88,176 research outputs found

    Advancing Protocol Diversity in Network Security Monitoring

    Get PDF
    With information technology entering new fields and levels of deployment, e.g., in areas of energy, mobility, and production, network security monitoring needs to be able to cope with those environments and their evolution. However, state-of-the-art Network Security Monitors (NSMs) typically lack the necessary flexibility to handle the diversity of the packet-oriented layers below the abstraction of TCP/IP connections. In this work, we advance the software architecture of a network security monitor to facilitate the flexible integration of lower-layer protocol dissectors while maintaining required performance levels. We proceed in three steps: First, we identify the challenges for modular packet-level analysis, present a refined NSM architecture to address them and specify requirements for its implementation. Second, we evaluate the performance of data structures to be used for protocol dispatching, implement the proposed design into the popular open-source NSM Zeek and assess its impact on the monitor performance. Our experiments show that hash-based data structures for dispatching introduce a significant overhead while array-based approaches qualify for practical application. Finally, we demonstrate the benefits of the proposed architecture and implementation by migrating Zeek\u27s previously hard-coded stack of link and internet layer protocols to the new interface. Furthermore, we implement dissectors for non-IP based industrial communication protocols and leverage them to realize attack detection strategies from recent applied research. We integrate the proposed architecture into the Zeek open-source project and publish the implementation to support the scientific community as well as practitioners, promoting the transfer of research into practice

    Uncovering Vulnerable Industrial Control Systems from the Internet Core

    Full text link
    Industrial control systems (ICS) are managed remotely with the help of dedicated protocols that were originally designed to work in walled gardens. Many of these protocols have been adapted to Internet transport and support wide-area communication. ICS now exchange insecure traffic on an inter-domain level, putting at risk not only common critical infrastructure but also the Internet ecosystem (e.g., DRDoS~attacks). In this paper, we uncover unprotected inter-domain ICS traffic at two central Internet vantage points, an IXP and an ISP. This traffic analysis is correlated with data from honeypots and Internet-wide scans to separate industrial from non-industrial ICS traffic. We provide an in-depth view on Internet-wide ICS communication. Our results can be used i) to create precise filters for potentially harmful non-industrial ICS traffic, and ii) to detect ICS sending unprotected inter-domain ICS traffic, being vulnerable to eavesdropping and traffic manipulation attacks

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Analysis and Concealment of Malware in an Adversarial Environment

    Get PDF
    Nowadays, users and devices are rapidly growing, and there is a massive migration of data and infrastructure from physical systems to virtual ones. Moreover, people are always connected and deeply dependent on information and communications. Thanks to the massive growth of Internet of Things applications, this phenomenon also affects everyday objects such as home appliances and vehicles. This extensive interconnection implies a significant rate of potential security threats for systems, devices, and virtual identities. For this reason, malware detection and analysis is one of the most critical security topics. The used detection strategies are well suited to analyze and respond to potential threats, but they are vulnerable and can be bypassed under specific conditions. In light of this scenario, this thesis highlights the existent detection strategies and how it is possible to deceive them using malicious contents concealment strategies, such as code obfuscation and adversarial attacks. Moreover, the ultimate goal is to explore new viable ways to detect and analyze embedded malware and study the feasibility of generating adversarial attacks. In line with these two goals, in this thesis, I present two research contributions. The first one proposes a new viable way to detect and analyze the malicious contents inside Microsoft Office documents (even when concealed). The second one proposes a study about the feasibility of generating Android malicious applications capable of bypassing a real-world detection system. Firstly, I present Oblivion, a static and dynamic system for large-scale analysis of Office documents with embedded (and most of the time concealed) malicious contents. Oblivion performs instrumentation of the code and executes the Office documents in a virtualized environment to de-obfuscate and reconstruct their behavior. In particular, Oblivion can systematically extract embedded PowerShell and non-PowerShell attacks and reconstruct the employed obfuscation strategies. This research work aims to provide a scalable system that allows analysts to go beyond simple malware detection by performing a real, in-depth inspection of macros. To evaluate the system, a large-scale analysis of more than 40,000 Office documents has been performed. The attained results show that Oblivion can efficiently de-obfuscate malicious macro-files by revealing a large corpus of PowerShell and non-PowerShell attacks in a short amount of time. Then, the focus is on presenting an Android adversarial attack framework. This research work aims to understand the feasibility of generating adversarial samples specifically through the injection of Android system API calls only. In particular, the constraints necessary to generate actual adversarial samples are discussed. To evaluate the system, I employ an interpretability technique to assess the impact of specific API calls on the evasion. It is also assessed the vulnerability of the used detection system against mimicry and random noise attacks. Finally, it is proposed a basic implementation to generate concrete and working adversarial samples. The attained results suggest that injecting system API calls could be a viable strategy for attackers to generate concrete adversarial samples. This thesis aims to improve the security landscape in both the research and industrial world by exploring a hot security topic and proposing two novel research works about embedded malware. The main conclusion of this research experience is that systems and devices can be secured with the most robust security processes. At the same time, it is fundamental to improve user awareness and education in detecting and preventing possible attempts of malicious infections
    • …
    corecore