
A Semantically Aware

Transactional Concurrency

Control for GPGPU Computing

Qi Shen

School of Computing Science

University of Newcastle

A thesis submitted for the degree of

Doctor of Philosophy

October 2017

mailto:qi.shen1@ncl.ac.uk
http://www.ncl.ac.uk/computing/
http://www.ncl.ac.uk/

Acknowledgements

I would like to thank my supervisor, Dr Graham Morgan for his in-

valuable guidance and support throughout all my time at Newcastle.

This research and thesis would not be possible without his kind en-

couragement and motivation that Graham provided.

I also would like to thank my colleagues and friends in Newcastle

University, who have helped me in various ways during my PhD life.

Especially Dr. Craig Sharp, who helped me a lot at the beginning of

my study and gave me a lot of advices.

Certainly, I would like to thank my family, my father and mother.

I would not have a chance to carry on the research without their

unconditional and continuous support. Finally, I would like to express

my utmost thanks to my loving wife, for her support and patience

during my research.

Abstract

The increased parallel nature of the GPU affords an opportunity for

the exploration of multi-thread computing. With the availability of

GPU has recently expanded into the area of general purpose program-

ming, a concurrency control is required to exploit parallelism as well

as maintaining the correctness of program. Transactional memory,

which is a generalised solution for concurrent conflict, meanwhile allow

application programmers to develop concurrent code in a more intu-

itive manner, is superior to pessimistic concurrency control for general

use. The most important component in any transactional memory

technique is the policy to solve conflicts on shared data, namely the

contention management policy.

The work presented in this thesis aims to develop a software trans-

actional memory model which can solve both concurrent conflict and

semantic conflict at the same time for the GPU. The technique differs

from existing CPU approaches on account of the different essential ex-

ecution paths and hardware basis, plus much more parallel resources

are available on the GPU. We demonstrate that both concurrent con-

flicts and semantic conflicts can be resolved in a particular contention

management policy for the GPU, with a different application of locks

and priorities from the CPU.

The basic problem and a software transactional memory solution idea

is proposed first. An implementation is then presented based on the

execution mode of this model. After that, we extend this system to re-

solve semantic conflict at the same time. Results are provided finally,

which compare the performance of our solution with an established

GPU software transactional memory and a famous CPU transactional

memory, at varying levels of concurrent and semantic conflicts.

Contents

Contents iii

1 Introduction 1

1.1 Parallel Computing . 1

1.1.1 Benefit of Parallelism . 1

1.1.2 Classifications of Parallelism 2

1.2 Multi-Threading . 3

1.2.1 Concurrent Conflict and Concurrency Control 3

1.2.2 Mutual Exclusion . 5

1.2.3 Transactional Memory . 5

1.2.4 Semantic Conflict . 6

1.3 GPGPU Computing . 7

1.3.1 The demand of Transactional Memory on the GPU 7

1.3.2 GPU Architecture and Memory Hierarchy 8

1.4 Thesis Contributions . 8

1.5 List of Publications . 10

1.6 Thesis Outline . 10

2 Background and Related Work 11

2.1 Concurrency Control . 11

2.1.1 Correctness Criteria . 11

2.1.2 Categories of Concurrency Control 12

2.1.3 Basic Methods for Concurrency Control 13

2.1.4 Transactions . 18

2.1.5 Contention Manager . 23

iii

CONTENTS

2.1.6 Semantic resolving Contention Manager 25

2.1.7 Summary . 26

2.2 Parallel Architectures . 26

2.2.1 Hardware . 27

2.2.2 Execution . 29

2.2.3 Concurrency Control Operations 32

2.2.4 Summary . 34

2.3 Related Work . 34

2.3.1 Transactions on CPU . 35

2.3.2 Transactions on GPU . 41

2.4 Summary and Thesis Contribution 46

3 PR-STM : A Priority Based Software Transactional Memory for

the GPU 48

3.1 Introduction . 48

3.2 System Design and Implementation 50

3.2.1 Overview . 50

3.2.2 Metadata . 52

3.2.3 STM Operations . 53

3.2.4 Contention Management Policy 55

3.3 Summary . 57

4 Resolving Semantic Conflict in a Parallelised Contention Man-

agement Policy on the GPU 59

4.1 Introduction . 59

4.2 Design and Implementation . 61

4.2.1 Overview . 61

4.2.2 Metadata . 63

4.2.3 Semantic Contention Management Policy 64

4.2.4 PR-STM2 Handlers . 65

4.3 Summary . 66

5 Evaluation 68

5.1 Overview . 68

iv

CONTENTS

5.2 Evaluation of the first version . 68

5.2.1 Transaction Throughput 70

5.2.2 STM Scalability . 72

5.3 Evaluation of the latest version 73

5.4 Implementation of Bank Benchmark 74

5.4.1 Performance with Bank Benchmark 75

5.4.2 Throughput of Semantic Transactions 83

5.5 Implementation of Vacation Benchmark 87

5.5.1 Performance in Vacation Benchmark 91

5.6 Implementation of SkipList Benchmark 99

5.6.1 Performance of SkipList Benchmark 99

5.7 Summary . 106

6 Conclusion 107

6.1 Thesis Summary . 107

6.2 Main Contributions . 108

6.3 Limitations . 109

6.4 Future Work . 109

References 112

v

Chapter 1

Introduction

1.1 Parallel Computing

As sequential programs can be executed more efficiently when processor frequency

increases, processing frequency scaling can provide an easier option to enhance

sequential programming for more difficult tasks. However, from the beginning of

the 21st century, parallel computing has become more important as it is the only

way to achieve the best performance from multi-processor platforms when limita-

tions have been placed on frequency scaling. Until the time of writing, computing

platforms with increasing numbers of processor cores are the mainstream on the

market and in design.

1.1.1 Benefit of Parallelism

In recent decades, the study of parallel computing has become ever more impor-

tant. The main reason for this is parallel computing offers numerous advantages

over sequential computing in the following ways:

1. Efficiency : As many processors are available for modern computers, in the-

ory, using multiple processing elements for a task can shorten the time taken

to compute a solution compared to a single processor. Parallel computing

is the only way to utilise all computation resources for solving problems,

because otherwise additional processors would be suspended and would give

no advantage.

1

2. Performance: Many problems can be distributed and solved with multiple

processing elements in ways faster than with sequential computing. Fur-

thermore, some large projects are too complex to be solved on a single

computation unit, as memory is limited. Plus, some problems are parallel

in nature and would too much time to be solved using a sequential algo-

rithm. Both types of problem can be more easily solved and performance

improved using parallel computing.

3. Tolerance: As opposed to sequential computing, which is halted when an er-

ror occurs since there is only one processor operating, parallel computation

can be designed to operate in fault-tolerant systems, especially by using

lockstep systems which operate the same instructions in parallel. Repli-

cation methods are also applied in hard real-time systems using parallel

computing.

1.1.2 Classifications of Parallelism

In identifying the different patterns of sequential characteristics and parallelism

which exist in computing science. Flynn’s taxonomy [13] classifies any system ac-

cording to two independent dimensions: the instruction stream and data stream.

Each dimension can be divided into a single or multiple case. Therefore, the four

possible categories are as follows:

1. SISD : a single instruction stream and single data stream is commonly used

in serial computing. Only one each instruction and data stream is being

used during one clock cycle.

2. SIMD : single instruction stream and multiple data stream systems are used

in parallel computing. This is the most suitable solution for problems char-

acterized by a high degree of regularity, such as graphics processing.

3. MISD : multiple instruction stream and single data stream systems are also

used in parallel computing. This type of parallel computing is rarely used

in practise.

2

4. MIMD :multiple instruction stream and multiple data stream systems are

again used in parallel computing. Most current multi-core computing falls

into in this category. Execution can be deterministic or non-deterministic

in this pattern.

1.2 Multi-Threading

Multi-threading is an execution model in which programmers can create multiple

independent processes within a single operating system process. At the time of

writing, multi-threading with shared memory is arguably the most popular model

of concurrent programming.

Multi-threading is not only a model of execution, but also has a tremendous

impact on program design [36]. When multi-threading is introduced, as threads

can access shared data in different permutations from one to another, determin-

ism is lost. This loss of determinism complicates the prediction of the results

of concurrent programs. Moreover, non-deterministic execution also introduce

inconsistencies for shared data, and leads to greater complexity in program de-

bugging.

Compared to multi-thread programming, sequential programming can benefit

from determinism, which means that multiple executions of the same program

will obtain the same result. This mechanism is lost in concurrent programming,

and concurrency control is demanded to reintroduce determinism for multi-thread

programming.

1.2.1 Concurrent Conflict and Concurrency Control

Race conditions are a well-known type of concurrency error that may result in

inconsistent data in multi-threaded programs. Figure 1.1 provides an example

with two threads (T1 and T2) which read the same location (x) in shared memory

and increase the value of that shared memory by 1. The possibility of a race

condition means that there could be two different final values for memory location

x. In the top scenario, the memory value holds the value 2 when there is no

interference between T1 and T2. However, in the bottom scenario, interleaved

3

thread execution produces a final memory value of 1.

Figure 1.1: A race condition

In this example the possibility of a race condition has removed the element of

determinism from the program; it is no longer possible to say what the value of

memory x will hold. Concurrency control aims to implement mechanisms which

prevent this loss of determinism. The two most prominent approaches to imple-

menting concurrency control are pessimistic and optimistic concurrency control.

Pessimistic concurrency control (PCC) protocols aim to prevent non-determinism

conflict occurring in advance, normally by using blocking synchronization such

as locks or semaphores. Optimistic concurrency control (OCC) detects conflicts

after they have occurred and then implements steps to correct such conflicts [35],

for example using abortable transactions.

Blocking synchronisation by mutual exclusion is a common approach to pes-

simistic concurrency control and transactional memory is a popular optimistic

method for concurrency control. As there exist many kinds of applications in

which concurrency control is needed, no single approach is likely to be the best

solution for all scenarios. However, whether a method is pessimistic or optimistic,

the main aims of concurrency control mechanism are:

1. Correctness : This means that the concurrency control technique should

prevent the logical inaccuracy of any program it is applied to.

2. Efficiency : This means that the concurrency control technique should not

4

impose a large burden on the execution platform. Resources for concurrency

control should be used efficiently.

1.2.2 Mutual Exclusion

Mutual exclusion is a foundational and frequently used technique in pessimistic

concurrency control [10]. Mutual exclusion is normally used when memory ac-

cess is restricted, but becomes extremely difficult to implement when software

becomes large and the data interacts a lot. The ultimate principle of mutual

exclusion is that only one thread at a time can write-access data in a critical sec-

tion. The determinism can be reintroduced, as only a single thread can access a

critical region at one time. Programming with mutexes also provides user-defined

conditions that can deal with the more complex coordination of threads. There

are some disadvantages to this approach as well, such as starvation in which sit-

uation some threads repeatedly locking critical sections, blocking access to them

for others. Besides this, the programmer must be aware of the risk of deadlock,

when two or more threads wait for each others’ resources indefinitely. In addition,

livelock can be introduced if threads continually respond to each other’s action

instead of progressing their own execution.

1.2.3 Transactional Memory

Transactional memory is a modern and well-known example of optimistic concur-

rency control. In the transactional memory paradigm, threads can access shared

data within the execution of a transaction. However, modifications to shared data

are not made permanent until the transaction has completed successfully. These

changes are made into shared data only if no concurrency conflict is detected, or

otherwise the potential changes must be aborted and the transaction will restart.

The main benefit of transactional memory compared to mutual exclusion is that

dead lock can be avoided [22]. This is because all threads can operate without in-

terference from other threads. Transactional memory implementations, however,

typically require an overhead in excess of that required by a more simple blocking

approach, which may lead to the degradation of performance when contention is

high.

5

To achieve data consistency, transactions must be

1. Atomic: this means that all operations within a transaction must be treated

in their entirety. All the operations can be committed or none at all.

2. Consistent : this means that all data have to meet the validation rules

declared by applications.

3. Isolated : this means that each thread has its own mirror during a transac-

tion and all changes to shared data cannot be observed by other threads

until the transaction is committed.

However, the Durability is removed from ACID rules for databases because it can-

not be maintained in physical violate event such as power loss. In Transactional

Memory for concurrency, all transactions can only have their effects remain after

commits if the task could be done without any physical damage.

1.2.4 Semantic Conflict

Semantic conflict is another circumstance that prevents a transaction from exe-

cuting but which is not caused by data interference. It occurs due to the presence

of certain application conditions. When transactions were originally introduced

for distributed database applications, the order of transactions was an inconse-

quential matter since operations tended to be independently. However, when im-

plementing software transactional memory for multi-thread programming, trans-

actions turn into tightly coupled and coordination becomes a significant issue. For

example, a transaction may process a withdrawal from a bank account with insuf-

ficient funds, while another transaction tries to deposit money into the same bank

account. In these circumstances, the deposit transaction must precede the with-

drawal transaction in order for progression to occur. In these kinds of conditions,

resolving semantic conflicts without overloading a huge amount of programming

work (for example, programmers need to schedule all transactions by themselves.)

is necessary.

6

1.3 GPGPU Computing

1.3.1 The demand of Transactional Memory on the GPU

Graphics processing units (hereafter GPU) were first designed for rendering graph-

ics in the early 1980s. At that time, GPU could only be used for accelerating the

creation of images in a frame buffer and then output to a display. When dealing

with computer graphics and image processing, as they are highly parallel struc-

tures in nature, the GPU processes blocks of visual data in parallel and never

encounters data interference. So there is no demand for concurrency control.

However, the availability of GPU has recently expanded into the area of gen-

eral purpose programming, giving rise to a new genre of applications known as

General Purpose GPU (hereafter GPGPU). The principle benefit of using the

GPU is the relatively high degree of parallel computation available compared

to the CPU. Furthermore, programming APIs such as CUDA have grown in

sophistication with every new advancement in GPU design. As such, GPGPU

programmers now have at their disposal tools to enable them to write complex

and expressive applications which can leverage the power of modern GPUs [55].

As with multi-threaded applications on the CPU, GPGPU applications require

synchronization techniques to prevent the corruption of shared data. As has long

been experienced in the domain of CPU computing, correctly synchronizing mul-

tiple threads is a difficult task to implement without introducing errors such as

deadlock and livelock. To compound matters, the high number of threads avail-

able on modern GPUs means that contention for shared data is an issue of greater

potential significance than on the CPU where the number of threads is typically

much lower. To have a tool which can free the application programmer from

implementing complex concurrency control, a transactional memory is a notable

technique to use. Although transactional memory may have a overhead than

customized concurrency control solution, achieving a generalized transactional

approach to the GPU is yet important.

7

1.3.2 GPU Architecture and Memory Hierarchy

A GPU has more transistors devoted to processing to data caching and flow con-

trol. With this architecture, the GPU is optimized for data parallel computations

(single instruction multiple data). In addition to the high degree of threads avail-

able, groups of GPU threads execute as part of a ‘warp’. Threads belonging to

the same warp share the same instruction counter and thus execute the same

instruction in a ‘lock-step’ fashion [42]. In addition to the risk of high contention

given the high number of threads, deadlock and livelock are possible because

threads of the same warp cannot coordinate their accesses to locks as they can

on the CPU.

To use the GPU properly, a general idea about memory hierarchy of the GPU

is necessary. There are three access levels in the hierarchy of memory, as follows:

1. Global Memory : Global memory is off-chip memory, which means that

access speed is slow, but all threads in a GPU kernel can access it.

2. Shared Memory : Every block has a piece of shared memory which is on-chip,

and threads within one block are able to access it.

3. Thread Local Memory : Two kinds of thread local memory are involved in

the GPU: registers and local memory. Registers are its fastest memory in

the GPU with a restricted capacity, which can only be accessed by one

thread. Local memory is an abstract memory which is allocated to global

memory but one thread can only access its own local memory.

Sometimes using global memory for thread interaction between blocks is de-

manded. The most efficient way to use global memory is to obtain data from

global memory and replicate it to local memory.

1.4 Thesis Contributions

This thesis addresses the scientific and engineering problems related to concur-

rency control in general purpose computational systems. A particular focus is to

derive software solutions for GPU hardware architectures. The work presented

8

in the thesis is suitable for current commercial GPU hardware and future GPU

hardware where core numbers may increase significantly.

The main contributions the Thesis provides are:

• A transactional memory implementation on the GPU that can take, as its

batch input, arbitrarily ordered transactions and successfully execute them

all without deadlock occurring, using a priority system for determining the

contention resolution of locks. With the inherent priorities to sort threads

order when manage conflicts during transaction time is optimal on GPU

compare to previous work. Theoretically, this order of execution is a scalable

and lock-free solution for real-time concurrent problems.

• A contention management system for the GPU that can handle semantic

conflict at the application layer. The ordering of transactions can increase

throughput and semantic correctness. For example, if the two operations

of deposit and withdrawal on a shared empty bank account are ordered as

withdraw first, then a semantic failure would occur. However, if the deposit

was ordered before withdraw then this would be a correct semantic. Besides

this, as GPU threads are executing in a lock-step fashion, it may introduce

the possibility of live-lock. A re-ordering of a semantically aborted trans-

action can evade this. The proposed search is general purpose in nature, as

the re-order is independent of execution or data structure.

• A comprehensive evaluative benchmarking of the above two contributions

demonstrates the improvements they provide in terms of throughput and

efficiency compared to similar works in this area. Experiments were devised

to show the effectiveness and generalizability of the proposed approach.

In order to obtain a practical realisation of the mechanisms described, theory

was implemented in a programmer-defined manner popular within transactional

systems (begin/commit/abort). As the proposed approach is the first to use

contention management in software transactional memory (STM) coupled with

rescheduling semantically aborted transactions on the GPU, the proposed solution

is compared with other STMs (without handling semantic conflict) on both CPUs

and GPUs, which are the closest approaches to ours.

9

1.5 List of Publications

Portions of the work within this thesis have been documented in the following

publications:

1. Q. Shen, C. Sharp, W. Blewitt, G. Ushaw, and G. Morgan PR-STM: Pri-

ority Rule Based Software Transactions for the GPU In: 21th International

Conference on Parallel and Distributed Computing (Euro-Par), 2015

2. Q. Shen, Y. Gu, C. Sharp, G. Ushaw, G. Morgan A Parallelised Contention

Management Policy for the GPU In: ACM Transactions on Parallel Pro-

cessing, Under Review

1.6 Thesis Outline

The rest of this thesis is organised as follows.

Chapter 2 describes the background knowledge about the work carried out, and

highlights the main contributions of the research.

Chapter 3 describes a model of the proposed system and discusses its advan-

tages and disadvantages. Then the algorithm of the contention manager is

presented.

Chapter 4 addresses semantic conflict in this system and an extra contention

manager for it is introduced. After that, an implementation is described.

