

In this section, we examine the sizes of the transactions that occur in these workloads. We first

examine transaction length to give an idea of the characteristics of the different workloads. We then

examine the amount of data that transactions touch.

In analyzing this data, an intuitive way to organize the results would be to look at the per-

centage of transactions executing for a given number of cycles (or touching a certain amount of

data). Figure 3.7 on page 54) shows such a breakdown for transaction length (organized as a cu-

mulative histogram). This presentation, however, obscures the fact that longer transactions occupy

more execution time than shorter transactions. Figure 3.8 on page 55 illustrates this fact by pre-

53

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100
cu

m
.
%

 o
f

x
ac

ti
o
n
s

kmeans

ssca2

labyrinth

yada

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
s

python

python_opt

genome

genome-sz

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
s

vacation

vacation_opt

vacation_opt-sz

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
s

intruder

intruder_opt

intruder_opt-sz

Figure 3.7: Breakdown of transaction lengths by percent of transactions. The x-axis is trans-
action length, and the y-axis is the cumulative percentage of transactions of that length or fewer.
Horizontal lines are drawn to indicate the 50% and 90% marks.

senting the breakdown of transaction length in terms of total transactional cycles spent executing

in transactions of a given length. As can be seen by looking at these two figures, looking only at

the percentage of transactions of a given length (or size) underrepresents the contribution of longer

transactions. For all of the results in this section, we instead look at percentage of cycles spent

executing in transactions of a given length or size.

Transaction length. As Figure 3.8 on page 55 shows, the transactions in these workloads are

generally short. Over half of the workloads spend 90% or more of their total transactional execution

54

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100
cu

m
.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

kmeans

ssca2

labyrinth

yada

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

python

python_opt

genome

genome-sz

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

vacation

vacation_opt

vacation_opt-sz

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

of cycles

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

intruder

intruder_opt

intruder_opt-sz

Figure 3.8: Breakdown of transaction lengths by percent of transactional cycles. The x-axis
is transaction length, and the y-axis is the cumulative percentage of transactional cycles spent in
transactions of that length or fewer. Horizontal lines are drawn to indicate the 50% and 90% marks.

in transactions of 10,000 cycles or fewer. python, however, has significantly longer transactions

than the STAMP workloads, as over 50% of its transactions execute for a million cycles or longer.

Transaction size. We next examine transaction size, i.e. the total number of bytes that have been

touched (read or written) by a transaction at the time that it commits or aborts (assuming the 64-byte

block granularity of our memory system). Figure 3.9 on page 56 presents a cumulative histogram

showing the percentage of transactional execution spent in transactions that access n bytes or fewer.

Eight of the workloads (kmeans, ssca2, labyrinth, intruder and its variants, and the

optimized variants of vacation) spend all of their transactional execution in transactions of four

55

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100
cu

m
.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

kmeans

ssca2

labyrinth

yada

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

python

python_opt

genome

genome-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

vacation

vacation_opt

vacation_opt-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

intruder

intruder_opt

intruder_opt-sz

Figure 3.9: Breakdown of transaction sizes by percent of transactional cycles. The x-axis is the
total number of bytes touched, and the y-axis is the cumulative percentage of transactional cycles
spent in transactions touching that number of bytes or fewer. Horizontal lines are drawn to indicate
the 50% and 90% marks.

kilobytes or fewer. All workloads but yada spend 90% of transactional execution in transactions

of eight kilobytes or fewer.

Figure 3.10 on page 57 and Figure 3.11 on page 58 present similar breakdowns of transactions’

read and write set sizes. The read set graphs look qualitatively similar to the graphs of total trans-

action sizes, indicating that little transactional data is write-only. The write set sizes, however, are

considerably smaller: all workloads spend 90% of transactional execution time in transactions that

write eight kilobytes or fewer, and only one workload (yada) writes more than four kilobytes in

any transaction.

56

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100
cu

m
.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

kmeans

ssca2

labyrinth

yada

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

python

python_opt

genome

genome-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

vacation

vacation_opt

vacation_opt-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

intruder

intruder_opt

intruder_opt-sz

Figure 3.10: Breakdown of transaction read set sizes by percent of transactional cycles. The
x-axis is the total number of bytes read, and the y-axis is the cumulative percentage of transactional
cycles spent in transactions reading that number of bytes or fewer. Horizontal lines are drawn to
indicate the 50% and 90% marks.

To place these results into context, Figure 3.12 on page 59 presents a breakdown of the percent-

age of total cycles (as opposed to transactional cycles) spent executing in transactions that access

n or fewer bytes. These graphs show that these workloads fall into three groups. The first group

(kmeans, labyrinth, ssca2, intruder opt) spend a small percentage of total execution

time in transactions, which are themselves small (touch four kilobytes or fewer). The second and

largest group (intruder, intruder opt, vacation opt, vacation opt-sz, python,

python opt, vacation, genome, and genome-sz) has transactions that are still relatively

small (touch eight kilobytes or fewer), but spend a large percentage of total execution time in trans-

57

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100
cu

m
.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

kmeans

ssca2

labyrinth

yada

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

python

python_opt

genome

genome-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

vacation

vacation_opt

vacation_opt-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

x
ac

ti
o
n
al

 c
y
cl

es

intruder

intruder_opt

intruder_opt-sz

Figure 3.11: Breakdown of transaction write set sizes by percent of transactional cycles. The x-
axis is the total number of bytes written, and the y-axis is the cumulative percentage of transactional
cycles spent in transactions writing that number of bytes or fewer. Horizontal lines are drawn to
indicate the 50% and 90% marks.

actions. Finally, yada spends most of its execution time in transactions, and over 50% of execution

time in transactions that touch between 8 and 32 kilobytes of data.

3.6 Summary

In this chapter we introduced the workloads that we will use to drive and quantitatively evaluate

our proposals. We found that even with a system that can handle unbounded transactions with no

performance overheads, many workloads perform badly due to conflicts between transactions. We

additionally showed that most of these conflicts are true conflicts. After performing straightforward

58

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100
cu

m
.
%

 o
f

cy
cl

es

kmeans

ssca2

labyrinth

yada

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

cy
cl

es

python

python_opt

genome

genome-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

cy
cl

es

vacation

vacation_opt

vacation_opt-sz

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

of bytes touched

0

20

40

60

80

100

cu
m

.
%

 o
f

cy
cl

es

intruder

intruder_opt

intruder_opt-sz

Figure 3.12: Breakdown of transaction sizes by percent of total execution. The x-axis is the
total number of bytes touched, and the y-axis is the cumulative percentage of total execution time
(as opposed to transactional execution time) spent in transactions touching that number of bytes or
fewer. Horizontal lines are drawn to indicate the 50% and 90% marks.

software restructuring, we found that many of the remaining conflicts were on auxiliary data such

as reference counts and hashtable occupancy fields. In the last part of this dissertation (Chapter 8

and 9), we will propose and evaluate RETCON, a hardware mechanism that increases the robustness

of transactional memory to such auxiliary data conflicts.

Our first goal, however, is to devise an unbounded hardware transactional memory system that

performs similarly to the idealized fully-concurrent unbounded system while seeking to retain the

low complexity of the bounded hardware transactional memory. Our examination of the sizes of

the transactions in these workloads in Section 3.5 shows that on these workloads, overflows will

59

likely be rare. However, it is also not clear whether these workloads are representative of future

transactional workloads or not.

In response to the fact that the performance characteristics of future transactional workloads are

not known, researchers have proposed designs that, like the idealized system, support unbounded

transactions with full concurrency. Unfortunately, as Chapter 4 details, tracking the conflict de-

tection information for an unbounded number of unbounded transactions and detecting conflicts

between these transactions appears to entail significant complexity. We will instead take a decou-

pled approach to the problem of supporting unbounded transactions in hardware. In Chapter 5 we

detail the permissions-only cache, a proposal for extending the range of bounded HTM from kilo-

bytes to megabytes. In Chapter 6 we describe ONETM, our proposal for handling overflows of

bounded HTM. ONETM exploits the fact that the permissions-only cache can likely be configured

to make overflows rare in order to simplify their handling.

60

Chapter 4

Prior Approaches to Handling

Overflows in Hardware

In this chapter we survey prior proposals for supporting unbounded transactions in hardware1.

We describe six proposals: TCC [41], UTM [5], VTM [90], PTM [23], Bulk [19], and LogTM-

SE [117].

TCC was the first proposal to support unbounded transactions in hardware. TCC directly im-

plements the lazy conflict detection/lazy version management algorithm presented in Figure 2.9 on

page 26: the original TCC design employed a global commit token and an update-based coherence

protocol, with chunks broadcasting both addresses and data to all other chunks on acquiring commit

permissions via global arbitration for the commit token [41]. The authors noted that in such a sys-

tem, overflows could be handled by having transactions acquire the commit token early (similar to

the handling of starvation). By doing so, the overflowed transaction prevents any other transaction

from committing until it itself has committed and aborted any conflicting transactions. A subse-

quent design [20] refined the implementation to employ a distributed arbitration mechanism and

an invalidation-based coherence protocol in which chunks send addresses but not data of write sets

after committing; extending the pre-commit approach to work in this context was not discussed.

Subsequently, researchers sought to support unbounded transactions in hardware with full con-

currency (i.e., an unbounded number of unbounded transactions can be executing at a given time).

The primary challenge in doing so is the need to detect conflicts between a potentially unbounded
1We defer discussion of proposals subsequent to ONETM ([14, 50]) until Section 6.4.

61

number of concurrently-executing transactions. Other significant challenges include the need to

track an unbounded amount of conflict detection information for each transaction, the need to track

an unbounded amount of version management information for each transaction, the need to support

context switching of a transaction, and the need to support paging of transactionally-accessed data.

In the remainder of this chapter we describe the operation of UTM, VTM, PTM, Bulk and

LogTM-SE, focusing on how each meets the challenges discussed above. In the next section we

describe UTM, VTM and PTM, which utilize precise conflict detection up to cache-block granular-

ity (similar to the bounded HTM). Bulk and LogTM-SE, by contrast, utilize signatures (finite-sized

conservative representations of transaction read- and write-sets) for conflict detection. We describe

the operation of these proposals in Section 4.2. After describing these proposals, we close this

chapter by discussing their design complexity in Section 4.3.

4.1 UTM, VTM, and PTM

Below we describe UTM [5], VTM [90], and PTM [23]. These three proposals support supporting

unbounded transactional memory in hardware with full concurrency and precise conflict detection

up to cache-block granularity. Each uses the bounded HTM presented in Section 2.6 to implement

transactions that do not overflow the local cache hierarchy. The proposals then add mechanisms

to handle the case where a transaction overflows the local cache hierarchy (i.e., the case where

the bounded HTM would have to abort because it can no longer perform conflict detection for the

transaction). We describe these overflow-handling mechanisms below.

UTM. UTM [5] implements the eager conflict detection/eager version management algorithm pre-

sented in Figure 2.8 on page 25. UTM maintains the state of overflowed transactions in a single,

shared, memory-resident data structure called the xstate. The xstate structure contains (1) logs for

each active transaction to record read and written addresses and the original data values at the writ-

ten addresses, and (2) for each block in memory, a read/write bit and a linked list of pointers into

the log entries for that block. As there can be an unbounded number of concurrently-executing

transactions and each transaction can be unbounded in size, both the logs and the linked lists must

also be unbounded; placing the xstate in memory supports this requirement.

On an overflow, a processor adds an entry to its log, optionally walking the list of entries for

the overflowing block to avoid redundant logging. Conflicts are detected by first inspecting the

62

RW bit; if that bit signals a conflict, the transaction walks the linked list associated with the block

to determine whether other transactions have accessed the block (i.e., whether there is actually

a conflict). An aborting transaction walks its list of accesses, destroying the log and reverting

memory state. A committing transaction traverses the list of accesses to clean up the log. The

xstate structure may be concurrently updated and read by multiple threads. To support paging of

transactional data, the paper proposes that the system employ global virtual addresses, which are

system-wide addresses that remain valid even if paging occurs [8, 59]. Supporting global virtual

addresses typically entails an additional layer of address translation.

VTM. VTM [90] implements the eager conflict detection/lazy version management algorithm pre-

sented in Figure 2.7 on page 23. VTM tracks overflowed transactional state using a shared data

structure mapped into the virtual address space (called the XADT). Entries in the XADT are allo-

cated when blocks overflow the cache. Much like UTM’s xstate, VTM’s XADT uses linked lists and

supports accessing all entries for a specific virtual memory block or all entries for a specific transac-

tion. XADT operations include concurrently adding an entry on overflow, looking up an entry for a

block, committing a transaction, aborting a transaction, and saving state on context switches. Each

transactional load or store miss checks for conflicting transactional accesses before it completes.

As VTM uses lazy version management, it buffers speculative updates in the XADT itself, prop-

agating these updates only when a transaction commits. Because VTM operates on virtual rather

than physical addresses, it supports paging of transactional data with no extra effort. However, this

choice also complicates the task of context-switching a transaction, as discussed below.

To reduce expensive walks of the XADT, VTM introduces two caching mechanisms. First,

VTM introduces a counting-Bloom-filter-based table (the XF) accessed on cache misses to quickly

rule out conflicts with other transactions. Only when the XF indicates a potential conflict must the

processor walk the XADT. The XF is mapped into the virtual memory space, shared among all

threads, and accessed with cacheable loads and stores; as such, the XF can create overheads due

to coherence sharing misses. Second, VTM employs another table, the XADC, to cache XADT

entries for blocks that have been accessed by the current transaction.

On commit, VTM walks all the XADT entries for the transaction in hardware, copies the non-

committed values into the memory, updates the shared XF, and deallocates and unlinks the XADT

entries. Although non-transactional loads and stores do not normally need to check the XADT/XF,

63

they must do so when a transaction is committing. An abort similarly walks the list of entries for

the aborting transaction; this walk can be done in the background.

On a context switch, VTM walks the cache and overflows any transactionally read or written

blocks. As updating the XADT requires virtual addresses and most caches are physically tagged,

VTM’s cache is augmented with virtual address tags. When a transaction is swapped back in after

a context switch, all of the values read by that transaction are validated by comparing the current

value of the block with the value previously read by the transaction for the block, requiring the

buffering of both reads and writes.

PTM. PTM [23], like UTM, implements the eager conflict detection/eager version management TM

algorithm (Figure 2.7 on page 23). PTM maintains the state of overflowed transactions on a per-page

basis. PTM’s shadow pages behave similarly to UTM’s log pointers, except that PTM’s Transaction

Access Vector (TAV) lists track data for an entire page. Like both UTM and VTM, the transactional

state data structure supports iterating over all entries associated with both a particular memory

location and a particular transaction. PTM simplifies data logging by making the observation that

because only one transaction can be writing a block at a time (because of its use of eager conflict

detection), one shadow copy for each block is the maximum ever needed. PTM supports paging by

swapping in and out shadow pages together with their associated home pages.

In PTM, all of the transactional state is maintained and accessed at the memory controller during

cache misses. The memory controller is responsible for all conflict detection, updating transactional

state, and aborting/committing transactions. To avoid performing a list walk of TAVs on each

cache miss, PTM employs a TAV summary cache at the memory controller (different from, but

analogous to VTM’s XF). When a cache block overflows the cache, it is the memory controller that

is responsible for recording the original and overflowed value.

On commit, the memory controller walks and updates all of the TAVs for the transaction and

updates the summary vectors. Abort is similar, but the controller copy-restores the original values.

The proposal also describes an optimized version in which non-speculative blocks can reside in

either the home or shadow page, with a bit vector specifying which page has the non-speculative

copy of each block. In this version, the memory controller toggles the bits for transactionally-

accessed blocks on commit but does not have to copy-restore blocks on abort (it still walks the TAV

list for the transaction to free its entries, however). Between the time that a transaction logically

64

commits and completes clearing its transactional state, the transaction is marked as committed,

signaling that conflicts due to the committing transaction can be ignored.

To avoid overflowing all transactional blocks on a context switch, PTM associates a transaction

identifier with each block in the cache. The PTM proposal assumes that the in-cache transaction

identifiers are cleared in the case when a transaction resumes execution and commits on another

processor, but does not explain how that is accomplished.

4.2 Bulk and LogTM-SE

Below we describe Bulk [19] and LogTM-SE [117], which share the property of performing conflict

detection for all transactions (whether overflowed or non-overflowed) via signatures, finite-sized

conservative representations of transactions’ read and write sets. A signature is simply a Bloom

filter, i.e. a finite-sized table that can be queried for membership of a given address and can return

false positives (but not false negatives). In these proposals, each transaction maintains a read set

signature and a write set signature. On a load, the address of the load is added to the read set

signature, and similarly, on a store, the address of the store is added to the write set signature. As

we describe below, Bulk employs signatures to enforce lazy conflict detection, while LogTM-SE

does so to enforce eager conflict detection.

Bulk. Bulk [19] first introduced the idea of performing conflict detection via signatures. Bulk im-

plements the lazy conflict detection/lazy version management algorithm presented Figure 2.9 on

page 26 (with a slight twist, described below). During transaction execution, transactions acquire

all blocks via read requests (even for stores). Once a transaction has received permission to commit

from the arbiter, it broadcasts its write signature to all other processors, which intersect this write

signature with their own read and write signatures. A non-empty intersection causes the receiving

processor to abort its transaction. When a processor receives such a write signature, it also invali-

dates all blocks in its cache whose addresses are contained in the signature, thus ensuring that it will

receive the most recent copy of these blocks on next access. At this time, the directory also updates

its state to make the committing transaction the exclusive owner of all blocks in its write signature.

Once all processors have completed this process and sent an acknowledgement, the transaction’s

commit is finished and another transaction’s commit can begin. To avoid arbitration for commit

becoming a performance bottleneck, the arbiter can be distributed [18].

65

Bulk supports version management for non-overflowed transactions via cleaning (Section 2.6).

As Bulk maintains the write set via a signature rather than by speculatively-written bits on L1

cache blocks, however, the process of invalidating speculatively-written blocks is somewhat more

involved. In particular, Bulk must ensure that the conservative nature of signatures does not cause

incorrect invalidations of blocks that were not speculatively written (but may, for example, hold

non-speculative dirty data). Bulk ensures correct operation via two mechanisms. First, it builds the

write signature in such a way that the set of cache indices of speculatively-written blocks can be

generated exactly from the signature (the details are presented in Section 3.2 of Ceze et al. [19]).

Second, Bulk restricts L1 cache sets to having dirty data that is either (a) non-speculative or (b)

belongs to a single speculative transaction. On a transaction abort, Bulk generates the set of indices

of cache sets containing speculatively-written blocks, and then walks through each cache set to

invalidate all dirty blocks.

The use of signatures implies that unlike the work discussed above, a transaction in Bulk can let

a block that has been read or written escape the cache without losing the ability to perform conflict

detection on that block. However, supporting unbounded transactions in Bulk still requires solutions

to the problems of unbounded version management and virtualization of transactions.

Bulk supports unbounded version management via per-thread overflow areas that reside in vir-

tual memory. When a speculatively-written block overflows a processor’s cache, it is moved to the

thread’s overflow area. To manage forwarding from overflowed blocks to subsequent loads of the

transaction, Bulk sets an overflowed bit on an overflow. If the overflowed bit is set, transactional

reads check for membership in the write signature and check the overflow area for forwarding if the

signature indicates that the block may have previously been speculatively written. The process of

moving writes from the overflow area back to their architectural locations on transaction commit is

not explicitly described in Bulk; presumably, this occurs in between the time that a transaction ac-

quires commit permissions and the time that it broadcasts its write signature to other processors for

conflict detection. Bulk thus uses a combination of eager and lazy version management: it employs

eager version management for blocks that do not overflow the cache, and lazy version management

for blocks that do overflow the cache.

When a transaction is pre-empted, its read and write signatures remain active at the processor at

which it had previously been executing; a new transaction on this processor is assigned a separate

read and write signature (to facilitate this, each processor has several read/write signatures available

66

as contexts). Conflict detection at a processor is performed on all active signatures. If, however,

there are no available signature contexts when a new transaction begins, then some pre-empted

transaction’s signature has to be moved to memory (and conflict detection still must be performed

against this signature while it is in memory). In this case, the transaction’s speculatively-written

blocks are moved to its overflow area as well. The issue of paging of transactional data is not

discussed.

LogTM-SE. Like Bulk, LogTM-SE [117] uses signatures to perform conflict detection. However,

LogTM-SE differs from Bulk in that it implements the eager conflict detection/eager version man-

agement algorithm of Figure 2.7 on page 23. These differences arise due to the fact that LogTM-SE

builds on LogTM [77], an earlier-proposed system supporting transactions that are unbounded in

space but not time.

LogTM employs (and proposed) the namesake log described in Section 2.6 for version manage-

ment. LogTM uses read and written bits on L1 cache lines to perform conflict detection for bounded

transactions. To allow transactions to overflow the L1 cache while still supporting conflict detec-

tion, LogTM extends its baseline directory coherence with a mechanism called the “sticky state.”

This mechanism is simply a set of per-processor overflow bits that are associated with each block

at the directory. When a given processor’s overflow bit is set, the directory forwards all requests

for the block to that given processor in addition to sending all other messages dictated by normal

coherence protocol operation. Before a transaction allows a speculatively-accessed block to escape

the L1 cache, it puts this block in the sticky state, thus ensuring that it will continue to see future

requests for the block. When a processor sees a forwarded request for a given block due to the sticky

state being set on that block, it conservatively performs conflict detection on the block as follows.

If the processor is either not in a transaction or is in a transaction that has not overflowed the cache,

then it can infer that the sticky state was set by a no-longer-active transaction. In that case, the

processor simply clears the sticky state at the directory. However, if an overflowed transaction is

currently executing on the processor, then a conflict is conservatively signaled.

LogTM’s conflict detection and version management mechanisms together allow for transac-

tions that are unbounded in space. However, LogTM does not support the suspension of transac-

tions, as its conflict detection logic implicitly assumes that any transaction that previously set a

67

sticky state for a given processor but is not currently executing at that processor has either commit-

ted or aborted. Thus, transactions in LogTM are still bounded in duration.

LogTM-SE supports transactions that are unbounded in time by modifying LogTM to perform

conflict detection through signatures rather than bits in the cache. LogTM-SE employs a summary

signature to perform conflict detection on transactions that are switched out (i.e., not presently exe-

cuting on any processor). All processors perform conflict detection against this summary signature.

When a conflict is detected against the summary signature, LogTM-SE traps to a software handler

to resolve the conflict. When a transaction is context-switched, LogTM-SE adds its signature to

the summary signature via an inclusive-or operation. To support removing a transaction’s signature

from the summary signature on commit, the summary signature maintains a count of how many

transactions have set each bit.

LogTM-SE supports paging of transactional data as follows. When moving a page from one

page context to another, the system first interrupts each processor and has it walk over the old page

testing whether it contains each block. If so, the processor adds the new address of the block to

its signature. The authors note that this process could potentially be optimized if it becomes a

performance bottleneck.

4.3 Discussion

As discussed earlier, UTM, VTM, PTM, Bulk and LogTM-SE all support transactions of unbounded

size and duration with full concurrency. Achieving this goal, however, comes at a complexity cost

to both conflict detection and version management.

The primary challenge in conflict detection is the need to detect and resolve conflicts between

an unbounded number of transactions. The set of proposals discussed in Section 4.1 require the

hardware to dynamically allocate/deallocate, maintain, and concurrently manipulate complex link-

based structures (UTM’s xstate, VTM’s XADT, and PTM’s Transaction Access Vectors) and the

corresponding cached versions of these structures. Manipulating and accessing these structures can

add overhead to both overflowed transactions and concurrently-executing non-overflowed trans-

actions, which need to access these structures to perform conflict detection. More importantly,

the hardware for correctly manipulating these structures is not simple. While the signature-based

68

proposals discussed in Section 4.2 avoid these link-based structures, they must still traverse the

signatures of all executing transactions for conflict detection and/or conflict resolution.

The support of multiple concurrently-executing unbounded transactions has implications on

version management as well. In a conflict between two unbounded transactions, it may be necessary

to abort one in order to maintain forward progress (e.g., in the case of a cyclic pattern of data

accesses that would otherwise result in each transaction stalling the other). This fact implies that any

system supporting the concurrent execution of more than one unbounded transaction must support

unbounded version management as well.

In the next two chapters we will propose a different approach to unbounded hardware transac-

tional memory. First, we propose a hardware mechanism, the permissions-only cache, that reduces

the rate at which less-efficient overflow handling mechanisms are invoked. With the knowledge that

overflows will likely be rare we propose ONETM, a system for handling unbounded transactions

that revisits the idea of supporting one overflowed transaction at a time.

69

Chapter 5

The Permissions-Only Cache: Reducing

the Frequency of Overflows

In this chapter we introduce a mechanism whose goal is to reduce the frequency with which transac-

tions overflow the bounded HTM presented in Section 2.6.4. This mechanism, the permissions-only

cache, expands the range of transactions that the HTM can support from tens of kilobytes (i.e., the

size of the L1 cache) to megabytes. Overflows of this system can still occur, meaning that this

system does not yet support transactions that are unbounded in size. However, by decreasing the

frequency of overflows, the permissions-only cache will allow us to consider mechanisms for han-

dling these overflows that trade off performance for implementation simplicity (Chapter 6).

In seeking to reduce the frequency of overflows, we first re-examine why overflows are a prob-

lem. In Section 2.6.6, we noted that for the bounded HTM to be able to perform conflict detection

on a given block, it must (a) have coherence permissions to the block (in order to be guaranteed to

see conflicting requests) and (b) have the read and written bits for the block (to be able to determine

what constitutes a conflict). When a transactionally-accessed block overflows the L1 cache, the

cache loses both coherence permissions and the transactionally-accessed bits for the block. Hence,

it can no longer detect conflicts on that block and must abort the transaction running on that proces-

sor.

The above observations conversely suggest that if a transaction had a way of retaining coherence

permissions and the read/written bits for a given block when it escapes the cache, the transaction

could continue executing. This observation, coupled with the observation that it is not necessary to

70

have the data for a block in order to perform conflict detection on that block, serves as the foundation

of the permissions-only cache. The permissions-only cache supports conflict detection on blocks

that have been replaced from the processor’s data cache by retaining coherence permissions and

transactionally-accessed bits — but not data — for these blocks. Because the permissions-only

cache needs to track only two bits per data block, it can track conflict detection information for

a large number of memory blocks with a comparatively small amount of storage; for example, if

data blocks are 64 bytes, the permissions-only cache can track the transactionally-accessed bits

for 256 blocks in the same amount of space occupied by the data of a single block. Only when the

permissions-only cache itself overflows does the system need to fall back on some other mechanism

for detecting conflicts for overflowed blocks.