Chapter 5 provides a description of experiments which conducted to evaluate

the performance of both systems. The PR-STM is compares to previous

work and the PR-STM2 shows a unique ability for general purpose tasks.

Chapter 6 summarises and concludes the thesis and suggests some possibilities

for further work.

10

Chapter 2

Background and Related Work

This chapter introduces concurrency control, and a number of frequently-used

contemporary concurrency control models which are relevant to the research re-

ported in this thesis. The problem of concurrency control and some basic solutions

are introduced at the beginning of this chapter. After that, a summary is pre-

sented the different features of frequently used parallel computation platforms.

At the end, some related work are presented such as research on software trans-

actional memories on the CPU and recent concurrency control solutions on the

GPU.

2.1 Concurrency Control

As discussed in Chapter 1, the race condition is one of the most important types

of error which has to be resolved in parallel computing. For the sake of getting the

correct results for concurrent programming, and dealing with the race condition

as quickly as possible, concurrency control is introduced. This section discusses

some basic concepts of concurrency control and then some general solutions to it

are presented.

2.1.1 Correctness Criteria

To describe concurrency control, a definition of concurrent objects is first required.

A concurrent object is any data structure or entity which provides some equivalent

11

behaviours to a sequential object. When discussing concurrent object, two factors

which need to be considered are correctness and progress.

Correctness or memory consistency means that any interaction by threads

parallel to the concurrent object should not introduce any inconsistency with the

object. There are two levels of consistency which are important to address:

Linearizability – Linearizability means that all operations on a single concur-

rent object are atomic, provide a real-time guarantee and are composable [30].

So linearizability is about a single operation, a single object and operating in

real-time.

Serializability – serializability means that the execution of a set of transactions

over multiple data should be able to reorder in such a way that is equivalent to

some sequential execution of the transactions [18]. So this concerns multiple

operations, multiple objects and not operating in real-time.

Then when the property of progress is being discussed, it means that level of

liveliness about the interactions on a concurrent object. Three frequently used

levels are:

Obstruction-Free – this is the weakest natural non-blocking progress guaran-

tee. It requires that any thread executes in isolation from obstructing threads,

and it should complete its operations within a finite number of steps [29].

Lock-Free – this means that no thread is blocked indefinitely from an execution

of another thread so that deadlock is avoided in this model.

Wait-Free – this is a technique where any operation by a thread should finish

in a limited number of steps, and all algorithms could be implemented as wait-

free [28]. It provides a stronger guarantee than lock-free progress but is more

complicated to implement.

Although wait-free progress seems to be superior to lock-free solutions, the

later is more efficient in many situations as extra problems need to be solved in

the wait-free mechanism.

2.1.2 Categories of Concurrency Control

Pessimistic

Whenever blocking is the main way to achieve data consistency, the technique

12

can be classified as pessimistic concurrency control, where when a contention for

shared data access arises, one thread may impede activities from other threads. It

is called pessimistic because the approach assumes that the worst case will always

occur with concurrency conflicts over shared data. So a pessimistic concurrency

control technique would take whatever steps are necessary to prevent data access

interference from taking place [12, 19].

Optimistic

Due to the major problem with pessimistic concurrency control which are

reductions in performance and the danger of deadlock, another solution allows

threads do modify data first, and then detect any concurrent interference which

arises to interrupt consistency afterwards [6]. And as so this is on the opposite

to a pessimistic approach, and it is called optimistic approach. In an optimistic

approach, if no interference takes pace, then a modification made by the thread

will carry on and be revealed to other threads [35]. However, if such interference

occurs, it must be detected and all modifications should be rolled back. After

aborting the modifications, the thread may attempt to repeat these modifications.

Deadlock is impossible here as no blocking is used.

2.1.3 Basic Methods for Concurrency Control

Locking

Locking constructs were proposed by the early concurrent programmers. It

was designed to prevent race conditions and still remains widely used. Basically,

locking data means that only one thread would be allowed to access a piece of

shared data at a time. Access to shared data may be sacrificed at times, but it

can be guaranteed that locked data can be accessed or modified in a deterministic

manner. The essential trade-off is that the reliability of data offsets the reduced

parallel speed, as threads need longer average time to access shared data.

There are lots of approaches used to implement a lock strategy, however, when

a thread confronts locked data, two primary approaches exist:

1. Spinning : a thread can repeatedly check the lock until it becomes available

if the lock is expected to be held for only a short duration of time. This is

also referred to spinlock or busy waiting ;

13

2. Blocking : the waiting thread can also be suspended and the operating sys-

tem can use a context switch to allow another thread to access the scheduler

if the lock is expected to be held for a long duration of time. However, con-

text switching is very expensive, and the decision should be made very

carefully.

Most operating systems have specified operations to help in building locks

(for example, non-interruptible critical sections) and locking has often been used

for many years in diverse programming domains such as operating system pro-

gramming [50]. As a result, lots of locking constructs have been implemented

and are widely available for programmers to use, and they are supported by full

documentations.

However, programmers using locks may encounter difficulties when dealing

with sophisticated multi-threaded programs for which locks cannot be composed.

For example, although the occurrence of race conditions on a single data structure

can be prevented by mutual exclusion, threads may introduce deadlock when

they require multiple locks. Developing an algorithm to avoid deadlock tends

to be only suitable for particular software and cannot be transferred to other

applications. Furthermore, proving that complex locking applications do not

introduce deadlock into programs may take a lot of time.

In addition to the difficulty of implementing and proving sophisticated lock-

ing protocols, locking also encounters the problem of efficiency. Because of the

pessimistic nature of the lock in blocking thread execution, programs with lock-

ing are often suffocate even when concurrent access to shared data would not

cause inconsistency. As the fundamental principle of pessimistic approaches is

the assumption that inconsistency will always arise if threads access the same

shared data, locking applications can result in execution bottlenecks, especially

when the number of threads increases.

Read-Write Locks

Different types of locks can be used when dealing with different levels of access

rights to shared data. In this way, the potential bottlenecks can be reduced and

the level of concurrency can be increased. Locks can be simply distinguished

between read locks and write locks. A typical lock only allows single access to

14

a single shared piece of data, making the application inefficient if there are a lot

of threads which only read from the shared data and they are all prevented, as

read-only threads guarantee that there will not be any modification and there is

no need to prohibit access [38].

Read-write locks allow the programmer to specify whether a thread intends

to access a shared resource for reading or writing. As in its literal meaning, a

thread can acquire a write lock which behaves like a typical lock when it wishes to

write or modify the shared data, and it can grant exclusive access to the owner.

A thread can also acquire a read lock which allows more threads to gain access to

the shared data in parallel when it is only wished to read the shared data. This

may improve the level of concurrency available to threads. However, as locks

have an error-prone nature, this simple mechanism also introduces some possible

errors:

1. As a write thread can only lock shared data when there is no read thread,

it is possible that the write thread could be ’starved’ when read threads are

abundant. The write thread cannot gain access to the shared resource due

to everlasting read requirements for the resource.

2. Using a queue for access to a shared resource or prioritizing a queue of write

threads can solve the problem of starvation, but it may reduce the level of

parallelism that the read-write lock was supposed to offer. The reason

for this is that now all read or write threads have to perform coordinated

queuing operations to assign priorities to the write threads.

Two-Phase Locking

In an execution schedule, when there are multiple locks used by multiple

threads, non-serializable schedules are not guaranteed to be prevented. A seri-

alizable schedule means that when two or more threads contain read or write

instructions, they can be reordered into an new schedule which is equivalent to a

serial schedule [44](for example, where one thread’s instructions all precede the

others’). However, some instructions are in a causal order and cannot be re-

ordered without infringing the results of previous instructions if one thread reads

or writes to shared data which another thread has written to. Figure 2.1 shows

an execution schedule which is not serializable. In this figure:

15

1. Thread 1 cannot precede Thread 2 as item A is written to by Thread 2 and

then read by Thread 1.

2. Thread 2 cannot precede Thread 1 as item B is written to by Thread 1 and

then read by Thread 2.

Figure 2.1: An Example of a Non-Serializable Schedule.

Reordering these instructions in a new order so that either thread executes

strictly in serial is impossible. It is assumed that there is a constraint that shared

data A and B must always hold the same values and there would be no solution

for these threads to execute without violating the constraint because of the non-

serializable schedule.

However, two-phase locking (hereafter 2PL) can resolve this problem without

resorting to locking shared data unnecessarily, although it reduces the potential

concurrency [16]. To utilize a 2PL, threads have to process an acquisition phase

and a release phase (Figure 2.2 shows). A thread has to acquires all the locks it

needs to guarantee exclusive access in the acquisition phase. If one thread has

locked all necessary locks, then it can be able to access and modify shared data

and subsequently release all acquired locks in the release phase. In such a way, the

constraint on shared data A and B will not be violated, because Threads 1 and 2

have to initially lock both shared data and then process access and modification

operations.

Time Stamps

16

Figure 2.2: Two Phase Locking : This graph shows a single processor gradually
acquiring locks, executing after obtain all lock and then releasing locks gradually.

Besides locking, the timestamp is another method used to enforce concurrency

control, especially in some database applications [51]. A timestamp is basically

a value conferred on every thread whenever there is concurrent access to shared

data, following these rules:

1. Each participated thread should have a unique timestamp;

2. The orderings of multiple concurrent actions must be able to be identified

by timestamps;

The timestamps should also deal with out-of-order accesses. For example,

there is a database of multiple shared data, and a timestamp would be generated

whenever read or write by a thread happens to indicate the order of those reads

and writes to keep a sequential order. But as thread communication is asyn-

chronous in nature, some accesses can be received out of timestamps order, and

this kind of accesses should be detected and aborted.

Obviously this kind of aborting can reduce the performance of parallel ex-

ecution, especially when there are hug numbers of requests should be aborted.

However, buffer is proposed to improve the reduced performance by this. Not

like always requiring the server to deal with requests whenever they arrive, all re-

quests can join a buffer for a specified duration instead. And after some extended

17

behaviour of the application, an order of buffered access requests can be selected

to reduce the aborted accesses number. The difficulty in applying this technique

into application is the duration of requests buffered time and the amount of stored

requests.

There are three frequently implemented methods of timestamp [1]:

1. System clocks. Timestamps can be generated from the system clock on the

host platform;

2. logical clocks. Timestamps can also be generated from simply increasing

integer values, which is called a logical clock;

3. Some others methods use a combination of system clock and logical clock.

For example, when applying timestamps to distributed systems, as each

site has a unique ID, a logical lock can be appended to the ID to form a

timestamp which is unique to a specific thread on a specific site.

Timestamps are better for hosts over geographically distributed systems than

locking because of the high latency of inter-host communication. However, the

following issues should be processed appropriately when implementing concur-

rency control with timstamps:

Resolution. When using clocks as timestamps, the granularity of timing must

be sufficiently accurate to make sure that timestamps are unique values even

when generated very close in time.

Locking. Irrespective of whether system clocks or logical clocks are used,

some concurrency control mechanism is also required to ensure the uniqueness of

timestamps for each thread, for example, and atomic increase to a counter.

Bounds. As memory is not infinite in any site, a maximum number of values

that can be represented needs to be clear. And further care should be taken when

the value of a timestamp is going to exceed the capacity of memory, in order to

ensure that no error will occur.

2.1.4 Transactions

The term transactions used for concurrency control on general purpose multi-

processor platforms has involves similar principles to those applied in database

18

applications. In a database system, many concurrent clients apply changes to

the database in the form of transactions which contains all of the modifications

a client wishes to commit. And modifications in a transaction can be either

all successfully committed or all failed [24]. A database manager with some

programmer defined rules will resolve conflicts between requested transactions so

that the client can be liberated from the complexity of concurrent programming.

Figure 2.3 shows an example of a time-line with three threads trying to commit

transactions. As there is a contention (updates to the same memory location)

between the transactions committed by thread 1 and thread 2, thread 2 must

abort its transaction and retry it. However, although thread 1 and thread 3 try

to commit transactions at the same time, as there is no interference between

them, they can both commit their transactions.

Figure 2.3: An Example of Transaction Contention.

The principles of how database systems manage concurrency are based on the

’ACID’ regulations [22]:

1. Atomicity : all actions made by a transaction must take place entirely or

not at all;

2. Consistency : the behaviours of transactions must be validated to meet all

rules set by the database;

3. Isolation: all behaviours of a transaction must be isolated from other

threads until it has been committed successfully;

19

4. Durability : all transactions should have their effects remain after commit,

even in an event such as power loss.

If all transaction managers observe these ACID rules then a generalised trans-

actional system can be provided, which is lacking in pessimistic approaches. Fur-

thermore, atomicity and isolation are especially useful for multi-processor plat-

form applications as they treat multiple operations on shared data within a single

atomic section. In this way operations on shared data can be composed optionally

to reduce the difficulties of concurrent programming with intricate interactions.

However, there are still two major problems that transactional memory needs

to solve, namely:

1. High Contention. As threads must abort and retry all executions that

encounter interference, a lot of the work accomplished by thread may be

wasted, especially when the contention rate for shared data is high.

2. Starving. Another main drawback is that some transactions may always be

in the position of being aborted and rolled-back [52]. For instance, if there

is a long transaction and many short transactions continuously come in, if

the long transaction always conflicts with the short transactions, then it

might never be able to commit.

To solve these problems, a contention management policy(CMP) is required,

which is discussed in Section 2.3.4.

In parallel programming practice, transactional memory fall into two main

areas:

1. Hardware Transactional Memory (HTM): this is a solution for modifying

cache protocols and architectural design to provide some functionality to

transactional memory semantics. The execution speed usually exceeds the

software transactional memory.

2. Software Transactional Memory (STM): this is a generalised programme

implementation of transactions that apply ACI rules for threads accessing

shared data. The flexibility and dispensability of modifying hardware are

the main advantages compared to hardware transactional memory;

20

Hardware Transactional Memory

It is not only restricted to software applications when implementing transac-

tional memory, but hardware transactional memory (HTM) is also an area where

transactional memory can be implemented. The main idea is to modify the hard-

ware architecture to provide some features for supporting transactions in HTM,

specifically:

1. a mechanism to provide isolation when threads execute instructions;

2. a mechanism to detect conflicts in the consistency of data;

3. a mechanism to undo or roll-back committed results.

The techniques used by HTM have been extended from those used to deal

with the consistency of data held within processor and memory caches such as

cache coherence protocols, speculative execution techniques and memory consis-

tency models [5]. Cache coherence protocols can detect inconsistent data held in

multiple versions by different caches. In this way, threads are allowed to effec-

tively execute many instructions in isolation from other threads as a significant

aspect of the transactional memory. And speculative execution techniques enable

processors to execute instructions in a different order from the program’s order

and then roll-back to a previous state if any inconsistencies occur. With its help,

threads are able to try different of instructions orders and roll-back to a consis-

tent state if necessary. Finally, memory consistency models allow processors to

detect and forbid errors introduced by executing instructions out of the program’s

order. This can support a thread in executing atomic instructions and detecting

conflicts.

Software Transactional Memory

There are a lot of techniques which aim to provide transactions implemented

in software. With the ACI rules, concurrency control can be achieved in an

application level. As it is more flexible and easier to experiment compared to

the use of hardware transactional memory, STMs can be easily integrated with

programming language and provide a light prototype solution. However, the

performance and bottleneck of improvement tends to be worse than with HTM,

and numerous studies have been carried on to reduce those defects.

21

Many STM techniques have been devised at the time of writing, and they

can often be categorised in three types of methods: the granularity of shared

data, overheads of updating shared data, and the synchronization mechanism in

accessing shared data.

STMs can fall into two approaches if the granularity is differentiated:

1. Object based STMs – here data is represented as objects in this kind of

solution. An object is a composed concurrent data structure. As it is

similar to Object Orientated language in nature, it can easily be integrated

into that kind of programming languages(e.g. DSTM2 [26]).

2. Word based STMs – the granularity of shared data is memory words in

this kind of solution, so it involves a lower-level of concurrency than object

based STMs(e.g. TinySTM [45]).

Also, when considering the overheads associated with accessing shared data,

two modes are available:

1. Deferred update – the updating of shared data is not really accomplished

during the transaction, but is enacted a cope-in thread local cache. After

the whole transaction finishes, all updating then takes place from private

caches to the shared data;

2. Direct update – the updating of shared data is directly made on the original

version, which can reduce the overheads of creating local thread copies. The

consistency of shared data can be achieved by restricting shared data to one

thread at a time. And when a conflict over shared data acquisition occurs,

a contention management scheme should be consulted to decide which one

must abort.

Besides this, STM approaches can be divided into two kinds with regard to

the technique of synchronization employed of accessing data:

1. Obstruction-free – In an obstruction-free STM model, if a thread executes

in isolation at any point, it will make progress with its transaction(whether

commit or abort). For instance, a numerical marker can be set for shared

22

data, and when threads read the shared data, they read the marker as well.

Threads will compare the previous read marker and the current marker

when they try to update and if they match, then committal can be accom-

plished and consistency is guaranteed; otherwise, they need to abort.

2. Lock-based – In a lock-based STM model, the short critical sections guarded

by locks allow ownership of shared data. A deadlock needs to be settled

cautiously by methods such as maximum attempt limitation or prioritising.

Every different approach to shared data access has its own benefits and over-

heads. Most STMs combine several approaches for different purposes. Addition-

ally, a significant feature of all STMs is the contention management policy(CMP).

This is consulted to decide which thread can progress when threads confront con-

flicts in trying to access shared data. When the number of threads and the conflict

rate are low, the CMP seems to be less important. However, if the concurrent

resource is numerous and the conflict rate is high, it becomes a non-negligible

task to ensure that all threads can execute as expected.

2.1.5 Contention Manager

As mentioned above, the two main issues in Transactional Memory are high con-

tention and starving. As more transactions execute concurrently, there are more

likely to be contentions for access to shared data, which may lead to a greater

frequency of aborting or rolling-back transactions and the overall performance of

the programme could be reduced. To mitigate the time wasted caused by this,

contention management is required for STMs to reduce the frequency of occur-

rence of aborted transactions. A variety of studies of contention management

have been carried out and various of approaches have been implemented which

can be divide into the following categories:

1. Exception-based. The way to deal with aborting transactions is to leave it

to the programmers to decide. Exception handling only provides a mecha-

nism in programming languages to support throw and catch semantics for

exceptions;

23

2. Wait-based. This kind of contention management typically solves interfer-

ence between threads by just allowing one thread to proceed while aborting

other threads and forcing them to wait for a period of time before retrying.

3. Serializing. Rescheduling the execution of aborted transactions is the main

method for resolving conflicts between threads. This is different from wait-

based approaches, in the serializing solutions often need to allocate transac-

tions to threads so that aborted transactions can be executed by one single

thread(sequentially) in order to avoid further conflict.

With the exception-based approach, the programmer can benefit from cus-

tomized solutions to contention which are more flexible and can be more suitable

for a single application. However, the main burden of conflict-solving still falls

on application programmers.

Plenty of approaches to solve contention exist in wait-based CMPs. For in-

stance, Polite, Karma and Polka [21, 46] are well-known approaches which are rel-

atively straightforward to implement, offering versatility and good performance.

The CMP in Polite will abort one transaction if two transactions conflict, and will

then increase the back-off time before retrying to avoid another conflict before the

winning one finishes. Karma uses priorities for each transaction, and aborts the

one with lower priority when conflict occurs. The main idea is to abort the trans-

action with the least cost associated with rolling it back. Polka is a combination

of Polite and Karma, and uses an exponential back-off time period for aborted

transactions. An inefficiency of wait-based approaches has been identified [25],

however, as the dynamic nature of the execution of STM leads to difficulty in

finding an adequate back-off period.

Serializing CMPs typically reschedule or serialize aborted transactions. An

example has been described [3] whereby transactions are distributed among the

threads of the application, with transactions that are likely to conflict being

assigned to the same thread, thus assuring serialization. In Ansari’s study a

Stealon-Abort approach is described in which various techniques are considered

for rescheduling transactions amongst threads, with additional work-queues cre-

ated when the number of transactions passes a threshold [2]. A collision avoid-

ance and resolution approach to schedule-based CMP was also been described [11]

24

which also reassigns conflicting transactions to the same work thread.

2.1.6 Semantic resolving Contention Manager

Several approaches to implementations of STM have been developed to solve

semantic conflict by employing a universal construction (UC) [31]. This con-

cept enables multiple threads to access a shared data structure in a wait-free

manner. The UC technique was subsequently applied to transactions to handle

particular failure conditions [8, 53]. The approach was further extended to re-

move the abort semantics of STM [9]. Thread level speculation is introduced

to transactional memory [4]. In this approach, platform parallelism is exploited

to explore different permutations of transactional elements. This is achieved by

reordering the internal execution elements of a particular transaction to better

reflect concurrent schedules of execution. This technique reorders execution at a

lower level than that presented the present study which seeks to reschedule whole

transactions to better accommodate the semantics of execution.

More recently, a CMP described has used a UC technique to resolve conflicts

(labelled Hugh2) [47, 48]. The threads which are considered are those which

contain transactions that have been aborted due to semantic conflicts within the

context of a session. The technique was first presented for object-based STM [48]

and then extended to resolve semantic conflicts in word-based software transac-

tional memory [47]. Universal Construction allows any sequential data structure

to be transformed into a linearisable representation that can be accessed and

updated by a number of threads [31]. The UC consists of three phases. Firstly,

a thread proposes an input to be added to the UC. Secondly, each thread which

has proposed an input reaches a consensus to decide which input will be added.

Finally, the winning thread updates a log of inputs to reflect the decision. Hugh2

accepts as input a permutation of one or more sequentially executed transactions

and decides which permutation will be added to the log. This approach to CMP

for STM was the first to use additional threads to provide multiple serialized

executions of aborted transactions in parallel. This was achieved without the

overhead of a thread-pool.

25

2.1.7 Summary

This section has explained the demand for concurrency control in parallel com-

puting, and some basic methods. Most focus is currently on concurrency control

as transactional memory as this is a general solution that can avoid the need

for programmer of data correctness and preventing deadlock. However, differ-

ent ideas of dealing with contention can lead to huge differences in performance,

which makes a contention manager one of the most important parts of trans-

actional memory. The next section discusses different parallel architectures and

how these can provide concurrency control mechanisms for programmers.

2.2 Parallel Architectures

Traditionally, a computer is built in a single core architecture, and most com-

puter software is written for serial computation. Moore predicted that chip per-

formance would double every 18 months so that sequential programming can be

easily enhanced by hardware [39]. However, from the beginning of the 21st cen-

tury, multi-core processor platforms have appeared in CPU architecture and have

become the main trend since integrating more cores is cheaper than improving

frequency for a single core to provide the same speed-up for the CPU. Since then,

the CPU has turned into a commonly used platform for parallel computing.

Developments in modern graphics processing units have attracted significant

interest partly due to the fact that they can now accelerate applications not only

in traditional computer graphics domains, but also in general purpose domains.

General-Purpose GPU (GPGPU) applications provide a different architecture

from Central Processing Units (CPUs). For example, a modern CPU architecture

is typically optimized for low-latency access to cached data, and offers sophisti-

cated control logic for out-of-order and speculative executions. For this purpose,

the CPU has a larger cache and stronger control units than a GPU. The GPU,

conversely, has more parallel processing elements than a CPU. As such, a GPU

application can access and exploit a far greater number of threads.

26

2.2.1 Hardware

There are two different types of main memory in a parallel computer, which are

known as shared memory and distributed memory. In a shared memory parallel

computer, memory is shared between all processing elements in a single address

space, and in a distributed memory parallel computer, each processing element

has its own logical address space (normally in physical as well). If all elements

of main memory can be accessed in the same bandwidth, it is called a uniform

memory access (UMA) system, otherwise it is known as a non-uniform memory

access (NUMA) system [37].

Depending on the different levels of hardware, parallel computers can be clas-

sified as multi-core computing, symmetrical multiprocessing, distributed comput-

ing, cluster computing, massively parallel computing, and grid computing. Multi-

core computing has multiple processing units (know as cores) integrated in the

same chip, whereas symmetrical multiprocessing means multiple identical proces-

sors that share memory and connect via a bus. Meanwhile, distributed computing

is obviously a distributed memory computer system in which all processors are

connected via a network, and cluster computing is a close group of loosely cou-

pled computers. Massively parallel computing indicates a single computer but

with many network processors, and finally grid computing means computers com-

municating via the internet to solve a given problem. As this thesis focuses on

single chip computers, the next sections introduce the single multi-core processor

for the CPU and the single graphic card for the GPU, both of which are UMA

systems.

Although both architectures are suitable for recent parallel computing, there

are still significant differences in their nature. As Figure 2.4 shows, the CPU

usually has several Arithmetic Logical Units which can be treated as processors

since they provide most of the computational power. However, as the CPU is

designed to be more suitable for an operating system, it has to employ most of

its transistors on features for that purpose. For example, a large on-chip cache is

applied in the CPU together with further control units (such as instruction reorder

buffers and reservation stations). In these ways it can optimize the execution

speed of a single thread and is more suitable for most operating systems. As a

27

Figure 2.4: Differences between CPU and GPU Architectures.

result, the CPU can perform better for complex operations on a single or a few

streams of data, but it is not that good for handling many streams simultaneously.

On the other hand, as the GPU is designed to execute parallel streams of

instructions as quickly as possible, as Figure 2.4 shows, a GPU employs more

transistors in processor arrays, multi-threading hardware, and multiple memory

controllers which do not focus on a particular thread but support tens of thou-

sands of threads to run concurrently with a high memory bandwidth. In such a

way, the GPU excels over the CPU in areas which require more parallelism such

as video processing and physics simulations which execute simple operations on

large amounts of data [42]. However, GPU memory is very limited compared to

the CPU as the latter can use virtual memory while the GPU cannot, and GPU

execution units do not support hardware interrupts in the same way CPUs do.

As a result of different design patterns, the CPU can only support one or two

threads per core, while a CUDA capable GPU can support up to 1024 threads per

streaming multiprocessor. CPU takes hundreds of cycles to switch threads but

the GPU has little cost in switching threads. To reduce the latency of memory

access, the CPU can use its large caches and branch prediction hardware while

the GPU switches to another thread when one thread needs to wait for a memory

reading.

28

2.2.2 Execution

To design a proper algorithm for GPU computing, it is necessary to take into ac-

count the differences in execution between the CPU and the GPU. The execution

for a multi-core CPU is quite similar to that of a single thread, except that more

threads can work together on the same task. Tasks are allocated to the CPU all

the time and the results are calculated continuously.

In this thesis, the NVIDIA introduced CUDA (Compute Undified Device Ar-

chitecture) is used as the GPGPU computing API for the graphics card hardware,

and this section explains how CUDA executes.

Figure 2.5 shows an abstract architecture of a CDUA device. CUDA ap-

plications can run on any card which supports this architecture, but as each

GPU device has different specifications, they may have slightly different sets of

supported features and different numbers of available computational resources.

However, any CUDA supported device should have some Streaming Multipro-

cessors (SMs), and each of which consists of some processor cores (ALUs), one

multi-thread instruction unit, a shared memory and a set of registers [43].

Whenever a CUDA application is launched, and if it needs to use GPU re-

sources for computation, a ‘kernel’ has to be invoked to match the work-flow from

the CPU to the GPU, and a specified number of primitive threads will simulta-

neously execute that work-flow. Batches of these primitive threads are organized

into ‘thread blocks’. The amount of primitive threads within a thread block is

specified by the programmer, but is also limited by the amount of available shared

memory as well as the desired memory access latency hiding characteristics. At

the same time, a total of 512 threads for one ‘thread block’ is the upper limit set

by the architecture. One or more ’thread blocks’ are assigned to an SM during

the execution of a kernel, and CUDA run time handles their dynamic scheduling

to a group of SMs. The scheduler will only assign a thread block to a SM when

it has enough resources to support that thread block. Then after a thread block

is assigned to a SM, it will be further divided into ‘warps’ which each contain 32

threads and share the same instruction counter. If flow-control statements (e.g

if-then-else) are introduced to the program, a possibility of thread divergence is

also introduced. Thread divergence occurs when some threads in the same warp

29

Figure 2.5: CUDA Device Architecture.

follow a different execution path from others. In this circumstance, threads fol-

lowing one path execute first, while other threads following different paths are

suspended, then after this path is completed, other threads will execute while

the current executing threads are suspended. This is called a ‘lock-step’ process

and is one of the aspects most different from CPU parallel computing. After all

threads in a kernel have finish their assigned tasks, the results data would be

stored in GPU global memory and the programmer can copy them from there to

the CPU memory for further use.

There are several levels of memory in a GPU device as Figure 2.6 shows, and

each of them has its own read and write characteristics. Every primitive thread

has access to private ‘local’ memory and registers. This ‘local’ memory merely

means that the memory is private to the thread, but does not mean that it is

30

Figure 2.6: CUDA Memory Architecture.

stored locally on the thread registers. Instead, it is actually an off-chip memory

in the global GDDR memory available on the graphics card. A unified ‘shared

memory’ is located in an SM, which is shared among all threads of the same thread

block. Finally, all threads have read and write access to ‘global memory’, which

is located off-chip on the main GDDR memory, and is not cached. Therefore, it

has the largest capacity but also costs the most to access. There also exists read-

only ‘constant’ and ‘texture’ memory, which are in the same location as global

memory but can be accessed more quickly as sometimes they may be cached.

Those three types of memories located in the main GDDR memory and can be

accessed by the CPU. While global memory can be read from and written to by

both the CPU and GPU, read-only memories can only be initialized by the CPU.

31

2.2.3 Concurrency Control Operations

To produce a general purpose parallel programme, concurrency control has to

carefully be implemented. And both the CPU and GPU provides basic operations

to achieve this.

CPU

As the CPU has more control units on its chip, and it has been upgraded many

times for control function, it has much more flexible basic concurrency control op-

erations than the GPU. Normally, atomic operations, and thread synchronization

and communication are all available for the CPU.

Atomic operations are operations guaranteed to be isolated from concurrent

processes, and for all processes processing the same atomic operation at the same

time, only one can succeed while others should receive a fail use notice. Atomic

operations usually affect performance, but are the basic element in implementing

a lock [33]. Normally atomic operations consist of atomic read-write, atomic

test-and-set, atomic fetch-and-add and atomic compare-and-swap.

Thread synchronization is also named process synchronization, and it means

that two or more threads will be guaranteed to not execute simultaneously in

some parts of the program (called a critical section) [17]. It can be implemented

by using spin-locks, barriers or semaphores.

Thread communication can be divided into broadcasting and all-to-all com-

munication. Broadcasting means that one thread can send transmit messages to

all receiver threads while all-to-all communication means that threads can send

transmit messages to each other. Both types are important when modifications

have to be made to shared data which has been copy held by more than one

thread.

With all these concurrency control primitives, the CPU can use various con-

currency control methods. Transactional memory is the most advanced kind as

it can peel off the most difficult tasks such as deadlock and race conditions from

parallel programming, with only cost being some overhead of performance.

GPU

Although GPU applications offer more parallelism than a typical CPU appli-

cation, restrictions on data access mean that the semantics of GPU applications

32

tend to differ significantly from those of their CPU counterparts. Applications on

the GPU tend to feature large numbers of threads which are wholly independent

of one another with regard to their accessing of shared data (such applications

are termed embarrassingly parallel). The coordination of thread activity is mini-

mal in such applications, whereas this is rarely the case in the domain of parallel

programming on the CPU.

To make GPU applications more generalized, concurrency control is needed.

It is also achievable on the GPU because it has basic operations which are required

by concurrency control such as atomic functions and thread synchronization.

However, approaches to concurrency control on the GPU are different from

those with the CPU because the former has different features, as discussed in

previous subsections. For example, as mentioned before, group of GPU threads

execute as a ‘warp’ and all threads in the same warp share a same instruction

counter [42]. This makes the GPU threads in the same ‘warp’ can only execute the

same instruction at the same time, so that strategies to operate different threads

with different instructions as is suitable for CPU applications is not achievable

on the GPU. For example, a frequently used method of dealing with concurrent

conflict is to make conflict threads back off and to ask them to wait for a different

periods of time before retrying. In such a way, conflicting threads can restart at

different time points to avoid the conflict happening again. However, all GPU

threads in the same ‘warp’ share the same instruction counter and always execute

the same instructions [55]. If this method was applied to the GPU, threads

encountering conflict would always retry the aborted instruction at the same

time and conflict again. Therefore, all technologies based on this principle which

work well on the CPU cannot be applied for the GPU.

Another common technology used on the CPU is broadcasting. A lot of con-

currency control methods on the CPU need to broadcast modifications to shared

data from one thread to all other threads attempting to read or write the same

shared data. But on the GPU, threads cannot communicate with each other

directly, because inter-threads communication occurs only via global memory.

However, seting a monitor to a global memory address is expensive since many

threads have to access that address frequently, and even in this way the amount

content which can be communicated is very limited. Hence none of the technolo-

33

gies based on broadcasting are suitable for GPU concurrency control.

As a result, some new principles for concurrency control on the GPU need

to be explored. Current researches into concurrency control, and especially on

transactional memory on the GPU, is being carried out by different groups around

the world.

2.2.4 Summary

This section has compared the different features of CPU and GPU in both hard-

ware and software layers. We can see that the CPU is better for conducting

parallel computation that involves complicated thread execution, but provides

fewer threads. Meanwhile, the GPU is excellent with simple multiple work on

large amount of data. And although their execution modes are different, both

require concurrency control and this can be approached in different ways. At

the moment, concurrency control on the CPU is very advanced and has resulted

in many transactional memory approaches developed to remove concerns about

deadlock from the programmer. The GPU can also get considerable benefits from

transactional memory as it is easy to use, but performance is slightly worse. The

next section introduces some famous types of transactional memory on the CPU

and some which have been recently developed for the GPU.

2.3 Related Work

As mentioned before, in blocking synchronization algorithms, mutual exclusive

access to critical section is used which is usually guaranteed by locks. When a

process tries to acquire a lock that has already been obtained by another process,

it needs to stay in a waiting state until that lock is released. And this waiting

state can cause various problems such as deadlock. However, the use of a non-

blocking synchronization algorithm manes that no waiting state is needed and

so many problems can be avoided. Some new problems such as live-lock can be

introduced by non-blocking synchronization, but they can be effectively solved

by contention management. As non-blocking synchronization has many benefits

compared to blocking synchronization, and since transactional memory is a typi-

34

cal non-blocking synchronization construct that has been researched for decades,

the present study also uses software transactional memory to resolve concurrency

control. The following sections we will introduce some previous research con-

ducted in this area.

2.3.1 Transactions on CPU

The First Software Transactional Memory

The idea of transactional memory was firstly proposed by Herlihy and Moss

in [32], who described an architecture that extended multiprocessor cache coher-

ence protocols. In this protocol, instructions would be stored in an instruction

set provided by the system for access to shared memory positions. After this

proposal, a more delicate system called Software Transactional Memory was im-

plemented by Shavit and Toutitou [49]. Here, a system-wide declaration would

be made if a transaction tried to update a shared memory location. This decla-

ration is actually the owner of a particular concurrent object and referenced to

that specific shared memory location. As a result, all other transactions can know

that an update is being made to this location. After the update has succeeded,

the ownership of this concurrent object should then be released. Both acquiring

and releasing ownership of a concurrent object should be done atomically using

the atomic compare and swap operation. To guarantee the correctness of the

result, ownership must be exclusive, which means that at any given time each

concurrent object can only have at most one owner.

In Shavit and Touiton’s design, a concurrent object is a shared memory word,

and each global declaration is another word called an ownership record. Con-

current objects and ownership records are associated one of each. The value of

the ownership record can either be a null, which means no owner at all, or a ref-

erence to its owner transaction. Obviously, one ownership record can only have

one owner transaction at any time. A transaction would try to own all ownership

records it needs one by one, and it will release all of its acquired ownership records

if it fails to acquire any ownership (when a concurrent object is already owned by

another transaction). After it has acquired all of the ownership records it desires,

it would commit the updates and then release all acquired ownership records. As

35

this is a non-blocking algorithm, deadlocks are avoided. However, livelock is still

possible. To avoid livelock, ownerships are acquired in a global total order of

concurrent object addresses. Additionally, a non-recursive helping mechanism is

applied when conflict occurs. This means that when a conflict occurs between two

transactions, one may take the other one’s updates on its own behalf. And the

help level is restricted to one in this solution, so it is non-recursive and livelock

free.

There are three major drawbacks of this solution:

1. As it needs a global order to avoid livelock, prior knowledge of all of the

concurrent objects one transaction accesses is necessary. It is not possible

to achieve this in a real-time scenario as the concurrent objects which need

to be accessed could be changed;

2. Memory usage is also a problem, as each shared memory address requires

one associated ownership record. Even if the ownership record occupies one

word, this means that the memory requirement is doubled.

3. The contention overhead during helping is also a drawback of this solution

in terms of efficiency.

In order to overcome these limitations, some other techniques have been added

in later studies.

Hash Table Based STM

Another word-based STM was proposed by Harris and Fraser in 2003 [23]

which uses a hash table to store ownership records. In this new proposal, all of

the complicated details are abolished and only some simple interfaces are provided

for users, namely STMStart, STMRead, STMWrite, STMAbort, STMCommit,

STMValidate, and STMWait. According to their literal meanings, they are in-

voked during different phases of a transaction.