In the remainder of this chapter we present the permissions-only cache in detail. We first de-

scribe its basic operation in the next section. In Section 5.2 we discuss how the permissions-only

cache can be organized to efficiently encode the conflict detection information of a large amount

of state. In Section 5.3 we discuss how the range of the permissions-only cache can be expanded

further by maintaining its information in the L2 cache rather than a dedicated structure. Finally, we

discuss related work in Section 5.4 and conclude the chapter in Section 5.5.

5.1 Operation

The permissions-only cache tracks conflict information for blocks that have exceeded the capacity of

the data cache. Like the data cache, it is organized as a tagged, set-associative structure. Each entry

contains a read bit and optionally a write bit. Below, we first describe the usage of the permissions-

only cache to allow read sets to grow beyond the size of the L1 cache without overflow. We then

discuss how the coupling of the permissions-only cache and a mechanism that supports version

management of transactionally-written blocks that escape the L1 cache (such as the log discussed in

Section 2.6.3) can also allow the write set to grow beyond the size of the L1 cache. After discussing

how aborts can still occur due to the permissions-only cache itself overflowing, we present the

complete permissions-only cache algorithms. We close this section by discussing tradeoffs between

this approach and extending the L2 cache with transactionally-accessed bits.

Allowing transactionally-read blocks to escape the cache. When a block that has been transac-

tionally read (but not written) is replaced from the data cache, the cache controller sets the appro-

71

Processor

= L1 CachePO Cache

Interconnect

Figure 5.1: Incorporation of the permissions-only cache into the system. The solid lines show
communication between existing system components: the processor and L1 cache communicate
on local requests, while the L1 cache and the interconnect communicate for remote requests, fills
of those requests, and incoming invalidations. The dashed lines show communication between
the permissions-only cache and the rest of the system. As detailed in Figure 5.3 on page 75, the
permissions-only cache communicates with the L1 cache on L1 cache evictions and fills, and it
communicates with the interconnect on incoming invalidations. The permissions-only cache does
not directly communicate with the processor.

priate read bit in the permissions-only cache, allocating an entry if necessary. The cache controller

does not give up coherence permissions to the block in this case. Instead, the coherence state for

the block is now shared without data. Externally, this state is indistinguishable from the traditional

shared (S) coherence state. If the processor later brings such a block back into the L1 cache, the

transactionally-accessed bits from the block’s permissions-only cache entry are copied back over to

the L1 cache entry.

By maintaining coherence permissions to the block, the cache also maintains the guarantee

of seeing all potentially-conflicting requests to the block. To detect conflicts on blocks in the

permissions-only cache, external requests check the read bit in the permissions-only cache in ad-

dition to the bits in the data cache (the two checks are performed in parallel). On a transaction

commit or abort, the permissions-only cache is cleared by flash-invalidating all its blocks. Existing

protocols commonly allow silent replacement of S blocks, and thus already implicitly support this

operation.

Figure 5.1 on page 72 details the incorporation of the permissions-only cache into a conven-

tional multiprocessor. As discussed above, the permissions-only cache communicates with the L1

cache on evictions and fills, and with the interconnect on incoming invalidations. Local memory

operations do not access the permissions-only cache.

72

We note that it may occur that a block is both transactionally-read and non-transactionally dirty.

In this case, the cache controller both writes back the dirty data and maintains read permissions

to the block. This operation is conceptually similar to the cleaning operation discussed in Section

2.6.3. We also note that in systems enforcing coherence inclusion, all blocks in the permissions-only

cache would also have to be present in the L2 cache.

Allowing transactionally-written blocks to escape the cache. If the bounded HTM uses a log for

version management (Figure 2.12 on page 36), the permissions-only cache can allow transactionally-

written blocks as well as transactionally-read blocks to escape the L1’s cache. When evicting a

transactionally-written block, the block is written back to the second-level cache or memory and

the appropriate written bit is set in the permissions-only cache. Dirty blocks may safely escape

because any remote read to these addresses will conflict with the written bit in the permissions-

only cache, preventing any access to the block until the subsequent abort has successfully restored

the pre-transactional value (which is maintained in the log). When a block’s written bit is set in the

permissions-only cache, the local coherence state of the block is clean-exclusive without data, exter-

nally indistinguishable from the clean-exclusive (E) state (which may be replaced silently similarly

to the S state).

If using the cleaning version management scheme presented in Section 2.6.3, speculatively-

written blocks cannot escape the L1 cache because the speculative data would overwrite the non-

speculative data preserved in the lower levels of the memory hierarchy. In this case, the permissions-

only cache would be used to hold transactionally-read data only. We call this variant a read-only

permissions-only cache, as distinguished from the read-write permissions-only cache discussed

above1.

Overflows of the permissions-only cache. As the permissions-only cache is a finite-sized structure,

it is possible that it could also overflow. In this case, the transaction would have to abort. Thus,

as noted above, while the permissions-only cache extends the range of bounded HTM, it does not

provide support for unbounded transactions. In Chapter 6 we propose complementary hardware

support for unbounded transactions. Our proposal exploits the fact that the permissions-only cache

will likely make overflows rare in order to simplify their handling.
1It would be possible to employ a read-write permissions-only cache in this situation by adding a separate structure

that holds the data of transactionally-written blocks that have overflowed. We do not explore such a configuration in this
dissertation.

73

Adding a Read-Only Permissions-Only Cache to Bounded HTM

abort

flash-invalidate writes
flash-clear written bits
flash-clear read bits
flash-invalidate POcache
in_transaction = false

commit

flash-clear written bits
flash-clear read bits
flash-invalidate POcache
in_transaction = false

evict(A)

if Cache[A].written_bit
abort()

if Cache[A].read_bit
move_to_POCache(A)

if Cache[A].dirty:
write back A

Cache[A].valid = false

handle downgrade request(A,ts)

if Cache[A].written_bit:
resolve_conflict(A,ts)

if Cache[A].state == M:
Cache[A].state = S

send acknowledgement

handle invalidate request(A,ts)

if Cache[A].read_bit or
Cache[A].written_bit or
POCache[A].read_bit:
resolve_conflict(A,ts)

Cache[A].state = I
send acknowledgement

move to POCache(A)

if no entry for A in POCache:
abort()

POCache[A].read_bit =
Cache[A].read_bit

Figure 5.2: Adding a read-only permissions-only cache to bounded HTM. This figure shows the
incorporation of a read-only permissions-only cache into a bounded HTM using cleaning for version
management (presented in Figure 2.11 on page 35). On eviction of a transactionally-read block, the
block’s transactionally-read bit is moved to the permissions-only cache. Because speculatively-
written data cannot be stored to lower levels of memory, the the bounded HTM must still abort
when evicting a transactionally-written block from the cache. In addition, the transaction aborts
if there is no free permissions-only cache entry when evicting a transactionally-read block. When
handling an external coherence request for a block, the permissions-only cache is checked for a
conflict in parallel with the regular cache. At commit and abort, the permissions-only cache is
flash-invalidated. Functions not shown are unchanged from Figure 2.11 on page 35.

Algorithms. Figure 5.2 on page 74 shows the incorporation of a read-only permissions-only cache

into a bounded HTM that uses cleaning for version management. The key additions are (1) the use

of the permissions-only cache to hold transactionally-accessed bits when a block is evicted from the

L1 cache (move to POCache) and (2) the corresponding checking of the permissions-only cache

in conflict detection (handle downgrade request and handle invalidate request).

Figure 5.3 on page 75 presents the corresponding incorporation of a read-write permissions-only

cache into a bounded HTM that uses a log for version management (Figure 2.12 on page 36).

74

Adding a Read-Write Permissions-Only Cache to Bounded HTM

abort

flash-invalidate writes
flash-clear written bits
flash-clear read bits
flash-invalidate POcache
in_transaction = false

commit

flash-clear written bits
flash-clear read bits
flash-invalidate POcache
in_transaction = false

evict(A)

if (Cache[A].read_bit) or
(Cache[A].written_bit)
move_to_POCache(A)

if Cache[A].dirty:
write back A

Cache[A].valid = false

handle downgrade request(A,ts)

if Cache[A].written_bit or
POCache[A].written_bit:
resolve_conflict(A,ts)

if Cache[A].state == M:
Cache[A].state = S

send acknowledgement

handle invalidate request(A,ts)

if Cache[A].read_bit or
Cache[A].written_bit or
POCache[A].read_bit or
POCache[A].written_bit:
resolve_conflict(A,ts)

Cache[A].state = I
send acknowledgement

move to POCache(A)

if no entry for A in POCache:
abort()

POCache[A].read_bit =
Cache[A].read_bit

POCache[A].written_bit =
Cache[A].written_bit

Figure 5.3: Adding a read-write permissions-only cache to bounded HTM. This figure shows
the incorporation of a read-write permissions-only cache into a bounded HTM using log-based
version management (presented in Figure 2.12 on page 36). This algorithm is similar to Figure 5.2
on page 74. However, because the log is used for version management, both transactionally-read
and transactionally-written blocks can be placed into the permissions-only cache. Functions not
shown are unchanged from Figure 2.12 on page 36.

Comparison to putting transactionally-accessed bits in the L2 cache. An alternative way to

extend the range of bounded hardware transactional memory would be to allow transactionally-

accessed data to reside in the L2 cache. In this case, L2 cache lines would be extended with read

and written bits. While certainly viable, this approach has two potential disadvantages. First, the

L2 cache may be shared between cores. In this case, each core would have to have its own pair

of read and written bits. Second, as L2 caches are much larger than L1 caches (as well as the

permissions-only cache), supporting the flash-clear and conditional flash-invalidate operations may

become expensive. Finally, invalidating speculatively-written blocks from the L2 on abort (as would

75

Tag Valid Permissions Bits (R/W)

Tag Index Block Offset

Conflict?

6 bits14 bits

16384 sets
Read/Write?

20 bits
40-bit physical address

=

Figure 5.4: Naive organization of a 4KB permissions-only cache. Each entry requires two bits
(read bit and written bit). Consequently, this 4KB cache has 16,384 entries (32,768 bits ÷ 2), i.e.
it can store conflict detection information for 16,384 datablocks. Assuming 64-byte datablocks, the
cache is thus able to store the information for one megabyte of data (16,384 datablocks × 64 bytes
per datablock). However, in this naive organization the tags consume 40 kilobytes (16,384 entries
× 20 bits per entry). We show how this overhead can be lowered via a sector cache organization in
Figure 5.5 on page 77.

be done if cleaning is used as the version management mechanism) would result in costly misses to

memory the next time that these blocks are accessed unless the L2 is backed by an L3.

5.2 Efficient Encoding

Because the permissions-only cache does not contain data, it can more efficiently encode the trans-

actional read/write bits (just a few bits per block) than other on-chip caches that hold data as well

as addresses. Figure 5.4 on page 76 illustrates the potential for space reduction: assuming 64-

byte blocks, a 4-kilobyte permissions-only cache can hold conflict detection information for one

megabyte of data.

A naive implementation of a permissions-only cache, however, would also incur the overhead

of a full cache tag for each two-bit entry. For example, assuming 40-bit physical addresses as in

Figure 5.4 on page 76, the 4-kilobyte cache would have a 40-kilobyte overhead for the tags. If the

physical address space is larger, the tag overhead would correspondingly grow.

76

Tag Valid
Permissions Bits (R/W)

Tag Index Sub-Index Block Offset

...

...

...

...

Conflict?

6 bits8 bits6 bits

256 sectors x 2 bits

64 sets

Read/Write?
RW

20 bits
40-bit physical address

=

Figure 5.5: 4KB direct-mapped permissions-only cache in a 256-sector organization. Each
entry is a sector containing the read and written bits for 256 datablocks (512 bits or 64 bytes in
total). The low-order bits of the index are now a sub-index that is used to offset into the sector. As
each entry contains 64 bytes, the cache contains 64 entries. Compared to Figure 5.4 on page 76, the
tag overhead has been reduced from 40 kilobytes to 160 bytes (20 bits × 64 entries). The tradeoff
is the possible loss of coverage if there is poor spatial locality.

By using sector cache techniques [64] the tag overhead of the permissions-only cache can be

reduced dramatically. A 512-bit (i.e., 64-byte) entry per tag would provide for 256 two-bit sectors

(containing a read bit and a write bit). The low-order bits of the cache index would be used to offset

into the sector to find the relevant pair of read/write bits (Figure 5.5 on page 77). To ensure that

stale data from previous transactions does not cause erroneous conflicts, a sector would be cleared

before it is used for the first time in a transaction.

The advantage of this organization is that single 256-sector entry maps a contiguous 16KB

region of memory (256 sectors × 64B cache lines), a 256-to-1 compression ratio in the best case.

Figure 5.5 illustrates the reduction in tag overhead afforded by the sector cache organization: in

this example, the tag overhead is reduced from 40 kilobytes (Figure 5.4 on page 76) to 160 bytes.

The appeal of organizing the permissions-only cache as a sector cache is increased by the fact that

it does not have to support eviction (as any cache conflict in the permissions-only cache forces a

transaction abort), which is more complex in a sector cache than a conventional cache.

The tradeoff of the sector cache organization is the possibility of reduced coverage if spatial

locality is poor. In the worst case, a 4KB permissions-only cache would track the read/write bits for

77

only 4KBs of blocks. However, with good page-level spatial locality, this cache would maintain the

property of being able to track a megabyte of data.

5.3 Employing the L2 Cache to Store Permissions-Only Information

To support even larger transactions without overflow, instead of using a dedicated structure, the

processor could dynamically share the second-level cache’s storage capacity by allowing second-

level cache frames to contain either data or an array of read/write bits. A second valid bit—a

permissions-only valid bit—would be added to each entry’s cache tag to indicate when the frame

holds transactional read/write bits. When a transactional block is replaced from the data cache, its

transactional read/write bits would be updated in the corresponding bits in the second-level cache’s

data array (replacing and allocating another entry as needed). On a commit or abort of a transaction,

all the read/write bits would be discarded by flash-clearing the permissions-only valid bits. For

shared second-level caches, an additional core identifier field could be associated with each cache

frame containing permissions data.

When external coherence invalidations query the second-level cache, the cache tags would be

accessed twice. The first tag lookup is the normal lookup, but it would match only for frames

that hold data blocks (by checking the permissions-only valid bit). The second tag lookup—which

would use the sector cache indexing similar to a stand-alone permissions-only cache—would check

for matching frames of read/write bits. If a tag hit occurred on a tag for a frame of read/write bits,

the data array would be accessed to query the corresponding bit (sector) to detect conflicts. If no

permissions-only blocks had been allocated in the second-level cache, the second lookup could be

skipped.

With such an organization, a 4MB second-level cache with 64-byte blocks could hold enough

permissions-only information to allow a transaction to access up to 1GB of data (64K entries of 256

read/write bit pairs and each entry maps 16KBs) without overflow.

5.4 Related Work

As further discussed in Chapter 4, signatures [19] provide conflict detection via finite-sized Bloom

filters that are conservative representations of a transaction’s read and write set. Signatures are

78

similar to the permissions-only cache in that they both allow a transaction’s read set to be larger

than its L1 cache. However, the two approaches have significant tradeoffs due to the fact that entries

in the permissions-only cache are tagged and thus can be identified precisely. The permissions-only

cache thus maintains the property of precise conflict detection up until it itself overflows, at which

point a different conflict detection scheme needs to be invoked. By contrast, signatures provide

a uniform scheme for all transactions; however, research indicates that the imprecision that they

introduce can cause significant numbers of false conflicts as transactions grow in size [14, 119].

The efficient data-less encoding of coherence permissions employed by the permissions-only

cache is similar to the Store Miss Accelerator [22], which retains exclusive coherence permission

to evicted blocks. Whereas the purpose of the permissions-only cache is to avoid transaction over-

flows, the Store Miss Accelerator aims to avoid incurring the latency of invalidation requests on a

store that misses in the local cache hierarchy and is not present in any other cache in the system.

5.5 Discussion

By efficiently tracking transactions’ read and write sets, the permissions-only cache increases the

size of transactions that can successfully complete without invoking an overflowed execution mode,

largely independent of the particular scheme used to handle overflows. This reduction in the fre-

quency of overflows may reduce the runtime overheads of previously-proposed hardware-based

unbounded transactional memory schemes that employ a higher-overhead conflict detection mech-

anism for transactions that overflow the local cache hierarchy such as UTM [5], VTM [90], and

PTM [23] (Chapter 4). With a sufficiently large permissions-only cache, however, the occurrence

of overflowed transactions will likely be rare. In the next chapter we propose ONETM, a novel

approach for handling overflows that exploits this assumption with the goal of reducing hardware

complexity.

79

Chapter 6

ONETM: Handling Overflows via

Selective Serialization

In this chapter we propose ONETM, a transactional memory system in which only a single over-

flowed transaction per process can be active at a time. The principal advantage of this approach

is that it has the potential to significantly ease implementation requirements by eliminating prior

proposals’ need to perform conflict detection between an unbounded number of unbounded trans-

actions. We present two instantiations of ONETM, ONETM-Serialized and ONETM-Concurrent.

In Figure 6.1, we illustrate the differences in concurrency between these systems as well as a system

that places no concurrency restrictions on overflowed transactions (such as the systems described in

Chapter 4).

The first instantiation of ONETM that we present is ONETM-Serialized, in which overflowed

transactions serialize the system. To support overflowed transactions, ONETM-Serialized adds a bit

called the overflowed bit to the bounded hardware transactional memory presented in Section 2.6 as

well as machinery to manipulate this bit. Overflowed transactions set this bit, while non-overflowed

transactions check the bit and stall if it is set. The overflowed transaction is assigned highest priority

in conflict resolution, meaning that it will not abort due to a conflict and thus eliminating prior

proposals’ need to support unbounded version management.

While simple, the overflow handling mechanism of ONETM-Serialized can result in perfor-

mance degradation if the number of overflows is not negligible. We thus also propose ONETM-

Concurrent, a system that supports more concurrency on overflows than ONETM-Serialized while

80

p0 p1 p2 p3 p0 p1 p2 p3

stall

stall

p0 p1 p2 p3
stall

(a) fully-concurrent overflow (b) ONETM-Serialized (c) ONETM-Concurrent

Figure 6.1: An example execution on three systems for handling overflowed transactions. The
white bars represent non-overflowed transactions, the dark gray bars overflowed transactions, and
the straight lines non-transactional execution. A light gray color means that the processor is stalled.
In this execution, there are no conflicts, and the same amount of useful work is performed on each
system. The example assumes strong atomicity.

still having fewer structures and mechanisms than the systems described in Chapter 4. In ONETM-

Concurrent any number of non-overflowed transactions (as well as non-transactional code) are per-

mitted to execute concurrently with the single overflowed transaction. To support this property, it

associates a single pair of read and written bits with each memory block, analogous to the bounded

HTM’s pair of transactionally-accessed bits per cache block. These bits travel coherently with data.

The overflowed transaction sets them on an access and other transactions check them to determine

conflicts.

Section 6.1 and Section 6.2 respectively describe ONETM-Serialized and ONETM-Concurrent,

including qualitative comparisons of these proposals to the prior work discussed in Chapter 4. In

Section 6.3, we discuss how ONETM handles the advanced semantic issues discussed in Section

2.2.2. Finally, Section 6.4 discusses work published subsequently to the ISCA 2007 paper that

introduced ONETM [9] and Section 6.5 summarizes the chapter.

81

(a) Shared Transaction Status Word (STSW)
Fixed address in virtual memory

STSW Field Description
overflowed is an overflowed transaction active?

OTID ID of active overflowed transaction

(b) Private Transaction Status Word (PTSW)
Per-thread architected register

PTSW Field Description
overflowed is this thread in an overflowed transaction?

TND nesting depth of current transaction

Figure 6.2: Description of transaction status words.

6.1 ONETM-Serialized

Our first implementation, ONETM-Serialized, revisits the idea of serialization of overflowed trans-

actions first proposed in TCC [39] (described in Chapter 4), adapting this idea to work within

the context of the conventional memory system used by our baseline multiprocessor. ONETM-

Serialized stalls all other threads in an application when one of the threads needs to execute an

overflowed transaction, as illustrated in Figure 6.1b (threads executing non-transactionally stall

to maintain strong atomicity [10]). In this section we first describe the structures that ONETM-

Serialized requires and its operation using these structures. We then discuss the required operation

system involvement. Finally, we close the section with a summary.

6.1.1 Structures

ONETM-Serialized employs the bounded hardware transactional memory presented in Section 2.6

as a foundation. To support overflowed transactions, ONETM-Serialized adds two transaction sta-

tus words, the shared (per-process) transaction status word (STSW) and the private (per-thread)

transaction status word (PTSW). The STSW resides in a fixed location in the virtual address space

of each process and contains an overflowed bit, which is set while any thread in the application

is executing an overflowed transaction. The PTSW, by contrast, is an architected machine regis-

ter (i.e., it persists across context switches because the operating system saves and restores this

register along with all the other architected registers). The PTSW also contains an overflowed bit

(set only when the current thread is executing an overflowed transaction), as well as a transaction

82

ONETM-Serialized Algorithm

load(A)

while STSW.overflowed and
not PTSW.overflowed:

stall
if Cache[A].state == I:

obtain_permissions(A,read)
if in_transaction:

Cache[A].read_bit = true
return Cache[A].data

store(A,v)

while STSW.overflowed and
not PTSW.overflowed:

stall
if Cache[A].state != M:

obtain_permissions(A,write)
if (in_transaction) and

(not Cache[A].written_bit):
write back A
Cache[A].written_bit = true

Cache[A].data = v

commit

while STSW.overflowed and
not PTSW.overflowed:

stall
flash-clear written bits
flash-clear read bits
if PTSW.overflowed:

PTSW.overflowed = false
STSW.overflowed = false

in_transaction = false

evict(A)

if (Cache[A].read_bit) or
(Cache[A].written_bit)

if not PTSW.overflowed:
while STSW.overflowed:
stall

atomically set STSW.overflowed
set PTSW.overflowed
timestamp = -1

if Cache[A].dirty:
write back A

Cache[A].valid = false

Figure 6.3: ONETM-Serialized algorithm The algorithm builds on the bounded hardware transac-
tional memory presented in Figure 2.11 on page 35 by using the structures detailed in Figure 6.2 on
page 82 to implement overflow handling. On an overflow, a transaction stalls until the overflowed
bit of the STSW is clear and then atomically sets this bit. Other processors check the overflowed
bit, stalling if it is set and not resuming execution until it is cleared as part of the commit of the
overflowed transaction. Functions not shown are unchanged from Figure 2.11 on page 35.

nesting depth (TND) field (the overflowed analogue of the TND field described in Section 2.6).

These status words are summarized in Figure 6.2 (the OTID field of the STSW will be introduced

in Section 6.2.2).

83

6.1.2 Operation

Here we describe the basic operation of ONETM-Serialized, including when and how a transaction

transitions to overflowed mode, how the system maintains isolation while an overflowed transaction

is executing, and commit of overflowed transactions. Figure 6.3 on page 83 presents the extensions

that ONETM-Serialized makes to the bounded HTM algorithm from Figure 2.11 on page 35 in

order to support overflowed transactions.

When to transition to overflowed mode. A transaction transitions to overflowed mode when it

has to evict a transactionally-accessed block. In addition, a transaction that experiences an interrupt

during execution aborts and restarts execution in overflowed mode.

Transitioning to overflowed mode. To transition to overflowed execution, the processor must

ensure that no other thread in the application is executing in overflowed mode. The key to enforcing

this property is the overflowed bit of the STSW, which acts much like a mutex lock on overflowed

execution. A transaction may only transition to overflowed execution after it has atomically changed

the bit from unset to set. When transitioning to overflowed execution, the transaction also sets the

overflowed bit of the PTSW. The TND field of the PTSW is used to implement the subsumption

of nested transactions (i.e., nested transaction initiation and commit are treated as no-ops, except

for the manipulation of the TND field). When a transaction transitions to overflowed mode, it

sets its timestamp to −1, i.e. the lowest timestamp in the system. This action ensures that it will

be prioritized in conflict resolution. In Figure 6.3 on page 83, evict details the transition to

overflowed mode when evicting a transactionally-accessed block.

Maintaining isolation. To serialize execution during overflow, all threads in the application that

are not executing an overflowed transaction monitor the overflowed bit in the STSW and stall if it

is set (load, store, and commit in Figure 6.3 on page 83). To prevent overflowed transactions’

STSW accesses causing all concurrently-executing bounded transactions to abort, STSW accesses

are not made part of a transaction’s read or write sets. Nonetheless, while an overflowed transaction

is executing, it may conflict with a (stalled) bounded transaction. Any such conflict will be detected

locally by the stalled bounded transaction. Because the overflowed transaction is guaranteed to have

a lower timestamp, the conflict will be resolved by aborting the bounded transaction.

To make processors’ reads of the STSW’s overflowed bit inexpensive, the STSW can be coher-

ently cached in a special register. Rather than having the processor read this register on all memory

84

accesses, external write requests would snoop the register. A write request to the STSW would trig-

ger a pipeline flush, at which point the local processor would have to re-acquire read permissions

to the STSW before resuming execution (stalling if it sees the overflowed bit as set after the re-

acquire). This implementation is similar to that used to support speculative out-of-order execution

of loads in current multiprocessors [35].

Committing an overflowed transaction. An overflowed transaction clears the overflowed bits

in the STSW and the PTSW as part of a non-nested commit. This operation unstalls all other

processors.

Discussion. The STSW and PTSW together provide support for virtualization of overflowed trans-

actions. If an overflowed transaction is context-switched out, the other threads continue to stall on

the overflowed bit in the STSW. Because the PTSW persists across context switches and migrations,

a thread will not forget that it is executing an overflowed transaction nor the nesting depth of the

current transaction.

ONETM-Serialized also supports paging of transactionally-accessed data. The potential dan-

ger here is that a bounded transaction could access a given virtual memory address, the address

be remapped to a different physical address, and then the overflowed transaction access the new

physical address. In this case, the conflict between the bounded and overflowed transaction would

not be detected. To eliminate this case, when a page of virtual memory is remapped, all currently-

executing bounded transactions are aborted as part of the process of invalidating the current mapping

from processors’ translation lookaside buffers (the so-called “TLB shootdown”). If a transaction is

continually aborted in such a fashion, it can restart execution in overflowed mode (similar to the

handling of interrupts within a transaction).

6.1.3 Runtime Involvement

The runtime must inform each processor of the location of the STSW. In addition, the OS must save

and restore the PTSW on context switches as with all other architected registers.

6.1.4 ONETM-Serialized Summary

ONETM-Serialized extends the bounded HTM described in Section 2.6 to support unbounded trans-

actions by adding the STSW and the PTSW (Figure 6.2 on page 82). The price of this relatively

85

small change over the baseline, however, is the loss of all concurrency when a transaction overflows,

which will have a significant negative impact on performance if overflows are frequent. We next pro-

pose ONETM-Concurrent, an implementation that allows concurrent execution of non-overflowed

transactions, non-transactional code, and a single overflowed transaction.