Three main data structures are used to support this system:

1. Application Heap. This is the real shared memory in which all shared data

is held.

36

2. Hash Table of Ownership Records (orecs). This is a hash table that maps

shared memory locations. Information in it is similar to the previous struc-

ture but a version is used when there is no owner. This solved the memory

spaces problem of the previous type of STM.

3. Transaction Descriptors. Each transaction has a transaction descriptor in

which is held actual modification informations at shared memory locations

along with the status of the transaction. Transaction descriptor consists of

the address of the shared memory to be modified, the original value and

version of that address, and the potential value and version after a commit

action.

In a STMRead and STMWrite processes, an element will be added to the

transaction descriptor if it was not already there. To guarantee consistency, all

entries in one transaction descriptor that correspond to the same orecs must have

the same old and new versions. Besides this, ownership is not acquired in this

phase. Acquirsition only happens in the STMCommit phase so that STMCommit

is a multi-word CAS. Whether or not the multi-word CAS is sued is an important

difference between STMs.

STMCommit is the most important part of this system. In this phase, all orecs

referred to its transaction descriptor need to be acquired. Atomic CAS operations

would be used on every orec which has to be acquired. And if one transaction

can gain all exclusive ownership, its status will be set to COMMITTED and it

will be allowed to commit all updates. After that, it will release all acquired orecs

with new version.

However, sometimes a transaction may find that another transaction’s de-

scriptor is already in an orec it needs to acquire. These are two kinds of conflicts

here:

1. Read Conflict If the conflict happens during an STMRead session, then it is

a read conflict. Under this circumstance, the current transaction will either

be aborted immediately (if the conflict transaction is ACTIVE) or a new

transaction entry is created in which the read version number and value is

from the conflicting transaction (if the conflicting transaction is ABORTED

or COMMITTED).

37

2. Acquire Conflict If the conflict happens during the acquirsition of an orec

session, it is a acquire conflict. On this occasion, the current transaction

also has to abort immediately if the conflict transaction is ACTIVE. But if

the conflict transaction is ABORTED or COMMITTED, the current trans-

action will have to verify the consistency of the version number of the con-

flicted orec. If they are not consistent, then the current transaction has

to abort and release all orecs it has already acquired. Otherwise, it has to

check whether or not the valid updates from the conflicting transaction’s

descriptor have been made to the orec and the corresponding memory lo-

cations. The Helping mechanism mentioned previously may do so, but

this cause reduced efficiency issue, and so the authors introduced another

mechanism which is called stealing.

In the stealing mechanism used in this system, a current transaction that en-

counters a conflict will merge the transaction entries from the conflicting trans-

action’s descriptor with its own transaction descriptor. The owner reference is

then set to its own transaction descriptor as well. During the acquire session, if

the current transaction is ABORTED by another transaction then it will release

all orecs it has already acquired. After that, the current transaction will change

its status to COMMITTED and write all modifications back to the memory lo-

cations corresponding to its transaction descriptor, and then release all owned

orecs. However, it is possible for another transaction to abort the current trans-

action during the release phase, so-called ‘dirty’ updates may sometimes occur.

For example, if the stealer transaction makes updates before the victim transac-

tion does, then the victim transaction may overwrite the memory location with a

incorrect value. To avoid this ‘dirty’ update, a redo operation is provided. When

the current transaction detects an orec stealer, it will redo updates to the stolen

orec from the stealer transaction’s descriptor if the stealer is not ACTIVE. The

combination of merging and redoing will guarantee the correct updates can be

made to shared memory.

Contention management policy has a significant effect on performance. In the

first hash table STM, the contention management policy is ‘aggressive’, where any

conflicted transaction is aborted, which is not very efficient. But a alternative

‘polite’ was also introduced later in which, if one transaction faces conflict, it

38

will backoff in exponential increased time until get the limitation of backoff times

then abort the conflicted transaction. This ‘polite’ policy shows a much better

result than ‘aggressive’.

One disadvantage of this system is that it is a word based system, which is

not very practical in solving real problems. Moreover, not all platforms support

the use of multi-word CAS operations.

DSTM

Recently, more research into STM has focused on object-level synchronization.

This is because a lot of applications need to use data structures dynamically,

which is more suitable for an object-based system. Compared to lock-free STM,

obstruction-free STM has the advantages of simplicity, flexibility and efficiency.

This section discusses an obstruction-free STM system which is called Dynamic

Software Transactional Memory (DSTM) as proposed by Herlihy [27].

DSTM introduces a dynamic transactional memory object (TM object). A

TM object is likely to be a wrapper surrounding concurrent data. It has a pointer

to a locator object which is similar to the orec in a hash table STM. The loca-

tor points to a transaction descriptor that has most recently tried to modify the

TM object, and both old and new versions of the data object. The transaction

descriptor can be in any one of three phases: ACTIVE, ABORTED or COM-

MITTED. If the transaction is ACTIVE or ABORTED, the recent valid version

is the old version referenced by the locator; otherwise, the new version is the new

version referenced by the locator.

The locator is quite similar to the orec in Hash table STM, but there are three

main differences:

1. The locator is referenced by one TM object, but the orec is referenced to a

hashed memory word.

2. The locator points to both old and new versions of the data object, but the

orec only points to the descriptor which contains old and new versions, or

points to nothing but contains a version number.

3. The locator has a pointer to the most recent valid version of the data object,

and so it does not need a version number.

39

To access a data object, a transaction must open the corresponding TM object,

which means that this transaction is expecting to use this object. The transaction

will create a local copy of the locator object first, and then set the transaction

pointer inside it into the transaction itself. The pointer in the local locator

depends on the state of the previous transaction in the locator:

1. If the old locator points to a COMMITTED transaction, then the new

locator’s new object pointer will point to a copy of this new object and the

old object pointer will point to the new object version referenced by the old

locator.

2. If the old locator points to an ABORT transaction, then the new locator’s

new object pointer will point to a copy of this new object and the old object

pointer will point to the old object version referenced by the old locator.

3. If the old locator points to an ACTIVE transaction, this means that there

is a conflict between this current transaction and the previous one. Then

the current transaction will either abort the conflicted transaction or this

will be determined by a contention manager. After that, it can follow the

above two scheme to update the local locator.

After all these steps, the transaction will try to replace the old locator with this

new locator using an atomicCAS operation. If this succeeds, then the update is

valid and all other transactions can view it. If not, it means that some other

transactions have acquired the object, which leads the current transaction to try

again to acquire that TM object.

Invisible-read is an important mechanism used here to reduce unnecessary

contention. As some transactions only need to read some concurrent object, if

open operations were applied to all those read-only objects then a lot of access

attempts would be rejected. This situation is not necessary. To solve this prob-

lem, the authors provide a separate read list of objects and these are only visible

to the transaction itself. However, this may lead to inconsistency in views of

memory. An incremental validation is applied to avoid data inconsistency where

a transaction must check the data consistency for the whole read list whenever it

opens a TM object or tries to commit.

40

Many more transaction memory systems on the CPU have been proposed

during the last decade. It can be observed that STM is well developed on the

CPU. However, as the GPU has only become popular in the last few years, there

are only a few STM techniques suitable for it. The next section introduces some

recent GPU STMs and their advantages and disadvantages.

2.3.2 Transactions on GPU

The first proposed STM for the GPU

As mentioned previously, the availability of the GPU has recently expanded

into the area of general purpose programming, giving rise to a new genre of ap-

plications known as GPGPU. Although GPU applications offer more parallelism

than a typical CPU application, restrictions on data access mean that the se-

mantics of GPU applications tend to differ significantly from those of their CPU

counterparts. Besides this, most existing CPU concurrency control methods do

not work on the GPU, while the requirements of concurrency control for GPU

computing is urgent and research providing concurrency control on the GPU has

become vital. This has recently led to increased interest in utilising the GPU

for transactional memory (TM). As with TM on the CPU, TM approaches on

the GPU can also be categorized as hardware transactional memory or software

transactional memory.

A first STM on the GPU that operates at the granularity of a thread-block

(as opposed to the granularity of individual threads) has been proposed [7]. In

this article, the author tried to transplant STM framework from CPU to GPU

because of the advantages STM as we discussed before. The author discussed a

blocking STM as well as a non-blocking STM in the article, both of which have

four sessions. A begin function that can mark the initiate point of a transaction,

a read function that can obtain a snapshot of a memory location, a write function

that can log the updates should be commit if the transaction is successful, and

finally a commit function that can perform the update log if there is no conflict

or restart the transaction otherwise.

The author argues the progress guarantees to provide is the most important

choice when design STM. For instance, When the contention rate is low, more

41

basic guarantees can achieve better performance as the tradeoff of conflict detec-

tion is tiny. However, more advanced guarantees can provide more independence

from the scheduler but cost more in complexity. With this concern, the author

designed a blocking STM uses a very simple structure which requires lowest pos-

sible resource to improve performance, and a non-blocking STM based on the

Harris and Fraser’s design [23] as it is more complex but offers better progress

guarantees.

This system uses a Log or Undo-Log to deal with the contention condition. It

is a kind of invisible read as it copies the object from shared memory location to

local log whenever it performs a read, and commits at the end of one transaction.

The conflict detection time is either at the first time one object accessed or at

the time when transaction finishes. The author did not clearly mention which

one they used.

The thread-block approach avoids dependency between threads within a single

block and can solve the problem caused by lock-step execution mode provided

by the GPU. Furthermore, this relatively coarse granularity reduces contention

due to the typically high thread numbers available on GPU, but it does not

accommodate workloads more appropriate for GPU execution.

GPU-STM

An approach labelled GPU-STM, which does operate at the granularity of

the individual thread was also been developed [54, 55]. In this proposal, they

took GPU main characters such as massive threading, SIMT execution mode and

memory access coalescing into account to achieve a more suitable solution for the

GPU. And unlike the first STM, they use single thread as the granularity which

can make use of the more parallel resource from GPU.

The technique is based on a hierarchical validation system which is a combi-

nation of time-stamp and value-based validation. Value-based validation means

record the actual value from locations read by a transaction to detect conflict.

However, to avoid inconsistent view of memory, system with value-based valida-

tion has to perform incremental validation [20]. Systems on the CPU can shrink

this non-trivial overhead by a single global sequence lock. But because thousands

of threads have to update this single lock frequently and it may lead to a serial-

ized memory update at commit time, it cannot be scale well on the GPU. On the

42

other hand, the timestamp-based validation uses global version locks to manage

entire memory, each version lock masters a piece of memory. A transaction in

marked as invalidated when the snap shot of version locks it requires not match.

So timestamp-based validation can reduce off-chip traffic caused by comparisons.

However, there arises a new problem marked as false conflict, which happens

when transactions access locations managed by the same version lock, and that

can be avoided by value-based validation. This is not a huge issue on the CPU,

but on GPU, the lock-step execution mode would exacerbate the side effect as

the some thread lane would be masked off and re-execute later. In their solution,

a timestamp-based validation is performed firstly, and if the version lock does not

match, a value-based validation is further performed to avoid false conflict.

GPU-STM uses locks to avoid memory inconsistency. As simple using locks

may lead to livelock, and the common solution exponential back off cannot be

applied on the GPU as we discussed previously, they proposed encounter-time

locking coupled with commit-time locking. Specifically, each thread owns a local

lock-log, and whenever transactional reading or writing takes place, a lock ID

must be inserted to a proper position in that lock-log. The order of locks in

local lock-log is sorted by their lock IDs, so that a global order can be obtained

when acquire locks. One thing need to be clarified is one lock is not necessary

to insert if it already exists in local lock-log to avoid duplicate locks. To avoid

the possibility of livelock, at the commit time, a transaction should sequentially

process the locks within each bucket. In this way, a global order of acquiring locks

is obtained among all transactions, so that livelock is avoid without exponential

back off mechanism.

Furthermore, GPU-STM leverage memory access coalescing mechanism to

reduce the overhead of global memory accessing. All transactions within one warp

merges their read/write set in a way that all transactions can access consecutive

locations. For each transaction within a warp, it can use its index in that warp

to access the independent region of merged read/write set.

This GPU-STM is the most efficient one at the time of study, and most

important parts are discussed in detail. It is very sapiential to combine encounter-

time lock sorting with commit-time locking acquiring to avoid live lock, but the

time complexity of lock sorting can still lead a nontrivial overhead with large scale

43

read/write set. The technique described in the present study avoids the necessity

for sorting locks due to the introduction of a static priority rule. Further on,

GPU-STM is utilised as the comparator during the evaluation of the system.

Lightweight STMs on the GPU

Three lightweight techniques for software transaction management on the

GPU have been described [34]. The author argued a backoff mechanism to-

gether with adding a delay before restarting aborted transaction can guarantee

livelock free. As we discussed previously, this can only be a guarantee if aborted

transactions are inter-warp transactions, otherwise, different delays may lead to

the same restarting time because of the lock-step execution mode on the GPU.

So we assume this proposal using a warp as a basic execution grain. And for each

memory location, there is an one-to-one mapped shadow entry which is using to

detect conflicts and 32 bits in size. They also defined a undo log for each thread

which contains the set of memory locations it accessed and the old values as well.

This undo log will be used if the transaction fails and restore original states of

those locations.

Firstly, eager read-write conflict detect STM (ESTM) detects conflicts ea-

gerly by observing both read and write information in shadow entries. Different

threads are allowed to read a memory location while only one thread is permitted

to perform a write. There are three kinds of conflicts as the author classified.

1) RAW violation which means a thread tries to speculatively read a memory

location that another thread already speculatively written to. 2) WAW violation

which means a thread tries to speculatively write a memory location that another

thread already speculatively written to. 3) WAR violation which means a thread

tries to speculatively write a memory location that another thread has specula-

tively read. A thread is able to add one entry to its read/undo log only if none

of above conflicts are detected. The author claims the design of ESTM has two

main weaknesses: 1) all read operations have to modify the shadow entry which

is located in global memory; and 2) distinguish read and write operations need

more memory space for the shadow entry and slows the performance. So they

proposed the following two designs at the same time.

Pessimistic STM (PSTM) is a simpler version of ESTM that treating reads

and writes in the same manner. This increases the effectiveness when transactions

44

regularly read and write to the same shared data. However, other applications

do not perform such access patterns will suffers more from false conflict. The

author argues this can benefit in two aspects. First advantage is it can detect

earlier if some locations are first read and then written, and the second is simpler

mechanisms can lighten conflict detection and commit overheads.

Finally, invisible STM (ISTM) can represent invisible reads to reduce conflicts

during a transaction. All speculative reads are invisible to other threads and only

validate at the end of one transaction. Therefore, the cost of read is much lower

than previous two solutions because read operations do not need to modify the

shadow entry. The shadow entries in ISTM is changed to version locks and can

only be modified before commit. In such a manner, conflicts on writes are still

detected eagerly while conflicts on reads are uncertain.

However, none of these three techniques allow a thread level parallelism and

the memory overhead of shadow entry is huge as each memory location requires

one. These factors make the solution not so suitable for GPU as it cannot take

the advantage of massive threads in the GPU and not quite scalable. Besides,

when the performance of each algorithm was compared with the CPU [34], only

basic fine-grain and coarse-grain locking benchmarks were employed.

Other GPU concurrency control researches

Some work has also been carried out on to develop hardware transactional

memory (HTM) for the GPU. A technique using value-based validation has been

proposed [14] which is called KILO TM and uses combined value-based validation,

RingSTM and scalable transactional coherence and consistency [15]. However,

this technique requires significant changes to the architecture of the GPU itself

to handle divergences in the control flow caused by the aborting of transactions.

A generic modification solution has also been proposed [41]. This uses morph

algorithms, which are often used to deal with neighbourhood conflicts, modified

so as to be GPU friendly. In this study, a suitable scheme to reduce the abort

ratio by changing kernel configuration is also applied.

GPU techniques to speed up execution by reducing the usage of atomic op-

erations have also been explored [40]. Two methods were used: barrier-based

processing and exploiting algebraic properties were used to avoid atomic instruc-

tions from a program and the result showed some improvement in performance.

45

2.4 Summary and Thesis Contribution

This chapter has discussed some frequently used concurrency control methods.

Pessimistic approaches were introduced first, basically involving locking. Then

some optimistic approaches were mentioned, focusing on transactions. After that,

some basic primitives for semantic resolution were introduced, followed by a brief

description of the latest solutions. The differences between two most popular

platforms for parallel computing, CPU and GPU, which lead to different demands

in concurrency control technologies were then discussed. Finally, a number of

recent studies of transactions on both the CPU and GPU were considered.

In summary, some key conclusions may be drawn:

1. The benefit of locking is that it is simple and intuitive for less complicated

problems, and it is used in a lot of existing projects where programmers

can use such methods with abundant support documentations.

2. However, locking can easily introduce errors into sophisticated applications,

especially deadlock and livelock, and cannot be applied for general purposes

because it is customized.

3. Optimistic techniques have become more practicable with the increase par-

allel computing resources. In particular, transactional memory is the most

popular solution as it can provide an intuitive interface for programmers

without the risk of introducing deadlock or livelock, and it can be gener-

alised.

4. Unfortunately, transactional memory does not performs as well as expected

when contention rates for shared data are high. So there is now much focus

on contention management which can coordinate access of the shared data

and enhance performance.

5. Three kinds of contention management policies are applied to coordinate

transactions and reduce the possibility of concurrent conflict. Furthermore,

the universal construction technique is used to handle particular failure

conditions and is applied in transactional memories to deal with semantic

conflict.

46

6. Transactional memory is advancing for use on the CPU, a number of dif-

ferent approaches have been proposed which have been applied to different

scenarios.

7. There exist a few transactional solutions for either hardware or software on

the GPU for concurrency control, and some contention management meth-

ods have been proposed to reduce the possibility of transaction conflicts.

However, these contention managers have different disadvantages and none

of them consider semantic conflict.

Given this background, the present study focuses on software transactional

memory to solve both concurrent conflict and semantic conflict for GPU architec-

ture. The main contributions of our prototype can be supported by the following

objectives:

General Purpose – As we implement our system in software and without any

limitation on a particular application or system, it is a general purpose imple-

mentation with interfaces to handle different scenarios.

Efficiency – We consider any issues which are baleful to performance on GPU

architecture and the benefit that GPU platform can provide, to provide the most

efficient prototype on the GPU.

Correctness – As all threads that wish to update modifications have to validate

before commit, and commitment to shared data is isolation from other threads,

consistency is assured.