6.2 ONETM-Concurrent

If overflows are truly rare, then ONETM-Serialized may be sufficient to handle them without perfor-

mance loss. However, if overflows are not extremely rare, it is likely that the serialization induced

by ONETM-Serialized will result in performance degradation. To provide greater performance

robustness to overflows, ONETM-Concurrent extends ONETM-Serialized to allow other code to

execute concurrently with the single overflowed transaction (Figure 6.1c). To achieve this property,

it introduces per-block persistent transaction metadata as part of the architected state. The system

uses this metadata to track the read and write set of the single overflowed transaction; other threads

then check the metadata to detect conflicts. To efficiently provide this metadata, each cache-block-

sized block of physical memory is augmented with additional bits; these bits are the overflowed

equivalents of the read/written bits described in Chapter 2. When the overflowed transaction writes

(reads) a block, it sets the overflowed metadata write (read) bit. A single set of bits per memory

block is sufficient because there can be only one overflowed transaction at a time.

By inspecting the overflowed metadata for a given block, non-overflowed transactional and

non-transactional accesses can detect conflicts with the overflowed transaction. The metadata thus

ensures that all other threads will detect conflicts with the overflowed transaction, even if has been

pre-empted or has migrated to a different processor than that on which it started execution. Below,

we first describe the storage and manipulation of the metadata. We then discuss how lazy clearing

can be employed to eliminate the requirement that an overflowed transaction clear all its metadata as

part of commit, followed by a discussion of how ONETM-Concurrent supports having overflowed

transactions set the overflowed read bit for a given block without needing to have write permissions

for the block. We then detail required operating system support. We close the section by comparing

ONETM-Concurrent to the prior work described in Chapter 4.

86

ONETM-Concurrent Algorithm with Active Clearing

begin

in_transaction = true
if start_as_overflowed:

while STSW.overflowed and
not PTSW.overflowed:

stall
set STSW.overflowed
set PTSW.overflowed
timestamp = -1
start_as_overflowed = false

else:
timestamp = clock

commit

foreach address A in Cache:
Cache[A].read_bit = false
Cache[A].written_bit = false

if PTSW.overflowed:
for A in read_set:

obtain perms to A
A.read_bit = false

for A in write_set:
obtain perms to A
A.written_bit = false

PTSW.overflowed = false
STSW.overflowed = false

in_transaction = false

evict(A)

if (Cache[A].read_bit) or
(Cache[A].written_bit)
start_as_overflowed = true
abort()

if Cache[A].dirty:
write back A

Cache[A].valid = false

load(A)

if Cache[A].state == I:
obtain_permissions(A,read)

if PTSW.overflowed:
A.read_bit = true

else:
while A.written_bit:
stall

if in_transaction:
Cache[A].read_bit = true

return Cache[A].data

store(A,v)

if Cache[A].state != M:
obtain_permissions(A,write)

if PTSW.overflowed:
A.written_bit = true

else:
while (A.read_bit or

A.written_bit):
stall

if (in_transaction) and
(not Cache[A].written_bit):
write back A
Cache[A].written_bit = true

Cache[A].data = v

Figure 6.4: ONETM-Concurrent algorithm with active clearing. The algorithm builds on the
bounded hardware transactional memory presented in Figure 2.11 on page 35. Each memory block
is extended with a pair of read and written bits that travel coherently with the data for the block
(denoted as A.read bit and A.written bit). The overflowed transaction sets these bits and
other threads check them to determine conflicts. At commit, the overflowed transaction clears these
bits for all blocks it has accessed. Functions not shown are unchanged from Figure 2.11 on page 35.

87

6.2.1 Metadata Operation

The metadata used by ONETM-Concurrent comprises two bytes per memory block (two bits indi-

cating transaction read and write and a 14-bit identifier to be described later). This metadata is part

of the system’s architected state, existing both in caches (in addition to transactional read/written

bits used by non-overflowed transactions) and memory. As the metadata is logically associated with

every block of data, the metadata travels with the data anytime the data block is transferred (e.g.,

cache misses, responses from memory, cache-to-cache data transfers, and cache evictions). When

responding to a cache miss, the memory controller provides both the data and metadata bits from

the memory in parallel. Although this metadata increases the size of the data payload, the coherence

protocol control logic itself need not change, and thus no special logic is required to communicate

and manage the metadata. Non-overflowed transactions check for conflicts by simply examining

the overflowed metadata of a cache block after they have brought the block into their cache.

Figure 6.4 on page 87 details the basic operation of ONETM-Concurrent. This algorithm as-

sumes that an overflowed transaction clears the overflowed read and written bits as part of commit.

We discuss problems with this assumption and a mechanism for relaxing it in Section 6.2.2.

Metadata storage. The problem of where to store the metadata of ONETM-Concurrent in memory

is similar (but not identical) to the classic problem of where to store directory state in a directory-

based implementation of cache coherence (or token count state in a token coherence-based imple-

mentation [70]). One implementation option for storage of this metadata is to add dedicated storage

at each memory controller. Assuming a memory system with 64-byte blocks, this dedicated storage

represents a 3% memory overhead. This approach is similar to that taken by several pioneering

implementations of directory coherence [58, 60, 61, 65]. A conceptually similar approach that

avoids adding dedicated storage is for each memory controller to allocate a fixed-sized region in its

physical memory to store the metadata associated with its remaining addressable memory.

Another common approach to storing directory state is to use part of the per-block space allo-

cated for error-correction codes [6, 34, 38, 51, 81]. As discussed by Gharachorloo et al. [34], it

is possible to free sufficient space for metadata storage at the cost of a slight loss in error cover-

age by coarsening the granularity at which error correction and detection is performed. ONETM-

Concurrent can use this approach as well, and in fact, it is simpler to implement in our context.

One known disadvantage of using ECC codes to store coherence protocol state is that operations

88

that were previously simply reads or writes must now be read-modify-writes in order to update the

coherence state [34, 69]. In contrast, the metadata used by ONETM-Concurrent is semantically

simply extra data from the point of view of the cache coherence protocol (as discussed above), and

the maintenance of this metadata imposes little extra control logic on memory controllers.

We finally note that one mechanism from directory protocol implementations that is not relevant

to ONETM-Concurrent is the directory cache (see Section 3.2.4 of Martin’s dissertation [69]). In

the context of coherence, a directory cache has two potential purposes: first, it can reduce latency

for memory accesses (as the directory lookup is on the critical path of a miss), and second, it can

serve to eliminate the need to store directory state in memory entirely (by invalidating a block from

all processors’ caches if its directory entry must be evicted from the directory cache). In ONETM-

Concurrent, however, accessing metadata incurs no extra latency over accessing data (eliminating

the first potential benefit of a metadata cache). Additionally, as there is no bound on the number of

blocks that a transaction may access, metadata must be maintained for every block in the system

(eliminating the second potential benefit of a metadata cache).

Transitioning to overflowed mode. When a transaction overflows, it transitions to overflowed

execution mode. A simple way to accomplish this transition is to abort the transaction and restart

it in overflowed mode after ensuring that no other thread in the application is already executing in

overflowed mode (by checking the overflowed bit of the STSW). This is the specific implementation

that we evaluate in Chapter 7. Alternatively, ONETM-Concurrent could avoid an abort by more

gracefully transitioning to overflowed mode. As before, the processor must first ensure that no

other thread in the application is executing in overflowed mode and transition itself to overflowed

mode by setting the overflowed bit of the STSW. Next, the processor walks the data cache to set

the overflowed metadata for blocks read or written by the transaction; this action ensures that the

conflict detection information for these blocks is not lost if the overflowed transaction is context

switched. As a further optimization, the processor could update the metadata gradually as blocks

overflow the caches and defer the metadata updates for non-overflowed blocks until a context switch

actually occurs.

89

ONETM-Concurrent Algorithm with Lazy Clearing

load(A)

if Cache[A].state == I:
obtain_permissions(A,read)

if PTSW.overflowed:
A.read_bit = true
A.OTID = STSW.OTID

else:
if A.written_bit:

if metadata_is_stale(A):
A.written_bit = false

else:
while STSW.overflowed:

stall
if in_transaction:
Cache[A].read_bit = true

return Cache[A].data

metadata is stale(A)

if not STSW.overflowed:
return true

if A.OTID != STSW.OTID:
return true

return false

commit

foreach address A in Cache:
Cache[A].read_bit = false
Cache[A].written_bit = false

if PTSW.overflowed:
STSW.OTID++
PTSW.overflowed = false
STSW.overflowed = false

in_transaction = false

store(A,v)

if Cache[A].state != M:
obtain_permissions(A,write)

if PTSW.overflowed:
A.written_bit = true
A.OTID = STSW.OTID

else:
if A.read_bit or

A.written_bit:
if metadata_is_stale(A):
A.read_bit = false
A.written_bit = false

else:
while STSW.overflowed:
stall

if (in_transaction) and
(not Cache[A].written_bit):
clean Cache[A].data
Cache[A].written_bit = true

Cache[A].data = v

Figure 6.5: Addition of lazy clearing to ONETM-Concurrent algorithm. This algorithm adds
lazy clearing to the algorithm presented in Figure 6.4 on page 87. Rather than the overflowed
transaction clearing the overflowed read and written bits at commit, processors check for staleness
of these bits on conflicts. Functions not shown are unchanged from Figure 6.4 on page 87.

90

6.2.2 Lazy Metadata Clearing

The above discussion assumes that an overflowed transaction clears all the overflowed read and writ-

ten bits at commit. However, this assumption is not practical: the number of blocks with non-zero

overflowed transactional metadata is unbounded, and such blocks could be in any cache, memory

module, or even swapped to disk. As such, it is not possible to easily clear all the overflowed trans-

actional metadata. In this section we detail lazy clearing, a mechanism that eliminates the need for

overflowed transactions to clear metadata at commit.

Instead of actively clearing the metadata, the system clears the metadata lazily by using an

overflowed transaction identifier (OTID) to differentiate between stale and current metadata. The

per-block metadata is extended to hold an OTID (the 14-bit identifier mentioned earlier) that is up-

dated anytime the metadata read/written bits are set. The OTID of the active overflowed transaction

is also stored in the STSW (see Figure 6.2a), allowing all processors to fetch the current OTID by

executing a coherent read request to its location. When an overflowed transaction commits, it in-

crements the OTID in the STSW. Instead of explicitly clearing the metadata bits when it completes,

the overflowed transaction simply clears the overflowed bit in the STSW as before.

A processor checks for conflicts by checking the metadata as described above; the processor

elides this check if the overflowed bit in the PTSW is set. If the processor detects a possible conflict,

it then proceeds to check whether the OTID associated with the conflicting memory block is equal

to the currently active OTID (by reading the STSW). If the IDs do not match, the processor proceeds

without stalling or aborting (i.e., the metadata is stale). If the IDs match, a conflict exists and the

requesting processor stalls until the overflowed transaction clears the STSW’s overflowed bit during

commit. While a processor is stalling, another conflict can cause its transaction to abort. Figure 6.5

on page 90 details the addition of lazy clearing to the basic ONETM-Concurrent algorithm presented

in Figure 6.4 on page 87.

If OTIDs were never reused, this approach would avoid the need to ever clear the metadata.

However, the OTID width is finite and small. As a result, OTIDs will eventually wrap around,

creating the potential for false conflicts and unnecessary delay. Such false conflicts can occur only

when (1) an overflowed transaction is active (otherwise the metadata is ignored) and (2) the thread

attempting the access is not executing in overflowed mode. The stall due to the false conflict will

91

be temporary, because once the active overflowed transaction completes it clears the overflowed bit

in the STSW, thus un-stalling the victim of the false conflict.

To reduce false stalls, the processor opportunistically clears stale overflowed transaction meta-

data whenever possible. Whenever a processor not executing an overflowed transaction writes a

cache block, it clears the associated metadata. Thus, as long as a block has been written since the

last time the current OTID was used, no false conflicts will occur on that block. The metadata can

also be cleared whenever a processor manipulates a cache block in which the current OTID does not

match the block’s OTID. Lazily clearing metadata does not impact correctness or forward progress;

it is only a performance optimization.

6.2.3 Lazily Coherent Metadata

Although the metadata can be kept exactly coherent by requiring a processor to have write per-

mission to a block to modify its metadata, such a requirement causes unnecessary invalidations of

blocks in shared state (and thus transaction conflicts) when only the metadata needs to be modified,

and also inhibits the efficient lazy clearing of metadata.

Instead, we would like a processor executing an overflowed transaction to be able to set the

metadata without needing exclusive permissions to the block. As there is only one active overflowed

transaction at a time, there will be at most a single writer (even if there are multiple readable copies

in the system). However, to prevent out-of-order writebacks from overwriting more recent metadata

with stale metadata, the system allows only the owner of the block (non-exclusive or exclusive) to set

the metadata. Many cache coherence protocols already include the notion of a single non-exclusive

read-only dirty owner (the “O” state [107]) that is responsible for writing back the block to memory

upon eviction. Once the metadata has been written, it is the owner’s responsibility to ensure the

data is eventually written back to memory (or transfer the ownership, and thus the responsibility,

on to another processor). Some protocols already support a non-dirty owner as part of determining

which processor responds with data during a shared-intervention [70, 110]. In protocols that grant

non-exclusive owner status to the most recent requester, whenever a processor in an overflowed

transaction requests a block, it will be able to set the read bit immediately after the miss completes.

In the case where a block is in the cache in shared but not owned state, the overflowed transaction

issues a remote request to obtain ownership of the block.

92

The key to the correctness of this lazy updating of metadata is that the system guarantees that

any new requests for the block receive the most recent version of the metadata. Once an overflowed

transaction has set the read bit (and thus has the block in owned state), any other processor that tries

to write the block will issue a cache request and receive the most recent version of the metadata,

indicating the conflict. Processors will only set the written bit when they are writing the block,

in which case they have exclusive permissions to it; thus, any subsequent read or write will again

receive the most recent copy of the metadata and detect the conflict. Any processor can clear the

metadata opportunistically as described above; if the processor owns the block, then its clearing of

the metadata will propagate to other processors.

6.2.4 Example Execution

Figure 6.6 illustrates the lazy coherence and clearing of metadata. At time t1, processor P1 loads the

block A into its cache; at that time, there is no overflowed transaction executing and the metadata

for A is ∅. At t2, P0 overflows, setting the overflowed bit of the STSW and incrementing the OTID.

At t3, P0 loads A into its cache in owned state and sets the read bit for A, as well as writing its

OTID into the OTID metadata field for A. P1 now has stale metadata in its cache, but there is no

conflict. At t4, P2 loads A into its cache; because P0 owns A, it supplies the data (and metadata) to

P2. Again, there is no conflict. At t5, P3 requests A in modified state; as the owner, P2 supplies P3

with the data. P3 now stalls, because the read bit of A is set and the STSW indicates that the OTID

of the active overflowed transaction matches the OTID in the metadata of A. At t6 P0 commits its

overflowed transaction, clearing the overflowed bit of the STSW. A short time later, P3 sees that

the overflowed bit of the STSW is now clear and unstalls itself to perform its write of A. It also

opportunistically clears the metadata of A at this point. Because P3 has A in modified state, it will

ensure that its version of the metadata for A is given to anyone requesting A in the future.

6.2.5 Operating System Involvement

As in ONETM-Serialized, the operating system must save and restore the PTSW register as part of

thread state. Additionally, when swapping pages to and from disk, the operating system must save

and restore the associated metadata and OTIDs (as implemented in other systems [28, 102]). The

operating system may optionally clear metadata and OTIDs when zeroing pages before reallocation.

93

p0 p1 p2 p3

stall

STSW

{No, #7}

{Yes, #8}

{No, #8}

{Overflow?, OTID}

O:{ø}

O:{R, #8}

M:{R, #8}

S:{ø}
S:{R, #8}
I: I: I:

O:{R, #8}

M:{ø}

Ld A

Ld A

Ld A
St A

t1
t2
t3
t4
t5
t6
t7

Figure 6.6: Example illustrating lazy coherence and clearing of metadata in ONETM-
Concurrent. The white bars are non-overflowed transactions, the dark gray bars are overflowed
transactions, the straight lines are non-transactional execution, and the light gray color indicates
stalled execution. The example centers around a memory block with address A; the text to the right
of each processor is that processor’s MOESI coherence state and local metadata for A.

6.2.6 Comparison to Prior Work

Supporting only one unbounded transaction at a time enables ONETM-Concurrent to avoid fac-

ing challenging problems of the prior proposals discussed in Chapter 4, which seek to support

unbounded transactions with full concurrency. First, any system that supports more than one un-

bounded transaction at a time must also be able to abort these transactions in order to be able to

guarantee forward progress in the case of cyclic conflicts. Thus, any such system must support un-

bounded version management. ONETM-Concurrent, by contrast, avoides the need for unbounded

version management due to its policy of making the unbounded transaction highest-priority in con-

flict detection. Second, systems that support an unbounded number of unbounded transactions face

the challenge of detecting conflicts between these transactions. While prior proposals provide solu-

tions to this problem – e.g., the linked-list traversals of UTM, PTM, and VTM, Bulk’s traversal of

the signatures of swapped out transactions, and LogTM-SE’s maintenance of the summary signature

– ONETM-Concurrent avoids the problem altogether.

The price that ONETM pays for the above simplifications is, of course, a limit on concurrency

for overflowed transactions. In an n-processor system, the impact of this restriction is likely to be

small as long as the fraction of execution time that each processor spends in overflows is less than

1 ÷ n. In Chapter 7, we show that the combination of the permissions-only cache and ONETM

94

can provide similar performance to an idealized unbounded hardware transactional memory on the

workloads that we use.

6.3 Semantic Considerations in ONETM

This section describes the impact of various semantic choices on ONETM, including weak/strong

atomicity, starvation avoidance, support for IO within transactions, and support for an explicit abort

operation.

Weak and strong atomicity. As described in Section 2.2.2, strong atomicity is a model in which

transactions are guaranteed to be isolated from non-transactional memory accesses, whereas weak

atomicity is a model in which only conflicts between transactions are guaranteed to be detected. As

presented above, both ONETM-Serialized and ONETM-Concurrent enforce strong atomicity. In

ONETM-Serialized, all other processors stall while an overflowed transaction is executing, whether

these other processors are executing transactions or not. In ONETM-Concurrent, both transactonal

and non-transactional memory accesses check for conflicts with the overflowed metadata. Here, we

consider the possible impact on performance and complexity of instead supporting weak atomicity

in these systems.

In ONETM-Serialized, enforcing weak rather than strong atomicity can potentially increase

performance, as threads not executing transactions would not have to stall while an overflowed

transaction is executing. In addition, subsequent work by Hofmann et al. [50] made the observation

that the decision to enforce weak isolation could simplify implementation requirements. We discuss

this proposal in Section 6.4.

In ONETM-Concurrent, by contrast, enforcing weak rather than strong atomicity does not sig-

nificantly impact the design of the system and is unlikely to impact the system’s performance. The

only change to the system would be that only processors in transactions would check the overflowed

metadata on a load or store. Similarly, this policy choice would have a performance impact only

in the case where there actually are conflicts between transactions and non-transactional memory

accesses.

Starvation avoidance. As detailed in Section 2.6, the bounded hardware transactional memory

system on which ONETM builds guarantees that all transactions will eventually become highest-

95

priority in conflict resolution through its use of timestamps. In ONETM, however, the fact that

the overflowed transaction always acquires the lowest timestamp means that bounded transactions

are always vulnerable to being aborted by the overflowed transaction. To maintain the property

of starvation avoidance, if a transaction fails to make progress due to conflicts, it arbitrates to be-

come the overflowed transaction. As long as this arbitration process is fair (e.g., it could employ

the timestamps of the competing bounded transactions), this policy allows a transaction to avoid

starvation.

IO. The fact that unrestricted transactions never abort allows support for general IO within transac-

tions in ONETM. Although many common system calls and I/O may be handled via input/output

buffering, compensation actions [16], and/or transactional OS interfaces [86], some operations are

not easily handled within a transaction that may later be rolled back (e.g., sending a network re-

quest and receiving its response). To handle cases in which a transaction wants to perform a non-

transactional system call, the runtime system can transition the transaction into overflowed mode.

As the transaction will then never abort, programs can rely on this property to, for example, perform

arbitrary system calls or input/output within the transaction [11]. A similar approach to the problem

of supporting IO within transactions was proposed by the TCC project [41].

The performance impact of this mechanism is dependent on the frequency of IO within transac-

tions. The workloads described in Chapter 3 and used throughout this dissertation do not perform IO

within transactions. However, in a study of IO within critical sections in Firefox and MySql, Baugh

and Zilles [7] found that concurrent execution of multiple critical sections containing IO was rel-

atively infrequent. As such, ONETM-Concurrent in particular could potentially provide sufficient

performance.

Explicit abort. ONETM’s policy of allowing only one overflowed transaction at a time and priori-

tizing the overflowed transaction in conflict resolution means that the system never has to abort the

overflowed transaction. Consequently, unlike transactional memory systems that support the con-

current execution of multiple overflowed transactions (and must resolve conflicts between them),

ONETM does not require unbounded version management in order to resolve conflicts. It is true,

however, that unbounded version management is required if an explicit abort operation is desired as

part of the transactional interface to the programmer. The most straightforward way to support such

96

commit

if not overflowed:
while global lock held:

stall
flash-clear written bits
flash-clear read bits
if overflowed:

release global lock
overflowed = false

evict(A)

if (Cache[A].read_bit) or
(Cache[A].written_bit)
while global lock held:
stall

acquire global lock
overflowed = true

if Cache[A].dirty:
write back A

Cache[A].valid = false

Figure 6.7: Overflow handling algorithm of Hofmann et al. [50]. The algorithm employs a global
lock. To execute in overflowed mode, a transaction must first acquire the lock. Non-overflowed
transactions can commit only when the lock is free. The algorithm is conceptually similar to Figure
6.3 on page 83, but differs in (1) not requiring custom hardware for overflow handling, (2) stalling
non-overflowed transactions at commit rather than “in place”, and (3) providing weak rather than
strong atomicity.

unbounded version management in ONETM is to use the log-based version management presented

in Figure 2.12 on page 36.

If support for explicit abort is combined with the above-mentioned support for IO within trans-

actions, the system must ensure that a transaction that has performed irrevocable IO is not later

rolled back by the user. To maintain such a guarantee, the system could add a “performed-IO” bit

to the PTSW. This bit would be set on performance of an IO operation and checked to be clear on a

rollback, with a failed check causing an exception to be raised.

6.4 Subsequent Work

Hofmann et al. [50] propose a system that employs a global lock to serialize overflowed transac-

tions. Before beginning execution in overflowed mode, a transaction must acquire this global lock.

Non-overflowed transactions are allowed to continue execution in the presence of an overflowed

transaction, but can commit only when no overflowed transaction is concurrently executing (i.e.,

the lock is free). As in ONETM-Serialized, all conflicts between an overflowed transaction and a

non-overflowed transaction will be detected by the non-overflowed transaction and are resolved in

favor of the overflowed transaction. Figure 6.7 on page 97 shows the pseudocode for this system.

This system is conceptually similar to ONETM-Serialized but differs by (1) enforcing weak

atomicity rather than strong atomicity and (2) stalling non-overflowed transactions at commit rather

97

than in place when an overflowed transaction begins execution. The benefit of enforcing only weak

atomicity is that the processor does not need to check for the presence of an overflowed transac-

tion on each load and store. It is not clear whether the difference in stalling policy would have

a significant performance impact, as non-overflowed transactions are likely to be short relative to

overflowed transactions.

TokenTM [14] details an approach to unbounded hardware transactional memory that supports

multiple overflowed transactions executing concurrently via transactional tokens. Adapting the use

of tokens from token coherence [70], a transaction is allowed to write a block if it holds all tokens

and is allowed to read the block if it holds at least one token. Once a transaction acquires a token

for a given block, it retains that token until commit or abort, at which time it releases all its tokens1.

TokenTM employs logging in order to support abort of unbounded transactions (necessary for

resolving cyclic conflicts) as well as to record all tokens acquired by the transaction (necessary

for releasing these tokens on commit or abort). If a transaction cannot acquire sufficient tokens

to complete its access, it signals a conflict. TokenTM generalizes the lazy coherence employed

by ONETM-Concurrent to support simultaneous modifications of a block’s metadata by different

transactions.

The approach taken by TokenTM is conceptually similar to ONETM-Concurrent in that both

employ metadata that travel coherently with data. TokenTM, however, avoids ONETM’s restriction

of allowing only one overflowed transaction at a time. This significant increase in concurrency

has several costs: (1) requiring a mechanism for unbounded version management, (2) requiring a

mechanism for recording all tokens held by a transaction, (3) performing clearing of metadata (i.e.,

token release) actively rather than lazily at the end of a transaction, and (4) needing to walk the logs

of all active transactions to detect conflicts in the worst case.

6.5 Summary

This chapter described ONETM, a proposal for supporting unbounded hardware transactional mem-

ory that operates via serialization of overflowed transactions. The key concept of ONETM is the

use of an overflowed bit that resides in an application’s virtual address space. Transactions read
1The authors propose an optimization that enables token release in constant time for transactions that have not

overflowed the cache.

98

and modify this overflowed bit in order to determine when they must stall and/or can begin an

overflowed transaction.

We presented two instantiations of ONETM, ONETM-Serialized and ONETM-Concurrent. In

ONETM-Serialized, one thread beginning an overflowed transaction results in all other threads in

the application stalling. In ONETM-Concurrent, by contrast, non-conflicting bounded transactions

(and non-transactional operations) can execute and commit in the presence of an overflowed trans-

action. To support conflict detection, ONETM-Concurrent adds overflowed metadata that (1) travels

coherently with data blocks, (2) is set on an access by an overflowed transaction, and (3) is read by

other threads to determine conflicts.

In the next chapter we quantitatively evaluate the performance of ONETM. We find that on

the workloads that we use, the combination of ONETM and the permissions-only cache provides

similar performance to that of an idealized unbounded hardware transactional memory system.

99

Chapter 7

Experimental Evaluation of ONETM

and the Permissions-Only Cache

In this chapter we experimentally evaluate ONETM and the permissions-only cache using the work-

loads and infrastructure described in Chapter 3. We first analyze the performance of ONETM-

Serialized and ONETM-Concurrent relative to the idealized unbounded HTM system described in

Chapter 3, which handles overflows with full concurrency and no overheads. We focus on the

questions of (a) how much the policy employed by ONETM-Serialized of serializing the system on

overflows degrades overall performance and (b) how much the increased concurrency of ONETM-

Concurrent reduces this negative performance impact. We then analyze whether enforcing weak

rather than strong atomicity could increase the performance of ONETM-Serialized and ONETM-

Concurrent; the answer to this question can help system designers reason about which policy to im-

plement. Next, we analyze the impact of lazy clearing on the performance of ONETM-Concurrent,

focusing on the questions of (a) whether finite-length OTID’s result in spurious conflicts and (b)

whether OTID’s are necessary to avoid performance degradation. Finally, we examine the impact on

performance of adding a permissions-only cache to ONETM-Serialized and ONETM-Concurrent.

Our main objective is to determine whether the combination of ONETM and the permissions-only

cache can achieve the performance of the idealized HTM. We also examine whether the sector cache

organization employed by the permissions-only cache to reduce tag overhead results in performance

degradation due to increased cache conflicts.

100

In Section 7.1 we detail the configurations that we evaluate in this chapter. We evaluate the

performance of ONETM-Serialized and ONETM-Concurrent in Section 7.2. We next examine the

performance impact of weak atomicity in Section 7.3. Section 7.4 examines the impact of lazy

clearing on the performance of ONETM-Concurrent. We examine the impact of the permissions-

only cache on the performance of ONETM in Section 7.5. We discuss the power implications of

our proposals in Section 7.6. We summarize the main results of this chapter in Section 7.7.

7.1 Experimental Methodology

We use the simulator infrastructure and workloads described in Chapter 3. We also reuse the ide-

alized unbounded HTM that handles overflows with full concurrency and no overheads; we will

measure the performance of our systems against the performance of this idealized system.

In this chapter, ONETM-Serialized and ONETM-Concurrent implement strong atomicity unless

indicated otherwise. In addition, unless indicated otherwise, ONETM-Concurrent implements lazy

clearing with 14-bit OTID’s as described in Section 6.2.2.

In all configurations of the permissions-only cache that we present, the metadata for a given

block occupies two bits. Our default configuration of the permissions-only cache holds 256 bytes

of metadata. This default permissions-only cache can thus hold the metadata for 1024 blocks (64

kilobytes of data). Unless indicated otherwise, the permissions-only is organized as a sector cache,

with each sector holding 64 bytes of metadata (i.e., metadata for 256 blocks). In all configurations

of the permissions-only cache it is 4-way set-associative.

Our default configurations of ONETM use a foundation of bounded HTM employing cleaning

for version management (Figure 2.11 on page 35). Thus, by default the permissions-only cache can

hold metadata for blocks that have been transactionally read but not written only. When choosing a

victim to evict, the L1 cache prioritizes blocks whose eviction will not cause a transaction abort.

7.2 Evaluation of ONETM

We present and analyze the performance of ONETM in this section. We first study the question

of how the policy of serializing the system on overflow employed by ONETM-Serialized degrades

overall performance on our workloads relative to the idealized fully-concurrent unbounded HTM.

101

We then examine the extent to which the increased concurrency afforded by ONETM-Concurrent,

which serializes only overflowed transactions, increases performance over full system serialization.

7.2.1 What is the Impact of Serializing the System on Overflow?

Figure 7.1 on page 103 presents the scalability of ONETM-Serialized over sequential execution.

We also present the performance of the idealized unbounded HTM described in Chapter 3. On

many workloads, ONETM-Serialized matches or nearly-matches the idealized system’s perfor-

mance. However, on several workloads (most notably genome) ONETM-Serialized suffers a sub-

stantial slowdown. To gain insight into these results, Figure 7.2 on page 103 presents a break-

down of execution time for the two systems. This figure indicates that the performance losses of

ONETM-Serialized relative to the idealized system correspond directly to time spent stalled due to

an overflowed transaction.

Figure 7.3 on page 104 presents the amount of time that each processor spends in overflowed

transactions on average under ONETM-Serialized (we discuss the second bar below). We first note

that this number is uniformly small: for all workloads, this figure is less than 4%, and for all but three

workloads, it is less than 1%. Several workloads spend no time in overflowed transactions, meaning

that ONETM-Serialized can match the performance of the idealized system on these workloads

(Figure 7.1 on page 103).

However, even a small amount of time spent in overflowed transactions can result in perfor-

mance degradation for ONETM-Serialized. Each cycle that a processor spends in an overflowed

transaction results in all other processors being stalled. Thus, for example, the 1% of time that each

processor spends in overflowed execution in genome results in each processor spending 30% of its

execution time stalling due to overflows (Figure 7.2 on page 103).

7.2.2 Does Serialization of Only Overflowed Transactions Increase Performance?

In this subsection we analyze the performance of ONETM-Concurrent, focusing on the question of

whether serializing only overflowed transactions increases overall performance over serializing the

entire system on an overflow.

As shown in Figure 7.3 on page 104, processors spend a similar amount of time in over-

flowed transactions under ONETM-Serialized and ONETM-Concurrent. However, this overflow

102

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-S

id
eal

km
eans

O
n
eT

M
-S

id
eal

genom
e

O
n
eT

M
-S

id
eal

genom
e-sz

O
n
eT

M
-S

id
eal

vacation

O
n
eT

M
-S

id
eal

vacation_opt

O
n
eT

M
-S

id
eal

vacation_opt-sz

O
n
eT

M
-S

id
eal

ssca2

O
n
eT

M
-S

id
eal

labyrinth
O

n
eT

M
-S

id
eal

intruder

O
n
eT

M
-S

id
eal

intruder_opt

O
n
eT

M
-S

id
eal

intruder_opt-sz

O
n
eT

M
-S

id
eal

yada

O
n
eT

M
-S

id
eal

python

O
n
eT

M
-S

id
eal

python_opt

Figure 7.1: Scalability of workloads under ONETM-Serialized. Execution is on 32 cores, mean-
ing that a speedup of 30 is near-ideal. The first bar (“OneTM-S”) of each group shows the perfor-
mance of ONETM-Serialized, while the second bar (“ideal”) shows the performance of the idealized
HTM described in Chapter 3. All configurations implement strong atomicity.

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

id
eal

km
eans

O
n
eT

M
-S

id
eal

genom
e

O
n
eT

M
-S

id
eal

genom
e-sz

O
n
eT

M
-S

id
eal

vacation

O
n
eT

M
-S

id
eal

vacation_opt

O
n
eT

M
-S

id
eal

vacation_opt-sz

O
n
eT

M
-S

id
eal

ssca2

O
n
eT

M
-S

id
eal

labyrinth

O
n
eT

M
-S

id
eal

intruder

O
n
eT

M
-S

id
eal

intruder_opt

O
n
eT

M
-S

id
eal

intruder_opt-sz

O
n
eT

M
-S

id
eal

yada

O
n
eT

M
-S

id
eal

python

O
n
eT

M
-S

id
eal

python_opt

Figure 7.2: Time breakdown of ONETM-Serialized. “busy” represents cycles in which the pro-
cessor is not stalled for a synchronization-related reason. “barrier” represents cycles stalled at a
barrier. “conflict” represents cycles lost due to conflicts. “overflow serialization” represents cycles
that the processor is stalled due to another thread executing an overflowed transaction.

103

0

1

2

3

4

5

%
 o

f
ru

n
ti

m
e

O
n
e
T

M
-S

O
n
e
T

M
-C

km
eans

O
n
e
T

M
-S

O
n
e
T

M
-C

genom
e

O
n
e
T

M
-S

O
n
e
T

M
-C

genom
e-sz

O
n
e
T

M
-S

O
n
e
T

M
-C

vacation

O
n
e
T

M
-S

O
n
e
T

M
-C

vacation_opt

O
n
e
T

M
-S

O
n
e
T

M
-C

vacation_opt-sz

O
n
e
T

M
-S

O
n
e
T

M
-C

ssca2

O
n
e
T

M
-S

O
n
e
T

M
-C

labyrinth
O

n
e
T

M
-S

O
n
e
T

M
-C

intruder

O
n
e
T

M
-S

O
n
e
T

M
-C

intruder_opt

O
n
e
T

M
-S

O
n
e
T

M
-C

intruder_opt-sz

O
n
e
T

M
-S

O
n
e
T

M
-C

yada

O
n
e
T

M
-S

O
n
e
T

M
-C

python

O
n
e
T

M
-S

O
n
e
T

M
-C

python_opt

Figure 7.3: Percentage of execution time that is spent in overflowed transactions in ONETM-
Serialized and ONETM-Concurrent.

time results in significantly less performance degradation for ONETM-Concurrent. Figure 7.4 on

page 105 presents the scalability of ONETM-Concurrent. For reference we include the scalabil-

ity of ONETM-Serialized and the idealized unbounded HTM. ONETM-Concurrent significantly

improves on the performance of ONETM-Serialized: with the exception of yada, it is able to ap-

proach the performance of the idealized HTM. As Figure 7.5 on page 105 illustrates, it accomplishes

this improvement by reducing the time spent stalling on overflowed transactions.

Figure 7.6 on page 106 analyzes this reduction of time spent stalling on overflows in more detail,

showing the number of cycles spent stalling for each cycle of overflowed transaction execution. For

ONETM-Serialized this number is uniformly 31: while an overflowed transaction is executing, all

other processors must stall. For ONETM-Concurrent, however, this number corresponds to the

number of processors that want to begin an overflowed transaction while an overflowed transaction

is already executing. On all but two workloads this number is 5 or less.

7.2.3 Summary

In this section, we first showed that ONETM-Serialized matches the performance of the idealized

HTM on several of our workloads (those with no time spent in overflows). However, even 1% of

time spent in overflows causes the performance of ONETM-Serialized to degrade significantly rel-

104

0

10

20

30
sp

ee
d
u
p
 o

v
er

 s
eq

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

km
eans

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

genom
e

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

genom
e-sz

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

vacation

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

vacation_opt

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

vacation_opt-sz
O

n
eT

M
-S

O
n
eT

M
-C

id
eal

ssca2
O

n
eT

M
-S

O
n
eT

M
-C

id
eal

labyrinth

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

intruder

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

intruder_opt

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

intruder_opt-sz

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

yada

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

python

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

python_opt

Figure 7.4: Scalability of workloads under ONETM-Concurrent.

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

km
eans

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

genom
e

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

genom
e-sz

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

vacation

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

vacation_opt

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

vacation_opt-sz

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

ssca2

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

labyrinth

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

intruder

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

intruder_opt

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

intruder_opt-sz

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

yada

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

python

O
n
eT

M
-S

O
n
eT

M
-C

id
eal

python_opt

Figure 7.5: Time breakdown of ONETM-Concurrent.

105

0

10

20

30

o
v
er

fl
o
w

 s
ta

ll
 c

y
cl

es
 /

o
v
er

fl
o
w

 c
y
cl

es

km
eans

genom
e

genom
e-sz

vacation

vacation_opt

vacation_opt-sz

ssca2

labyrinth

intruder

intruder_opt

intruder_opt-sz

yada
python

python_opt

Figure 7.6: Stall time due to serialization of oveflowed transactions in ONETM-Concurrent.

ative to the fully-concurrent unbounded HTM. We then showed that by serializing only overflowed

transactions, ONETM-Concurrent increases robustness to overflows over ONETM-Serialized. For

ONETM-Concurrent, a processor stalls only when that processor overflows and there is already

another processor executing in overflowed mode. Figure 7.6 on page 106 shows that the number of

such simultaneous overflows is generally small, enabling ONETM-Concurrent to match or nearly-

match the performance of the idealized system on most workloads. However, ONETM-Concurrent

still suffers performance degradation from the fully concurrent system in a minority of cases.

7.3 Impact of Weak Atomicity on ONETM

We noted in Section 6.3 that the choice to support weak atomicity rather than strong atomicity

could have a positive performance impact on ONETM. In particular, enforcing weak atomicity

could potentially increase ONETM-Serialized performance by allowing non-transactional threads

to continue executing in the presence of an overflowed transaction. In ONETM-Concurrent, the

impact of enforcing weak rather than strong atomicity is that non-transactional memory accesses do

not have to check for conflicts with the overflowed bits. We quantitatively examine the impact of

weak atomicity on ONETM-Serialized and ONETM-Concurrent here. If this performance impact

was large, it could help influence system designers to enforce a semantics of weak rather than strong

atomicity.

106

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-S

O
n
eT

M
-S

w

km
eans

O
n
eT

M
-S

O
n
eT

M
-S

w

genom
e

O
n
eT

M
-S

O
n
eT

M
-S

w

genom
e-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

vacation

O
n
eT

M
-S

O
n
eT

M
-S

w

vacation_opt

O
n
eT

M
-S

O
n
eT

M
-S

w

vacation_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

ssca2

O
n
eT

M
-S

O
n
eT

M
-S

w

labyrinth

O
n
eT

M
-S

O
n
eT

M
-S

w
intruder

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder_opt

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

yada

O
n
eT

M
-S

O
n
eT

M
-S

w

python

O
n
eT

M
-S

O
n
eT

M
-S

w

python_opt

Figure 7.7: Impact of weak atomicity on ONETM-Serialized. Execution is on 32 cores, meaning
that a speedup of 30 is near-ideal. The first bar of each group (“OneTM-S”) shows ONETM-
Serialized with its default configuration of strong atomicity, and the second bar of each group
(”OneTM-Sw”) shows ONETM-Serialized configured to enforce weak atomicity.

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

O
n
eT

M
-S

w

km
eans

O
n
eT

M
-S

O
n
eT

M
-S

w

genom
e

O
n
eT

M
-S

O
n
eT

M
-S

w

genom
e-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

vacation

O
n
eT

M
-S

O
n
eT

M
-S

w

vacation_opt

O
n
eT

M
-S

O
n
eT

M
-S

w

vacation_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

ssca2

O
n
eT

M
-S

O
n
eT

M
-S

w

labyrinth

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder_opt

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

yada

O
n
eT

M
-S

O
n
eT

M
-S

w

python

O
n
eT

M
-S

O
n
eT

M
-S

w

python_opt

Figure 7.8: Time breakdown of ONETM-Serialized with strong and weak atomicity.

107

0

10

20

30
o
v
er

fl
o
w

 s
ta

ll
 c

y
cl

es
 /

 o
v
er

fl
o
w

 c
y
cl

es

halted in non-transactional execution

halted in transactional execution

O
n
eT

M
-S

O
n
eT

M
-S

w

genom
e

O
n
eT

M
-S

O
n
eT

M
-S

w

genom
e-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

vacation

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder_opt

O
n
eT

M
-S

O
n
eT

M
-S

w

intruder_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

w

yada

O
n
eT

M
-S

python

Figure 7.9: Stall time due to serialization of overflowed transactions in ONETM-Serialized.
The two components represent cycles wherein processor execution is halted due to an active over-
flowed transaction on another processor, broken down by what state the processor is in at the time
that it is stalled. Workloads not included do not execute any overflowed transactions. python
has overflowed transaction time when executed under strong atomicity but does not when executed
under weak atomicity.

7.3.1 Does Weak Atomicity Help ONETM-Serialized Performance?

Figure 7.7 on page 107 and Figure 7.8 on page 107 present the performance of ONETM-Serialized

configured to implement weak atomicity. For reference, we include the performance of ONETM-

Serialized configured to implement strong atomicity (i.e., the results from above). These graphs

show the somewhat unintuitive result that in fact the two configurations perform similarly: there is

essentially no performance benefit from implementing weak atomicity in ONETM-Serialized.

We examine this result in more detail in Figure 7.9 on page 108. This graph presents the number

of cycles that are spent stalled for each cycle that a processor is executing an overflowed transaction.

This number is subdivided into time spent stalling in transactional execution and time spent stalling

in non-transactional execution. As discussed above, for ONETM-Serialized configured with strong

atomicity, this number is always 31: when one processor is executing an overflowed transaction, all

other processors stall for the duration of the transaction. For ONETM-Serialized configured with

108

weak atomicity, this number corresponds to the number of other processors that are concurrently

executing bounded transactions.

This graph illustrates the reasons for the general lack of performance gain from weak atom-

icity in ONETM-Serialized. The majority of time spent stalling under strong atomicity on most

workloads is within transactions, meaning that these stalls must occur even under weak atomic-

ity. Furthermore, time spent stalling in non-transactional execution is often simply replaced by

increased time spent stalling in transactional execution.

7.3.2 Does Weak Atomicity Help ONETM-Concurrent Performance?

Figure 7.10 on page 110 shows that the difference between strong and weak atomicity has little per-

formance impact on the performance of ONETM-Concurrent. Figure 7.11 on page 110 details the

reasons that weak atomicity does not have a performance impact on our workloads: first, processors

spend a small amount of time stalling on conflicts with the overflowed bits (less than 1% of cycles

in all cases), and second, most of that time is spent within (bounded) transactions.

7.3.3 Summary

In this section, we evaluated the potential of weak atomicity to increase the performance of ONETM-

Serialized and ONETM-Concurrent. We found that in almost all cases, enforcing weak atomicity

provides little to no performance benefit over enforcing strong atomicity. The predominant reason is

that even when ONETM-Serialized and ONETM-Concurrent are configured to enforce strong atom-

icity, processors generally spend little time stalling on overflowed transactions in non-transactional

execution.

7.4 Impact of Lazy Clearing on ONETM-Concurrent Performance

As described in Section 6.2.2, lazy clearing of overflowed transaction metadata eliminates the re-

quirement that overflowed transactions actively clear this metadata as part of transaction commit

in ONETM-Concurrent. However, it can also result in performance degradation due to spurious

conflicts with stale metadata. The default configuration of ONETM-Concurrent employs 14-bit

overflowed transaction identifiers (OTID’s) to reduce the probability of such spurious conflicts: a

109

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-C

O
n
eT

M
-C

w

km
eans

O
n
eT

M
-C

O
n
eT

M
-C

w

genom
e

O
n
eT

M
-C

O
n
eT

M
-C

w

genom
e-sz

O
n
eT

M
-C

O
n
eT

M
-C

w

vacation

O
n
eT

M
-C

O
n
eT

M
-C

w

vacation_opt

O
n
eT

M
-C

O
n
eT

M
-C

w

vacation_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

w

ssca2

O
n
eT

M
-C

O
n
eT

M
-C

w

labyrinth

O
n
eT

M
-C

O
n
eT

M
-C

w
intruder

O
n
eT

M
-C

O
n
eT

M
-C

w

intruder_opt

O
n
eT

M
-C

O
n
eT

M
-C

w

intruder_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

w

yada

O
n
eT

M
-C

O
n
eT

M
-C

w

python

O
n
eT

M
-C

O
n
eT

M
-C

w

python_opt

Figure 7.10: Impact of weak atomicity on ONETM-Concurrent. The first bar of each group
(“OneTM-C”) shows ONETM-Concurrent with its default configuration of strong atomicity, and
the second bar of each group (”OneTM-Cw”) shows ONETM-Concurrent configured to enforce
weak atomicity.

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
cy

cl
es

not in transaction

in transaction

O
n
eT

M
-C

O
n
eT

M
-C

w

km
eans

O
n
eT

M
-C

O
n
eT

M
-C

w

genom
e

O
n
eT

M
-C

O
n
eT

M
-C

w

genom
e-sz

O
n
eT

M
-C

O
n
eT

M
-C

w

vacation

O
n
eT

M
-C

O
n
eT

M
-C

w

vacation_opt

O
n
eT

M
-C

O
n
eT

M
-C

w

vacation_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

w

ssca2

O
n
eT

M
-C

O
n
eT

M
-C

w

labyrinth

O
n
eT

M
-C

O
n
eT

M
-C

w

intruder

O
n
eT

M
-C

O
n
eT

M
-C

w

intruder_opt

O
n
eT

M
-C

O
n
eT

M
-C

w

intruder_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

w

yada

O
n
eT

M
-C

O
n
eT

M
-C

w

python

O
n
eT

M
-C

O
n
eT

M
-C

w

python_opt

Figure 7.11: Breakdown of stall time due to conflicts with overflowed transactions in ONETM-
Concurrent. The graph shows the percentage of total cycles that processors spend stalling on
conflicts with overflowed transactions, divided into stall cycles spent in bounded transactions and
stall cycles spent in non-transactional execution.

110

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

n
il

1
4

in
f

km
eans

n
il

1
4

in
f

genom
e

n
il

1
4

in
f

genom
e-sz

n
il

1
4

in
f

vacation

n
il

1
4

in
f

vacation_opt

n
il

1
4

in
f

vacation_opt-sz

n
il

1
4

in
f

ssca2

n
il

1
4

in
f

labyrinth

n
il

1
4

in
f

intruder
n
il

1
4

in
f

intruder_opt

n
il

1
4

in
f

intruder_opt-sz

n
il

1
4

in
f

yada

n
il

1
4

in
f

python

n
il

1
4

in
f

python_opt

Figure 7.12: Impact of OTID length on ONETM-Concurrent. The middle bar of each group
(“14”) shows ONETM-Concurrent with the default OTID length of 14 bits. The right and left bars
show variants with nil OTID’s (as if all overflowed transactions had the same OTID) and infinite-
length OTID’s respectively.

spurious conflict occurs only when an access conflicts with stale metadata and the OTID of the

metadata corresponds to the OTID of the currently-executing transaction.

In this section we examine the sensitivity of ONETM-Concurrent to OTID length and usage.

We first study the question of whether 14-bit OTID’s are sufficient to avoid performance degrada-

tion from infinite-length OTID’s (i.e., OTID’s that have no possibility of aliasing). To answer this

question, we examine the performance of ONETM-Concurrent in its default configuration of 14-bit

OTID’s relative to that of a variant configuration employing infinite-length OTID’s. Figure 7.12 on

page 111 presents these results (we discuss the first bar of this graph below). This figure indicates

that the default OTID length of 14 bits is sufficient to achieve the performance of infinite-length

OTID’s.

This result indicates that 14-bit OTID’s are sufficient to avoid spurious conflicts on our work-

loads. We next examine the question of whether they are necessary to do so. To answer this

question, we evaluate a variant configuration of ONETM-Concurrent that does not employ OTID’s

at all. Instead, if a transaction detects a conflict with the overflowed metadata, it simply checks

whether there is an overflowed transaction currently executing; if so, it assumes that this conflict is

with the active overflowed transaction and stalls. Transactions can still detect false conflicts (and

clear the overflowed metadata) in the case where there is a conflict with the overflowed metadata

and there is no currently-executing overflowed transaction.

111

In Figure 7.12 on page 111, the first bar of each group shows the performance of the no-OTID

variant of ONETM-Concurrent. Perhaps surprisingly, this configuration achieves the performance

of the default ONETM-Concurrent configuration on all workloads but genome. This result occurs

because (1) processors spend little time in overflowed execution (Figure 7.3 on page 104) and (2)

as described above, processors can still clear the overflowed transaction metadata on detecting that

it is stale.

7.4.1 Summary

In this section we evaluated whether the lazy clearing of metadata employed by ONETM-Concurrent

resulted in performance degradation due to spurious conflicts with stale metadata. We found that

with the default OTID length of 14 bits, ONETM-Concurrent experiences essentially no perfor-

mance loss from an idealized configuration with infinite-length OTID’s. Moreover, we found that

even if ONETM-Concurrent does not employ OTID’s at all, it still does not experience spurious

conflicts in most cases due to the fact that processors spend so little time in overflowed transactions.

7.5 Impact of the Permissions-Only Cache on ONETM Performance

In this section we evaluate the performance impact of the addition of a permissions-only cache to

ONETM. We first examine the question of how much a 256-byte read-only permissions-only cache

can increase the performance of ONETM-Serialized and ONETM-Concurrent. We then examine

the question of whether the fact that this permissions-only cache is organized as a sector cache

results in performance degradation from a non-sector cache organization. Finally, we examine

the performance impact of smaller and larger permissions-only caches and close the section by

analyzing the causes of (generally small) remaining performance differences between ONETM and

the idealized unbounded HTM.

7.5.1 Impact of the Read-Only Permissions-Only Cache on ONETM-Serialized

Figure 7.13 on page 113 and Figure 7.14 on page 113 present the impact of the addition of the

read-only permissions-only cache on ONETM-Serialized. The permissions-only cache significantly

reduces the time spent in overflows on several workloads, most notably genome. However, the

performance of ONETM-Serialized on yada suffers relative to the idealized system even after the

112

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

km
eans

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

genom
e

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

genom
e-sz

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

vacation

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

vacation_opt

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

vacation_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

ssca2

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

labyrinth

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

intruder

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

intruder_opt

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

intruder_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

yada

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

python

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

python_opt

Figure 7.13: Impact of read-only permissions-only cache on ONETM-Serialized performance.
“+pr” represents the addition of a 256-byte read-only permissions-only cache.

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

km
eans

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

genom
e

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

genom
e-sz

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

vacation

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

vacation_opt

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

vacation_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

ssca2

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

labyrinth

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

intruder

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

intruder_opt

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

intruder_opt-sz

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

yada

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

python

O
n
eT

M
-S

O
n
eT

M
-S

+
p
r

id
eal

python_opt

Figure 7.14: Impact of read-only permissions-only cache on ONETM-Serialized execution
time.

113

addition of the permissions-only cache. We note that intruder opt is unaffected by the addition

of the permissions-only cache; further investigation revealed that the unbounded transactions in that

workload are in fact due to pagefaults (Section 6.3).

7.5.2 Impact of the Read-Only Permissions-Only Cache on ONETM-Concurrent

We next examine the impact of the permissions-only cache on ONETM-Concurrent performance.

As Figure 7.15 on page 115 illustrates, the addition of the permissions-only cache serves to essen-

tially equalize the performance of ONETM-Concurrent with that of the idealized HTM. Figure 7.16

on page 115 indicates that ONETM-Concurrent augmented with the permissions-only cache suffers

virtually no serialization from overflows.

7.5.3 Sensitivity to Sector Cache Organization

As described in Section 5.2, we organize the permissions-only cache as a sector cache in order to

reduce tag overhead. This organization, however, also has the potential to reduce performance from

a non-sector cache organization by reducing coverage if spatial locality is poor. We quantitatively

evaluate the impact of the sector cache organization here by comparing the performance of the

permissions-only cache to a variant configuration that is organized as a non-sector cache (i.e., the

metadata for each block resides in its own cache line). Figure 7.17 on page 116 and Figure 7.18 on

page 116 present these results for ONETM-Serialized and ONETM-Concurrent respectively. These

figures indicate that in both cases the sector cache organization results in almost no performance

loss from a non-sector cache organization.

7.5.4 Sensitivity to Permissions-Only Cache Size

In the previous analysis, we have evaluated the performance impact of a 256-byte permissions-only

cache that can hold the conflict information of 64 kilobytes of data (Section 7.1). Here we study the

impact of varying the size of the permissions-only cache by evaluating two variant configurations.

The first variant configuration that we study is an 2-byte permissions-only cache. This variant can

hold the conflict information of 8 blocks. It can thus eliminate transaction aborts due to cache

conflict evictions, but likely cannot eliminate aborts due to cache capacity issues (i.e., its impact is

similar to that which a victim buffer would have). This variant is not organized as a sector cache as

114

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

km
eans

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

genom
e

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

genom
e-sz

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

vacation

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

vacation_opt

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

vacation_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

ssca2

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

labyrinth

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

intruder

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

intruder_opt

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

intruder_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

yada

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

python

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

python_opt

Figure 7.15: Impact of read-only permissions-only cache on ONETM-Concurrent perfor-
mance. “+pr” represents the addition of a 256-byte read-only permissions-only cache.