47

Chapter 3

PR-STM : A Priority Based

Software Transactional Memory

for the GPU

In this chapter we describe a design and implementation of a software transac-

tional memory library for the GPU written in CUDA. We describe the implemen-

tation of our transaction mechanism which features both tentative and regular

locking along with a contention management policy based on a simple, yet ef-

fective, static priority rule called Priority Rule Software Transactional Memory

(PR-STM). We demonstrate competitive performance results in comparison with

existing STMs for both the GPU and CPU. While GPU comparisons have been

studied, to the best of our knowledge we are the first to provide results comparing

GPU based STMs with a CPU based STM.

3.1 Introduction

The availability of Graphics Processing Units (GPU) has recently expanded into

the area of general purpose programming, giving rise to a new genre of applica-

tions known as General Purpose GPU (hereafter GPGPU). The principle benefit

of using the GPU is the relatively high degree of parallel computation available

compared to the CPU. Furthermore, programming APIs, such as CUDA, have

48

grown in sophistication with every new advancement in GPU design. As such,

GPGPU programmers now have at their disposal tools to enable them to write

complex and expressive applications which can leverage the power of modern

GPUs.

As with multi-threaded applications on the CPU, GPGPU applications re-

quire synchronisation techniques to prevent corruption of shared data. As has

long been experienced in the domain of CPU computing, correctly synchronising

multiple threads is a difficult task to implement without introducing errors (such

as deadlock and livelock). To compound matters, the high number of threads

available on modern GPUs means that contention for shared data is an issue of

greater potential significance than on the CPU where the number of threads is

typically much lower.

To address the difficulties of multi-threading on the CPU, significant progress

has been made in providing Concurrency Control techniques to aid the concurrent

programmer as we discussed before. One notable technique is Transactional Mem-

ory (TM), which allows the execution of transactions in both Software and Hard-

ware. TM provides an intuitive interface to aid programmers of multi-threaded

programs. The TM system guarantees that programs are free of data inconsis-

tency issues while handling the intricacies of thread coordination and contention

management. Besides, a preeminent TM system can be efficient as well as forbid

all possibilities of errors (such as deadlock and livelock).

At the time of writing, implementing an efficient TM technique for the GPU

remains an area with much potential for development. Although semantic conflict

solving is the ultimate objective of the whole research, the work in this first step

aims to contribute to a efficient concurrent conflict solving capability, by providing

the following:

• An STM algorithm for the GPU based on a simple, yet effective, static

priority rule. We demonstrate that our technique can out-perform a state-

of-the-art STM technique for the GPU called GPU-STM ;

• Benchmarked performance figures are provided, comparing PR-STM with

both GPU-STM and a widely used STM technique for the CPU, namely

TinySTM. To our knowledge this is the first time that comparisons have

49

been produced between STM techniques for the GPU and the CPU.

We have enhanced the benchmarking software to assess the performance of all

three techniques with variation on the number of threads, transaction size and

the granularity of lock coverage in addition to the impact of invisible reads.

Section 3.2 describes the design and implementation of our STM and, finally,

Section 3.3 concludes the chapter and discusses next step work.

3.2 System Design and Implementation

3.2.1 Overview

The operation of the GPU differs considerably from the CPU and this must be

taken into account when implementing transactional algorithms on the GPU.

First of all, the degree of available concurrent threads are far more than they

appear on the CPU. And in addition to the high degree of threads, groups of

GPU threads execute as part of a ‘warp’. Threads belonging to the same warp

share the same instruction counter and thus execute the same instruction in a

‘lock-step’ fashion. In addition to the risk of high contention given the high

number of threads, deadlock and livelock are possible because threads of the

same warp cannot coordinate their accesses to locks as they can on the CPU

(see Figure 3.1(A)). For example, a frequently used technique to deal with the

possibility of deadlock on the CPU is retreat and retry in different period of time.

However, as threads in the same ‘warp’ share one same instruction counter, this

method is no longer achievable as those threads can only at the same time. As a

result, a new technique should be invented to solve this problem.

To prevent the possibility of deadlock and livelock, we use a ‘lock stealing’ al-

gorithm which requires each thread be assigned a static priority, here is the unique

thread ID in CUDA. This allows a thread with priority n to steal a lock which is

currently owned by any thread with a priority less than n (see Figure 3.1(B)). As

every thread has a unique priority, this addresses the possibility of deadlock be-

cause any thread can always determine its next action when encountering locked

data. And for one locked data, all attempted threads would only try steal the

lock once and find out which threads have the highest priority and the acquire

50

Figure 3.1: Livelock and Contention Management in GPU Transaction execution.

it. Livelock is also addressed as threads will never attempt to perpetually steal

one another’s locks.

PR-STM implements a commit time locking approach where threads attempt

to acquire locks at the end of their transactions. Before committing, threads first

attempt to validate their transactions by tentatively ‘pre-locking’ shared data and

check current versions. Pre-locked data can be stolen based on the thread priority

rule. Threads can only pass this validate phase if all locks can be ‘pre-locked’

without stole by others and all local hold read data versions are still consistent

with them on global memory. If validation is successful the thread may commit its

transaction. We implement invisible reads and threads maintain versions of the

data they have accessed so that they can abort early if a conflict is detected. This

has the benefit of reducing the costs of false conflict where a thread needlessly

aborts when encountering data locked by a transaction which itself will abort in

future.

51

3.2.2 Metadata

PR-STM consists of two types of metadata: a global metadata which is shared

among all threads and a local metadata which is private to a single thread:

• global lock table A lock table is required which should be accessible to all

GPU threads, hence it is located in global memory. Each word of shared

data is hashable to a unique lock in the global lock table. To enhance the

scalability of our system we can vary the number of words that are covered

by a single lock. When the hashing function has a 1:1 configuration, for

instance, every word of shared data has its own lock. While this configura-

tion demands the most memory it minimises the chance of a false conflict

based on shared locks. Each entry in the global lock table is an unsigned

integer composed of version (11 bits), owner (19 bits), locked (1 bit) and

pre-locked (1 bit);

• local read set is a set of read entries each composed of a memory location,

version and value read by the current thread;

• local write set is a set of write entries recording the memory location and

value written by the current thread;

• local lock set is a set of lock indices and lock versions written by the current

thread. The use of lock versioning, along with thread priorities provides

the data required by our algorithm when a transaction wishes to perform

lock stealing.

Most of our STM metadata is local to a thread because this has some benefits over

global meta data. In particular, some local metadata may reside in the register

which allows faster access by a single thread. And although some local metadata

may be located in hardware global memory which has slower access than block

shared memory, the block shared memory has strict restricted space that can not

store all local metadata.

52

Algorithm 1: PR-STM functions
function txStart()

1 readSet← writeSet← lockTable← ∅;
2 abort← false;

function txRead(Address addr)
3 if getLockBit(g lock[hash(addr)]) = 0 then
4 if < addr, valWritten >∈ writeSet then
5 return valWritten ;

else
6 value← atomicRead(addr);
7 version← getVersion(atomicRead(g lock[hash(addr)]));
8 readSet← readSet ∪ {< addr, value, version >};
9 return value;

else
10 abort← true;
11 return 0;

function txWrite(Address addr, Value val)
12 if getLockBit(g lock[hash(addr)]) = 0 then
13 if < addr, valWritten >∈ writeSet then
14 < addr, valWritten >←< addr, val >;

else
15 idx← hash(addr);
16 version← getVersion(g lock[idx]);
17 writeSet← writeSet ∪ {< addr, val >};
18 lockSet← lockSet ∪ {< idx, version >}};

else
19 abort← true;

function txValidate()

20 if tryPreLock() = true then
21 for all< addr, value, version >∈ readSet do
22 if getVersion(g lock[hash(addr)]) 6= version then

return false;

23 return tryLock();

else
24 return false;

function txCommit()

25 for all < addr, val >∈ writeSet do
26 ∗addr ← val;

27 threadfence();
28 for all< idx, version >∈ lockSet do
29 if version < maxV ersion then
30 setVersion(g lock[idx], version + 1);

else
31 setVersion(g lock[idx], 0);

3.2.3 STM Operations

The PR-STM system can be divided into the main frame and contention manager,

and we will discuss the main frame in this section while leaving the contention

53

manager to the next section. PR-STM is comprised of several functions that are

executed during significant events during a transaction’s execution. Specifically:

txStart, txRead, txWrite, txValidate and txCommit. Algorithms 3 and 2 provide

the pseudo code.

txStart is called before a thread begins or restarts a transaction. The function

initialises the thread’s local read, write and lock sets setting them to be empty

(line 1). The thread then sets a local abort flag to false (line 2).

txRead is executed whenever a thread attempts to read shared data from global

memory. The calling thread checks if the shared data is locked by another thread

firstly (line 3) and if so the thread aborts and restarts its transaction (line 10). If

the data is not locked the thread checks to see if the data has already been added

to its local write set(line 4) and if so, returns the stored value (line 5). If the data

is not in the thread’s local write set it retrieves the value from global memory (line

6) using an atomic read to ensure the value is up to date. The thread then adds

the value read to its local read set along with the atomically read lock version

corresponding to the shared data (lines 7-8) before it is returned.

txWrite records each write a thread wishes to make in its local write set. The

thread first checks if the data is already locked by another thread and if so it

means another thread is modifying the value at that moment, so this thread sets

its abort flag to true indicating the transaction must abort and restart when the

function returns (line 19). If the data is not locked the thread checks if the data

is already in its local write set (line 14) and overwrites it. If the data has not

been previously written the thread creates a new write set entry, which contains

the lock information (lock index and version) to be added into local lock set and

the attempt modified value to be added into local write set (lines 15-18).

txValidate is invoked before the transaction can commit. The thread attempts

to lock all shared data that it intends to modify and performs validation of all

the shared data it has read. The thread invokes prelock on all data read/written

(line 20) to determine whether it has the highest priority value. Then the thread

54

validates all the data in its read set by checking that their versions have not

changed (lines 21-22). If validation is successful the thread will try to lock all

data (line 23). If this is successful then the thread can now commit its transaction.

If any of these steps fail, the transaction must abort.

txCommit is invoked only when a transaction has already successfully vali-

dated. The thread writes to all global shared data in its local write set (line

26) and executes a ‘thread fence’ (line 27). CUDA provides a thread fence func-

tion to ensure memory values modified before the fence can be seen by all other

threads. Without a thread fence, the weak memory model of the GPU might

cause a reordering of a thread’s instructions, which could lead to inconsistent

shared data. The thread fence ensures that modifications to shared data are vis-

ible to all threads before any locks are released. The thread then updates the

version bit in the global lock table for each lock in its lock set. The version bit is

either incremented (line 30) or reset (line 31) if the version value has reached the

maximum value to avoid version overflow.

3.2.4 Contention Management Policy

In PR-STM, the most basic element is lock, and 32-bit memory words are used

to represent locks. Each lock can cover from one single memory address (most

efficient way but cost most memory space for locks) up to all memory addresses

(similar to block solutions). We use locks for both protecting shared data and

implementing our priority rule policy. The various bits of each lock represent the

following:

• The first 11 bits of a lock represent the current version of that lock. The

version is incremented whenever an update transaction is successfully com-

mitted to any data covered by this single lock.

• Bits 12-30 represent the priority of whichever thread has currently pre-

locked this lock (if such a thread exists). A lower value represents a higher

priority.

55

Algorithm 2: PR-STM functions
function tryPreLock()

32 for all< idx, version >∈ lockSet do
33 repeat
34 tmpLockV al← g lock[idx];
35 if getVersion(tmpLockVal) 6= version
36 or getLockBit(tmpLockVal) = 1
37 or(getPreLockBit(tmpLockVal) = 1 and getOwner(tmpLockVal) < threadIdx) then
38 releaseLocks();
39 return false;

40 preLockV al← calcPreLockedVal(version, threadIdx);

until atomicCAS(g lock+idx,tmpLockVal,preLockVal) = tmpLockV al;

41 return true;

function tryLock()

42 for all< idx, version >∈ lockSet do
43 PreLockV al← calcPreLockedVal(version, threadIdx);
44 FinalLockV al← calcLockedVal(version);
45 if atomicCAS(g lock+idx,PreLockVal,FinalLockVal) 6= PreLockV al then
46 releaseLocks();
47 return false;

48 return true;

function releaseLocks()

for all idx ∈ PreLocked do
49 preLockV al← calcPreLockedVal(version, threadIdx);
50 atomicCAS(g lock+idx,preLockVal,preLockVal-1);

for all idx ∈ Locked do
51 unLockV al← calcUnlockVal(version);
52 g lock[idx]← unLockV al;

• The 31st bit indicates whether this lock is pre-locked. Pre-locked locks

may be stolen from threads with lower priorities and acquired by threads

of higher priorities.

• The last bit represents whether the lock is currently locked. Once this bit

is set, no other threads can acquire this lock.

Algorithm 2 (lines 32-52) shows three required handlers which are used to

manage the locks:

tryPreLock is called whenever a thread attempts to pre-lock shared data. For

each lock in its local lock set, the thread checks whether the lock versions are

inconsistent (line 35) and whether the lock is locked by other threads (line 36).

Finally, if a thread can pass the previous inspections the thread will check whether

the lock has been pre-locked by another thread with a higher priority (line 37). If

56

any of these conditions are true, then the thread releases all locks it has previously

pre-locked and aborts (line 39) otherwise the thread attempts to pre-lock the lock

using an atomic Compare and Swap (CAS). If the CAS fails then another thread

must have accessed the lock. The thread must then repeat lines 35-37 until it

aborts or the CAS succeeds and it has the highest priority so far of all the threads

attempting to pre lock this lock.

tryLock is called when a thread successfully pre-locks every lock in its local

lock set. The thread attempts to lock each pre-locked lock (line 45). If any CAS

fails then the lock has been stolen by a higher priority thread and the original

thread must then release all locks whether it pre-locked or locked and abort this

transaction (lines 46-47).

releaseLocks is called when a thread commits or aborts. All pre-locked/locked

locks are released. Pre-locked locks must be released by CAS (line 50) in case

the lock has been stolen by another thread. However, locked locks can be simply

released by change value as it is isolated form other threads after locked.

3.3 Summary

In this chapter we have presented PR-STM, a new scalable STM technique for the

GPU which uses static thread ranking/priority to efficiently resolve contention

for shared locks. We will demonstrate the performance of our approach against

both GPU (GPU-STM) and CPU (TinySTM) software transactional memory

libraries which, to our knowledge, is the first time such testing has been done in

Chapter 5. Results for transactional throughput and scalability demonstrate that

our approach performs better than both GPU-STM and TinySTM in almost all

cases (could be view in 5.2).

The results in 5.2 suggest that the GPU is particularly effective at processing

large numbers of short transactions, while the presence of read-only transactions

provides only a small improvement to GPU performance. Further testing will al-

low us to formulate transaction allocation strategies, assigning work to either the

CPU or the GPU based on the effectiveness of each processing element to execute

57

that work. We believe there exists much scope for expanding our approach. After

this first step, we would like to enhance our Contention Management Policy to

accommodate dynamic priorities(this was done then but proved no improvement

in most cases) and application semantics (this has been shown to provide sub-

stantial performance improvements). The new upgrade version of PR-STM will

be presented in the next chapter, which will have the capability to deal with

semantic conflict as well as concurrent conflict. Besides, the way of generating

transactions will be transferred from GPU to CPU, which will be copied to GPU

as a global transaction table.

58

Chapter 4

Resolving Semantic Conflict in a

Parallelised Contention

Management Policy on the GPU

The increased parallel nature of the GPU affords an opportunity for the ex-

ploration of multiple solutions to contentious transaction ordering. A contention

management policy (CMP) is presented for the GPU which resolves transactional

contention by simultaneously assessing multiple ordering solutions and selecting

the optimal transaction schedule. The CMP is extended to account for semantic

transactions (i.e. those whose ordering is dependent on the application itself),

as well as concurrent conflict. This approach removes the requirement for the

application programmer to correctly order transactions which are dependent on

conditions specific to the application. The results show that, while there is an

increased overhead in dealing with the possibility of semantic conflict, our algo-

rithm can be applied to all situations, whether there is semantic conflict present

or not.

4.1 Introduction

A contention Management Policy (CMP) for parallel exploration of solutions to

transactional conflict using the GPU is described. The approach utilises a priority

59

rule based technique to explore multiple schedules of transaction permutations

on the much more highly threaded GPU, in the context of resolving conflict in

software transactional memory (the technique is labelled PR-STM).

We then extend our CMP for resolving concurrent conflict on GPU to also

address semantic conflict. A semantic conflict occurs when there are application-

specific factors affecting the order in which transactions must be completed (for

example, funds must be placed into a bank account before they can be with-

drawn). A CMP which only addresses concurrent conflict will often stall when

confronted with a semantic conflict. We introduce a semantic conflict manage-

ment policy whereby a thread that is executing a transaction must check whether

a semantic conflict occurs. If so, the transaction is delayed and the thread searches

for the next uncommitted transaction. In order to achieve this on the parallel

architecture of the GPU we also introduce a global transaction table which tracks

the commit status of multiple transactions in parallel.

The effectiveness of PR-STM new version (hereafter PR-STM2) on GPU is

demonstrated by injecting semantic conflict into three well-known benchmarks

for contention management policies. We utilise the Bank benchmark (which

is provided within TinySTM), the Vacation benchmark (commonly associated

with Stanford Transactional Applications for Multi-Processing (STAMP) and the

Skiplist benchmark. The performance figures presented show that our approach

handles semantic conflict well as it is introduced into the benchmarks running

on the GPU. The comparator CMP (GPU-STM) fails to progress when semantic

conflict is introduced.

This is the first time that semantic conflict has been considered in a CMP

that operates on the GPU. While there is an additional overhead in handling

semantic conflict, our generalised approach to contention allows the CMP to be

used for arbitrary permutations of transaction, without requiring any sorting by

the user application.

60

4.2 Design and Implementation

4.2.1 Overview

Unlike theads on the CPU, groups of GPU threads execute in ‘lock-step’ fashion,

sharing a single instruction counter. In GPU terminology, this group of threads is

called a ‘warp’ and may comprise of 1 to 32 threads. In Chapter 3 we introduced

a priority-rule based approach (PR-STM) for resolving concurrency conflicts on

the GPU within software transactions. PR-STM avoids livelock, which is caused

by a warp of GPU threads continuously generating the same concurrency conflicts

due to lock-step memory access.

When semantic conflicts are introduced to the application, however, they both

(a) increase the possibility that transactions must abort and (b) reintroduce the

possibility of livelock. For example, a transaction may now abort either due to a

concurrency conflict or the semantics of the application preventing the transaction

from completing (i.e. attempting to remove from a shared buffer which is empty).

Futhermore, if the shared buffer remains empty, then the transaction may never

commit and is in a state of livelock.