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-C

)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

km
eans

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

genom
e

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

genom
e-sz

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

vacation

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

vacation_opt

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

vacation_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

ssca2

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

labyrinth

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

intruder

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

intruder_opt

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

intruder_opt-sz

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

yada

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

python

O
n
eT

M
-C

O
n
eT

M
-C

+
p
r

id
eal

python_opt

Figure 7.16: Impact of read-only permissions-only cache on ONETM-Concurrent execution
time.

115

0

10

20

30
sp

ee
d
u
p
 o

v
er

 s
eq

secto
r

n
o
n
secto

r

km
eans

secto
r

n
o
n
secto

r

genom
e

secto
r

n
o
n
secto

r

genom
e-sz

secto
r

n
o
n
secto

r

vacation

secto
r

n
o
n
secto

r

vacation_opt

secto
r

n
o
n
secto

r

vacation_opt-sz

secto
r

n
o
n
secto

r

ssca2
secto

r
n
o
n
secto

r
labyrinth

secto
r

n
o
n
secto

r

intruder

secto
r

n
o
n
secto

r

intruder_opt

secto
r

n
o
n
secto

r

intruder_opt-sz

secto
r

n
o
n
secto

r

yada

secto
r

n
o
n
secto

r

python

secto
r

n
o
n
secto

r

python_opt

Figure 7.17: Impact of read-only permissions-only cache sector cache organization on
ONETM-Serialized.

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

secto
r

n
o

n
secto

r

km
eans

secto
r

n
o

n
secto

r

genom
e

secto
r

n
o

n
secto

r

genom
e-sz

secto
r

n
o

n
secto

r

vacation

secto
r

n
o

n
secto

r

vacation_opt

secto
r

n
o

n
secto

r

vacation_opt-sz

secto
r

n
o

n
secto

r

ssca2

secto
r

n
o

n
secto

r

labyrinth

secto
r

n
o

n
secto

r

intruder

secto
r

n
o

n
secto

r

intruder_opt

secto
r

n
o

n
secto

r

intruder_opt-sz

secto
r

n
o

n
secto

r

yada

secto
r

n
o

n
secto

r

python

secto
r

n
o

n
secto

r

python_opt

Figure 7.18: Impact of read-only permissions-only cache sector cache organization on
ONETM-Concurrent.

116

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

km
eans

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

genom
e

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

genom
e-sz

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

vacation
O

n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

vacation_opt

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

vacation_opt-sz

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

ssca2

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

labyrinth

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt-sz

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

yada

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python_opt

Figure 7.19: Impact of read-only permissions-only caches of various sizes on ONETM-
Serialized performance.

it only has 8 cache lines. The second variant that we study is a 4-kilobyte permissions-only cache.

This variant (which is organized as a sector cache) can hold the conflict information of a megabyte

of data. As the data presented in Chapter 3 indicates that the transactions in these workloads touch

roughly 64 kilobytes of data at a maximum, this variant effectively serves as an upper bound for the

impact of adding a permissions-only cache.

Figure 7.19 on page 117 and Figure 7.20 on page 118 present the performance impact of these

variant permissions-only cache configurations on ONETM-Serialized. The 4-kilobyte permissions-

117

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

)
overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

km
eans

O
n
eT

M
-S

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

genom
e

O
n
eT

M
-S

+
2

B
+

2
5
6
B

+
4

K
B

id
eal
genom

e-sz

O
n
eT

M
-S

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation

O
n
eT

M
-S

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation_opt

O
n
eT

M
-S

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation_opt-sz

O
n
eT

M
-S

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

ssca2

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

labyrinth

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt-sz

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

yada

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python

O
n
eT

M
-S

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python_opt

Figure 7.20: Impact of read-only permissions-only caches of varying sizes on ONETM-
Serialized execution time.

118

only cache eliminates cache overflows on all workloads but yada (the remaining time in unbounded

transactions on the other workloads is due to pagefaults occurring within transactions). On yada,

evictions of transactionally-written blocks occur.

We also note that in several cases the 2-byte permissions-only cache is able to match the per-

formance of the 256-byte permissions-only cache. This fact suggests that many of the overflows in

these workloads are indeed due to cache conflict evictions rather than capacity evictions, meaning

that the permissions-only cache plays a victim buffer-like role on these workloads1.

Figure 7.21 on page 120 and Figure 7.22 on page 121 present the analogous results for ONETM-

Concurrent. Once again, the 4-kilobyte permissions-only cache does not increase performance over

the 256-byte permissions-only cache. Moreover, the 2-byte permissions-only cache is generally

able to match the performance of the 256-byte version.
1The permissions-only cache, however, has the ability to increase the capacity of the bounded HTM far beyond the

addition of a victim buffer.

119

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

km
eans

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

genom
e

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal
genom

e-sz

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation_opt

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation_opt-sz

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

ssca2

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

labyrinth

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt-sz

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

yada

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python_opt

Figure 7.21: Impact of read-only permissions-only caches of varying sizes on ONETM-
Concurrent performance.

120

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-C

)
overflow serialization

conflict

barrier

busy

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

km
eans

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

genom
e

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal
genom

e-sz

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation_opt

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

vacation_opt-sz

O
n
eT

M
-C

+
2

B
+

2
5
6
B

+
4

K
B

id
eal

ssca2

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-C

)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

labyrinth

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

intruder_opt-sz

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

yada

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python

O
n
eT

M
-C

+
2
B

+
2
5
6
B

+
4
K

B
id

eal

python_opt

Figure 7.22: Impact of read-only permissions-only caches of varying sizes on ONETM-
Concurrent execution time.

121

7.5.5 The Remaining Performance Gap between ONETM and the Idealized HTM

As illustrated in Figure 7.20 on page 118 and Figure 7.22 on page 121, there are small remaining

differences between the performance of ONETM and that of the idealized system even after the

addition of a large (4 kilobyte) permissions-only cache. There are several potential causes of these

remaining differences. First, ONETM differs from the idealized system in that ONETM employs

cleaning for version management while the latter employs an idealized no-cost unbounded log.

Second, ONETM with the addition of the read-only permissions-only cache still must abort on

eviction of a transactionally-written block, whereas the idealized system supports unbounded write

sets as well as read sets. Finally, while all three systems handle non-abortable events in transactions

(such as pagefaults) by restarting a transaction in non-abortable mode, ONETM induces system

serialization in this case whereas the other two systems do not. In this subsection, we determine

how these implementation differences contribute to the remaining performance differences between

ONETM and the idealized system here.

We first analyze the reasons for the remaining performance differences between ONETM-

Serialized and the idealized system. To do so, we study four configurations. The first config-

uration (“OneTM-S+4kb”) is ONETM-Serialized configured with a 4-kilobyte permissions-only

cache. This configuration eliminates the performance impact of transactions’ read sets overflowing

on these workloads. The second configuration (“+log”) changes the version management mecha-

nism to be the same no-cost unbounded log employed by the idealized system, thus eliminating this

difference between ONETM-Serialized and the idealized HTM. The third configuration (“+r/w”)

builds on the second configuration by changing the permissions-only cache to be read/write. This

configuration eliminates the performance impact of transactions’ write sets as well as read sets

overflowing. Finally, the fourth configuration (“ideal”) is the idealized system. Any remaining

performance difference between the third and fourth configurations is due to the fact that ONETM-

Serialized serializes the system when a transaction must handle a non-abortable event, whereas the

idealized system does not.

Figure 7.23 on page 123 presents a runtime breakdown of these configurations. The most com-

mon cause of performance difference between ONETM-Serialized is the use of cleaning rather than

an idealized zero-cost log for version management. yada receives a performance benefit from

122

0.0

0.5

1.0
ru

n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

+
4
k
b
)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

km
eans

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

genom
e

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

genom
e-sz

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

vacation

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

vacation_opt

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

vacation_opt-sz

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

ssca2

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-S

+
4
k
b
)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

labyrinth

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

intruder

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

intruder_opt

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

intruder_opt-sz

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

yada

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

python

O
n
eT

M
-S

+
4
k
b

+
lo

g

+
r/w

id
eal

python_opt

Figure 7.23: Analysis of remaining performance differences between ONETM-Serialized and
the idealized HTM. “OneTM-S+4kb” shows the performance of ONETM-Serialized with a 4-
kilobyte read-only permissions-only cache. “+log” changes the version management mechanism to
idealized no-cost unbounded logging. “+r/w” additionally changes the permissions-only cache to
be read/write. “ideal” represents the idealized unbounded HTM.

123

being able to overflow transactionally-written as well as transactionally-read blocks from the L1

cache. Finally, intruder opt and yada experience pagefaults within transactions.

Figure 7.24 on page 125 presents the corresponding runtime breakdown for ONETM-Concurrent.

In this case, the performance differences on all workloads except yada are solely due to the differ-

ence in version management. As noted above, yada benefits from the read/write permissions-only

cache.

7.5.6 Permissions-Only Cache Summary

In this section we evaluated the impact of the permissions-only cache on the performance of ONETM.

We found that a 256-byte permissions-only cache could significantly increase the performance of

ONETM-Serialized, but could not equalize performance with the idealized HTM in all cases. The

remaining difference is largely due to the fact that the idealized system handles non-abortable op-

erations within transactions more gracefully than ONETM-Serialized. By contrast, the addition

of the permissions-only cache enabled ONETM-Concurrent to perform similarly to the perfor-

mance of the idealized unbounded HTM. We also found that the sector cache organization of the

permissions-only cache does not degrade performance from a non-sector cache organization and

that a permissions-only cache as small as 2 bytes could have a significant positive impact on the

performance of ONETM.

7.6 Discussion of Power Implications of Our Proposals

In this section, we discuss the potential implications of our proposals on power. We first discuss

ONETM and then discuss the permissions-only cache.

ONETM. In ONETM-Serialized, the overflowed bit of the STSW is (1) snooped on external write

requests, (2) coherently written when an overflowed transaction begins and commits, and (3) re-read

by all other processors after being invalidated by the overflowed transaction’s write. As discussed

above, in many modern processors external write requests already snoop the load queue [35]. The

power impact of the two latter operations is directly correlated with how often transactions must

transition to overflowed mode. The data in this chapter indicates that such transitions occur infre-

quently, and thus the overflowed bit is unlikely to have a significant impact on power. The most

significant additional power implication of ONETM-Concurrent is that it potentially widens the

124

0.0

0.5

1.0
ru

n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-C

+
4
k
b
)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

km
eans

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

genom
e

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

genom
e-sz

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

vacation

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

vacation_opt

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

vacation_opt-sz

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

ssca2

0.0

0.5

1.0

ru
n
ti

m
e

(n
o
rm

al
iz

ed
 t

o
 O

n
eT

M
-C

+
4
k
b
)

overflow serialization

conflict

barrier

busy

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

labyrinth

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

intruder

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

intruder_opt

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

intruder_opt-sz

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

yada

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

python

O
n
eT

M
-C

+
4
k
b

+
lo

g

+
r/w

id
eal

python_opt

Figure 7.24: Analysis of remaining performance differences between ONETM-Concurrent
and the idealized HTM. “OneTM-C+4kb” shows the performance of ONETM-Concurrent with a
4-kilobyte read-only permissions-only cache. “+log” changes the version management mechanism
to idealized no-cost unbounded logging. “+r/w” additionally changes the permissions-only cache
to be read/write. “ideal” represents the idealized unbounded HTM.

125

0

1

2

3

4

5

%
 o

f
ru

n
ti

m
e

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

km
eans

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

genom
e

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

genom
e-sz

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

vacation

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

vacation_opt

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

vacation_opt-sz

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

ssca2

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

labyrinth

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

intruder

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

intruder_opt

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

intruder_opt-sz

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

yada

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

python

O
n
eT

M
-S

+
p
r

O
n
eT

M
-C

+
p
r

python_opt

Figure 7.25: Percent of time the permissions-only cache is non-empty. In these configurations,
the permissions-only cache is in its default 256-byte, read-only configuration.

data payload by two bytes. If datablocks are 72 bytes (64 bytes of data in addition to the 8-byte

address header), this addition represents a 2.8% overhead.

Permissions-only cache. The permissions-only cache is (1) read by external coherence requests as

part of conflict detection, (2) updated when a transactional block is replaced from the data cache,

and (3) invalidated on a commit or abort. It is not accessed for processor-local memory operations.

As such, it is accessed significantly less often than the L1 cache. Finally, the permissions-only

cache is often empty. In these circumstances, it can be completely powered down to save dynamic

and static power.

Figure 7.25 on page 126 shows the percentage of execution time that the permissions-only

cache is non-empty (for the 256-byte read-only permissions-only cache). For all workloads except

yada, the permissions-only cache is active for less than 1% of execution. While the usage of the

permissions-only cache in yada is higher, it is still less than 5% of execution.

7.7 Summary

In this chapter we evaluated the performance of ONETM on our workloads. We found that on

several workloads ONETM-Serialized can match the performance of an idealized HTM that handles

126

overflows with full concurrency and no overheads, as these workloads simply do not overflow. This

result illustrates the fact that if overflows are extremely rare, they can be handled simply without

a great impact on overall performance. However, we also found that even a small amount of time

spent in overflowed execution could cause performance degradation in ONETM-Serialized. We

found that the increased concurrency of ONETM-Concurrent increases robustness to overflows.

Even ONETM-Concurrent, however, cannot match the performance of the idealized HTM on all

workloads.

We then evaluated the impact of the addition of the permissions-only cache. We found that

for ONETM-Serialized the permissions-only cache significantly increases performance but that

the combination still falls short of the idealized HTM in some cases (largely due to the fact that

ONETM-Serialized serializes the system to handle non-abortable events within transactions). Com-

bining ONETM-Concurrent with the permissions-only cache, however, results in a system that

matches the performance of the idealized fully-concurrent unbounded HTM across the workloads

that we use.

As we discussed in Chapter 3, after overflows are eliminated as a performance bottleneck, the

overall performance of many workloads is still limited by conflicts. In that chapter we also found a

pattern of conflicts on auxiliary data that were challenging to eliminate via software restructuring.

The next chapter details RETCON, our proposal for eliminating such auxiliary data conflicts in

hardware.

127

Chapter 8

RETCON: Eliminating Auxiliary Data

Conflicts

As the last chapter illustrated, the combination of ONETM and the permissions-only cache achieves

the performance of an idealized unbounded HTM that handles overflows with full concurrency and

no overheads on the workloads that we use. Nonetheless, performance in many cases is still limited

by conflicts. In particular, as we discussed in Chapter 3, several workloads experience a common

pattern of conflicts on auxiliary data, i.e., data such as hashtable occupancy fields and reference

counts that is peripheral to a transaction’s main copmutation. As detailed in that chapter, these

conflicts can be challenging to eliminate via software restructuring. In this chapter we present

RETCON, our hardware-based proposal for eliminating auxiliary data conflicts.

We observe that auxiliary data is usually accessed by short, simple computations that do not

affect the larger transaction. This property suggests an approach of allowing conflicts to occur

without rollback, reacquiring lost data at commit, and using the current values of this data to repair

local state as necessary. Such a repair-based approach was proposed by ReSlice [96] to lessen

the impact of conflicts in thread-level speculation, and similar slicing has been employed in other

contexts as well [21, 48, 103]. These proposals use instruction-based repair by saving the dependent

instructions of a conflicting load to later re-execute these instructions with the updated value of the

load (either in a special-purpose core or by re-using the resources of the processor itself).

Guided by the nature of this auxiliary data, we propose a different approach. As the processor

executes a transaction, it also tracks the relationship between input values and output values symbol-

128

1
2
3
4
5
6
7
8
9
10
11

p0 p1

(a) RETCON (b) DATM

p0 p1

"1""0"

"0"

Abort Restart
"2"

Inc

Inc

Repair

Repair
"2"

Inc

Inc

Inc

Inc

Inc

Inc

Inc

"+1"

"+2"

"0+2=2"

"1"

"2"

"2"

"3"

"4""2+2=4"

"+1"

"+2"

p0 p1

Abort

Inc

Inc

"1"

"2" Abort

Inc
"3"

"2"

Inc
"4"

(c) Eager TM

Abort

(d) Eager TM - Stall

p0 p1

Stall

Inc

Inc

Inc"1"

"2"

"3"
"2"

Inc
"4"

p0 p1

Inc

Inc

Inc"1"

"2"

Inc
"3"

Inc
"4"

"1"

Abort Restart
"2"

(e) Lazy TM

"2"

Restart

Restart

Restart

Restart
Abort

Stall

Time

Figure 8.1: Comparison of RETCON to other approaches. P0 and P1 begin transactions at times
¶ and · respectively. Each transaction performs two increments to a shared counter variable that
is initialized to zero. (a) RETCON symbolically tracks the counter address and repairs its value at
commit by adding the computed increment. (b) DATM [92] forwards the speculatively incremented
counter variable at time ¸, but must abort a transaction when the second increment introduces a
cyclic dependence at time ¹. (c) In EagerTM, P1 suffers repeated aborts until P0 commits at time
». (d) EagerTM-Stall stalls P1’s first increment until P0 commits at time ». (e) In LazyTM, P1

performs both its speculative increments but then aborts when it detects a conflict on the commit of
P0 at time ».

ically. Conditionals form constraints on the acceptable range of values that an input can take when

reacquired at commit. At commit time, all inputs that have been lost are reacquired, constraints are

checked, and symbolic computation is reapplied to these values (see Figure 8.1 on page 129).

Our instantiation of this approach, RETCON,1 is tailored to fit the needs of the auxiliary data

present in our workloads. RETCON tracks an input symbolically through a sequence of loads,

simple arithmetic operations, branches, and stores, with more complex computation creating a con-

straint that the input value be the same at commit. To track symbolic information, RETCON adds a

buffer to hold the initial values of symbolically-tracked blocks, a buffer to hold constraints, and a

buffer to hold symbolically-tracked stores.

Although RETCON’s focus is on repairing remotely changed values, its mechanisms have the

secondary benefit of reducing conflicts in other ways. RETCON’s resolution of conflicts at commit

implicitly provides selective lazy conflict detection [15, 98, 112]. In addition, by performing conflict

detection based on values [82, 109], RETCON also avoids conflicts due to false sharing [52], silent

sharing, and temporally silent sharing [62].
1Retcon, short for retroactive continuity, refers to soap operas’ and comic books’ practice of revising past events as

necessary to match current reality.

129

In the remainder of this chapter, we first describe the architecture and high-level RETCON algo-

rithm in Section 8.1, followed by a discussion of operational details in Section 8.2 and implemen-

tation optimizations in Section 8.3. We detail benefits that RETCON provides beyond the ability to

repair conflicts on auxiliary data in Section 8.4. Finally, we discuss related work in Section 8.5 and

summarize the chapter in Section 8.6.

8.1 RETCON Architecture and High-Level Operation

As described above, RETCON tracks the symbolic relationships between inputs and outputs. As

transactions execute, values are tagged with a symbolic representation of the computation that pro-

duced that value. For example, if the processor loads a value and then increments it twice, the

processor tracks information indicating that it can calculate the final value by adding two to what-

ever value the load eventually takes. Such symbolic values propagate through registers and memory,

while conditional operations result in constraints that the symbolic value must satisfy at the time

of commit. If computation that is too complex to track symbolically occurs on a given input, the

system constrains that input to remain equal to its original value when reacquired. In this section,

we describe the architecture and high-level operation that allow RETCON to support these tasks.

Key to RETCON are the concepts of symbolic locations, symbolic values, and symbolic con-

straints. A symbolic location is a memory address that RETCON decides to track symbolically

(determined via a predictor trained by past history of conflicts). The symbolic value of a register

or memory location is a representation of the computation that was performed to calculate the con-

crete value of that location. As an example, the symbolic value of the register output of the first

load to symbolic location A would be “[A]”. Finally, symbolic constraints are a combination of

a symbolic value, a boolean operator, and a constant. An equality constraint is a special type of

constraint that simply specifies that a given symbolic location must be equal to the value first read

for that location by the transaction.

RETCON optimizes for design simplicity by restricting the type of computation that it can track

symbolically. It restricts operations to have at most one symbolic input and tracks only data (not

memory addresses) symbolically. These restrictions allow RETCON to maintain symbolic informa-

tion efficiently and admit a streamlined commit process, while still supporting our goal of being able

130

to repair the effects of peripheral data conflicts. We describe RETCON operation in detail below,

followed by examples of code idioms causing conflicts that RETCON can and cannot repair.

8.1.1 RETCON Operation

Initiating symbolic tracking. During transaction execution, loads and stores not involved with

symbolic repair use the conflict detection mechanism of the underlying TM system. A symbolic

load, a load that reads from a symbolic location, initiates symbolic tracking of dependent operations

by associating a symbolic value with the load’s output register (recorded in the symbolic register

file, described in Figure 8.2 on page 132). The value written to the register file by a symbolic load

is the processor’s best-guess value for the location (i.e., the architectural value at the time or a value

prediction [83, 84, 109]) and execution continues based on that concrete value. The first load to a

symbolic location also records the initial concrete value of the location (recorded in the initial value

buffer, described in Figure 8.2 on page 132). A load to a symbolic location does not set the read bit

in the cache, thus allowing the block to be stolen away without triggering a conflict.

Execution with symbolic tracking. Transaction execution is determined entirely by the con-

crete values, but symbolic values are tracked and propagated from instruction to instruction. If an

instruction’s specific operation is one that can be tracked symbolically, the symbolic input is prop-

agated to the symbolic value output. The processor performs as much computation as it can during

this propagation. As an example, if a register with concrete value 5 and symbolic value “[A]+7”

is used as input to an increment instruction, the output register’s concrete value would be 6 and its

symbolic value would be “[A]+8”.

Symbolic tracking through memory. When writing a register with a symbolic value to mem-

ory, both the concrete and symbolic values are recorded and propagated to subsequent loads (using

the symbolic store buffer, described in Figure 8.2 on page 132). Correspondingly, all loads check

the symbolic store buffer (as well as the initial value buffer, as described above) in parallel with the

data cache. When a load forwards from a store that has a symbolic value, it copies that symbolic

value (rather than initializing its symbolic value to the address of the store). In essence, RETCON

collapses all store-load forwarding during execution. Figure 8.3 on page 132 contains a flowchart

of the operation of loads and stores in RETCON2.
2If the symbolic store buffer overflows, the transaction is aborted and re-executed with RETCON disabled.

131

SymValAddr
Initial Value Buffer

Symbolic
Store Buffer

r1
SymConstraintValAddr

r2

Symbolic
Reg File

r3
r4

Figure 8.2: RETCON structures. The initial value buffer is a cache-like structure indexed by data
address. Each entry contains the address tag bits, the initial concrete value of the symbolic memory
location, and the symbolic constraints associated with that memory location (if any). The symbolic
store buffer records symbolically-tracked stores. It is indexed by data address and accessed like a
conventional cache-like unordered store buffer. Each entry contains the address tag bits, the store’s
concrete value, and the store’s symbolic value (if any). The symbolic register file records the
current symbolic value (if any) for each register. The value recorded in the traditional register file
is the concrete value of each register, which is used to guide execution.

In parallel, access:
Symbolic Store Buffer (SSB),

Initial Value Buffer (IVB),
and Data Cache (DC)

Load [Addr]➔reg

Hit in
SSB?

Hit in
IVB?

Hit in
Cache?

RegFile[reg] = SSB[Addr].val
SymRegFile[reg] = SSB[Addr].sym

RegFile[reg] = IVB[Addr].val
SymRegFile[reg] = "[Addr]"

Is Addr
symbolic?

RegFile[reg] = DataCache[Addr].val
SymRegFile[reg] = nil

set DataCache[Addr].read bit

Allocate Addr in IVB
IVB[Addr].val = DataCache[Addr].val

IVB[Addr].constraint = nil

No

Yes

No

Yes

No

Yes

Initiate
read
miss

No

Yes

Symbolic store-to-load bypass Symbolic load

Normal loadInitial symbolic load

Store reg➔[Addr]
In parallel,

access SymRegFile[reg],
and Data Cache (DC)

reg.sym
!= nil?

Is Addr
symbolic?

No No

Yes Yes

If needed, allocate entry in SSB
SSB[Addr].val = RegFile[reg]

SSB[Addr].sym = SymRegFile[reg]

Symbolic store
DataCache[Addr].val = RegFile[reg]

set DataCache[Addr].written bit
Invalidate any entry for Addr in SSB

Normal store

Hit in
Cache?

Initiate
write
miss

No

Yes

Figure 8.3: RETCON memory operation flowchart.

132

Symbolic control-flow constraints. If the source register of a branch has a symbolic value,

RETCON adds a symbolic constraint to capture the necessary condition to ensure consistent control

flow. For example, a taken branch based on a register with symbolic value “[A]+1” is greater

than 5 would generate the constraint: “[A]+1>5” or, simplified, “[A]>4”. Non-taken branches

record the negation of the branch condition (“[A]<=4” in this case). The constraint is recorded in

the initial value buffer entry corresponding to the root memory location of the symbolic value.

Equality constraints. An equality constraint is set whenever a symbolic input is used in a way

that cannot be tracked symbolically, thus ensuring that any difference in the initial value and final

value will result in an abort. Equality constraints are introduced when symbolic values are supplied

as inputs to (1) complicated arithmetic operations the implementation has chosen not to track sym-

bolically (e.g., integer divide) or (2) the address calculation of loads or stores (but, critically, not the

data input of store instructions). In addition, if an operation has multiple symbolic values as inputs,

equality constraints are set on all but one to maintain the invariant that all operations have at most

one symbolic input.

Pre-commit repair. As part of the commit process, the system enforces symbolic constraints by

re-loading the final concrete value for each symbolic location. Symbolic constraints are evaluated

using this final concrete value to ensure that the control flow remains valid. Next, RETCON gen-

erates the final concrete values for each symbolic register value and symbolic memory value (i.e.,

stores with symbolic data input register values). This involves updating the concrete value in the

register file and writing concrete values into the data cache. To ensure atomicity during the repair

process, all loads and stores set the read/written bits in the cache and conflict detection reverts to

that of the baseline system (described in Chapter 2). Once repair has completed, the normal baseline

transaction commit commences. Figure 8.4 on page 134 describes the repair algorithm in detail.

Example. Figure 8.5 on page 135 presents a step-by-step example of RETCON’s operation.

This example shows the symbolic execution and commit operations of a processor due to block A

that gets stolen away mid-transaction. The load to register r1 at time ¶ initiates symbolic execution,

populates the initial value buffer and the symbolic and concrete register files for r1; note that the

read bit in the cache is not set. The symbolic data flows to r2 via the register file at time ·, which

in turn introduces a constraint for A at time ¸. At time ¹, r2 is stored in address B, causing it to be

tracked in the symbolic store buffer. The load from B at º forwards from the symbolic store buffer.