It is the objective of PR-STM2 to reduce the rate of aborts caused by seman-

tic conflict and reduce the possibility of livelock. Eliminating livelock completely,

however, requires that some transaction always exists that will resolve the seman-

tic conflict. For example, a transaction which appends items to an empty buffer

or deposits funds in a bank account from which another transaction is attempting

to dequeue/withdraw. Meeting this requirement is outside the scope of PR-STM.

Figure 4.1(A) shows transaction execution without a semantic CMP. Thread x

attempts to withdraw funds from a bank account that is empty and aborts/retries

until the account has been deposited with funds by thread y. The number of

extra retries depends on the time taken for another transaction to deposit funds

into the account which can be arbitrarily large causing much wasted execution.

Furthermore, as thread numbers grow so does the potential for a greater amount

of wasted activity.

In Figure 4.1(B) PR-STM2 CMP is introduced and all transactions are now

stored in a global transaction table. As the scenario begins both threads en-

61

counter semantic conflicts. Unlike Figure 4.1(A), semantic conflicts now cause

each thread to abandon their transactions rather than retrying. Instead, the

threads acquire new transactions from the global transaction table. At some

future time the abandoned transactions are re-executed, possibly resolving the

original semantic conflicts if conditions have changed sufficiently (if withdrawals

can now be made because deposits have now taken place, for example).

Figure 4.1: Unnecessary Retries are avoided by acquiring new transactions when
a semantic conflict occurs.

PR-STM2 implements a commit time locking approach where threads only

attempt to acquire locks at the end of their transactions, and detect semantic

conflicts before modifications are made to the local write set. The user only

need to label what is a semantic conflict in their scenario (e.g a withdrawn from

an account with no insufficient funds) and whenever this condition meets, PR-

STM2 will handle it in another manner than concurrent conflict. This approach

results in a reduction of needless concurrent conflicts when a thread encounters a

semantic conflict because all concurrent conflicts caused by this transaction can

be averted.

62

4.2.2 Metadata

Two types of metadata are used in PR-STM2 which are same as PR-STM: global

metadata which is shared among all threads and local metadata which is private

to each thread. Most metadata are the same as those used for PR-STM but we

introduce an additional metadata in the form of global transaction table.

• Global transaction table: contains all transactions that need to be com-

mitted. Each element consists of three parts: instruction (i.e. transfer,

deposit, read-all etc), data (i.e. which accounts to access), and a finish flag

indicating whether the transaction has been committed.

The introduction of the global transaction table allows us to generate trans-

actions on the CPU, and pass them to the GPU for processing. This ensures that

our STM system can be employed in a generalised fashion.

Figure 4.2: PR-STM2 maintains a global transaction table to provide GPU
threads with transactions to execute.

63

4.2.3 Semantic Contention Management Policy

In PR-STM2, we use a postpone strategy to deal with semantic conflict and a

global transaction table to store transactions (see Figure 4.2). When semantic

conflict occurs, the thread aborts the transaction and reads the next uncommitted

transaction from the global transaction table. As the search wraps back to the

start of the allocated transaction block, threads will retry previously aborted

transactions. Pseudocode for the management of semantic conflict in this manner

is shown in Algorithm 3. It consists of two functions:

Algorithm 3: PR-STM2 functions
function mainKernel()

53 startIns← threadIdx ∗ transEachThread;
54 finishIns← (threadIdx+ 1) ∗ transEachThread;
55 while startIns < finishIns do
56 anyNotF inish← false;
57 for i← startIns to finishIns do
58 if g insTable[i].finish = false then
59 if doTransaction() = succeed then
60 ginsTable[i].finish← true;

61 if doTransaction() = concurrentConflict then
62 doTransaction();

63 if doTransaction() = semanticConflict then
64 anyNotF inish = true;

65 if anyNotF inish = false then
66 startIns← i+ 1;

function doTransaction()

67 if txRead() = false then
68 return concurrentConflict;

69 if semanticConflictDetect() = true then
70 return semanticConflict;

71 if txWrite() = false then
72 return concurrentConflict;

73 if txValidate() = true then
74 txCommit();
75 return succeed;

else
76 return concunrrentConflict;

mainKernel is invoked when the GPU launches a thread to carry out a block

of transactions. Firstly a thread gets a transaction block allocated (lines 53 and

54), then it tries to execute all transactions of that block sequentially. When

a thread reads a transaction from the allocated block of the global transactions

64

table, it checks whether this transaction has already been committed. If this

transaction has not been committed, it will call the doTransaction function to

execute it (lines 59, 61, 63). If a transaction is successfully committed, this thread

will set the finish flag to true in the global transaction table (line 60).

When a thread encounters a concurrent conflict and cannot complete because

of lower priority, the thread will try to execute the transaction again (line 62). If

a semantic conflict is encountered, however, the thread will skip the transaction

and begin the next available transaction and setting a variable to indicate that a

previous transaction has been skipped (line 64). The thread is finished when all

transactions in the allocated transaction block have been committed.

doTransaction is called after a thread reads a transaction from the global

transaction table. There can be different types of transaction (e.g deposit, trans-

fer or withdraw) defined by the transaction type read from the global transaction

table. If the executing transaction is not read-only, a thread has to check (line

69) whether it encounters a semantic conflict (e.g a withdraw transaction oc-

curring before a required deposit transaction). If so, a semanticConflict flag is

returned. Threads also check for concurrent conflict using the described PR-STM

policy (lines 67, 71, 73). If a concurrrent conflict is encountered the thread will

abort with a concurrentConflict flag (lines 68, 72, 76), otherwise, it will commit

updates with a succeed flag (lines 74, 75).

4.2.4 PR-STM2 Handlers

A number of handlers are invoked during significant events in a transaction’s ex-

ecution. Specifically: txStart, txRead, txWrite, txValidate and txCommit. The

handlers were developed for PR-STM, and the pseudocode was presented in pre-

vious chapter. In order to understand the functions of PR-STM2 easily, we will

describe in what situation they will be invoked and the functionalities, but not

the details about how they work.

• txStart is executed before a thread begins or restarts a transaction. The

function initializes all the thread’s local metadata.

• txRead is called whenever a thread attempts to read shared data from global

memory. This handler checks if any global data is is being modified by

65

another thread so that it can abort and re-execute a transaction earlier if

necessary.

• txWrite records each write a thread wishes to make in its local write set.

Semantic conflict detection happens before this handler is invoked.

• txValidate is invoked before the transaction can commit. The thread at-

tempts to lock all shared data that it intends to modify and performs vali-

dation of all the shared data it has read. A 32-bit word is used to represent

locks in PR-STM, and we use the same priority rule as PR-STM to deter-

mine which thread can execute when concurrent conflict occurs.

• txCommit is invoked only when a transaction has already successfully val-

idated and therefore can be guaranteed to safely update all modifications

to global shared data.

4.3 Summary

A contention management policy (labelled PR-STM2) has been introduced which

utilises the increased parallelism of the GPU to explore transactional ordering

solutions to contention. The technique entails a priority rule based approach

to contention resolution. The approach is the first for GPU to incorporate a

technique for the resolution of semantic conflict without relying on the application

programmer to pre-order transactions appropriately. This approach allows the

technique to be applicable in any situation. Conventional CMPs will quickly

reach a state where transactions can not be completed when confronted with

semantic conflict, so such situations must be planned for and avoided by the

application programme, requiring an additional overhead in both processing time

and application coder understanding of the processes. Our approach automates

the resolution of semantic conflicts, in coordination with transactional conflict.

The performance of PR-STM2 for GPU was compared against the existing

solution for GPU known as GPU-STM will be presented in the next chapter.

In the future we expect that exploring our session locking mechanism within a

distributed STM application will raise some interesting possibilities. The greater

66

scalability which session locking provides for distributed STMs is especially promis-

ing. Also of interest, will be combining the GPU and CPU within a heteroge-

neous transaction manager. The GPU is effective when processing large numbers

of short transactions, while read-only transactions result in minimal performance

improvements on GPU. Consequently it should be possible to formulate a transac-

tion allocation strategy, which assigns thread exploration of transaction schedules

to CPU or GPU as most appropriate.

67

Chapter 5

Evaluation

5.1 Overview

To evaluate our two systems, we compare the performance of our systems sep-

arately with different systems. For the very first version, which only deal with

concurrent conflicts, we compared the performance with one popular CPU STM

(TinySTM) and one up to date GPU STM (GPU-STM) as well. With this com-

parison, we could have a first impression about the performance improvement

of moving parallel scenario from CPU to the GPU, as well the advance of our

system to other existing systems. After that, we compared our upgraded system

which can also handle semantic conflict with GPU-STM. By means of these more

comparison scenarios, we could view the improvement of new version, especially

when semantic conflict is taken into account. Besides, as two more scenarios

are applied to evaluate, the performance of our system could be tested when the

conflict rate is relative higher (vacation) and the data structure is more complex

(skip-list).

5.2 Evaluation of the first version

In this section we present results from a series of benchmarks to demonstrate

the performance of our first version system. We compare the performance of

PR-STM against a recently developed STM system for the GPU called GPU-

68

STM and a widely used STM system for the CPU called TinySTM. The tests

were carried out on a desktop PC with Nvidia Fermi GPU (GeForce GTX 590)

which has 16 SMs, operates at a clock frequency of 1225 MHz and has access

to 1.5 GB of GDDR5 memory. All shared data and the global lock table are

allocated in global memory, while all local meta-data is stored in thread local

memory. The global lock table data accessed the L2 cache, while local memory

accessed both the L1 and L2 caches. The CPU tests were carried out on 2 x dual-

core 3.07GHz Intel(R) processors with 16GB of RAM. We used the Windows 7

Operating System. TinySTM used the Time Stamp Contention Management

Policy with the Eager Write Back configuration (with invisible reads).

The experiments use a benchmark called bank which accompanies TinySTM.

A configurable array of bank accounts represents the shared data from which

transactions withdraw and deposit funds. We allocated 10MB of memory to

create roughly 2.5 million accounts. We required many accounts to accommodate

the presence of many more threads in the GPU. We found that this number of

accounts allowed us to observe the effects of both low and high contention as

we varied scenario parameters. We also added several adaptations to the base

scenario, most notably the ability to vary the amount of shared data accessed

within a transaction (i.e. the number of bank accounts). This allowed us to vary

the likelihood of contention caused by longer transactions. We also implemented

changes to the hashing function used in all three STM systems so that we could

control the amount of shared data covered by a single lock to experiment with

the degree of false-sharing. Finally, we included results where the number of

threads are increased to observe the contention caused by high numbers of threads

featured in GPU applications and the scalability of all three systems.

In the following graphs we present results where: (i) all threads perform

update transactions (i.e. read and write operations) and (ii) 20% of the threads

in the scenario execute read-only transactions. This was included to observe the

impact of invisible reads on the scenario. Each test lasted for 5 seconds and was

executed 10 times with the average results presented.

69

Figure 5.1: Average Throughput with Increasing Transaction Size

5.2.1 Transaction Throughput

Figure 5.1 shows the degree of transaction throughput when the number of ac-

counts accessed per transaction is increased. The number of threads used was

kept constant at 512 threads for the GPU and 8 threads for the CPU. These

values were used as they provided the best performance in each system. In

Graphs 5.1(A) and Graphs 5.1(B), Y-axes show the number of transactions com-

mitted per second and X-axes show the number of bank accounts accessed in

each transaction. The higher this number is, the more difficult one transaction

succeed to commits. As the GPU has many more threads than the CPU both

PR-STM and GPU-STM outperform TinySTM when the number of accessed

accounts is low (below 16). As expected, when the transaction size increases the

throughput of all three STMs drops because inter-transaction conflicts are now

more likely. The sharpest drop in performance is witnessed in GPU-STM as the

higher thread numbers exacerbate the degree of conflicts. In the results with 20%

70

Figure 5.2: Average Throughput with Increasing Lock Coverage and Increased
Threads

read only transactions (Graphs 5.1(B) and (D)) throughput is marginally better.

This is because fewer locks are acquired and so fewer conflicts occur.

Graphs 5.1(C) and 5.1(D) show normalised throughput instead of the absolute

values shown in Graphs 5.1(A) and 5.1(B). This helps to differentiate the perfor-

mance when the transaction size increases beyond 16 accounts, where the values

are too close to read in absolute terms. Y-axes show the relative throughput of

PR-STM and TinySTM if we treat GPU-STM as 100%. With more accounts

accessed we can see both PR-STM and TinySTM outperform GPU-STM. One

possible reason for this is that our algorithm does not have to sort the local lock

array at every read or write step (like GPU-STM) while the higher number of

threads enjoyed by PR-STM remains a benefit to performance rather than a hin-

drance. However, for GPU-STM, when more accounts need to be access in one

transaction, more sort step needs to be done during threads execution, therefore

more unnecessary operations need to be abort if conflicts occur.

71

5.2.2 STM Scalability

Graphs 5.2(A) and 5.2(B) show the degree of transaction throughput when the

hash function is modified. The hash function determines the number of accounts

covered by a single lock; the lower the hash value the less chance that threads

will try to access the same lock when reading or writing to different shared data.

Both the number of threads used and the transaction size were kept constant

at 512(GPU)/8(CPU) and 128 respectively. Once again the Y axes show the

throughput in transactions per second and the X-axes show the hash function

value as the number of accounts covered by a single lock.

Graphs 5.2(A) and 5.2(B) provide a comparison between PR-STM, GPU-

STM and TinySTM with different hash values. As the hash value increases the

performance of TinySTM deteriorates due to the increased likelihood of false

conflicts. Both PR-STM and GPU-STM, however, show increased throughput.

This is because PR-STM and GPU-STM can both take advantage of reduced

lock-querying (due to their lock-sets) and memory coalescing to reduce bus traffic

when querying the status of locks held. In Graph 5.2(B), with 20% read only

threads, performance is only slightly improved in all three techniques, but mostly

in TinySTM which gains the most benefit from invisible reads.

In Graphs 5.2(C) and 5.2(D), we increase the number of threads. In these

two graphs we only compare the performance of PR-STM and GPU-STM be-

cause TinySTM is limited by the relatively small number of threads afforded by

the CPU. Transaction throughput rises until 258 threads are used where inter-

thread conflicts begin to occur at a substantial rate. Below 258 threads, the

possibility of conflict is negligible because the high number of accounts used re-

duces the probability that threads will access the same account. As the number

of threads increases, however, so too increases the rate of conflict and therefore

the throughput decreases markedly. As thread numbers increase, however, PR-

STM begins to improve once again, whereas GPU-STM levels out. The benefit

of the work produced by extra threads is cancelled out by the overhead caused

by inter-transactional contention. In Graph 5.2(D) we can see that performance

improves marginally with the introduction of 20% read only threads. All other

factors being equal, improvements in terms of read only transactions have little

72

effect on the GPU.

5.3 Evaluation of the latest version

To evaluate our latest system, we compare the performance of PR-STM new

version with that achieved by GPU-STM. Evaluation is made in the context

of transaction throughput and scalability (i.e. the response to increasing the

number of threads and hash number) again. We also evaluate performance for

generalised application usage (i.e. with semantic transactions present). In each

case we compare results for instruction sets which have and have not been pre-

ordered to avoid semantic conflict. We then present results which evaluate the

performance of each CMP as the ratio of semantic transactions is increased from

zero to 100%.

Three scenarios are used to benchmark our technique against GPU-STM to

demonstrate that PR-STM is a generalised solution. The benchmarks Bank (a

simple benchmark provided as part of tinySTM), Vacation (from Stanford Trans-

actional Applications for Multi-Processing (STAMP)) and SkipList (a frequently

used benchmark for parallel computing) are used. Bank is a relatively straight-

forward scenario showing performance in a simple application. Vacation involves

a much higher conflict rate due to the fixed number of room types being accessed

by a high number of threads. SkipList is a commonly used benchmark for parallel

computing systems which tests performance with a more complex data structure.

With these tree benchmarks the performance of the system could be inspected

with both low contention rate and high contention rate, which can indicate the

excellence in any condition, and even with more complex data structure such as

skip list, it can also express a decent result.

For each benchmark scenario, results are presented as three parameters are

varied:

• The number of threads. While the overall computing power is raised with

an increase in the number of threads utilised, the chances of conflict is also

increased, as threads are more likely to compete for the shared resource.

The default number of threads used in the experiments is 1280.

73

• The lock coverage. Each lock covers a greater amount of shared resource;

the potential for conflict increases but there is a reduction in the memory

requirement. The default hash value used in the experiments is 1.

• The ratio of semantic transactions. The performance of each system is

assessed as the amount of semantic conflict introduced by the application

increases. The default semantic transaction ratio used in the experiments

is 100% (representing generalised usage).

For each of these experiments, four graphs are presented comparing the through-

put of PR-STM and GPU-STM. The graphs show results from experiments where

the transactions are either all read/write or 20% read-only, and for each of these

cases results are shown with and without a stage when the transactions are pre-

sorted to avoid semantic conflict (replicating the task of the application program-

mer).

All experiments were carried out on a desktop PC with a CPU (i7-4770)

running at 3.4 GHz. The GPU was a NVidia GeForce GTX 780 Ti with a clock

speed of 1045 MHz, 3 Gb of GDDR5 memory and 15 streaming multiprocessors.

The operating system was Win8. The two CMPs (PR-STM and GPU-STM) were

implemented with the CUDA 7.5 runtime library.

The shared data, including global lock table, are allocated in off-chip global

memory. In the PR-STM implementation, local metadata is stored in thread-

local memory, whereas for GPU-STM, metadata is stored in global memory but

the pointers to the data are in local memory. For both implementations, the local

metadata is cached at the L1 and L2 levels, and the global data is cached only

at the L2 level as the L1 cache is not coherent.

5.4 Implementation of Bank Benchmark

The bank scenario was the first to be used to benchmark the performance of the

two systems. Bank consists of an array of bank account structures, and allows

the execution of a number of transaction types on these simulated bank accounts

(deposit, withdraw, etc).

74

As many threads are available on GPU a sizeable number of accounts were

created in shared data for the bank scenario. A memory block of 10MB was set

aside for the creation of roughly 2.5million accounts. This allows the observation

of the effects of both low and high contention as the scenario parameters are

varied. The bank scenario was adapted to our needs in a number of ways:

• The hashing function used by both CMPs was modified so that the amount

of shared data covered by a single lock can be varied. This allows investi-

gation into the amount of false sharing.

• Results are included where the number of threads is increased, to observe

the contention caused by the high numbers of threads available on GPU.

Results are shown for the case when all threads perform update transactions

(i.e. read and write operations), and also the case when 20% of threads execute

read-only transactions. This approach allows the impact of invisible reads in the

scenarios to be analysed. Each test lasted for 5 seconds, and was executed 10

times with the average results presented.

5.4.1 Performance with Bank Benchmark

The graphs in Figure 5.3, 5.4 and 5.5 show the transaction throughput achieved

when the number of threads available for resolution is increased. In each case

the performance of our PR-STM is compared to that of GPU-STM on the GPU.

Graphs in Figure 5.3 and 5.4 show the results for generalised application (i.e.

100% semantic transactions with no pre-ordering). The transaction tables are

completely random generated so that semantic conflicts may occur randomly.

As GPU-STM is not designed to handle semantic conflict it performs poorly in

these circumstances (the y axes are presented as logarithmic in Graph B to better

distinguish the performance of GPU-STM as the thread count increases). Graphs

in Figure 5.5 shows results where the application’s instructions have been pre-

ordered to avoid semantic conflict, so that the transactions are more suited to

GPU-STM, allowing us to assess both CMPs in a less generalised context.

The number of threads available was varied between 256 and 2506. The

throughputs achieved by PR-STM and GPU-STM for the cases when all threads

75

Figure 5.3: Generalized bank scenario average throughput with increasing num-
ber of threads and all read/write transactions. Graph A shows the value of
transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

76

Figure 5.4: Generalized bank scenario average throughput with increasing number
of threads and 20% read-only transactions. Graph A shows the value transactions
fulfilled in 1 second to observe the difference between throughputs, whereas graph
B shows the Log of throughput to view the variation trend when thread numbers
changes clearly.

77

Figure 5.5: Pre-sorted bank scenario average throughput with increasing number
of threads. The transaction tables are sorted by programmer with a certain order
to avoid semantic conflict. Graphs A has all read/write transactions, graphs B
has 20% read-only transactions.

78

perform read and write transactions, and when 20% of threads perform read-only

transactions respectively are presented. In all cases PR-STM outperforms GPU-

STM. The introduction of 20% read-only threads causes only a minimal change

in throughput in both cases, so it appears that read-only transactions have little

effect on GPU performance.

Increasing the number of threads means there is an increase in the available

computing resource. and our results show an increase in throughput which is a

little less than linear. This is because as more threads work in parallel, the conflict

rate also increases (as the total shared resource is steady). The scalability of PR-

STM is demonstrated by the increase in throughput, compared to GPU-STM

across all thread numbers. An important aspect of a GPU based solution is it

can launch a much greater number of threads than a CPU solution, so scalability

is of interest.

Tests were also carried out with a modified hash function, which determines

the number of accounts that can be covered by a single lock. The lower a hash

value, the less chance of a thread trying to access the same lock when reading

or writing to different shared data. The number of threads remained at 1280.

The results are shown in Figure 5.6, 5.7 and 5.8 for the cases when all threads

perform read and write transactions, and when 20% of threads perform read-

only transactions respectively. The y-axes show the number of transactions per

second, and the x-axes show the hash function value, which is the number of

accounts covered by a single lock.

A decrease in throughput is seen in both GPU-STM and PR-STM as the

number of accounts per lock is increased. The performance of both of the CMPs

for GPU decreases because of increased false conflict, but reduced lock querying

counters this somewhat (as both CMPs use lock-sets), as does reduced bus traffic

when querying the status of those locks (due to coalescence of memory). When

20% of the threads are read-only, throughput is only slightly improved for both

CMPs.

79

Figure 5.6: Generalized bank scenario average throughput with increasing lock
coverage and all read/write transactions. Graph A shows the value of transactions
fulfilled in 1 second to observe the difference between throughputs, whereas graph
B shows the Log of throughput to view the variation trend when thread numbers
changes clearly.

80

Figure 5.7: Generalized bank scenario average throughput with increasing lock
coverage and 20% read-only transactions. Graph A shows the value transactions
fulfilled in 1 second to observe the difference between throughputs, whereas graph
B shows the Log of throughput to view the variation trend when thread numbers
changes clearly.

81

Figure 5.8: Pre-sorted bank scenario average throughput with increasing lock
coverage. The transaction tables are sorted by programmer with a certain order
to avoid semantic conflict. Graphs A has all read/write transactions, graphs B
has 20% read-only transactions.

82

5.4.2 Throughput of Semantic Transactions

We now consider performance under varying levels of semantic conflict to assess

the performance of our algorithm in comparison to that of GPU-STM in situations

where transactional conflict is caused by the semantics of the application. Figure

5.9, 5.10 and 5.11 shows the rate of transaction throughput as the semantic

transaction ratio is increased from 0% to 100% for two situations. In the first the

application has not pre-ordered transactions to avoid semantic conflict,whereas

in the second that ordering has occurred. The number of threads used was kept

constant at 1280 and the hash number was 1 (i.e. every account gets a lock

to avoid false conflict). In each graph, Y-axes show the number of transactions

committed per second and X-axes show the percentage of semantic transactions

in the transaction table.

Figures in 5.11 show results after the transaction table has been sorted to

avoid semantic conflict. This allows us to compare performance of GPU-STM and

PR-STM in a situation which both are expected to handle - the onus on sorting

the transactions is left to the application programmer. For example, a semantic

conflict could be resolved by ordering a withdrawal transaction shortly before

a deposit transaction, thus allowing the withdrawal to succeed with minimum

retries. PR-STM produced higher throughput than GPU-STM even when the

transactions were sorted. As the semantic conflict rate was increased GPU-STM

decreased in throughput very slightly while PR-STM began to improve. This is

because PR-STM can benefit from temporarily abandoning transactions with

semantic conflicts and searching for new transactions, causing fewer conflicts

overall.

The graphs in Figures 5.9 and 5.10 show the results with no sorting of the

transaction table (i.e. for a generalised situation). In this case, GPU-STM can-

not deal with semantic transactions - the simulation aborts after 10,000 failed

attempts. Introduction of semantic conflicts representing as little as 5% of the

overall transactions shows a very rapid decline in performance. Note that the

y-axes in graphs B are logarithmic to better illustrate the relative performance of

GPU-STM as the ratio of semantic conflict increases. PR-STM, however, copes

well with the increased ratio of semantic conflict, with little degradation after the

83

Figure 5.9: Generalized bank scenario average throughput with increasing ratio of
semantic transactions and all read/write transactions. Graph A shows the value
of transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

84

Figure 5.10: Generalized bank scenario average throughput with increasing ratio
of semantic transactions and 20% read-only transactions. Graph A shows the
value transactions fulfilled in 1 second to observe the difference between through-
puts, whereas graph B shows the Log of throughput to view the variation trend
when thread numbers changes clearly.

85

Figure 5.11: Pre-sorted bank scenario average throughput with increasing ratio of
semantic transactions. The transaction tables are sorted by programmer with a
certain order to avoid semantic conflict. Graphs A has all read/write transactions,
graphs B has 20% read-only transactions.

86

initial drop-off.

While there is an increased cost in PR-STM’s ability to handle semantic con-

flict, the fact that it can handle any form of conflict makes it an appealing solu-

tion. The onus on the application programmer to correctly order transactions to

provide no semantic conflict is removed, and a generalised solution is provided.

5.5 Implementation of Vacation Benchmark

The Vacation scenario implements a hotel room coordination system which han-

dles the booking and cancelling of certain types of hotel room concurrently. It is

commonly used as part of the STAMP benchmarking suite. The vacation scenario

involves transactions which tend to execute more statements of greater complex-

ity than those in the bank scenario. And one important fact of vacation scenario

is the contention rate is much higher than bank scenario as there is only a small

number of hotels, but all transaction need to deal with at least one from them.

This high contention rate leads the overall performance of vacation scenario is

worse than the bank scenario, but compare with other systems, our system is still

second to none.

As the vacation benchmark is designed for CPU implementation, some adjust-

ments were made to ensure compatibility with GPU operation. The controllable

variables available in the Vacation scenario for evaluation include the hash num-

ber, and the number of transactions per thread (TPT). This provides the base

environment for the performance testing. Both GPU-STM and PR-STM use a

hash number approach to explicitly control how many memory addresses share

one lock. With a higher hash number, a greater contention rate can be expected.

The TPT is used to examine the vitality of a thread. The more transactions a

thread executes, the longer it is active, which allows us to evaluate the ability a

thread has to proceed through different concurrent situations.

In the Vacation scenario, semantic conflict occurs when a customer account

attempts to book a type of room that is sold out. For sequential computing, it is

easy to deal with this eventuality - the unsatisfied customer is added to a waiting

list, and when a suitable room becomes available the first customer on the waiting

list is allocated that room. However, in the context of parallel computing, there

87

Figure 5.12: Generalized vacation scenario average throughput with increasing
number of threads and all read/write transactions. Graph A shows the value of
transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

88

Figure 5.13: Generalized vacation scenario average throughput with increasing
number of threads and 20% read-only transactions. Graph A shows the value
transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

89

Figure 5.14: Pre-sorted vacation scenario average throughput with increasing
number of threads. The transaction tables are sorted by programmer with a
certain order to avoid semantic conflict. Graphs A has all read/write transactions,
graphs B has 20% read-only transactions.

90

is no trivial solution to this issue because the instructions are executed in an

arbitrary order and the threads are isolated from each other. One way to handle

this issue is to have the threads that want to book an unavailable room listen to

the account of the type of room. Once the type of room is available again, all the

threads compete for it through atomic operation, with one being selected to be

successful.

PR-STM provides a solution to semantic conflict. As the program runs

through the instruction table, if a semantic conflict occurs, the instruction is

added to an array of instructions which have incurred semantic conflict. After

the kernel finishes the whole instruction table, it will continue to execute in-

structions from the recorded array until all the semantic conflicts are resolved or

abandoned.

GPU-STM provides no semantic conflict solution. To make benchmarking

more scalable for this evaluation, a simple semantic conflict solution has been

added to GPU-STM. If conflict occurs(no matter concurrent conflict or seman-

tic conflict), the instruction will not be aborted instantly. Instead it is given a

limited number of chances to retry. Although it should retry infinite times when

encounter concurrent conflict because concurrent conflict will eventually disap-

pear after other threads close their transactions, as GPU-STM can not classify

concurrent conflict and semantic conflict, a fixed retry time is necessary. The

number of chances should be adjusted according to the size of data. As we use

a fixed size of shared data, the retry limit for GPU-STM is set to 1000 for all

benchmarks.

5.5.1 Performance in Vacation Benchmark

The results from the evaluation of PR-STM and GPU-STM in the vacation bench-

mark are shown in Figures 5.12, 5.13, 5.14, and 5.15, 5.16, 5.17 and 5.18, 5.19,

5.20. Again each set of results consists of six graphs, showing scenarios with

and without pre-sorting of transactions to remove semantic conflict, scenarios

with 100% read/write transactions or 20% read-only transactions, and logarith-

mic values for generalized scenarios. In each case the throughput achieved by

GPU-STM and PR-STM is compared, as the number of threads, hash value and

91

Figure 5.15: Generalized vacation scenario average throughput with increasing
hash number and all read/write transactions. Graph A shows the value of transac-
tions fulfilled in 1 second to observe the difference between throughputs, whereas
graph B shows the Log of throughput to view the variation trend when thread
numbers changes clearly.

92

Figure 5.16: Generalized vacation scenario average throughput with increasing
hash number and 20% read-only transactions. Graph A shows the value transac-
tions fulfilled in 1 second to observe the difference between throughputs, whereas
graph B shows the Log of throughput to view the variation trend when thread
numbers changes clearly.

93

Figure 5.17: Pre-sorted vacation scenario average throughput with increasing
hash number. The transaction tables are sorted by programmer with a certain
order to avoid semantic conflict. Graphs A has all read/write transactions, graphs
B has 20% read-only transactions.

94

ratio of semantic transaction respectively is increased.

The vacation benchmark scenario utilised consists of 150,000 customers at-

tempting to book rooms of 1,000 different room types (with 150 rooms of each type

available). For a booking transaction, a random customer is allocated a random

room type to attempt to book. For a cancellation transaction, an already-booked

customer is selected at random to cancel a room of the selected room type. The

choice of hash number in each algorithm gives a certain number of consecutive

data addresses only one lock, so it is necessary to make the room type account

non-consecutive. Otherwise, the processing will simply occur sequentially. There-

fore, we set the interval between each room type account to 100.

As with the results from the bank benchmark, the throughput achieved by

PR-STM is greater than that achieved by GPU-STM in all cases of varying the

number of available threads (Figure 5.12, 5.13, and 5.14) and the hash value

(Figure 5.15, Figure 5.16 and Figure 5.17). The vacation benchmark involves

considerably more contention(because all transactions have to access the small

amount number of memory locations that present hotel) than observed in the

bank benchmark, as well as more complex transactions. Again the introduction

of 20% read-only transactions has minimal effect on throughput performance of

either of the GPU solutions.

Figures 5.18, 5.19 and 5.20 show the results of increasing the rate of seman-

tic transactions in the vacation benchmark for both PR-STM and GPU-STM.

Graphs A and B show the results for a generalised situation (i.e. the transactions

are not pre-sorted to avoid semantic conflict). Note that the y axes are loga-

rithmic to allow more insight into the performance of GPU-STM in the presence

of semantic conflict. As expected, GPU-STM struggles to deal with even low

levels of semantic conflict, while PR-STM maintains its throughput up to the

point where all transactions are of a semantic nature. Again the introduction

of read-only transactions has little effect on the throughput. Graphs C and D

show the results when the transactions have been pre-ordered to avoid semantic

conflict (mimicking an onus on the application programmer for CMPs which are

not generalised to handle semantic conflict). And the stability of performances

of both systems can prove that the transaction table is pre-ordered so that se-

mantic conflicts are removed prior to execution. Again PR-STM out-performs

95

Figure 5.18: Generalized vacation scenario average throughput with increasing
semantic transactions and all read/write transactions. Graph A shows the value
of transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

96

Figure 5.19: Generalized vacation scenario average throughput with increasing
semantic transactions and 20% read-only transactions. Graph A shows the value
transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

97

Figure 5.20: Pre-sorted vacation scenario average throughput with increasing
semantic transactions. The transaction tables are sorted by programmer with a
certain order to avoid semantic conflict. Graphs A has all read/write transactions,
graphs B has 20% read-only transactions.

98

GPU-STM even the transactions are sorted.

5.6 Implementation of SkipList Benchmark

A skip-list is, effectively, a hierarchical link-list. The skiplist benchmark is com-

monly used to assess contention resolution in transactional memory. In our im-

plementation of the benchmark we use an initial array of 5,000 entries, with

sufficient memory allocated to expand this to 10 million entries (so that there

are no allocation issues). The maximum number of hierarchical levels is set to

5. Three types of transactions are invoked by threads at random - a thread may

insert a new element into the skip-list, delete an element, or simply search an

element (i.e. a read-only transaction).

The use of skiplist as a benchmark allows us to further assess the scalability of

the CMP. The hierarchical nature of the skip-list means that, in order to complete

an insert or delete transaction, multiple nodes must be read from and written to.

A higher rate of lock contention can therefore be reached than with the other two

benchmarks considered.

5.6.1 Performance of SkipList Benchmark

The concept of semantic transactions doesn’t apply to the skiplist benchmark, as

the application can’t attempt to insert a duplicate entry or remove a non-existent

one. Evaluation was therefore limited to increasing the threads count and the

hash number, allowing an assessment of PR-STM compared to GPU-STM for an

application to which both are suited.

Figures 5.21, 5.22 and 5.23 shows the throughput achieved by both CMPs in

the skiplist benchmark as the number of threads is increased. The hash number

was again set to 1 for these experiments. As there is no semantic conflict, the

performance of GPU-STM is improved in comparison to that achieved in the bank

and vacation scenarios. However PR-STM still achieves higher throughput in all

cases. Again the introduction of 20% read-only transactions has a minimal effect

on throughput for both CMPs.

The results from evaluating performance as the hash number is increased

99

Figure 5.21: Generalized skiplist scenario average throughput with increasing
number of threads and all read/write transactions. Graph A shows the value of
transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

100

Figure 5.22: Generalized skiplist scenario average throughput with increasing
number of threads and 20% read-only transactions. Graph A shows the value
transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

101

Figure 5.23: Pre-sorted skiplist scenario average throughput with increasing num-
ber of threads. The transaction tables are sorted by programmer with a certain
order to avoid semantic conflict. Graphs A has all read/write transactions, graphs
B has 20% read-only transactions.

102

Figure 5.24: Generalized skiplist scenario average throughput with increasing
hash number and all read/write transactions. Graph A shows the value of transac-
tions fulfilled in 1 second to observe the difference between throughputs, whereas
graph B shows the Log of throughput to view the variation trend when thread
numbers changes clearly.

103

Figure 5.25: Generalized skiplist scenario average throughput with increasing
hash number and 20% read only transactions. Graph A shows the value of
transactions fulfilled in 1 second to observe the difference between throughputs,
whereas graph B shows the Log of throughput to view the variation trend when
thread numbers changes clearly.

104

Figure 5.26: Pre-sorted skiplist scenario average throughput with increasing hash
number. The transaction tables are sorted by programmer with a certain order
to avoid semantic conflict. Graphs A has all read/write transactions, graphs B
has 20% read-only transactions.

105

in the skiplist benchmark are shown in Figures 5.24, 5.25 and 5.26. In these

experiemnts the thread number was set at 1024. Once again PR-STM is outper-

forming GPU-STM in all cases. The introduction of 20% read-only transactions

also has a minimal improvement on throughput for both CMPs.

5.7 Summary

This chapter provides a set of experiments including both simple concurrent sce-

nario and semantic awareness scenario. These experiments were performed for

the sake of benchmark PR-STM which is proposed in this thesis compared to

‘a state of art’ software transactional memory GPU-STM. The results presented

show that PR-STM outperforms GPU-STM in all cases. Of particular interest

is the ability of PR-STM to address semantic conflict, which will result in failed

progress of transactions with GPU-STM unless the application programmer has

pre-ordered the transactions. To summarise, the results gathered from experi-

ments in this chapter suggests:

1. Significant improvements in throughput when only consider conventional

concurrent conflicts (race conditions).

2. When semantic conflict is introduced, the performance is admirable com-

pared to existing GPU CMP. Furthermore, the correctness of PR-STM’s

result is guaranteed while the result by existing GPU CMPs may not be as

expected.

3. This approach is generalised and fit different data structures. And program-

mers can relieve from sorting transaction order to avoid livelock caused by

semantic conflict only with an acceptable overhead.

106

Chapter 6

Conclusion

In this chapter we summarise the material that has been presented in previous

chapters, followed by a brief discussion about implications of our work, and end

with some ideas for future work.