Also at this time, A is removed from the cache due to a remote request; no conflict is triggered

133

RETCON Pre-Commit Process
Step #1. Reacquire all lost blocks to obtain final concrete values, record them in the initial value buffer,
and check that all control-flow constraints are satisfied by the current values of the blocks:

foreach Address A in Initial Value Buffer (IVB):
if not already in cache, obtain read permission to A
set DataCache[A].read bit
IVB[A].value <- DataCache[A].value
if new value does not satisfy IVB[A].constraint:

abort

Step #2. Update memory and register state based on the values in the initial value buffer (which as of step
#1 above, now contains the final concrete values):

foreach Address A in Symbolic Store Buffer (SSB):
if not already in cache, obtain write permission to A
set DataCache[A].written bit
if SSB[A].sym == nil:

DataCache[A].value <- SSB[A].value
else:

DataCache[A].value <- SSB[A].sym evaluated on value from IVB

foreach Register R in Symbolic Register File (SRF):
if SRF[R].sym != nil:

RF[R].value <- SRF[R].sym evaluated on value from IVB

Figure 8.4: RETCON pre-commit repair algorithm. To ensure atomicity of the commit pro-
cess, the speculatively read/written bits are set when reacquiring lost blocks and before writing
values into the data cache. If a conflict occurs during this pre-commit process, the baseline con-
flict management logic is invoked. Once the above repair has completed, the normal baseline
transactional commit commences.

because A’s read bit was not set. At time », register r1 is overwritten with a new offset. The branch

at time ¼ updates the initial value buffer with an additional constraint on A. At time ½, the symbolic

store to the symbolically tracked address A introduces another store buffer entry. The store to block

B at time ¾ is non-symbolic, hence B’s entry is invalidated in the symbolic store buffer and the

store value is written speculatively into the cache. The commit process begins at time ¿ by fetching

A into the cache speculatively, verifying that the new value of A (6) still satisfies the constraint and

computing the new value to be stored to A in the symbolic store buffer. In the final step of the

commit process, r1’s concrete value is written back into the register file and store to A is drained

from the store buffer to the cache, and any speculative bits in the cache are flash-cleared.

134

1
--
--

5
7

A
B

R/WValAddrSymValAddr

Initial Value Buffer Data Cache
Symbolic

Store Buffer

A5r1
SymVal

Concrete
Reg File

--5A
ConstraintValAddr

2
--
--

5
7

A
B

R/WValAddrSymValAddr
A

A+1
5
6

SymVal
--5A

ConstraintValAddr

ld [A]➔r1

r1+1➔r2

3
--
--

5
7

A
B

R/WValAddrSymValAddr
A

A+1
5
6

SymVal
0<A5A

ConstraintValAddr
br r2 > 1 (t)

(A+1 > 1)
4

st r2➔[B] --
--

5
7

A
B

R/WValAddr
A+16B
SymValAddr

A
A+1

5
6

SymVal
0<A5A

ConstraintValAddr

5

--7B

R/WValAddr
A+16B
SymValAddr

A+1
A+1

6
6

SymVal
0<A5A

ConstraintValAddr

6

ld [B]➔r1
(remote write to A)

--7B

R/WValAddr
A+16B
SymValAddr

A+3
A+1

8
6

SymVal
0<A5A

ConstraintValAddr

7

r1➔r1+2

--7B

R/WValAddr
A+16B
SymValAddr

A+3
A+1

8
6

SymVal
0<A<75A

ConstraintValAddr

8

br r1<10 (t)
(A+3 < 10)

--7B

R/WValAddr
A+1
A+3

6
8

B
A

SymValAddr
A+3
A+1

8
6

SymVal
0<A<75A

ConstraintValAddr

9

st r1➔[A]

10

W0B

R/WValAddr

A+38A

SymValAddr
A+38
SymVal

0<A<75A
ConstraintValAddr

11

st 0➔[B]

R
W

6
0

A
B

R/WValAddr

A+39A

SymValAddr
A+38
SymVal

0<A<76A
ConstraintValAddr

commit

repair values;
write to cache

load A; verify constr.

--
--

9
0

A
B

R/WValAddrSymValAddr
--9

SymValValAddr

r2

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

Constraint

Symbolic
Reg File

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Figure 8.5: Example of RETCON operation. The operation of RETCON in this example is de-
scribed at the end of Section 8.1.

135

8.1.2 Conflict Idioms that RETCON Can Repair

In this section, we detail the basic conflict idioms that RETCON can repair without requiring roll-

back. Figure 8.6 on page 137 details a case where two transactions concurrently perform additions

to a shared variable. As described above, RETCON can track these additions symbolically and use

the symbolic information to repair the effects of the conflict at transaction commit. Figure 8.7 on

page 137 illustrates a similar but more complex example where RETCON tracks symbolic values

through memory. These idioms are similar to those of performance counter and transaction ID

fields.

Figure 8.8 on page 138 details a more complex case. In addition to performing addition on a

shared variable, one transaction uses the variable as input to a branch. The conflict that occurs on the

variable does not change the direction in which the branch is resolved. RETCON tracks the addition

symbolically, while the control flow on the symbolically-tracked variable generates a constraint that

its value must satisfy when reacquired to avoid an abort (in this case, that the reacquired value be

less than 64). At commit RETCON reacquires the variable, verifies that the constraint is satisfied,

and uses the symbolic information to repair output state. Figure 8.9 on page 138 illustrates an

example where multiple branches occur on a symbolically-tracked input. These idioms are similar

to those of conflicts on hashtable occupancy fields that do not affect resizing of the hashtable and

conflicts on reference counts that do not affect whether the object is garbage collected.

8.1.3 Conflict Idioms that RETCON Cannot Repair

In this section, we detail conflict idioms that RETCON cannot repair. Figure 8.10 on page 139

details a case where a conflict results in the control flow of a transaction being changed. In this

case, the constraint that had been generated by that control flow will be violated, and RETCON

will abort the transaction. Examples of this idiom are a conflict on a hashtable occupancy field that

causes a hashtable resize or a conflict on a reference count that affects whether the object is garbage

collected.

Figure 8.11 on page 139 details a case where a conflict occurs on a variable that was used to

index into memory. As the use of the variable to index into memory generates a constraint that this

variable remain equal to its original value, RETCON will abort the transaction. An example of this

idiom is transactions simultaneously enqueuing and dequeuing from a shared queue.

136

int x = 42;

proc1(){ proc2(){
transaction{ transaction{
... ...
x += 7 x += 5;
... ...

} }
} }

P = proc1() || proc2()

Figure 8.6: An idiom that RETCON can repair: conflicts involving only addition. proc1 and
proc2 conflict on their additions to x. RETCON symbolically tracks these additions and reapplies
them to the current value of x at transaction commit to repair this conflict without rolling back.

int x = 42;
int y = 0;

proc1(){ proc2(){
transaction{ transaction{

... ...
r1 = x; r2 = x;
r1++; r2++;
y = r1; x = r2;
r3 = y; ...
r3++; ...
x = r3; ...

} }
} }

P = proc1() || proc2()

Figure 8.7: Example of RETCON tracking through memory. x and y are shared variables re-
siding in memory, and r1, r2, and r3 are registers. RETCON tracks symbolic values throughout
the computation (including the forwarding through memory performed by proc1). When proc1
commits, RETCON reacquires x, stores its current value plus one to y, and stores that value plus
two back to x.

137

int x = 42;

proc1(){ proc2(){
transaction{ transaction{
... ...
x++; x++;
if (x > 64) ...

//untaken ...
} }

} }

P = proc1() || proc2()

Figure 8.8: An idiom that RETCON can repair: conflicts not changing control flow. proc1 and
proc2 conflict on their additions to x. RETCON symbolically tracks these additions. Additionally,
the control flow on x in proc1 generates a constraint on the value that x can take when reacquired
by proc1: it must be less than 64. At commit RETCON reacquires x, checks that the constraint is
satisfied, and reapplies the addition.

int x = 42;

proc1(){ proc2(){
transaction{ transaction{
... ...
x++; x++;
if (x > 64) ...

//untaken ...
x++; ...
if (x > 64) ...

//untaken ...
} }

} }

P = proc1() || proc2()

Figure 8.9: Generating a constraint from multiple branches. proc1 and proc2 conflict on
their additions to x. RETCON symbolically tracks these additions. The first branch on x in proc1
additionally generates a constraint that x must be less than 64 when reacquired. The second branch
updates this constraint to the more restrictive constraint that xmust be less than 63 when reacquired.
At commit RETCON reacquires x, checks that the constraint is satisfied, and reapplies the addition.

138

int x = 63;

proc1(){ proc2(){
transaction{ transaction{
... ...
x++; x++;
if (x > 64) ...

//untaken ...
} }

} }

P = proc1() || proc2()

Figure 8.10: An idiom that RETCON cannot repair: conflicts changing control flow. proc1
and proc2 conflict on their additions to x. If proc2 commits first, then the value of x will be
64 when it is reacquired at the commit of proc1. In this case, the x < 64 constraint that was
generated by the control flow on x would be violated, and RETCON would abort the transaction.
Repairing the transaction in this case would require executing the other direction of the branch,
which is outside the scope of RETCON.

node* head = 0xffbb;

proc1(){ proc2(){
transaction{ transaction{
t = head->task; ...
do work(task); head = 0xcb0a;

} }
} }

P = proc1() || proc2()

Figure 8.11: An idiom that RETCON cannot repair: conflicts changing dataflow. proc1 and
proc2 conflict on head. Because head is used to index into memory in proc1, a constraint
will be generated that it remain equal to its original value. If proc2 commits first, the value of
head will be changed when reacquired at the commit of proc1. In this case, RETCON would
abort proc1.

139

float x = .687;

proc1(){ proc2(){
transaction{ transaction{
... ...
r1 = sin(x); r2 = arctan(x);
x = r1; x = r2;
... ...

} }
} }

P = proc1() || proc2()

Figure 8.12: An idiom that RETCON cannot repair: conflicts on complex computation. proc1
and proc2 conflict on x. The computation perform on x is outside the bounds of the symbolic
tracking performed by RETCON, and hence it generates a constraint that x remain equal to its
original value. The conflict will thus cause RETCON to abort.

Finally, Figure 8.12 on page 140 details a case where a conflict occurs on a variable that was used

as input to a computation too complex for RETCON to track symbolically. Similar to above, this

use generates a constraint that the variable remain equal to its original value, and hence RETCON

will abort the transaction.

8.2 Operational Details

The above description does not explicitly discuss how RETCON would be implemented within the

processor core. In a naive implementation, each register would be shadowed by a symbolic reg-

ister. This symbolic register would have fields for the symbolic location of the register as well as

for the expression denoting the computation that had been performed to arrive at the current value

of the register. To minimize the amount of space required for the symbolic location, it could be

represented as a pointer into the initial value buffer rather than as an explicit address. The repre-

sentation of the computation performed would depend on the computation that RETCON tracked

symbolically. As discussed below, RETCON currently tracks only addition and subtraction. In this

case, the computation would be represented by a simple counter. It is likely that more optimized

implementations could be devised; we leave such efforts as future work.

140

The above description also assumes word-granularity aligned memory operations and condi-

tionals that operate directly on register values. However, RETCON must handle features from real-

world architectures such as condition codes, sub-word memory operations and unaligned memory

operations. To handle condition codes, each condition code register is extended with a symbolic

constraint field. When an arithmetic operation with a symbolically-tracked input updates a condi-

tion code register, the symbolic constraint of the condition code is updated to reflect the constraint

required for that condition code to retain the same value. The form of the constraint depends on the

semantics of the condition code. For example, for the “equal-to-zero” condition code, the constraint

operator is one of equality if the condition code is set to true and one of inequality if the condition

code is set false. When a conditional operation is performed on a condition code being tracked

symbolically, the condition code’s constraint is added as a constraint on its root address.

To handle sub-word operations, RETCON adds a size field to symbolic values. If store-load

communication becomes too complex (e.g., an 8-byte load forwards from two 4-byte stores or a

4-byte store partially overwrites an 8-byte symbolic load), RETCON sets equality constraints on the

relevant inputs. Similarly, RETCON treats unaligned memory operations as computation that cannot

be tracked symbolically, adding equality constraints to the input word(s) of the operation.

The predictor that RETCON employs operates at a cache-block granularity (as this is the gran-

ularity at which blocks may be lost from the cache). It is possible (and indeed likely) that a single

cache block could hold both peripheral data and other types of data. Once RETCON starts tracking

a block, it symbolically tracks all accesses to the block, including generating constraints as neces-

sary. The process of constraint generation and checking ensures correctness regardless of what data

resides in a block being tracked by RETCON. For instance, it may occur that peripheral data shares

a block with other data on which conflicts occur that RETCON cannot repair. RETCON will detect

these conflicts via violated constraints and will abort the transaction.

Finally, the fact that RETCON allows transactions to execute past conflicts can result in cases

where transactions raise spurious exceptions or enter infinite loops (Figure 8.13 on page 142). RET-

CON’s approach to this so-called inconsistent data problem is similar to that taken by prior pro-

posals [92]. When a transaction that has lost a block raises an exception, the hardware restarts

the transaction with RETCON disabled. To prevent transactions from entering infinite loops due to

inconsistent data, RETCON periodically reacquires stolen blocks and validates constraints.

141

int x = 42;
int y = 17;

proc1(){ proc2(){
transaction{ transaction{
if (x > 0) x = 0;

r = x / y; y = 0;
} }

} }

P = proc1() || proc2()

Figure 8.13: The inconsistent data problem. proc1 assumes that either both x and y are non-
zero or both are zero. Because RETCON allows conflicts to occur without rollback, proc1 could
read the value of x from before proc2 commits and the value of y from after proc2 commits.
This behavior would result in a spurious divide-by-zero exception.

8.3 RETCON Implementation Optimizations

The basic structures and operations described above admit several optimizations, which we describe

below.

Maintenance of initial value buffer entries at cache-block granularity. To avoid reacquiring

a stolen block each time a byte in the block is accessed for the first time, the initial value buffer

maintains entries at cache-block granularity. A symbolic load starts symbolic tracking of the entire

block. Constraints are maintained by a separate address-indexed and word-granularity buffer.

Compressed representation of equality constraints. RETCON represents equality constraints

using per-byte “equality bits” added to entries in the initial value buffer. This optimization works

synergistically with the previous one as it reduces pressure on the constraint buffer.

Avoidance of upgrade misses during pre-commit. As described thus far, during the commit

process RETCON issues two misses for blocks that it has symbolically read and written (first to

acquire the block via a read to check constraints followed by an upgrade miss when writing the

block into the cache). To avoid this second miss, RETCON includes per-block written bits on initial

value buffer entries. If the written bit is set, the block is acquired with write permission during the

initial precommit phase.

142

node* head = 0xffbb;

proc1(){ proc2(){
transaction{ transaction{
t = head->task; ...
do work(task); head = 0xcb0a;

} ...
... ...
... }

} }

P = proc1() || proc2()

Figure 8.14: How RETCON can capture laziness. proc1 and proc2 conflict on head. An
eager conflict detection algorthim would detect this conflict and have to resolve it. In a lazy conflict
detection algorithm, if proc1 commits first, both transactions can commit. In this case RETCON

would be able to commit both transactions as well, as the write to head by proc2 would be kept
in the symbolic store buffer until transaction commit. Note, however, that neither RETCON nor
regular lazy conflict detection can avoid an abort if proc2 commits first (Figure 8.11 on page 139).

Efficient representation of symbolic computation. Limiting the type of computation that can be

symbolically tracked to be only additions and subtractions allows optimization of symbolic repre-

sentations [85]. RETCON (1) tracks symbolic values succinctly as

(input address, increment) pairs, (2) collapses all arithmetic computation on symbolic

values to cumulative increments, and (3) represents constraints by succinct intervals. RETCON

precisely represents any number of constraints (≤, <,=, >,≥) by the most restrictive interval

bounding the symbolic value. Similarly, RETCON compactly represents any number of not-equal-

to constraints—at the cost of some loss of precision—by tracking the interval in which the value

cannot reside.

8.4 Other Benefits of RETCON

Although the purpose of RETCON is to enable recovery from remotely-changed inputs, its potential

benefits extend further. First, RETCON’s property of selectively delaying conflict resolution until

transaction commit provides a form of lazy conflict detection; as discussed in Section 2.3, lazy

conflict detection can enhance concurrency over eager conflict detection by allowing readers to

143

struct mystruct{
int x;
int y;

};
struct mystruct s;

proc1(){ proc2(){
transaction{ transaction{
... ...
s.x = 5; s.y = 7;
... ...

} }
} }

P = proc1() || proc2()

Figure 8.15: How RETCON can eliminate false sharing conflicts. proc1 and proc2 access
different fields of a shared struct s. These fields likely reside on the same cache block, causing a
conflict in the baseline address-based HTM system (which detects conflicts at cache block gran-
ularity). In RETCON, constraints are generated at a word (or sub-word) granularity. Hence, if
two transactions access separate words within a cache block, then each transaction’s constraints are
guaranteed to be satisfied (since the value that it accessed has not been remotely changed) and each
transaction can commit.

commit before a conflicting writer. Figure 8.14 on page 143 illustrates how RETCON can capture

the performance benefits of laziness by delaying writes until transaction commit.

Second, RETCON’s value-based detection of conflicts at a sub-block granularity eliminates con-

flicts due to false sharing [52] and silent sharing [62] in a similar manner to prior proposals on

value-based conflict detection [82, 109]. Figure 8.15 on page 144 provides an example of how

RETCON can eliminate conflicts due to false sharing. We analyze the impact of these benefits in

Section 9.3.

8.5 Related Work

Several proposals have focused on mitigating the performance limitations caused by conflicts in

transactional memory and related contexts such as speculative locking [73, 88] and thread-level

speculation [26, 40, 101, 105]. Bobba et al. [15] examine the performance pathologies present in

conflict resolution schemes, including eager or lazy conflict detection [39, 77, 98], and recent work

144

proposes mixed eager/lazy strategies [98, 111, 112]. Value-based conflict detection has been used

in the context of transactional memory for avoiding conflicts due to false sharing [109] as well as

for compatibility with library code [82].

Researchers have proposed the use of speculative values to avoid conflicts due to true sharing.

Dependence-aware transactional memory (DATM) [92] forwards speculatively written data between

transactions. A globally enforced commit order guarantees atomicity and forward progress. DATM

prevents aborts due to conflicts when transactions access shared data acyclically (such as incre-

menting a shared counter once), but aborts when there are repeated accesses to shared data between

transactions (see Figure 8.1 on page 129). Other proposals have explored value prediction in the

context of thread-level speculation and transactional memory [26, 83, 84, 105].

Proposals such as open nested transactions [16, 39, 78], abstract nested transactions [44], and

transactional boosting [45] seek to increase concurrency by providing programming abstractions.

RETCON differs from these proposals by trading off generality for programmer transparency.

RETCON is inspired by proposals for repair via selective instruction replay [21, 31, 48, 49, 96,

103]. The proposal most relevant in our context is ReSlice [96]. Within the context of thread-level

speculation, ReSlice tracks the slice of instructions dependent on a load that is likely to result in a

conflict, recording this slice in an instruction buffer. At commit, ReSlice sequentially re-executes

the dependent slice of all loads whose input value has changed. As long as all branch outcomes are

the same (i.e., control flow is unchanged) and no memory dependences have changed, such replay

can successfully repair speculation, allowing it to commit.

The tradeoffs in symbolic tracking versus instruction slicing are efficiency of representation

vs. generality of recomputation. On the side of efficiency, a long transaction might, for exam-

ple, perform many hashtable inserts or reference count updates; RetCon would perform a constant

amount of recomputation vs. the linear amount of state tracked and computation reperformed by

an instruction replay-based scheme. In contrast, an instruction replay-based scheme can support

replay of more complex types of computation (e.g., ReSlice allows memory addresses to change in

re-execution as long as the new address does not change the dataflow of the slice).

Finally, other researchers have studied how to make Python interpreters more amenable to trans-

actional memory via software restructuring. Tabba [108] performed an analysis of a transactional-

ized variant of the reference Python interpreter (the same interpreter used in this study). He de-

scribes a similar process of privatizing global variables to the one that we discussed in Chapter 3.

145

To handle the problem of reference counts, he instruments the incref and decref routines to

avoid modifying the reference counts of objects that are known to never need deallocation (e.g.,

the object representing True). This solution introduces performance overhead and does not easily

generalize. Riley and Zilles [93] explore software restructuring and observe aborts due to false con-

flicts when studying the behavior of the PyPy python interpreter with transactional memory. One

key difference in the tasks of parallelizing PyPy and parallelizing standard python is that PyPy

uses a conservative garbage collector and thus does not raise the problem of conflicts on reference

counts.

8.6 Summary

This chapter proposed RETCON, a mechanism for hardware transactional memory that allows trans-

actions to lose data during execution and transparently repairs the effects of remote modifications at

commit. RETCON uses symbolic tracking of the relationships between inputs and outputs to achieve

repair without replay. Section 8.1 detailed the architecture and high-level operation of RETCON.

We discussed operational details and optimizations in Section 8.2 and Section 8.3 respectively, fol-

lowed by a discussion of other benefits of RETCON in Section 8.4 and related work in Section 8.5.

In the next chapter we quantitatively evaluate the impact of RETCON on the workloads that we use.

146

Chapter 9

Experimental Evaluation of RETCON

This chapter experimentally evaluates the performance impact of RETCON on the workloads de-

scribed in Chapter 3. Our most important objective is to determine whether RETCON can eliminate

the performance impact of auxiliary data conflicts on these workloads. We also seek to answer

the question of whether RETCON achieves performance benefits from its incorporation of laziness

and value-based conflict detection. Finally, we seek to show that the amount of state that RETCON

requires is small.

In the next section we describe the metholodogy that we use to evaluate RETCON. Section 9.2

evaluates the performance impact of RETCON on our workloads. Section 9.3 examines the question

of how much of the performance impact of RETCON is due to the ability of RETCON to repair aux-

iliary data conflicts and how much is due to its incorporation of laziness and value-based conflict

detection. Section 9.4 studies whether the inexact representation of constraints employed by RET-

CON results in performance degradation compared to a (less space-effective) exact representation.

Section 9.5 studies the sensitivity of RETCON to parallelism of reacquires at transaction commit,

and Section 9.6 studies the sensitivity of RETCON to structure size. Section 9.7 examines the sen-

sitivity of RETCON to the configuration of the predictor that is used to determine whether to track

blocks symbolically, and Section 9.8 discusses potential implications of RETCON on power. Fi-

nally, Section 9.9 summarizes the main results of the chapter and discusses remaining performance

challenges.

147

Parameter Value
Processor 32 in-order x86 cores, 1 IPC
L1 cache 64 KB, 4-way set associative, 64B blocks, 1-cycle hit latency
L2 cache Private, 1MB, 4-way SA, 64B blocks, 10-cycle hit latency
Memory 100-cycle DRAM lookup latency
Permissions-only cache 256B, 4-way set associative, read-only
Mechanism for overflows ONETM-Concurrent
Coherence Directory-based protocol, 20-cycle hop latency
RETCON structures 8-entry initial value buffer, 8-entry constraint buffer
RETCON predictor 4 sets, 4-way SA, 8-bit saturating counters, 1:100 up/down training ratio

Table 9.1: Simulated RETCON configuration.

9.1 Methodology

We use the workloads and infrastructure described in Chapter 3. All of the configurations evaluated

in this chapter employ the bounded HTM with cleaning-based version management, a 256-byte

4-way set-associative read-only permissions-only cache, and ONETM-Concurrent implementing

strong atomicity to handle overflows. This includes a baseline configuration that employs purely

address-based conflict detection (i.e., the configuration evaluated in Section 7.5).

The version of RETCON that we evaluate employs the optimizations discussed in Section 8.3.

Our default configuration of RETCON supports tracking at most eight cache blocks symbolically

and maintaining constraints on up to eight word-granularity addresses. Vagaries of our simula-

tor prevented us from easily bounding the size of the word-granularity symbolic store buffer; we

analyze this number below. By default, we configure RETCON’s commit-time repair process to

reacquire all lost blocks in parallel and reperform stores serially after all blocks have been reac-

quired.

RETCON uses a predictor to determine which data blocks invoke value-based and symbolic

tracking. The default configuration of this predictor is as follows. The predictor is a tagged table

of 16 eight-bit saturating counters indexed by the data block address. It is 4-way set-associative

(i.e., the table is organized into 4 sets of 4 entries each). The predictor learns based on observed

conflicts. To avoid elongating the amount of time that is spent in transactions that will eventually

abort, a violated constraint causes the predictor to train down aggressively, requiring the observation

of 100 conflicts on that block before attempting symbolic tracking on that block again.

148

We summarize the defaults of the default machine configuration used in this chapter in Table

9.1 on page 148.

9.2 Performance Impact of RETCON

Figure 9.1 on page 150 presents the impact of RETCON on workload scalability. In several cases,

the ability of RETCON to repair conflicts changes the qualitative behavior of the workload. Most

significantly, RETCON tranforms python opt from a workload that has no scaling for the base-

line configuration to one that has near-linear scaling (25x on 32 cores) by eliminating the perfor-

mance impact of reference counter updates. Similarly, RETCON’s ability to resolve conflicts on

hashtable occupancy field updates without rollbacks changes the characteristics of genome-sz,

intruder opt-sz, and vacation opt-sz. Whereas without RETCON the performance of

these workloads is significantly worse than the corresponding variants with a fixed-size hashtable,

the addition of RETCON makes them insensitive to whether the hashtable is fixed-size or resizable.

As Figure 9.2 on page 150 illustrates, the cause of this performance increase is a reduction in time

lost to conflicts.

9.3 What Contributes to RETCON Performance?

As discussed in Section 8.4, RETCON provides multiple benefits over a baseline HTM system

employing eager conflict detection: in addition to admitting transaction commits wherein a value

read has been changed remotely, RETCON can reduce conflicts versus the baseline system due to its

selective use of laziness and value-based conflict detection. To provide insight into the sources of

RETCON’s performance gains, we evaluate two limited variants of RETCON in which values read

are not allowed to change. In the first variant, which we refer to as lazy, values read are checked to

have the same value at a block granularity at commit. This variant captures the performance benefits

of lazy conflict detection. In the second variant, which we refer to as vb, values read are checked to

have the same value at commit at a byte granularity. This variant captures the effects of eliminating

false sharing conflicts as well as laziness. Neither variant, however, allows commits where a value

read has been changed remotely.