6.1 Thesis Summary

This thesis began with a description of a Software Transactional Memory sys-

tem PR-STM. This system is presented as a optimistic approach to Concurrency

Control based on a most fashionable parallel programming language for the GPU,

CUDA. An implementation of this system was described by some pseudo code,

with a Priority Rule based contention management policy. This contention man-

ager is designed to adapt GPU architecture and provide concurrent conflict reso-

lution. A comparison between this new system with previous GPU transactional

memory and CPU transactional memory was presented and demonstrated the

efficiency of our system. After that, the system is extended with a global trans-

action table and re-schedule semantic conflict aborted transactions to provide a

conflict resolution for both concurrent conflict and semantic conflict which can

make our system more generalised and suit all scenarios.

107

6.2 Main Contributions

The main contributions of this thesis can be described in three parts:

1. A transactional memory implementation on the GPU was presented in

Chapter 3, which can take, as its batch input, arbitrarily ordered trans-

actions and successfully execute them all without deadlock occurring using

a priority system for determining contention resolution of locks. With the

inherent priorities to sort threads order when manage conflicts during trans-

action time is optimal on GPU compare to previous work. Theoretically,

that ordering execution is a scalable and lock-free solution for real-time

concurrent problems.

2. A contention management system for the GPU that can handle semantic

conflict at the application layer was provided in Chapter 4. Ordering of

transactions can increase throughput and semantic correctness. For ex-

ample, if two operations (deposit and withdraw)on a shared empty bank

account are ordered withdraw first, then there would be a failure semanti-

cally. However, if the deposit was ordered before withdraw then this would

be a correct semantic. Besides, as GPU threads are executing in a lock-step

fashion, it may introduce the possibility of live-lock. A re-order of semanti-

cally aborted transaction can evade this. Our search is general purpose in

nature as the re-order is independent of execution or data structure.

3. A comprehensive evaluative benchmarking of the previous two contributions

demonstrating the improvement they provide in terms of throughput and

efficiency compared to similar works in this area was illustrated in Chapter

5. These experiments were devised to show the effectiveness and generaliza-

tion of proposed approach. The comparison was between our approach and

a previous most efficient GPU transactional memory GPU-STM, varying

degrees of both concurrent conflict and semantic conflict. Moreover, the

scalability of systems is also taken into account with varying the memory

usage and computation resource, and reveals a positive result.

108

6.3 Limitations

Although our solution can provide a software solution for concurrency control for

the GPU, there are still some limitations or disadvantages:

1. Our solution has a better performance compared with current STM solu-

tions on the GPU, but when comes to a specific scenario, it is still slower

than dedicate and customized solutions. This is an overhead of general-

ization, and can be reduced by integrating more contention management

policies into the system. If there are more contention management poli-

cies that specialized for some different scenarios, programmers can choose

a most suitable one for their specific problem, and the performance can be

better.

2. The memory space on the GPU is limited, this lead to a restriction of the

space for global lock table. If the entire shared resource is quite huge, then

there would only leave little space for a global lock table, which can result

in a performance drop off. To achieve the best performance of this system,

a large global lock table is suggested which needs enough memory space.

6.4 Future Work

The contribution of this thesis provides a novel software solution for concurrency

control on the GPU. It opens a new door for future research as GPU paral-

lel computing is no longer limited to nature parallel problems and inter-threads

data communication is permitted. Besides, our approach to solve semantic con-

flict is just a initial step, semantic conflicts resolution remains a lot spaces to

explore. In addition, CPU remains the superiority of individual thread compu-

tation speed and has advantage when conflict rate is high, so research about

coordinate CPU and GPU for transactions can be meaningful. With respect to

short-term developments, we suggest two approaches: (i)advanced semantic con-

flict prediction,(ii)cooperative transactions with both CPU and GPU. And here

is an overview of each approach as a conclusion of this thesis.

109

Semantic Conflict Prediction Our approach in this thesis is providing a

contention management and conflict resolution, which means only solve prob-

lems when concurrent or semantic conflict happens. An attractive alternative is

to prevent conflicts from occurring by re-schedule transactions beforehand. More

specifically, it could be like Shrink contention management which uses a prob-

abilistic technique to order transactions a in a schedule that prevent conflicts,

named Bloom Filters. And semantic conflict prediction can be more accurate

for prediction as its deterministic nature. So a probably continue approach is to

use a probabilistic structure such as Bloom Filter determines the likelihood of a

semantic conflict, and if the possibility exceed a threshold then order this trans-

action to the same thread which carries all likely semantic conflict transactions

concerning same shared data.

CPU and GPU cooperation To harness the maximal power of a compu-

tational node could perform, the cooperation between CPU and GPU is one of

the obvious answers. CPUs have better clock speed than GPUs yet less of par-

allelism due to the emanation from overheating and energy-consuming. On the

other hand, GPUs get clumsy when dealing with project that requires serial in-

struction flow with heavy workload where parallelism can not have its way. For

the STM, the main conceptual idea behind it is the resolution to conflicting mem-

ory access. In contemporary computer production, CPU and GPU use separate

memory space that is connected by PCIe.

However, this disadvantage could be taken as an advantage under certain

circumstance. In a system that has both GPU and CPU run STM framework

separately at the same time, the unpredictable overhead introduced by competing

for mutual exclusive unit in either the lock-steal or the lock-table-sort system

could be partially replaced by a controllable and predictable overhead that stems

from the data transfer between CPU and GPU and other utilities needed to merge

separate memory space together and, in the meanwhile, to maintain the program

correctness. To succeed at such instance, the performance gain by CPU-GPU

cooperation must be large enough to compensate for the overhead that comes

from the communication between the CPU and GPU and the algorithm merging

two memory spaces together.

110

One possible solution to it is to store the transaction table and its correspond-

ing data set on both GPU and CPU RAM. The GPU starts executing transactions

off first while CPU is listening from the GPU. When GPU STM has intense con-

tention over a memory address, the GPU will out load some of the conflicting

transactions to the CPU RAM via a buffer. Once CPU has received the buffer full

of conflicting transactions, the CPU STM will execute the received transactions

in a sequential manner so that a natural serialization of transactions competing

for a certain range of memory addresses is kept. The performance gain in this so-

lution rests on the idea that when intense contention happens, outsourcing some

of the competing transactions are helpful to unblock the congestion and progress

a warp control flow.

Another possible solution is to embrace the memory model current computer

built upon, and recognize the fact that if GPU is executing transactions with

a STM framework, CPU is not able to weigh in timely to work on the same

memory space by synchronize two memory spaces in real-time due to the fact that

overhead introduced by off-chip data transfer would be non-trivial. However, the

CPU could be treated as a co-processor to help GPU with transaction serialization

based on statistical data analysis to recognize the pattern of memory access and

produce relevant parameters to adjust the behaviour of GPU STM. The GPU

could keep a table that records the hit times of a memory address from its data

set. If a memory address A is accessed more than a threshold that is calculated

by the real-time CPU data analysis program, the GPU STM will establish a

dedicated thread that only runs transactions requesting to access the memory

address A. Therefore, a serialized execution model is incorporated. Because the

nature of a STM scenario is to have several threads run transactions in arbitrary

order, a non-unified memory space could lead to fatal failure for a transaction

executed on CPU attempting to read an address resides on GPU RAM.

111

References

[1] Kshemkalyani Ajay D. and Singhal Mukesh. Distributed Computing:

Principles, Algorithms, and Systems. Cambridge University Press, 2008. 18

[2] Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim

Jarvis, Chris Kirkham, and Ian Watson. Steal-on-abort: Improving

transactional memory performance through dynamic transaction reordering.

In High Performance Embedded Architectures and Compilers, pages 4–18.

Springer, 2009. 24

[3] Tongxin Bai, Xipeng Shen, Chengliang Zhang, William N

Scherer, Chen Ding, and Michael L Scott. A key-based adaptive

transactional memory executor. In Parallel and Distributed Processing Sym-

posium, 2007. IPDPS 2007. IEEE International, pages 1–8. IEEE, 2007. 24

[4] Joao Barreto, Aleksandar Dragojevic, Paulo Ferreira, Ri-

cardo Filipe, and Rachid Guerraoui. Unifying thread-level specula-

tion and transactional memory. In Proceedings of the 13th International Mid-

dleware Conference, pages 187–207. Springer-Verlag New York, Inc., 2012.

25

[5] J. Bobba, K.E. Moore, H. Volos, L. Yen, and M.D Hill. Per-

formance pathologies in hardware transactional memory. In international

symposium on Computer architecture, pages 81–91. ACM, 2007. 21

[6] C. Boksenbaum, M.Cart, J. Ferrie, and J. Francois. Concurrency

certifications by intervals of time-stamps in distributed database systems.

IEEE Transactions on Software Engineering, pages 409–419, April 1987. 13

112

REFERENCES

[7] Daniel Cederman, Philippas Tsigas, and Muhammad Tayyab

Chaudhry. Towards a software transactional memory for graphics pro-

cessors. In Eurographics Symposium on Parallel Graphics and Visualization

(EGPGV), pages 121–129, 2010. 41

[8] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A uni-

versal construction for wait-free transaction friendly data structures. In Pro-

ceedings of the twenty-second annual ACM symposium on Parallelism in al-

gorithms and architectures, pages 335–344. ACM, 2010. 25

[9] Tyler Crain, Damien Imbs, and Michel Raynal. Towards a universal

construction for transaction-based multiprocess programs. In Distributed

Computing and Networking, pages 61–75. Springer, 2012. 25

[10] E. W. Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8[9], 1965. 5

[11] Shlomi Dolev, Danny Hendler, and Adi Suissa. Car-stm:

scheduling-based collision avoidance and resolution for software transactional

memory. In Proceedings of the twenty-seventh ACM symposium on Principles

of distributed computing, pages 125–134. ACM, 2008. 24

[12] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The

notions of consistency and predicate locks in a database system. Communi-

cations of the ACM, 19(11):624–633, November 1976. 13

[13] M. J. Flynn. Some computer organizations and their effectiveness. IEEE

Transactions on Computers, pages 948–960, 1972. 2

[14] Wilson WL Fung and Tor M Aamodt. Energy efficient gpu trans-

actional memory via space-time optimizations. In Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microarchitecture, pages

408–420. ACM, 2013. 45

[15] Wilson WL Fung, Inderpreet Singh, Andrew Brownsword, and

Tor M Aamodt. Hardware transactional memory for gpu architectures.

113

REFERENCES

In Proceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 296–307. ACM, 2011. 45

[16] Weikum Gerhard and Vossen Gottfried. Transactional Information

Systems. Elsevier, 2001. 16

[17] V. Gramoli. More than you ever wanted to know about synchronization:

Synchrobench, measuring the impact of the synchronization on concurrent

algorithms. Proceedings of the 20th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, pages 1–10, 2015. 32

[18] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Gran-

ularity of locks in a large shared data base. Very Large Data Bases (VLDB),

pages 428–451, 1975. 12

[19] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.

Granularity of locks and degrees of consistency in a shared data base. In

G.M.Nijssen, editor, Modeling in Data Base Management Systems, pages

365–369. North-Holland, 1976. 13

[20] R. Guerraoui and M.Kapalka. On the correctness of transactional

memory. pages 175–184, 2008. 42

[21] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. To-

ward a theory of transactional contention managers. In Proceedings of the

twenty-fourth annual ACM symposium on Principles of distributed comput-

ing, pages 258–264. ACM, 2005. 24

[22] T. Haerder and A. Reuter. Principles of transaction-oriented database

recovery. In ACM Computing Surveys. ACM, 1983. 5, 19

[23] T. Harris and K. Fraser. Language support for lightweight transactions.

In ACM SIGPLAN conference on Systems, Programming, Languages and

Applications. ACM, oct 2003. 36, 42

[24] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory,

2nd edition. Synthesis Lectures on Computer Architecture, 2010. 19

114

REFERENCES

[25] Tomer Heber, Danny Hendler, and Adi Suissa. On the impact of

serializing contention management on stm performance. Journal of Parallel

and Distributed Computing, 72[6]:739–750, 2012. 24

[26] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for

implementing software transactional memory. In ACM SIGPLAN conference

on Object-oriented programming systems, languages, and applications, pages

253–262. ACM, 2006. 22

[27] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.

Software transactional memory for dynamic-sized data structures. In ACM

Symposium on Principles of Distributed Computing. ACM, jul 2003. 39

[28] M. P. Herlihy. Impossibility and universality results for wait-free synchro-

nization. 7th Annual ACM Symp. on Principles of Distributed Computing,

pages 276–290, 1988. 12

[29] M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction-free syn-

chronization: Double-ended queues as an example. 23rd International Con-

ference on Distributed Computing Systems, pages 522–530, 2003. 12

[30] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12(3), 1990. 12

[31] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 13[1]:124–149, 1991. 25

[32] M.P. Herlihy and J. E. B. Moss. Transactional memory: Architec-

tural support for lock-free data structures. In International Symposium on

Computer Architecture, pages 289–300. ACM, 1993. 35

[33] M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. Pro-

ceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, 1987. 32

115

REFERENCES

[34] Anup Holey and Antonia Zhai. Lightweight software transactions on

gpus. In Parallel Processing (ICPP), 2014 43rd International Conference

on, pages 461–470. IEEE, 2014. 44, 45

[35] H. T. Kung and T. Robinson John. On optimistic methods for con-

currency control. ACM Transactions on Database Systems, pages 213–226,

1981. 4, 13

[36] Leslie Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers, pages

690–691, 1979. 3

[37] Nakul Manchanda and Karan Anand. Non-Uniform Memory Access

(NUMA). New York University, 2010. 27

[38] R. Michel. Lock-based concurrent objects. In Concurrent Program-

ming: Algorithms, Principles, and Foundations, pages 63–75. Springer-

Verlag, 2012. 15

[39] Gordon E Moore. Cramming more components onto integrated circuits.

In Electronics, 38, pages 56–59. IEEE, 1965. 26

[40] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Atomic-

free irregular computations on gpus. In Proceedings of the 6th Workshop on

General Purpose Processor Using Graphics Processing Units, pages 96–107.

ACM, 2013. 45

[41] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Morph

algorithms on gpus. In ACM SIGPLAN Notices, 48, pages 147–156. ACM,

2013. 45

[42] C. Nvida. Compute unified device architecture programming guide. Nvida,

2007. 8, 28, 33

[43] C. Nvida. Programming guide. Nvida, 2008. 29

116

REFERENCES

[44] Bernstein Philip, a., Hadzilacos Vassos, and Goodman Nathan.

Concurrency Control and Recovery in Database Systems. Addison Wesley

Publishing Company, 1987. 15

[45] T Riegel, P Felber, and C Fetzer. TinySTM. 2010. 22

[46] William N Scherer III and Michael L Scott. Advanced contention

management for dynamic software transactional memory. In Proceedings

of the twenty-fourth annual ACM symposium on Principles of distributed

computing, pages 240–248. ACM, 2005. 24

[47] Craig Sharp, William Blewitt, and Graham Morgan. Resolving

semantic conflicts in word based software transactional memory. In Euro-Par

2014 Parallel Processing, pages 463–474. Springer, 2014. 25

[48] Craig Sharp and Graham Morgan. Hugh: a semantically aware uni-

versal construction for transactional memory systems. In Euro-Par 2013

Parallel Processing, pages 470–481. Springer, 2013. 25

[49] N. Shavit and D. Touitou. Software transactional memory. In ACM

Symposium on Principles of Distributed Computing. ACM, aug 1995. 35

[50] A. Silberschatz and P. B. Galvin. Cpu scheduling. In Operating System

Concepts 4th Edition, pages 176–179. John Wiley and Sons, 1994. 14

[51] Arons T. Using timestamping and history variables to verify sequential

consistency. 13th Conference on Computer Aided Verification, 2001. 17

[52] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall, 2001. 20

[53] Jons-Tobias Wamhoff and Christof Fetzer. The universal trans-

actional memory construction. Technical report, Tech Report, 12 pages,

University of Dresden (Germany), 2010. 25

[54] Yunlong Xu, Wang Rui, Luan Zhongzhi, Lan Gao, Wu Weiguo,

and Depei Qian. Lock-based synchronization for gpu architectures. In

Proceedings of the ACM International Conference on Computing Frontiers,

pages 205–213. ACM, 2016. 42

117

REFERENCES

[55] Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao,

and Depei Qian. Software transactional memory for gpu architectures. In

Proceedings of Annual IEEE/ACM International Symposium on Code Gen-

eration and Optimization, page 1. ACM, 2014. 7, 33, 42

118

	Contents
	1 Introduction
	1.1 Parallel Computing
	1.1.1 Benefit of Parallelism
	1.1.2 Classifications of Parallelism

	1.2 Multi-Threading
	1.2.1 Concurrent Conflict and Concurrency Control
	1.2.2 Mutual Exclusion
	1.2.3 Transactional Memory
	1.2.4 Semantic Conflict

	1.3 GPGPU Computing
	1.3.1 The demand of Transactional Memory on the GPU
	1.3.2 GPU Architecture and Memory Hierarchy

	1.4 Thesis Contributions
	1.5 List of Publications
	1.6 Thesis Outline

	2 Background and Related Work
	2.1 Concurrency Control
	2.1.1 Correctness Criteria
	2.1.2 Categories of Concurrency Control
	2.1.3 Basic Methods for Concurrency Control
	2.1.4 Transactions
	2.1.5 Contention Manager
	2.1.6 Semantic resolving Contention Manager
	2.1.7 Summary

	2.2 Parallel Architectures
	2.2.1 Hardware
	2.2.2 Execution
	2.2.3 Concurrency Control Operations
	2.2.4 Summary

	2.3 Related Work
	2.3.1 Transactions on CPU
	2.3.2 Transactions on GPU

	2.4 Summary and Thesis Contribution

	3 PR-STM : A Priority Based Software Transactional Memory for the GPU
	3.1 Introduction
	3.2 System Design and Implementation
	3.2.1 Overview
	3.2.2 Metadata
	3.2.3 STM Operations
	3.2.4 Contention Management Policy

	3.3 Summary

	4 Resolving Semantic Conflict in a Parallelised Contention Management Policy on the GPU
	4.1 Introduction
	4.2 Design and Implementation
	4.2.1 Overview
	4.2.2 Metadata
	4.2.3 Semantic Contention Management Policy
	4.2.4 PR-STM2 Handlers

	4.3 Summary

	5 Evaluation
	5.1 Overview
	5.2 Evaluation of the first version
	5.2.1 Transaction Throughput
	5.2.2 STM Scalability

	5.3 Evaluation of the latest version
	5.4 Implementation of Bank Benchmark
	5.4.1 Performance with Bank Benchmark
	5.4.2 Throughput of Semantic Transactions

	5.5 Implementation of Vacation Benchmark
	5.5.1 Performance in Vacation Benchmark

	5.6 Implementation of SkipList Benchmark
	5.6.1 Performance of SkipList Benchmark

	5.7 Summary

	6 Conclusion
	6.1 Thesis Summary
	6.2 Main Contributions
	6.3 Limitations
	6.4 Future Work

	References