149

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

b
ase

retco
n

km
eans

b
ase

retco
n

genom
e

b
ase

retco
n

genom
e-sz

b
ase

retco
n

vacation

b
ase

retco
n

vacation_opt

b
ase

retco
n

vacation_opt-sz

b
ase

retco
n

ssca2

b
ase

retco
n

labyrinth
b
ase

retco
n

intruder

b
ase

retco
n

intruder_opt

b
ase

retco
n

intruder_opt-sz

b
ase

retco
n

yada

b
ase

retco
n

python

b
ase

retco
n

python_opt

Figure 9.1: Scalability of RETCON over sequential execution. “base” represents the performance
of ONETM-Concurrent (as evaluated in Section 7.5). “retcon” represents the performance that
results when RETCON is added to this system.

0.0

0.5

1.0

1.5

ru
n
ti

m
e

(n
o
rm

.
to

 b
as

e)

conflict

barrier

busy

b
ase

retco
n

km
eans

b
ase

retco
n

genom
e

b
ase

retco
n

genom
e-sz

b
ase

retco
n

vacation

b
ase

retco
n

vacation_opt

b
ase

retco
n

vacation_opt-sz

b
ase

retco
n

ssca2

b
ase

retco
n

labyrinth

b
ase

retco
n

intruder

b
ase

retco
n

intruder_opt

b
ase

retco
n

intruder_opt-sz

b
ase

retco
n

yada

b
ase

retco
n

python

b
ase

retco
n

python_opt

Figure 9.2: Breakdown of RETCON execution time.

150

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

b
ase

lazy

v
b

retco
n

km
eans

b
ase

lazy

v
b

retco
n

genom
e

b
ase

lazy

v
b

retco
n

genom
e-sz

b
ase

lazy

v
b

retco
n

vacation

b
ase

lazy

v
b

retco
n

vacation_opt

b
ase

lazy

v
b

retco
n

vacation_opt-sz

b
ase

lazy

v
b

retco
n

ssca2

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

b
ase

lazy

v
b

retco
n

labyrinth

b
ase

lazy

v
b

retco
n

intruder

b
ase

lazy

v
b

retco
n

intruder_opt

b
ase

lazy

v
b

retco
n

intruder_opt-sz

b
ase

lazy

v
b

retco
n

yada

b
ase

lazy

v
b

retco
n

python

b
ase

lazy

v
b

retco
n

python_opt

Figure 9.3: Performance of variants of RETCON. “lazy” captures the performance benefits of
laziness. “vb” additionally captures the performance benefits of eliminating conflicts on false shar-
ing.

151

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

in
ex

act
ex

act

km
eans

in
ex

act
ex

act

genom
e

in
ex

act
ex

act

genom
e-sz

in
ex

act
ex

act

vacation

in
ex

act
ex

act

vacation_opt

in
ex

act
ex

act

vacation_opt-sz

in
ex

act
ex

act

ssca2

in
ex

act
ex

act

labyrinth
in

ex
act

ex
act

intruder

in
ex

act
ex

act
intruder_opt

in
ex

act
ex

act

intruder_opt-sz

in
ex

act
ex

act

yada

in
ex

act
ex

act

python

in
ex

act
ex

act

python_opt

Figure 9.4: Impact of inexact constraint representation on RETCON performance.

Figure 9.3 on page 151 presents the scalability of these variants of RETCON. In most cases, the

ability of RETCON to repair effects of remote modifications is needed to achieve the performance

gains observed in the last section. One exception is vacation, in which the performance gains of

RETCON are due to its incorporation of laziness.

9.4 Impact of Inexact Constraint Representation on RETCON

As described in Section 8.3, RETCON presents constraints via intervals: RETCON represents any

number of constraints (≤, <,=, >>,≥) by the most restrictive interval bounding the symbolic

value, and it represents any number of not-equal-to constraints by tracking the interval in which the

value cannot reside. The former representation is precise. The latter, however, is not. For example,

RETCON represents the constraints that a given value must not be equal to 4 and also must not be

equal to 8 by excluding the value from residing in the interval [4, 8]. If the value is (for example) 6

at the time of reacquire, RETCON will cause an abort that is in fact spurious. If such spurious aborts

occur frequently, performance degradation could result.

In this section we evaluate the performance impact of this inexact representation of constraints.

Figure 9.4 on page 152 presents the performance of the default configuration of RETCON as well

152

as a variant configuration that represents constraints exactly. This figure indicates that the inexact

representation of constraints causes no performance degradation on the workloads that we use.

9.5 Sensitivity of RETCON to Parallelism of Commit-Time

Reacquires

In its default configuration, RETCON reacquires lost blocks in parallel at transaction commit. Figure

9.5 on page 154 illustrates the performance impact of instead reacquiring blocks in serial at commit.

As this figure shows, in most cases RETCON performance is not sensitive to this change. The only

exception is python opt, which loses significant performance if blocks are reacquired serially.

Figure 9.6 on page 154 gives insight into this result by showing the amount of time spent in

transaction commit under the two variants. On almost all workloads, this time is nearly identical.

For python opt, however, reacquiring blocks serially causes a large increase in the time spent in

transaction commit.

9.6 Sensitivity of RETCON to Structure Size

In this section, we examine the impact of varying RETCON structure sizes on performance. To

provide context for this study, Table 9.2 on page 155 presents data for a limit study on the amount

of state used by RETCON (for reference, we present the same data for the default RETCON configu-

ration in Table 9.3 on page 156). In this limit study, RETCON structures were sized at 1024 entries.

This limit study indicates that the number of blocks lost per transaction is generally quite small, on

average below 4 on all workloads except python and python opt. It does, however, reach a

maximum greater than 8 on several workloads, indicating that there is a potential for performance

increase by increasing structure sizes beyond those of the default RETCON configuration.

Inspired by these facts, we run two variant configurations of RETCON. In the first variant, the

initial value buffer and constraint buffer can hold only 4 entries each. In the second variant, which

serves as the above-mentioned limit study, the initial value buffer and constraint buffer can hold

1024 entries each. In this variant, we also increase the number of entries in the predictor to 1024

and the parallelism of commit-time reacquires to 32 to keep the system balanced.

153

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

p
arallel

serial

km
eans

p
arallel

serial

genom
e

p
arallel

serial

genom
e-sz

p
arallel

serial

vacation

p
arallel

serial

vacation_opt

p
arallel

serial

vacation_opt-sz

p
arallel

serial

ssca2

p
arallel

serial
labyrinth

p
arallel

serial

intruder

p
arallel

serial

intruder_opt

p
arallel

serial

intruder_opt-sz

p
arallel

serial

yada

p
arallel

serial

python

p
arallel

serial

python_opt

Figure 9.5: Impact of serial reacquire at commit on RETCON performance. “parallel” rep-
resents RETCON in its default configuration of reacquiring blocks in parallel at commit. “serial”
represents a variant that reacquires blocks serially at commit.

0

2

4

6

8

10

%
 o

f
ru

n
ti

m
e

p
arallel

serial

km
eans

p
arallel

serial

genom
e

p
arallel

serial

genom
e-sz

p
arallel

serial

vacation

p
arallel

serial

vacation_opt

p
arallel

serial

vacation_opt-sz

p
arallel

serial

ssca2

p
arallel

serial

labyrinth

p
arallel

serial

intruder

p
arallel

serial

intruder_opt

p
arallel

serial

intruder_opt-sz

p
arallel

serial

yada

p
arallel

serial

python

p
arallel

serial

python_opt

Figure 9.6: Impact of serial reacquire on RETCON time in transaction commit.

154

Application blocks blocks symbolic private constr. slice
lost tracked registers stores addrs. size

kmeans 0.1 (2.0) 0.6 (2.0) 0.0 (0.0) 1.0 (17.0) 0.0 (0.0) 0.0 (0.0)
genome 0.0 (6.0) 0.4 (34.0) 0.0 (1.0) 0.0 (14.0) 0.4 (61.0) 3.0 (3.0)

genome-sz 0.0 (8.0) 0.5 (34.0) 0.1 (1.0) 0.1 (14.0) 0.4 (61.0) 14.9 (120.0)
vacation 0.7 (3.0) 2.5 (7.0) 0.0 (0.0) 0.0 (4.0) 3.0 (8.0) 0.0 (0.0)

vacation opt 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
vacation opt-sz 0.6 (3.0) 1.7 (3.0) 0.9 (1.0) 0.1 (5.0) 0.1 (3.0) 12.1 (30.0)

labyrinth 0.0 (1.0) 0.0 (1.0) 0.0 (0.0) 0.0 (1.0) 0.0 (3.0) 0.0 (0.0)
intruder 0.4 (8.0) 1.7 (17.0) 0.0 (1.0) 0.4 (17.0) 1.3 (24.0) 3.6 (5.0)

intruder opt 0.0 (1.0) 0.1 (2.0) 0.0 (1.0) 0.0 (4.0) 0.0 (4.0) 0.0 (0.0)
intruder opt-sz 0.2 (1.0) 0.4 (2.0) 0.2 (2.0) 0.4 (5.0) 0.2 (4.0) 7.5 (10.0)

yada 0.4 (33.0) 1.6 (37.0) 0.2 (1.0) 0.9 (71.0) 1.5 (74.0) 9.3 (42.0)
python 10.9 (21.0) 12.8 (22.0) 0.0 (0.0) 16.6 (37.0) 29.5 (90.0) 141.4 (230.0)

python opt 5.2 (9.0) 5.2 (9.0) 0.0 (0.0) 6.0 (10.0) 7.4 (13.0) 185.3 (230.0)

Table 9.2: Limit study of RETCON structure utilization. RETCON structures are sized to 1024
entries. The columns, in order, show the average and maximum (in parentheses) number of (a)
64B blocks stolen away during a transaction, (b) initial value buffer entries, (c) symbolic registers
repaired at commit, (d) symbolic stores performed at commit, (e) symbolic constraints to be checked
at commit, and (f) instructions in a dependent slice (i.e., the number of instructions that would need
to be buffered and replayed in an instruction replay-based scheme).

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

sm
all

d
efau

lt
larg

e

km
eans

sm
all

d
efau

lt
larg

e

genom
e

sm
all

d
efau

lt
larg

e

genom
e-sz

sm
all

d
efau

lt
larg

e

vacation

sm
all

d
efau

lt
larg

e

vacation_opt

sm
all

d
efau

lt
larg

e

vacation_opt-sz

sm
all

d
efau

lt
larg

e

ssca2

sm
all

d
efau

lt
larg

e

labyrinth

sm
all

d
efau

lt
larg

e

intruder

sm
all

d
efau

lt
larg

e

intruder_opt

sm
all

d
efau

lt
larg

e

intruder_opt-sz

sm
all

d
efau

lt
larg

e

yada

sm
all

d
efau

lt
larg

e

python

sm
all

d
efau

lt
larg

e

python_opt

Figure 9.7: Impact of RETCON structure sizes on performance. “default” uses the default con-
figuration of an 8-entry initial value buffer, an 8-entry constraint buffer, and the ability to make 8
requests in parallel at reacquire. “small” uses a 4-entry initial value buffer and constraint buffer
and can make 4 requests in parallel at reacquire. “large” uses a 1024-entry initial value buffer and
constraint buffer and can make 32 requests in parallel at reacquire.

155

Application blocks blocks symbolic private constr. slice
lost tracked registers stores addrs. size

kmeans 0.1 (2.0) 0.6 (2.0) 0.0 (0.0) 1.0 (17.0) 0.0 (0.0) 0.0 (0.0)
genome 0.0 (7.0) 0.2 (8.0) 0.0 (1.0) 0.0 (16.0) 0.2 (8.0) 3.0 (3.0)

genome-sz 0.0 (7.0) 0.3 (8.0) 0.1 (1.0) 0.1 (14.0) 0.2 (8.0) 16.1 (120.0)
vacation 0.7 (3.0) 2.5 (7.0) 0.0 (0.0) 0.0 (4.0) 3.0 (8.0) 0.0 (0.0)

vacation opt 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
vacation opt-sz 0.6 (3.0) 1.7 (3.0) 0.9 (1.0) 0.1 (5.0) 0.1 (3.0) 12.1 (30.0)

labyrinth 0.0 (1.0) 0.0 (1.0) 0.0 (0.0) 0.0 (1.0) 0.0 (3.0) 0.0 (0.0)
intruder 0.4 (6.0) 1.3 (8.0) 0.0 (1.0) 0.4 (14.0) 0.9 (8.0) 3.6 (5.0)

intruder opt 0.0 (1.0) 0.1 (2.0) 0.0 (1.0) 0.0 (4.0) 0.0 (4.0) 0.0 (0.0)
intruder opt-sz 0.2 (1.0) 0.4 (2.0) 0.2 (2.0) 0.4 (5.0) 0.2 (4.0) 7.5 (10.0)

yada 0.3 (8.0) 0.9 (8.0) 0.1 (1.0) 0.7 (22.0) 0.7 (8.0) 9.8 (42.0)
python 6.0 (8.0) 7.9 (8.0) 0.0 (0.0) 9.6 (14.0) 8.0 (8.0) 117.2 (230.0)

python opt 5.1 (8.0) 5.2 (8.0) 0.0 (0.0) 6.0 (9.0) 7.1 (8.0) 192.6 (230.0)

Table 9.3: RETCON structure utilization. The columns, in order, show the average and maximum
(in parentheses) number of (a) 64B blocks stolen away during a transaction, (b) initial value buffer
entries, (c) symbolic registers repaired at commit, (d) symbolic stores performed at commit, (e)
symbolic constraints to be checked at commit, and (f) instructions in a dependent slice (i.e., the
number of instructions that would need to be buffered and replayed in an instruction replay-based
scheme).

Figure 9.7 on page 155 shows the performance of these variant configurations. The smaller

configuration has performance loss only on python opt. On that workload, however, the perfor-

mance loss is disastrous. The larger configuration results in small performance increases on several

workloads (e.g., python opt).

9.7 Sensitivity of RETCON to Predictor Configuration

In this section, we examine the sensitivity of RETCON to the configuration of the predictor that

is used to determine whether to track a block symbolically. We vary the predictor along three

dimensions: predictor size, number of bits in the saturating counter, and the training ratio.

We first study the sensitivity of RETCON performance to predictor size. Figure 9.8 on page

157 presents the performance of RETCON variants with an 8-entry predictor, a 16-entry predictor

(the default), a 32-entry predictor, and a 1024-entry predictor. All of these predictors are 4-way

set-associative. The results indicate that the 16-entry predictor is able to capture the performance of

the larger predictors, while the 8-entry predictor has only minor performance degradation (e.g., on

genome).

156

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

8 1
6

3
2

1
0
2
4

km
eans

8 1
6

3
2

1
0
2
4

genom
e

8 1
6

3
2

1
0
2
4

genom
e-sz

8 1
6

3
2

1
0
2
4

vacation

8 1
6

3
2

1
0
2
4

vacation_opt

8 1
6

3
2

1
0
2
4

vacation_opt-sz

8 1
6

3
2

1
0
2
4

ssca2

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

8 1
6

3
2

1
0
2
4

labyrinth

8 1
6

3
2

1
0
2
4

intruder

8 1
6

3
2

1
0
2
4

intruder_opt

8 1
6

3
2

1
0
2
4

intruder_opt-sz

8 1
6

3
2

1
0
2
4

yada

8 1
6

3
2

1
0
2
4

python

8 1
6

3
2

1
0
2
4

python_opt

Figure 9.8: Impact of varying size of RETCON predictor. “8” represents an 8-entry predictor,
“16” a 16-entry predictor (i.e., the default configuration), “32” a 32-entry predictor, and “1024” a
1024-entry predictor.

157

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

2 4 8 1
6

km
eans

2 4 8 1
6

genom
e

2 4 8 1
6

genom
e-sz

2 4 8 1
6

vacation

2 4 8 1
6

vacation_opt

2 4 8 1
6

vacation_opt-sz

2 4 8 1
6

ssca2

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

2 4 8 1
6

labyrinth

2 4 8 1
6

intruder

2 4 8 1
6

intruder_opt

2 4 8 1
6

intruder_opt-sz

2 4 8 1
6

yada

2 4 8 1
6

python

2 4 8 1
6

python_opt

Figure 9.9: Impact of varying the size of the saturating counters in the RETCON predictor. “2”
represents a 2-bit counter, “4” a 4-bit counter, “8” an 8-bit counter (i.e., the default configuration),
and “16” a 16-bit counter.

We next study the sensitivity of RETCON performance to number of bits in the saturating coun-

ters of the predictor entries. Figure 9.9 on page 158 presents the performance of RETCON variants

with 2-bit saturating counters, 4-bit saturating counters, 8-bit saturating counters (the default), and

16-bit saturating counters. These results show that RETCON is generally insensitive to this param-

eter. However, on kmeans, the 2-bit and 4-bit counter variants suffer performance degradation

relative to the default 8-bit variant.

Finally, we study the sensitivity of RETCON performance to the training ratio of the predictor.

Figure 9.10 on page 159 presents the performance of RETCON variants with a 1:1 up/down training

158

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

1 1
0

5
0

1
0
0

2
0
0

km
eans

1 1
0

5
0

1
0
0

2
0
0

genom
e

1 1
0

5
0

1
0
0

2
0
0

genom
e-sz

1 1
0

5
0

1
0
0

2
0
0

vacation

1 1
0

5
0

1
0
0

2
0
0

vacation_opt

1 1
0

5
0

1
0
0

2
0
0

vacation_opt-sz

1 1
0

5
0

1
0
0

2
0
0

ssca2

0

10

20

30

sp
ee

d
u
p
 o

v
er

 s
eq

1 1
0

5
0

1
0
0

2
0
0

labyrinth

1 1
0

5
0

1
0
0

2
0
0

intruder

1 1
0

5
0

1
0
0

2
0
0

intruder_opt

1 1
0

5
0

1
0
0

2
0
0

intruder_opt-sz

1 1
0

5
0

1
0
0

2
0
0

yada

1 1
0

5
0

1
0
0

2
0
0

python

1 1
0

5
0

1
0
0

2
0
0

python_opt

Figure 9.10: Impact of varying training ratio of RETCON predictor. “1” represents a 1:1
up/down training ratio, “10” a 1:10 ratio, “50” a 1:50 ratio, “100” a 1:100 ratio (i.e., the default
configuration), and “200” a 1:200 ratio.

159

ratio, a 1:10 ratio, a 1:50 ratio, a 1:100 ratio (the default), and a 1:200 ratio. Once again, RETCON is

generally insensitive to this parameter. However, on kmeans the variants with 1:1 and 1:10 training

ratios suffer performance degradation.

For completeness, we also studied the impact of varying the training ratio on RETCON con-

figured with the other counter sizes from Figure 9.9 on page 158. Results (not shown) were qual-

itatively similar to those presented in Figure 9.10 on page 159. In particular, none of the variant

training ratios enabled the 2-bit and 4-bit counter variants to match the performance of the default

RETCON configuration on kmeans.

9.8 Discussion of the Power Implications of RETCON

The structures employed by RETCON have several potential implications on power consumption.

The initial value buffer is written on the first load of a symbolically-tracked block within a transac-

tion. It is subsequently read by local loads as detailed in Figure 8.3 on page 132. To limit the power

required by these accesses, the initial value buffer could be placed behind the L1 cache (i.e., it is

accessed only when the block is not found in the L1 cache). The symbolic store buffer is written

by symbolic stores and read by all local loads (Figure 8.3 on page 132), similar to the processor’s

regular store buffer. The symbolic store buffer could potentially be integrated with the regular store

buffer. Finally, the constraint buffer is accessed on conditionals with symbolically-tracked values

as inputs. These structures could be completely powered down when empty.

Figure 9.11 on page 161 presents the percentage of execution time that the various RETCON

structures are active (i.e., non-empty). For several workloads RETCON is active for a majority of

execution time. Many (but not all) of these workloads are the ones on which RETCON increases

performance significantly. On these workloads, the energy expended by RETCON is likely to be

worth the performance gains, especially considering that these structures are organized as RAM-

based structures (as opposed to CAM’s) and are small.

9.9 Summary and Remaining Challenges

In this chapter we analyzed the performance impact of RETCON on the workloads that we use. We

found that RETCON was able to eliminate the performance impact of auxiliary data conflicts on

160

0

20

40

60

80

100

%
 o

f
cy

cl
es

IV
B

C
B

S
S

B

km
eans

IV
B

C
B

S
S

B

genom
e

IV
B

C
B

S
S

B

genom
e-sz

IV
B

C
B

S
S

B

vacation

IV
B

C
B

S
S

B

vacation_opt

IV
B

C
B

S
S

B

vacation_opt-sz

IV
B

C
B

S
S

B

ssca2

IV
B

C
B

S
S

B

labyrinth

IV
B

C
B

S
S

B

intruder
IV

B
C

B
S

S
B

intruder_opt

IV
B

C
B

S
S

B

intruder_opt-sz

IV
B

C
B

S
S

B

yada

IV
B

C
B

S
S

B

python

IV
B

C
B

S
S

B

python_opt

Figure 9.11: Percentage of time that RETCON structures are non-empty. “IVB” represents the
initial value buffer, “CB” represents the constraint buffer, and “SSB” represents the symbolic store
buffer.

these workloads, resulting in significant speedups on several workloads. While RETCON’s incor-

poration of laziness and value-based conflict detection provided small performance benefits, RET-

CON’s ability to repair the effects of remote modifications was most responsible for its performance

gains.

We also analyzed several important parameters of RETCON. We found that the inexact represen-

tation of constraints that RETCON employs did not degrade performance from a less space-efficient

exact representation. We also found that RETCON could be configured to reacquire blocks serially

rather than in parallel at commit with little performance loss. We performed an analysis on the im-

pact of RETCON structure size on performance, finding that the default configuration of an 8-entry

initial value buffer and constraint buffer approached the performance of an essentially-unbounded

size configuration, but that a 4-entry initial value buffer and constraint buffer was insufficient to

repair the effects of conflicts in python opt. Finally, we analyzed the sensitivity of RETCON to

the configuration of the predictor used to determine whether to track blocks symbolically, finding

that RETCON is generally insensitive to the exact configuration of this predictor.

As Figure 9.1 on page 150 and Figure 9.2 on page 150 show, there are three workloads with

significant conflicts that RETCON does not greatly affect: the unmodified variants of intruder,

yada, and python. The nominal reason that RETCON cannot help on these workloads is that

161

each of these workloads experiences conflicts due to multiple threads simultaneously enqueueing

and dequeueing from shared lists. As the variables on which there is contention are used to index

into memory (e.g., the pointer to the list head), RETCON is not able to repair these conflicts.

However, these workloads also serve as examples that a repair-based approach is not always

the right one to take. In each of these cases, the data elements being operated on are central to the

dataflow of the entire transaction. Therefore, a repair that involves selecting a different list element

at commit than one previously selected during execution would likely involve redoing most of the

work of the transaction, resulting in little savings over a full abort. In such cases, an approach

based on forwarding speculative values (e.g., the pointer to the head of the queue in intruder)

such as dependence-aware transactional memory (DATM) [92] may be more useful. We discuss

the potential to integrate such a technique into RETCON as well as other avenues of future work in

Section 10.2.

162

Chapter 10

Conclusions

In this chapter, we first summarize this dissertation in Section 10.1. We next outline directions

for further research on our proposals in Section 10.2. Finally, I offer reflections on transactional

memory in Section 10.3.

10.1 Dissertation Summary

In this dissertation, we have addressed two challenges to the applicability of hardware transactional

memory as a general-purpose synchronization primitive: first, supporting transactions that are un-

bounded in space and time with high performance and low complexity, and second, maintaining ro-

bust performance in the presence of conflicts on auxiliary data. We outlined our baseline hardware

support for bounded transactions. We described the usage of the permissions-only cache to extend

the range of this bounded hardware transactional memory and proposed ONETM as a mechanism

for handling the case of overflows of the bounded HTM. Via experimental evaluation, we showed

that the combination of the permissions-only cache and ONETM can provide similar performance

to that of an idealized hardware transactional memory that supports unbounded transactions with

full concurrency and no overheads.

After removing overflows as a performance bottleneck, we found that data conflicts formed the

primary remaining source of performance loss on our workloads. We proposed a novel form of con-

flict detection that tracks relationships between inputs and outputs symbolically during execution

and uses these relationships to account for changed inputs at commit. We described the architecture

163

and operation of RETCON, our instantiation of this approach that is tailored to the needs of auxil-

iary data. Our experimental evaluation showed that RETCON mitigates the performance impact of

a class of auxiliary data conflicts in our workloads.

10.2 Future Work

The primary avenues of future work that we see stemming from this dissertation focus on increasing

the robustness of hardware transactional memory to conflicts. In this regard, we see two potential

extensions of RETCON: first, extending RETCON to repair the effects of conflicts that change

symbolically-tracked memory addresses, and second, integrating RETCON with techniques that

communicate speculative data.

Repairing state after conflicts that change symbolically-tracked memory addresses is a complex

problem. The primary difficulty is that changing memory addresses can potentially also change

dataflow, i.e., which loads forward from which stores. In effect, it could change the dependent

slice of the conflicting address. While this complication can be handled (e.g., [48, 103]), it is

challenging.

One potentially fruitful avenue of tackling this problem in the context of RETCON is to seek

to repair only conflicts that do not change the dependent slice. Although this would not capture all

conflicts, it would still be sufficient to repair some of the conflicts in the workloads that we have

studied (e.g., conflicts on freelists in python). How much this restriction simplifies the problem is

an open question.

We also note that some conflicts are simply not amenable to a repair-based approach. For

example, consider transactions that dequeue data from a shared workqueue and then compute on

this data (as intruder does). Repairing the effects of a conflict on the workqueue amounts to

essentially redoing the entire computation of the transaction. Thus, even if we were able to extend

RETCON to repair the effects of more general classes of conflicts, there would be conflicts for which

this repair-based process does not increase performance.

Researchers have proposed an alternate approach that employs speculative values, for example

by forwarding values from in-progress transanctions [92] or by predicting values [26, 83, 84, 105].

RETCON does not currently incorporate speculative value forwarding, but it is well-suited to do so.

By generating constraints throughout execution and checking that the current architectural value

164

satisfies all generated constraints at commit, RETCON ensures correctness regardless of the source

of the value used during execution (e.g., the current architectural value, a forwarded value from an

in-progress transaction, or a predicted value). This technique could help increase the robustness of

RETCON to conflicts that are not suitable to a repair-based approach (e.g., transactions dequeueing

tasks from a shared workqueue and processing these tasks). We see unifying RETCON with such

speculative value forwarding techniques as a promising area of future work.

Finally, we note that creating a concurrent version of the Python interpreter via transactional

memory is not a solved problem. By increasing the robustness of HTM to auxiliary data conflicts,

this dissertation took an initial step toward enabling such a concurrent interpreter. However, con-

flicts on reference counts are not the only ones plaguing the interpreter. As we outlined in Chapter

3, python also experiences conflicts on shared data structures such as freelists. More complex

workloads are likely to exercise other conflicts in the interpreter as well. Just as our initial investi-

gations on transactionalizing the Python interpreter led us to the problem of auxiliary data conflicts,

we expect that further investigations will also inspire innovation in transactional memory design

that is more broadly applicable — along the lines mentioned above or others.

10.3 Reflections on Transactional Memory

This section offers my reflections on transactional memory.1 I have developed these reflections

over the course of five years spent working on this dissertation. They have also been informed

by my work on deep speculation in other contexts [12], experience gained from a fruitful summer

spent at IBM Research, and insights gained from the work of others (an incomplete list includes

[18, 19, 33, 36, 41, 50, 52, 72, 73, 79, 88, 89, 91, 92, 101, 105, 115]).

Locks are unlikely to go away in the near future. Expert programmers will always see a benefit

to putting in more programming effort in return for finer-grained control over the robustness of the

performance of synchronization. As a result, transactional memory must factor in interaction with

locks as a first-class concern. While there have been promising efforts in this direction (e.g., [114]),

this problem is a challenging one with no single right solution.
1As these thoughts and opinions are my own and not necessarily shared by my co-authors, I use the singular pronoun

throughout this section.

165

Transactional memory is dead; long live speculative concurrency. It is not clear whether trans-

actional memory will become generally adopted as a programming interface. However, the idea of

speculative parallel execution of critical sections with the semantics of isolation will continue to

be relevant regardless of whether the interface presented to the programmer is transactional or is

lock-based ([73, 88]).

The primary challenge of speculative concurrency is supporting common programming para-

digms with high performance. There is a compelling argument for the implementation of syn-

chronization using speculation. However, microarchitecture designers must make such speculation

robust to common programming paradigms for it to be truly useful to programmers other than ex-

pert parallel programmers (to whom the task of conventional lock-based programming is probably

a manageable one). This dissertation has aimed to take steps in that direction, but the challenge of

course extends far beyond the problem of auxiliary data updates. One example is the paradigm of

using lists to implement an unordered set interface (e.g., freelists).

Deep speculation will be a useful mechanism for multiprocessors regardless of the benefits of

speculative concurrency. Mechanisms of deep speculation such as those presented in Chapter 2

can reduce communication costs in multiprocessors via load latency tolerance [52] and store latency

tolerance [12, 18, 115]. As such, the utility of these mechanisms is not entirely dependent on there

being a perceived benefit for using them in the context of synchronization.

The last point mentioned above is particularly important, as it increases the likelihood that deep

speculation mechanisms will appear in future multiprocessors. The appearance of these mechanisms

will then provide an avenue for researchers to address the above-described challenge of further

increasing their utility as a means of enabling high-performance synchronization. With respect to

this challenge, I conclude this dissertation with a statement from Mark Moir that was originally

made in the context of high-performance non-blocking software transactional memory but applies

equally well here: “Of course it’s hard! That’s what they pay us for!”

166

Bibliography

[1] The FeS2 simulator. URL http://fes2.cs.uiuc.edu/acknowledgements.

html.

[2] The Unladen-Swallow benchmark suite. URL http://code.google.com/p/

unladen-swallow/wiki/Benchmarks.

[3] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial. IEEE

Computer, 29(12):66–76, Dec. 1996.

[4] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing and Recovery: To-

wards Scalable Large Instruction Window Processors. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture, Dec. 2003.

[5] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded Trans-

actional Memory. In Proceedings of the 11th Symposium on High-Performance Computer

Architecture, Feb. 2005.

[6] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,

R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based on Single-Chip Multipro-

cessing. In Proceedings of the 27th Annual International Symposium on Computer Architec-

ture, June 2000.

[7] L. Baugh and C. Zilles. An Analysis of I/O and Syscalls in Critical Sections and Their

Implications for Transactional Memory. In Proceedings of the 2008 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), 2008.

167

http://fes2.cs.uiuc.edu/acknowledgements.html
http://fes2.cs.uiuc.edu/acknowledgements.html
http://code.google.com/p/unladen-swallow/wiki/Benchmarks
http://code.google.com/p/unladen-swallow/wiki/Benchmarks

[8] A. Bensoussan, C. Clingen, and R. Daley. The Multics Virtual Memory: Concepts and

Design. Communications of the ACM, 15(5):308–318, 1972.

[9] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making the Fast Case Common

and the Uncommon Case Simple in Unbounded Transactional Memory. In Proceedings of

the 34th Annual International Symposium on Computer Architecture, June 2007.

[10] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of Transactional Memory Atom-

icity Semantics. IEEE TCCA Computer Architecture Letters, 5(2), Nov. 2006.

[11] C. Blundell, E. C. Lewis, and M. M. K. Martin. Unrestricted Transactional Memory: Sup-

porting I/O and System Calls within Transactions. Technical Report CIS-06-09, Department

of Computer and Information Science, University of Pennsylvania, Apr. 2006.

[12] C. Blundell, M. M. K. Martin, and T. Wenisch. InvisiFence: Performance-Transparent Mem-

ory Ordering in Conventional Multiprocessors. In Proceedings of the 36th Annual Interna-

tional Symposium on Computer Architecture, June 2009.

[13] C. Blundell, A. Raghavan, and M. M. K. Martin. RetCon: Transactional Repair without Re-

play. In Proceedings of the 37th Annual International Symposium on Computer Architecture,

June 2010.

[14] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood. TokenTM: Efficient Execution

of Large Transactions with Hardware Transactional Memory. In Proceedings of the 34th

Annual International Symposium on Computer Architecture, June 2007.

[15] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D. A. Wood. Perfor-

mance Pathologies in Hardware Transactional Memory. In Proceedings of the 34th Annual

International Symposium on Computer Architecture, June 2007.

[16] B. D. Carlstrom, A. MacDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and K. Oluko-

tun. The Atomos Transactional Programming Language. In Proceedings of the SIGPLAN

2006 Conference on Programming Language Design and Implementation, June 2006.

168

[17] C. Cascaval, C. Blundell, M. Michael, H. Cain, P. Wu, S. Chiras, and S. Chatterjee. Software

Transactional Memory: Why is it Only a Research Toy? Communications of the ACM, 51

(11), 2008.

[18] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of Sequen-

tial Consistency. In Proceedings of the 34th Annual International Symposium on Computer

Architecture, June 2007.

[19] L. Ceze, J. M. Tuck, C. Cascaval, and J. Torrellas. Bulk Disambiguation of Speculative

Threads in Multiprocessors. In Proceedings of the 33rd Annual International Symposium on

Computer Architecture, June 2006.

[20] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek, C. Kozyrakis, and

K. Olukotun. A Scalable, Non-blocking Approach to Transactional Memory. In Proceedings

of the 13th Symposium on High-Performance Computer Architecture, Feb. 2007.

[21] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and M. Trem-

blay. Simultaneous Speculative Threading: A Novel Pipeline Architecture Implemented in

Sun’s ROCK Processor. In Proceedings of the 36th Annual International Symposium on

Computer Architecture, June 2009.

[22] Y. Chou, L. Spracklen, and S. G. Abraham. Store Memory-Level Parallelism Optimizations

for Commercial Applications. In Proceedings of the 38th Annual IEEE/ACM International

Symposium on Microarchitecture, Nov. 2005.

[23] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Biesbrouck, G. Pokam,

B. Calder, and O. Colavin. Unbounded Page-Based Transactional Memory. In Proceedings

of the 12th International Conference on Architectural Support for Programming Languages

and Operating Systems, Oct. 2006.

[24] J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D. Carlstrom, C. Kozyrakis,

and K. Olukotun. Tradeoffs in Transactional Memory Virtualization. In Proceedings of the

12th International Conference on Architectural Support for Programming Languages and

Operating Systems, Oct. 2006.

169

[25] M. Cintra, J. Martinez, and J. Torrellas. Architectural Support for Scalable Speculative Par-

allelization in Shared-Memory Systems. In Proceedings of the 27th Annual International

Symposium on Computer Architecture, June 2000.

[26] M. Cintra and J. Torellas. Eliminating Squashes Through Learning Cross-Thread Violations

in Speculative Parallelization for Multiprocessors. In Proceedings of the Eighth Symposium

on High-Performance Computer Architecture, Feb. 2002.

[27] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for Detecting Migratory Shared Data.

In Proceedings of the 20th Annual International Symposium on Computer Architecture, May

1993.

[28] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention Orthogonal to Mem-

ory Model. In Proceedings of the 37th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Dec. 2004.

[29] D. E. Culler and J. Singh. Parallel Computer Architecture: A Hardware/Software Approach.

Morgan Kaufmann Publishers, Inc., 1999.

[30] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid Trans-

actional Memory. In Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems, Oct. 2006.

[31] R. Desikan, S. Sethumadhavan, D. Burger, and S. W. Keckler. Scalable Selective Re-

execution for EDGE Architectures. In Proceedings of the 11th International Conference

on Architectural Support for Programming Languages and Operating Systems, Oct. 2004.

[32] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose. Increasing Processor Performance

Through Early Register Release. In Proceedings of the International Conference on Com-

puter Design, Oct. 2004.

[33] M. Franklin and G. S. Sohi. The Expandable Split Window Paradigm for Exploiting Fine-

Grain Parallelism. In Proceedings of the 19th Annual International Symposium on Computer

Architecture, May 1992.

170

[34] K. Gharachorloo, L. A. Barroso, and A. Nowatzyk. Efficient ECC-Based Directory Imple-

mentations for Scalable Multiprocessors. In Proceedings of the 12th Symposium on Com-

puter Architecture and High-Performance Computing (SBAC-PAD 2000), Oct. 2000.

[35] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to Enhance the Performance

of Memory Consistency Models. In Proceedings of the International Conference on Parallel

Processing, Aug. 1991.

[36] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In Proceedings of the 26th

Annual International Symposium on Computer Architecture, May 1999.

[37] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-

mann, 1st edition, 1993.

[38] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck. Microprocessor Report, Oct. 1998.

[39] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis, and

K. Olukotun. Programming with Transactional Coherence and Consistency (TCC). In Pro-

ceedings of the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems, Oct. 2004.

[40] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support for a Chip Multi-

processor. In Proceedings of the 8th International Conference on Architectural Support for

Programming Languages and Operating Systems, Oct. 1998.

[41] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu,

H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional Memory Coherence and Consis-

tency. In Proceedings of the 31st Annual International Symposium on Computer Architecture,

June 2004.

[42] T. Harris and K. Fraser. Language Support for Lightweight Transactions. In Proceedings of

the 18th SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and

Application (OOPSLA), Oct. 2003.

171

[43] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable Memory Transactions.

In Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), June 2005.

[44] T. Harris and S. Stipic. Abstract Nested Transactions. In Proceedings of the Second ACM

SIGPLAN Workshop on Transactional Computing, Aug. 2007.

[45] M. Herlihy and E. Koskinen. Transactional Boosting: A Methodology for Highly-Concurrent

Transactional Objects. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPOPP), 2008.

[46] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional Mem-

ory for Dynamic-Sized Data Structures. In Proceedings of the 22nd ACM Symposium on

Principles of Distributed Computing, July 2003.

[47] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-Free

Data Structures. In Proceedings of the 20th Annual International Symposium on Computer

Architecture, May 1993.

[48] A. D. Hilton, S. Nagarakatte, and A. Roth. iCFP: Tolerating All-Level Cache Misses in In-

Order Processors. In Proceedings of the 14th Symposium on High-Performance Computer

Architecture, Feb. 2008.

[49] A. D. Hilton and A. Roth. Ginger: Control Independence Using Tag Rewriting. In Proceed-

ings of the 34th Annual International Symposium on Computer Architecture, June 2007.

[50] O. S. Hofmann, C. J. Rossbach, and E. Witchel. Maximum Benefit from a Minimal HTM. In

Proceedings of the 14th International Conference on Architectural Support for Programming

Languages and Operating Systems, Mar. 2009.

[51] T. Horel and G. Lauterbach. UltraSPARC-III: Designing Third Generation 64-Bit Perfor-

mance. IEEE Micro, 19(3):73–85, May/June 1999.

[52] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence Decoupling: Making Use of Inco-

herence. In Proceedings of the 11th International Conference on Architectural Support for

Programming Languages and Operating Systems, Oct. 2004.

172

[53] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36, March/April

1999.

[54] T. Knight. An Architecture for Mostly Functional Languages. In Proceedings of the ACM

Conference on LISP and Functional Programming, 1986.

[55] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid Transactional Memory.

In Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), Mar. 2006.

[56] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communica-

tions of the ACM, 21(7):558–565, July 1978.

[57] J. R. Larus and R. Rajwar. Transactional Memory. Morgan and Claypool, 2007.

[58] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Pro-

ceedings of the 24th Annual International Symposium on Computer Architecture, June 1997.

[59] R. B. Lee. Precision Architecture. IEEE Computer, 22(1):78–91, Jan. 1989.

[60] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based

Cache Coherence Protocol for the DASH Multiprocessor. In Proceedings of the 17th Annual

International Symposium on Computer Architecture, May 1990.

[61] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz,

and M. Lam. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63–79, Mar. 1992.

[62] K. M. Lepak and M. H. Lipasti. Temporally Silent Stores. In Proceedings of the 10th Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems, Oct. 2002.

[63] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased Transactional Memory. In Proceedings

of the Second ACM SIGPLAN Workshop on Transactional Computing, Aug. 2007.

[64] J. S. Liptay. Structural Aspects of the System/360 Model 85, Part II: The Cache. IBM Systems

Journal, 7(1):15–21, 1968.

173

[65] T. D. Lovett and R. M. Clapp. STiNG: A CC-NUMA Computer System for the Commercial

Marketplace. In Proceedings of the 23th Annual International Symposium on Computer

Architecture, May 1996.

[66] P. S. Magnusson et al. SimICS/sun4m: A Virtual Workstation. In Proceedings of Usenix

Annual Technical Conference, June 1998.

[67] P. S. Magnusson et al. Simics: A Full System Simulation Platform. IEEE Computer, 35(2):

50–58, Feb. 2002.

[68] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Transactional Memory.

In Proceedings of the 19th International Symposium on Distributed Computing, Sept. 2005.

[69] M. M. K. Martin. Token Coherence. PhD thesis, University of Wisconsin, 2003.

[70] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling Performance

and Correctness. In Proceedings of the 30th Annual International Symposium on Computer

Architecture, June 2003.

[71] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E.

Moore, M. D. Hill, and D. A. Wood. Multifacet’s General Execution-driven Multiprocessor

Simulator (GEMS) Toolset. Computer Architecture News, 2005.

[72] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas. Cherry: Checkpointed Early

Resource Recycling in Out-of-Order Microprocessors. In Proceedings of the 35th Annual

IEEE/ACM International Symposium on Microarchitecture, Nov. 2002.

[73] J. F. Martinez and J. Torrellas. Speculative Synchronization: Applying Thread-Level Spec-

ulation to Explicitly Parallel Applications. In Proceedings of the 10th International Con-

ference on Architectural Support for Programming Languages and Operating Systems, Oct.

2002.

[74] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Timing-First Simulation. In Proceed-

ings of the 2002 ACM Sigmetrics Conference on Measurement and Modeling of Computer

Systems, June 2002.

174

[75] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi, C. Kozyrakis, and K. Oluko-

tun. Architectural Semantics for Practical Transactional Memory. In Proceedings of the 33rd

Annual International Symposium on Computer Architecture, June 2006.

[76] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Transactional

Applications for Multi-Processing. In Proceedings of the IEEE International Symposium on

Workload Characterization, Sept. 2008.

[77] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: Log-based

Transactional Memory. In Proceedings of the 12th Symposium on High-Performance Com-

puter Architecture, Feb. 2006.

[78] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift, and

D. A. Wood. Supporting Nested Transactional Memory in LogTM. In Proceedings of the

12th International Conference on Architectural Support for Programming Languages and

Operating Systems, Oct. 2006.

[79] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles. Hardware Atomicity for

Reliable Software Speculation. In Proceedings of the 34th Annual International Symposium

on Computer Architecture, June 2007.

[80] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss, B. Saha,

and T. Shpeisman. Open Nesting in Software Transactional Memory. In Proceedings of

the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPOPP), 2007.

[81] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, and M. Parkin. The S3.mp Scalable Shared

Memory Multiprocessor. In Proceedings of the International Conference on Parallel Pro-

cessing, Aug. 1995.

[82] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic Binary Rewriting Ap-

proach to Software Transactional Memory. In Proceedings of the International Conference

on Parallel Architectures and Compilation Techniques, 2007.

175

[83] S. M. Pant and G. T. Byrd. Limited Early Value Communication to Improve Performance of

Transactional Memory. In Proceedings of the 23rd International Conference on Supercom-

puting, June 2009.

[84] S. M. Pant and G. T. Byrd. A Study of Conflicting Data in TM Programs and Methods to

Increase Concurrency Using Value Prediction. In Proceedings of the Sixth ACM Conference

on Computing Frontiers, May 2009.

[85] V. Petric, T. Sha, and A. Roth. RENO: A Rename-Based Instruction Optimizer. In Proceed-

ings of the 32nd Annual International Symposium on Computer Architecture, June 2005.

[86] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel. Operating System

Transactions. In Proceedings of the 22st ACM Symposium on Operating Systems Principles,

Oct. 2009.

[87] M. Prvulovic, M. J. Garzaran, L. Rauchwerger, and J. Torrellas. Removing Architectural

Bottlenecks to the Scalability of Speculative Parallelization. In Proceedings of the 28th

Annual International Symposium on Computer Architecture, July 2001.

[88] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multi-

threaded Execution. In Proceedings of the 34th Annual IEEE/ACM International Symposium

on Microarchitecture, Dec. 2001.

[89] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of Lock-Based Programs.

In Proceedings of the 10th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, Oct. 2002.

[90] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proceedings of

the 32nd Annual International Symposium on Computer Architecture, June 2005.

[91] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann, A. Bhandari, and E. Witchel.

MetaTM/TxLinux: Transactional Memory for an Operating System. In Proceedings of the

34th Annual International Symposium on Computer Architecture, June 2007.

176

[92] H. E. Ramadan, C. J. Rossbach, and E. Witchel. Dependence-Aware Transactional Memory

for Increased Concurrency. In Proceedings of the 41st Annual IEEE/ACM International

Symposium on Microarchitecture, Nov. 2008.

[93] N. Riley and C. Zilles. Hardware Transactional Memory Support for Lightweight Dynamic

Language Evolution. In Proceedings of the 21st SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages and Application (OOPSLA), Oct. 2006.

[94] M. F. Ringenburg and D. Grossman. AtomCaml: First-Class Atomicity via Rollback. In

Proceedings of the 10th ACM Internation Conference on Functional Programming, Sept.

2006.

[95] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural Support for Software Transac-

tional Memory. In Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, Dec. 2006.

[96] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. ReSlice: Selective Re-Execution of Long-

Retired Misspeculated Instructions Using Forward Slicing. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, Nov. 2005.

[97] N. Shavit and D. Touitou. Software Transactional Memory. In Proceedings of the 14th ACM

Symposium on Principles of Distributed Computing, Aug. 1995.

[98] A. Shriraman and S. Dwarkadas. Refereeing Conflicts in Hardware Transactional Memory

Systems. In Proceedings of the 23rd International Conference on Supercomputing, June

2009.

[99] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible Decoupled Transactional Memory

Support. In Proceedings of the 35th Annual International Symposium on Computer Archi-

tecture, June 2008.

[100] A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas, and M. L. Scott. An

Integrated Hardware-Software Approach to Flexible Transactional Memory. In Proceedings

of the 34th Annual International Symposium on Computer Architecture, June 2007.

177

[101] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors. In Proceedings of the 22nd

Annual International Symposium on Computer Architecture, June 1995.

[102] F. G. Soltis. Inside the AS/400. Duke Press, 2nd edition, 1997.

[103] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual Flow Pipelines.

In Proceedings of the 11th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, Oct. 2004.

[104] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable Approach to Thread-

Level Speculation. In Proceedings of the 27th Annual International Symposium on Computer

Architecture, June 2000.

[105] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Improving Value Communication for

Thread-Level Speculation. In Proceedings of the Eighth Symposium on High-Performance

Computer Architecture, Feb. 2002.

[106] P. Stenström, M. Brorsson, and L. Sandberg. Adaptive Cache Coherence Protocol Optimized

for Migratory Sharing. In Proceedings of the 20th Annual International Symposium on Com-

puter Architecture, May 1993.

[107] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consistency Protocols and their

Support by the IEEE Futurebus. In Proceedings of the 13th Annual International Symposium

on Computer Architecture, June 1986.

[108] F. Tabba. Adding Concurrency in Python Using a Commercial Processors Hardware Trans-

actional Memory Support. Computer Architecture News, 38(4), Sept. 2010.

[109] F. Tabba, A. W. Hay, and J. R. Goodman. Transactional Value Prediction. In Proceedings of

the Fourth ACM SIGPLAN Workshop on Transactional Computing, Feb. 2009.

[110] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 System Microarchi-

tecture. IBM Journal of Research and Development, 46(1), 2002.

[111] R. Titos, M. E. Acacio, and J. M. Garcia. Speculation-Based Conflict Resolution in Hard-

ware Transactional Memory. In Proceedings of the International Parallel and Distributed

Processing Symposium Symposium, May 2009.

178

[112] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and

M. Valero. EazyHTM: Eager-Lazy Hardware Transactional Memory. In Proceedings of

the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, Nov. 2009.

[113] G. van Rossum. The Python Language Reference: Release 2.6.4. Python Software Founda-

tion, 2009.

[114] H. Volos, N. Goyal, and M. M. Swift. Pathological Interaction of Locks with Transactional

Memory. In Proceedings of the Third ACM SIGPLAN Workshop on Transactional Comput-

ing, Feb. 2008.

[115] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for Store-wait-free

Multiprocessors. In Proceedings of the 34th Annual International Symposium on Computer

Architecture, June 2007.

[116] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–40,

Apr. 1996.

[117] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and D. A.

Wood. LogTM-SE: Decoupling Hardware Transactional Memory from Caches. In Proceed-

ings of the 13th Symposium on High-Performance Computer Architecture, Feb. 2007.

[118] M. T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simula-

tor. In Proceedings of the 2007 IEEE International Symposium on Performance Analysis of

Systems and Software, Apr 2007.

[119] C. Zilles and R. Rajwar. Transactional Memory and the Birthday Paradox. In Proceedings

of the Nineteenth ACM Symposium on Parallel Algorithms and Architectures, June 2007.

179

	University of Pennsylvania
	ScholarlyCommons
	Fall 12-22-2010

	Mechanisms for Unbounded, Conflict-Robust Hardware Transactional Memory
	Colin Blundell
	Recommended Citation

	Mechanisms for Unbounded, Conflict-Robust Hardware Transactional Memory
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Acknowledgements
	Abstract
	Introduction
	The Problem of Synchronization in Shared-Memory Parallel Programs
	Transactional Memory: Promise and Challenges
	The Permissions-Only Cache and OneTM
	RetCon
	Contributions of this Dissertation
	Dissertation Structure
	Differences from Previously Published Versions of this Work

	Overview of Transactional Memory
	Synchronization in Shared-Memory Parallel Programs
	Synchronization via Locks
	Synchronization via Transactional Memory

	Transactional Memory Semantics
	Basic Semantics
	Advanced Semantic Issues

	Transactional Memory Implementation Tasks and Terminology
	Conflict Detection
	Conflict Resolution
	Version Management

	Three High-Level Transactional Memory Algorithms
	An Eager Conflict Detection/Eager Version Management Algorithm
	An Eager Conflict Detection/Lazy Version Management Algorithm
	A Lazy Conflict Detection/Lazy Version Management Algorithm
	Implementing These Algorithms

	Review of Multiprocessor Memory Systems
	Caches
	Cache Coherence

	Bounded Hardware Transactional Memory
	Conflict Detection via Cache Coherence
	Conflict Resolution via Timestamping
	Options for Eager Version Management
	Bounded HTM Algorithms
	Implementation Details
	Restrictions on Transaction Size and Duration

	Semantic and Performance Challenges of Bounded HTM
	Summary

	Characterization of Transactional Behavior
	Workloads
	STAMP
	Python

	Experimental Infrastructure and Methodology
	Are Conflicts a Performance Problem?
	Analysis of Conflicts
	How Large Do Transactions Become?
	Summary

	Prior Approaches to Handling Overflows in Hardware
	UTM, VTM, and PTM
	Bulk and LogTM-SE
	Discussion

	The Permissions-Only Cache: Reducing the Frequency of Overflows
	Operation
	Efficient Encoding
	Employing the L2 Cache to Store Permissions-Only Information
	Related Work
	Discussion

	OneTM: Handling Overflows via Selective Serialization
	OneTM-Serialized
	Structures
	Operation
	Runtime Involvement
	OneTM-Serialized Summary

	OneTM-Concurrent
	Metadata Operation
	Lazy Metadata Clearing
	Lazily Coherent Metadata
	Example Execution
	Operating System Involvement
	Comparison to Prior Work

	Semantic Considerations in OneTM
	Subsequent Work
	Summary

	Experimental Evaluation of OneTM and the Permissions-Only Cache
	Experimental Methodology
	Evaluation of OneTM
	What is the Impact of Serializing the System on Overflow?
	Does Serialization of Only Overflowed Transactions Increase Performance?
	Summary

	Impact of Weak Atomicity on OneTM
	Does Weak Atomicity Help OneTM-Serialized Performance?
	Does Weak Atomicity Help OneTM-Concurrent Performance?
	Summary

	Impact of Lazy Clearing on OneTM-Concurrent Performance
	Summary

	Impact of the Permissions-Only Cache on OneTM Performance
	Impact of the Read-Only Permissions-Only Cache on OneTM-Serialized
	Impact of the Read-Only Permissions-Only Cache on OneTM-Concurrent
	Sensitivity to Sector Cache Organization
	Sensitivity to Permissions-Only Cache Size
	The Remaining Performance Gap between OneTM and the Idealized HTM
	Permissions-Only Cache Summary

	Discussion of Power Implications of Our Proposals
	Summary

	RetCon: Eliminating Auxiliary Data Conflicts
	RetCon Architecture and High-Level Operation
	RetCon Operation
	Conflict Idioms that RetCon Can Repair
	Conflict Idioms that RetCon Cannot Repair

	Operational Details
	RetCon Implementation Optimizations
	Other Benefits of RetCon
	Related Work
	Summary

	Experimental Evaluation of RetCon
	Methodology
	Performance Impact of RetCon
	What Contributes to RetCon Performance?
	Impact of Inexact Constraint Representation on RetCon
	Sensitivity of RetCon to Parallelism of Commit-Time Reacquires
	Sensitivity of RetCon to Structure Size
	Sensitivity of RetCon to Predictor Configuration
	Discussion of the Power Implications of RetCon
	Summary and Remaining Challenges

	Conclusions
	Dissertation Summary
	Future Work
	Reflections on Transactional Memory

	Bibliography

